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Abstract 
ABSTRACT OF THE DISSERTATION 
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DNA methylation is known to silence gene expression in the context of imprinting, X-

chromosome inactivation, and retrotransposon silencing. However, the role of DNA methylation 

in silencing gene expression outside of these contexts is not fully understood. This is especially 

true in diseases such as cancer, where normal DNA methylation patterns are significantly altered. 

In breast cancer as well as nearly all cancer types, most of the genome loses DNA methylation 

while small regions of the genome gain methylation. DNA methylation generally correlates with 

decreased gene expression when present at a gene promoter. Therefore, these regions of hypo- 

and hyper-methylation may contribute to cancer development and progression by activating 

oncogenes or silencing tumor suppressor genes. My work focuses on building tools to study the 

functional role of DNA methylation changes and exploring how methylation changes at a gene 

promoter promote resistance to treatment in breast cancer.  

About 75% of breast cancers depend on estrogen signaling through the estrogen receptor 

(ERα). These tumors are effectively treated by aromatase inhibitors (AI) that prevent estrogen 
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production. However, almost all advanced cases of ERα positive breast cancer develop resistance 

to AI therapy. I therefore sought to identify methylation changes that promote this resistance. I 

studied UCA1 and PTGER4, two genes identified by a screen for negatively correlated 

methylation and expression changes in a cell line model of AI resistance. UCA1 is a long non-

coding RNA that promotes growth and metastasis in bladder cancer. PTGER4 encodes the 

prostaglandin E2 receptor 4 (EP4), which supports the progression of multiple cancer types by 

altering cell signaling. While my experiments did not indicate that UCA1 has a strong role in AI 

resistance, I found that hypomethylation of the PTGER4 promoter correlates with increased 

expression and EP4 signaling. My data further suggest that the downstream effector of EP4 

signaling, CARM1, promotes endocrine therapy resistance by increasing the ligand-independent 

transcription activity of ERα.  

The effects of local DNA methylation changes are most often identified by correlating 

the methylation and expression levels from two samples. To show that methylation causes the 

expression change, these studies rely on non-specific tools that demethylate the whole genome: 

DNA methyltransferase (DNMT) inhibitors or by DNMT knockout/knockdown. To build a tool 

capable of inducing site-specific DNA methylation changes, I fused the human DNMT3A 

catalytic domain to the RNA-guided nuclease Cas9 (the Cas9 is nuclease dead). I used this tool 

to induce up to 53% DNA methylation on individual cytosines within 50 bp of the target site. 

When multiple sites within the CDKN2A or ARF promoters were targeted, the induced DNA 

methylation decreased the expression of the targeted gene. To determine the optimal DNMT 

catalytic domain to use in this system, I created alternative DNMT fusions that included human 

DNMT1, a fusion of mouse Dnmt3a to mouse Dnmt3L, human DNMT3B, and the bacterial 

methyltransferase M.SssI. While the Dnmt3a-Dnmt3L fusion increased methylation relative to 
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DNMT3A alone, it also induced more off-target methylation. The continued development of 

targeted DNA methylation technologies will increase our ability to identify functional 

methylation changes in tumors. As a result, we will learn the specific ways that methylation-

induced gene expression changes contribute to cancer.
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Chapter 1: Introduction 
 

DNA methylation is an epigenetic mark that affects gene expression without changing the 

DNA sequence. The presence of DNA methylation at a gene’s promoter correlates with 

decreased expression of that gene. DNA methylation is known to silence gene expression in the 

context of imprinting, X-chromosome inactivation, and retrotransposon silencing, but its role in 

silencing gene expression outside of these contexts is not fully understood (Edwards et al., 

2017). Indeed, it is not clear if DNA methylation initiates gene silencing or whether DNA 

methylation is added after gene silencing has already occurred. The work described in my thesis 

is aimed at further investigating this central question. 

Almost all cancers develop aberrant focal hypermethylation in a background of genome-

wide hypomethylation (Jones and Baylin, 2007). These regions of hypo- and hyper-methylation 

may contribute to cancer development and progression by activating oncogenes or silencing 

tumor suppressor genes, respectively (Ehrlich, 2009; Jones and Baylin, 2007). These DNA 

methylation changes can be used to detect cancer (Warton and Samimi, 2015) and identify 

specific cancer subtypes (Ciriello et al., 2013; The Cancer Genome Atlas Network, 2012). 

Increased understanding of the specific ways that DNA methylation affects gene expression will 

allow physicians to refine the application of methylation information to the detection, diagnosis, 

and treatment of cancer (Warton et al., 2016). Here I will review what is known concerning 

DNA methylation, the mechanisms for its establishment and maintenance, as well as its role in 

cancer. 
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1.1 DNA Methylation 

 My thesis focuses on the primary form of DNA methylation in humans, the addition of a 

methyl group (CH3) to the 5 position of cytosine residues (5mC). Information on DNA 

methylation of other residues or in other organisms can be found in the following reviews: Luo et 

al. (2015); Suzuki and Bird (2008). Mammalian DNA methylation was first discovered in a calf 

thymus preparation by Hotchkiss in 1948 (Hotchkiss, 1948). In 1975, Holliday and Pugh as well 

as Riggs proposed models for the role of DNA methylation in regulating gene expression during 

development and X-inactivation, respectively (Holliday and Pugh, 1975; Riggs, 1975). Since that 

time, DNA methylation has been intensely studied as an epigenetic mark that participates with 

DNA sequence and other factors to regulate gene expression. 

 Human DNA methylation occurs most often on cytosine residues in the sequence context 

5’–CG–3’, which is known as a CpG site (Ramsahoye et al., 2000; Ziller et al., 2011). The 

symmetrical nature of these sites allows DNA methylation to be copied in a semi-conservative 

manner during DNA replication. The result is that DNA methylation can be stably maintained 

through cell division and its effects are thereby heritable (Holliday and Pugh, 1975; Riggs, 

1975). There are about 28 million CpG sites in the human genome, and about 70% of these sites 

are methylated (Eckhardt et al., 2006; Edwards et al., 2010). CpG sites are unevenly distributed 

throughout the genome with a fraction of all CpGs occurring in ~1,000 bp clusters called CpG 

islands (CGI). This uneven distribution of CpG sites was created by the spontaneous deamination 

of methylated cytosine which creates a thymine residue (Bird, 1980; Coulondre et al., 1978) as 

well as a T-G mismatch. The base excision repair machinery cannot identify the correct base, 

which results in a 50% chance for a C to T mutation if the G is excised for repair. Despite the 
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higher density of potential methylation sites, CGIs remain largely unmethylated and thereby 

suffer fewer C to T mutations (Bird et al., 1985; Deaton and Bird, 2011). This then is the typical 

methylation pattern in human tissues: most of the genome is methylated but CpG poor while the 

CpG rich CGIs remain unmethylated. 

1.1.1 DNA Methyltransferases  

 The enzymes primarily responsible for creating the DNA methylation patterns described 

above are the DNA methyltransferases (DNMTs). The catalytic domain of eukaryotic DNMTs 

adopt an AdoMet-dependent MTase fold: seven beta strand and alpha helix units that fold to 

place the beta sheet between the outward facing alpha helices (Jurkowska and Jeltsch, 2016). The 

methylation reaction proceeds roughly as follows. Upon recognizing a CpG target, the DNMT 

flips the base out (Klimasauskas et al., 1994). The cytosine ring is then chemically altered to 

promote the methylation reaction. A conserved cysteine located in motif IV (Fig. 1.1) covalently 

Figure 1.1. Domain structure of the mammalian DNA methyltransferases. Domain abbreviations: 

DMAPD, DNA methyltransferase associated protein 1 interacting domain; PBD, PCNA binding 

domain; NLS, nuclear localization signal; RFTD, replication foci targeting domain; CXXC, CXXC 

domain; BAH1 and BAH2, bromo-adjacent homology domains 1 and 2; GKn, glycine-lysine repeats; 

PWWP, PWWP domain; ADD, ATRX-DNMT3-DNMT3L domain. Figure adapted from Jurkowska 

and Jeltsch (2016). 

 

Figure 2.1: Diagram of ERα domainse mammalian DNMT enzymes. Abbreviations used: 

DMAPD DNA methyltransferase-associated protein 1 interacting domain, PBD PCNA-binding 

domain, NLS nuclear localization signal, RFTD replication foci-Figure 2.2: PI3K and ERK 

pathways components that promote AI therapy resistancens 1 and 2, GK n glycine-lysine repeats, 

PWWP PWWP domain, ADD ATRX-DNMT3-DNMT3L domain. Figure copied from Jurkowska and 

Jeltsch (2016). 
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bonds to carbon six of the cytosine. In addition, a glutamate in motif VI (Fig. 1.1) donates its 

hydrogen to nitrogen three of the cytosine. These steps are supported by arginine residues 

located in motif VIII (Fig. 1.1, Lukashevich et al., 2016). These steps cause electron density to 

accumulate on carbon five, which then forms bonds with the methyl group from S-adenosyl-L-

methionine (AdoMet). Both the cysteine and glutamate are necessary for enzymatic activity, and 

their mutation creates a catalytically dead enzyme (Gowher et al., 2006; Reither et al., 2003). 

Several dissociation steps follow leaving a methylated base.  

 The DNMTs share a conserved catalytic domain, but their specific targets and functions 

are regulated by protein-protein interactions. For example, Dnmt1 is 4- to 75-fold more 

catalytically active at hemimethylated CpG sites where only one of the two cytosine residues is 

methylated (Okano et al., 1998; Song et al., 2011). Hemimethylated sites are created during 

DNA replication; therefore, DNMT1 is important for maintenance of DNA methylation patterns 

when cells divide. DNMT1 has several domains that support it in this role. The PCNA binding 

domain (PBD, Fig. 1.1) recruits DNMT1 to bind to replication forks (Chuang et al., 1997). The 

replication foci targeting domain (RFTD, Fig. 1.1) interacts with Uhrf1, which also recruits 

Dnmt1 to replicated, hemimethylated DNA (Bostick et al., 2007; Jeltsch, 2008; Sharif et al., 

2007). Uhrf1 also releases the autoinhibition of Dnmt1 caused by the interaction between the 

catalytic and RFT domains (Bashtrykov et al., 2014; Berkyurek et al., 2014; Takeshita et al., 

2011). When bound to unmethylated DNA, the CXXC domain (Fig. 1.1) blocks catalytic activity 

of a truncated Dnmt1 fragment (Song et al., 2011), though this was not found to be the case with 

a full-length Dnmt1 (Bashtrykov et al., 2012). In addition to these interactions, DNMT1’s 

overall structure also supports its role in maintenance of DNA methylation patterns. The enzyme 



 

5 

 

 

wraps itself around the DNA, allowing it to be processive and focus on methylating one strand: 

the unmethylated strand produced during DNA replication (Hermann et al., 2004; Song et al., 

2012). Information about additional interactions that affect DNMT1 function can be found in this 

excellent review (Jurkowska and Jeltsch, 2016). 

 The role of DNMT1 in maintenance methylation is confirmed by several other studies as 

well. DNMT1 has been cloned from both mouse (Bestor et al., 1988) and human (Ramchandani 

et al., 1998; Yen et al., 1992; Yoder et al., 1996). Knockout of DNMT1 is embryonic lethal in 

mice (Li et al., 1992), though both mouse and human stem cells can survive without DNMT1 (Li 

et al., 1992; Liao et al., 2015; Tsumura et al., 2006). Conditional knockout in differentiated cells 

also causes cell death (Fan et al., 2001; Jackson-Grusby et al., 2001; Sen et al., 2010; 

Trowbridge et al., 2009), including the HCT116 colorectal carcinoma cell line (Chen et al., 

2007). The importance of DNMT1 during DNA replication is further underscored by the finding 

that UHRF1 knockout produces a similar phenotype to DNMT1 knockout (Sharif et al., 2007).    

 In contrast to DNMT1, the DNMT3 family of DNMTs methylate unmethylated CpG 

sites. This family contains three members: DNMT3A, DNMT3B, and DNMT3L. However, 

DNMT3L contains several amino acid substitutions in the catalytic domain that render it 

catalytically inactive (Jurkowska and Jeltsch, 2016). Instead, it acts a cofactor for DNMT3A in a 

manner described below. Additionally, a new member of the DNMT3 family, Dnmt3c, has been 

recently discovered (Barau et al., 2016). This enzyme appears to have arisen from a rodent-

specific duplication of Dnmt3b.  

 Consistent with their role as de novo DNMTs, Dnmt3a and Dnmt3b methylate both 

hemimethylated and unmethylated DNA (Aoki et al., 2001; Gowher and Jeltsch, 2001; Okano et 
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al., 1998). The activity of both DNMT3A and DNMT3B is guided by the ADD and PWWP 

domains (Fig. 1.1). The PWWP domain binds to trimethylated histone 3 lysine 36 (H3K36me3), 

which targets DNMT3A and DNMT3B to methylate pericentric satellite repeats (Chen et al., 

2004; Ge et al., 2004). Mutations in this domain prevent this interaction and have been linked 

with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome (Ge et al., 

2004; Shirohzu et al., 2002). The ADD domain is capable of myriad interactions that integrate 

the DNMTs with the cell’s chromatin modification machinery. These interactions include 

unmethylated H3K4 (Guo et al., 2015; Ooi et al., 2007; Otani et al., 2009; Zhang et al., 2010b), 

SETDB1 (Li et al., 2006), HP1β, and SUV39H1 (Fuks et al., 2003). For a complete list of 

interactions, see the Jurkowska and Jeltsch (2016) review. Similar to the CXXC or RFTD 

domains of DNMT1, the ADD domain causes autoinhibition by blocking access to the catalytic 

domain (Guo et al., 2015). 

 The DNMT3 family of proteins also form both homo- and hetero-multimeric structures 

that contribute to their function. The proteins interact at two regions: an arginine-aspartate (RD) 

interface near the DNA binding site and a phenylalanine-phenylalanine interface on the opposite 

side of the catalytic domain (Jia et al., 2007). Dnmt3a binds to DNA in a non-specific manner 

(Rajavelu et al., 2012) where it forms a homodimer on DNA via interaction at the RD interface. 

This initial binding event promotes cooperative binding (Emperle et al., 2014; Jia et al., 2007; 

Jurkowska et al., 2008, 2011; Rajavelu et al., 2012). These homodimers can methylate two CpG 

sites on opposite strands if the two sites are separated by about 1 helical turn apart (Jia et al., 

2007; Jurkowska et al., 2008). While Dnmt3L lacks an RD domain (Jurkowska et al., 2011), it 

retains an FF domain and binds on either side of the DNMT3A homodimer to create a Dnmt3L-
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Dnmt3a-Dnmt3a-Dnmt3L heterotetramer (Jia et al., 2007). This interaction increases Dnmt3a 

activity by increasing the affinity of Dnmt3a for both DNA and AdoMet (Chédin et al., 2002; 

Gowher et al., 2005; Kareta et al., 2006; Suetake et al., 2004). If a DNMT3A homodimer 

interacts with the FF interface of another DNMT3A homodimer, DNMT3A filaments can be 

formed on multiple parallel DNA strands. This interaction aids DNMT3A activity on organized 

heterochromatin. DNMT3L acts to break up the DNMT3A homomultimer filaments, perhaps 

potentially helping to redistribute it (Jurkowska et al., 2011). 

 DNMT3B possesses similar interface sites, making it capable of forming RD interface 

homodimers like DNMT3A. However, mutation of the interacting domains in Dnmt3b does not 

affect the function of Dnmt3b and indicates multimerization is not important for its function. 

Instead, Dnmt3b may also methylate DNA in a processive manner (Norvil et al., 2016). Two 

reports indicate processive activity for DNMT3A by pulse-chase experiments (Holz-Schietinger 

and Reich, 2010; Holz-Schietinger et al., 2011). However, long turnover in pulse-chase 

experiments is consistent with slow dissociation of DNMT3A oligomers. Similarly, processive 

activity is not consistent with an increase in catalytic activity due to the addition of a catalytically 

dead Dnmt3a (Emperle et al., 2014). The presence of a bias toward methylation of CpGs spaced 

every 8-10 bps is inconsistent with processive activity. The presence of this pattern in vivo (Jia et 

al., 2007) therefore indicates that the cooperative mechanism for DNMT3A is correct.  

 Despite having similar targeting and interacting domains, DNMT3A and DNMT3B serve 

slightly different functions in vivo. Dnmt3a and Dnmt3b have been cloned (Okano et al., 1998), 

and subsequent knockout studies have revealed the differences in function. Dnmt3b knockout 

mice die before birth, while Dnmt3a knockout mice die shortly after birth (Okano et al., 1999). 
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In these mice, a Dnmt3b knockout specific loss of methylation at centromeric satellite DNA was 

observed. The specific role of Dnmt3a was revealed by Dnmt3L knockout. Dnmt3L is expressed 

in few tissues, and knockout causes almost no phenotype except faulty gametogenesis (Hata et 

al., 2002). Male mice are sterile due to loss of methylation on and reactivation of retrotransposon 

sequences (Bourc’his and Bestor, 2004). Female mice fail to form the correct maternal imprints, 

which leads to the death of embryos in utero (Hata et al., 2002). These are the same phenotypes 

as a germline specific Dnmt3a knockout (Kaneda et al., 2004) and indicate that Dnmt3a and 

Dnmt3b are responsible for methylating different groups of repetitive elements. This difference 

in function could arise from the differences in the region N-terminal of the PWWP domain (Fig. 

1), which is the least conserved part of the enzymes (Jurkowska and Jeltsch, 2016). 

1.1.2 Maintenance and de novo Methylation are not Separate Roles 

 In the preceding section, I describe DNMT1 as solely responsible for maintenance 

methylation and DNMT3A/3B as solely responsible for de novo methylation. However, a review 

of the relevant data indicates that the truth is not so simple (Jeltsch and Jurkowska, 2014; Jones 

and Liang, 2009). The core of the problem is that neither group of enzymes does its job perfectly. 

DNMT1’s preference for hemimethylated DNA is not strong enough to ensure perfect 

methylation transfer to the newly synthesized DNA strand (Jeltsch and Jurkowska, 2014; Jones 

and Liang, 2009). Similarly, the dimerization of DNMT3A and DNMT3B places the catalytic 

sites at two CpGs on opposite strands. Because of this, DNMT3A and DNMT3B frequently fail 

to fully methylate unmethylated CpG sites. While imperfect, the proficiencies of DNMT1 can 

compensate for the deficiencies of DMT3A/B and vice versa. Indeed, either Dnmt1-/- or   

Dnmt3a-/- Dnmt3B-/- double knockout mouse embryonic stem lose repetitive sequence 
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methylation, indicating that both systems are needed for consistent methylation maintenance  

(Liang et al., 2002). All of these observations support the hypothesis that the combined activities 

of DNMT1 and DNMT3A/B cooperate to maintain the overall methylation level in a given 

region and not the specific methylation pattern (Jeltsch and Jurkowska, 2014; Jones and Liang, 

2009). 

1.1.3 Non-CpG Methylation 

 Despite their preference for CpG sites, DNMT3A and DNMT3B induce non-CpG 

methylation (Aoki et al., 2001; Gowher and Jeltsch, 2001; Ramsahoye et al., 2000). DNMT1 

knockout does not affect non-CpG methylation levels indicating that the de novo 

methyltransferase are responsible (Ramsahoye et al., 2000). DNMT3A/B induce non-CpG 

methylation preferentially: CpA > CpT > CpC (Aoki et al., 2001; Gowher and Jeltsch, 2001; 

Laurent et al., 2010; Ramsahoye et al., 2000). Non-CpG methylation occurs most frequently in 

embryonic stem cells (Lister et al., 2009; Ziller et al., 2011), induced pluripotent stem cells 

(Lister et al., 2011), neurons (Guo et al., 2014; Lister et al., 2013; Varley et al., 2013), and 

oocytes (Shirane et al., 2013); however, very low levels of non-CpG methylation can be detected 

in various differentiated tissues (Schultz et al., 2015). There is some evidence that non-CpG 

methylation is functional and not noise. The PGC-1α and PDK4 promoters gain non-CpG 

methylation in the skeletal muscle of type II diabetes patients, and this non-CpG 

hypermethylation correlates with decreased expression (Barrès et al., 2009; Barres et al., 2013). 

This might be accomplished through altering transcription factor binding; non-CpG methylation 

at Sp transcription factor binding sites of the STY11 gene blocks transcription factor binding and 

prevents expression (Inoue and Oishi, 2005). 
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1.2 DNA Hydroxymethylation 

 5-hydroxymethylcytosine (5hmC) is an oxidized derivative of 5mC that plays a role in 

the demethylation of 5mC (Ito et al., 2010; Tahiliani et al., 2009). The Ten-Eleven Translocase 

(TET) family of enzymes catalyze the formation of 5hmC by the addition of a hydroxyl group to 

the methyl group of 5mC. TET enzymes are also capable of further oxidizing 5hmC to 5-

formylcytosine (5fC) and 5-carboxycytosine (5caC, He et al., 2011; Ito et al., 2011). 5hmC is 

present at <1% of all cytosine residues in most tissues (Globisch et al., 2010; Ito et al., 2011), 

and almost always in the CpG context (Lister et al., 2013; Yu et al., 2012). The greatest 

prevalence of 5hmC occurs in neurons at 40% the level of 5mC (Kriaucionis and Heintz, 2009). 

In other tissues, 5hmC is at levels about 4 to 6% that of 5mC (Globisch et al., 2010; Ito et al., 

2011). 5fC and 5caC are almost completely absent from all tissues tested. Embryonic stem cell 

showed the highest levels of 5fC and 5caC at 20 or 3 modified residues per million cytosines, 

respectively (Ito et al., 2011).  

 When it does occur, 5hmC is common at the promoters of poised genes, gene bodies, and 

enhancers and is rare within CGI promoters (Wu and Zhang, 2017). CGI promoters lack 5hmC 

because these promoters also lack 5mC, the TET enzymes’ substrate. Instead, 5hmC is found on 

poised promoters which have both lower CpG density and higher 5mC (Williams et al., 2011; 

Wu et al., 2011). 5hmC concentration also increases along gene bodies with a bias toward the 

sense strand. This suggests that TET enzyme activity may be linked to active transcription (Wen 

et al., 2014). Enhancer and insulator 5hmC occurs on cytosines flanking transcription factor and 

CTCF binding sites (Stroud et al., 2011). This suggests that TET enzymes may be recruited by 
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transcription factors. However, it may also represent residual activity of TET enzymes at the 

promoter(s) that interact with the enhancer (Wu and Zhang, 2017).  

1.2.1 The TET Enzymes 

TET1, TET2, and TET3 represent paralogs that all share a conserved and active C-

terminal iron(II)- and 2-oxoglutarate (2OG)-dependent hydroxylase domain (Iyer et al., 2009; 

Zhang et al., 2010a). The TET enzymes also contain a conserved, N-terminal CXXC zinc finger 

DNA-binding domain. TET2, however, lacks the CXXC domain (Iyer et al., 2009). This loss 

was apparently caused by a chromosomal inversion that allowed the TET2 CXXC sequence to 

become its own gene, IDAX. IDAX aids TET2 binding to DNA, but in the process also triggers 

caspase based degradation of TET2 (Ko et al., 2013). Interestingly, the Tet1 CXXC domain does 

not bind DNA and is not necessary for catalysis (Frauer et al., 2011). Both mouse Tet1 and 

Xenopus Tet3 CXXC domains bind methylated and unmethylated CpGs (Xu et al., 2011, 2012). 

This is unusual for a domain that typically binds unmethylated CpG sites and may be caused by 

the loss of a KFGG motif that is maintained in the CXXC domains of MLL and CFP1 (Xu et al., 

2012). Once bound to the DNA, however, the catalytic domain shows a preference for 5mC in 

the CpG context. However, the DNA binding interactions do not contact the methyl group. This 

allows TET proteins to bind multiple derivatives of 5mC and catalyze their oxidation (Hu et al., 

2013a). Nevertheless, constraints at the active site give TET enzymes render them more 

catalytically active on 5hmC than on either 5fC or 5caC (Hu et al., 2015). 

1.2.2 DNA Demethylation  

 The most straightforward way to demethylate DNA is to undergo multiple cell divisions 

while DNMT activity is inhibited. The oxidation of 5mC to 5hmC encourages this form of 
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demethylation. DNMT1 is 60-fold more active on hemimethylated DNA (hemi-5mC) DNA than 

on hemihydroxymethylated DNA (hemi-5hmC, Hashimoto et al., 2012; Valinluck and Sowers, 

2007). The result is inhibition of maintenance methylation and dilution of 5mC by cell division. 

Two mechanisms may counter this loss of activity. First, UHRF1 can bind to hemi-5hmC and 

recruit DNMT1 (Hashimoto et al., 2012). Second, truncated isoforms of DNMT3A and 

DNMT3B remain active on hemi-5hmC DNA and can take over the maintenance role at these 

sites (Hashimoto et al., 2012). This latter mechanism is supported by the observation that 

Dnmt3a-/- Dnmt3b-/- mouse ESCs gradually lose 5mC (Chen et al., 2003). However, 

demethylation in the early embryo occurs in the presence of DNMT3A, suggesting that 

DNMT3A alone may not be sufficient to maintain methylation patterns (Wu and Zhang, 2014). 

 Alternatively, DNA methylation can be actively removed without DNA replication. 

Several mechanism have been proposed for this (Wu and Zhang, 2014); however, thymine-

DNA-glycosylase (TDG) base excision and subsequent repair is most supported by the evidence 

(Rasmussen and Helin, 2016). In this pathway, TDG detects 5fC and 5caC and catalyzes the 

removal of the modified cytosine base (He et al., 2011; Maiti and Drohat, 2011). The base 

excision repair pathway detects the damaged DNA and repairs it with an unmethylated cytosine 

residue. This mechanism is supported by the observation that overexpression of TDG in HEK293 

cells depletes 5fC and 5caC (Nabel et al., 2012). Initial immunological studies of early embryos 

found that DNA methylation of the paternal genome occurs before DNA replication, implying 

active demethylation (Mayer et al., 2000; Oswald et al., 2000). However, TDG expression is low 

in the early embryo (Tang et al., 2011), and 5fC and 5caC are diluted over cell division (Inoue et 

al., 2011). Altogether, it appears that DNA methylation is generally lost passively through DNA 
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replication, but specific regions may be targeted for active demethylation by TDG and base 

excision repair.   

1.3 DNA Methylation and Gene Regulation 

The presence of DNA methylation at a gene’s promoter correlates with decreased 

expression of that gene. However, there are many genes that are still expressed despite the 

presence of DNA methylation (Weber et al., 2007). The effect of DNA methylation on gene 

expression is position and context dependent. This can be demonstrated by the stronger 

correlations between methylation and expression in first exons (Schlosberg et al., 2017; 

VanderKraats et al., 2013) or at CGI shores (Irizarry et al., 2009). A large part of this control is 

directed by the transcription factors and methyl binding domain proteins that directly interact 

with DNA methylation. 

1.3.1 DNA Methylation Alters Transcription Factor Binding 

 The methyl group on methylated cytosine protrudes into the major groove of the DNA 

(Li and Zhang, 2014). DNA methylation is therefore able to alter the target site for transcription 

factors (TFs, Hu et al., 2013b; Yin et al., 2017) and exert direct control of gene expression. An 

early model was that methylation of TF binding sites (TFBS) blocked TF binding and caused 

gene repression (Tate and Bird, 1993). This principle has been demonstrated for MLTF (Watt 

and Molloy, 1988), YY1 (Gaston and Fried, 1995), and the E2F family of transcription factors 

(Campanero et al., 2000). Indeed, TFBS overall tend to be unmethylated (Choy et al., 2010), and 

SP1 protects the promoters to which it binds from being methylated (Brandeis et al., 1994; 

Lienert et al., 2011; Macleod et al., 1994). 
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 Further study has shown that the model described above applies in a limited number of 

cases. Of 519 TFs with motifs that contain CpGs, 202 (39%) of TFs bound irrespective of DNA 

methylation (Yin et al., 2017). DNA methylation could not affect the expression of genes 

controlled by these TFs. The subset of 317 (61%) TF motifs affected by DNA methylation 

contained 117 TFs (37%) inhibited by DNA methylation, 175 TFs (55%) stimulated by DNA 

methylation, and 25 TFs (8%) with multiple effects due to CpG sites at multiple positions in their 

motif(s) (Yin et al., 2017). This suggests that methylated motifs are capable of recruiting 

transcription activators as well as repelling them. Most importantly, the CpG sites that correlate 

with gene expression were found outside of TF motifs. This suggests that – on average – even if 

DNA methylation modifies TF binding, it will not affect gene expression (Medvedeva et al., 

2014). As a result, it is difficult to make a general statement about the effect of DNA methylation 

on gene expression via control of TF binding.    

1.3.2 Methylation Binding Domain Proteins Directly Read Methylation 

Information 

 
 Methyl binding domain (MBD) protein family members represent a subset of DNA 

binding proteins that have a strong affinity for methylated CpG sites (Du et al., 2015). This 

affinity is conferred by the 70 – 85 amino acid MBD. This family includes the founding member, 

MeCP2 (Meehan et al., 1989), as well as MBD1, MBD2, MBD3, MBD4, MBD5, and MBD6, 

which were discovered by their homology to MeCP2 (Du et al., 2015). The MBD domain 

preference for methylated CpG sites can range from about 3-fold up to over 100-fold (Fraga et 

al., 2003). MBD proteins also prefer to bind methylated DNA with high CpG density (Baubec et 

al., 2013; Cramer et al., 2014; Fraga et al., 2003). This suggests that MBD proteins are key 

readers of DNA methylation in the genome. 
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 When bound to DNA, MBD proteins decrease gene expression by recruiting corepressors 

(Du et al., 2015). For example, MeCP2 recruits both histone deacetylates (Jones et al., 1998; 

Nan et al., 1998) and HP1 (Agarwal et al., 2007; Singleton et al., 2011). HP1 in turn recruits 

SUV39H1, an H3K9 methyltransferase (Fujita et al., 2003). Both HP1 and SUV39H1 are 

capable of interacting with the DNMT3 enzymes via their ADD domains (Fuks et al., 2003; 

Jurkowska and Jeltsch, 2016). Similarly, MBD2 and MBD3 both recruit the NuRD complex to 

DNA (Guezennec et al., 2006). The NuRD complex represses gene expression via nucleosome 

remodeling and histone deacetylation (Lai and Wade, 2011). The MBD2-NuRD complex 

reinforces the repression already established by DNA methylation at the CDKN2A (Magdinier 

and Wolffe, 2001) and GSTP1 (Lin and Nelson, 2003) promoters. Altogether, these observations 

suggest that MBD proteins often serve to reinforce gene silencing at methylated regions of the 

genome by promoting the formation of heterochromatin. 

 Reinforcement of DNA methylation-induced gene silencing is not the only role of MBD 

proteins, however. MBD3 contains mutations that have eliminated its preference for 5mC (Saito 

and Ishikawa, 2002). Instead, MBD3 can bind 5hmC and repress genes in a 5hmC dependent 

manner (Yildirim et al., 2011). MBD4 contains a thymine DNA glycosylase domain that allows 

it play a role in demethylation via repair of mismatches resulting for deaminated cytosine (Cunha 

et al., 2014; Hendrich et al., 1999).  Lastly MeCP2 has roles in DNA looping that affect 

H19/Igf2 imprinting (Kernohan et al., 2010, 2014). These alternative functions of MBD proteins 

offer new and unexplored ways that DNA methylation can affect genome function. 
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1.3.3 Imprinting is Controlled by DNA methylation 

 The readers of DNA methylation play a direct role in control of monoallelic gene 

expression, also known as imprinting. The expression of imprinted genes is decided by the status 

imprinting control regions (ICRs), and DNA methylation regulates ICR activity (Peters, 2014). 

The IGF2 and H19 genes are imprinted and their ICR lies between them. A downstream 

enhancer can activate either gene. DNA methylation of the ICR controls the binding of the 

sequence-specific zinc finger CCCTC-binding factor (CTCF): CTCF binds the unmethylated 

maternal ICR but fails to bind the methylated paternal ICR. CTCF blocks the access of the 

enhancer to IGF2 on the maternal allele and thereby activates maternal H19 expression. On the 

other chromosome, ICR methylation prevents the enhancer from activating paternal H19 

expression, allowing it to activate IGF2 (Peters, 2014). Dysregulation of methylation at the ICR 

of the H19/IGF2 locus contributes to diseases such as Beckwith-Wiedemann syndrome (Bliek et 

al., 2001; Weksberg et al., 2001). This illustrates the role DNA methylation has in instigating 

gene silencing of imprinted genes. 

1.3.4 DNA Methylation and Long-term Silencing During X-inactivation 

 In contrast to imprinting, DNA methylation is added after gene silencing during X-

chromosome inactivation. As a form of dosage compensation for X-linked genes, mammalian 

female cells silence one of their two X chromosomes. The process begins when the long non-

coding RNA, XIST, is upregulated and coats the X-chromosome (Clemson et al., 1996). XIST 

recruits the PRC2 histone methyltransferase which applies the inactivating H3K27me3 mark 

(Plath et al., 2003). Over time, the inactive X is bound up tightly in heterochromatin. Late in this 

process, DNA methylation accrues at the promoters of X-linked housekeeping genes (Norris et 
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al., 1991). Methylated genes, such as Hprt, can be reactivated by loss of DNA methylation 

(Bhatnagar et al., 2014; Csankovszki et al., 2001; Mohandas et al., 1981). When XIST 

expression is lost after inactivation, the inactive X adopts a more active chromatin structure, but 

DNA methylation and gene silencing remain (Splinter et al., 2011). Thus, DNA methylation 

serves as the lock that maintains the repression of many genes on the inactivated X chromosome. 

1.3.5 DNA Methylation Silences Retrotransposon 

DNA methylation also acts as a long-term lock that represses retrotransposon activity in 

the genome. Loss of Dnmt3L prevents de novo methylation of retrotransposons as well as 

increased transposition and chromosomal instability (Bourc’his and Bestor, 2004). In mice 

expressing a Dnmt1 hypomorph, multiple long terminal repeat (LTR) intracisternal A particle 

(IAP) retrotransposons mobilized (Howard et al., 2008). In the human genome, long interspersed 

nuclear element family 1 (LINE-1 or L1) elements are the transpositionally active retroelements 

(Konkel and Batzer, 2010). Transcription from L1 elements increases with global DNA 

hypomethylation, suggesting that hypomethylation reactivates retrotransposition (Konkel and 

Batzer, 2010).   

 Retrotransposons can alter gene expression by serving as alternative regulatory 

sequences.  A well-known example is the hypomethylation of an IAP element upstream of a 

dominant Agouti allele in mice.  This alternative promoter causes constitutive expression of the 

dominant allele, resulting in the development of a yellow coat, obesity, diabetes, and cancer 

(Michaud et al., 1994; Morgan et al., 1999). In addition, when unmethylated, the L1 element in 

intron 2 of the hepatocyte growth factor receptor, MET, produces a truncated transcript that is 

constitutively active and promotes tumors of various types (Hur et al., 2013; Wallenius et al., 
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2000; Wolff et al., 2010). Transcriptome sequencing studies suggest that the above examples are 

not isolated incidents and that retrotransposons frequently serve as alternative promoters for 

coding genes (Faulkner et al., 2009). Retrotransposons comprise 42% of the human genome 

(Lander et al., 2001). Based on the above evidence, the control that DNA methylation has over 

retrotransposons therefore represents an important amount its control over gene expression. 

1.3.6 The Effect of Gene Promoter Methylation Depends on CG Content 

 DNA methylation has different effects at gene promoters depending on whether the 

promoter has high, intermediate, or low CpG density (Jones, 2012). The promoters of 60% to 

70% of human genes are present in CGI which have high/intermediate CpG content and remain 

largely unmethylated (Illingworth and Bird, 2009). There is some evidence that high CG content 

alone provides this protection (Krebs et al., 2014). However, the chromatin context created by 

active transcription also provides protection. H3K4me3 marks active genes and repels DNMT3L 

(Ooi et al., 2007). In systems with DNMT3L expression, de novo methylation is discouraged. 

Active promoters can be further protected by TF binding as described above. Despite these 

protections, some CGI promoters are methylated and silenced (Weber et al., 2007). Interestingly, 

the CGIs at the methylated and silenced promoters generally contained intermediate CpG 

density. High CpG density CGI promoters remained unmethylated (Weber et al., 2007).  

 Promoters that lack the protection of high CG content are more susceptible to DNA 

methylation (Weber et al., 2007; Ziller et al., 2013). One study found that DNA methylation 

silenced the LAMB3 and RUNX3 promoters in cancer (Han et al., 2011). This was confirmed by 

a genome-wide study that found about 7500 out of 9000 methylated promoters were silenced 

(Sarda et al., 2017). The observation that 1500 methylated promoters were still expressed had 
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been seen previously (Weber et al., 2007), and appears to be due to transcription from alternative 

promoters that lie within CGI (Sarda et al., 2017).  

 Part of the purpose of gene body methylation is to repress these alternative promoters. An 

actively transcribed gene body is marked by H3K36me3, which recruits DNMT3B (Baubec et 

al., 2015). The result is that gene body methylation positively correlates with gene expression. 

This appears to contradict the role of DNA methylation in gene silencing. However, gene body 

methylation is instead silencing alternative promoters (Maunakea et al., 2010; Neri et al., 2017). 

 The role of DNA methylation at enhancers is less clear. The TFs that bind to enhancers 

both activate gene expression and recruit coactivators that mark active enhancers with H3K4me1 

and H3K27ac (Rada-Iglesias et al., 2011). The antagonism of TF binding by DNA methylation 

has been proposed as a means of shutting down enhancers (Calo and Wysocka, 2013). Initial 

studies found negative correlations between DNA methylation and active enhancer marks such 

as H3K4me1, H3K27ac, and TF binding (Stadler et al., 2011; Thurman et al., 2012). However, 

mouse CTCF and REST can bind enhancer regions in the presence of methylation and cause 

methylation loss (Stadler et al., 2011). This argues against a regulatory role for DNA 

methylation at enhancers. The recent discovery of active bivalent enhancers that have both 

H3K27ac and DNA methylation (Charlet et al., 2016) further indicates that DNA methylation 

interacts with enhancers differently than it does at promoters. 

1.4 DNA methylation and Cancer 

 Global DNA hypomethylation and local hypermethylation are common occurrences in 

human cancers (Ehrlich and Lacey, 2013). Global hypomethylation was first observed in 1983 

(Feinberg and Vogelstein, 1983; Gama-Sosa et al., 1983). Focal hypermethylation was 
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discovered shortly thereafter at the calcitonin promoter (Baylin et al., 1986) and later silencing 

the RB tumor suppressor in retinoblastoma (Greger et al., 1989; Sakai et al., 1991). In cancer, 

the protection of CGI promoters from methylation is not maintained (Illingworth et al., 2010), 

and local hypermethylation promotes the silencing of tumor suppressor genes such as RB and 

INK4A (Feinberg and Tycko, 2004). The specific mechanisms by which global hypomethylation 

contribute to cancer are less clear. However, evidence is growing for several mechanisms by 

which hypomethylation promotes cancer including: increased genomic instability, altered gene 

regulation, and reactivation of retrotransposons (Ehrlich and Lacey, 2013). The precise 

mechanism(s) that cause these aberrant epigenetic profiles are not completely understood, but are 

sometimes due to mutations that affect epigenetic machinery (Plass et al., 2013). Because of the 

reversible nature of epigenetic marks, they offer enticing therapeutic targets. In order to create 

targeted therapeutics, however, we will need a better understanding of the specific epigenetic 

contributions to carcinogenesis and progression. 

1.4.1 The Effects of Genome-Wide Hypomethylation in Cancer 

Given the preceding examples of methylation regulating silencing, genome-wide 

hypomethylation should upregulate gene expression (Ehrlich and Lacey, 2013). This prediction 

holds true at the cancer testis antigen PRAME (Ortmann et al., 2008; Zhang et al., 2016) and P-

cadherin (Milicic et al., 2008). 

Hypomethylation can also reactivate repressed retrotransposon sequences. In mice 

expressing a Dnmt1 hypomorph, multiple IAP retrotransposons mobilized and inserted at the 

Notch1 locus, promoting lymphoma development (Howard et al., 2008). In the human genome, 

active retrotransposons caused 194 somatic transposition events in 43 tumors from various 



 

21 

 

 

tissues (Lee et al., 2012). Notably, these 194 insertions tended to downregulate the genes they 

inserted near, including some tumor suppressors (Lee et al., 2012). However, most tumors had 

less than 10 transposition events, suggesting that these events are somewhat rare. Though rare, 

the epigenetically silenced LTR element located upstream of CSF1R promotes aberrant 

expression of the colony stimulating factor receptor and drives Hodgkin’s lymphoma (Lamprecht 

et al., 2010).  In addition, when unmethylated, the L1 element in intron 2 of the hepatocyte 

growth factor receptor, MET, produces a truncated transcript that is constitutively active and 

promotes tumors of various types (Hur et al., 2013; Wallenius et al., 2000; Wolff et al., 2010).  

Transcriptome sequencing studies suggest that the above examples are not isolated incidents and 

that retrotransposons frequently serve as alternative promoters for coding genes (Faulkner et al., 

2009). 

Genome-wide hypomethylation does not only reactivate gene/retrotransposon activity. 

Hypomethylation also correlates with decreased transcription (Hansen et al., 2011). Cancer-

associated genome-wide hypomethylation occurs in large blocks, and 36% of expressed genes 

became silenced in these blocks. The mechanism is not clear, but significant overlap between 

these domains and lamin associated domains (Berman et al., 2012) suggests that repression due 

to association with the nuclear lamina could be responsible (Hansen et al., 2011).       

In addition to its effects on gene expression, global hypomethylation also promotes 

chromosomal instability. Increased loss of heterozygosity and tumor formation was observed in 

Nf1+/- and p53+/- cells expressing a hypomorphic Dnmt1 allele (Eden et al., 2003). These mice 

developed T cell lymphomas at an early age, likely due to trisomy of chromosome 15 and the 

resulting overexpression of c-Myc. In contrast, hypomethylation can lead to deletion of Apc in 
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mouse liver tumors (Yamada et al., 2005) and MTHFR in human glioblastomas (Cadieux et al., 

2006). Altogether, it is clear that global hypomethylation assists tumor formation and/or 

progression in multiple ways. 

1.4.2 The Effects of Focal Hypermethylation in Cancer 

 Focal hypermethylation also assists tumor formation and progression by downregulating 

tumor suppressor genes. Most early study of DNA methylation and cancer focused on this 

phenomenon. As a result, several examples of this phenomenon have been discovered: RB 

(Greger et al., 1989; Sakai et al., 1991), MLH1  (Miyakura et al., 2004; Suter et al., 2004), E-

cadherin (Graff et al., 1995), VHL (Herman et al., 1994), and CDKN2A (Gonzalez-Zulueta et al., 

1995). Further research found that methylation induced silencing is a common occurrence in the 

cancers analyzed by the TCGA (Ciriello et al., 2013).  

 As just one example, consider CDKN2A (also known as p16INK4A). CDKN2A is a tumor 

suppressor that regulates cell cycle progression by preventing the activation of CDK4/6 (Zhao et 

al., 2016). When all TCGA cancer types are considered, it is one of the most frequently 

methylated, deleted, and/or silenced genes (Ciriello et al., 2013), and silencing strongly 

correlates with methylation in lung cancer (The Cancer Genome Atlas Research Network, 2012). 

CDKN2A expression can be reactivated by treatment with 5-azacytidine, a DNMT inhibitor 

(Hassler et al., 2012), and monoallelic methylation results in monoallelic CDKN2A expression 

(Myöhänen et al., 1998). Together these studies suggest that DNA methylation may cause the 

repression of CDKN2A expression. In mouse embryonic fibroblasts, CDKN2A appears to be 

regulated by PRC2 and hSNF5 (Wilson et al., 2010). Unfortunately, this study failed to analyze 

DNA methylation making it impossible to determine whether DNA methylation initiated 
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silencing in these cells. As a result, we are left with the conclusion supported by the evidence 

from all the other studies: DNA methylation silences CDKN2A expression, and this is 

representative of other tumor suppressor silencing events in cancer. 

1.4.3 DNA Methylation Based Cancer Therapeutics 

 Therapeutics based on focal hypermethylation in cancer have already been approved by 

the FDA. These drugs are the DNMT inhibitors 5-azacytidine and 5-aza-2-deoxycytidine (Jones 

et al., 2016). Treatment with DNMTs caused 15% or more of myelodysplastic syndrome or acute 

myeloid leukemia patients to survive longer while present fewer cancerous blood cells and more 

healthy cells (Jones et al., 2016). Part of the efficacy of these drugs arises from the reactivation 

of endogenous retrovirus sequences following 5-azacytidine treatment in cancer. The interferon 

response caused by increased expression of retrotransposon RNA draws the immune system to 

attack the tumor (Chiappinelli et al., 2015). Nevertheless, by encouraging broad loss of 

methylation, it remains possible to trigger the pro-cancer effects described above. Treatments 

targeting a specific, local DNA methylation change could be used to avoid some of these side 

effects. However, both DNA methylation editing technologies and our understanding of aberrant 

cancer epigenetics must develop before targeted therapies become a reality. 

1.5 Tools for DNA Methylation Analysis 

 A large problem in the DNA methylation field has been the lack of tools to make targeted 

DNA methylation changes. Many of the studies above that consider CDKN2A expression 

consider only the correlation between methylation and expression across multiple samples. The 

Hassler et al. (2012) study is the exception because it uses 5-azacytidine, a DNMT inhibitor, to 

demethylate and reactivate CDKN2A expression. That is one example of the most commonly 
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used approaches to demonstrate a causal relationship between methylation and expression: 

inhibition of DNMT activity by chemical inhibition, siRNA/shRNA knockdown, or gene 

knockout. This technique suggests a causal relationship if demethylation reactivates expression.  

 DNMT inhibition has downsides. The primary drawback is that demethylation occurs 

genome-wide and may cause undesirable off-target effects. 5-azacytidine has the additional 

drawback of inducing DNA and RNA damage (Cihák, 1974). To avoid these problems, it is 

possible to clone out the promoter of interest and then reintegrate methylated/unmethylated 

forms by site-specific recombination (Appanah et al., 2007; Busslinger et al., 1983; Lorincz et 

al., 2004). This approach is very specific but has the drawback that the promoter is no longer 

being studied at the endogenous locus and the different chromatin context may bias the findings 

(Amabile et al., 2016). The ideal solution would be targeted manipulation of DNA methylation. 

1.5.1 A Brief History of Targeted DNA Methylation Editing 

 Targeted methylation technologies have existed for twenty years, but have not been 

widely adopted. The first demonstration of the technology was a fusion of the M.HhaI DNMT to 

the Zif268 zinc finger (ZF) protein (Xu and Bestor, 1997). The Zif268 protein successfully 

guided the methylation activity of M.HhaI to an oligo substrate in vitro. Since that proof of 

concept, several studies have fused DNMTs and targeting domains to study DNA methylation 

(Groote et al., 2012). Early studies continued to use ZFs as the targeting domains for prokaryotic 

DNMTs M.SssI, M.HhaI, and M.HpaII (Groote et al., 2012). These early studies targeted oligos 

in vitro, plasmid reporter systems, or DNA integrated into yeast (Groote et al., 2012). Smith and 

Ford (Smith et al., 2008) used a ZF-M.HhaI fusion to methylate a promoter integrated into the 

mouse genome. The integrated promoter was silenced and the methylation was stable for 16 days 
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(Smith et al., 2008). The overall conclusion of the early studies was that DNA methylation 

silenced gene expression; however, these studies still did not consider the native locus. 

 It was not until 2012 that a mammalian DNMT was targeted to an endogenous locus 

(Rivenbark et al., 2012). Rivenbark et al. (2012) targeted the mouse Dnmt3a catalytic domain to 

the promoter of Maspin, a tumor suppressor gene in human cancer cell lines. 50% methylation of 

the Maspin promoter induced Maspin repression and increased soft agar colony formation 

(Rivenbark et al., 2012). Similar results have been described at the following promoter regions: 

SOX2 (Stolzenburg et al., 2015), EpCAM (Nunna et al., 2014), and CDKN2A (Cui et al., 2003).   

 Over time, the targeted DNA methylation field has incorporated new technologies and 

approaches. The known enhancement of DNMT3A activity by DNMT3L led Siddique et al. 

(2013) to use a ZF-mDnmt3a-mDnmt3L fusion. As expected, the new fusion induced more 

methylation than Dnmt3a alone (Siddique et al., 2013). The field also adopted the more recent 

TALE proteins as a DNA targeting domain. When paired with the mDnmt3a-mDnmt3L fusion, 

this domain can methylate and silence CDKN2A in primary human fibroblasts (Bernstein et al., 

2015). The demethylation of DNA by targeted TET activity has also been performed with a ZF 

fusion (Chen et al., 2013) and with a TALE fusion (Maeder et al., 2013a) Despite adopting the 

new TALE technology, targeted methylation manipulation is still limited by the expense and 

time required to create custom DNA binding proteins. I believe this explains the fifteen-year 

delay between initial proof of concept and application of targeted methylation at an endogenous 

locus. Nevertheless, a novel targeting solution is needed to carry this technology into the future.  
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1.5.2 The CRISPR/Cas9 System Offers a More Efficient Targeting System 

 The CRISPR/Cas9 system offers an inexpensive and flexible DNA targeting system 

(Komor et al., 2017) that can facilitate the use of targeted methylation strategies. The 

CRISPR/Cas9 system was discovered in bacteria where it degrades foreign DNA to protect the 

bacterial genome (Barrangou et al., 2007; Garneau et al., 2010). The bacteria store short, >20 bp 

fragments of foreign DNA called spacers between palindromic repeat sequences. This 

arrangement is known as the clustered regularly interspaced short palindromic repeat (CRISPR) 

array (Andersson and Banfield, 2008; Bolotin et al., 2005; Mojica et al., 2005; Pourcel et al., 

2005). The long CRISPR array transcripts (pre-crRNA) is cleaved to free an individual spacer-

repeat transcript. This is directed by a trans-activating CRISPR RNA (tracrRNA) that binds the 

repeat sequence of the pre-crRNA. The final crRNA/tracrRNA complex allows site-specific 

binding by Cas9 (Deltcheva et al., 2011; Gasiunas et al., 2012). This system has been optimized 

by fusing the two RNA components into one, called a small guide RNA or sgRNA (Fig. 1.2, 

Figure 1.2. The CRISPR/Cas9 System. Figure adapted from https://www.systembio.com/genome-

engineering-cas9-crispr-smartnuclease/overview. 
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Garneau et al., 2010; Jinek et al., 2012). As a result, the CRISPR/Cas9 system can be 

reprogrammed to target a new location by changing the spacer sequence. This requires a single 

cloning step, making it inexpensive and quick. Because of this ease of use, the technology has 

rapidly replaced ZF or TALE nuclease fusions that had previously been used for genome editing 

(Komor et al., 2017). 

 Subsequent research has continued to optimize the CRISPR/Cas9 system for genome 

editing. One drawback of the CRISPR/Cas9 system over ZF- or TALE-based systems is 

increased off-target effects (Fu et al., 2013; Hsu et al., 2013). A few months ago, one group 

found that two mice treated with CRISPR/Cas9 showed a surprisingly high number of off-target 

mutations. Even more surprisingly, many of these were the same in both mice (Schaefer et al., 

2017). There is ongoing discussion on whether the authors conclusions were justified. Several 

approaches have been demonstrated to increase Cas9 specificity (Tsai and Joung, 2016). 

Increased specificity can be accomplished by requiring co-localization of two Cas9 nickase 

complexes (Guilinger et al., 2014; Mali et al., 2013; Redis et al., 2013; Tsai et al., 2014). The 

Cas9 protein can also be engineered for greater specificity (Kleinstiver et al., 2016; Slaymaker et 

al., 2016). The other drawback of the S. pyogenes CRISPR/Cas9 system is that all binding sites 

must contain a 5’-NGG-3’ motif at the 3’ end of the target site. This motif is called the 

protospacer adjacent motif (PAM) sequence (Jinek et al., 2012). Engineered Cas9s can overcome 

this requirement (Kleinstiver et al., 2015). However, it may be easier to utilize alternative Cas9 

proteins that natively have different PAM sequence requirements (Komor et al., 2017)  

 I believe that the Cas9 technology will enable the use of epigenome editing. The nuclease 

activity of Cas9 can be inactivated by two point mutations (Qi et al., 2013). The nuclease dead 
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Cas9 (dCas9) thereby becomes a reprogrammable, RNA-directed DNA binding protein. This 

system has been used to guide the VP4 transcriptional activator (Maeder et al., 2013b; Perez-

Pinera et al., 2013a) and the KRAB repressor (Gilbert et al., 2013; Thakore et al., 2015), the 

p300 histone acetyltransferase domain (Hilton et al., 2015), and the LSD1 histone demethylase 

(Kearns et al., 2015) to specific sites in the genome. The work described in Chapters 3 and 4 

describes my work to create and optimize a dCas9-DNMT fusion for epigenome editing. 

1.6 Summary 

 DNA methylation is an integral part of the regulatory machinery in the human genome, 

but many of its effects remain poorly understood. There are clear examples of gene silencing in 

the presence of DNA methylation such as imprinting and X-inactivation. However, there are 

many genes that remain expressed despite being methylated. It is therefore not clear which genes 

are controlled by DNA methylation. Moreover, during X-inactivation, DNA methylation is 

added after silencing occurs. In contrast, targeted methylation studies at the multiple promoters 

(see above) indicate that methylation induction is sufficient for gene silencing. It is therefore not 

clear when DNA methylation initiates gene silencing and when it is added afterward. My thesis 

seeks to gather data that helps to close these knowledge gaps. 

In Chapter 2, I study the effects of genome-wide hypomethylation in breast cancer. About 

75% of breast cancers depend on estrogen signaling through the estrogen receptor (ERα). These 

tumors are effectively treated by aromatase inhibitors (AI) that prevent estrogen production. 

However, almost all advanced cases of ERα positive breast cancer develop resistance to AI 

therapy. I therefore sought to identify methylation changes that promote this resistance. I studied 
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UCA1 and PTGER4, two genes identified by a screen for negatively correlated methylation and 

expression changes in a cell line model of AI resistance. 

The DNA methylation field’s inability to determine if and when DNA methylation causes 

gene expression change derives from the limitations of the tools available. The most commonly 

used tools demethylate the entire genome by DNMT inhibitors or by DNMT knockout or 

knockdown. Targeted methylation technologies have been demonstrated (Xu and Bestor, 1997). 

However, targeted approaches have not been widely adopted because they depend on custom ZF 

and TALE DNA binding proteins that are expensive and time consuming to produce. In the last 

few years the CRISPR/Cas9 system rose to prominence as a flexible, inexpensive, and easily 

implemented technology for targeting specific regions of the genome. In Chapters 3, I 

demonstrate that the fusion of a DNMT to dCas9 allows targeting of methylation to specific 

locations in the genome. In Chapter 4, I optimize the system by fusing dCas9 to the catalytic 

domain of alternative DNMTs.  

  



 

30 

 

 

Chapter 2: Promoter Hypomethylation Promotes 

Acquired Endocrine Therapy Resistance in 

Breast Cancer 
 

2.1 Introduction 

One of the hallmarks of cancer is the ability to sustain proliferative signaling (Hanahan 

and Weinberg, 2011). Estrogen receptor α (ERα) is a transcription factor that mediates the 

growth signaling necessary for normal human breast development. As a result, ~75% of breast 

tumors express ERα and depend on its transcriptional activity (Collins et al., 2005; Harvey et al., 

1999; Johnston and Dowsett, 2003; Musgrove and Sutherland, 2009). Endocrine therapies that 

prevent ERα signaling succeed against 70% of ERα-positive breast cancers (Allred et al., 2004). 

However, growth factor receptor signaling activates ERα-independent cell proliferation and cell 

survival, thereby promoting endocrine therapy resistance. Multiple growth factor receptor 

pathways can do this, but the contributions of the phosphatidylinositol-3 kinase (PI3K) and 

extracellular signal-regulated kinase (ERK) signaling pathways are best understood (Ma et al., 

2015). The mechanisms that drive PI3K or ERK signaling are therefore important to 

understanding and treating endocrine therapy resistant breast cancer.  

Dysregulation of the genes in the PI3K or ERK signaling pathways can alter the signaling 

in that pathway. DNA methylation is an epigenetic mark that negatively correlates with gene 

expression, and the breast cancer genome is aberrantly hypomethylated genome-wide (Ehrlich 

and Lacey, 2013). This global loss of DNA methylation has the potential to alter the expression 

of cell signaling genes. For example, hypomethylation correlates with the expression of the MET 
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hepatocyte growth factor receptor oncogene (Wolff et al., 2010), which affects the ERK 

signaling pathway (Xu and Yu, 2007). As a result, aberrant DNA methylation and epigenetic 

gene regulation may make significant contributions to the development of endocrine therapy 

resistance. 

2.1.1 Breast Cancer Prevalence 

Breast cancer remains the leading cause of cancer death in women worldwide, accounting 

for 25% of all cancers and 15% of all cancer deaths (Torre et al., 2015). In addition, breast 

cancer incidence rose from 42.3 new diagnoses per 100,000 population worldwide in 2008 

(1,384,000 total cases) to 43.3 new diagnoses per 100,000 population in 2012 (1,676,633 total 

cases, Youlden et al., 2012, 2014). Breast cancer incidence is expected to continue increasing as 

more nations adopt breast cancer-prone habits: delayed childbearing, less breast feeding, and 

hormone therapy for postmenopausal women (Torre et al., 2015). As a result, breast cancer 

represents a significant health issue for an increasing number of women.  

Despite increasing breast cancer incidence, breast cancer mortality decreased from 13.9 

deaths per 100,000 population in 2008 to 12.9 deaths per 100,000 population in 2012 (Youlden 

et al., 2012, 2014). In addition, the five year survival rate for breast cancer can be nearly 90%, 

which is higher than the survival rate for most other cancers (Youlden et al., 2012). These 

positive trends can be attributed – at least in part – to the success of endocrine therapies such as 

tamoxifen and aromatase inhibitors (AI, Youlden et al., 2012). A five year tamoxifen regimen is 

capable of producing an absolute 39% reduction in breast cancer recurrence and a 33% reduction 

in breast cancer mortality over 15 years (Early Breast Cancer Trialists’ Collaborative Group 

(EBCTCG), 2011). A five year aromatase inhibitor treatment provided another 2.9% and 1.1% 
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reduction in recurrence and mortality, respectively, when compared with tamoxifen (Dowsett et 

al., 2010). 

Despite their success, these treatments have limits. Endocrine therapies target signaling 

via ERα, and only ~75% of breast tumors express ERα (Collins et al., 2005; Harvey et al., 1999; 

Johnston and Dowsett, 2003; Musgrove and Sutherland, 2009). The remaining ~25% cannot be 

treated by endocrine therapies. Consistent with this, the above benefits of five years of endocrine 

therapy were not observed for ERα-negative cancers (Dowsett et al., 2010; Early Breast Cancer 

Trialists’ Collaborative Group (EBCTCG), 2011). As a result, ERα activity is an important 

clinical indicator of endocrine therapy response and overall outcome. Unfortunately, even in 

ERα-positive cases that respond to endocrine therapy, 20% releapse. When breast cancer reaches 

advanced stages, nearly all cases acquire resistance to endocrine therapy (Ma et al., 2015). 

Understanding the mechanisms that drive endocrine therapy resistance will therefore be 

important for continuing to more effectively treat breast cancer. 

2.1.2 ERα Structure 

ERα transcriptional activity and growth signaling cross-talk depend upon ERα structure 

(Zilli et al., 2009) (Fig. 2.1). The ERα gene, ESR1, was first cloned in 1986 (Green et al., 1986). 

ESR1 maps to chromosome 6 and encodes a protein containing 595 amino acids and weighing 

about 66 kDa (Schiff et al., 2008). Overall, the estrogen receptor shares homology with the 

nuclear receptor superfamily (Weatherman et al., 1999). Receptors of this family are commonly 

subdivided into the five regions denoted by the letters A/B-F (Fig. 2.1), but these regions do not 

necessarily correlate with functional domains. Within the superfamily, ERα represents one of the 

steroid receptors, which in general have a more extensive activation function 1 (AF1) domain. 
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Subsequent research revealed another estrogen receptor, ERβ (Fig. 2.1, Mosselman et al., 1996). 

ERβ maps to chromosome 14, representing a different receptor rather than a splice isoform 

(Schiff et al., 2008). ERα and β have high sequence identity in their ligand- and DNA-binding 

domains, indicating similar functional responses to an estradiol binding event (Schiff et al., 

2008). The mere 18% similarity in the A/B region, however, indicates that ERα and ERβ have 

significantly different AF1 activities (Zilli et al., 2009). The consequences of these differences 

and the role of ERβ in endocrine therapy resistance remain unclear. 

2.1.3 ERα Signaling 

ERα affects cell signaling through two pathways: genomic and non-genomic. Genomic 

signaling represents the ligand-dependent transcriptional activity of ERα through dimerization 

and DNA binding. Genomic signaling is initiated when estradiol binds to ERα and releases it 

from its heat-shock protein chaperones. Afterward, ERα localizes to the nucleus, dimerizes and 

Figure 2.1: ERα domain structure. AF1 = Activating Function 1. AF2 = Activating 

Function 2. DBD = DNA Binding Domain. LBD = Ligand Binding Domain. NLS = 

Nuclear Localization Signal. Adapted from Zilli et al. (2009). 
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binds to estrogen response elements (EREs) near promoters. Once bound, coactivator and 

corepressor proteins cooperate with ERα to silence or activate ERα regulated genes. Active ERα 

may also alter the transcriptional activity of other transcription factors such as AP-1 at genes 

targeted by Jun/Fos. ERα phosphorylation, sumoylation, and variations in the ERE consensus 

sequence may all affect ERα conformation and activity in a complex regulatory web (Schiff et 

al., 2008; Zilli et al., 2009). 

The above modifications affect the activity of the two ERα activating functions: 

activating function 1 (AF1) and activating function 2 (AF2). AF1 activity is controlled primarily 

by phosphorylation at S104, S106, S118, and S167 (Zilli et al., 2009). Kinases downstream of 

PI3K and ERK target S167 and activate ERα (Mendoza et al., 2011). In contrast, AF2 activity 

requires estradiol binding. Upon binding, helix twelve shifts to enclose the ligand and open the 

NR box motif for coactivator/corepressor binding (Zilli et al., 2009). Estradiol binding also 

increases AF1 activity via promoting phosphorylation at S118. When active, ERα will recruit 

either histone acetyltransferases (HATs) through the NCoA1-3 coactivators of the Src family or 

histone deacetylases (HDACs) through the NCoR corepressors (Zilli et al., 2009). 

Non-genomic signaling occurs through cross talk with growth receptor pathways at the 

cell’s plasma membrane. In order to reach the membrane, ERα undergoes palmitoylation. Once 

there, estradiol binding causes ERα to dimerize and interact with signaling proteins including the 

p85 subunit of PI3K, among others. Such interactions activate growth signaling through the 

PI3K and ERK pathways (Zilli et al., 2009). These pathways activate AF1, which in turn 

upregulates EGFR and other genes that promote growth signaling (Mendoza et al., 2011; Zilli et 
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al., 2009). The details about how this positive feedback loop can contribute to endocrine therapy 

resistance will be discussed below. 

2.1.4 Endocrine Therapies 

Endocrine therapies attack these oncogenic signaling mechanisms at different levels. 

Selective estrogen receptor modulators (SERMs) inhibit estradiol binding and promote inactive 

ERα conformations. There are three types of SERMs: triphenylethylene derivatives, steroidal 

derivatives, and non-triphenylethylene non-steroidal derivatives (Schiff et al., 2008). Tamoxifen, 

the best known SERM, is a triphenyl ethylene derivative. It competitively inhibits estradiol 

binding and promotes helix 12 conformations of AF2 that preferentially recruit corepressors 

(Schiff et al., 2008). The mechanisms of other SERM types are similar but not identical to that of 

tamoxifen. Notably, tamoxifen does not prevent ERα dimerization, which allows AF1 activation 

through ligand-independent phosphorylation at S167. When activated in this way, ERα promotes 

growth signaling through the non-genomic signaling pathway (Zilli et al., 2009). Therefore, 

tamoxifen activates growth signaling pathways in tumors that express growth signaling receptors 

such as EGFR or ERBB2. Such signaling contributes to the resistance of breast tumors to 

endocrine therapy (Zilli et al., 2009). 

Selective estrogen receptor downregulators (SERDs) address the agonism of non-

genomic signaling produced by SERMs. Fulvestrant is the best known SERD, and acts in a 

similar mechanism to tamoxifen by competitively inhibiting estradiol binding. However, the 

conformations induced by fulvestrant binding prevent dimerization and nuclear import. Instead 

of nuclear import, ERα localizes to the proteasome and is degraded. By inducing the degradation 
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of ERα, SERDs completely block both genomic and non-genomic ERα signaling. As a result, 

they do not promote endocrine therapy resistance through growth signaling (Zilli et al., 2009). 

Aromatase inhibitors utilize a different approach to inhibit ERα signaling. AIs inhibit the 

conversion of testosterone to estrogen by cytochrome P450 (CYP19), also known as aromatase. 

There are two classes of AI: steroidal derivatives that act as suicide inhibitors of aromatase and 

non-steroidal derivatives that only competitively inhibit aromatase. Both classes of inhibitor 

drastically decrease estrogen concentration and thereby inhibit all forms of ERα signaling (Zilli 

et al., 2009). This may explain the clinically significant decreases in recurrence relative to 

tamoxifen because aromatase inhibitors do not promote the activity of growth factor signaling 

pathways (Dowsett et al., 2010). However, AIs are largely restricted to use in postmenopausal 

women because aromatase activity in the ovaries of premenopausal women overcomes the 

effects of the inhibitors (Zilli et al., 2009). 

Inhibition of ERα signaling by the above therapies induces cell cycle arrest and apoptosis 

(Musgrove and Sutherland, 2009). These events are caused when ERα no longer upregulates 

MYC and cyclin D1 (CCND1). Decreased MYC expression leads to increased expression of the 

p21 cyclin dependent kinase inhibitor (CDKN1A). CDKN1A expression increases are 

compounded by decreased CCND1 expression that prevents the CCND1/CDK4 complexes from 

sequestering the CDKN1A CDK inhibitor. Combined, these events prevent cyclin E1/CDK2 

phosphorylation of RB, and the end result is cell cycle arrest at G1 (Musgrove and Sutherland, 

2009). This cell cycle arrest and sensitization to apoptosis acts to prevent breast cancer 

progression. 
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2.1.5 Mechanisms of Endocrine Therapy Resistance 

Resistance to the above endocrine therapy effects develops via multiple mechanisms. Cell 

lines deprived of estrogen for several weeks become hypersensitive to estrogen  (Sanchez et al., 

2011). Acquisition of activating ERα mutations could cause such hypersensitivity. Searches for 

point mutations have, however, yielded contradictory results. Roodi et al. (1995) found only 2 

missense mutations in the same tumor out of 188 tumor samples. A later study of pre-cancerous 

breast hyperplasias, however, found a K303R mutation in 30% of these lesions (Fuqua et al., 

1995). A study of invasive breast cancer also found the K303R mutation in 50% of invasive 

breast carcinoma samples (Herynk et al., 2007). The K303R mutation makes ERα more sensitive 

to estradiol binding and increases ERα affinity for the NCoA2 coactivator. Thus, the A908G 

SNP that causes the K303R allele represents a gain of function allele that correlates with poor 

prognosis (Herynk et al., 2007). More recent studies appear to have solved this inconsistency by 

discovering that ESR1 mutations are much more common in endocrine therapy resistant tumors 

(Li et al., 2013). These mutation can occur in the ligand binding domain and activate ERα 

signaling (Merenbakh-Lamin et al., 2013; Robinson et al., 2013; Toy et al., 2013).  

Another mechanism by which endocrine therapy resistance could develop is the loss of 

dependence on ERα signaling. Independence from ERα can be accomplished by repressing ERα 

transcription (Zilli et al., 2009). There are three ERα promoters: the most commonly used 

proximal promoter and two others further upstream. Transcription factors related to AP1, AP2, 

and SP1 bind to these sites. However, the interactions of these transcription factors and their 

control of ERα expression has not been well-defined (Schiff et al., 2008).  
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ERα expression could also be silenced by an epigenetic mechanism. Hypermethylation of 

the CpG island containing the ERα promoter correlates with decreased ERα expression in cell 

lines and primary tumors (Iwase et al., 1999; Nass et al., 2000; Ottaviano et al., 1994). In 

addition, DNA methyltransferase (DNMT) inhibition by 5-azacytidine induces ERα expression 

(Ferguson et al., 1995). However, the ERα promoter remains hypermethylated in 35% of ERα-

positive/progesterone receptor-positive cancers (Lapidus et al., 1996). Furthermore, HDAC 

inhibitors can restore ERα expression without DNA demethylation (Zhou et al., 2007). These 

data suggest that both DNA methylation and chromatin modification affect ERα gene regulation, 

but the controlling epigenetic mark is not clear. 

Alterations of the expression or activity of proteins that interact with ERα can also 

promote endocrine therapy resistance. For example, tumors in which the ERα corepressor, 

NCoR1, is downregulated have a poorer prognosis relative to those with higher NCoR1 

expression (Zilli et al., 2009). Conversely, activation of AIB1, the ERα coactivator also known 

as NCoA3, by phosphorylation downstream of EGFR/HER2 signaling promotes HER2 

expression via ERα and completes a positive feedback loop (Hurtado et al., 2008). As a result, 

high AIB1 expression levels correlate with endocrine therapy resistance and poorer prognosis in 

tumors that express HER2 (Musgrove and Sutherland, 2009; Zilli et al., 2009).  

2.1.6 Growth Factor Receptor Signaling Promotes Endocrine Therapy 

Resistance 

 
Stimulation of growth factor receptor signaling promotes resistance through multiple 

mechanisms in addition to the AIB1/HER2 feedback. In general, these additional mechanisms 

counteract the apoptosis and cell cycle arrest induced by endocrine therapies as described at the 
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end of the Endocrine Therapies section above. Of the growth factor signaling pathways, PI3K 

and ERK are commonly used for this function in breast cancer. The PI3K pathway is activated 

by growth factor receptors, metabolic sensors, and other stimuli (Mendoza et al., 2011). These 

receptors or sensors recruit PI3K to the membrane, where it generates phosphatidylinositol 3,4,5-

triphosphate (PIP3). PIP3 recruits AKT to the membrane, where it is activated by 3-

phosphoinositide dependent kinase 1 (PDK1). AKT phosphorylates TSC2, preventing the GAP 

activity of TSC1/2 complexes. GTP-bound TSC1/2 phosphorylate and activate mTOR complex 

1, which phosphorylates the p70 ribosomal S6 kinase (S6K) and downstream effectors (Fig. 2.2) 

(Mendoza et al., 2011). Of the above, AKT, mTOR, and S6K kinases are the most important 

contributors to endocrine therapy resistance.  

Figure 2.2: PI3K and ERK pathways components that promote AI therapy resistance. Figure 

adapted from Mendoza et al. (2011).  

 

Table B.1. CDKN2A targeted sgRNAFigure 2.2: PI3K and ERK pathways components that 

promote AI therapy resistance. Modified from Mendoza et al. (2011).  
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The results of PI3K pathway activity include phosphorylation of ERα by AKT and S6K 

(Fig. 2.2, Mendoza et al., 2011). This ERα phosphorylation induces its AF1 activity and restores 

proper regulation of MYC, and CCND1. The expression of MYC and CCND1 is further aided by 

mTOR complex 1-mediated eIF4E binding protein (4E-BP) phosphorylation. Phosphorylated 

4E-BP releases translation initiation factor, eIF4E, to promote translation of many proteins 

including MYC and cyclin D1. S6K activation goes even further by phosphorylating MAD1, an 

inactivating MYC binding partner. MAD1 phosphorylation promotes its degradation and allows 

MYC to bind its activating partner, Max (Mendoza et al., 2011). 

The ERK signaling pathway also has many activators that include EGFR, other RTKs, 

and G-protein coupled receptors (Mendoza et al., 2011). These receptors lead to activation of 

RAS, which begins a phosphorylation cascade from Raf through MEK to ERK. ERK 

phosphorylates the p90 ribosomal S6 kinase (RSK) and other downstream effectors that promote 

cell growth and proliferation (Fig. 2.2, Mendoza et al., 2011). Of these, the ERK and RSK 

kinases are the most important contributors to endocrine therapy resistance. 

The ERK pathway targets ERα through RSK. This phosphorylation promotes the same 

effects as phosphorylation by AKT and S6K downstream the PI3K pathway (Fig. 2.2). ERα 

phosphorylation and activation upregulate EGFR, which in turn activates ERK signaling. This 

completes a positive feedback loop similar to that involving HER2 and AIB1. RSK also acts in 

concert with S6K to degrade MAD1 and promote MYC activity. ERK also promotes MYC 

activity by directly phosphorylating it. The above events therefore complement the PI3K 

pathway in counteracting the effects of endocrine therapies (Mendoza et al., 2011). 
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ERK signaling also supports tumor metastasis by promoting cell motility and invasion 

(Vial and Pouysségur, 2004). Though increased motility and invasion do not necessarily 

contribute to endocrine therapy resistance, their link with ERK signaling means they will be 

highly correlated with resistance. ERK spurs motility through multiple mechanisms including the 

phosphorylation of myosin light chain kinase (MLCK). MLCK phosphorylates the myosin light 

chain, activating it to exert force on actin. The forces exerted by myosin are important for freeing 

the cell by dissolution of adherens junctions and forward movement (Vial and Pouysségur, 

2004). Despite all we know about the downstream results of heightened growth factor receptor 

signaling, far less is known about the upstream causes (Ma et al., 2015).  

2.1.7 Endocrine Therapy Resistance is a Common Problem 

Endocrine therapy resistance comes in two forms: intrinsic resistance and acquired 

resistance. For intrinsically resistant tumors, the above resistance mechanisms are active at the 

beginning of treatment and render the therapy ineffective. About 25% of all breast cancers have 

intrinsic resistance (Brinkman and El-Ashry, 2009). In tumors that acquire resistance, the above 

resistance mechanisms are activated during the course of treatment. Acquired resistance is very 

common: within fifteen years from the start of a five year tamoxifen treatment course, breast 

cancer will recur in 33% of women (Early Breast Cancer Trialists’ Collaborative Group 

(EBCTCG), 2011). The frequency of endocrine therapy resistance makes it a significant clinical 

problem.  

2.1.8 Functional Genomics Attempts to Solve Endocrine Therapy Resistance 

The frequency of resistance makes identifying the proper treatment regimen for resistant 

tumors a challenge. Studies have shown that either fulvestrant or AI can effectively treat 
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tamoxifen-resistant tumors. This observation makes sense because tamoxifen partially activates 

ERα non-genomic signaling but fulvestrant and AI block ERα signaling completely through ERα 

degradation or estrogen deprivation, respectively. Other therapies, however, exhibit more 

complex interactions. For example, fulvestrant and AI remain effective in tumors that have 

developed resistance to the other drug. Furthermore, resistance to steroidal AIs does not indicate 

resistance to non-steroidal AIs (Zilli et al., 2009). The adaptation of the cancer to only one 

endocrine therapy indicates that the molecular changes in resistant cancer are unique to each 

treatment.   

Scientist and clinicians have attempted to use those unique molecular adaptations to 

determine the best therapy for a particular patient. Early attempts to determine proper treatment 

were based on biomarkers like ERα. These indicators are still used today and include the tumor 

grade, ERα, progesterone receptor (PR), and HER2 receptor tyrosine kinase (Sims et al., 2008). 

Lower grade indicates a higher degree of tumor cell differentiation and better prognosis. PR and 

HER2 indicate intact ERα signaling and increased growth signaling, respectively. These markers 

can be used to assess the effect of endocrine or anti-HER2 therapies (Cui et al., 2005; Sims et al., 

2008). However, these markers are not always sufficient to properly prescribe treatment. For 

example, approximately 30% of ERα-positive tumors do not respond to endocrine therapy 

(Allred et al., 2004). 

The insufficiency of single biomarkers suggested that the molecular signatures of tumors 

might be better diagnostic tools. This approach resulted in a recent study through The Cancer 

Genome Atlas (TCGA) Network (The Cancer Genome Atlas Network, 2012). This study 

included: copy number arrays, DNA methylation arrays, mRNA arrays, microRNA sequencing, 
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and reverse phase protein arrays. Cross-platform clustering identified four tumor subtypes: 

luminal A, luminal B, ERBB2-overexpressing, and basal (The Cancer Genome Atlas Network, 

2012). Earlier studies had also identified similar clusters (Perou et al., 2000; Sorlie et al., 2003) 

and showed that the clusters correlate with clinical outcomes (Sorlie et al., 2003). The molecular 

signature approach has also been applied to cell line models of acquired aromatase inhibitor 

resistance (Miller et al., 2011). Ninety-nine genes underwent expression changes in three cell 

lines. This ninety-nine gene expression profile was able to separate luminal A and luminal B 

clusters, with the luminal B more closely resembling the resistant cell lines. Similarity with the 

endocrine therapy resistant cell lines also correlated with higher growth and recurrence rates as 

well as MYC expression (Miller et al., 2011). These results are consistent with increased activity 

through growth signaling pathways as described above. 

Cluster classification schemes are, however, of limited use for prescribing the proper 

treatment. This limitation arises from breast cancer heterogeneity. The TCGA Network study 

identified mutations in pathways that drive endocrine therapy resistance. These pathways include 

the PI3K pathway, RB pathway, and ERK pathway (The Cancer Genome Atlas Network, 2012). 

Mutations in the same pathways were also identified in a study of endocrine therapy resistant 

tumors (Ellis et al., 2012). Mutations within the PI3K and p38 MAPK pathways tend to be 

mutually exclusive. However, each individual component of a pathway was affected with 

approximately equal frequency (Ellis et al., 2012; The Cancer Genome Atlas Network, 2012). 

This variety of potential driver mutations hinders the application of cluster-based tools by 

introducing variation into the broad sub-classes. Identifying these driver events in each new 

tumor can be challenging. 
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The challenge to identify driving mutations is made even more complex by epigenetic 

gene regulation. Epigenetic mechanisms like those that silence ERα can either silence or activate 

genes and thereby act in the same direction as gain or loss of function alleles. Unlike genetic 

mutations, however, epigenetic events may occur simultaneously at multiple genes within a 

pathway (Jones and Baylin, 2007). This phenomenon increases the number of driver events that 

may occur in any given tumor. Moreover, the TCGA analysis is designed to cluster tumors into 

broad treatment groups, but they are not designed to identify the driving mutations within 

individual tumors. Therefore, a functional genomics approach is needed to identify driving 

genetic and epigenetic events that can be used to inform treatment of individual cancers. 

2.1.9 Aberrant DNA Methylation Promotes Endocrine Therapy Resistance 

Because of the role that DNA methylation plays in gene regulation (see Chapter 1: 

Introduction), aberrant DNA methylation could cause events that drive endocrine therapy 

resistance. The epigenetic silencing of ESR1 described above is one possible mechanism by 

which this could occur (Zilli et al., 2009). Because HRAS upregulates ERK growth signaling, its 

hypomethylation is another example of an epigenetic event promoting endocrine therapy 

resistance. Finally, hypermethylation correlated with repression of PIK3R3, the ERα-regulated 

p55 regulatory subunit of PI3K, in fulvestrant resistant MCF7 (Fan et al., 2006). Interestingly, 

this study also showed that 86% of the promoters differentially methylated during the 

development of fulvestrant resistance in MCF7 were hypomethylated. This observation suggests 

that further demethylation occurs as breast cancer cells develop endocrine therapy resistance. 

The genome-wide hypomethylation that occurs during carcinogenesis and continues 

during the development of endocrine therapy resistance demethylates many retrotransposons. 
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This occurs because retrotransposons represent a significant proportion of both methylated DNA 

and the human genome as a whole (Ehrlich, 2009). Hypomethylation at these loci is therefore 

almost inevitable. As discussed above, DNA methylation is important for preventing 

retrotransposon expression. Moreover, the significant contribution of retrotransposon promoters 

to the human transcriptome has been recognized (Faulkner et al., 2009). By altering normal gene 

regulation, unmethylated retrotransposons could contribute to endocrine therapy resistance.  

2.1.10 Functional Epigenomics Applied to Endocrine Therapy Resistance 

We therefore adopted a functional epigenomics approach to explore the role of DNA 

methylation in endocrine therapy resistance. Specifically, we sought to identify annotated genes 

and/or retroelements whose gene expression strongly negatively correlated with altered DNA 

methylation. Candidate loci were identified based on data from Methyl-MAPS and RNA-seq. 

Methyl-MAPS determines methylation at single CpG resolution genome-wide via sequencing 

libraries generated from methylation-sensitive or methylation-resistant restriction enzyme digests 

of genomic DNA (Edwards et al., 2010). It is capable of analyzing methylation at retroelements. 

These assays were performed on ERα-positive cell lines before and after they were grown in the 

absence of estradiol for several months (Fig. 2.3). These long-term estrogen deprived (LTED) 

cell lines were created by the Ellis lab to model acquired AI therapy resistance (Sanchez et al., 

2011). To date, we have performed both Methyl-MAPS and RNA-seq on the following LTED 

cell lines: MCF7, T47D, HCC1428, and MDA-MB-415.  

These experiments identified 7 candidate genes in MCF7 cells (Table A.1) and 39 

candidate genes in T47D cells (data not shown). These genes were selected by manual inspection 

and were chosen for correlated, strikingly clear methylation and expression changes. WISP2 was 
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 a MCF7 candidate gene (Fig. A.1) known to promote estrogen-independent growth in MCF7 

cells (Fritah et al., 2008). Thus, our screen successfully identified a gene known to affect 

resistance to estrogen deprivation, the desired phenotype. 

Urothelial cancer associated 1 (UCA1) was another candidate gene identified by our 

screen. In T47D LTED cells, UCA1 is hypomethylated downstream of its promoter. This 

hypomethylation correlates with a clear increase in expression relative to the original T47D cell 

line. This candidate is particularly interesting because UCA1 transcription begins in a LTR 

retrotransposon promoter on chromosome 19p13.12 (Wang et al., 2008). Because 

retrotransposon promoters are normally methylated, UCA1 therefore fits our hypothesis well: 

UCA1 represents a locus where endocrine therapy-linked hypomethylation causes aberrant 

transcription which contributes to the development of endocrine therapy resistance. Moreover, 

UCA1 is a long non-coding RNA (lncRNA) that promotes bladder cancer.  

Figure 2.3: LTED cell line generation. An ERα positive breast cancer cell line (the parental cell line) 

is grown in estrogen deprived conditions. The cells that proliferate after overcoming the deprivation 

are the LTED cell line. FBS = fetal bovine serum. CSS = charcoal stripped serum. 
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lncRNAs are transcripts >200 nt long without protein coding potential, and most lncRNA 

have no assigned function (Engreitz et al., 2016). Of those with known function, however, many 

are linked to carcinogenesis or tumor progression. The lncRNA HOTAIR, for example, retargets 

Polycomb Repressor Complex 2 in breast cancer (Gupta et al., 2010). The resulting altered 

chromatin structure creates an embryonic fibroblast-like transcription profile that promotes 

metastasis. Other examples include HULC, which promotes phosphorylation and activation of 

the CREB transcription factor by binding miR-372 and preventing it from downregulating CREB 

in liver cancers (Gibb et al., 2011). In contrast, H19 lncRNA transcripts are the source of miR-

672 that targets the tumor suppressor RB in breast and other cancers (Gibb et al., 2011). As a 

lncRNA, it is therefore quite possible that UCA1 could support endocrine therapy resistance in 

breast cancer.  

Furthermore, UCA1 was first identified as a urine marker for bladder cancer (Wang et al., 

2006). The BLZ-211 bladder cancer cell line expressed three UCA1 isoforms: 1.4 kb, 2.2 kb, and 

2.7 kb (Wang et al., 2008). Overexpression of either the 1.4 kb or 2.2 kb isoforms is sufficient to 

promote proliferation, colony formation, motility, invasion, and drug resistance in two different 

bladder cancer cell lines (Wang et al., 2008, 2012). Further research has suggested that these 

phenotypes might be caused by increased PI3K and ERK signaling (Yang et al., 2012). Based on 

this preliminary data, I hypothesized that UCA1 contributed to acquired resistance to estrogen 

deprivation in our cancer cell line models. I tested this hypothesis by measuring the effect of 

UCA1 knockdown/overexpression on cell growth, cell cycle progression, and apoptosis. 

Prostaglandin E2 receptor 4 (PTGER4) was a third candidate identified by our screen. 

EP4, the PTGER4 gene product, is a G-protein coupled receptor that activates the PI3K signaling 
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pathway as well as the adenylyl cyclase (AC) and protein kinase A (PKA) pathway in response 

to prostaglandin E2 (Yokoyama et al., 2013). EP4 contributes to breast cancer via several 

mechanisms. EP4 signaling contributes indirectly by inhibiting the activity of natural killer cells 

(Fulton and Heppner, 1985; Kundu et al., 2009). More directly, EP4 activation promotes breast 

cancer metastasis (Ma et al., 2006, 2012; Xin et al., 2012), and downstream PI3K activation 

promotes tumor cell survival (Xin et al., 2012). The activation of the AC pathway can also 

upregulate aromatase expression, stimulating estrogen production that will aid ERα positive 

tumors (Subbaramaiah et al., 2008). These previous findings support our hypothesis that 

PTGER4 upregulation may contribute to acquired estrogen deprivation resistance in our cell line 

model. 

2.1.11 Epigenetic Activation of PTGER4 Supports Acquired Endocrine 

Therapy Resistance 

 
We have tested the hypothesis that epigenetic activation of PTGER4 aids the acquisition 

of endocrine therapy resistance via downstream cell signaling, and published the results (Hiken 

et al., 2017). I was interested in this project and performed follow-up experiments to bolster the 

main body of data. I also contributed significantly to the writing of the manuscript. Immediately 

following is the data gathered by my colleagues. The data I produced in the results section. 

The PTGER4 gene has a CpG island associated with its promoter that lost methylation in 

the transition from MCF7 to MCF7-LTED cells (Fig. 2.4A). Methylation changes were validated 

using Methyl-Screen (Fig. A.2A, Holemon et al., 2007). This loss of methylation is accompanied 

with a greater than 20-fold gain in PTGER4 expression as indicated by RNA-seq (Fig. 2.4A, 

Parental cpm = 1.9, 8.9; LTED cpm = 226.4, 175.5) and confirmed by RT-qPCR (Fig. A.2B). 
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Furthermore, MCF7 cells treated with 5-azacytidine expressed higher levels of PTGER4 (Kim et 

al., 2012), consistent with the hypothesis that DNA hypomethylation directly regulates 

expression. Increased mRNA levels in MCF7-LTED cells were accompanied with increases in 

EP4 protein expression as observed by immunofluorescence (Fig. 2.4B). Increased EP4 

expression in MCF7 LTED cells was also accompanied by increased cAMP in response to the 

EP4 agonist L-902,688 (Fig. 2.6B). 

Figure 2.4: PTGER4 methylation and expression in MCF7-LTED cells. (A) Genome browser 

view of Methyl-MAPS methylation and RNA-seq expression data for PTGER4, the gene that encodes 

EP4. Red and blue lines indicate coverage of methylated and unmethylated fragments, respectively. 

Individual CpG sites are noted by tics in black at the top track. (B) Immunofluorescence staining of 

EP4 (green) and DAPI (blue) in MCF7 and MCF7-LTED cells. 
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EP4 inactivation decreases estrogen-independent cell growth in MCF7-LTED cells  

We sought to determine whether EP4 knockdown would affect the ability of MCF7-LTED cells 

to grow in the absence of estrogen. EP4 was knocked down using two EP4-targeted small 

interfering RNAs (siRNAs) in both MCF7 and MCF7-LTED cells. Visual inspection indicated 

siEP4s drastically reduced cell proliferation in comparison with siRNA controls. We quantified 

the attenuated growth using reduction in alamarBlue to measure relative cellular proliferation 

Figure 2.5: Knockdown or inhibition of EP4 signaling decreases estrogen-independent cell 

proliferation. (A) Proliferation of MCF7 cells, which express little EP4, and MCF7-LTED cells 

treated with EP4 siRNA relative to cells treated with negative control siRNA. (B) RT–qPCR analysis 

of PTGER4 expression decreases in MCF7-LTED cells treated with two distinct EP4 siRNAs relative 

to control siRNA. Error bars are SD for three technical replicates. (C) cAMP levels in MCF7-LTED 

cells treated with EP4 agonist decrease in cells treated with EP4 siRNAs relative to control siRNA. 

(D) Immunofluorescence images of EP4 (green) and DAPI (blue) in MCF7-LTED cells treated with 

siRNAs targeting EP4 and siRNA controls. (E) Cell proliferation of MCF7 and MCF7-LTED cells 

treated with EP4 antagonists relative to cells treated with vehicle only. ***P<0.001. Error bars show 

SEM of three replicates. 
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Anchor  

Figure 2.6: EP4 activates cAMP signaling and ligand-independent ER activation through 

CARM1. (A) Western blot analysis of AKT, mammalian target of rapamycin (mTOR) S6 kinase, and 

MAPK (ERK1/2) pathways in MCF7-LTED cells treated with vehicle or EP4 antagonists. (B) Dose 

response curve measuring induction of cAMP by EP4 agonist (L-902 688) in MCF7-LTED cells also 

treated with 10 nM EP4 antagonist (ONO-AE1-329) or vehicle. (C) Immunoblot of CARM1 in MCF7 

and MCF7-LTED cells treated with EP4 antagonist or vehicle in the absence of estrogen. CARM1 

immunoprecipitation (IP) followed by western blot analysis with antibodies for phosphorylated PKA 

substrate, ERα, or CARM1. (D-E) ChIP-qPCR of ERα targets (D) pS2 and (E) PGR with either no 

antibody (noAB), CARM1 antibody, or ERα antibody in MCF7-LTED cells treated with EP4 agonist 

or vehicle. Chr8q24 is a gene desert-negative control region. *P-value < 0.05, **P-value < 0.01, and 

***P-value < 0.001. Error bars are SEM of three replicates. IB, immunoblot; p-, phosphorylated. 
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7 days after transfection (Fig. 2.5A). We verified knockdown at the mRNA level by RT-qPCR 

(Fig. 2.5B). Since appropriate antibodies could not be found for Western blot analysis, we 

validated a decrease in EP4 protein by immunofluorescence (Fig. 2.5D) and by measurement of 

the secondary messenger cAMP, which is produced as a result of EP4 activity (Fig. 2.5C). 

MCF7-LTED cells treated with siRNAs targeting EP4 mRNA showed a 61% and 59% average 

reduction in cell proliferation relative to control siRNAs (p < 10-7 for each siRNA, Fig. 2.5A). 

These siRNAs showed no effect in MCF7 cells, which have negligible levels of EP4 expression 

at the mRNA and protein levels and thus provide a control for off-target effects.  

We further validated the importance of EP4 for estrogen-independent growth in MCF7-

LTED cells using two EP4-specific antagonists that do not inhibit other prostaglandin receptor 

subtypes: GW627368X and ONO-AE3-208. We observed an average 32% reduction in cellular 

proliferation for GW627368X-treated and an average 38% reduction for ONO-AE3-208-treated 

MCF7-LTED cells relative to vehicle alone (p < 10-7 for each antagonist, Fig. 2.5E). Again, 

MCF7 cells, which have negligible EP4 expression, showed no significant proliferation 

reduction when treated with antagonists. 

Functional analysis of EP4 signaling in MCF7-LTED cells 

EP4 activates two pro-growth signaling pathways: PI3K and PKA; both of which could 

promote endocrine therapy resistance. MCF7-LTED cells show increased Akt and PI3K activity, 

and short-term estrogen deprived MCF7 cells are sensitive to the BGT226 and BKM120 PI3K 

inhibitors (Sanchez et al., 2011). Additionally, EP4 activation can result in phosphorylation and 

activation of Akt (Yokoyama et al., 2013). However, our MCF7-LTED cells are resistant to the 

effects of the BGT226 and BKM120 PI3K inhibitors (Sanchez et al., 2011).  Analysis of Akt and 
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PI3K phosphorylation also showed no changes after treatment of MCF7-LTED cells with EP4 

antagonists (Fig. 2.6A). In addition, we did not find changes in mTOR or MAPK signaling. This 

suggests that other pathways are likely activated by EP4 in our MCF7-LTED model.  

We next hypothesized that PTGER4 might contribute to endocrine therapy resistance via 

AC. EP4 activates AC in addition to Akt, and AC activity can induce ERα phosphorylation. 

Once activated AC produces cAMP as its secondary messenger, and cAMP promotes 

proliferation through downstream effectors such as PKA (Yokoyama et al., 2013). We observed 

that both the concentration of cAMP in LTED cells and cell proliferation decreased after EP4 

reduction by siRNA knockdown (Fig. 2.5A,C). This suggested that EP4 promotes proliferation in 

LTED cells via AC and cAMP. To confirm this conclusion, we applied the EP4 specific agonist 

L-902,688 to MCF7-LTED cells and observed a dramatic increase in cAMP which went away 

upon inhibition of EP4 with antagonists (Fig. 2.6B).  

A recent report showed that cAMP activates CARM1 via phosphorylation by PKA and 

drives ligand-independent ERα transcriptional activity to promote resistance to tamoxifen 

(Carascossa et al., 2010). CARM1 is an estrogen-dependent ERα co-activator and 

phosphorylated CARM1 binds directly to ERα (Chen et al., 1999). We thus tested whether a 

similar mechanism caused ligand independent ER signaling in MCF7-LTED cells. CARM1 

proteins levels remained unchanged in MCF7-LTED and parental cells in the absence of 

estrogen even after treatment with EP4 antagonist (Fig. 2.6C). We found however that CARM1 

acted as a PKA substrate in MCF7-LTED cells in the absence of estrogen and this interaction 

went away after treatment with EP4 antagonist. We further found that ERα showed a strong 

interaction between CARM1 and ERα in MCF7-LTED cells based on immunoprecipitation of 
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CARM1 followed by immunoblotting with an ERα-specific antibody (Fig. 2.6C). Treatment with 

EP4 antagonist removed this interaction, suggesting that the CARM1-ERα interaction is 

dependent on EP4 signaling. As has been reported previously (Chen et al., 1999), in estrogen 

deprived conditions MCF7 cells showed no activation of CARM1 or association with ERα.  

We next used chromatin-immunoprecipitation (ChIP)-qPCR to interrogate the 

relationship between EP4 and ligand independent binding of ERα in MCF7-LTED cells at two 

ERα binding sites, the pS2 and PGR promoters. MCF7-LTED cells were treated with agonist or 

vehicle and subjected to ChIP-qPCR with antibodies to CARM1 or ERα at the pS2 promoter, the 

PGR promoter, and a negative control gene desert region on chr8q24 (Fig. 2.6D,E). Both 

CARM1 and ERα were found to have increased binding upon treatment with EP4-specific 

agonist relative to cells treated with vehicle. No such gain was observed in the gene desert 

region. This implies that EP4 signaling can activate ligand-independent ER activation mediated 

through CARM1. 

ER signaling in MCF7-LTED cells 

To understand whether ligand-independent ER signaling is active in MCF7-LTED cells, 

we compared gene expression in MCF7-LTED cells relative to MCF7 cells that recovered with 

the addition of estradiol after short-term estrogen deprivation (1 day) using RNA-seq. Using 

MCF7 cells treated with estradiol we defined a signature of ER signaling based on genes up-

regulated two-fold or more. Gene Set Enrichment Analysis (GSEA, Subramanian et al., 2005) 

shows that the majority of ER responsive genes are also up-regulated in MCF7-LTED (p < 10-7, 

Fig. A.3). This is consistent with the finding that our MCF7-LTED cells are responsive to the 
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ER-antagonist fulvestrant (Sanchez et al., 2011) and indicates that ligand-independent ER-

signaling is active in MCF7-LTED cells at a genomic level.    

EP4 mRNA expression increased in ER+ breast cancer in the neoadjuvant setting 

To assess the potential clinical relevance of our findings, we tested the hypothesis that 

EP4 expression increases are associated with initial sensitivity to aromatase inhibitor endocrine 

therapies. Expression profiling was performed for 104 patients before and after neoadjuvant 

aromatase inhibitor therapy. 74 tumors were determined as ‘aromatase-inhibitor-resistant’ and 30 

as ‘aromatase-inhibitor-sensitive’ based on the presence of the proliferation marker Ki67 after 

Figure 2.7: EP4 expression is higher in patients that fail to respond to neoadjuvant endocrine 

therapy. (A) Boxplots of EP4 expression from 104 TCGA tumor samples. Responders and non-

responders were defined based on Ki67 levels after neoadjuvant therapy. Non-responders had Ki67 

levels greater than 10%. (B) Expression data from Miller et al. (2011) showing an increase in EP4 

expression during prolonged neoadjuvant therapy. (C) Expression data from Creighton et al. (2009) 

for pre- and post-neoadjuvant endocrine therapy. *P-value < 0.05, **P-value < 0.01 and ***P-value < 

0.001. Error bars are SEM. 
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treatment (see details in methods). Ki67 is a well-established indicator of clinical outcome in the 

neoadjuvant setting (Ellis et al., 2008). We observed that EP4 expression was higher in patients 

that demonstrated resistance to AI-therapy versus patients that responded to AI-therapy (Fig. 

2.7A), which is consistent with EP4 expression playing a role in AI-resistance. Interestingly, EP4 

expression also significantly increased during neoadjuvant therapy in both responder and non-

responder tumor samples. Data from two smaller studies examining mRNA changes during 

neoadjuvant therapy verify this finding (Fig. 2.7B,C; Fig. A.4, Creighton et al., 2009; Miller et 

al., 2011). This suggests that in addition to promoting resistance to AIs, EP4 activation may be a 

response to the loss of ER signaling in ER+ tumors.  

2.2 Results 

2.2.1 PTGER4 Promotes Acquired Endocrine Therapy Resistance 

 The PTGER4 experiments described in the introduction led to the conclusion that 

PTGER4 becomes hypomethylated and upregulated during LTED treatment and promotes ERα 

signaling via phosphorylation of CARM1. That body of work represented a complete story; 

however, there were still several unknowns. For example, we did not show that PTGER4 

expression increase occurred early enough in the adaptation process to aid the adaptation to 

LTED conditions. Similarly, we showed validated methylation data that is negatively correlated 

with expression but do not establish that the DNA methylation causes the change in expression. 

Finally, we claimed that CARM1 is the downstream effector of the EP4 activity and necessary 
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for T47D LTED proliferation, but we do not demonstrate that this is the case. I therefore set out 

to investigate these additional aspects of the project. 

 I began by studying the expression of PTGER4 during short-term estrogen deprivation 

(STED, the first 30 days after estrogen withdrawal). Within three days, MCF7 parental cells 

upregulate PTGER4 about 16-fold at the transcript level (Fig. 2.8). This indicates that PTGER4 

upregulation occurs rapidly and can aid the development of endocrine therapy resistance.  

To support our claim that DNA methylation regulates PTGER4 expression, I analyzed the 

DNA methylation levels at the PTGER4 exon 2. Exon 2 is the location of methylation loss in 

MCF7 LTED cells (Fig. 2.4), and I expected the increased expression of PTGER4 to correlate 

with a decrease in DNA methylation. Interestingly, hypomethylation did not occur during STED 

(Fig. A.5A).  It therefore became important to test whether the demethylating agent 5-azacytidine 

could increase PTGER4 expression. 5-azacytidine induced a three- to four-fold increase in 

PTGER4 expression (Fig. 2.9). This indicates that DNA methylation controls PTGER4 

expression. Again, however, DNA methylation levels did not decrease (Fig. A.5B). 

Figure 2.8: Expression of PTGER4 in MCF7 cells after short-term withdrawal of estrogen. RT-

qPCR expression data for PTGER4 in MCF7 cells grown in LTED media for 30-days. Expression data 

is relative to the sample from MCF7 parental cells on Day 0 before changing to LTED media. Error 

bars are the SD of three technical replicates. 
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The lack of a decrease in DNA methylation levels is consistent with what we know about 

development of resistance to LTED conditions. After withdrawal of estrogen, most of the cells 

die or arrest growth (Fig. 2.3). The estrogen withdrawal selects from the heterogenous mix of 

struggling cells that can overcome the challenge. The clonal expansion of the cell(s) gives rise to 

the LTED line. This explains the STED data. During the 30-day STED experiment, a small 

number of cells have lost methylation and overexpress PTGER4. The expression increase is a 

much stronger signal and is detected, but the loss of methylation remains masked by the 

methylation signal from the other cells.  

  Lastly, we claimed EP4 activity promoted endocrine therapy by phosphorylating and 

activating CARM1. CARM1 in turn binds to ERα and promotes endocrine therapy resistance via 

ligand-independent ERα activity. To confirm the role of CARM1, I showed that CARM1 

knockdown caused decreased proliferation in T47D cells (Fig. 2.10).  

Figure 2.9: 5-azacytidine treatment increases PTGER4 expression. RT-qPCR data for PTGER4 

expression in MCF7 cells treated with 5 uM and 10 uM 5-azacytidine for four days. Expression data is 

relative to the untreated sample from Day 0. Error bars are +/- 1 SD of three technical replicates. 
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2.2.2 UCA1 Support for Acquired Endocrine Therapy Resistance is 

Inconclusive 

 
 The potential role for UCA1 in acquired endocrine therapy resistance was suggested by 

its hypomethylation and upregulation in T47D cells (Fig. 2.11A). UCA1 was also 

hypomethylated and upregulated in the tumorigenic HCC1954 cell line relative to the non-

tumorigenic HMEC cell line (Fig. A.6). UCA1 was also upregulated 6.7-fold in HCC712 LTED 

cells (Fig. A.7). Though a much smaller increase compared to UCA1 upregulation in T47D 

LTED, it suggests that UCA1 activity is not limited to a single cell line model. UCA1 is more 

highly expressed in matched breast cancer tumor/normal pairs from The Cancer Genome Atlas 

(Fig. 2.11B). UCA1 expression is also higher in ERα positive and progesterone receptor positive 

cells (Fig. 2.11C). This in vivo data tenuously suggests that UCA1 may be functional in ERα 

positive tumors. If confirmed, the hypothesized role may therefore be active in real tumors and 

could be studied in multiple cell line models. 

A B 

Figure 2.10: CARM1 knockdown inhibits proliferation. (A) Proliferation of MCF7-LTED cells 

treated with CARM1 siRNA relative to MCF7-LTED cells treated with negative control siRNA. (B) 

RT–qPCR analysis of CARM1 expression after CARM1 knockdown in MCF7-LTED, matching data 

from (A). Error bars = +/- 1 SD of three technical replicates. 
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 To test my hypothesis, I first assayed the effect of UCA1 overexpression and knockdown 

on the proliferation of T47D cells. A UCA1 overexpression construct was introduced into T47D 

parental cells with an empty vector control. The over 100-fold higher expression of UCA1 did 

not increase parental T47D proliferation in the presence of estrogen (Fig. 2.12A). In estrogen-

deprived conditions, there was also no difference (Fig. 2.12A). This lack of change suggests  

Figure 2.11: UCA1 expression correlates with methylation changes and tumor status. (A) 

Genome browser shot of DNA methylation and expression at the UCA1 promoter. Long terminal 

repeat (LTR) track is shown for reference. (B) Expression level of UCA1 in matched tumor/normal 

breast cancer samples from The Cancer Genome Atlas (TCGA). Data for 19 of 107 matched samples 

where UCA1 > 25 FPKM. P-value from Wilcoxon signed-rank test. (C) UCA1 expression correlated 

with clinical markers. All TCGA breast cancer samples included. Clinical marker status determined by 

the TCGA. UCA1 positive if > 25 FPKM. P-value from proportion test. 
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Anchor 

Figure 2.12: UCA1 overexpression and knockdown cause inconsistent changes in T47D 

proliferation. (A) Left: AlamarBlue fluorescence data from T47D parental cells treated with empty 

overexpression vector or UCA1 overexpression vector in both with and without estrogen in the media. 

Data represent average of three repetitions Error bars are +/- 1 SD. P-value from Welch’s test. Right: 

representative RT-qPCR data from one of the three runs averaged in the alamarBlue data. Error bars 

are +/- 1 SD of two technical replicates. (B) Top: AlamarBlue fluorescence data T47D Parental and 

LTED cells treated with control siRNA or UCA1 siRNA. All samples normalized to control. Error 

bars are +/- 1 SD. Bottom: matching RT-qPCR data from LTED cells. All samples normalized to 

control. Error bars are +/- 1 SD of two technical replicates. 
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Anchor 

Figure 2.13: Small T47D proliferation decrease measured by cell counting after UCA1 

knockdown. (A) Cell count over 7-day time course for UCA1 knockdown in T47D parental cells. (B) 

Cell count over 7-day time course for UCA1 knockdown in T47D LTED cells. (C) UCA1 expression 

measured by RT-qPCR in T47D LTED cells over the same 7-day time course. Each data point is 

normalized to control expression. Error bars are +/- 1 SD of three technical replicates. 
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UCA1 does not aid growth in estrogen deprived conditions. However, T47D LTED cells were 

produced after nine months of growth in estrogen-deprived conditions (Sanchez et al., 2011). 

Therefore, the short-term nature of the experiment may mean that UCA1 expression alone is 

unable to overcome estrogen withdrawal in that time.  

UCA1 knockdown in T47D LTED cells caused a 40 to 50% decrease in cell proliferation 

relative to the control siRNA. The knockdown effects were also sometimes observed in the 

parental cells (Fig. 2.12B) despite extensive attempts at optimizing the transfection conditions 

and siRNA concentration. I confirmed that knockdown of UCA1 occurred in both the cytoplasm 

and the nucleus (Fig. A.8); therefore, inconsistent knockdown was not the source of the problem.  

These inconsistencies could be due to our use of the alamarBlue fluorescence assay, 

which depends on the assumption that alamarBlue reduction is proportional to total cell count. I 

therefore attempted to show the effects of knockdown by manually counting cells with a 

hemocytometer. UCA1 knockdown produced a small decrease in proliferation; however, this 

decrease was observed in both parental and LTED cells (Fig. 2.13). Because of the inconsistent 

effect size and variability in the control parental T47D cells, I could not make a strong 

conclusion that UCA1 is necessary for the LTED phenotype. 

In addition to increased proliferation, UCA1 promotes bladder cancer cell survival (Wang 

et al., 2012) and cell cycle progression (Yang et al., 2012). I therefore tested whether UCA1 

supported these functions in T47D LTED cells. UCA1 knockdown did not increase apoptosis as 

measured by a caspase activity assay (Fig. 2.14A). Similarly, UCA1 knockdown failed to cause a 

shift in cell cycle progression (Fig. 2.14B).  
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In summary, we sometimes observe the expected proliferation decrease after UCA1 

knockdown. However, UCA1 knockdown failed to alter apoptosis or cell cycle progression, and 

UCA1 did not induce a proliferation increase when overexpressed. Altogether, these data do not 

provide strong evidence that UCA1 contributes to acquired endocrine therapy resistance. 

2.3 Discussion 

 In this chapter, I explored whether DNA methylation changes at the promoters of the 

genes UCA1 and PTGER4 promote endocrine therapy resistance in breast cancer. Genome-wide 

Figure 2.14: UCA1 knockdown does not increase T47D apoptosis or cell cycle progression. (A) 

Top: luminescence data from Caspase-Glo assay, normalized to control. Death mix is positive control 

treatment provided in Caspase-Glo kit. Error bars are +/- 1 SD. Bottom: matching RT-qPCR data 

demonstrating UCA1 knockdown. Error bars are +/- 1 SD. (B) Top: Histograms of propidium iodide 

signal from T47D LTED cells after UCA1 knockdown counted by FACS. Bottom: percent of cells in 

each cell cycle stage calculated by Watson Pragmatic model in FlowJo. 
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hypomethylation is common in cancer and can alter gene expression in ways that favor 

carcinogenesis and metastasis (Ehrlich and Lacey, 2013). UCA1 could not be conclusively linked 

to increased survival and proliferation under estrogen withdrawal. In contrast, I was able to 

provide evidence that PTGER4 expression is regulated by DNA methylation and contributes to 

proliferation in low estrogen conditions via activation of CARM1. 

 The role of EP4 in endocrine therapy resistance is consistent with its contributions to the 

proliferation of several cancer types including colon, lung, prostate, ovarian and breast 

(Yokoyama et al., 2013). Antagonists of EP4 have been shown to inhibit metastasis in hormone-

resistant murine mammary tumor cells (Ma et al., 2006). Further, the contribution of EP4 to 

endocrine therapy resistance via cell signaling is consistent with its role in the development of 

castration-resistant prostate cancer via PKA and cAMP (Terada et al., 2010).  

Mutations are a possible but unlikely alternative to epigenetics for activation of EP4. 

According to the COSMIC database, EP4 mutations are exceedingly rare in breast cancer, 

occurring in 0.33% of patients and copy number gains in 1.5% (Forbes et al., 2015). Sanger 

sequencing of PTGER4 in both MCF7 and MC7-LTED cells failed to uncover any mutations that 

could contribute to the increased activation of EP4. However, analysis of TCGA data indicates 

that PTGER4 methylation appears to accompany gene silencing in many breast tumors (Fig. 

A.9). Interestingly, PTGER4 is unmethylated and expressed in normal breast tissue. MCF7 cells 

treated with demethylating agents increase PTGER4 mRNA levels, consistent with DNA 

methylation playing a direct role in its transcriptional regulation (Kim et al., 2012). This supports 

a mechanism whereby an upstream epigenetic change in the EP4 promoter regulates PTGER4 

expression. Namely an increase in DNA methylation that silences PTGER4 as the tumor forms 
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followed by a decrease in methylation that reactivates the gene to promote resistance to estrogen 

withdrawal in long-term estrogen deprived cells (Fig. 2.4).  

Increased EP4 levels induce increased cAMP production, which drives ligand-

independent activation of ER through the PKA-mediated activation of the co-activator CARM1. 

Prior work has also indicated that PKA can activate ERα by direct phosphorylation of serines 

236 (S236) and 305 (S305). When S236 is phosphorylated, ERα dimerization and DNA binding 

is still dependent on ligand (Chen et al., 1999) and thereby S236 phosphorylation is unlikely to 

activate ERα in MCF7-LTED cells. Studies in HeLa cells using a phosphomimetic S305E ERα 

suggested that S305 phosphorylation was sufficient to induce ligand-independent ERα binding to 

transcriptional targets in the absence of ERα dimerization (Tharakan et al., 2008). However, 

other studies have instead suggested that S305 phosphorylated ERα is insufficient for ERα 

activation and that cofactors such as CARM1 (Carascossa et al., 2010) in MCF7 cells and CREB 

(Lazennec et al., 2001) in CHO were required for ERα binding to DNA and activation of 

response elements. While we cannot rule out the direct activation of ERα by PKA nor the 

activation of additional cofactors, our observations suggest that in estrogen deprived conditions 

EP4 promotes ligand independent activation of ERα through the PKA-mediated activation of the 

co-activator CARM1. 

Another potential mechanism of ligand-independent ER activation is through genetic 

alterations of the ESR1 locus. While any individual event is quite rare, as a whole these 

alterations are becoming an important theme in resistance. Metastatic tumors gain activating 

ESR1 ligand binding domain mutations, especially after endocrine therapy (Li et al., 2013; 

Merenbakh-Lamin et al., 2013; Robinson et al., 2013; Toy et al., 2013; Zhang et al., 1997). 
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Translocations of the ESR1 locus can fuse with activating coding sequence or constitutive 

promoters that activate ESR1 in the absence of estrogen (Li et al., 2013). ESR1 amplification has 

also been noted in both MCF7-LTED cells (Aguilar et al., 2010) and a xenograft line from a 

patient tumor resistant to AIs (Li et al., 2013). Rather than contradict our findings, however, this 

indicates that MCF7-LTED cells remain dependent on ERα signaling. Indeed, MCF7-LTED 

cells are sensitive to fulvestrant, an ER antagonist that accelerates proteasomal degradation of 

ER, indicating that these cells remain reliant on ER signaling (Sanchez et al., 2011). GSEA 

analysis of RNA-seq data from MCF7-LTED cells further shows that MCF7-LTED cells show 

increased expression of ER target genes. Further, we did not observe a dramatic shift in DNA 

methylation changes at ER binding sites, which are a surrogate for altered ER binding.  

Altogether, these data suggest that increased EP4 expression represents a viable means of 

developing resistance to aromatase inhibitor therapy. Expression increases in PTGER4 were 

associated with decreases in DNA methylation, which is consistent with the idea that DNA 

methylation has a regulatory role in PTGER4 expression. Our data indicate that EP4 activation is 

necessary for estrogen-independent growth. While we cannot completely rule out activation of 

alternative signaling pathways, our results support the conclusion that EP4 acts through PKA and 

the co-activator CARM1 to drive ligand-independent ERα activation. EP4 signaling presents a 

potential therapeutic target for the treatment of AI-resistant breast cancer. 

While my work does not implicate UCA1 in resistance to AI therapy, several other 

studies have identified ways that UCA1 does contribute to breast cancer. UCA1 decreases 

expression of the p27 tumor suppressor (Huang et al., 2014). UCA1 has also been found to 

sequester the miR-143, that acts as a tumor suppressor in breast cancer (Tuo et al., 2015). By 
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absorbing miR-18a, UCA1 allows expression of cell cycle regulators in a manner that promotes 

resistance to tamoxifen (Li et al., 2016). UCA1 was also shown to be necessary for proliferation, 

migration, and tumorigenicity of tamoxifen resistant derivatives of MCF7 and T47D cells. This 

effect was mediated by Wnt/β-catenin signaling (Liu et al., 2016a). The Wnt pathway promotes 

stemness in breast cancer cells, which are resistant to treatment due to increased signaling 

through the PI3K pathway, among other reasons (Ma et al., 2015). Because UCA1 was not 

upregulated in MCF7-LTED cells, and it does not seem to strongly support the LTED phenotype 

in T47D, I suspect UCA1’s mechanism of support for tamoxifen resistance is not sufficient to 

overcome AI resistance. 

2.4 Materials and Methods 

Cell Culture 

MCF7 and T47D cells were from the ATCC and maintained in RPMI 1640 (Gibco, 

Thermo Fisher Scientific) supplemented with 5% FBS (Gibco), 10 mM HEPES (Corning) , 4.5 

g/L glucose (Corning), 2 mM L-glutamine (Gibco), 1 mM sodium pyruvate (Corning), and 50 

µg/ml gentamicin (Gibco) in a humidified 37°C incubator containing 5% CO2. T47D-LTED cells 

were previously derived from MCF7 and T47D cells, respectively (Sanchez et al., 2011), and 

maintained in the same media except with 5% charcoal stripped FBS (Gibco) and RPMI 1640 

without phenol red (Gibco). 

Methyl-MAPS genome-wide methylation analysis 

Methyl-MAPS analysis was performed as in Edwards et al. with custom barcoded 

adaptors (Edwards et al., 2010). Libraries were made with AB-SOLiD and paired-end 
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sequenced. Sequencing reads were demultiplexed and analyzed using custom perl scripts 

(Edwards et al., 2010). Sequencing statistics are in Table A.2 and Table A.3.  

RNA-seq 

RNA-seq libraries were prepared using NEB Next RNA-seq kit (NEB) with custom 

barcodes and sequenced with an Illumina HiSeq. Reads were demultiplexed using custom perl 

scripts. Reads were mapped to the human genome (hg18) using TopHat (v1.4) (Trapnell et al., 

2009). HT-seq was used to assign RefSeq annotations the reads (Anders et al., 2015). Statistical 

analysis was performed using EdgeR (Robinson et al., 2010). Ontology analysis was performed 

with Metacore. 

2.4.1 UCA1 Methods 

TCGA Data Analysis 

 On April 9th, 2013, I downloaded a data archive of RNA-seq data for 856 tumor samples 

and 108 matched normal samples with the corresponding biotab clinical data from The Cancer 

Genome Atlas (https://cancergenome.nih.gov/). Custom perl scripts were used to enforce a floor 

of > 25 FPKM for all samples. Statistical tests were performed in R. 

Overexpression Plasmid Construction and siRNAs 

UCA1 overexpression constructs were created by cloning UCA1 out of T47D mRNA and 

into the pBABE-puro expression vector. The overexpression plasmid or empty vector was stably 

integrated into T47D cells by lentiviral transduction. Silencer Select siRNAs were from Ambion 

(Thermo Fisher Scientific; Control siRNA, Cat. #4390843; U529, ID n272529; U530, ID 

n272530; U531, ID n272531; U851, ID s227851). siRNAs were transfected with Lipofectamine 

RNAiMax (Invitrogen, Thermo Fisher Scientific).  
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AlamarBlue Assay 

AlamarBlue assays were performed five days after the start of the experiment. One-tenth 

volume of alamarBlue reagent (AbD Serotec BUF012, Bio-Rad) was added to each replicate. 

AlamarBlue fluorescence was measured after 1 hour. 

RT-qPCR 

RNA was extracted with the Zymo Research Quick mRNA Miniprep kit. RNA 

concentration was measured with the Qubit RNA BR kit. Reverse transcription was performed 

using the Bio-Rad iScript Reverse Transcriptase kit. UCA1 mRNA expression was assessed was 

performed with the Bio-Rad iTaq Universal with SYBR Green reagent on an Applied 

Biosystems Viia7 instrument. The thermocycler protocol was the following: (1) 95°C, 20 s; (2) 

95°C, 3 s; (3) 60°C, 20 s; for 40 cycles. Primer information is in Table A.4. Except where 

indicated, all qPCR measurements were performed in triplicate. RPL0 was used as the 

endogenous control.  

Caspase Assay 

 UCA1 knockdowns were prepared as for AlamarBlue assay. On day three, caspase 

activity was assayed using the Caspase Glo-3/7 Kit (Promega) according to the manufacturer 

protocol. Luminescence was read using a Molecular Devices SpectraMax M5e. 

Cell Cycle Analysis 

 Harvest and pellet 1 x 106 cells in a 12 x 75 mm FACS tube. Resuspend in 1 mL ice cold 

70% ethanol, and store at -20°C overnight or until needed. To continue, pellet fixed cells at 

500xg for 10 min at room temperature. Aspirate 70% ethanol and wash twice with 1 mL1% BSA 

(Cell Signaling) in DPBS (Gibco). After washing, resuspend in 100 µL 1% BSA in DPBS. Add 
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500 μL of propidium iodide and RNAseA (24 μL propidium iodide, Invitrogen P3566; 12 uL 

RNaseA, Thermo EN0531; 464 uL DPBS). Final concentrations: propidium iodide = 40 μg/mL, 

RNaseA = 200 μg/mL. Incubate at 37°C for 30 min. Break up any clumps with a p1000 before 

pipetting through a 100 μm filter (smaller filters may be used if clumps remain and clog the 

FACS intake). Count cells on a BD FACScan machine. 

2.4.2 PTGER4 Methods 

Immunofluorescence 

Images were captured on a Zeiss AxioImager Z1 with AxioCam MRc and Axiovision 

software. The primary antibody was Cayman Chemical Company (Ann Arbor, MI) 101775. The 

secondary antibody was Jackson ImmunoResearch (West Grove, PA) 111-545-003. 

RT-qPCR 

PTGER4 mRNA expression was assessed using Applied Biosystems Viia7 with SYBR 

green. Primer information is in Table A.4. All qPCR measurements were performed in triplicate. 

Methyl-Screen 

Methyl-screen analysis was performed as in Holemon et al. (2007) with slight 

modification. Genomic DNA was mock digested, AciI (NEB) digested, McrBC (NEB) digested, 

or digested with both AciI and McrBC. Real-time quantitative PCR was performed with 

PTGER4-specific primers: 5’-GCAGCTTTGTCTCTCTTC-3’ and 5’-

TACCGAGACCCATGTTG-3’. Unmethylated control gDNA was produced by whole genome 

amplification of MCF7 gDNA with the REPLI-g kit (Qiagen). Methylated control DNA was 

produced by treating amplified gDNA with M.SssI (Zymo Research).  
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Cell proliferation 

Silencer Select siRNAs were from Ambion (Thermo Fisher Scientific; siCtrl, 4390846; 

siEP4, 4427037; siEP4-1, ID s60396; siEP4-2, ID s11456). siRNAs were transfected with 

Lipofectamine RNAiMax (Invitrogen, Thermo Fisher Scientific). When specified, EP4 

antagonist GW627368X was used at 3.3 μM and ONO-AE3-208 was used at 10 μM. 

AlamarBlue assays were performed at 7 days for MCF7-LTED and 4 days for MCF7 cells. One-

tenth volume of alamarBlue reagent (AbD Serotec BUF012, Bio-Rad) was added to each 

replicate. AlmarBlue fluorescence was measured after 1 hour. Eight replicates were performed 

for MCF7-LTED cells and 4 replicates for MCF7 cells. p-values were computed using a one-way 

ANOVA followed post-hoc by Tukey’s HSD (honest significant difference) test. Bartlett’s test 

of the homogeneity of variances was insignificant (α = 0.05) for all comparisons under the null-

hypothesis of unequal variances.  

ChIP-qPCR 

Cells were grown in 10 cm dishes to 85% confluence. The cells were starved, by 

exchanging growth media for reduced-serum media containing 0.5% charcoal stripped FBS, for 

18 hours before activation of EP4 with 10nM L902,688 EP4 agonist (Cayman Chemical) for 2 

hours. An ethanol-treated sample served as a vehicle control. Afterward, cross-linking was 

initiated by drop-wise addition of 37% formaldehyde to a final concentration of 1% at room 

temperature. Cross-linking ran for 10 minutes and was quenched for 5 minutes at room 

temperature by adding 0.5ml of 2.5M glycine. Quenched cells were washed twice with 10ml ice-

cold PBS, removed from the plate by scraping in ice-cold DPBS (Gibco) with protease 

inhibitors, and pelleted. Cell pellets were resuspended in 350 ul ChIP lysis buffer (1% SDS, 10 
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mM EDTA, 50 mM Tris-HCl pH 8.0) with protease inhibitors. Lysed cells were sonicated and 

100 ug of protein were brought to a final volume of 50ul lysis buffer with protease inhibitors. 9 

ul of CARM1 antibody (CST, (3H2) Mouse mAb #12495) or 2ul ER antibody (Santa Cruz sc-

7207X) was added and incubated overnight at 4°C.  

Antibody bound proteins were purified by adding samples to 25µl Protein A/G magnetic 

beads (Pierce) that were prewashed twice with ChIP Dilution Buffer. The samples were 

incubated with the beads 2 hours at 4 °C. Afterward the beads were washed with 0.5 ml of each 

of the following ice-cold buffers: 1) low salt immune complex wash buffer (EMD-Millipore 20-

154), one wash; 2) high salt immune complex wash buffer (EMD-Millipore 20-155), one wash; 

3) LiCl immune complex wash buffer (EMD-Millipore 20-156), one wash; 4) 1X TE-T, two 

washes (10mM TrisHCl, 1mM EDTA, 0.1% Triton, pH 8). Elution buffer (1% SDS + 0.1M 

NaHCO3) was prepared fresh from 10X stocks. 200 µl room temperature elution buffer was 

added, and the samples were incubated at room temperature for 30 min to elute the protein. 

Afterward, 1 µl of 10 mg/mL RNase A was added and the samples were incubated overnight at 

65°C. The Qiagen PCR Purification kit was used to purify the DNA in a final volume of 60µl 

Buffer EB. 

Real-time quantitative PCR was performed on an Applied Biosystems Viia7 using SYBR 

green. Primers are in Table A.4. Values are reported as percent relative to input. All experiments 

were performed in triplicate and p-values are computed using Student’s t-test. 

cAMP measurements 

cAMP measurements were made using the Cyclic AMP XP Assay Kit (Cell Signaling 

Technologies) according to the manufacturer’s instructions. MCF7-LTED cells were washed 
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twice with warm PBS and then pre-treated with 0.5 mM IBMX in serum-free medium for 30 min 

prior to addition of L-902,688, at the indicated concentrations, or 1 µM forskolin. For combined 

antagonist/agonist treatments, cells were pre-treated 10 min with ONO-AE3-208 before addition 

of L-902,688. For EP4 knock down experiments, cAMP measurements were made 2 days post 

transfection. cAMP measurements were quantitated as follows: %Activity = 100 x [(A – 

Abasal)/(Amax – Abasal)], where A is the absorbance of the agonist treated sample, Amax is the 

absorbance of the forskolin treated sample, and Abasal is the absorbance of the vehicle treated 

sample. 

CARM1-IP – ER blot 

MCF7-LTED cells were grown to confluence in 10 cm dishes. Before harvesting, cells 

were grown in media with low serum concentration (0.5%). The next day, the cells were 

incubated with 10 mL of RPMI (no serum) containing 0.5 mM IBMX for 30 minutes. The cells 

were then treated with 10 nM L-902,688 in 10 mL of RPMI + 0.5 mM IBMX and harvested after 

0, 5, 15, or 30 minutes. After washing with ice-cold PBS, cells were lysed with 1 mL of RIPA 

buffer (1 M tris pH 8.0, 5 M NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and 2 mM 

EDTA with freshly added PMSF to 1 mM final and 1X Halt protease and phosphatase inhibitor 

cocktail [ThermoFisher Scientific]). Cells were scraped loose, the cell lysate was transferred to a 

microcentrifuge tube, and the tube was put on a rotator for 30 minutes at 4°C. The supernatant 

was isolated by centrifugation at 12,000xg for 20 minutes at 4°C. 

Immunoprecipitation was performed by addition of mouse anti-CARM1 (Cell Signaling 

Technology #12495) and precipitation overnight at 4°C. Precipitated proteins were collected 

with the Dynabeads Protein G magnetic beads. 25 uL of beads were washed with 500 uL of 
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RIPA buffer before adding the immunoprecipitated proteins. This was then incubated at 4°C for 

3 hours. The protein-bound beads were then washed three times with 0.5 mL RIPA with 10 mM 

NaF and 1 mM sodium pyrophosphate and resuspended in 0.5 mL of wash buffer. The protein 

was eluted in 40 uL of 2x NuPAGE LDS sample buffer at 90°C for 10 minutes. Final analysis of 

immunoprecipitated proteins occurred by Western blot on 4-12% gradient PAGE gels (Life 

Tech.). ERα was identified using a rabbit polyclonal antibody (Santa Cruz Biotech sc-7207) to 

minimize signal from the mouse anti-CARM1 IgG used for immunoprecipitation. The blot was 

stripped using Restore™ Western Blot Stripping Buffer (ThermoFisher), and reblotted with 

rabbit anti-CARM1 antibody (Cell Signaling Technologies #3379). Alexa Fluor 680 or Alexa 

Fluor 790 labeled secondary antibodies were from Jackson ImmunoResearch. Blots were imaged 

using the Odyssey Fc (LI-COR Biosciences). 

The Cancer Genome Atlas data analysis 

Infinium 450k methylation, RNA-seq expression and clinical data were downloaded from 

the The Cancer Genome Atlas (TCGA) data portal. P-values were computed using Mann-

Whitney U. 

Expression Analysis of ER+ breast cancer in neoadjuvant setting 

Expression analysis was performed for patients enrolled in the POL (Olson et al., 2009) 

and ACOSOG (American College of Surgeons Oncology Group) Z1031 (Ellis et al., 2011) trials. 

Postmenopausal women with ER+ Stage II/III breast cancer were treated with letrozole, 

anastrozole, or exemestane for 16-18 weeks.  Biopsies were performed before and after 

treatment. Patients were labeled as resistant if 10% or more of malignant cells stained positive 

for the proliferative marker Ki67 at 16 weeks. Expression analysis was performed using Agilent 
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Human Gene Expression 4x44K v2 Microarray. P-values for PTGER4 expression were 

computed using Mann-Whitney U. 

2.5 Supplementary Material 

 Supplementary material is in Appendix A. 
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Chapter 3: Reprogrammable CRISPR/Cas9-

based system for inducing site specific DNA 

methylation 
 

The work described in this chapter represents my contribution to a collaborative project 

between the Edwards and Challen labs. Our combined efforts have been published (McDonald et 

al., 2016). I have included here only parts of the project that I had a direct hand in such as the 

text and the data produced by my laboratory. For the data produced by the Challen lab, please 

see the complete publication. 

3.1 Introduction 

DNA methylation of CpG dinucleotides is a prominent epigenetic modification of the 

mammalian genome that can influence gene expression, and aberrant distribution of DNA 

methylation is associated with a spectrum of human disorders including cancers (Egger et al., 

2004). Despite intensive study, it remains unclear which CpG dinucleotides must change 

methylation state in order to alter transcription. Genome-wide analyses have found associations 

between DNA methylation and reduced gene expression that occur both in the proximal 

promoter and downstream of the gene’s transcription start site (TSS, (Bell et al., 2011; Bock et 

al., 2012; Lou et al., 2014; Lund et al., 2014; VanderKraats et al., 2013). However, evidence 

supports both that DNA methylation can cause a loss of expression, and that expression changes 

can alter DNA methylation patterns (Bestor et al., 2015; Busslinger et al., 1983). Here, we 

sought to develop tools for locus-specific epigenetic remodeling to directly address the role of 

DNA methylation in regulating gene expression. 
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Targeted DNA methylation approaches have been attempted by fusing DNA 

methyltransferase enzymes (DNMTs) to DNA binding proteins such as zinc finger proteins 

(ZFPs) (Siddique et al., 2013), and transcriptional activator-like effector (TALE) (Bernstein et 

al., 2015). However, engineering custom proteins for each targeted sequence is laborious and 

requires specialized expertise. Moreover, in these studies, induced DNA methylation of the 

targeted loci was relatively poor, with substantial off-target activity. An engineered form of the 

clustered, regularly interspaced, short palindromic repeat (CRISPR) system has emerged as an 

alternative for achieving site-specific DNA targeting (Jinek et al., 2012). Here, the Cas9 

endonuclease is directed to genomic targets by engineered short guide RNAs (sgRNAs) (Jinek et 

al., 2012). Because the sgRNA is the DNA sequence-specific component of the system, it allows 

for efficient targeting of multiple regions due to the ease of design and synthesis of new sgRNAs 

(relative to engineering new custom proteins for each target site). A Cas9 mutant (D10A and 

H840A; henceforth referred to as dCas9) that lacks endonuclease activity but can still be 

recruited by sgRNA(s) (Jinek et al., 2012) has recently been used to target genes in mammalian 

cells for transcriptional activation (Maeder et al., 2013b; Mali et al., 2013; Perez-Pinera et al., 

2013a, 2013b). Here, we demonstrate an easily reprogrammable CRISPR/dCas9 DNMT fusion 

capable of inducing site-specific DNA methylation. 

3.2 Results 

To design a flexible system to target DNA methylation, we fused dCas9 to the catalytic 

domain of the de novo DNA methyltransferase DNMT3A (Fig. 3.1A). To test this system, we 

targeted DNA methylation to the tumor suppressor gene CDKN2A (cyclin dependent kinase 2A), 
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Figure 3.1: Site-specific induction of DNA methylation using a CRISPR-Cas9 DNMT fusion. (A) 

dCas9-DNMT3A CD fusion constructs. The E756A mutation inactivates the DNMT3A-CD. (B) 

UCSC genome browser view showing the locations of the three CDKN2A sgRNA (g1a, g7a and 

g33a). The three sgRNA were validated to ensure they targeted this locus (Figure 1-figure supplement 

2). cDMR indicates the region from the literature where methylation changes are associated with 

expression changes (Fig. B.1). (C) Induced DNA methylation at the CDKN2A promoter three days 

post-transfection. Colors correspond to the red and blue ABS regions in (B). Three CpGs were 

independently measured in both amplicons. sgRNA target sites are indicated above the graphs. Pool 

sgRNA indicates g1a, g7a, g33a were used simultaneously. Sanger sequencing validation is presented 

in Fig. B.3, and non-CpG methylation data is presented in FigB.4. (D) Time course of the percent 

methylation data for the CpG marked with an asterisk in (C). Additional CpGs are shown in FigB.5. 

(E) Methylation induced by a pair of sgRNA decreases with increasing intervening distance. Distance 

is calculated relative to the 3’ end of the g33a sgRNA. Diamonds indicate the location each CpG 

monitored for methylation; whose color corresponds to appropriate line in the graph. Additional data 

from individual and paired sgRNA is presented in Fig. B.6. (F) CDKN2A expression for samples with 

induced methylation. Expression is normalized to day one for each respective sample. Error bars 

represent standard error of the mean (n=3). NLS, nuclear localization signal; FLAG, FLAG tag 

domain. 

 

Figure 3.1. Site-specific induction of DNA methylation using a CRISPR-Cas9 DNMT fusion. (a) 

dCas9-DNMT3A CD fusion constructs. The E756A mutation inactivates the DNMT3A-CD. (b) 

UCSC genome browser view showing the locations of the three CDKN2A sgRNA (g1a, g7a and 

g33a). The three sgRNA were validated to ensure they targeted this locus (Figure 1-figure supplement 

2). cDMR indicates the region from the literature where methylation changes are associated with 

expression changes (Figure 1-figure supplement 1). (c) Induced DNA methylation at the CDKN2A 

promoter three days post-transfection. Colors correspond to the red and blue ABS regions in (b). 

Three CpGs were independently measured in both amplicons. sgRNA target sites are indicated above 
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which inhibits progression through the cell cycle (Liggett and Sidransky, 1998). CDKN2A is one 

of the most frequently hypermethylated genes in The Cancer Genome Atlas (Ciriello et al., 

2013), and numerous clinical studies show a negative correlation between CDKN2A methylation 

and expression in colorectal cancer (Shima et al., 2011). While it is generally assumed that 

CDKN2A methylation induces gene silencing, it has also been suggested that DNA methylation 

occurs after the loss of expression (Hinshelwood et al., 2009). From a literature search, we 

identified 17 publications that associate CDKN2A methylation with expression and/or cancer 

(Fig. B.1). Overwhelmingly, these papers studied the differentially methylated region (cancer 

DMR, cDMR) on the 3′ end of the CpG island that overlapped the first exon of CDKN2A (Fig. 

3.1B). 

We computationally designed three sgRNAs (g1a, g7a and g33a) to target this region and 

test whether DNA methylation was sufficient to induce gene silencing. We validated the ability 

of each sgRNA to target the CDKN2A locus by transfecting them with active CRISPR/Cas9 and 

measuring the ability of Cas9 to cleave the locus (Fig. B.2, Table B.1). We then transfected 

HEK293T cells with the pool of three sgRNAs along with either a normal dCas9-DNMT3A 

catalytic domain (CD) fusion (dCas9-D3A) or one with a DNMT3AE756A mutation (dCas9-

mD3A, Fig. 3.1A), which abolishes DNA methyltransferase activity (Reither et al., 2003). 

Transfection efficiencies were >80-90% for all experiments as measured by cotransfection 

with GFP-containing plasmids. We analyzed DNA methylation levels for 20 days post-

transfection using Illumina sequencing of two amplicon regions (amplicon bisulfite sequencing, 

ABS). ABS results were validated using Sanger bisulfite sequencing (R2=0.83; Fig. B.3), and 

DNA methylation levels at CpGs analyzed in both of two independent ABS amplicons showed 
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strong correspondence (R2=0.98; Fig. 3.1C). All CpGs had >100× sequencing coverage, with a 

median coverage of 15,200. 

Over the 20-day time course we observed an increase in DNA methylation at the 

CDKN2A target locus that ranged from 20-43% at its peak on day three. Background methylation 

from transfection with dCas9-mD3a was consistently less than 1.5%, while background 

methylation from an off-target sgRNA, which controls for DNMT3A-CD overexpression, was 

less than 14% on day three. Induced DNA methylation levels were highest over a set of eight 

CpGs directly between the g33a and g7a sgRNA target sites (Fig. 3.1C). Increases in CHG and 

CHH methylation were minimal (Fig. B.4). DNA methylation decreased rapidly after passaging 

the cells on day four, but stabilized 20 days post-transfection at 6-10% (Fig. 3.1D; Fig. B.5). 

Despite the literature support for a negative correlation between expression and DNA 

methylation in this region, we did not observe a measurable effect on CDKN2A gene expression 

by RT-qPCR (Fig. 3.1F). This suggests that a limited increase in methylation in the region 100-

400 bp downstream of the CDKN2A TSS is insufficient to trigger gene silencing.  

Spatially, the induced DNA methylation spiked near the sgRNA target sites and dropped 

quickly toward background levels at surrounding CpG sites. Analysis of DNA methylation 

induced by single sgRNAs indicates that methylation occurs primarily within 50 bp of the 

sgRNA binding site (Fig. B.6). Higher DNA methylation levels were often observed 3′ of the 

sgRNA binding site (Fig. B.6). Our initial data from the three pooled sgRNAs suggested that 

CpG methylation was higher between pairs of sgRNAs. To investigate this effect, we transfected 

pairs of sgRNA with varying intervening distances and monitored methylation of six clustered 

CpGs between the sgRNA pairs using ABS (Fig. 3.1E). DNA methylation of the three CpGs 
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(cluster 1) within 20 bp of the fixed sgRNA (g33a) did not change with addition of a second 

sgRNA 77 bp or further away. However, the methylation level increased from 30-40% to  

42-53% when sgRNAs were paired within 80 bp and both sgRNAs were within 50 bp of CpG 

cluster 2 (Fig. 3.1E). This suggests the DNMT3A-CD activity at the target locus is additive. 

We next tested whether we could use our approach to methylate an entire CpG-island 

(CGI). We designed 17 sgRNAs (Fig. 3.2A; Table B.1) to target DNA methylation across the  

CDKN2A CGI, which spans the TSS. We applied three combinations of sgRNAs (Set 1, 2, All) 

to test whether inducing DNA methylation of the entire CGI could decrease gene expression 

(Fig. 3.2A). ABS analysis of eight amplicons (minimum per CpG sequencing depth of 100) 

showed that the DNA methylation level increased to an average of 22% across the entire region 

with a peak of 54% (Fig. 3.2B). As an off-target negative control, we used three sgRNAs 

targeted to the ARF promoter located ∼20 kb away. The average background methylation at 

CDKN2A after treatment with off-target ARF sgRNAs was 9% (Fig. 3.2B). The other two 

sgRNA sets (Set 2 and All) induced similar increases of methylation across the CGI overlapping 

the TSS of CDKN2A (Fig. B.7). 

Analysis of CDKN2A expression by RT-qPCR in all three sgRNA targeting experiments 

(Set 1, 2, All) indicated an average 39% decrease in CDKN2A mRNA expression after targeting 

with dCas9-D3A (Fig. 3.2C). Cells transfected with dCas9-mD3A showed a 16-26% reduction in 

CDKN2A expression, likely due to CRISPR inhibition (Fig. 3.2C). Across the three replicates 

(Set 1, 2, All) expression decreased by an average of 17% in dCas9-D3A relative to dCas9-

mD3A (P<0.01 paired-t-test). This indicated that DNA methylation directly decreased CDKN2A 

expression, but targeting of the entire CGI was required to trigger this effect. Our results are  
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 Anchor 

Figure 3.2: CDKN2A promoter methylation decreases expression in a context dependent 

manner. (A) Locations of the 17 sgRNAs used in Sets 1 and 2 and regions sequenced in B. sgRNA 

coordinates are in Table B.1. (B) Percent methylation is plotted for regions designated in A. Set 1 

sgRNA target sites are indicated above the graphs. Data for All sgRNA, Set 2 sgRNA, and off-target 

SgRNA is presented in Fig. S2. (C) Methylation induced by CDKN2A-targeted sgRNA Set 1, Set 2, 

and All sgRNA, decreases gene expression. Relative expression of CDKN2A is normalized to a mock-

treated control. Error bars=mean±s.e.m. (All, n=2; Set 1, n=1; Set 2, n=1; all performed in technical 

triplicate, paired t-test). 

 

Figure 3.2. DNA methylation decreases gene expression at the CDKN2A promoter in a context 

dependent manner. A) Locations of the 17 sgRNAs used in Sets 1 and 2 and regions sequenced in B. 

sgRNA coordinates are in Table B.1. (B) Percent methylation is plotted for regions designated in A. 

Set 1 sgRNA target sites are indicated above the graphs. Data for All sgRNA, Set 2 sgRNA, and off-

target SgRNA is presented in Fig. S2. (C) Methylation induced by CDKN2A-targeted sgRNA Set 1, 

Set 2, and All sgRNA, decreases gene expression. Relative expression of CDKN2A is normalized to a 

mock-treated control. Error bars=mean±s.e.m. (All, n=2; Set 1, n=1; Set 2, n=1; all performed in 
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consistent with other studies that find a similar reduction in gene expression after inducing 

methylation at the CDKN2A promoter using ZFP- and TALE-based systems (Bernstein et al., 

2015; Cui et al., 2015). 

To verify the effect of our system with a separate locus, we designed three inwardly-

directed (5′ to 3′) sgRNAs that bracketed three CpG sites in the ARF promoter located 150-170 

Figure 3.3: Induced methylation decreases ARF expression. (A) Locations of the three sgRNA 

used to induce DNA methylation at the ARF promoter. (B) Percent methylation is plotted for a region 

of exon 1 of the ARF locus. ARF sgRNA target sites and three targeted CpGs (asterisks) are indicated 

above. (C) Methylation induced by ARF targeted sgRNA decreases gene expression. Relative 

expression of ARF is normalized to a mock-treated control. Error bars = mean ± SEM (n=1 biological 

replicate performed in technical triplicate). 



 

85 

 

 

bp downstream of the TSS (Fig. 3.3A). ARF-targeted sgRNAs increased the DNA methylation 

level to 27-30% at these three CpG sites with less than 15% methylation induced in adjacent sites 

(Fig. 3.3B). Induced methylation of the ARF promoter was associated with a 19% decrease in its 

expression (Fig. 3.3C). 

3.3 Discussion 

We provide an outline for using a modified CRISPR/dCas9 system to evaluate the 

functional relevance of DNA methylation at specific CpGs and described guidelines for its use. 

DNA methylation induction occurs within ∼50 bp of a sgRNA target site and is strongest 

between two adjacent and inwardly directed sgRNA binding sites. Based on our design criteria, 

we designed sets of sgRNAs that induced methylation at the human CDKN2A and ARF 

promoters, and the mouse Cdkn1a promoters with similar efficiency. Induced methylation was 

sufficient to decrease expression of all three genes. Methylation increases and changes in 

expression were highly significant and reproducible either by using multiple distinct sgRNA 

combinations in the case of CDKN2A or at the clonal levels as observed for Cdkn1a. Moreover, 

the reduction in Cdkn1a expression clearly had functional consequences (increased proliferation) 

for the transduced cells. Though modest, the expression decreases caused by induced 

methylation are consistent with previously published results using ZFP and TALE fusions 

(Bernstein et al., 2015; Cui et al., 2015). 

The effects of the induced methylation also appeared to be context dependent. While 

methylation of the entire CGI at the CDKN2A promoter repressed gene expression, inducing 

DNA methylation of a region 100-400 bp downstream of the CDKN2A TSS alone was 

insufficient to affect expression despite the frequent observation of a negative correlation 
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between methylation and expression in this region. This indicates the importance of the 

flexibility to target multiple regions offered by our CRISPR/dCas9 DNMT fusion system. 

Although approaches for targeted DNA methylation have been previously described, our 

method is advantageous for several reasons including; (1) the ease of designing new sgRNAs for 

targeting, (2) higher levels of induced DNA methylation, (3) little off-target activity. This 

approach can be used to interrogate the effects of DNA methylation on only a few CpG sites by 

bracketing them with sgRNAs, or can be used to test the effects of broader increases in DNA 

methylation by using many sgRNAs simultaneously. Further, the method described here 

provides a robust, reprogrammable approach to allow researchers to easily and thoroughly 

explore the functional roles of DNA methylation changes in development and disease. 

3.4 Materials and Methods 

dCas9 fusion protein design and construction 

The catalytic domain (CD) of human DNMT3A (amino acids 602 to 912 of 

NP_783328.1) both with and without the E756A mutation was cloned between the NheI and 

AgeI sites of pCMV_dCas9_VP64 (Addgene plasmid #49015, Cambridge, MA) with a NLS and 

FLAG tag linker. Plasmids sequences were validated by Sanger sequencing and prepared for 

transfection using a Qiagen Maxiprep kit. All plasmids are available in Addgene (#78256, 

78257), and detailed information is available at http://epigenomics.wustl.edu/epigenomeEditing. 

sgRNA design 

Target sequences were entered into the MIT sgRNA design software 

(http://crispr.mit.edu/), the BROAD sgRNA design tool 

(http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design-v1) (Doench et al., 2014), 
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and the sgRNAcas9 tool (version 2.0.10) (Xie et al., 2014). The intersection of sgRNA target 

sites produced by all tools was taken for further analysis. sgRNA sequences that failed the 

BROAD test (score<0.2) were excluded. sgRNA were selected based on high BROAD scores 

and location relative to other sgRNAs. sgRNA coordinates and sequences are in Tables B.1 and 

Table B.2. Oligonucleotides corresponding to the target sites were annealed and cloned into 

MLM3636 (Addgene plasmid #43860). 

Cell culture 

HEK293T cells were acquired from ATCC (CRL-3216) and grown in DMEM 

supplemented with 10% FBS (Gibco), 1× Penicillin/Streptomycin (Gibco), and 2 mM GlutaMax 

(Gibco). For transfection experiments, 3×105 HEK293T cells were plated in a 60 mm dish. The 

next day, the cells were transfected with Lipofectamine LTX (Thermo Fisher Scientific). The 

Lipofectamine:DNA ratio was 3.5, with a total of 5.5 μg of plasmid DNA. The mass of Cas9-

DNMT3A CD fusion plasmid was equal to the total mass of the sgRNA plasmids. Since 

HEK293T cells incorporate either all plasmids or none, 0.5 or 0.7 μg of pMaxGFP was co-

transfected in order to indicate the transfection efficiency. The plasmid DNA was first diluted in 

Gibco OptiMEM, then Lipofectamine LTX was added and mixed in by inversion. After 30 min, 

the transfection mixture was added dropwise to the cells and they were placed back in the 

incubator. 

Sanger bisulfite sequencing 

Genomic DNA (gDNA) was isolated using the Zymo Research Quick gDNA MiniPrep 

kit and quantified with the Qubit dsDNA broad range assay (Thermo Fisher Scientific). gDNA 

was bisulfite converted with the Zymo Research EZ DNA methylation kit according to the 
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manufacturer’s instructions. All samples underwent bisulfite conversion with a high efficiency of 

at least 98% as determined by conversion of unmethylated, non-CpG cytosines. For CDKN2A, 

the target regions were amplified with the Qiagen PyroMark PCR kit and CDKN2A_A primers 

in Table B.3. PCR products were cloned into the Promega pGEM-T Easy plasmid and 

transformed into NEB 10β competent cells. PCR products from individual colonies were 

sequenced by Sanger. Sanger bisulfite sequencing analysis was performed using BIQ Analyzer 

(Bock et al., 2005). 

Amplicon bisulfite sequencing 

gDNA was extracted, bisulfite converted and PCR amplified as above. A tenfold molar 

excess of Illumina sequencing Y-adapters was then annealed to 100 ng of PyroMark PCR 

product (total Y-adapter mass varies with PCR product length) with NEB Quick Ligase for 15 

min. The ligations were purified over a 1.5% agarose II (ISC BioExpress) gel in 1× TBE in order 

to remove incompletely ligated DNA. Custom 13 bp barcode index sequences were added via 

PCR using NEB Phusion. The standard Phusion PCR protocol was followed but with the 

following primer concentrations (for a 50 μl reaction): 1 μl of Illumina Primer 1.0 (25 μM), 1 μl 

of Illumina PCR Primer 2.0 (diluted fresh to a final concentration of 0.5 μM), and 1 μl of the 

index primer (25 μM). The thermocycler protocol was the following: (1) 98°C, 30 s; (2) 98°C, 10 

s; (3) 64°C, 30 s; (4) 72°C, 30 s; (5) Return to step two 11 times; (6) 72°C 5 min; (7) 4°C hold. 

The PCR products were again purified over a 1.5% agarose II gel in 1× TBE, and their 

concentration was measured with the Qubit dsDNA high sensitivity kit. Individually indexed 

samples were pooled and submitted for sequencing. Amplicon bisulfite sequencing data were 

checked for quality using fastQC, adaptor and poor quality sequence (quality less than 20) was 
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trimmed using fqtrim, and the trimmed sequences were mapped to the target sequences using 

Bismark (Krueger and Andrews, 2011). 

Expression analysis  

RNA was extracted with the Zymo Research Quick mRNA Miniprep kit. RNA 

concentration was measured with the Qubit RNA BR kit. RNA integrity was determined by 

visualizing rRNA bands using agarose gel electrophoresis. Reverse transcription was performed 

using the Bio-Rad iScript Reverse Transcriptase kit. Quantitative reverse transcription 

polymerase chain reaction (RT-qPCR) was performed with the Bio-Rad iTaq Universal with 

SYBR Green reagent on an Applied Biosystems Viia7 instrument. The thermocycler protocol 

was the following: (1) 95°C, 20 s; (2) 95°C, 3 s; (3) 60°C, 20 s; for 40 cycles. qPCR primers are 

listed in Table B.4. A melt curve was performed to indicate there was not off-target 

amplification. Data was analyzed as described by Hellemans et al. (2007) using the geometric 

mean of ACTB, GAPDH, and RPL0 as an internal control. The All sgRNA sample represents 

data from two independent transfection experiments. The data for all remaining samples derives 

from technical replication using the same RNA sample. P-values were calculated with paired 

sample t-tests on the normalized levels of gene expression. 

Western blot 

Cells were lysed in complete RIPA buffer containing protease inhibitors (Santa Cruz 

Biotechnology). 20 μg of protein lysates were separated on 10% SDS-PAGE gels and transferred 

to nitrocellulose membranes (Millipore). Membranes were subsequently probed to detect fusion 

proteins using primary antibodies recognizing Cas9 (Active Motif) or β-actin (Santa Cruz) and 
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detection was performed using horseradish-peroxidase-conjugated secondary mouse antibody 

(Santa Cruz) and chemiluminescence (Millipore). 

3.5 Supplementary Material 

 Supplementary material is in Appendix B. 
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Chapter 4: Optimizing the dCas9-DNMT system 

with Alternative DNMT Catalytic Domains 

 
4.1 Introduction 

DNA methylation of CpG dinucleotides is a prominent epigenetic modification of the 

mammalian genome that influences both chromatin state and gene expression. Alteration of 

DNA methylation patterns has been observed in numerous human diseases and disorders, 

including cancer (Schübeler, 2015). Despite intensive study, however, it remains difficult to 

predict the effect of a specific methylation change on gene expression. There is a global negative 

correlation between the presence of DNA methylation at a gene promoter and decreased gene 

expression, but the correlation is a weak one (Bock, 2012). Analysis of genomic data sets only 

finds a strong relationship between methylation and expression at a small subset of genes (Bell et 

al., 2011; Bock et al., 2012; Lou et al., 2014; Schlosberg et al., 2017; VanderKraats et al., 2013). 

Additionally, while there is evidence that DNA methylation can cause decreased expression 

(Busslinger et al., 1983), there is also evidence that the reverse is true (Bestor, 2000).  

The difficulty in defining the relationship between methylation and expression partly 

derives from the lack of tools capable precisely manipulating DNA methylation. The most 

commonly used approaches include DNA methyltransferase (DNMT) knockout, knockdown, or 

chemical inhibition. Unfortunately, all of these approaches alter methylation genome-wide and 

thereby complicate the analysis of specific methylation changes. Targeted DNA methylation 

approaches are therefore preferable and suggested as early as 1997 (Xu and Bestor, 1997). 

However, the targeting technologies available at the time, zinc fingers (ZF), were time-
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consuming and expensive to create. As a result, relatively few investigators have chosen this 

approach. I attempted to solve this problem by adapting the flexible and inexpensive 

CRISPR/Cas9 system to make targeted methylation changes, and I was one of the first to publish 

a working system (McDonald et al., 2016; Vojta et al., 2016). Several other labs have published 

similar systems. Stepper et al. (2016) showed that the Dnmt3a-Dnmt3L fusion outperforms 

Dnmt3a, as previously observed with a zinc finger targeting domain (Siddique et al., 2013). 

dCas9-DNMT fusions have also been used to induce long-term gene silencing (Amabile et al., 

2016) as well as to methylate CTCF binding sites and alter chromosomal looping (Liu et al., 

2016b). Of these studies only Amabile et al. (2016) achieved an average of >80% methylation at 

an endogenous gene target, and they did so by simultaneously altering chromatin with the KRAB 

repressor domain. This is the first report to achieve average levels of methylation that imitate the 

>70% methylation level observed at silenced CpG island (CGI) promoters in vivo (Weber et al., 

2007). This is an important achievement, but it highlights the fact that the dCas9-DNMT system 

alone appears incapable of imitating in vivo methylation levels at silenced genes. 

I therefore sought to induce higher levels of methylation by using alternative DNMT 

catalytic domains. Targeted methylation studies using mammalian DNMTs have almost 

exclusively relied on DNMT3A-based fusions (Amabile et al., 2016; Bernstein et al., 2015; Cui 

et al., 2015; Groote et al., 2012; Liu et al., 2016b; McDonald et al., 2016; Rivenbark et al., 2012; 

Siddique et al., 2013; Stepper et al., 2016; Vojta et al., 2016). I hypothesized that other DNMTs 

or combinations of DNMTs might induce more methylation. The combination of DNMT3A and 

DNMT3L is known to enhance DNMT3A activity (Siddique et al., 2013; Stepper et al., 2016). 

Like DNMT3A, DNMT3B is a de novo DNMT and might also induce high levels of 
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methylation. In contrast to DNMT3A/B, DNMT1 is considered the maintenance 

methyltransferase that targets hemimethylated sites during DNA replication (Jurkowska and 

Jeltsch, 2016). However, Dnmt1 can methylate DNA better than both Dnmt3a and Dnmt3b at 

unmethylated sites in vitro despite its overall preference for hemimethylated sites (Okano et al., 

1998). In addition, the de novo and maintenance methyltransferase activity might synergize and 

increase the induced methylation levels (Jeltsch and Jurkowska, 2014; Jones and Liang, 2009). 

Lastly, the bacterial DNMT, M.SssI, can methylate DNA 100% in vitro and induces strong 

methylation of open chromatin (Kelly et al., 2010). Though bacterial DNMTs have been used for 

targeted methylation before (Groote et al., 2012), they have not been used to target an 

endogenous promoter. 

To test these alternative DNMTs, I cloned the following DNMTs: human DNMT1, a 

mouse Dnmt3a-mDnmt3L fusion (Siddique et al., 2013), human DNMT3B, and M.SssI. I then 

performed transient transfection of HEK293T cells with sgRNA to the CDKN2A and ARF 

promoters as previously published (McDonald et al., 2016). The mDnmt3a-mDnmt3L fusion 

increased the methylation levels by a difference of 10% to 20% compared to human DNMT3A. 

However, this increase was accompanied by higher background methylation. In contrast, 

DNMT3A produced high levels of methylation with relatively low background. DNMT3A 

therefore appears to be the optimal enzyme for use in most cases. 

4.2 Results 

To further expand the induced methylation tools available, we cloned several DNA 

methyltransferases in place of the DNMT3A catalytic domain used in our previous publication 

(McDonald et al., 2016). These alternative DNMT catalytic domains include: amino acids (aa) 
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656 – 1616 of human DNMT1 (hDNMT1 – aa656), aa 730 – 1616 of human DNMT1 (hDNMT1 

– aa730, a mouse Dnmt3a-Dnmt3L fusion (mDnmt3a-mDnmt3L), human DNMT3B 

(hDNMT3B), and a humanized M.SssI (hM.SssI, see Fig. 4.1A). The hDNMT1 aa730 clone 

excludes the CXXC domain that was found to support DNMT1’s preference for hemimethylated 

DNA (Song et al., 2011). I hypothesized that this might make DNMT1 more catalytically active 

in my system. The hM.SssI construct was the only construct cloned in its entirety; the humanized 

designation indicates it was codon optimized for expression in human cells. See methods for 

further cloning details.  

As an initial trial of my new fusions, I targeted the CDKN2A promoter with three sgRNA 

(Fig. 4.1B, Table C.3). These sgRNA were shown to target the CDKN2A exon 1 in our previous 

study (McDonald et al., 2016). The m3Dnmt3a-mDnmt3L fusion induced the most methylation. 

The difference of the average methylation between mDnmt3a and mDnmt3L and hDNMT3A 

was 10% to 20% (Fig. 4.1C). While hM.SssI performed almost equivalently to hDNMT3A, and 

hDNMT3B performed worse (Fig. 4.1C). Interestingly, neither hDNMT1 clone induce any 

methylation.  

To further explore the properties of the new constructs, I varied the mass of the dCas9-

DNMT fusions included in the transfection. I found that DNA methylation levels increase with 

the amount of the dCas9-DNMT fusion transfected and reach a maximum level of induction at 

2.4 ug (Fig. 4.2B). Interestingly, hM.SssI construct induces its peak methylation at 1 ug and 

induced methylation decreases at higher concentrations. 
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When transfecting 2.4 ug of hDNMT3A, I previously observed background methylation 

up to 14% in the off-target controls. I also previously observed an average 9% methylation at the 

Figure 4.1: Alternative dCas9-DNA methyltransferase fusions induce site-specific methylation. 

(A) Cloning scheme for alternative DNMTs. (B) Genome browser shots. Top: CDKN2A promoter; 

black boxes indicate sgRNA; blue and red boxes indicate sequenced regions. Bottom: ARF promoter; 

pink boxes indicate sgRNA; the black box indicates the region sequenced. (C) Methylation levels 

induced by each DNMT at the CDKN2A promoter. 2.4 ug each Cas9-DNMT fusion was transfected. 

Boxplot shows data from scatter plot. N = 3 except hDNMT3B, hDNMT1 – aa730, and hDNMT1 – 

aa656 where N = 2. Error bars = +/- 1 SD for N = 3; range for N = 2. (D) Methylation level for each 

CpG indicated in (C) above across the concentration gradient of dCas9-DNMT. Each line represents a 

different enzyme. 
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CDKN2A promoter when targeting methylation to the ARF promoter (McDonald et al., 2016). I 

therefore set out to determine 1) the background methylation levels induced by the alternative 

DNMT constructs and 2) whether the background could be controlled by the varying the mass of 

the dCas9-DNMT fusion that I transfected. On-target or signal methylation was measured at the 

CDKN2A promoter when using CDKN2A sgRNA. Off-target or noise methylation was measured 

by plotting the methylation levels at the CDKN2A promoter when using sgRNA targeted to the 

ARF promoter ~20 kb away. mDnmt3a-mDnmt3L produced more methylation both on-target  

Figure 4.2: Alternative dCas9-DNA methyltransferase fusions induce site-specific 

methylation. (A) Methylation levels induced by each DNMT at the CDKN2A promoter. 2.4 

ug each Cas9-DNMT fusion was transfected. Boxplot shows data from scatter plot. N = 3 

except hDNMT3B, hDNMT1 – aa730, and hDNMT1 – aa656 where N = 2. Error bars = +/- 1 

SD for N = 3; range for N = 2. (B) Methylation level for each CpG indicated in (A) above 

across the concentration gradient of dCas9-DNMT. Each line represents a different enzyme. 
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Figure 4.3: hDNMT3A induces methylation with the highest signal-to-noise ratio. (A) 

Distribution of DNA methylation levels across the CDKN2A promoter when using sgRNA to 

the ARF promoter at the specified concentrations. (B) Diagram of signal-to-noise calculation. 

Signal at each CpG in the CDKN2A promoter when using CDKN2A sgRNA is divided by the 

noise at the same CpG when using ARF sgRNA targeting 20 kb upstream. (C) Distribution of 

DNA methylation levels broken out by distance from the sgRNA as shown at the top. The 

first row is the signal when using hDNMT3A. The remaining rows show the signal-to-noise 

for hDNMT3A, mDnmt3a-mDnmt3L, and hM.SssI. 
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(Fig. 4.1C) and off-target (Fig. 4.3A) than hDNMT3A. The off-target methylation could be 

controlled to an extent by decreasing the amount of the dCas9-DNMT in the transfection (Fig. 

4.3A). Nevertheless, mDnmt3a-mDnmt3L produced more off-target methylation at all 

concentrations.  

I also tested whether the off-target methylation increased proportionally to the on-target 

methylation. To do this, I calculated the signal-to-noise ratio for hDNMT3A and mDnmt3a-

mDnmt3L (Fig. 4.3B). The signal-to-noise was calculated for each CpG by dividing the percent 

methylation at the CDKN2A promoter treated with CDKN2A sgRNA by the percent methylation 

at the CDKN2A promoter treated with ARF sgRNAs. The highest signal-to-noise ratios occur 

between sgRNA (Fig. 4.3C). Within 50 bp of the sgRNA, the signal-to-noise ratio drops toward 

one. This indicates strong on-target methylation and a rapid loss of signal outside the target site. 

The signal-to-noise ratios also decrease as the amount of dCas9-DNMT fusion increases, 

indicating the noise increases more than the signal as more of the dCas9-DNMT construct is 

transfected. 

The multimerization of the mDnmt3a-mDnmt3L fusion along a DNA strand has been 

shown to be important for strong induction of methylation over a 1.2 kb region of the EpCAM 

promoter (Stepper et al., 2016). This raises the question of whether the background methylation 

represents spreading from sites bound by dCas9-DNMT or methylation induced as the DNMT 

transiently interacts with DNA. To explore this issue, I used ChIP-seq to identify the sites bound 

by the hDNMT3A fusion. I also attempted to simultaneously measure DNA methylation at the 

ChIPed loci by bisulfite converting and sequencing the precipitated DNA. The data I obtained 

after bisulfite conversation appeared to be only background (data not shown). Using CDKN2A 
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sgRNA, dCas9-DNMT3A bound to the CDKN2A promoter but not the ARF promoter (Fig. 

4.4A,B). Because the dCas9-DNMT3A does not strongly bind at the ARF promoter, it is possible 

that the methylation spreads from its target at CDKN2A to the ARF promoter. However, the 

Figure 4.4: Analysis of background methylation induced by dCas9-DNMT constructs. (A) IGV 

browser shot of mapped reads at the CDKN2A Promoter: anti-FLAG ChIP of dCas9-DNMT3A fusion 

(top), anti-H3K4me3 ChIP (middle), rabbit IgG control (bottom). Refseq Gene track shown for 

reference. (B) Same as (A) but at the ARF promoter. (C) Same as (A) but at the LMNA promoter. (D) 

Methylation levels induced by each DNMT at the LMNA promoter. 2.4 ug each Cas9-DNMT fusion 

was transfected. Boxplot shows data from scatter plot. N = 1 for all samples except hDNMT1 – aa656 

and hDNMT3B where N = 2. 
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spreading hypothesis is contradicted by the methylation of the LMNA promoter despite the fact 

that it is both not bound by dCas9-DNMT3A and that it is located on a separate chromosome 

(Fig. 4.4C,D). Note, these libraries are sequenced at extremely low coverage of ~600,000 total 

reads. Additional peaks may be discovered with deeper sequencing.  

To address this gap in my work, I propose to measure methylation with RRBS. Because 

RRBS enriches for CpG rich DNA, I expect to analyze data that overlaps several of the dCas9-

DNMT ChIP-seq peaks as well as non-bound regions. gDNA from mock treated cells would set 

the baseline methylation level. If the methylation levels remain high outside of a 100 bp window 

centered on a ChIP-seq peak, that will indicate the spreading mechanism. Spreading is 

particularly expected with the mDnmt3a-mDnmt3L fusion because of oligomerization along the 

DNA strand (Stepper et al., 2016). If non-bound RRBS regions--especially those distal from any 

bound site--also contain methylation, that will indicate the degree of off-target methylation from 

transient interactions. The creation of these RRBS libraries is underway and will be published in 

a paper containing the work described in this chapter (currently under preparation). 

A very small amount of CHG methylation  was induced by the hDNMT3A construct at 

the CDKN2A promoter in our previous study (McDonald et al., 2016). Unexpectedly, the 

mDnmt3a-mDnmt3L construct induced much higher levels of CHG methylation. None of the 

other enzymes do this (Fig. 4.5), including hDNMT3B which is known to induce non-CpG 

methylation (Aoki et al., 2001). The peak doublet represents methylation of two CHG sites 

directly flanking a SP1 transcription factor binding site, suggesting that these increases may 

affect gene expression. When the enzymes are targeted to the ARF promoter, this CHG 
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methylation is lost (Fig. 4.5). However, one CHG site in the ARF promoter gains methylation 

(data not shown). This suggests that observation of non-CpG induced methylation must occur in 

close proximity to the bound dCas9-DNMT fusion.  

I next sought to further increase the amount of induced methylation by either 1) 

combining hDNMT3A with hDNMT1 and 2) combining DNMTs with the KRAB repressor. 

Because DNMT3A multimerization favors hemimethylated sites (Jia et al., 2007; Jurkowska et 

al., 2008), we hypothesized that combined treatment with DNMT1 – which preferentially 

methylates hemimethylated sites – might increase methylation levels. The KRAB repressor 

recruits SETDB1, HP1, the NuRD complex, and DNMTs, which cooperate to form a repressive 

chromatin state (Ecco et al., 2017). We expected that the heterochromatin formation encouraged 

by the KRAB repressor would aid methylation as it did for Amabile et al. (2016). However, 

neither approach increased the amount of induced DNA methylation (Fig. 4.6). 

Figure 4.5: The mDnmt3a-mDnmt3L fusion induces a high level of non-CpG 

methylation. CHG methylation data at the CDKN2A promoter. Top: signal from using 

CDKN2A sgRNA. Bottom: noise from using ARF sgRNA. Data in plots at left are all at the 

2.4 ug concentration. Plots for the labeled cytosines are presented at right across the 

concentration gradient. 
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I also targeted the ARF promoter with the three most active DNMTs. I obtained similar 

levels of DNA methylation (Fig. 4.7A). I previously observed a 19% decrease in ARF expression 

following methylation induction with hDNMT3A (McDonald et al., 2016). I therefore checked 

Figure 4.6: Attempts to increase the level of induced methylation. DNA methylation levels after 

targeted methylation treatment with (A) KRAB + hDNMT3A, (B) KRAB + mDnmt3a-mDnmt3L, (C) 

KRAB + hM.SssI, and (D) hDNMT3A + hDNMT1. The DNMT/KRAB combinations are listed at 

right. sgRNA locations are indicated by arrows. All increase attempts, N = 1. Reference samples for 

hDNMT3A, mDnmt3a-mDnmt3L, and hM.SssI, N = 2. 



 

103 

 

 

ARF expression after treatment with the mDnmt3a-mDnmt3L and hDNMT3A fusions (Fig. 

4.7B). hDNMT3A produced an average 16.8% decrease in ARF expression in the 0.05 ug, 0.1 

ug, and 1 ug. However, the knockdown was not observed in the 2.4 ug samples. Additionally, 

there was no additional knockdown from increasing the amount of transfected dCas9-DNMT 

fusion plasmid and thereby the methylation level. Interestingly, I observed almost no knockdown 

with the mDnmt3a-mDnmt3L fusion (Fig. 4.7B), despite its slightly higher level of DNA 

methylation. In the latter case, the increased background induced by the mDnmt3a-mDnmt3L 

Figure 4.7: DNA methylation and expression analysis of ARF after alternative dCas9-DNMT 

treatment. (A) Average methylation levels induced at the ARF promoter. Boxplot shows data from 

scatter plot. Arrows indicate the location of ARF sgRNA. N = 3 for mDnmt3a-mDnmt3L, N = 2 for 

hDNMT3A WT and Mutant, N = 1 for hM.SssI. Error bars = +/- 1 SD for N = 3. Error bars = range 

for N = 2. (B) ARF expression after treatment with hDNMT3A and mDnmt3a-mDnmt3L fusions 

across a concentration gradient. Each point is normalized to a matching sample from a catalytically 

inactive dCas9-DNMT fusion. N = 2. Error bars = +/- 1 SE. 
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construct may interfere with methylation induced silencing of ARF. However, these observations 

may also indicate that DNA methylation only loosely controls ARF expression. 

4.3 Discussion 

 In this study, I created and characterized dCas9-DNMT fusions containing the hDNMT1, 

mDnmt3a-mDnmt3L, hDNMT3B, and hM.SssI DNMTs. I showed that these DNMTs are 

capable of inducing targeted DNA methylation. Only the mDnmt3a-mDnmt3L construct induced 

more methylation than the original hDNMT3A construct. This is expected because the 

DNMT3A-DNMT3L interaction is known to enhance DNMT3A catalytic activity (Suetake et 

al., 2004). However, these gains came at the cost of higher off-target methylation and higher 

non-CpG methylation. These effects could be viewed as drawbacks, but we believe that they may 

also represent opportunities to study niche applications. For example, the mDnmt3a-mDnmt3L 

construct may be useful for methylating a large area or for inducing non-CpG methylation – as 

long as increased background methylation can be tolerated. We have therefore expanded the 

number of usable dCas9-DNMT constructs. 

 Methylated and silenced CpG island promoters can have average methylation levels 

above 70% (Weber et al., 2007). Neither the DNMT/KRAB nor the hDNMT3A/hDNMT1 

combination increased the amount of induced DNA methylation. In contrast to my findings, 

Amabile et al. (2016) were able to induce >80% methylation on average in a 2.5 kb region using 

a combination of Dnmt3a, Dnmt3L, and KRAB in HEK293T cells (Amabile et al., 2016). We 

believe this difference could be explained by the different amounts of time that methylation was 

induced. In this study, we analyzed methylation after 4 days while Amabile et al. induced 

methylation for 30 days (Amabile et al., 2016). Induced methylation proves to be unstable in our 
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system and decreases quickly after the cells are passaged on day 4. In contrast, we found that 

DNA methylation induced by a lentiviral construct for 12 days was much more stable 

(McDonald et al., 2016). This indicates that sustained induction of DNA methylation is an 

important factor when designing an induced methylation study.  

The background methylation can be controlled by the DNMT domain and the amount of 

dCas9-DNMT transfected. Previous studies that report lower levels of DNA methylation achieve 

this by transfecting plasmid amounts roughly equivalent to our 100 ng sample (Stepper et al., 

2016; Vojta et al., 2016). Therefore, control of the dCas9-DNMT fusion construct expression 

appears to be the key to controlling off-target DNA methylation. The use of inducible expression 

from an integrated lentiviral plasmid would be a way to accomplish both control and the 

extended expression needed to reach high methylation levels.    

 The induction of non-CpG methylation by the mDnmt3a-mDnmt3L construct creates the 

possibility to study the effects of directed non-CpG methylation. Interestingly, hDNMT3A and 

hDNMT3B can both catalyze non-CpG methylation (Jurkowska and Jeltsch, 2016) but they do 

not do so in this context. This suggests that the stimulatory effect of the Dnmt3L could cause this 

effect. This opportunity to capitalize on this increased activity is highlighted by the fairly 

specific methylation of CHG sites flanking an SP1 transcription factor binding site. Non-CpG 

methylation is known to inhibit Sp transcription factor binding, indicating that this methylation 

event could alter transcription (Inoue and Oishi, 2005). Furthermore, non-CpG methylation was 

observed at this region in breast cancer samples, but not on the same sites (Woodcock et al., 

1999). Though CHG methylation is more common in specific sequence contexts (Aoki et al., 

2001), there are too many sites that remain unmethylated for sequence preference to explain the 
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specificity. The main unifying factor is that all three sites occur within ~20-30 bp of the 3’ end of 

a sgRNA binding site. I would like to suggest that the CHG methylation is an uncommon misfire 

by the hyperactive mDnmt3a-mDnmt3L fusion and thereby only occurs within proximity to the 

sgRNA binding sites. However, this still does not explain why many other CHG sites in this 

range are excluded. This phenomenon requires further study before this tool can be used to 

reliably induce non-CpG methylation. Until induced non-CpG methylation can be controlled 

and/or prevented, it will remain an artefact that hinders interpretation of CpG methylation data. 

 The DNA methylation field is no longer dependent on techniques such as DNMT 

knockout or inhibition to manipulate methylation events. The use of the reprogrammable 

CRISPR/Cas9 system to target DNA methylation activity to specific regions of the genome has 

facilitated the study of specific changes in DNA methylation. In this study, we have described 

the effects of targeted methylation with multiple previously unused DNMTs. Most DNMTs were 

functional and provided varying levels of DNA methylation. hDNMT3A produced the most 

methylation while maintaining the highest signal-to-noise ratio. mDnmt3a-mDnmt3L produced 

the most methylation overall at the cost of increased background and non-CpG methylation. 

These constructs may prove useful in nice applications where high background can be tolerated 

or if it is necessary to study the effect of a DNMT other than DNMT3A.  

4.4 Materials and Methods 

Plasmid Construction 

The dCas9-DNMT3A (Addgene #78256) and E756A mutant dCas9-DNMT3A (Addgene 

#78257) were constructed previously (McDonald et al., 2016). Novel DNMT catalytic domains 

were cloned between the NheI and AgeI sites of pCMV-dCas9-D3A (Addgene #78256, 
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(McDonald et al., 2016). The catalytic domains were the following: DNMT1, amino acids (aa) 

656-1616 and 730-1616 from NP_001124295.1; mDnmt3a-mDnmt3L, aa 612-912 of 

NP_783328.1 and aa 1069-1716 of NP_037501.2 as one piece amplified from pET-Dnmt3a3l-

sc27 (Addgene #71827, (Siddique et al., 2013); DNMT3B, aa 535-854 of NP_008823.1; M.SssI, 

cloned in its entirety based on the sequence of a construct generously given to us by Timothy 

Bestor. IDT codon optimization was performed on the M.SssI sequence before it was 

synthesized via IDT gBlocks. To create the mutant mDnmt3a-mDnmt3L control, I synthesized 

the NheI to BstEII fragment with the E752A mutation via IDT gBlocks and used this to replace 

the WT sequence. With the exception of M.SssI, each DNMT was amplified by a nested PCR 

strategy that also added the FLAG tag as part of the 5’ end of the forward primer in the 

final/inner PCR (see primers in Table C.1). sgRNA plasmids were identical to those used 

previously (Table C.2, (McDonald et al., 2016). 

Cell Culture and Transfection 

HEK293T cells were acquired from ATCC (CRL-3216) and grown in DMEM 

supplemented with 10% FBS (Gibco), 1× Penicillin/Streptomycin (Gibco), and 2 mM GlutaMax 

(Gibco). For transfection experiments, 3×105 HEK293T cells were plated in a 60 mm dish. The 

next day, the cells were transfected with Lipofectamine LTX (Thermo Fisher Scientific). The 

Lipofectamine:DNA ratio was 3.5, with a total of 5.5 μg of plasmid DNA. 2.4 ug of the dCas9-

DNMT fusion plasmid and 2.4 ug of the sgRNA plasmids (800 ng each) were transfected. 

dCas9-DNNMT masses transfected in titration experiments were: 50 ng, 100 ng, 1 μg, 2.4 μg, 

and 4 μg. When the dCas9-DNMT mass was decreased below 2.4 μg, a filler plasmid was used 

to hold overall DNA mass constant. 0.7 μg of pMaxGFP was co-transfected in order to indicate 
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the transfection efficiency. The plasmid DNA was first diluted in Gibco OptiMEM, then 

Lipofectamine LTX was added and mixed in by inversion. After 30 min, the transfection mixture 

was added dropwise to the cells and they were placed back in the incubator. This procedure was 

scaled up for the 150 mm dishes used in ChIP-seq (see below). Further details can be found at 

http://epigenomics.wustl.edu/edwardsLab/index.php/5mc-editting. 

Amplicon Bisulfite Sequencing 

Genomic DNA (gDNA) was isolated using the Zymo Research Quick gDNA MiniPrep 

kit and quantified with the Qubit dsDNA broad range assay (Thermo Fisher Scientific). 1 ug of 

gDNA was bisulfite converted with the Zymo Research EZ DNA Methylation kit according to 

the manufacturer’s instructions. Target regions were amplified with the Qiagen PyroMark PCR 

kit using primers locate in Table C.3. A tenfold molar excess of Illumina sequencing Y-adapters 

was then annealed to 100 ng of PyroMark PCR product (total Y-adapter mass varies with PCR 

product length) with NEB Quick Ligase for 15 min. The ligations were purified over a 1.5% 

agarose II (ISC BioExpress) gel in 1×TBE in order to remove incompletely ligated DNA. 

Custom 13 bp barcode index sequences were added via PCR using NEB Phusion. The standard 

Phusion PCR protocol was followed but with the following primer concentrations (for a 50 μl 

reaction): 1 μl of Illumina Primer 1.0 (25 μM), 1 μl of Illumina PCR Primer 2.0 (diluted fresh to 

0.5 μM final concentration), and 1 μl of the index primer (25 μM). The thermocycler protocol 

was the following: (1) 98°C, 30 s; (2) 98°C, 10 s; (3) 64°C, 30 s; (4) 72°C, 30 s; (5) Return to 

step two 11 times; (6) 72°C 5 min; (7) 4°C hold. The PCR products were again purified over a 

1.5% agarose II gel in 1× TBE, and their concentration was measured with the Qubit dsDNA 

high sensitivity kit. Individually indexed samples were pooled and submitted for sequencing. 
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Amplicon bisulfite sequencing data were checked for quality using FastQC, adaptor and poor-

quality sequence (quality less than 20) was trimmed using fqtrim, and the trimmed sequences 

were mapped to the target sequences using Bismark (Krueger and Andrews, 2011). 

RT-qPCR 

 RNA was extracted with the Zymo Research Quick mRNA Miniprep kit. RNA 

concentration was measured with the Qubit RNA BR kit. RNA integrity was determined by 

visualizing rRNA bands using agarose gel electrophoresis. Reverse transcription was performed 

using the Bio-Rad iScript Reverse Transcriptase kit. Quantitative reverse transcription 

polymerase chain reaction (RT-qPCR) was performed with the Bio-Rad iTaq Universal with 

SYBR Green reagent on an Applied Biosystems Viia7 instrument. The thermocycler protocol 

was the following: (1) 95°C, 20 s; (2) 95°C, 3 s; (3) 60°C, 20 s; for 40 cycles. qPCR primers are 

listed in Table C.4. A melt curve was performed to indicate there was not off-target 

amplification. Data was analyzed as described by Hellemans et al. (2007) using the geometric 

mean of ACTB, GAPDH, and RPL0 as an internal control. 

ChIP-seq 

  Cells in 150 mm dishes were grown in 30 mL of media. To cross-link, 1 m L of 37% 

Formaldehyde (1% final concentration) was added directly to the cells. The cross-linking 

reaction ran for 10 min with constant rocking at room temperature. 3.5 mL of 1.25 M Glycine 

(0.125 M final concentration) was added to quench the cross-linking reaction. Quenching 

proceeded for 5 min with constant rocking at room temperature. The cells were placed on ice and 

scraped off the dish into 4°C DPBS (Gibco). The cells were pelleted at 500 xg for 5 min at 4C, 

washed once with DPBS, flash frozen on dry ice and stored at -80C. Frozen cell pellets were 
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thawed on ice and resuspended in 300 uL SDS Lysis Buffer supplemented with protease 

inhibitors (1% SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8, 1X cOmplete Protease Inhibitor 

Cocktail from Roche) for every ~1x107 cells in the pellet. Chromatin was sheared in 300 uL, 

~1x107 cell aliquots using a BioRuptor Pico: 30 cycles of 30 sec ON, 30 sec OFF. Cell debris 

was pelleted at 14,000 rpm and 4°C for 10 min. The supernatant was diluted to 1 mL with ChIP 

Dilution Buffer supplemented with protease inhibitors (0.01% SDS, 1.1% Triton X-100, 1.2 mM 

EDTA, 16.7 mM Tris-HCl pH 8, 167 mM NaCl, 1X cOmplete Protease Inhibitor Cocktail from 

Roche) and placed on a rotator at 4°C for 30 min. 100 uL of sheared DNA from each sample was 

aliquoted and stored at -20°C overnight as an input sample. 5 ug of antibody was added to the 

remaining chromatin and this mixture was incubated overnight on a rotator at 4°C. Antibodies 

used were: mouse monoclonal anti-FLAG M2 clone (Sigma F1804), mouse monoclonal anti-

Cas9 (Active Motif 61578), rabbit monoclonal anti-H3K4me3 clone MC315 (Millipore 04-745), 

and rabbit IgG (Vector I-1000). 

 30 uL of Invitrogen Protein G Dynabeads were washed twice and resuspended in 200 uL 

of DPBS plus 0.01% Tween-20. The chromatin was then added to the beads and precipitation 

performed for 4 hours on a rotator at 4°C. The beads were pelleted on a magnet and washed for 5 

min at 4°C on a rotator in the following series of buffers: Low Salt Wash Buffer (0.1% SDS, 1% 

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, 150 mM NaCl), High Salt Wash Buffer 

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, 500 mM NaCl), LiCl Wash 

Buffer (0.25 M LiCl, 1% Igepal CA-630, 1% Sodium Deoxycholate, 1 mM EDTA, 10 mM Tris-

HCl pH 8), and twice in TE (10 mM Tris-HCl pH 8, 1 mM EDTA). DNA was eluted by adding 

125 uL of fresh Elution Buffer (1% SDS, 0.1 M NaHCO3), vortexing, and rotating for 15 min at 
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room temperature. After the supernatant was recovered, the wash/elution steps were repeated and 

the eluates were combined for 250 uL total. Input samples were thawed and diluted to 250 uL 

total with ChIP Dilution Buffer supplemented with protease inhibitors. 10 uL of 5 M NaCl was 

added to each sample and cross-linking was reversed at 65°C overnight. 

 To begin cleanup of the DNA, 15 uL of Proteinase K (Thermo Scientific EO0491) was 

added to each sample. Digestion was performed for 2 hours at 45°C. The DNA was extracted 

with 550 uL of Phenol-Chloroform-Isoamyl Alcohol (Sigma 77617). The samples were vortexed 

and spun at 14,000 rpm and 4°C for 5 min. The aqueous layer was transferred to a fresh tube, the 

extraction was repeated, and the aqueous layers were combined. To precipitate the DNA, 1 uL of 

glycogen and 1 mL of 100% ethanol were added to each sample. Samples were stored at -80°C 

overnight. The DNA was pelleted by thawing the precipitation on ice, pelleting the DNA at 

14,000 rpm and 4°C for 20 min. The pellet was washed with 500 uL of ice cold 70% ethanol. 

The pellet was air dried until no ethanol remained and resuspended in 30 uL of 10 mM Tris-HCl. 

Multiple DNA samples, each corresponding to ~1x107 cells can be pooled if necessary at this 

step. The final DNA concentration was measured using the Qubit dsDNA HS kit. 

 ChIP-seq libraries were produced following the protocol of the NEBNext Ultra DNA 

Library Prep Kit for Illumina (E7370) using the methylated Illumina adapter found in the 

NEBNext Multiplex Oligos for Illumina (E7535). Bisulfite conversion was carried out with the 

Zymo Research EZ DNA Methylation kit.  Final libraries were quantified by Qubit dsDNA HS 

kit and submitted for sequencing.   

4.5 Supplementary Material 

 Supplementary material is in Appendix C.  
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Chapter 5: Conclusions and Future Directions 
 

The role of DNA methylation in inducing gene silencing has been and continues to be an 

active area of research. DNA methylation is known to silence imprinted genes, retrotransposons, 

and X-linked genes on the inactive X-chromosome. However, the role for silencing genes 

outside these contexts is not fully understood. In Chapter 2, 5-azacytidine treatment increased the 

expression of PTGER4. This validated the negative correlation between methylation and 

expression observed genomic data from a cell line model of breast cancer aromatase inhibitor 

(AI) resistance. It also demonstrated how a single DNA methylation change could contribute to 

cancer progression. In Chapter 3, I designed and demonstrated a dCas9-DNMT3A catalytic 

domain fusion that could induce targeted methylation changes. These changes were sufficient to 

decrease the expression of CDKN2A and ARF. In Chapter 4, I optimized the dCas9-DNMT 

system by measuring the effectiveness of alternative DNMTs. Overall the data presented in the 

preceding chapters support the hypothesis that DNA methylation can induce gene silencing and 

play an important functional role in disease. 

5.1 Studying how DNA Methylation and Chromatin 

Modifications Interact during Gene Silencing 
 

Research in the DNA methylation field shows that DNA methylation induced silencing is 

highly dependent on context. As a general example, promoter methylation favors gene silencing, 

but gene body methylation marks actively transcribed genes (Jones, 2012). The chromatin 

context also helps to determine DNA methylation location and function. H3K4me3 prevents the 

activity of DNMT3A/3L at active promoters (Ooi et al., 2007) while H3K36me3 attracts 

DNMT3B to methylate gene bodies (Baubec et al., 2015). My work supports this context 



 

113 

 

 

dependence. DNA methylation induced CDKN2A silencing, but only when the entire promoter 

region was methylated (Fig. 3.1, 3.2). In contrast, ARF silencing occurred after methylation of a 

much smaller region (Fig. 3.3). While my own work does not examine the chromatin context, I 

believe this is an important direction for the field. 

 The interactions of various epigenetic regulators are just beginning to be understood. 

Amabile et al. (2016) show that DNMT3A, DNMT3L, and KRAB act synergistically to silence 

gene expression. Similarly, both the G9A H3K9 methyltransferase and v-ErbA histone 

deacetylase silence VEGF-A expression when targeted there. When combined, they synergize to 

more strongly silence VEGF-A (Snowden et al., 2002). In contrast, both DNA methylation and 

H3K9me3 silenced VEGF-A individually, but neither mark recruited the other, which indicates a 

lack of synergy (Kungulovski et al., 2015). Epigenetic silencing can also be position dependent. 

Amabile et al. (2016) also discovered position-dependent silencing when the randomly 

integrated reporter was more efficiently silenced than at the AAVS1 site. The LSD1 histone 

demethylase silenced genes when targeted to an enhancer but not the promoter. In contrast, the 

KRAB repressor was active when targeted to both enhancers and promoters (Kearns et al., 

2015). Repressors such as KRAB can further complicate the study of context dependence by 

recruiting different epigenetic modifiers. Finally, the repression of a gene B2M promoter was 

weaker in HEK293T cells than in K562 cells in all tested conditions (Amabile et al., 2016). This 

indicates that cell line specific expression of epigenetic readers and writers may significantly 

impact the effects of epigenetic editing. The resulting variability will make it difficult to 

generalize results from epigenome editing studies and may hinder the adoption of targeted 

epigenetic therapies. 
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 The dCas9 system allows me to address the mechanisms behind epigenetic context 

dependence. For example, I could test the hypothesis that two or more epigenetic modifiers 

synergize. I could also test a hypothesis that a specific member of a large complex drives the 

effects of that complex. The system I would construct to test these hypotheses is the following. 

The dCas9 and each of my desired modifiers would be stably integrated into the genome under 

individual inducible promoters. Note that the dCas9 and each effector domain would be separate. 

Instead, the interaction between dCas9 and each effector domain would be mediated by two 

proteins that tightly bind each other. Because it is based on only a few plasmids, the system 

could be easily implemented in multiple cell lines. Location dependent effects could be easily 

studied by using a different set of sgRNA. Stable integration also allows for the study of both 

short- and long-term effects of epigenetic silencing as well as to observe how the epigenetic 

context is altered during repeated cycles of activation and repression.  

For a specific example, let’s consider further study of CDKN2A regulation. In addition to 

DNA methylation, Cdkn2a has been suggested to be silenced PRC2 and reactivated by hSNF5 in 

mouse embryonic fibroblasts (MEF, Wilson et al., 2010). Wilson et al., however, used 

conditional knockouts that affected the expression of many genes and they did not explore the 

role of DNA methylation in silencing Cdkn2a. With my new system, I could study the effects of 

targeted PRC2 or hSNF5 activity and consider additional silencing factors, such as DNMTs.  

I would first demonstrate that hSNF5 can expel PRC2 as demonstrated by Wilson et al. 

(2010). I would then extend the reach of my experiments by including DNA methylation. Using 

both PRC2 and DNMTs simultaneously, I would assess any synergy between these two marks. I 

would test if pre-treatment of the Cdkn2a promoter with DNA methylation is able prevent 
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hSNF5 upregulation when PRC2 cannot. If DNA methylation can, I would further unravel the 

mechanism by finding the specific marks that inhibited hSNF5 activity. It may prove difficult to 

target the entire PRC2 complex, and in that case, I would just target the catalytic core, EZH2. 

This approach is also slightly constrained by the number of individually inducible promoters, but 

at least eight inducible promoters already exist (Ede et al., 2016). These limitations can be 

overcome in time, and I believe that this type of experiment will drive our understanding of 

epigenetic regulatory logic in years to come. 

5.2 Identifying Functional Methylation Changes to Refine 

DNA Methylation Based Cancer Therapeutics 
 

DNA methylation based therapies have already been approved by the FDA. These 

treatments use DNMT inhibitors, 5-azacytidine and 5-aza-2-deoxycytidine, to demethylate the 

genome and reactivate abnormally silenced genes. Treatment with 5-azacytidine caused 15% or 

more of myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) patients to survive 

longer while present fewer cancerous blood cells and more healthy cells (Jones et al., 2016). 

However, both intrinsic and acquired resistance to these drugs is common (Prébet et al., 2011; 

Qin et al., 2011), and the mechanism of acquired resistance is currently not explained. It is 

possible that effects of hypomethylation itself could be promoting resistance through one of the 

mechanisms described in the Introduction. After relapse, overall survival is 5.6 months (Prébet et 

al., 2011). Understanding if and how DNA methylation contributes to resistance could direct the 

course of treatment after relapse to improve patient outcomes. 

This situation is similar to the hypothetical contribution of DNA methylation changes to 

acquired aromatase inhibitor therapies I explored in Chapter 2. Unlike in Chapter 2, however, I 
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have the advantage of the dCas9-DNMT system. This system can easily target many regions 

simultaneously. This approach can rapidly screen for functional changes at sites suggested 

correlation-based analysis of genomic data sets. Identifying these functional epigenetic changes 

in turn better inform the use of epigenetic therapies in cancer.   

 To study whether hypomethylation contributes to 5-azacytidine resistance in 

myelodysplastic syndrome (MDS), I would use bioinformatic tools to identify hypomethylated 

genes with altered expression in resistant patient samples. A previous study identified 394 genes 

hypomethylated at relapse in two out of four myelodysplastic syndrome patients (Qin et al., 

2011). However, this study did not include expression data. My lab has built tools to predict the 

genes that are controlled by DNA methylation from analysis of DNA methylation and expression 

data (Schlosberg et al., 2017; VanderKraats et al., 2013). These tools helped to identify a set of 

genes that shows a strong correlation between 5-azacytidine induced methylation loss and 

upregulation in acute myeloid leukemia (AML, Lund et al., 2014). I would focus these 

bioinformatic tools on a comparison of high resolution DNA methylation data from MDS patient 

samples before and after the development of resistance. The combination of the Qin et al. (2011) 

MDS genes, the Lund et al. (2014) AML genes, and the genes from my MDS analysis would 

form the core target genes for my lentiviral screen.  

The lentiviral screen would be based in a MDS cell line with the dCas9-DNMT3A fusion 

stably integrated under the control of an inducible promoter. I would then transduce a library of 

paired sgRNA at a MOI = 1. The sgRNA pairs would be designed to target sites within 50 to 100 

bp of each other and therefore likely to give a strong signal at the target site. Each pair of sgRNA 

would be expressed from a single plasmid under the control of a pair of divergent U6 promoters. 
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I would monitor which methylation changes are selected for/against in the cell population by 

monitoring the sgRNA sequences that remain in living cells. I am specifically looking for 

hypermethylated sites that are selected against, indicating that methylation prevents growth. In 

MDS, hypomethylation of these sites due to 5-azacytidine might therefore encourage growth. It 

would be important to validate these findings using another demethylating approach such as 

targeted TET activity or DNMT knockdown. 

 The knowledge of functional methylation changes that the above approach could produce 

would improve our ability to apply DNA methylation information in the clinic. DNA 

methylation changes can be used to detect cancer (Warton and Samimi, 2015) and identify 

specific cancer subtypes (Ciriello et al., 2013; The Cancer Genome Atlas Network, 2012). 

However, the results of the experiment described above would allow for improvement in 

diagnosis and treatment. Knowledge of specific methylation events that drive carcinogenesis 

could help predict which patients would respond well to epigenetic therapies such as 5-

azacytidine. Similarly, knowledge of the epigenetic events that lead to resistance would allow us 

to detect emerging resistance and proactively modify the course of treatment. 

 The dCas9-DNMT system facilitates targeted studies that require the nuanced 

manipulation of the epigenome. With further development, the extreme flexibility of this 

technology would also allow the study of complex interactions at the chromatin level and the 

high-throughput identification of function epigenetic changes in diseases such as cancer. The 

creation of the dCas9-DNMT technology therefore represents an exciting step forward for the 

DNA methylation field and opens many avenues for further study. 
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Appendix A: Supplementary Material for 

Chapter 2 
 

Anchor 

Anchor 

Figure A.1: Methylation and expression at WISP2 in MCF7-LTED cells. Genome browser view 

of Methyl-MAPS methylation and RNA-seq expression data for WISP2. Red and blue lines indicate 

coverage of methylated and unmethylated fragments, respectively. Individual CpG sites are noted by 

tics in black at the top track.  

Figure A.2: Validation of PTGER4 methylation and expression changes in MCF7-LTED cells. 

(A) PTGER4 methylation was assessed by Methyl-Screen. MCF7 and MCF7-LTED cells are 

compared to 0% and 100% methylated control DNA. (B) RT-qPCR analysis of PTGER4 expression 

shows a 68-fold increase in MCF7-LTED cells compared to MCF7 cells. Error bars are SD for three 

technical replicates.  
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Anchor 

Anchor 

  

Figure A.4: EP4 expression in responders and non-responders to AI-therapy. Expression data 

from 42 responders and 14 non-responders to neoadjuvant AI-therapy. Data from Miller et al. (2011).  

Figure A.3: Gene set enrichment analysis of ER target genes in MCF7-LTED cells. Differentially 

expressed genes are ranked from highest to lowest expression change. ER-response genes are marked.  
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Anchor 

  

Figure A.5: DNA Methylation analysis of PTGER4 exon 2. (A) Bisulfite sequencing of PTGER4 

exon 2 in samples from the STED time course. (B) Bisulfite sequencing of PTGER4 exon 2 in samples 

from the 5-azacytidine time course. Missing sequence in Day 3 sample is caused by low sequencing 

coverage of that region. 
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Anchor 

Anchor 

Anchor 

Figure A.6: UCA1 is hypomethylated and upregulated in HCC1954. Genome browser shot 

showing of the methylation and expression of UCA1 in comparison between HMEC and 

HCC1954 cells. Long terminal repeat (LTR) track shown for reference. 

Figure A.8: UCA1 knockdown occurs in both the nucleus and the cytoplasm. RT-qPCR data for 

UCA1 expression in T47D RNA separated into nuclear and cytoplasmic fractions. Error bars 

are +/- 1 SD. 

Figure A.7: UCA1 is upregulated in MDA-MB-415 and HCC712 cell lines. RT-qPCR data for 

UCA1 expression in two additional cell lines. Error bars are +/- 1 SD. 
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Anchor 

  

Figure A.9: Methylation analysis of EP4 in TCGA data. (A) Genome browser view of EP4 

(PTGER4) showing CpG sites and Infinium probe locations. The green line indicates the correlation 

coefficient between methylation and expression across each probe for 730 TCGA normal and 

carcinogenic breast samples. The orange line indicates the mean methylation difference between 632 

carcinogenic and 98 normal breast samples at each probe. The arrow marked (i) indicates the most 

differentially methylated probe and the arrow marked (ii) indicates the most anti-correlated probe. (B) 

Boxplots of methylation levels (mCG/CG) at each Infinium probe in tumor and normal TCGA breast 

samples. Most differentially methylated probe (i) and most anti-correlated probe (ii) are indicated. (C-

E) Boxplots comparing methylation (C, D) and expression (E) data for normal versus tumor tissue.  



 

155 

 

 

Anchor 

Anchor 

Anchor 

Anchor  

Table A.1: Genes with differential expression and DNA methylation in MCF7. 

Table A.2: Raw sequencing statistics from MCF7 and MCF7-

LTED Methyl-MAPS analysis. 

Table A.3: Number of CpGs retained in analysis at different 

levels of coverage in Methyl-MAPS data.  

Table A.4: ChIP-qPCR and RT-qPCR primer sequences.  

UCA1 RT-qPCR TTAGGCTGGCAACCATCAGATCCT TAAGCTGAGGCTGGCAAAGAGTGA 
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Appendix B: Supplementary Material for 

Chapter 3 

 

 

Fig. B.1: CDKN2A promoter methylation analysis literature review. (A) UCSC genome browser 

view showing the regions of CDKN2A with either a reported relationship between methylation and 

expression or reported to be cancer-specific changes. The number beside each region corresponds to the 

reference in (B). (B) Table containing the hg19 coordinates of each sequencing region a3s well as the 

relevant reference. 
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Fig. B.2: sgRNA target validation. Validation of g1a and g33a (A) and for g7a (B) using a mismatch 

detection assay. Cells were transfected with active CRISPR/Cas9 and the indicated sgRNA. The parental 

band is 655 for (A) and 755 for (B). Cleavage products are 384 and 326 for g7a (blue arrows), 384 and 

271 for g1a (blue arrows), and 472 and 183 for g33a (red arrows). NHEJ frequencies are estimated at 28% 

for both g1a and g33a, and at 24% for g7a. 
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Fig. B.3: Validation of the Amplicon Bisulfite Sequencing (ABS) method. ABS (A) and Sanger 

bisulfite sequencing (B) data for the red region in Figure 3.1C. For Sanger data, each line represents one 

read. Filled circles represent a methylated CpG; empty circles represent an unmethylated CpG. The 

percent methylation of all CpGs in the green boxes is included on top of each box. (c) Scatter plot of the 

Sanger sequencing versus ABS data showing high correspondence between each method. (D) ABS 

sequencing of the same amplicon in (A) for genomic DNA artificially methylated using M.SssI at 0%, 

50% and 100% levels. 
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Fig. B.4: dCas9-DNMT3A Induces Non-CpG Methylation. CHG methylation (A) and CHH 

methylation (B) after transfection of CDKN2A locus with three pooled sgRNA (g1a, g7a, and g33a). 

Methylation data is from the red region in Figure 3.1A. Peak methylation is observed at the same six CpG 

cluster where we observe peak CpG methylation (Figure 3.1C, near position 300 bp). 
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Fig. B.5: Percent methylation for additional CpGs over the 20-day time course. This data 

supplements Figure 3.1D. CpG locations indicated in each panel are relative to CDKN2A’s TSS as in 

Figure 3.1C. 
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Fig. B.6: sgRNA directed methylation is strand specific and decreases after 50 bp. Arrows indicate 

the 5’ to 3’ direction of the sgRNA. (A) Percent methylation in each direction on either side of a sgRNA 

site for cells transfected with a single sgRNA. (B) Percent methylation relative to the sgRNA target site. 

Data comes from cells transfected with both g33a and the indicated sgRNA (Figure 3.1E). CpGs that fall 

within 50 bp of the g33a sgRNA are removed to avoid confounding effects from the second sgRNA. 

Methylation levels are background-subtracted using methylation levels from off-target sgRNAs as the 

background (Figure 3.2B). 
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Fig. B.7: Additional ABS data supplemental to Fig 3.2. (A) Methylation at the CDKN2A promoter after 

treatment with the dCas9-D3A and either All or Set 2 CDKN2A sgRNA. (B) Methylation induced at the 

CDKN2A promoter after treatment with catalytically inactive dCas9-mD3A and Set 2 sgRNA. (C) 

Methylation induced at the CDKN2A promoter after treatment with sgRNA to the ARF or RASSF1A 

promoters as an off-target control. Sequencing of the RASSF1A locus is not shown, since it was highly 

methylated in all samples, including those with catalytically inactive DNMT3A. 
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Table B.1. CDKN2A targeted sgRNA. 

Table B.2. ARF and RASSF1A targeted sgRNA. 
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Table B.3. Amplicons for bisulfite sequencing. 

Table B.4. RT-qPCR primers. 
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Appendix C: Supplementary Material for 

Chapter 4 
 

 
Table C.1: Alternative DNMT Cloning Primers. 

 

 

 

 
Table C.2: sgRNA Sequences 
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Table C.3: Bisulfite sequencing regions and primers 

 

 

 
Table C.4: RT-qPCR Primers 
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