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Viral infection of host cells induces the Type I interferon (IFN) response, which is 

characterized by the production of hundreds of IFN-stimulated genes (ISGs). Altogether, these 

ISGs function to induce an antiviral state, hindering or blocking various steps of the viral 

lifecycle. Many individual ISGs have potent and broad antiviral functions. However elimination 

of a single ISG does not completely abrogate protection, suggesting that other ISGs, although 

moderate or moderate when considered alone, must work cooperatively to provide optimal 

antiviral activity.  

In order to identify and characterize novel ISGs, an attenuated strain of the alphavirus 

chikungunya (CHIKV-181/25) was tested against an shRNA library of 243 curated murine genes 

upregulated during IFN treatment. An attenuated CHIKV strain was used with the assumption 

that ISGs with moderate or low activity may be more easily identified due to the reduced 

pathogenicity of the virus. In addition, the orthobunyavirus LaCrosse (LACV) was also tested, as 
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there have been no large scale ISG screens using this pathogen. A total of 21 and 30 novel 

murine ISGs that putatively restrict infection were identified from the CHIKV-181/25 screen and 

the LACV screen, respectively.  

Although independent confirmation of many candidate antiviral ISG targets using bulk 

CRISPR lines is still ongoing, we were able to validate and characterize the antiviral role of one 

of these targets, IFITM3, against alphaviruses in vitro and in vivo. Alphaviruses, which were 

previously thought to be unaffected by this ISG, exhibit reduced replication due to restriction by 

Ifitm3 at the endosomal fusion stage of infection. Ifitm3-/- mice infected with CHIKV exhibited 

greater swelling of the ipsilateral foot at peak days of pathology. Higher viral titers in the spleen, 

serum and ipsilateral foot were seen at 1 day after infection, coinciding with increased cytokines 

and chemokines in the ipsilateral foot. Splenic macrophages from Ifitm3-/- mice exhibited greater 

levels of viral antigen at 1 day after infection with CHIKV, and cultured bone marrow derived 

macrophages lacking Ifitm3 supported enhanced CHIKV replication. To test whether Ifitm3 

restricts encephalitic alphaviruses we infected WT and Ifitm3-/- mice with VEEV-TC83-A3G, 

and observed increased mortality and viral burden in Ifitm3-/- animals. 
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Chapter 1: Introduction 
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THE INNATE IMMUNE RESPONSE TO VIRAL INFECTION 

The innate immune system allows for the rapid identification and response to infection in 

an antigen-independent manner. Through pattern recognition receptors (PRRs), host cells can 

detect a wide variety of pathogen-associated molecular patterns (PAMPs). PRRs are found on the 

surface, in endosomes, and the cytosol of host cells, and are activated by PAMPs unique to 

bacteria, fungi, parasites, or viruses. In the case of viral infection, there are several PRRs which 

can identify viral or foreign nucleic acids (1). The RIG-I like receptors (RIG-I and MDA-5) 

recognize viral single-stranded (ssRNA) and double-stranded RNA (dsRNA) in the cytoplasm, 

while cGAS/STING, IFI16 and DAI detect cytosolic DNA (2). Nucleic acids in the endosome 

are recognized by the Toll-like receptors TLR3 (ds RNA), TLR7 (ssRNA), and TLR9 (dsDNA) 

(3). Upon detection of viral nucleic acids, signaling cascades are initiated to activate the 

transcription factors IRF3, IRF7 and NF-kB. These transcription factors induce the production of 

pro-inflammatory cytokines and Type I and III Interferons (IFN) (2). 

 

TYPE I, II AND III IFN 

Type I IFNs were first described in 1957 (4). They include IFNα (of which there are 12 

subtypes), IFNβ, and a series of other poorly defined cytokines such as IFNε, IFNκ and IFNω 

(2). Once secreted, IFN functions in an autocrine and paracrine manner, binding to the Type I 

Interferon receptor (IFNAR), a heterodimer which is expressed transiently on most host cells. 

This initiates a signal cascade through the JAK/STAT pathway, through which STAT1/STAT2 

heterodimers bind to IRF9 and form the IFN-stimulated gene factor 3 (ISGF3) complex. ISGF3 

binds to promoters containing IFN stimulated response elements (ISREs) (2), activating the 
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transcription of hundreds of genes (2). These genes, classified as Interferon Stimulated Genes 

(ISGs), function to restrict pathogenesis at the different steps of the viral replication cycle, thus 

inducing a rapid and broad antiviral state in both infected and local naïve host cells.  

In addition to Type I IFN, Type III IFN (IFNλ1, IFNλ2, IFNλ3 and IFNλ4) can also be 

induced via the detection of viral PAMPs (2, 5), and can promote the induction of ISRE activated 

ISGs via the IFNλ receptor, albeit not as potently as Type I. However, the expression of the IFNλ 

receptor is restricted to epithelial cells and some immune cells, leaving most cells in the host 

unresponsive to Type III IFNs (2, 5). 

Type II IFN, consisting only of IFNγ, is not transduced via the direct detection of viral 

PAMPs, but rather through the detection of the pro-inflammatory cytokine IL-12. Furthermore, 

IFNγ is only produced in neutrophils, natural killer cells and T cells. IFNγ signals through the 

Type II IFN receptor (IFNGR), initiating the JAK/STAT pathway and inducing the transcription 

of pro-inflammatory and apoptotic genes linked to IFNγ activated site (GAS) promoter elements, 

some of which are also found in the ISGs induced by Type I IFN (6). 

 

INTERFERON STIMULATED GENES 

  In cell culture, the number of ISGs produced varies with the dosage, duration, type of 

IFN treatment and cell type tested. By microarray analysis, most cells upregulate between 200-

1000 unique ISGs (7). The most potently inhibitory ISGs identified thus far function against a 

broad spectrum of viruses (7). However, antiviral activity is still seen in mice with targeted 

deletions of these ISGs (8), suggesting that other ISGs have significant and unique restrictive 
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functions. It is believed that most ISGs function as weak to moderate inhibitors, and work in a 

concerted manner to restrict infection. 

ISGs preventing entry: IFITMs, which were the first family of antiviral ISGs 

discovered, appear to prevent the entry via the endocytic pathway of a broad range of viruses, 

including influenza A virus (IAV) and flaviviruses (9). TRIM5α binds to the capsid proteins of 

retroviruses and accelerates uncoating of the virion (10). Mx is another potent ISG with antiviral 

properties against orthomyxoviruses, bunyaviruses, togaviruses and rhabdoviruses (2, 11). Mx 

proteins recognize and sequester viral nucleocapsids, preventing their transport to sites of 

genome amplification or egress. ADAP2 has recently been shown to restrict entry of DENV and 

VSV by altering endosomal uptake and intracellular trafficking (12).  

ISGs preventing viral translation and transcription: Upon recognition of viral dsRNA 

in the cytosol, 2'-5' oligoadenylate synthetase (OAS) activates RNAseL to initiate nucleic acid 

degradation (13). APOBECs and ADAR have been shown to directly edit viral RNA, resulting in 

nucleic acid destabilization and the introduction of lethal mutations. IFITs can block translation 

of viral RNA by binding to the eIF3 complex. They can also recognize the 5’-ppp motif on viral 

RNA, or the lack of the 2’-O methylation group normally found in eukaryotic RNA, and 

prevents translation by directly sequestering them (14). PKR is a prominent ISG, which 

functions by binding to viral RNA and blocking translation by phosphorylating (and inactivating) 

the translation initiation factor EIF2α (13). 

ISGs preventing viral protein function, assembly and egress: ISG15 is an ubiquitin 

like modifier that conjugates viral proteins in a process called ISGylation, thus affecting a 

plethora of viral protein functions (15–17). Viperin associates with endoplasmic reticulum, 
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interfering with the assembly of viral proteins and egress of virions at the plasma membrane 

(18). Finally, tetherin has been shown to prevent the release of viral particles from the plasma 

membrane (19). 

Proviral ISGs: ISGs have also been identified that induce an immunomodulatory 

response. In a high throughput screen, where ISGs were ectopically expressed in vitro, the ISGs 

ADAR, APOBEC3A, LY6E, MCOLN, IDO1, and FAM46C, increased replication of YFV, WNV, 

VEEV and CHIKV, though specific mechanisms are as of yet unclear (20). ASCC3 was 

identified as a proviral ISG in WNV infection, which dampens Type I IFN dependent signals, 

possibly through modulating IRF3 and IRF7 (21). Suppressor of cytokine signaling (SOCS) is 

produced early in the Type I IFN response and binds to the phosphorylated tyrosine residues of 

the IFN receptors or the JAK proteins, thus blocking JAK-STAT signaling (2).  USP18 is a 

potent down-regulator of the Type I IFN response. It binds to the intracellular domain of 

IFNAR2, altering its conformation and dramatically reducing the binding affinity of IFNα to the 

receptor (22). 

 

PRIOR SCREENS TO IDENTIFY AND CHARACTERIZE NOVEL ISGS  

The antiviral functions of many ISGs are largely unknown. Small-scale studies identified 

a few key ISGs involved in the restriction of certain viruses. For example, an siRNA screen 

against influenza A identified IFITM3 as a potent antiviral ISG, and was subsequently confirmed 

to restrict WNV and dengue virus (9). The first large scale ectopic expression screen was 

published in 2011.  In this study,  a lentiviral library expressing 380 human ISGs was used to 

determine restriction of six different viruses (Hepatitis C Virus (HCV), Human 
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Immunodeficiency Virus (HIV), YFV, WNV, VEEV, and CHIKV) (20). This ectopic expression 

based analysis identified ISGs that act broadly, or to only one virus. Most ISGs identified had 

moderate antiviral activity, and acted as inhibitors of translation. Expression of two different 

ISGs led to greater restriction of virus replication (20), confirming the notion that IFN based 

protection requires the additive effect of multiple ISGs. 

Another group developed a large-scale screen to identify novel ISGs against WNV (21) 

by silencing gene targets using a lentiviral shRNA library against 245 human ISGs (23). This 

allowed investigation of the physiological role of each ISG in the context of an IFN-induced 

antiviral state. This approach could potentially identify ISGs that required a multicomponent 

complex to function. The screen against WNV identified 30 ISGs, of which 9 had not been 

previously identified to have any antiviral effect. 

Other groups have performed genome wide siRNA based screens to identify novel ISGs 

in vitro against VSV, MHV-68, and HCV (24–26). An in vivo RNA interference screen was 

developed in which mice were infected with a library of Sindbis viruses (SINV) encoding 

artificial microRNA (amiRNAs) against murine ORFs. Virions with amiRNAs targeting 

inhibitory genes were selected for, and the transcription factors like Zfx and Mga were identified 

(27). 

Recently a library of human and macaque ISGs were screened against eleven different 

retroviruses (28). Of the top antiviral ISGs discovered, around 60% targeted against a single 

retrovirus, while the remaining 40% were broadly effective. In addition, they also uncovered 

ISGs that functioned in a species specific manner. For example, human but not macaque 
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ANGTPL1 inhibited SIV infection. They go on to show that IDO1 (which was identified in a 

previous screen as proviral for other viruses (20)) and TRIM56 inhibit retroviral replication. 	  

 

ALPHAVIRUSES 

Alphaviruses are enveloped positive-sense ssRNA mosquito-borne viruses of the 

Togaviridae family and can be grouped as arthritogenic or encephalitic based on clinical 

symptoms. Arthritogenic alphaviruses present with severe polyarthralgia and polyarthritis while 

the encephalitic alphaviruses produce a severe febrile illness associated with infection and injury 

to neurons, encephalitis, long-term debilitating neurological sequelae, and death. Arthritogenic 

alphaviruses include CHIKV, Sindbis virus, O’Nyong-nyong virus, Ross River virus, Mayaro 

virus, and Semliki Forest virus and the encephalitic alphaviruses, including Venezuelan (VEEV), 

Eastern, and Western equine encephalitis viruses. 

 

CHIKUNGUNYA VIRUS 

CHIKV was originally isolated in 1952 in Tanzania, and has since cause explosive 

outbreaks worldwide. In fact, its name was derived from the Makonde word meaning “that which 

bends up”, alluding to the changes in posture and joint inflammation of patients suffering from 

the arthritic symptoms of infection (29).  

Typically, patients infected with CHIKV develop a severe febrile illness marked by 

polyarthritis, headache, conjunctivitis, and rash that can progress to persistent arthritis that can 
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last for years after infection. CHIKV has become a growing concern since it emerged in the 

Caribbean in 2013 and subsequent spread to Central, South and North America, resulting in over 

1.8 million cases (30). Currently, there are no approved therapies or vaccines to combat or 

prevent CHIKV infection. 

CHIKV enters host cells via clatherin-mediated endocytosis, and fuses with the 

endosome in a pH-dependent manner. Replication of genomic RNA and translation of capsid 

protein occurs in the cytoplasm, which assemble into nucleocapsid cores. The E1 and E2 

glycoproteins are translated in the endoplasmic reticulum, and further processed in the Golgi, 

before going to the plasma membrane. Nucleocapsid cores assemble with the surface 

glycoproteins at the plasma membrane, leading to budding of mature virions (31). 

There are two mouse models of infection, the neonate model which can be used to 

determine viral dissemination and lethality, and the adult model which is used to better 

understand the acute symptoms and persistence of CHIKV-induced arthritis (32–34). In wild 

type mice as young as 4 weeks old, a biphasic pattern of swelling is observed in the inoculated 

foot. The first, small peak of swelling is seen at day 2 or 3 post infection, and is believed to be 

the result of viral replication in the fibroblasts, myocytes and osteoblasts, causing cell death, 

cytokine production and edema. The second, more prominent peak of swelling occurs at day 6-7 

post infection, which is largely due to infiltration of immune cells and the subsequent induction 

of edema, myositis and synovitis. Swelling rapidly drops to near normal levels soon after. 

Infectious CHIKV can be isolated from the serum, spleen, muscles, liver and ankle joints as early 

as 1 day post infection, but is rapidly cleared and typically undetectable by 5 to 7 days post 

infection. However, CHIKV RNA can be detected in the spleen for up to 42 days post infection, 

and in the joints for essentially the life of the animal (35–37). In addition, studies have shown 
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that osteoblast infection induces increased osteoclast production in the joints, resulting in 

possible bone loss (38, 39). 

CHIKV-181/25 (TSI-GSD-218) is an attenuated strain developed by the US Army 

through 18 serial passages of the parental CHIKV 15561 strain (40). While CHIKV-181/25 is 

immunogenic and protective, 8% of recipients developed chronic joint inflammation (41), and in 

at least one case symptoms were linked to a genetic reversion of the virus, thus preventing its use 

as an effective vaccine. The attenuated phenotype is mapped to two mutations in the E2 protein, 

which disturbs the binding of the virion to heparan sulfate on the cell surface. This reduction in 

binding affinity reduces the efficiency of infection, and also in turn affects cell spread and 

tropism in vivo (42). CHIKV-181/25 does not cause weight loss or death in WT, or in IFNγR-/- 

mice, and reduced morbidity in IFNAR-/- mice. Stat1-/- mice and IFNαβγ receptor knockout mice 

both suffer significant weight loss and mortality. Combined with evidence that IFNAR+/- mice 

have reduced morbidity than IFNAR-/- mice, it can be inferred that CHIKV-181/25 is susceptible 

to Type II and Type I IFN responses (43, 44). 

 

IDENTIFIED ISGS AGAINST ALPHAVIRUSES 

There are several studies characterizing the effect of ISGs against alphavirus infection. 

ISG15 protects against SINV in vivo, likely via conjugation (ISGylation) to viral proteins (15–

17). Zinc finger antiviral protein (ZAP) restricts SINV, Ross River, Semliki Forest, and VEEV 

by blocking the accumulation of viral genomic content in the cytoplasm (8). Tetherin has 

recently been shown to prevent egress by tethering virus onto the cell membrane (19), and ZAP 
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has been shown to work synergistically with 16 other ISGs to enhance restriction, including 

IFITM3 (45). 

In the absence of IFN, SINV is poorly restricted by RNaseL, and strongly inhibited by 

PKR in the context of replication in DCs (46). However, PKR-/- mice are still protected from 

lethal infection of SINV (8), suggesting that other ISGs can still confer protection. A genetic 

screen of SINV infected PKR/RNaseL double knockout mice revealed 44 unique ISGs with 

possible antiviral activity, including Isg20, Ifit1, Ifit2, Ifit3, and viperin (also shown to be 

restrictive against CHIKV) (47). However, in the case of Ifit1, which recognizes RNA lacking a 

2’O-methylation on the 5’cap structure and prevents translation, alphaviruses subvert this 

antiviral function via RNA secondary structure motifs that inhibit binding (48). Other ISGs like 

HSPE and P2RY6 have been identified, though their mechanisms of restriction are currently 

unknown (7, 20). 

 

LACROSSE VIRUS 

LaCrosse (LACV) is an enveloped negative-sense ssRNA orthobunyavirus with a 

segmented genome. This arthropod-borne virus is endemic to the United States (27, 28), and 

typically causes disease in children.  While most cases are asymptomatic or manifest in febrile 

illness, a small percentage of children develop seizures, chronic epilepsy, or fatal encephalitis 

(29). 

The replication cycle of bunyaviruses begins upon entry into host cells by clathrin-

mediated endocytosis. After pH-dependent fusion with the endosomal membrane and entry into 
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the cytosol, the encapsidated viral RNA genome segments undergo transcription by viral RNA 

dependent RNA polymerase (RdRp) to generate mRNA. The mRNA is then used to transcribe 

structural and nonstructural viral proteins. Structural proteins Gc and Gn dimerize in the ER and 

are transported to the Golgi. Meanwhile, RdRp generates positive strand antigenomic RNA, 

which is then used as a template to replicate more genomic copies. Ribonucleoproteins are 

generated in viral ‘factories’ and then transported to the Golgi for assembly. Virions are secreted 

via vesicles to the plasma membrane (30). LACV and other orthobunyaviruses can antagonize 

IFN production responses, particularly through the nonstructural protein NSs, which directly 

suppresses IFN induction (31). Mice infected with LACV succumb to neurological disease in a 

dose and age-dependent manner. This is believed to be due to differences in Type I IFN 

production. Older mice have more myeloid DCs present, which produce more Type I IFN via 

RLR and TLR3 activation (32). Selectively removing myeloid DCs from older mice increased 

susceptibility to LACV mediated neurological disease (32). 

A few well-known, strongly antiviral genes have been reported to restrict Bunyaviridae 

family members. Bunyaviruses like LACV and Rift Valley Fever Virus (RVFV) are strongly 

restricted by MxA, a highly conserved GTPase that prevents virus components from trafficking 

from the cytosol to the nucleus (33). MxA is potent enough to protect IFNAR-/- mice from a 

lethal dose of Thogoto virus (tick borne orthobunyavirus) and enhance resistance against LACV 

(34). Viperin (blocks egress), MTAP44 (aggregates microtubules; antiviral function unknown) 

and PKR (blocks translation) restrict infection by Bunyamwera Virus (35). IFITM2 and IFITM3 

were found to restrict RVFV in cell culture, by blocking viral fusion with the endosomal 

membrane, while IFITM1 had no discernable effect (36). Recent studies have shown that 

Oropouche and LACV are restricted by Irf3, Irf5 and Irf7 in the mouse, where the deletion of all 
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three genes leads to increased viral replication in the liver and spleen, and induces early 

mortality. Irf5 in particular was found to be required for control of viral replication in bone 

marrow derived DCs, faster infiltration of into the CNS and death (49, 50). In addition, both 

murine and human IFIT1 was found to have no discernable effect against Oropouche or LACV 

in vitro and in vivo (51). 

 

IFITM  

The interferon induced transmembrane (IFITM) family of proteins broadly restricts 

infection of several families of viruses. These proteins are expressed constitutively in most cell 

types, but also can be induced by type I, II and III IFNs (52). IFITMs are classified according to 

sequence similarity and function: Clade 1 contains IFITM1, 2 and 3 (and the mouse orthologs 6 

and 7), which participate in viral restriction; Clade 2 contains IFITM5, which is expressed in 

osteoblasts; and Clade 3 contains IFITM10, which is yet uncharacterized. Only IFITMs in Clade 

1 are IFN inducible (14, 52). 

Clade 1 IFITMs have 5 conserved domains (9, 52): the N terminal, the intramembrane, 

the conserved intracellular loop, the transmembrane, and the C terminal. IFITM2 and 3 contain a 

YXXΦ motif allowing for internalization into endosomes (53). IFITM1 lacks this motif and is 

believed to associate with the caveolin pathway. Further biochemical studies have identified key 

regions that affect IFITM function and localization. Lys124 in the N terminal domain is a site for 

ubiquitination (54), which mediates IFITM degradation. Palmitoylated cysteines in the 

intermembrane and transmembrane domains are necessary for localization and restriction of viral 

entry (54), and methylation of K88 appears to counter IFITMs antiviral capacity (55). The 
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orientation of IFITMs is largely unclear, and in the case of IFITM3, there are three prevailing 

models. However, the model with the most support has the N terminal domain in the intracellular 

region, and the C-terminal domain exposed to the extracellular space.  

IFITM proteins are basally expressed and localized primarily in late endosomes and 

lysosomes (52), co-localizing partially with LAMP2 and CD63 (56, 57). In addition, IFITM3 

associates with lipid rafts on the plasma membrane (58), and is expressed on the apical 

membrane and cilia of columnar epithelial cells of the airway (59). IFITM1 appears to co-

localize to subcellular compartments separate from IFITM2 and IFITM3 (60, 61). Ectopic 

expression of IFITMs results in increased expression on the plasma membrane surface. 

Furthermore, IFITM1 ectopic expressing cells have larger, empty vesicles, and IFITM3 cells 

develop multivesicular bodies (62). 

Antiviral activity of IFITMs was first observed against VSV (52), where infection was 

restricted in IFITM1 over-expressing cells. IFITM3 was later found to restrict influenza A by 

blocking entry at the hemifusion stage (9) in the late endosome, and also is protective in vivo (59, 

63). Since then, the effectiveness of IFITM restriction has been tested in vitro against many 

viruses (64). IFITM genes reportedly restrict infection of flaviviruses (WNV, DENV, ZIKV and 

JEV), HCV, filoviruses (EBOV and MARV), SARS coronavirus, bunyaviruses (RVFV, LACV), 

HIV, RSV and reoviruses (56, 60, 61, 64–71). IFITM3 has been shown to prevent HIV-1 

infection by incorporating directly into the virion, as well as preventing viral fusion and cell-to-

cell spread (72). In addition, HIV-1 has been shown to gain sensitivity to IFITM mediated 

restriction as the virus population develops mutations on the envelope glycoprotein to evade host 

neutralizing antibodies (73–75).  
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IFITMs reportedly do not have significant antiviral activity against Moloney Murine 

Leukemia Virus (retrovirus), Crimean–Congo Hemorrhagic Fever (CCHFV, a bunyavirus), and 

arenaviruses (9, 14, 20, 56, 60, 65). In addition, IFITMs do not restrict DNA viruses like Human 

Papilloma Virus (HPV), and Adenovirus (76), but may restrict Cytomegalovirus (CMV) and 

African Swine Fever virus (77). It is currently unknown why these viruses escape IFITM 

restriction, especially since many share common characteristics of entry as restricted ones. 

Correspondingly, the mechanism of protection by IFITMs also remains unclear. Over-expression 

of IFITMs has been shown to reduce membrane fluidity, increase cholesterol content and alter 

the curvature of endosomes, suggesting that IFITM physically alters the properties of the 

membrane to make viral fusion inefficient (78). For example, Amphotericin B, an antifungal that 

binds sterols in membranes, abrogates IFITM3 protection from influenza (79).  

The human polymorphism rs-12252 results in the deletion of the 21-nucleotide end of the 

N terminal of IFITM3. This deletion prevents localization to the endosome, restoring influenza 

(an observation that has been questioned in later publications (80, 81)) but not HIV infection 

(82). In addition, a recent publication with Hantaan virus suggests that the rs-12252 

polymorphism is responsible for increased disease severity and viral load in patients (83). These 

studies introduce the possibility that IFITM has more than one method of restriction. 

In this study, we use a library of murine ISG candidates to identify novel antiviral genes 

in a high throughput manner.  As most ISGs are believed to have a moderate to low potency, we 

decided to use an attenuated alphavirus (CHIKV-181/25) to try to identify novel targets that may 

be masked in the context of a more pathogenic strain. In addition, the orthobunyavirus LACV 

was also used, as this virus has not been previously used in large scale ISG screens. While the 

initial results still need to be independently verified, the screen identified the ISG Ifitm3. Though 
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Ifitm3 has been characterized as a potent and broad antiviral gene, alphaviruses were considered 

to be unaffected. Through in vitro and in vivo studies, we show that both arthritogenic and 

encephalitic alphaviruses are susceptible to Ifitm3 mediated restriction. 
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Chapter 2: Screening for novel antiviral ISGs against alphaviruses and orthobunyaviruses 
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ABSTRACT 

The identification and characterization of novel antiviral interferon-stimulated genes 

(ISGs) can help elucidate functions of viral replication and pathogenesis in vitro and in vivo. In 

addition, identifying novel mechanisms of restriction can provide new avenues of therapeutics 

for many viral diseases, including arboviruses like chikungunya and LaCrosse virus. Using a 

shRNA library targeting 243 unique ISG candidates, a total of 21 and 30 novel genes were 

determined to be antiviral against the attenuated strain CHIKV-181/25 and LACV, respectively. 

However, the efficacy of the screen was called into question, as only 1 of every 3 shRNA 

constructs against a particular gene was guaranteed to produce significant knockdown, and off-

target effects were never assessed. Independent assessment of the top hits against CHIKV-

181/25 using a transducible system to generate bulk CRISPR knockout cell lines has proven 

ineffective, and would require the generation of clonal lines before proper analysis can be done. 

Verification of certain target ISGs through readily available knockout cell lines and mouse 

models led us to identify Ifitm3 as having antiviral mechanisms against alphaviruses. 
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INTRODUCTION 

Of the hundreds to thousands of ISGs that are upregulated upon infection, the functions 

of only a small handful have been identified and further studied. An antiviral response is still 

seen in cell culture systems with the most potent ISGs removed, suggesting that the remaining 

uncharacterized ISGs have some protective functions. Most of these ISGs likely have mild to 

moderate antiviral activity on their own, and likely work synergistically to provide stronger 

restriction. Other ISGs may only be effective against a particular strain or family of viruses. 

Given the sheer number of ISGs, it is also likely that these genes have redundant functions, 

acting as a countermeasure against viruses that have evolved a means of avoiding restriction by 

other ISGs with a similar, but not exact mechanism of action. 

 Prior large scale screens for ISGs have focused on human targets (9, 20, 21, 24–26, 28, 

84), and used non-attenuated viruses. Although identifying novel antiviral human ISGs could 

direct a path toward targeted therapeutics, validation studies in animals would likely still be 

required. Some ISGs (like IFI6) identified from human screens against WNV did not have 

apparent mouse orthologs in part due to gene duplication and diversification, limiting their 

potential for further pathogenesis studies in vivo. Non–attenuated viruses may have the 

disadvantage of having mechanisms for antagonizing the function of specific ISGs or the IFN 

signaling response in general. In this case, moderate or weakly potent antiviral ISGs might be 

masked in a screen. Some attenuated or vaccine strains show impaired virulence due to their 

greater sensitivity to IFN, like WNV-Kunjin (85), making them a useful tool to reveal new 

antiviral ISGs. Furthermore, ISGs that are effective only against attenuated viruses can suggest 

novel viral immune evasion mechanisms. As an example, a virulent strain of WNV commonly 

used for pathogenesis studies exhibited no phenotype in IFIT1-/- mice or primary cells; the role of 
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IFIT1 as an antiviral effector was revealed with an attenuated genetic mutant virus that lacked 

2’-O methylation on its viral RNA (86, 87). 

 In this study, we employed a library of 756 unique shRNAs (targeting 243 unique murine 

ISGs) to screen against the attenuated alphavirus vaccine strain of chikungunya virus CHIKV-

181/25. In addition, we also used the library against the orthobunyavirus LACV, which has not 

been subject to a large, high-throughput ISG screen. As a segmented negative-stranded RNA 

virus, La Crosse is a unique encephalitic arbovirus and may thus be restricted by a distinct set of 

ISGs. By using a gene knockdown approach, this screen has the additional advantage of 

identifying antiviral ISGs in the context of physiological doses of IFN, and can be used to 

recognize ISGs that require a multi-component complex to function. From our initial screens, we 

identified 21 and 30 novel candidate antiviral ISGs against CHIKV-181/25 and LACV, 

respectively. While the results included ISGs of known antiviral function, providing evidence 

that the screen was successful, subsequent analysis of individual shRNAs against a particular 

gene target suggested that many of our results could be due to off-target effects. Independent 

assessment of select targets using bulk CRISPR lines has been so far incomplete, and further 

optimization of the system needs to be done. 
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MATERIALS AND METHODS 

Cells.  Vero, 293T, NIH 3T3 cells and MEFs were cultured in complete DMEM, which 

was supplemented with 10% fetal bovine serum, and 10 mM each of GlutaMAX, sodium 

pyruvate, non-essential amino acids and HEPES (pH 7.3). MEFs from β2mKbDb triple knockout 

mice were provided by Ken Murphy (Washington University in St Louis). 

Viruses. The CHIKV-181/25 strain was provided by the World Reference Center for 

Arboviruses (R. Tesh, University of Texas Medical Branch). The CHIKV-LR (La Reunion 

OPY1 p142) strain was a gift from S. Higgs (Kansas State University). LACV (original strain) 

was provided by Andrew Pekosz (Johns Hopkins University, Baltimore, MD) Virus propagation 

and titration was performed in Vero cells. 

Lentiviral packaging and transduction of shRNA. The shRNA library targeting 

murine ISGs was purchased commercially (Open Biosystems), and uses the lentiviral pGIPZ 

vector. This plasmid co-expresses shRNA and GFP downstream of the CMV promoter. 

Individual plasmids from the library were co-transfected in a 96 well format into 293T cells with 

the packaging plasmids pSPAX.2 and pMD2G using the FuGENE HD (Roche) transfection 

reagent, following manufacturer’s instructions. After 48 hours, lentiviral supernatants were 

harvested and transferred onto NIH-3T3 cells in a 96 well format with a final concentration of 

10ug/ml polybrene. Cells were spinoculated at 1000 x g at room temperature for 30 minutes 

before being placed in the 37°C incubator. Supernatant was replaced with complete DMEM 24 

hours later and returned to 37°C for 48 more hours to allow for efficient expression of GFP 

reporter and knockdown of the target genes.  
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ISG screening. The NIH-3T3 cells transduced with the lentiviral library for 72 hours 

were then treated with commercial mouse IFNβ (PBL) (2.5 IU/ml for CHIKV-181/25 or 1 IU/ml 

for LACV) for 6 hours, washed, and then infected with virus (MOI 5 of CHIKV-181/25 or MOI 

200 of LACV). These MOIs were chosen to facilitate 2-5% infection in the presence of IFN 

treatment or 70-80% infection in the absence of IFN treatment. After 14 hours (CHIKV-181/25) 

or 48 hours (LACV), cells were trypsinized, fixed in 1% PFA and permeabilized with a 0.1% 

saponin solution in HBSS and 10mM HEPES. CHIKV infected cells were stained with CHK11, 

a mouse monoclonal antibody specific to the E2 protein, and LACV infected cells were stained 

with supernatants from the hybridomas 807:31 and 807:33, kindly provided by Andrew Pekosz. 

Following secondary antibody staining with goat-anti mouse IgG-Alexa Fluor 647 (Life 

Technologies), cells were analyzed by flow cytometry using the FACSArray Flow Cytometer 

(BD Biosciences). Transduced populations were identified by GFP, and infected populations 

were identified by Alexa Fluor 647 staining. 

Generation of bulk CRISPR lines. Single guide RNAs (sgRNA) were identified using 

the online algorithm developed by the lab of Feng Zheng and the Broad Institute 

(www.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). Briefly, the algorithm 

determined a series of possible guides that could bind to the gene of interest and ranked them 

according to predicted specificity and efficacy. The top three ranked guides were chosen, flanked 

with the correct nucleotide sequences (Oligo 1: 5’-CACCG; Oligo 2: 5’-C and 3’-AAAC) to 

accommodate ligation into the LentiCRISPRv2 vector, and commercially produced (IDT). 

Guides are provided in Table 1. 

LentiCRISPRv2 (Addgene 52961) is a lentiviral plasmid with Cas9 and the puromycin 

resistance gene expressed under the EFS promoter, and a U6 promoter just upstream of a 2kb 
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filler region flanked by BsmBI restriction sites. The filler region was removed via BsmBI 

digestion and gel purification, and then replaced with sgRNAs via T4 DNA Ligase. The plasmids 

were then transformed, collected via Qiagen’s MiniPrep kit, and sequence verified using the 

following primer: U6 Fwd 5’-GAGGCCTATTTCCCATATTCC-3’.  

The LentiCRISPRv2 library was packaged in 293T cells in 6 well plates with pSPAX2 

(Addgene 12260) and pMD2.G (Addgene 12259), using the FuGENE HD (Roche) transfection 

reagent. After 48 hours, lentiviral supernatant was removed and collected. Low passage NIH-

3T3 cells plated in 12 well plates were then spinoculated with lentivirus and 10ug/ml polybrene 

for 30 minutes at room temperature at 1000 x g. The next day, cells were split 1:4 and given 

fresh complete DMEM with 2µg/ml puromycin to select for transduced cells. After 7 days of 

selection, cells were aliquoted and frozen down. 

IFN treatment, infection with CHIKV-181/25 and analysis were optimized to provide a 

consistent 4-6 fold difference between negative control, scrambled sgRNA, and STAT1 sgRNA 

bulk CRISPR lines. At 14 hours post infection, cells were harvested, fixed, stained and analyzed 

by flow cytometry as described above. 

Western Blotting. Negative control scrambled and Ifitm3 bulk CRISPR lines were lysed 

in RIPA and electrophoresed under reducing conditions on a 4-12% Bis-Tris NuPAGE gel with 

MES buffer according to the manufacturer’s instructions (Thermo Fisher). After transfer onto 

PVDF membranes (Thermo Fisher) using an iBlot apparatus (Thermo Fisher), proteins of 

interest were detected with mouse anti-β-actin (CST, 8H10D10), Polyclonal rabbit anti-Ifitm3 

(Proteintech, 11714-1-AP), HRP-conjugated anti-mouse IgG (Sigma Chemical), and HRP-

conjugated anti-rabbit IgG (Sigma Chemical). 
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Mice. Lamp3-/- mice were generated by CRISPR, deleting 11 or 335 nucleotide deletions 

in exon 2 of the Lamp3 gene, both of which result in a frame shift and a premature stop codon. 

Both alleles were backcrossed twice to C57BL/6J mice to remove potential off-target effects and 

then generated mouse lines using brother by sister mating. Ifit2-/- mice were made commercially 

(Taconic) in the C57BL/6 background, wherein exons 2 and 3 of the Ifit2 gene were flanked by 

flt sites and then excised via Flt recombinase. Mice were either infected in the footpad with 

CHIKV-LR at a final volume of 10ul, or with LACV with a final volume of 50ul, diluted in PBS. 

Viral burden of tissues or serum harvested were done by a focus forming assay. 

Viral growth kinetics. For viral yield assays, cells were plated (105 cells per well in a 

12-well plate) and in some experiments pretreated with specified doses of IFNβ for 12 hours. 

Cells then were infected with CHIKV at 37°C. One hour later, the plates were rinsed twice with 

warm PBS, and replaced with fresh DMEM supplemented with 10% FBS. Supernatants were 

collected at specific time points, and viral titers were determined by focus forming assay on Vero 

cells, as described (37, 48). 

Measurement of viral burden by qRT-PCR. Mouse tissue homogenates were 

processed for RNA using the Qiagen RNeasy kit. Serum samples were prepared using the 

Qiagen QIAmp Viral RNA kit. Viral titers were quantified to a standard curve of CHIKV and 

normalized to tissue weight or ml of serum. CHIKV RNA was detected using an E1 specific 

primer and probe set.  

Data and Statistical analysis. Flow cytometry data was analyzed using FloJo software. 

Analysis of the shRNA ISG screen and Z-score calculations were done on Microsoft Excel. 
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Student t-tests, Mann-Whitney or Dunnet’s multiple comparison ANOVA tests were performed 

with Prism Software (GraphPad, San Diego, CA). 
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RESULTS 

Screening for novel antiviral ISGs. A library comprised of 756 unique shRNAs, 

targeted against 243 putative murine ISGs was obtained commercially from Open Biosystems. 

These putative ISGs were identified from a collection of published microarray analyses of genes 

upregulated in vitro after treatment with Type I IFN. Each shRNA arrived inserted into the 

bicistronic pGIPZ lentiviral vector, which includes a GFP reporter (Fig 2.1A). Individual 

plasmids from the library were packaged into lentiviruses and transiently transduced into NIH-

3T3 cells in a 96 well format. Each plate contained negative scrambled controls and positive 

Stat1 shRNA transduced controls. After 72 hours, successful transduction was determined by 

GFP expression. Cells were then treated with IFNβ for 6 hours and infected with either CHIKV-

181/25 (MOI 5) or LACV (MOI 200) (Fig 2.1B). The administration of IFN and virus was 

optimized to obtain a low percentage of infectivity in the presence of IFN and a high percentage 

in the absence of IFN (3-7% and 70-80% in all transduced cells, respectively) in an attempt to 

skew towards the detection of antiviral ISGs. After 14 hours (CHIKV) or 48 hours (LACV), cells 

were processed and analyzed by flow cytometry (Fig 2.1C). The transduced (GFP+) cell 

population was analyzed to determine the percentage of infected cells (GFP+ Alexa Fluor 647+) 

in each well, and subsequently normalized to the percentage calculated in the scrambled controls.  

These ratios were then ranked by Z-score. Any shRNA construct with a Z-score of 1.5 (one and a 

half standard deviations above the mean) was considered a ‘hit’ in these screens. 

In the CHIKV-181/25 screen, a total of 33 shRNAs, corresponding to 28 unique ISG 

targets were identified (Fig 2.2A). These included shRNAs targeting the positive control (Stat1) 

ISGs with well characterized antiviral function (Stat2 and Ifit1), transcription factors (Irf8), and 

proteins involved in antigen presentation (β2m and H2-T). After manually eliminating genes that 
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were already characterized, deemed difficult to characterize (such as transcription factors, or 

genes canonically involved in the adaptive immune response), a final list of 21 candidate ISGs 

was generated. In the LACV screen, a total of 49 shRNAs, corresponding to 46 unique ISG 

targets were identified (Fig 2.2B). Like the CHIKV screen, ISGs with known antiviral potency 

and mechanism were included. Manual curation of these targets resulted in a final list of 30 

unique ISG targets, three of which were also found in the CHIKV screen (Agt, Ifi47, Lypla1). A 

table of the final ISGs targets and their known functions are included in Table 2.1. 

 Independent assessment of the top candidate ISG targets. To better understand the 

efficiency of knockdown and potential off-target effects of the library, the Z-scores of all the 

shRNAs against the top ISG target hits were directly compared (Fig 2.3). Strikingly, for most of 

the gene targets, the majority of the corresponding shRNAs had a Z-score well below 1.5. Even 

for the positive control, Stat1, only 3 of the 6 shRNAs had a Z-score greater than 1.5, suggesting 

only 50% efficiency of this library at best. Combined with the manufacturer’s claim that “at least 

one of three constructs is guaranteed to reduce target mRNA levels by 70% or more,” (Open 

Biosystems) the reliability of the shRNA screen is put into question. 

 To independently verify the top hits, we decided to use the gene editing technology 

CRISPR to generate targeted knockout cell lines. We prioritized targets identified in the CHIKV-

181/25 screen over the LACV screen because there are more reagents available to evaluate 

CHIKV pathogenesis. An sgRNA library was first developed using the online designer tool from 

the Broad Institute (www.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). The top 3 

guides were picked for each ISG target (Table 2.2) and ligated into the LentiCRISPRv2 plasmid 

(Fig 2.4), which also expresses Cas9 and the puromycin resistance gene. After packaging, the 

CRISPR library was transduced into NIH-3T3 cells and maintained under 2µg/ml of puromycin 
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selection for 7 days. After selection, the cell lines were aliquoted and frozen down. Efficacy of 

gene editing was tested by treating the scrambled negative control and Stat1 targeted lines with 

increasing doses of murine IFNβ for 6 hours and then infecting with different MOIs of CHIKV-

181/25 for 14 hours. By flow cytometry, all 3 Stat1 bulk CRISPR lines were more susceptible to 

infection than scrambled controls, especially as the concentration of IFN was increased (Fig 2.5). 

However, analysis of the bulk CRISPR library yielded no clear antiviral phenotype, with only a 

few individual lines attaining a 2-fold change increase in infection compared to the scrambled 

controls (Fig 2.6). A closer analysis was performed of six ISG targets that had at least one bulk 

CRISPR line infected higher than 1-fold. After treating cells with increasing doses of IFN and 

virus, only the Ccng1 bulk CRISPR lines had a consistent, increased fold change in infection 

compared to scrambled controls. Furthermore, the Ccng1 bulk CRISPR lines showed differences 

in infection without IFN treatment, suggesting that the Ccng1 phenotype may not be IFN 

dependent (Fig 2.7). 

 Since the CRISPR screen only validated one gene identified in the shRNA screen, an 

additional positive control was included. Even though Stat1 has been used consistently and 

successfully for similar ISG screens as a positive control, adding a known, less potent antiviral 

ISG could assist in fine tuning the IFN dosage and infection conditions to tease out the effects of 

the more moderately acting antiviral genes. The ISG Ifitm3 was chosen, as we had recently 

published its antiviral effects on alphaviruses (discussed in Chapter 3 of this dissertation). 

Unfortunately, no variation in IFN dosage or MOI tested could induce a satisfactory difference in 

infectivity between the Ifitm3 bulk CRISPR lines and the negative controls (Fig 2.8A). By 

Western blot, Ifitm3 can still be detected in all three lines, and expression increased if the cells 
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were pre-treated with IFNβ (Fig 2.8B). This is likely due to the genetic heterogeneity of the bulk 

cells. 

Alternative approaches to independently assess target ISGs.  Knockout mice were 

available for four of the ISGs identified in our shRNA screens. Ifitm3 and Lamp3 were identified 

in both the CHIKV and LACV screens, while Ifit2 and β2m were identified in the LACV screen 

only. As Ifitm3 had previously been described to restrict orthobunyaviruses in vitro, we decided 

to follow up on its potential role in CHIKV instead, using Ifitm3-/- and Ifitm locus deletion MEFs. 

Further discussion of these experiments will be in Chapter 3 of this dissertation.  

Ifit2 is a potent antiviral ISG that has been shown to restrict viral replication by binding 

to subunits eIF3, which is required for initiation and translation (14). In the context of WNV 

infection, it was shown that Ifit2 restricts viral replication in the CNS, and only functions in a 

subset of primary cells, like cerebellar granule cells and macrophages, but not MEFs (88). The 

lack of restriction was also observed in growth kinetics studies with LACV in MEFs (data not 

shown). In addition, no significant differences weight in loss and death were observed in 8 to 10 

week old Ifit2-/- and WT mice infected with 105 FFU of LACV in the footpad (Fig 2.9). 

β2m, or beta-2-microglobulin, is canonically known for its role in stabilizing the structure 

of MHCI, which is required for presentation of cellular antigen to CD8+ T cells (89). Due to its 

importance in adaptive immunity, studying its potential role as an antiviral ISG in vivo would be 

difficult. Instead, β2mKbDb triple knockout MEFs were infected with CHIKV after treatment 

with IFN. Interestingly, we noticed that the triple knockout cells were less prone to infection 

after 14 hours than MEFs from WT littermate controls (Fig 2.10). Although an interesting 
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observation, additional experiments were not performed, and due to the foreseeable difficulty of 

properly studying the non-canonical properties of β2m. 

 

Lamp3 is an endosomal-lysosomal associated protein that is highly expressed in the cells 

of the airway, and in macrophages and dendritic cells (90), though there has been no extensive 

study on its upregulation in other tissues upon IFN stimulation. Recent unpublished observations 

have shown that Lamp3 is highly protective against MERS-Coronavirus pathogenesis. One study 

in A549 cells suggest that Lamp3 is actually proviral, and is required for the IAV nucleoprotein 

and titers (91). In the context of CHIKV infection, no differences were seen after 14 hours by 

flow cytometry, nor were any differences seen by growth kinetics (Fig 2.11A-B). When infected 

subcutaneously with 104 FFU, WT and Lamp3-/- mice had comparable levels of titer in the 

spleen, ankle joints and serum at day 1 and 2 post infection by focus forming assay (Fig 2.12). 

To determine if Lamp3 had a possible role in maintaining or clearing the chronic viral RNA seen 

in the feet and spleen, infected mice were assayed by qPCR at 21 days post infection. Again, no 

differences in viral RNA titer were observed (Fig 2.13). The role of Lamp3 in LACV 

pathogenesis has not been studied. 
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DISCUSSION 

 To identify novel antiviral ISGs, a murine shRNA library targeting 243 genes was tested 

against the attenuated alphavirus CHIKV-181/25 and the orthobunyavirus LACV. Using 

shRNAs to knockdown target genes in vitro allowed for the identification of genes with antiviral 

function in the context of physiological response to IFN treatment. In addition, the attenuated 

alphavirus and orthobunyavirus were used in an attempt to find antiviral ISGs whose functions 

were either likely masked by pathogenic strains, or to identify completely novel, virus specific 

gene targets. From the shRNA screen, a total of 28 and 46 unique ISGs were identified that were 

deemed antiviral against CHIKV-181/25 and LACV, respectively. These genes included known 

antiviral ISGs like Stat 2, Ifit1 and Ifit2, Ifitm3, and Mx1, as well as transcription factors like Irf8 

and Irf9. However, a lack of reliability of knockdown by the shRNA library led to a concern that 

the unique ISGs in these top hits were the result of off-target effects.  

Independent assessment of these targets using bulk CRISPR edited NIH-3T3 cells have 

thus far proven to be incomplete, and further optimization is needed before the hits can be 

properly analyzed. The current conditions of the CRISPR screen are unable to identify novel 

antiviral ISGs less potent than Stat1 or as effective as Ifitm3. Since CRISPR acts by inducing 

breaks and random repair of genomic DNA, we cannot guarantee that enough alleles in the bulk 

population of cells have been knocked out to see an appreciable change in phenotype. This issue 

is compounded by the fact that NIH-3T3 cells are hypertriploid, increasing the likelihood that 

some CRISPR targeted cells have at least one functioning target allele. In fact, by Western blot 

analysis of the Ifitm3 bulk CRISPR lines, the protein could still be detected, especially in 

samples where the cells were stimulated with IFN.  
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To salvage the CRISPR screen, we would have to generate and validate (by DNA 

sequencing and, if reliable antibodies are available, by protein detection) clonal knockout lines 

for each ISG target from the bulk populations. This way, we can cleanly assess the role of each 

target ISG without background noise from partially affected or unaltered alleles. Furthermore, 

any potential trans functions an ISG may have will no longer be a factor. Positive hits should be 

re-assessed on other cell lines (such as MEFs, BV2s, and human lines like HeLas and 293Ts) to 

address the possibility that the phenotype observed is unique only to NIH-3T3s. 

A better approach for this screen or for future high throughput screens could be to try 

CRISPR interference (CRIPSRi), which represses gene expression at the transcriptional level, 

physically blocking the progress of RNA polymerase. Using this knockdown method, which can 

be stably transduced, heterogeneity of mutations at the genomic level can be avoided while we 

can take advantage of the specificity of the sgRNA-dCas9 system. Validation can be done by 

RT-PCR (presence or lack of mRNA) and by Western blot. One caveat is that the efficiency of 

knockdown decreases the further the target is from the transcription start site, which may limit 

the number of possible sgRNA candidates per gene.  

Another option would be to step away from the CRISPR lines and see if ectopic 

expression of the ISG targets yields any results. This approach is beneficial because we can 

theoretically track the cells that have incorporated the expression vector by flow cytometry, and 

determine the antiviral potency of each target ISG in the absence of IFN stimulation. However, 

this runs contrary to the spirit of the original screen, which was designed to understand a target 

ISGs importance in a physiological antiviral environment. 
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 In summary, we attempted to identify novel antiviral ISGs in a high-throughput manner 

using a gene knockdown system and viruses that are either attenuated or not previously tested in 

prior, similar studies. This shRNA based screen identified a series of novel and previously 

described ISG targets. Due to the unreliability of the knockdown system, the validity of these 

hits is questionable at best. However, by using available knockout reagents for a select number 

of the top ISGs, Ifitm3 was found to restrict CHIKV infection. 
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Figure 2.1 

A 

 

B 

 

C 

 

 

Figure 2.1. Lentiviral based shRNA screen for ISGs that restrict alphavirus or 

orthobunyavirus infection. (A) Plasmid map of the pGIPZ plasmid containing the shRNA oligo 

and the IRES GFP reporter. (B) The shRNA library targeting ISGs were packaged and 

transduced into NIH-3T3 cells. 72 hours later, cells were treated with IFNβ (2.5 IU/ml for 

CHIKV and 1 IU/ml for LACV) for 6 hours then infected with CHIKV-181/25 or LACV at MOI 

5 or MOI 200, respectively. After 14 hours (CHIKV) or 48 hours (LACV), cells were processed 

for flow cytometry. (C) Representative flow plots of non-silencing control (NSC) transduced 

cells or Stat1 shRNA transduced control cells infected with CHIKV-181/25. Transduction 

efficiency is determined by the expression of GFP on the x-axis and infection efficiency is 

shown by viral envelope staining on the y-axis. 
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Figure 2.2 
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Figure 2.2. Analysis of the ISG screen. After flow cytometry, the percentage of infected cells 

of the total transduced population for every well was normalized to that of the non-silencing 

control. This ratio was normalized by Z-score and ranked for (A) CHIKV-181/25 and for (B) 

LACV. The top hits with a Z-score of 1.5 and above are listed on the table to the right. Each dot 

represents a single shRNA in the library. 
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Figure 2.3 
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Figure 2.3. Efficacy of the shRNA library. The Z-scores of all the shRNAs targeting the top 

ranked ISGs from the CHIKV (top) and the LACV (bottom) screens were directly compared. 

Dotted lines mark Z-score at 1 and 1.5 for the CHIKV graph, and 0, 1, 1.5 and 2 for the LACV 

graph. Dashed lines represent the the median value. Z-score threshold for both screens was 1.5 

(1.5 standard deviations above the mean). 
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Figure 2.4 

 

 

 

 

Figure 2.4. CRISPR knockout of select ISGs. Plasmid map of the LentiCRIPSRv2 vector, 

which contains a 2kb filler space under the U6 promoter. This spacer is replaced by the sgRNA 

oligo. The Cas9 and puromycin resistance gene cassette are under the EFS promoter.  
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Figure 2.5 
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Figure 2.5. Demonstration of the efficacy of the CRISPR gene editing system.  Non-silencing 

control lines and Stat1 bulk CRISPR lines were pretreated with the indicated concentration of 

IFNβ for 6 hours before being infected for 14 hours with CHIKV 181/25 at an MOI of 0.5, 1 or 

5. Percentages of infection were then determined by flow cytometry. The numbers above 

indicate the average fold-difference in infection between the control and the Stat1 bulk CRISPR 

lines. 
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Figure 2.6 

 

Figure 2.6. Attempt at validating the antiviral phenotype of select ISGs using bulk CRISPR 

lines.  NIH-3T3 bulk CRISPR lines were treated with IFNβ (3 IU/ml) for 6 hours, then infected 

with CHIKV 181/25 at MOI 1 for 14 hours. Cells were then analyzed by flow cytometry. Fold-

differences in infection versus control lines are shown here. The dotted line indicates a one-fold 

change.
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Figure 2.7 

 

 

 

 

 

 

 

 

Figure 2.7. Analysis of select bulk CRISPR lines. The bulk CRISPR lines of six ISG targets 

from the initial screen were further tested to verify the presence of an antiviral phenotype. Cell 

lines were pretreated at the indicated concentrations of IFNβ for 6 hours before being infected 

with MOI 1 of CHIKV 181/25 for 14 hours. Cells were analyzed by flow cytometry and the fold 

differences in infection compared to controls are graphed. The dotted line indicates a one-fold 

difference. 
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Figure 2.8 
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Figure 2.8. Attempt at showing an antiviral phenotype with Ifitm3 bulk CRISPR lines. (A) 

NIH-3T3 bulk CRISPR lines were treated with the indicated dose of IFNβ for 6 hours and then 

infected with various MOIs of CHIKV 181/25 for 14 hours before being analyzed by flow 

cytometry. (B) Western blot of control and Ifitm3 bulk CRISPR lines with or without 3 IU/ml 

IFNβ treatment for 6 hours. 
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Figure 2.9 

 

 

 

 

 

 

Figure 2.9. Pathology of LACV in Ifit2-/- mice. 8 week old WT and Ifit2-/- mice were infected 

with  105 FFU into the footpad and followed for weight loss. No mortality was seen during the 

course of infection. 
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Figure 2.10 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Susceptibility of β2mKbDb triple knockout MEFs to infection by CHIKV 

181/25. MEFs were treated with the indicated concentration of IFNβ for 6 hours before being 

infected with various MOIs of CHIKV 181/25 for 14 hours. Cells were analyzed by flow 

cytometry. Means were compared by Student t-test. (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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Figure 2.11 
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Figure 2.11. CHIKV infection is not enhanced by Lamp3 in vitro. WT and Lamp3-/- MEFs 

were treated with IFNβ and then infected with either (A) MOI 0.1 or (B) MOI 5 of CHIKV 

181/25. Virus Statistically significant but inconsequential differences were observed in the 

multistep growth kinetics (A) of CHIKV in the absence of IFN, as well as in percent infection of 

MEFs at low dose of IFN. No differences were seen in viral growth kinetics at (B) high MOI, nor 

do we see a notable difference in infection of MEFs after 14 hours. Means were compared by 

Student t-test. (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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Figure 2.12 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Lamp3 does not protect against early viral CHIKV titers in the tissues. 4 week 

old WT and Lamp3-/- mice were injected with 1000 FFU of CHIKV-LR and were sacrified at 1 

day post infection. Viral burdens in the serum, spleen, ankles, and quadriceps were analyzed by 

focus forming assay. No statistical differences were identified by Mann-Whitney. 
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 Figure 2.13 

 

 

 

 

 

 

 

 

 

Figure 2.13. Lamp3 does not affect the chronic burden of CHIKV in mice. 4 week old mice 

were infected with 1000 FFU of CHIKV-LR and harvested at 21 days post infection. Viral 

burden in the ankles and the spleen were determined by quantitative PCR. No statistical 

difference was observed by Mann-Whitney. 
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Table 2.1. Final list of CHIKV and LACV antiviral ISGs identified from the shRNA screen 
 
CHIKV  targets  
Symbol Full Name Known functions (NCBI) 
Agt Angiotensinogen Cleaved by renin in response to lowered blood pressure to form 

angiotensin-1. 
Akt3 Thymoma viral 

proto-oncogene 3 
Serine/threonine kinase that plays a key in regulating cell survival, 
insulin signaling, angiogenesis and tumor formation. Akt is a 
downstream mediator of the PI 3-K pathway, which results in the 
recruitment of Akt to the plasma membrane. 

Atf3 Activating 
transcription factor 3 

Binds cAMP.  Represses transcription from promoters with ATF sites. 

Ccng1 Cyclin G1 May play a role in growth regulation. Is associated with G2/M phase 
arrest in response to DNA damage. May be an intermediate by which 
p53 mediates its role as an inhibitor of cellular proliferation 

Cd47 CD47 antigen Cell adhesion receptor on platelets. Modulation of integrins. May be 
involved in membrane permeability changes induced following virus 
infection. 

Cfb Complement factor B Component of the alternative complement pathway. 
Dock4 Dedicator of 

cytokinesis 4 
Involved in regulation of adherens junction between cells. Plays a role 
in cell migration. Functions as a guanine nucleotide exchange factor 
(GEF), which activates Rap1 small GTPase by exchanging bound 
GDP for free GTP. 

Erlec1 RIKEN cDNA 
4933407N01 

N-glycan recognition in the ER and may regulate glycoprotein traffic 

Fam129a Family with sequence 
similarity 129, 
member A 

Regulates phosphorylation of a number of proteins involved in 
translation regulation including EIF2A, EIF4EBP1 and RPS6KB1. 
May be involved in the endoplasmic reticulum stress response 

Gtpbp2 GTP binding protein 
2 

Upregulated in mouse peritoneal macrophages. 

Ifi202b Interferon activated 
gene 202B 

Unknown function 

Ifi47 Interferon gamma 
inducible protein 47 

Unknown function 

Kbtbd8 Kelch repeat and 
BTB (POZ) domain 
containing 8 

Unknown function 

Lamp3 Lysosomal-associated 
membrane protein 3 

May play a role in dendritic cell function and in adaptive immunity. 

Lap3 Leucine 
aminopeptidase 3 

Presumably involved in the processing and regular turnover of 
intracellular proteins. Catalyzes the removal of unsubstituted N-
terminal amino acids from various peptides. 

Lypla1 Lysophospholipase 1 Hydrolyzes fatty acids from S-acylated cysteine residues in proteins 
such as trimeric G alpha proteins or HRAS. Has depalmitoylating 
activity toward KCNMA1. Has low lysophospholipase activity 

Ppp2r2a Protein phosphatase 
2, regulatory subunit 
B, alpha isoform 

one of the four major Ser/Thr phosphatases, and it is implicated in the 
negative control of cell growth and division 

Reep3 Receptor accessory 
protein 3 

Microtubule-binding protein required to ensure proper cell division 
and nuclear envelope reassembly by sequestering the endoplasmic 
reticulum away from chromosomes during mitosis. Probably acts by 
clearing the endoplasmic reticulum membrane from metaphase 
chromosomes. 

Tmod3 Tropomodulin 3 
 

Blocks the elongation and depolymerization of the actin filaments at 
the pointed end. The Tmod/TM complex contributes to the formation 
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of the short actin protofilament, which in turn defines the geometry of 
the membrane skeleton 

Trim34a Tripartite motif-
containing 34a 

Unknown function 

Trim69 Tripartite motif-
containing 69 
 

The mouse ortholog of this gene is specifically expressed in germ 
cells at the round spermatid stages during spermatogenesis and, when 
overexpressed, induces apoptosis. Alternatively spliced transcript 
variants encoding distinct isoforms have been described. 

   

LACV  targets  

Symbol Full Name Known functions (NCBI) 

Agt Angiotensinogen Cleaved by renin in response to lowered blood pressure to form 
angiotensin-1. 

Btc Betacellulin Growth factor that binds to EGFR, ERBB4 and other EGF receptor 
family members. Potent mitogen for retinal pigment epithelial cells 
and vascular smooth muscle cells. 

Ccdc50 Coiled-coil domain 
containing 50 

Involved in EGFR signaling. Mutations cause hearing loss in mice. 

Dhx58 DEHX box 
polypeptide 58 

Acts as a regulator of DDX58/RIG-I and IFIH1/MDA5 mediated 
antiviral signaling. Cannot initiate antiviral signaling as it lacks the 
CARD domain required for activating MAVS/IPS1-dependent 
signaling events. 

Gbp3 Guanylate binding 
protein 3 

Specifically bind guanine nucleotides (GMP, GDP, and GTP) and 
contain two of the three consensus motifs found in typical GTP-
binding proteins. Exhibits antiviral activity against influenza virus. 

Gbp4 Guanylate binding 
protein 4 

Binds GTP, GDP and GMP. Hydrolyzes GTP very efficiently; GDP 
rather than GMP is the major reaction product. Plays a role in 
erythroid differentiation  

Htr1d serotonin receptor 1D G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also 
functions as a receptor for ergot alkaloid derivatives, various 
anxiolytic and antidepressant drugs and other psychoactive 
substances. May play a role in vasoconstriction 

Ifi203 Interferon activated 
protein 203 

Unknown function 

Ifi47 Interferon gamma 
inducible protein 47 

Unknown function 

Igtp Interferon gamma 
induced GTPase 

Unknown function 

Lypla1 Lysophospholipase 1 Hydrolyzes fatty acids from S-acylated cysteine residues in proteins 
such as trimeric G alpha proteins or HRAS. Has depalmitoylating 
activity toward KCNMA1. Has low lysophospholipase activity 

Mov10 Moloney leukemia Probable RNA helicase. Required for RNA-mediated gene silencing 
by the RNA-induced silencing complex (RISC). Required for both 
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virus 10 miRNA-mediated translational repression and miRNA-mediated 
cleavage of complementary mRNAs by RISC. Also required for 
RNA-directed transcription and replication of the human hepatitis 
delta virus (HDV). 

Pnpt1 Polyribonucleotide 
protein 
nucleotidyltransferase 
1 

RNA-binding protein implicated in numerous RNA metabolic 
processes.  

Psmb8 Proteasome subunit, 
beta type 8 

Replacement of PSMB5 by PSMB8 increases the capacity of the 
immunoproteasome to cleave model peptides after hydrophobic and 
basic residues. Acts as a major component of interferon gamma-
induced sensitivity. Plays a key role in apoptosis via the degradation 
of the apoptotic inhibitor MCL1. May be involved in the 
inflammatory response pathway. 

Rps3a Ribosomal protein 
S3A 

May play a role during erythropoiesis through regulation of 
transcription factor DDIT3 

Rtp4 Receptor transporter 
protein 4 

Probable chaperone protein which facilitates trafficking and 
functional cell surface expression of some G-protein coupled 
receptors (GPCRs). Promotes functional expression of the bitter taste 
receptor TAS2R16  

Samd9l Sterile alpha motif 
domain containing 9-
like 

Unknown function 

Sema6d Semaphorin 6D Shows growth cone collapsing activity on dorsal root ganglion (DRG) 
neurons in vitro. May be a stop signal for the DRG neurons in their 
target areas, and possibly also for other neurons. May also be involved 
in the maintenance and remodeling of neuronal connections. 

Serping1 Complement 1 
inhibitor 

forms a proteolytically inactive stoichiometric complex with the C1r 
or C1s proteases. May play a potentially crucial role in regulating 
important physiological pathways including complement activation, 
blood coagulation, fibrinolysis and the generation of kinins. 

Slc16a4 Solute carrier family 
16, member 4 

Proton-linked monocarboxylate transporter. Catalyzes the rapid 
transport across the plasma membrane of many monocarboxylates 
such as lactate, pyruvate, branched-chain oxo acids derived from 
leucine, valine and isoleucine, and the ketone bodies acetoacetate, 
beta-hydroxybutyrate and acetate  

Slc25a28 Solute carrier family 
25, member 28 

Mitochondrial iron transporter that mediates iron uptake. 

Snx5 Sorting nexin 5 Involved in several stages of intracellular trafficking. 

Sp100 Nuclear antigen 
Sp100 

involved in a large number of physiological processes including cell 
growth, differentiation and apoptosis. 

Tgm2 Transglutaminase 2 Catalyzes the cross-linking of proteins and the conjugation of 
polyamines to proteins. 
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Trim25 Tripartite motif-
containing 25 

Expression of the gene is upregulated in response to estrogen, and it is 
thought to mediate estrogen actions in breast cancer as a primary 
response gene. 

Ttc39b Tetratricopeptide 
repeat domain 39b 

Unknown function 

Ubd Ubiquitin D Constitutively expressed in mature dendritic cells and B-cells. Mostly 
expressed in the reticuloendothelial system (e.g. thymus, spleen), the 
gastrointestinal system, kidney, lung and prostate gland 

Ugt1a6a UDP 
glycosyltransferase 

UDPGT is of major importance in the conjugation and subsequent 
elimination of potentially toxic xenobiotics and endogenous 
compounds. This isoform has specificity for phenols. Isoform 3 lacks 
transferase activity but acts as a negative regulator of isoform 1  

Xdh xanthine 
dehydrogenase 

Key enzyme in purine degradation. Catalyzes the oxidation of 
hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric 
acid. Contributes to the generation of reactive oxygen species. Has 
also low oxidase activity towards aldehydes  

Zeb2 Zinc finger E-box 
binding homeobox 2 

Transcriptional inhibitor that binds to DNA sequence 5-CACCT-3 in 
different promoters. Represses transcription of E-cadherin. 
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Table 2.2. sgRNAs for select ISGs to generate bulk CRISPR knockout cell lines. 

Gene 
Name 

CRISPR 
line Sequence 5'-->3' 

Gene 
Name 

CRISPR 
line Sequence 5'-->3' 

Stat1 1 caccgGGATAGACGCCCAGCCACTG Kbtbd8 1 caccgCCTGTGACGATATCTAGACA 

   aaacCAGTGGCTGGGCGTCTATCCc    aaacTGTCTAGATATCGTCACAGGc 

          

  2 caccgTGTGATGTTAGATAAACAGA   2 caccgAGACAGTGACGATTTAAATG 

   aaacTCTGTTTATCTAACATCACAc    aaacCATTTAAATCGTCACTGTCTc 

          

  3 caccgCGGCTGTCGTTCTACCACGA   3 caccgAAGACTCCAATAGAATTCTG 

   aaacTCGTGGTAGAACGACAGCCGc    aaacCAGAATTCTATTGGAGTCTTc 

            

Ccng1 1 caccgGGATCAAATCAGTCGCCAGT Lamp3 1 caccgAGAGTAGGCCTAGGAACTAG 

   aaacACTGGCGACTGATTTGATCCc    aaacCTAGTTCCTAGGCCTACTCTc 

          

  2 caccgGGAGTCTAGATGTCAGCCAA   2 caccgCCCAGTTATATAGTTGACAA 

   aaacTTGGCTGACATCTAGACTCCc    aaacTTGTCAACTATATAACTGGGc 

          

  3 caccgACGACACCTTGCCATTTGAG   3 caccgTCATCTACTGACGATACCAT 

   aaacCTCAAATGGCAAGGTGTCGTc    aaacATGGTATCGTCAGTAGATGAc 

            

Erlec1 1 caccgCCAGGCCAGTTGACTCGGAA Ifi202b 1 caccgGGGAAACCAATATTACACTC 

   aaacTTCCGAGTCAACTGGCCTGGc    aaacGAGTGTAATATTGGTTTCCCc 

          

  2 caccgACTTCCACTTGTGACAAGTG   2 caccgCCAAAAAAGAACATTAGCAA 

   aaacCACTTGTCACAAGTGGAAGTc    aaacTTGCTAATGTTCTTTTTTGGc 

          

  3 caccgTCCAACTGTCTTAGTGTGAG   3 caccgTGGCCAGATGAATCACTGGA 

   aaacCTCACACTAAGACAGTTGGAc    aaacTCCAGTGATTCATCTGGCCAc 

            

Atf3 1 caccgCCAGCGCAGAGGACATCCGA Ifi47 1 caccgGGTCTAGATAAGCGTCTGCG 

   aaacTCGGATGTCCTCTGCGCTGGc    aaacCGCAGACGCTTATCTAGACCc 

          

  2 caccgTCCTCAAATACCAGTGACCC   2 caccgTTGGAGATCAGGAAGATGCA 

   aaacGGGTCACTGGTATTTGAGGAc    aaacTGCATCTTCCTGATCTCCAAc 

          

  3 caccgTACCGTCAACAACAGACCCC   3 caccgCTGATTAATGCAGAGTACTG 

   aaacGGGGTCTGTTGTTGACGGTAc    aaacCAGTACTCTGCATTAATCAGc 

            

Fam129a 1 caccgATTGTAACTTACTCCAAACC Lypla1 1 caccgTTCACGGATTGGGAGATACA 
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   aaacGGTTTGGAGTAAGTTACAATc    aaacTGTATCTCCCAATCCGTGAAc 

          

  2 caccgACGGAGCTTAACCTTCTCGA   2 caccgCGCGGCGGTGGCCTTCCGGG 

   aaacTCGAGAAGGTTAAGCTCCGTc    aaacCCCGGAAGGCCACCGCCGCGc 

          

  3 caccgCAGACCTCAAAACCGCCATG   3 caccgTGGACAGATGTATTTGATGT 

   aaacCATGGCGGTTTTGAGGTCTGc    aaacACATCAAATACATCTGTCCAc 

            

Gtpbp2 1 caccgCCAGTTCCTAGATCTCCGTG Lap3 1 caccgGGGGTGCCTCGGTTGCATTG 

   aaacCACGGAGATCTAGGAACTGGc    aaacCAATGCAACCGAGGCACCCCc 

          

  2 caccgACTGGACAGTGTAAATATAG   2 caccgGTCCACCGCAGACATGACGA 

   aaacCTATATTTACACTGTCCAGTc    aaacTCGTCATGTCTGCGGTGGACc 

          

  3 caccgCCTGTGTGCTAAGACCACAG   3 caccgAAGTGCCAGTAGTAAAACCA 

   aaacCTGTGGTCTTAGCACACAGGc    aaacTGGTTTTACTACTGGCACTTc 

            

Dock4 1 caccgCCATATTGGAGATCACTAGT Ppp2r2a 1 caccgAAAAGAGGAACACTTACCGT 

   aaacACTAGTGATCTCCAATATGGc    aaacACGGTAAGTGTTCCTCTTTTc 

          

  2 caccgGGTAGCGGGTAGTATCCTGA   2 caccgCAAACGTGTTACAGCTGTTG 

   aaacTCAGGATACTACCCGCTACCc    aaacCAACAGCTGTAACACGTTTGc 

          

  3 caccgATGAAATCCTCGATCTGCGA   3 caccgGATGTGATAAGTGTGGGCGT 

   aaacTCGCAGATCGAGGATTTCATc    aaacACGCCCACACTTATCACATCc 

            

CFB 1 caccgTATGACGGTTACACTCTCCG Trim69 1 caccgCGGAACCAGTCGTTACACAG 

   aaacCGGAGAGTGTAACCGTCATAc    aaacCTGTGTAACGACTGGTTCCGc 

          

  2 caccgCATGTACGACACCCCTCAAG   2 caccgAAGAAGTTACCCCTGCTCAA 

   aaacCTTGAGGGGTGTCGTACATGc    aaacTTGAGCAGGGGTAACTTCTTc 

          

  3 caccgTCTGCAGGATTGCACAACAT   3 caccgAGGATGCACGGTTGTCTATG 

   aaacATGTTGTGCAATCCTGCAGAc    aaacCATAGACAACCGTGCATCCTc 

            

Agt 1 caccgGGAAGGGGTGGATGTATACG Tmod3 1 caccgTTCGGTTAGCACCGACCTCG 

   aaacCGTATACATCCACCCCTTCCc    aaacCGAGGTCGGTGCTAACCGAAc 

          

  2 caccgTGGATAAATCCAGAGAGCGT   2 caccgTGTAGGGCACATAATCGTCC 

   aaacACGCTCTCTGGATTTATCCAc    aaacGGACGATTATGTGCCCTACAc 
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  3 caccgCTCCCGACTAGATGGACACA   3 caccgGATGTGCTGGGAAGTAGTAA 

   aaacTGTGTCCATCTAGTCGGGAGc    aaacTTACTACTTCCCAGCACATCc 

            

Akt3 1 caccgCCGTAGCCGACCGATTGCAG Reep3 1 caccgCGTGAAGACGAAAAACGTCA 

   aaacCTGCAATCGGTCGGCTACGGc    aaacTGACGTTTTTCGTCTTCACGc 

          

  2 caccgAATTTGATGCTAGATAAGGA   2 caccgGCTGTCGCCCTACACTAGAG 

   aaacTCCTTATCTAGCATCAAATTc    aaacCTCTAGTGTAGGGCGACAGCc 

          

  3 caccgCTGCACCATAGAAACGTGTG   3 caccgATCTTCAGCTCATAGTACAG 

   aaacCACACGTTTCTATGGTGCAGc    aaacCTGTACTATGAGCTGAAGATc 

            

CD47 1 caccgATCAGCCTGTTCTTACGAGG Trim34a 1 caccgGACAGGCTTGGCATACACGG 

   aaacCCTCGTAAGAACAGGCTGATc    aaacCCGTGTATGCCAAGCCTGTCc 

          

  2 caccgGGATAAGCGCGATGCCATGG   2 caccgGAGAATCTAGTACCACACAC 

   aaacCCATGGCATCGCGCTTATCCc    aaacGTGTGTGGTACTAGATTCTCc 

          

  3 caccgCACTTCATGCAATGAAACTG   3 caccgGCTTAGAAGAATCCTGGACA 

   aaacCAGTTTCATTGCATGAAGTGc    aaacTGTCCAGGATTCTTCTAAGCc 

            
negative 
control 1 caccgACGGAGGCTAACGTCGCAA Ifitm3 1 caccgCTGACAGAAGCCGATCCGTG 

   aaacTTGCGACGTTAGCCTCCGTc    aaacCTCGGATCGGCTTCTGTCAGc 

          

  2 caccgCGCTTCCGCGCGGCCCGTTCAA   2 caccgAATCAAGGAAGAATATGAGG 

   aaacTTGAACGGGCCGCGCGGAAGCGc    aaacCCTCATATTCTTCCTTGATTc 

          

  3 caccgATCGTTTCCGCTTAACGGCG   3 caccgGTCTAGGGATCGGAAGATGG 

   aaacCGCCGTTAAGCGGAAACGATc    aaacCCATCTTCCGATCCCTAGACc 

            

 

Sequences in bold correspond to the sgRNA oligo. Nucleotides in lower case correspond to the 

flanking sequence required to ligate the oligos to the LentiCRISPRv2 vector. 
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Chapter 3: Characterization of murine Ifitm3 as an antiviral ISG against alphaviruses in 

vitro and in vivo 

 

This chapter is essentially as published in Journal of Virology:  

“The Interferon-Stimulated Gene IFITM3 Restricts Infection and Pathogenesis of Arthritogenic 

and Encephalitic Alphaviruses” Poddar S, Hyde JL, Gorman MS, Farzan M and Diamond MS. 

October 2016, vol 90, no.19 8780-8794. 
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ABSTRACT 

Host cells respond to viral infections by producing type I interferon (IFN), which induces 

the expression of hundreds of interferon stimulated genes (ISGs). Although ISGs mediate a 

protective state against many pathogens, the antiviral functions of the majority of these genes 

have not been identified. IFITM3 is a small transmembrane ISG that restricts a broad range of 

viruses including orthomyxoviruses, flaviviruses, filoviruses, and coronaviruses. Here, we show 

that alphavirus infection is increased in Ifitm3-/- and Ifitm locus deletion (Ifitm-del) fibroblasts, 

and reciprocally, reduced in fibroblasts trans-complemented with Ifitm3. Mechanistic studies 

showed that Ifitm3 did not affect viral binding or entry, but inhibited pH-dependent fusion. In a 

murine model of chikungunya virus arthritis, Ifitm3-/- mice sustained greater joint swelling in the 

ipsilateral ankle at days 3 and 7 post infection, and this correlated with higher levels of pro-

inflammatory cytokines and viral burden. Flow cytometric analysis suggested that Ifitm3-/- 

macrophages from the spleen were infected at greater levels than observed in wild-type (WT) 

mice, results that were supported by experiments with Ifitm3-/- bone marrow derived 

macrophages. Ifitm3-/- mice also were more susceptible than WT mice to lethal alphavirus 

infection with Venezuelan equine encephalitis virus, and this was associated with greater viral 

burden in multiple organs. Collectively, our data define an antiviral role for Ifitm3 in restricting 

infection of multiple alphaviruses. 
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INTRODUCTION 

 The type I interferon (IFN) response is a critical factor that orchestrates innate protection 

against viral pathogens. Upon detection of pathogen-associated molecular patterns (PAMPs), 

host cells produce type I IFN, which in turn induces expression of hundreds of IFN stimulated 

genes (ISGs). ISGs can inhibit multiple steps of the viral life cycle (e.g. entry, protein translation, 

assembly, or egress) or modulate the immune response, such as by enhancing the recruitment of 

leukocytes or promoting B and T cell maturation (14). 

IFN-induced transmembrane (IFITM) proteins 1, 2 and 3 were among the first IFN-

stimulated genes (ISGs) to be identified (92), and initially were studied for their roles in germ 

cell homing and maturation. IFITM proteins are approximately 130 amino acids in length, and 

are conserved in most vertebrate species (93). IFITMs have no catalytic subunit, but share 

similar domain architectures consisting of a short N-terminal domain, two antiparallel domains, a 

conserved intracellular loop, and a hydrophobic C-terminal domain (94, 95). The topology of 

IFITM3 has been clarified by electron paramagnetic and nuclear magnetic resonance analyses; 

the N-terminal is located inside the cell, whereas the antiparallel domains reside as 

intramembrane α-helices, followed by the transmembrane C-terminal domain (96). Although 

IFITM1, 2, and 3 all have reported antiviral activity, IFITM3 exhibits the greatest protection 

against the broadest range of viruses including influenza A virus (IAV), flaviviruses (Dengue, 

West Nile, and Japanese encephalitis viruses), hepaciviruses (hepatitis C virus), filoviruses 

(Ebola and Marburg viruses), bunyaviruses (Rift Valley Fever and La Crosse viruses), 

rhabdoviruses (vesicular stomatitis virus), coronaviruses (SARS-CoV), paramyxoviruses 

(respiratory syncytial virus, RSV), and reoviruses (9, 56, 60, 61, 64, 66, 68–70, 97, 98). Despite 

a wealth of in vitro data, the antiviral effects of IFITM3 in vivo are less well characterized. To 
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date, only IAV and RSV have been shown to have enhanced pathogenesis in Ifitm3-deficient 

(Ifitm3-/-) mice (59, 63, 64). In humans, the allelic polymorphism rs12252-C, which results in a 

splice variant of IFITM3 lacking the first 21 amino-terminal amino acids, correlates with 

increased morbidity and mortality following IAV infection (63, 99, 100). However, some studies 

have questioned the significance of this truncated IFITM3 allele in the susceptibility to IAV and 

other viral infections (80, 81). 

 The mechanisms by which IFITM3 restrict viral infection are not fully elucidated. 

Studies have shown that IFITM3 affects pH dependent fusion in the late endosome, which 

potentially traps entering virions in a hemifusion state (57, 78, 101). IFITM3 expression also can 

modulate the efficiency of cathepsin-mediated proteolysis in an as yet undefined manner, which 

is required for the cleavage of the fusion proteins of reoviruses, filoviruses, and coronaviruses, 

and release of the viral genome from the endolysosome into the cytosol (56, 69). Additionally, 

IFITM3 is incorporated into the plasma membrane of budding HIV particles, which restricts their 

fusogenic capability (72). Finally, ectopic expression of IFITMs appears to alter the physical 

characteristics of the endosome, resulting in increased size, reduced membrane fluidity, and 

increased cholesterol content, which subsequently impact the efficiency of viral fusion (52, 78, 

79). 

 Alphaviruses are enveloped single-stranded positive sense RNA viruses of the 

Togaviridae family, many of which are transmitted by mosquitoes. The binding, entry, and pH-

dependent fusion of alphaviruses are directed by the structural glycoproteins E1 and E2 (102, 

103). E1 and E2 are arranged as heterodimers, and assembled into trimeric spikes on the surface 

of the virion (104). E1 is classified as a type II membrane fusion protein, whereas E2 contains 

the putative receptor binding site (102).  



	  
	  

63	  

Chikungunya virus (CHIKV) has emerged rapidly over the last decade, causing outbreaks 

in the islands of the Indian Ocean, in Southern Europe, and in Southeast Asia. In 2013, CHIKV 

spread to the Western Hemisphere and by the end of 2015 had infected more than 1.8 million 

people in North, Central, and South America (30). Other arthritogenic alphaviruses have a more 

limited distribution in parts of Oceania, Africa, and South America, whereas outbreaks of 

encephalitic alphaviruses occur sporadically in North, Central, and South America (105). 

Infection by arthritogenic alphaviruses, including CHIKV, Sindbis, Ross River, and Mayaro 

viruses, results in a febrile illness associated with rash, myalgia, and moderate to severe joint 

pain (41). The musculoskeletal disease caused by these viruses is associated with direct infection 

of myocytes, synovial fibroblasts and osteoblasts (32, 34, 38, 39, 41) and the ensuing infiltration 

of inflammatory cells. Infection by encephalitic alphaviruses, including Venezuelan (VEEV), 

Eastern, and Western equine encephalitis viruses, causes a severe febrile illness associated with 

infection and injury to neurons, encephalitis, long-term debilitating neurological sequelae, and 

death (105). To date, there are no licensed alphavirus vaccines available for use in humans. 

 Several ISGs have been characterized as restriction factors against alphavirus infection, 

including ISG15, PKR, ZAP and BST-2; these genes target viral protein translation and virion 

egress, respectively (15–17, 19, 46). Ectopic expression-based screens against alphaviruses also 

have revealed putative inhibitory genes, including Isg20, Ifit1, Ifit2, Ifit3, and Rsad2 (47). 

However, in the case of Ifit1, which recognizes RNA lacking a 2'-O methylation on the 5' cap 

structure and prevents translation, alphaviruses subvert its antiviral function via RNA secondary 

structure motifs that inhibit binding (48). Recent studies suggest that ectopic expression of 

IFITM genes in cell culture can restrict infection of Sindbis (SINV) and Semliki Forest (SFV) 

viruses in cell culture by inhibiting viral fusion with cellular membranes (106). Other ISGs (e.g., 
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HSPE and P2RY6), have been identified, with little information regarding their mechanism of 

restriction (7, 20). Finally, ISGs can act in synergy to inhibit alphavirus infection (45).  

 In this study, we evaluated the antiviral activity of IFITM3 against several alphaviruses 

by comparing infection of IFN-treated wild-type (WT), Ifitm3-/-, and Ifitm locus deletion (Ifitm-

del) mouse fibroblasts with CHIKV, SFV, SINV, O'nyong nyong (ONNV), and VEEV viruses. 

In the absence of Ifitm3 gene expression we observed an increase in alphavirus replication in 

vitro, which was inhibited following trans-complementation with Ifitm3. In vivo, Ifitm3-/- mice 

inoculated with CHIKV sustained higher viral burden in the spleen, serum, and joint tissues at 

early times after infection. This was associated with higher levels of pro-inflammatory cytokines 

and increased joint swelling along with greater replication in macrophages in some tissues. 

Consistent with this latter observation, bone marrow derived macrophages from Ifitm3-/- mice 

sustained higher levels of CHIKV infection than WT cells. Analogous to our observed 

phenotypes with CHIKV in vivo, Ifitm3-/- mice infected with VEEV exhibited greater weight loss 

and mortality, and supported greater replication in the liver, spleen, spinal cord, and brain. 

Collectively, our data suggest that Ifitm3 contributes to an early host defense response against 

multiple alphaviruses of global concern.   
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MATERIALS AND METHODS 

Ethics statement. This study was carried out in accordance with the recommendations in 

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The 

protocols were approved by the Institutional Animal Care and Use Committee at the Washington 

University School of Medicine (Assurance Number: A3381-01). Dissections and injections were 

performed under anesthesia that was induced with ketamine hydrochloride and xylazine.  

 Mice. WT C57BL/6 mice were obtained commercially from Jackson Laboratories. Ifitm-

del and Ifitm3-/- mice have been reported previously (107). Ifitm2-/- mice will be described in a 

forthcoming manuscript (M. Gorman and M. Diamond, unpublished data). All transgenic mice 

were backcrossed to 99% purity using speed congenic analysis (108). Four week-old mice were 

inoculated in the left footpad with 103 FFU of CHIKV-LR in 10 µl of PBS. Ankles were 

measured (width x height) for joint swelling on days 3 and 7 post infection. On selected days 

after infection, mice were sacrificed for the collection of serum and tissues. After intracardiac 

perfusion with PBS, organs were harvested, weighed and homogenized to determine viral titers 

by a focus forming assay. For studies with VEEV, a vaccine-derived recombinant strain with a 

point mutation (TC83-A3G) was used; this mutation confers partial virulence in WT mice as it 

restores the capacity to antagonize the inhibitory actions of the ISG, Ifit1 (48). Four week-old 

mice were inoculated in the left footpad with 106 FFU of VEEV-TC83-A3G in 10 µl of PBS. 

Mice were followed daily for survival and weighed every two days. On selected days, infected 

mice were sacrificed and organs were harvested as described above. 
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 Flow cytometric analysis of CHIKV-infected splenocytes. Spleens of CHIKV-infected 

mice were harvested after perfusion with PBS. Splenocytes were obtained by generating a single 

cell suspension, passaging through a 70 µm filter, and lysis of red blood cells with ACK buffer 

(Invitrogen). Splenocytes were maintained on ice in PBS supplemented with 2% FBS and 1 mM 

EDTA. After blockade of Fcγ receptors with anti-CD16/32 (eBioscience Clone 93), staining for 

viability (eBioscience FVD eFluor 506), and cell surface antigens CD45, CD3, CD19, CD3, 

Ly6G, Ly6C, CD11b, CD11c, MHC class II, and F4/80 was performed. Viral antigen (E1 and E2 

proteins on the surface of cells) was detected using biotinylated humanized CHK-152 and 

murine CHK-166 (37), with biotinylated humanized WNV E16 and murine WNV E60 (109, 

110) serving as isotype controls, respectively. Secondary staining was followed with streptavidin 

conjugated Alexa 647 (Invitrogen). Cells were fixed subsequently using the eBioscience FoxP3 

Fixation Buffer Set and processed for flow cytometry with the BD LSRII. Data were analyzed 

with FloJo software. 

Bioplex cytokine assay. To measure cytokine levels, a BioPlex Pro Assay was 

performed according to the manufacturer's protocol (BioRad) on homogenized ankle tissues 

isolated at day 1 and 2 post infection. The cytokine screen included IL-1α, IL-1β, IL-2, IL-3 IL-

4, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, Eotaxin, G-CSF, GM-CSF, IFN-γ, 

KC, MCP-1 MIP-1α, MIP-1β, RANTES (CCL5), and TNF-α. 

 Cells and viruses. Primary WT, Ifitm-del, Ifitm2-/- and Ifitm3-/- derived mouse embryonic 

fibroblasts (MEFs) and bone marrow derived macrophages were generated according to 

published methods (111). Transformed MEFs were generated by transfection of the SV2 

plasmid, which encodes for the large T antigen of SV2 polyoma virus (112), and passaged ~10 

times. All MEFs were cultured in complete DMEM, which was supplemented with 10% fetal 
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bovine serum, and 10 mM each of GlutaMAX, sodium pyruvate, non-essential amino acids and 

HEPES pH 7.3. MEFs that ectopically express c-Myc-tagged firefly luciferase or c-Myc-tagged 

Ifitm3 were generated via lentiviral transduction of the pFCIV vector, which contains an IRES-

GFP (113, 114). Lentivirus was produced by transfecting 293T cells with pSPAX.2 (Addgene 

12260), pMD2G (Addgene 12259) and pFCIV. Supernatants were harvested at 48 to 72 h post 

transfection. WT, Ifitm-del and Ifitm3-/- transformed MEFs were incubated with lentiviral 

supernatants and 10 µg/ml of polybrene and spinoculated (300 x g) at room temperature for 30 

min. The inoculum was replaced with complete DMEM 24 h later and incubated at 37°C. 

Transduction efficiency was determined by expression of GFP, and sorting of GFP+ cells was 

performed on a FACS AriaII (Becton-Dickinson). After repeated passages to ensure stable 

expression, the MEFs were tested for GFP and protein expression by flow cytometry and 

Western blotting, respectively. Vero and 293T cells were cultured and passaged in complete 

DMEM. 

 The CHIKV-LR (La Reunion OPY1 p142) strain was a gift from S. Higgs (Kansas State 

University). SINV (Toto) was a gift from C. Rice and P. MacDonald (Rockefeller University). 

VEEV-TC83 was a gift from W. Klimstra (University of Pittsburgh). These strains were 

produced from infectious cDNA clones (115, 116). CHIKV 181/25, ONNV (MP30), SFV 

(Kumba), were provided by the World Reference Center for Arboviruses (R. Tesh, University of 

Texas Medical Branch).  Virus propagation and titration was performed in Vero cells.  

 Genotyping of MEFs. Genomic DNA was extracted from MEFs with the Qiagen 

DNeasy Blood and Tissue kit, and was characterized by PCR. Ifitm2 WT allele or the knockout 

construct was genotyped using the following primers: Ifitm2 WT F: 5'-

ATGTGGTCTGGTCCCTGTTC-3', Ifitm2 WT R: 5'-AGGTGCTCTGGCTCCATTTC-3'; WT 
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band = 520 bp. Ifitm2 KO F: 5'-TCATTCTCAGTATTGTTTTGCC-3', Ifitm2 KO R: 5'-

TGGAGACCAGAAGCCTGAC-3';  KO band = 373 bp. PCR reaction conditions for both Ifitm2 

WT and KO alleles were as follows: 94°C for 3 min, 94°C for 45 s,  55°C for 30 s, 70°C for 1 

min 30 s, 35 cycles, and  70°C for 10 min. The Ifitm3-/- mouse can be identified by the in-frame 

insertion of GFP within the Ifitm3 allele (C Bailey, unpublished)(107).  WT allele or the 

knockout construct was genotyped using the following primers:  WT Ifitm3 F: 5'-

ATCCTTTGCCCTTCAGTGCT-3' and WT Ifitm3 R: 5'-ACTCATACCTCGGTGCCATC-3'; 

WT band = 355 bp, KO band = 1321 bp. PCR reaction conditions for both Ifitm3 WT and KO 

were as follows: (a) 94°C for 1 min 30 s, 94°C for 25 s, 60°C for 30 s, reducing temperature by 

0.1°C per cycle, 72°C for 1 min 30 s, 35 cycles, and 72°C for 5 min. The IFITM-del allele was 

determined using the following primers (107): IFITM-del WT F: 5'-

AACATGCCTTGCATCCCTGGAGTTCCTTCTAAAGGA-3', IFITM-del WT R: 5'-

CCCTAAAACACTTAGCAGTGACCCCTCACAAGCC-3'; WT band = 500bp. Ifitm-del KO F: 

5'-ACTCTAGCCAGAGTCTTGCATTTCTCAGTCCTAAAC-3', IFITM-del KO R: 5'-

TCTAGTACAGTCGGTAAGAACAAAATAGTGTCTATC A-3'; KO band = 600bp. PCR 

reaction conditions for Ifitm-del alleles were as follows: 95°C for 30 s, 54°C for 30 s, 68°C for 1 

min 30 s, 29 cycles, and 68°C for 5 min.  

 qRT-PCR measurement of Ifitm genes. WT, Ifitm2-/-, Ifitm3-/- and Ifitm-del MEFs (104 

cells per condition) were seeded in a 96-well plate. After a 6 h incubation with IFN-β at varying 

doses, MEFs were lysed and total RNA was extracted with the Qiagen RNeasy Kit. Ifitm2 and 

Ifitm3 were detected using qRT-PCR and normalized to Gapdh expression, using the following 

PrimeTime assays (IDT) according to the manufacturer’s instructions: Ifitm2: 

Mm.PT.58.33172327.g, Ifitm3: Mm.PT.51.6979575.g, and Gapdh: Mm.PT.39a.a. 
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 Western blotting. MEFs were lysed in RIPA and electrophoresed under reducing 

conditions on a 12% Bis-Tris NuPAGE gel with MES buffer according to the manufacturer’s 

instructions (Thermo Fisher). After transfer onto PVDF membranes (Thermo Fisher) using an 

iBlot apparatus (Thermo Fisher), proteins of interest were detected with mouse anti-b-actin 

(CST, 8H10D10), mouse anti-c-Myc (Sigma, 9E10), goat anti-Ifitm3 (R & D, AF337), HRP-

conjugated anti-mouse IgG (Sigma Chemical), and HRP-conjugated anti-goat IgG (Santa Cruz, 

sc2304). For quantification of protein, secondary donkey anti-mouse IRDye 680 (Li-Cor 925-

68072) and anti-rabbit- IRDye 800CW (Li-Cor, 926-32214) were used instead of HRP 

conjugates, and visualized on the Odyssey Imager (Li-Cor). Polyclonal rabbit anti-Ifitm3 

(Proteintech, 11714-1-AP) was used for Ifitm3 detection in these experiments. Quantification 

was performed with Li-Cor Odyssey software. 

 Virus infection of cells. MEFs were plated (104 cells per well) in a 96-well plate, and in 

some experiments pretreated for 6 h with recombinant mouse IFNβ (PBL Assay Science) at 

concentrations from 5 to 0.1 IU/ml, as indicated in the Figure Legends. The cells were inoculated 

with a given alphavirus (multiplicity of infection (MOI) of 5) and incubated at 37°C. At selected 

time points, cells were trypsinized, fixed with 1% paraformaldehyde (PFA), and permeabilized 

with Hank’s Balanced salt solution (HBSS) containing 0.1% saponin and 10 mM HEPES. 

Infection was determined after sequentially staining cells with mouse or human mAbs (CHIKV, 

CHK-11; SFV, 2B4; TC83, 1A4A-1; ONNV, 4J21) (37, 117) against the E2 glycoprotein. SINV 

infection was detected using murine anti-SINV ascites (ATCC, VR-1248AF). Alexa 647 

conjugated goat-anti mouse or human IgG antibody (Life Technologies) was used for secondary 

antibody staining. Samples were processed by flow cytometry using a BD FACSArray. Data 

were analyzed with FloJo software. 
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  For viral yield assays, cells were plated (105 cells per well in a 12-well plate) and in some 

experiments pretreated with specified doses of IFNβ for 12 hours. Cells then were infected with 

CHIKV at 37°C. One hour later, the plates were rinsed twice with warm PBS, and replaced with 

fresh DMEM supplemented with 10% FBS. Supernatants were collected at specific time points, 

and viral titers were determined by focus forming assay on Vero cells, as described (37, 48). 

After fixation, infected cell foci were detected with CHK-11 and HRP-conjugated anti-mouse 

IgG (Sigma Chemical), and quantified with an ImmunoSpot (Cellular Technologies, Ltd.). 

 Binding and internalization assays. MEFs were plated (105 cells/well in a 24 well plate) 

the night before use. Cells were chilled on ice for 10 min, exposed to CHIKV-LR at an MOI of 

5, and incubated on ice for 1 h. Unbound virus was removed with repeated washes of chilled 

media or PBS. To determine binding efficiency of virus, MEFs were lysed with RLT buffer and 

RNA was extracted using the Qiagen RNeasy Mini Kit, and analyzed for CHIKV RNA by qRT-

PCR. To determine the efficiency of virus internalization, warm complete DMEM was added to 

MEFs and incubated at 37°C for 1 hr. Medium was removed and cells were placed on ice. 

Proteinase K (500 µg/ml) in ice cold PBS was added for 1 h to digest any surface bound virus 

(118). MEFs were then transferred to eppendorf tubes and washed with PBS before lysing with 

RLT buffer and extracting RNA for qRT-PCR. Primer probe sets were ordered from IDT were 

CHIKV (F: 5'-TCGACGCGCCCTCTTTAA-3', R: 5'-ATCGAATGCACCGCACACT-3', Probe: 

5'-/56-FAM/ACCAGCCTGCACCCATTCCTCAGAC/36-TAMSp/-3') and the GAPDH 

Primetime Assay Mm.PT.39a.a. 

 Fusion from without (FFWO) assay. MEFs were rinsed and then incubated with 

DMEM, supplemented with 0.2% FBS, 10 mM HEPES pH 7.3 and 20 mM NH4Cl on ice for 15 

min. Virus (MOI of 100) was added to MEFs on ice for one hour to allow binding. Unbound 
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virus was removed after several rinses with chilled medium. Subsequently, pre-warmed acidic 

(DMEM, 0.2% FBS, 10 mM HEPES, 30 mM succinic acid pH 5.5) or neutral (DMEM, 0.2% 

FBS, 10 mM HEPES, pH 7.4) medium was added for 2 min at 37°C. Medium then was removed 

and replaced with warmed DMEM, 10% FBS, 10 mM HEPES supplemented with 20 mM NH4Cl 

to inhibit endosomal viral fusion and de novo infection via the endosomal pathway. At 6 h after 

infection, MEFs were fixed with PFA, permeabilized, and analyzed for viral antigen by flow 

cytometry, as described above. 

 Statistical analysis. All data was analyzed using Prism software (GraphPad6, San Diego, 

CA). Viral infection assays in cell culture were analyzed by one-way ANOVA with Dunnett’s 

multiple comparisons test, or Student’s t-test. Viral kinetics assays were analyzed by two-way 

ANOVA with Dunnett’s or Sidak’s multiple comparisons. Viral burden assays were analyzed by 

the Mann-Whitney test. Quantitative RT-PCR assays were analyzed by Student’s t-test. Kaplan-

Meier survival curves were analyzed by the log rank test.  
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RESULTS 

Restriction of alphaviruses by Ifitm proteins in cell culture. Although expression of 

IFITM genes inhibits infection of several different genera of viruses (9, 56, 60, 61, 64, 66, 68–

70, 97), their antiviral activities against alphaviruses have yet to be established. To test whether 

Ifitm genes restrict alphavirus infection, we developed MEF lines lacking Ifitm2 (Ifitm2-/-), 

Ifitm3 (Ifitm3-/-), and Ifitm1, 2, 3, 5, and 6 (Ifitm-del) (Fig 3.1A). To assess their effects on 

CHIKV replication, MEFs were first pretreated with 1 IU/ml of recombinant mouse IFNβ to 

induce Ifitm gene expression (Fig 3.1B). Ifitm3 protein induction was confirmed by Western 

blotting in WT and Ifitm2-/- MEFs after IFNβ treatment, whereas, as expected, Ifitm3-/- and Ifitm-

del MEFs lacked Ifitm3 protein (Fig 3.1C). IFN pretreated MEFs were then infected with a high 

viral dose (MOI of 5) of pathogenic (CHIKV-La Reunion 2006 (LR)) or attenuated (CHIKV 

181/25) strains of CHIKV. Fourteen hours later, cells were harvested, and viral antigen was 

analyzed by flow cytometry. Whereas Ifitm3-/- and Ifitm-del MEFs supported greater CHIKV 

infection (3-fold, P < 0.01 and 4-fold, P < 0.001 for CHIKV 181/25; 4.5-fold, P < 0.0001 and 

6.5-fold, P < 0.0001 for CHIKV-LR) than WT cells, no increase in viral antigen expression was 

observed in Ifitm2-/- MEFs (Fig 3.1D-F). Correspondingly, IFNβ pre-treated Ifitm3-/- and Ifitm-

del MEFs infected with CHIKV produced higher titers of infectious virus compared to WT or 

Ifitm2-/- cells (Fig 3.1G, CHIKV 181/25: 28-fold for Ifitm3-/- (P < 0.01), and 12-fold for Ifitm-del 

(P < 0.05); Fig 3.1H, CHIKV-LR: 147-fold for Ifitm3-/- (P < 0.0001), and 36-fold for Ifitm-del 

(P < 0.0001)) at 14 h post-infection. These data suggest that Ifitm3 has a dominant antiviral 

effect on CHIKV infection compared to Ifitm2. 
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We next tested whether Ifitm3 exhibited antiviral activity against other alphaviruses. 

Analogous to experiments with CHIKV, WT and Ifitm-deficient MEFs were pre-treated with 

varying doses of IFNβ, infected at a high MOI, and assayed by flow cytometry. Notably, Ifitm3-/- 

and Ifitm-del MEFs pre-treated with IFNβ supported enhanced infection by SFV, ONNV, VEEV 

(strain TC-83), and SINV compared to WT cells (P < 0.05, Fig 3.2).  

To corroborate our findings, we trans-complemented WT, Ifitm3-/- and Ifitm-del MEFs 

with c-myc tagged to the N-terminal of Ifitm3 or firefly luciferase protein as a control. After 

confirmation of ectopic protein expression by flow cytometry and Western blotting (Fig 3.3A 

and B), MEFs were infected with CHIKV 181/25 (MOI of 5) in the absence of IFNβ treatment 

and analyzed at 6 h post-infection. MEFs trans-complemented with Ifitm3 showed less CHIKV 

replication than firefly luciferase expressing controls (Fig 3.3C and D). This data suggests that 

Ifitm3 inhibits multiple alphaviruses in vitro and does not require expression of Ifitm1, Ifitm2, 

Ifitm5, and Ifitm6 proteins to exert its antiviral activity. 

Ifitm3 inhibits pH-dependent fusion of alphaviruses. Studies with IAV have shown 

that IFITM3 prevents fusion of virions from the late endosome, which is required for release of 

viral genomic material into the cytosol (57, 101). Correspondingly, IFITM3 is expressed 

preferentially on membranes of intracellular vesicles including endosomes (56). However, 

following gene upregulation, such as after IFN induction or ectopic expression, IFITM3 can 

accumulate on the plasma membrane (59, 62, 119), which independently could restrict 

attachment of viruses to the cell surface. To define the stage in the alphavirus lifecycle that 

Ifitm3 inhibits, we assessed its effect on binding, internalization, and fusion. 
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To determine if expression of Ifitm3 alters binding of alphaviruses to the cell surface, 

trans-complemented MEFs were incubated with CHIKV at 4°C for 1 h, washed extensively to 

remove unbound virus, and assayed by quantitative RT-PCR (qRT-PCR). As no differences in 

levels of bound CHIKV genomic RNA were detected between Ifitm3 expressing MEFs and their 

corresponding controls (Fig 3.4A), we concluded that binding efficiency was not appreciably 

affected. To assess whether Ifitm3 affected internalization, CHIKV was pre-bound to trans-

complemented MEFs for 1 h on ice, followed by incubation at 37°C for 1 h. MEFs then were 

treated with proteinase K to remove residual surface bound virus before recovery of cellular 

RNA. Similar to cell surface binding assays, we observed no difference in the levels of 

internalized viral RNA (Fig 3.4B). As anticipated, in control binding experiments performed at 

4oC, proteinase K treatment significantly decreased (11-fold, P < 0.0001) the level of cell-bound 

viral RNA (Fig 3.4C). 

As we did not observe effects of Ifitm3 on attachment or internalization, we next 

evaluated pH-dependent fusion. Alphaviruses can be induced to fuse at the plasma membrane in 

the presence of an acidic solution (acid-bypass or fusion from without (FFWO)) (120), albeit at 

low efficiency; this required us to infect at a high multiplicity of infection. To test whether 

FFWO is affected by ectopic expression of Ifitm3, MEFs were pre-incubated with CHIKV at 

4°C, washed to remove unbound virus, and then incubated with pre-warmed medium at pH 7.4 

or pH 5.5. Subsequently, medium was replaced with normal pH culture medium supplemented 

with 20 mM NH4Cl, which prevents alphavirus maturation and fusion (120), was added to inhibit 

productive infection of progeny virions. Fourteen hours later, MEFs were analyzed for viral 

antigen by flow cytometry. Ifitm3 trans-complemented MEFs had lower levels of CHIKV 

antigen than luciferase expressing controls in WT, Ifitm3-/- and Ifitm-del MEFs (Fig 3.4D and 
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E). Consistent with results with IAV (101), expression of Ifitm3 also inhibits pH-dependent 

fusion of alphaviruses. 

Ifitm3 inhibits alphavirus infection in vivo. To determine whether Ifitm3 has a 

protective role against alphaviruses in vivo, we used an established mouse model of CHIKV 

infection and arthritis (36). We inoculated 4-week old WT and Ifitm3-/- mice with CHIKV-LR in 

the left footpad and measured joint swelling on days 3 and 7 after infection, which correspond to 

the peaks of tissue edema and cellular infiltrates, respectively (36, 37). Whereas no difference 

was seen in viral titers at these time points (Fig 3.5A), greater swelling was observed in 

ipsilateral ankle joints of Ifitm3-/- compared to WT mice on both days, (Fig 3.5B and C, P < 

0.001 and P < 0.01). Because of the disparity between clinical signs and virological data, we 

analyzed viral burden in different tissues (serum, spleen, ankles, wrists, and quadriceps muscles) 

at earlier time points (days 1 and 2 after inoculation) (Fig 3.5D-K). At day 1 after inoculation, 

the serum, spleen, and ipsilateral ankle (Fig 3.5D-F) of Ifitm3-/- mice had higher viral titers 

compared to WT mice (20-fold in serum P  < 0.0001; 160-fold in spleen, P < 0.0001; and 2.5-

fold in ipsilateral ankle, P < 0.01). In comparison, at day 2, the titers in the spleen, serum and 

ipsilateral ankle were similar but levels in the contralateral ankle and quadriceps muscle (Fig 

3.5G and I) were somewhat higher (4.5-fold, P < 0.001; and 5-fold P < 0.01, respectively). 

However, by day 3, no differences in viral titer were observed in any tissues between WT and 

Ifitm3-/- mice.  

The early higher viral burden in Ifitm3-/- mice corresponded to higher levels of 

inflammatory chemokines and cytokines in the ipsilateral ankle (Table 3.1). The mean 

concentrations of several chemokines and cytokines (e.g., IL-2, MCP-1, TNF-α, IL-1α, IL-

12p40, G-CSF, and GM-CSF, P < 0.05) were higher in ankles from CHIKV-infected Ifitm3-/- 



	  
	  

76	  

than WT mice at days 1 and/or and 2 after infection. These data suggest that in the context of 

CHIKV infection in vivo, Ifitm3 contributes to restriction of early viral infection and spread, 

which impacts cytokine induction and the development of clinical disease. 

Given the increase in viral titers in the spleen of Ifitm3-/- mice on day 1, we hypothesized 

that Ifitm3 might affect the cellular tropism of CHIKV. To identify the cell subsets that were 

more susceptible to CHIKV infection, we performed flow cytometric analysis on spleens of 

infected WT and Ifitm3-/- mice (Fig 3.6A-C). Splenocytes were stained for CHIKV envelope (E1 

and E2) proteins using specific MAbs (37) and compared to isotype control MAbs. Inflammatory 

monocytes (CD11b+Ly6G+), macrophages (CD11bhiF4/80lo), and red pulp macrophages 

(CD11bloF4/80hi) expressed high levels of viral antigen (50%, 50% and 25%, respectively), with 

no difference in the fraction of infected cells from WT and Ifitm3-/- cells (Fig 3.6B and data not 

shown). Nonetheless, greater numbers of CHIKV antigen-positive CD11bhiF4/80lo and 

CD11bloF4/80hi macrophages were detected in the spleens of Ifitm3-/- compared to WT mice (1.3 

fold, P < 0.05; 1.7 fold, P < 0.05; and 2.2 fold, P < 0.05, respectively; Fig 3.6C). An increased 

number of Ifitm3-/- neutrophils expressed CHIKV antigen (1.6 fold, P < 0.05), but the overall 

number of neutrophils was substantially lower compared to other myeloid cell populations. No 

differences in viral antigen-positive inflammatory monocytes were observed between the Ifitm3-/- 

and WT controls, and neither Ifitm3-/- nor WT CD4+, CD8+, CD19+, or NK1.1+ cells exhibited 

detectable viral protein staining (data not shown). To determine if Ifitm3-/- macrophages can 

support greater replication of CHIKV, bone marrow derived macrophages were cultured from 

WT and Ifitm3-/- mice, and infected at an MOI of 0.1. Viral supernatants were collected up to 72 

h post infection and analyzed by focus forming assay. Ifitm3-/- macrophages produced more virus 

at 24 and 48 h post infection compared to WT cells (Fig 3.6D, 12.5-fold, P < 0.01 and 10-fold, P 
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< 0.01, respectively). These data suggest that a lack of Ifitm3 allows for enhanced CHIKV 

infection in macrophages. 

To assess whether Ifitm3 had a protective effect against other alphaviruses in vivo, we 

infected 4 week-old WT and Ifitm3-/- mice with a previously described moderately pathogenic 

encephalitic alphavirus strain (VEEV TC83-A3G), which is resistant to the antiviral effects of 

another ISG, Ifit1 (48). Ifitm3-/- mice exhibited greater mortality (Fig 3.7A) and morbidity (as 

judged by weight loss, Fig 3.7B) after VEEV TC83-A3G infection compared to WT mice. 

Consistent with the clinical phenotypes, higher VEEV titers were observed at day 1 after 

infection in the liver and spinal cord (3-fold, P < 0.05; 8-fold, P < 0.01, respectively, Fig 3.7C) 

and day 2 after infection in the spleen, brain, and liver of Ifitm3-/- compared to WT mice (2.5-

fold, P < 0.05; 250-fold, P < 0.05; and 10-fold, P < 0.01, respectively, Fig 3.7C). These data 

confirm that Ifitm3 restricts alphavirus infection in vivo and prevent early dissemination. 
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DISCUSSION 

To evaluate the potential antiviral role of Ifitm3 in restricting alphaviruses in vitro, we 

infected WT, Ifitm3-/- and Ifitm-del MEFs with CHIKV, SFV, ONNV, VEEV and SINV. All 

alphaviruses tested exhibited some degree of enhanced infection in Ifitm3-/- cells. In contrast, 

studies with CHIKV and Ifitm2-/- MEFs showed comparable infection to WT MEFs, suggesting 

that Ifitm2 is not the predominant Ifitm gene responsible for the inhibiting alphaviruses in the 

context of an intact type I IFN response. The antiviral function of Ifitm3 against alphaviruses 

was validated using trans-complemented MEFs that ectopically express Ifitm3. Analogous to 

how IFITM3 inhibits IAV infection (78, 101), our mechanism of action studies suggest that 

Ifitm3 does not affect the binding or internalization of CHIKV, but instead prevents pH-

dependent fusion events.  

We also observed greater CHIKV infection and disease pathogenesis in vivo in animals 

lacking Ifitm3 expression. Ifitm3-/- mice developed greater ankle swelling compared to WT 

animals, and this difference correlated with an increased in viral burden and inflammatory 

chemokine and cytokine levels at early times post inoculation. Notably, at later time points, titers 

became equivalent in WT and Ifitm3-/- mice, suggesting possible immune evasion of Ifitm3 by 

CHIKV, which could occur by several previously identified mechanisms including host 

transcriptional shut-off (121) or antagonism of IFN signaling (122). To assess possible effects of 

Ifitm3 on cellular tropism, we assessed CHIKV antigen staining using flow cytometric analysis 

of splenocytes at day 1 post infection. These cells were chosen because they were easily profiled, 

and exhibited substantial (160-fold) difference in viral yield at this time point. Although the 

overall percentage of CHIKV-positive myeloid cells was similar in the spleens of Ifitm3-/- and 

WT mice, a higher number of macrophages were positive for CHIKV antigen, suggesting a 
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possible role for Ifitm3 in controlling viral growth in these cell types. One limitation of the flow 

cytometry experiments is that we cannot be certain that CHIKV antigen-positive staining defines 

bona fide infection, as it remains possible that we are detecting bound/opsonized virus on the 

surface of cells rather than E1 and E2 proteins prior to budding. To address this issue, we tried 

infection studies in WT and Ifitm3-/- mice with double subgenomic reporter gene viruses (e.g., 

CHIKV-GFP); however the fluorescence staining was too dim for conclusive results, possibly 

because of the attenuation of these viruses. Nonetheless, our studies with bone marrow derived 

macrophages support a role for Ifitm3 restriction of CHIKV infection in this cell type, as 

increased titers were observed in cells from Ifitm3-/- mice. 

Our in vivo findings were not limited to CHIKV, as we also observed greater mortality, 

weight loss, and viral burden following VEEV infection of Ifitm3-/- mice. These data suggest an 

important role for Ifitm3 in restricting alphavirus pathogenesis in vivo, by limiting replication 

and dissemination early during infection. Future studies using analogous flow cytometric 

approaches and conditional gene deletions are planned to define the cell-type specific antiviral 

effect of Ifitm3 in the context of VEEV pathogenesis. 

A possible antiviral role of IFITM proteins against alphaviruses has not been extensively 

analyzed. Studies with pseudotyped virions (alphavirus structural proteins and retroviral RNA) 

initially suggested that IFITMs had little antiviral activity against CHIKV, SINV, and VEEV (M. 

Farzan, unpublished observations (52)). It remains uncertain why Ifitm3 would not inhibit 

pseudotyped alphavirus virions although the icosahedral display of E1 and E2 may be altered in 

these viruses, which could affect entry and fusion of virus particles. Ifitm3 has been implicated 

although not definitively demonstrated as a restriction factor for alphaviruses. Karki et al 

identified IFITM3 as one of 31 human ISGs that functioned synergistically with zinc finger 
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antiviral protein (ZAP) to enhance restriction of SINV infection (45). Schoggins et al reported 

that IFITM3 moderately reduced CHIKV and ONNV  infection  in human cells ectopically 

expressing IFITM3 (20, 84). Consistent with these observations, a recent paper reported an 

inhibitory effect of IFITM3 and IFITM1 against SFV and SINV when ectopically expressed in 

human A549 cells  (106). These data support our findings of an antiviral activity of Ifitm3 

against multiple alphaviruses.  

The characterization of Ifitm3 as an antiviral ISG against alphaviruses adds to the known 

host defense genes that block alphavirus infection. ISG15 protects against SINV in vivo, likely 

via conjugation (ISGylation) to viral proteins (15–17), ZAP restricts SINV, Ross River, SFV, 

and VEEV by blocking the accumulation of viral genomic content in the cytoplasm (8), and 

BST-2 (tetherin) prevents CHIKV egress by retaining budding virus on the plasma membrane 

(19). SINV also is strongly inhibited by PKR in the context of replication in DCs (46). Finally, a 

separate genetic screen revealed several unique ISGs with possible antiviral activity, against 

SINV including Isg20, Ifit1, Ifit2, Ifit3, and Rsad2 (viperin) (47).  

 In studies with other viruses, IFITM3 appears to restrict early steps in the viral lifecycle, 

particularly fusion into the cytoplasm (57, 78, 101). This is supported by data from our FFWO 

experiments in the context of CHIKV infection and by recent studies with SFV (106). However, 

it remains possible that IFITM3, akin to effects on HIV, could restrict alphavirus infection in a 

pH insensitive manner by integrating into the viral membrane, which we are currently exploring 

using mass spectrometric analysis of alphavirus virions derived from cells expressing or lacking 

Ifitm3. An additional mechanism that warrants investigation is the possible role for Ifitm3 in 

preventing viral budding and/or egress. IFITM3 can be detected at the plasma membrane, and its 

expression and localization is enhanced upon IFN stimulation (59, 62, 119). 
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 In summary, we have shown that Ifitm3 can restrict several alphaviruses both in vitro and 

in vivo. Our data in mice suggest that Ifitm3 may function to restrict early replication and 

dissemination of alphaviruses, thereby preventing pathogenesis. Further investigation into 

additional mechanisms of Ifitm3 mediated restriction of alphaviruses is warranted as well as 

effects of gene polymorphisms, which could contribute to relative disease susceptibility in 

humans. Indeed, a common human allelic IFITM3 variant, rs12252-C, encodes for a 21 amino 

acid deletion of the N terminal part of the protein that appears to be associated with susceptibility 

to IAV infection (63, 99, 100). It remains to be determined whether this or other polymorphisms 

in the IFITM3 gene can be linked to more severe or persistent alphavirus infection. 
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Figure 3.1  

 

 

Figure 3.1. CHIKV infection is enhanced in cells lacking Ifitm3 expression. 

WT, Ifitm2−/−, Ifitm3−/−, and Ifitm-del MEFs were generated from WT and gene-targeted mice. 

(A) Genotyping of MEFs was performed by PCR and agarose electrophoresis. Bands 

corresponding to WT and KO alleles are indicated to the right of each gel. (B) MEFs were 
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pretreated with various doses of IFNβ and tested for Ifitm2 and Ifitm3 gene induction by qRT-

PCR. Ifitm2 expression was not detected in Ifitm2−/− and Ifitm-del MEFs, and Ifitm3 expression 

was not detected in Ifitm3−/− and Ifitm-del MEFs. Bars show the means and standard errors of the 

means from three independent experiments performed in duplicate. Means were compared 

between control and IFNβ-treated cells using a nonparametric one-way ANOVA with Dunn's 

multiple comparisons (*, P < 0.05; ***, P < 0.001; ****, P < 0.0001). (C) MEFs were pretreated 

with the indicated doses of IFNβ and tested for Ifitm3 expression by quantitative Western 

blotting. (Left) Means from three independent experiments were compared between control and 

IFNβ-treated cells using a nonparametric one-way ANOVA with Dunn's multiple comparisons 

(*, P < 0.05). (Right) A representative Western blot with loading controls (β-actin) is shown. (D 

to H) The indicated MEFs were pretreated with 1 U/ml of IFNβ and subsequently infected with 

CHIKV 181/25 or CHIKV-LR at an MOI of 5. (D) At 14 h postinfection, MEFs were stained for 

viral E2 protein and analyzed by flow cytometry. (E and F) Cumulative flow cytometry data for 

CHIKV 181/25 and CHIKV-LR. Bars show the means and standard errors of the means (SEM) 

from five independent experiments performed in quadruplicate or duplicate. Means were 

compared between WT and deficient cell lines using one-way ANOVA with Dunnett's multiple 

comparisons (*, P < 0.05; **,P < 0.01; ***, P < 0.001; ****, P < 0.0001). (G and H) Kinetics 

of CHIKV 181/25 and CHIKV-LR replication in IFNβ-pretreated WT,Ifitm3−/−, and Ifitm-

del MEFs infected at an MOI of 5. Supernatant was harvested at indicated time points, and virus 

titers were determined. Curves show the means and standard errors of the means from the pooled 

data of two or three independent experiments performed in triplicate. Means at each time point 

were compared between WT and knockout cell lines using two-way ANOVA with Dunnett's 

multiple comparisons (*, P < 0.05; **,P < 0.01; ***, P < 0.001; ****, P < 0.0001).	  
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Figure 3.2 

     

 Figure 3.2. Infection of other alphaviruses is enhanced in cells lacking Ifitm3 expression. 

WT, Ifitm3−/−, and Ifitm-del MEFs were pretreated with the indicated concentrations of IFNβ and 

subsequently infected with SFV (A), ONNV (B), VEEV-TC83 (C), or SINV (D) at an MOI of 5. 

At 14 h postinfection, MEFs were stained for viral E2 proteins and analyzed by flow cytometry. 

Bars represent the means and standard errors of the means from three independent experiments 

performed in duplicate. For each concentration of IFNβ, means between WT and knockout cells 

were compared using one-way ANOVA with Dunnett's multiple comparisons (*, P < 0.05; 

**, P < 0.01; ***, P < 0.001).  
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Figure 3.3	  
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Figure 3.3. Ectopic expression of IFITM3 inhibits CHIKV infection. c-Myc-tagged firefly 

luciferase and Ifitm3 were cloned into the pFCIV vector and introduced into WT, Ifitm3−/−, 

and Ifitm-del MEFs via lentiviral transduction. (A and B) Successful transduction was 

determined by staining for c-Myc tag by flow cytometry (gray-filled are negative control; black 

lines, anti-c-Myc) (A) and Western blotting for firefly luciferase (detected with anti-c-Myc 

antibody) and Ifitm3 (detected with anti-Ifitm3 antibody) in transcomplemented MEFs (B). β-

Actin loading controls are provided below each gel. Results are representative of three 

independent experiments. (C) Flow cytometry contour plots of CHIKV infection in 

transcomplemented MEFs. Cells were infected for 6 h in the absence of IFNβ with CHIKV 

181/25 at an MOI of 5. Infection was determined by flow cytometry of E2-positive cells. (D) 

Pooled data from CHIKV infection. Bars represent the means and standard errors of the means 

from three independent experiments done in triplicate. Means were compared by Student's t test 

(**, P < 0.01).  
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Figure 3.4 
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Figure 3.4. Role of Ifitm3 in restricting CHIKV binding, entry, and pH-dependent fusion. 

(A) CHIKV-LR was bound to firefly luciferase or Ifitm3-transcomplemented MEFs for 1 h on 

ice. After repeated rinses with chilled PBS, total RNA was isolated and analyzed for CHIKV 

RNA by qRT-PCR. Pooled data from 3 independent experiments done in duplicate are shown. 

(B) After CHIKV-LR binding and washing, MEFs were incubated at 37°C for 1 h to allow for 

virus internalization. MEFs were then treated with proteinase K on ice for 1 h to digest any 

bound but not internalized virions, followed by washing, RNA extraction, and analysis by qRT-

PCR. Data are representative of three independent experiments performed in duplicate. (C) As a 

control, we confirmed the efficiency of proteinase K for removing surface-bound (at 4°C) but not 

internalized CHIKV. MEFs treated with proteinase K had lower levels of CHIKV RNA as 

detected by qRT-PCR (higher threshold cycle [CT] values, P < 0.0001). (D and E) FFWO assay 

of CHIKV 181/25 on transcomplemented MEFs. CHIKV (MOI of 100) was bound to cells on ice 

for 2 h, followed by treatment with neutral (pH 7.4) or acidic (pH 5.5) medium at 37°C for 2 min 

to induce fusion. Medium was replaced with neutral culture medium supplemented with NH4Cl 

and incubated at 37°C for 14 h before analysis of CHIKV antigen-positive cells by flow 

cytometry. Data represent the means and standard errors of the means from three independent 

experiments done in triplicate. Means were compared by Student's t test (***, P < 0.001; 

****, P < 0.0001). 
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Figure 3.5 
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Figure 3.5.  Ifitm3 restricts CHIKV pathogenesis in vivo. Four-week-old WT 

and Ifitm3−/− mice were inoculated with 103 FFU of CHIKV-LR in the left footpad. (A) Viral 

titers in the ipsilateral ankle at days 3 and 7 postinfection. Data were pooled from two 

independent experiments, and each point represents one mouse (n = 8 to 10). The dotted line 

represents the limit of detection. No statistical difference was seen by the Mann-Whitney test. (B 

and C) Swelling of the ipsilateral ankle of infected WT and Ifitm3−/− mice at days 3 and 7 

postinfection. Area was determined by measuring the width and height of the ankle using digital 

calipers. Data are pooled from two independent experiments and are normalized to the measured 

area of the ankles just prior to infection. Each dot represents one mouse (n = 8 to 10). Asterisks 

indicate statistical differences by the Mann-Whitney test (**, P< 0.01; ***, P < 0.001). (D to K) 

Four-week-old WT and Ifitm3−/− mice were inoculated with 103 FFU of CHIKV-LR in the left 

footpad. Viral burdens in the serum (D), spleen (E), ankles (F and G), muscles (H and I), and 

wrists (J and K) at days 1 and 2 postinfection were determined by focus-forming assay. Dotted 

lines represent the limit of detection. Data are pooled from three independent experiments, and 

each dot represents one mouse (n = 13 to 16). Asterisks indicate statistical differences by the 

Mann-Whitney test (**, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure 3.6 
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Figure 3.6. Infection of splenocyte subsets by CHIKV-LR in WT and Ifitm3−/− mice. 

Splenocytes from 4-week-old WT and Ifitm3−/− mice were harvested 1 day after infection 

(103 FFU in the footpad); stained for neutrophils, inflammatory monocytes, dendritic cells, 

eosinophils, macrophages, and red pulp macrophages and for surface expression of CHIKV E1 

and E2 viral antigen; and analyzed by flow cytometry. (A) Detailed gating strategy for different 

cell subsets is shown. FSC, forward scatter; SSC, side scatter. (B) Representative contour plots 

of WT and Ifitm3−/− splenocytes gated for CHIKV antigen-positive cells, stained with either 

isotype control or anti-CHIKV envelope protein antibody. (C) Scatter plots indicate the number 

of CHIKV antigen-positive cells for each subpopulation. Data were pooled from two 

independent experiments. Each dot represents one mouse (n = 9 to 10). Asterisks determine 

statistical differences by the Mann-Whitney test (*, P < 0.05). Note the break in the y axis. (D) 

Viral kinetics of CHIKV-LR infection in bone marrow-derived WT and Ifitm3−/− macrophages 

infected at an MOI of 0.1. Data are pooled from five independent experiments performed in 

triplicate, and each point indicates mean and standard error of the mean. The dotted line indicates 

the limit of detection. Asterisks determine statistical differences by two-way ANOVA and 

Sidak's multiple comparisons (**, P < 0.01). hpi, hours postinfection. 
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Figure 3.7	  
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Figure 3.7. Ifitm3 protects against VEEV pathogenesis. (A and B) Four-week-old WT 

and Ifitm3−/− mice were infected with 106 FFU of VEEV-TC83-A3G in the footpad and followed 

for survival (A) and morbidity by weight loss (B). Data are pooled from two independent 

experiments (n = 19 to 21). Asterisks denote statistical differences by log rank test (***, P < 

0.001). (C) VEEV viral burden of serum, spleen, liver, inguinal lymph nodes (iLN), popliteal 

lymph nodes (pLN), brain, and spinal cord at days 1, 2, and 4 after infection of WT 

and Ifitm3−/− mice. Data are pooled from four independent experiments, where each dot 

represents one mouse (n = 6 to 10). Dotted lines represent the limit of detection. Asterisks 

indicate statistical differences by the Mann-Whitney test (*, P < 0.05; **, P < 0.01).  
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Table 3.1: Cytokine levels in joint tissue homogenates after CHIKV infection 
 Day +1 Day +2 
Cytokine Genotype pg/ml P pg/ml P 
IL-1α WT 7.6 (± 1.0) 0.2 9.8 (± 0.6) 0.03 
 Ifitm3-/- 12 (± 2.4)   14 ± 1.5)    
IL-1β WT 52 (± 11) 0.3 144 (± 18) 0.2 
 Ifitm3-/- 71 (± 14)   181 (± 9.2)   
IL-2 WT 11 (± 1.9) 0.03 15 (± 1.9) 0.09 
 Ifitm3-/- 16 (± 1.8)   21 (± 3.1)   
IL-3 WT 0.33 (± 0.06) 0.9 0.39 (± 0.08) 0.006 
 Ifitm3-/- 0.33 (± 0.06)   0.76 (± 0.06)   
IL-4 WT 3.2 (± 0.2) 0.3 4.2 (± 0.5) 0.1 
 Ifitm3-/- 3.2 (± 0.5)   6.1 (± 1.0)   
IL-5 WT 0.6 (± 0.2) 0.9 3.0 (± 1.0) 0.7 
 Ifitm3-/- 0.8 (± 0.4)   3.4 (± 1.0)   
IL-6 WT 1.5 (± 0.4) 0.8 8.8 (± 1.1) 0.4 
 Ifitm3-/- 1.9 (± 1.0)   11 (± 1.9)   
IL-9 WT 22 (± 7.1) 0.9 31 (± 9.1) 0.006 
 Ifitm3-/- 28 (± 16)   107 (± 24)   
IL-10 WT 1.1 (± 0.06) 0.3 3.1 (± 0.9) 0.02 
 Ifitm3-/- 1.3 (± 0.2)   5.3 (± 0.8)   
IL-12 (p40) WT 1.1 (± 0.2) 0.8 10 (± 1.6) 0.02 
 Ifitm3-/- 1.4 (± 0.3)   15 (± 0.8)   
IL-12 (p70) WT 2.8 (± 0.2) 0.1 6.2 (± 0.7) 0.5 
 Ifitm3-/- 3.8 (± 0.5)   7.0 (± 0.6)   
IL-13 WT LOD (38.7) 0.9 LOD  (38.7) 0.9 
 Ifitm3-/- 44 (± 5.7)   39 (± 0.8)    
IL-17 WT 0.3 (± 0.09) 0.9 0.3 (± 0.08) 0.8 
 Ifitm3-/- 0.3 (± 0.1)   0.2 (± 0.06)   
Eotaxin WT 151 (± 3.8) 0.5 176 (± 11) 0.9 
 Ifitm3-/- 162 (± 8.2)   176 (± 12)   
G-CSF WT 0.7 (± 0.1) 0.9 4.2 (± 1.2) 0.007 
 Ifitm3-/- 0.9 (± 0.3)   8.5 (± 0.8)   
GM-CSF WT 43 (± 4.9) 0.14 59 (± 6.4) 0.04 
 Ifitm3-/- 55 (± 5.0)   77 (± 5.7)   
IFN-γ WT LOD (1.2) >0.9 1.8 (± 0.3) 0.7 
 Ifitm3-/- LOD (1.2)   1.5 (± 0.14)   
KC WT 16 (± 2.6) 0.6 81 (± 15) 0.8 
 Ifitm3-/- 23 (± 5.6)   83 (± 13)   
MCP-1 WT 52 (± 15) 0.01 706 (± 119) 0.4 
 Ifitm3-/- 118.5 (± 25.44)   833 (± 70)   
MIP-1a WT 38 (± 1.4) 0.3 168 (± 29) 0.8 
 Ifitm3-/- 50 (± 7.8)   151 (± 13)   
MIP-1b WT 20 (± 3.9) 0.3 150 (± 33) 0.2 
 Ifitm3-/- 34 (± 8.5)   89 (± 23)   
RANTES WT 13 (± 2.4) 0.8 109 (± 28) 0.8 
 Ifitm3-/- 12 (± 3.1)   88 (± 24)   
TNF-α WT 17 (± 3.0) 0.004 48 (± 7.5) 0.5 
 Ifitm3-/- 41 (± 6.4)   56 (± 7.4)   
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Table 3.1. Mice were infected with 103 FFU of CHIKV-LR in the footpad. Ipsilateral joint 

tissues were collected at 1 and 2 days after infection, homogenates were prepared, and the 

indicated cytokines were measured by Bio-Plex array. Data represent the mean (± SEM) in pg/ml 

of 9 to 11 mice per group. Statistical significance was determined by the Mann-Whitney test. 

LOD indicates the limit of detection. 
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Chapter 4: Conclusions and Future Directions 
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CONCLUSIONS 

This study attempted to identify novel antiviral ISGs using a high-throughput, gene 

knockdown system in vitro. Compared to screens where candidate ISGs was expressed 

ectopically, this shRNA based system would allow for the characterization of targets in the 

context of a physiological antiviral state. In addition, by testing with an attenuated virus strain 

and a virus not extensively studied in this context, we hoped to increase the chances of 

discovering ISGs with milder, or virus family specific functions. Unfortunately, though the 

initial premise of the screen was sound, the commercial shRNAs were not previously validated, 

and only 1 of every 3 shRNAs against a target were guaranteed to have a significant knockdown. 

In fact, for the top ranked ISGs in the screen, very few had multiple shRNAs with a Z-score 

higher than the cutoff of 1.5. This suggested that the library was mostly composed of ineffective 

shRNAs, or were allowing for other off-target effects and thus compromising the results of the 

screen, reducing our confidence in the overall results. Independent assessment of ISGs using 

CRISPR is still in progress, and generation of validated clonal lines must be done to optimize 

this system.  

Of the top hits, we also had access to knockout mice for four of these ISGs: Ifitm3, Ifit2, 

Lamp3 and β2m. Using MEFs obtained from these mice, initial studies revealed that only Ifitm3 

had a potent antiviral phenotype against alphaviruses, a family that was previously considered in 

the literature to be in fact resistant to this ISG. Ifitm3 mediated restriction was not limited to the 

attenuated strain CHIKV-181/25, but also reduced viral replication of the pathogenic CHIKV-LR 

strain, as well as other arthritogenic and encephalitic alphaviruses in vitro. Mechanistically, 

Ifitm3 did not affect CHIKV binding or entry, but restricted fusion with the plasma membrane 

under conditions of ectopic expression. Ifitm3 proved to be important in vivo, as the lack of this 
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ISG allowed for an increase in the early viral burden in CHIKV infected mice, an increase in foot 

swelling at days 3 and 7 post infection, and an increase in the viral antigen load in splenic 

macrophages. By growth curves, Ifitm3 restricts viral growth in bone marrow derived 

macrophages at basal conditions, and may therefore act as a reservoir in vivo. The absence of 

Ifitm3 also promoted increased mortality in mice infected with the encephalitic alphavirus 

VEEV-TC83-A3G, likely due to early increased viral burden and spread. 



	  
	  

101	  

FUTURE DIRECTIONS 

Screening for novel antiviral ISGs 

Assuming that the initial shRNA screen is still worth following up on, it is necessary to 

continue developing clonal CRISPR knockout lines. The bulk CRISPR lines failed due to the 

genetic heterogeneity of the cells. Even partial expression of a target ISG could be sufficient to 

lose a potential protective phenotype. As we observed in the Ifitm3 bulk CRISPR set, no 

variation of IFN or MOI tested could show a difference in restriction compared to scrambled 

negative controls, even though all the cell lines were selected for puromycin resistance. Western 

blot analysis revealed that Ifitm3 protein was still being produced, especially after IFN treatment, 

and was clearly sufficient to restrict CHIKV. Furthermore, validated clonal lines should be 

developed in other permissive cells to confirm that any phenotypes are ISG specific, and not due 

to an artifact of the cell line. A more prudent approach would be to consider restarting the screen 

with a more reliable means of targeted knockdown or knockout. Whether by CRISPR, CRISPRi, 

or by shRNA, the reduction of gene expression should be validated at least at the mRNA level by 

qPCR. The generation of such a library will take a lot of time to properly generate, and would 

ideally be done commercially or through a core service. 

ISG targets should be further tested across multiple primary and stable cell lines for their 

role in cell viability, basal transcription and cell cycle activity, to make sure these genes are not 

essential for survival. Following this, target ISGs should be re-introduced by ectopic expression 

to verify that viral restriction can be restored. Finally, relevance in vivo using knockout mouse 

models and studies to determine the stages and mechanism of viral restriction can proceed. 
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Characterizing Ifitm3 as an antiviral ISG 

There are many questions left unanswered concerning the role of Ifitms in the context of 

alphavirus pathogenesis. In our in vitro studies, we noticed that Ifitm-del locus knockout MEFs 

was more susceptible against viral infection than Ifitm3-/- MEFs. This suggests that the other 

Ifitms could also be involved in alphavirus restriction. While Ifitm2-/- MEFs were just as 

sensitive to CHIKV as WT MEFs, the protective role of Ifitm1 and the other non-IFN stimulated 

Ifitms absent in the locus deletion is currently unknown. Ifitm1-/- and Ifitm2-/- mice have recently 

been backcrossed to the C57BL/6J background and are available for further in vivo studies. 

C57BL/6J backcrossed Ifitm-del mice tend to die at birth, which unfortunately makes in vivo 

experiments difficult. However, Ifitm-del MEFs can be used for in vitro studies. This line can be 

complemented to ectopically express single Ifitms or different combinations of Ifitm genes, and 

subsequently infect with CHIKV to look for differences in growth kinetics and replication. 

Identification of other individual or a combination of antiviral Ifitms can be followed up by 

generating and infecting new Ifitm knockout mice to determine in vivo relevance. 

One of the most interesting phenotypes observed in the Ifitm3-/- mouse was the rapid 

early viral titers in the spleen, ipsilateral foot and serum. This led to the finding that splenic 

macrophages were more antigen positive in these mice compared to WT controls. However, we 

did not study the role of Ifitm3 in stromal cells. CHIKV is known to infect muscle cells, 

osteoblasts, and fibroblasts, all of which express Ifitm3. Since the titers at the joints were either 

comparative or only slightly higher at all timepoints examined, we opted to not look too much 

further into these tissues. To better understand the role Ifitm3 plays in restricting CHIKV 

pathogenesis of stromal cells in vivo, we can take advantage of a newly established technique in 

the lab called In Situ Hybridization (ISH). With this staining protocol, we can determine 
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histologically how CHIKV spreads from the site of infection to the stromal and hematopoietic 

cells by staining for viral RNA. Combined with H&E staining, and immunofluorescence staining 

of known cells susceptible to CHIKV, ISH can help us better understand the early kinetics of 

viral spread and the possible changes in viral tropism in the stromal cells of the infected ankle 

joints, and may better inform us as to why we see early higher viremia and titers in the spleen of 

knockout mice. As our earliest virological titers were done at 1 day post infection, these studies 

should include shorter timepoints, starting at 4 hours post infection.  

The role of Ifitm3 in later stages of infection is a further point of interest. For example, 

CHIKV and other alphaviruses egress from host cells by budding, and may incorporate Ifitm3 as 

part of their viral envelope, as has been observed with HIV-1 (72). If integration of Ifitm3 to the 

alphavirus envelope can be confirmed, subsequent studies into the downstream effects of 

infectivity can be considered. In particular, does the integration of Ifitm3 affect the ability of the 

virion to fuse with the endosomal membrane of host cells? Does this allow for faster viral 

clearance in the serum and tissues? Furthermore, it would be interesting to note if the absence of 

Ifitm3 results in a greater or more sustained viral burden at late or chronic stages of infection.  

As the mechanism of Ifitm3 mediated restriction is still unclear, it would be beneficial to 

have an alphavirus strain that has adapted to no longer be sensitive to this ISG. Serial passages of 

CHIKV either in Ifitm3-/- mice or MEFs should produce resistant variants. Genomic and 

structural comparisons of Ifitm3 sensitive and insensitive strains can help us better understand 

how Ifitm3 blocks endosomal viral fusion. An Ifitm3 insensitive strain may also be useful in 

understanding if this ISG has any role in promoting or preventing chronic infection. In the case 

of HIV-1, it has been observed that while the founder population is resistant to IFITM function, 

subsequent generations become more sensitive to IFITM3 as more mutations to escape 
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neutralizing antibodies are made (73, 75, 123). A similar situation can be occurring in the case of 

CHIKV infection, where IFITM3 insensitive variants are responsible for maintaining a chronic 

phenotype. 

The IFITM3 human polymorphism rs-12252 results in a 21 amino acid deletion of the N-

terminus, which prevents localization to the endosomes. While this polymorphism was initially 

shown to alter sensitivity to IAV infections, subsequent studies have brought this observation 

into question (80–82). Recently however, an investigation into Hantaan virus suggests that the 

rs-12252 polymorphism is associated with greater disease severity and viral load (83). Thus, 

further studies on the importance and relevance of IFITM3 polymorphisms in the context of 

CHIKV and other viruses needs to be done. Understanding how different polymorphisms of 

IFITM3 do or do not affect restriction of viruses can be insightful towards deciphering the 

mechanism of this ISG. 

Finally, it would be interesting to note the in vivo importance of Ifitms and in particular 

Ifitm3 in the context of other alphaviruses. Our studies only looked at CHIKV pathogenesis and 

only touched on VEEV pathogenesis in vivo. Further investigations into the role of Ifitm3 in vivo 

against other arthritogenic and encephalitic alphaviruses will help clarify the differences in 

pathogenesis and viral tropism. For example, Mayaro and Ross River are both arthritogenic 

alphaviruses that induce a different swelling response compared to CHIKV (unpublished 

observations, Diamond Lab). The absence of Ifitm3 can theoretically allow for amplification of 

the viral kinetics and pathogenesis of these infections. It may even be possible that there are 

alphaviruses that are in fact not restricted by Ifitm3 in vivo. Preliminary day 1 post infection 

analysis with Mayaro suggested that there is no difference in titer in the spleen, serum or joints 

(unpublished observations). The identification of natural resistant alphavirus would be beneficial 
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in deciphering the mechanism of Ifitm3 restriction, and also identifying possible viral 

mechanisms of bypass or escape.  

As a point of interest, an investigation into the role of Ifitm3 restricting LACV infection 

in vivo should be initiated. If the published in vitro data is valid and orthobunyaviruses are 

restricted by Ifitm3, we can expect a survival difference in Ifitm3-/- vs WT mice. As we have 

shown, Ifitm3 is protective against encephalitic alphaviruses, however the virus strain of VEEV 

used is resistant to the antiviral mechanism of Ifit1. LACV however is not affected by Ifit1 (51), 

theroretically making it a better pathogen to use in understanding how Ifitm3 protects the CNS.  



	  
	  

106	  

REFERENCES 

1.  McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. 2015. Type I interferons in 

infectious disease. Nat Rev Immunol 15:87–103. 

2.  Schneider WM, Chevillotte MD, Rice CM. 2014. Interferon-stimulated genes: a 

complex web of host defenses. Annu Rev Immunol 32:513–45. 

3.  Kawai T, Akira S. 2011. Toll-like receptors and their crosstalk with other innate 

receptors in infection and immunity. Immunity 34:637–50. 

4.  Isaacs A, Lindenmann J. 2015. Pillars Article: Virus Interference. I. The Interferon. Proc 

R Soc Lond B Biol Sci. 1957. 147: 258-267. J Immunol 195:1911–20. 

5.  Lasfar A, Abushahba W, Balan M, Cohen-Solal K a. 2011. Interferon lambda: A new 

sword in cancer immunotherapy. Clin Dev Immunol 2011. 

6.  Platanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. 

Nat Rev Immunol 5:375–86. 

7.  Schoggins JW, Rice CM. 2011. Interferon-stimulated genes and their antiviral effector 

functions. Curr Opin Virol 1:519–25. 

8.  Bick MJ, Carroll JN, Gao G, Goff SP, Rice CM, MacDonald MR. 2003. Expression of 

the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 77:11555–62. 

9.  Brass AL, Huang I-C, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, 

Weyer JL, Weyden L Van Der, Fikrig E, Adams J, Xavier RJ, Farzan M, Elledge SJ, 

van der Weyden L, Adams DJ. 2009. The IFITM proteins mediate cellular resistance to 

influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–54. 

10.  Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. 2004. The 

cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World 

monkeys. Nature 427:848–853. 

11.  Haller O, Kochs G. 2011. Human MxA Protein: An Interferon-Induced Dynamin-Like 



	  
	  

107	  

GTPase with Broad Antiviral Activity. J Interf Cytokine Res 31:79–87. 

12.  Shu Q, Lennemann NJ, Sarkar SN, Sadovsky Y, Coyne CB. 2015. ADAP2 Is an 

Interferon Stimulated Gene That Restricts RNA Virus Entry. PLoS Pathog 11. 

13.  Iwasaki A. 2012. A virological view of innate immune recognition. Annu Rev Microbiol 

66:177–96. 

14.  Diamond MS, Farzan M. 2013. The broad-spectrum antiviral functions of IFIT and 

IFITM proteins. Nat Rev Immunol 13:46–57. 

15.  Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos N V, Lutz A, Wolff T, Osiak 

A, Levine B, Schmidt RE, García-Sastre A, Leib DA, Pekosz A, Knobeloch K, Horak 

I, Virgin HW. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule 

against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A 104:1371–6. 

16.  Lenschow DJ, Giannakopoulos N V, Gunn LJ, Johnston C, O’Guin AK, Schmidt 

RE, Levine B, Virgin HW. 2005. Identification of interferon-stimulated gene 15 as an 

antiviral molecule during Sindbis virus infection in vivo. J Virol 79:13974–83. 

17.  Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, Arenzana-Seisdedos F, 

Vanlandingham DL, Higgs S, Fontanet A, Albert ML, Lenschow DJ. 2011. ISG15 is 

critical in the control of Chikungunya virus infection independent of UbE1L mediated 

conjugation. PLoS Pathog 7:e1002322. 

18.  Mattijssen S, Pruijn GJM. 2012. Viperin, a key player in the antiviral response. 

Microbes Infect. 

19.  Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM. 2013. BST-

2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by 

CHIKV non-structural protein 1 (nsP1). Virology 438:37–49. 

20.  Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. 

2011. A diverse range of gene products are effectors of the type I interferon antiviral 

response. Nature 472:481–5. 



	  
	  

108	  

21.  Li J, Ding SC, Cho H, Chung BC, Gale M, Chanda SK, Diamond MS. 2013. A short 

hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of 

the cellular antiviral response. MBio 4:e00385-13. 

22.  François-Newton V, de Freitas Almeida GM, Payelle-Brogard B, Monneron D, 

Pichard-Garcia L, Piehler J, Pellegrini S, Uzé G. 2011. USP18-based negative 

feedback control is induced by type I and type III interferons and specifically inactivates 

interferon α response. PLoS One 6. 

23.  Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, 

Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet 

G, Sachidanandam R, McCombie WR, Cleary M a, Elledge SJ, Hannon GJ. 2005. 

Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 

37:1281–8. 

24.  Liu S-Y, Sanchez DJ, Aliyari R, Lu S, Cheng G. 2012. Systematic identification of type 

I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 109:4239–44. 

25.  Fusco DN, Brisac C, John SP, Huang Y-W, Chin CR, Xie T, Zhao H, Jilg N, Zhang 

L, Chevaliez S, Wambua D, Lin W, Peng L, Chung RT, Brass AL. 2013. A genetic 

screen identifies interferon-α effector genes required to suppress hepatitis C virus 

replication. Gastroenterology 144:1438–49, 1449–9. 

26.  Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L, Kaul A, Zeuge U, Windisch MP, 

Trippler M, Lohmann V, Binder M, Frese M, Bartenschlager R. 2012. Identification 

of type I and type II interferon-induced effectors controlling hepatitis C virus replication. 

Hepatology 56:2082–93. 

27.  Varble A, Benitez A a, Schmid S, Sachs D, Shim J V, Rodriguez-Barrueco R, Panis 

M, Crumiller M, Silva JM, Sachidanandam R, tenOever BR. 2013. An in vivo RNAi 

screening approach to identify host determinants of virus replication. Cell Host Microbe 

14:346–56. 

28.  Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T, Alim M, Schoggins J, Rice CM, 



	  
	  

109	  

Wilson SJ, Bieniasz PD. 2016. Identification of Interferon-Stimulated Genes with 

Antiretroviral Activity. Cell Host Microbe 20:392–405. 

29.  Solignat M, Gay B, Higgs S, Briant L, Devaux C. 2009. Replication cycle of 

chikungunya: A re-emerging arbovirus. Virology. 

30.  Petersen LR, Powers AM. 2016. Chikungunya: epidemiology. F1000Research 5:1–8. 

31.  Leung JY-S, Ng MM-L, Chu JJH. 2011. Replication of alphaviruses: a review on the 

entry process of alphaviruses into cells. Adv Virol 2011:249640. 

32.  Morrison TE, Oko L, Montgomery S a., Whitmore AC, Lotstein AR, Gunn BM, 

Elmore S a., Heise MT. 2011. A mouse model of chikungunya virus-induced 

musculoskeletal inflammatory disease: Evidence of arthritis, tenosynovitis, myositis, and 

persistence. Am J Pathol 178:32–40. 

33.  Gardner J, Anraku I, Le TT, Larcher T, Major L, Roques P, Schroder W a, Higgs S, 

Suhrbier A. 2010. Chikungunya virus arthritis in adult wild-type mice. J Virol 84:8021–

32. 

34.  Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret 

Y, Barau G, Cayet N, Schuffenecker I, Desprès P, Arenzana-Seisdedos F, Michault 

A, Albert ML, Lecuit M. 2008. A mouse model for Chikungunya: young age and 

inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 

4:e29. 

35.  Fox JM, Diamond MS. 2016. Immune-Mediated Protection and Pathogenesis of 

Chikungunya Virus. J Immunol 197:4210–4218. 

36.  Hawman DW, Stoermer K, Montgomery S, Pal P, Oko L, Diamond MS, Morrison 

TE. 2013. Chronic joint disease caused by persistent Chikungunya virus infection is 

controlled by the adaptive immune response. J Virol 87:13878–88. 

37.  Pal P, Dowd K a, Brien JD, Edeling M a, Gorlatov S, Johnson S, Lee I, Akahata W, 

Nabel GJ, Richter MKS, Smit JM, Fremont DH, Pierson TC, Heise MT, Diamond 



	  
	  

110	  

MS. 2013. Development of a highly protective combination monoclonal antibody therapy 

against Chikungunya virus. PLoS Pathog 9:e1003312. 

38.  Chen W, Foo SS, Sims NA, Herrero LJ, Walsh NC, Mahalingam S. 2015. 

Arthritogenic alphaviruses: New insights into arthritis and bone pathology. Trends 

Microbiol 23:35–43. 

39.  Chen W, Foo S-S, Rulli NE, Taylor A, Sheng K-C, Herrero LJ, Herring BL, Lidbury 

B, Li RW, Walsh NC, Sims N, Smith PN, Mahalingam S. 2014. Arthritogenic 

alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proc 

Natl Acad Sci U S A 111:6040–5. 

40.  Edelman R, Tacket CO, Wasserman SS, Bodison SA, Perry JG, Mangiafico JA. 

2000. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-

GSD-218. Am J Trop Med Hyg 62:681–5. 

41.  Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L. 2013. 

Chikungunya virus infection: an overview. New Microbiol 36:211–27. 

42.  Gorchakov R, Wang E, Leal G, Forrester NL, Plante K, Rossi SL, Partidos CD, 

Adams  a P, Seymour RL, Weger J, Borland EM, Sherman MB, Powers AM, Osorio 

JE, Weaver SC. 2012. Attenuation of Chikungunya virus vaccine strain 181/clone 25 is 

determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol 

86:6084–96. 

43.  Partidos CD, Weger J, Brewoo J, Seymour R, Borland EM, Ledermann JP, Powers 

AM, Weaver SC, Stinchcomb DT, Osorio JE. 2011. Probing the attenuation and 

protective efficacy of a candidate chikungunya virus vaccine in mice with compromised 

interferon (IFN) signaling. Vaccine 29:3067–73. 

44.  Gardner CL, Burke CW, Higgs ST, Klimstra WB, Ryman KD. 2012. Interferon-

alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-

type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 

vaccine candidate. Virology 425:103–12. 



	  
	  

111	  

45.  Karki S, Li MMH, Schoggins JW, Tian S, Rice CM, Macdonald MR. 2012. Multiple 

interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-

alphavirus activity. PLoS One 7:e37398. 

46.  Ryman KD, Meier KC, Nangle EM, Ragsdale SL, Korneeva NL, Rhoads RE, 

Macdonald MR, Klimstra WB. 2005. Sindbis virus translation is inhibited by a 

PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic 

cells. J Virol 79:1487–99. 

47.  Zhang Y, Burke CW, Ryman KD, Klimstra WB. 2007. Identification and 

characterization of interferon-induced proteins that inhibit alphavirus replication. J Virol 

81:11246–55. 

48.  Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, Huang C, 

Tonelli M, Paessler S, Takeda K, Klimstra WB, Amarasinghe GK, Diamond MS. 

2014. A viral RNA structural element alters host recognition of nonself RNA. Science 

343:783–7. 

49.  Proenca-Modena JL, Sesti-Costa R, Pinto AK, Richner JM, Lazear HM, Lucas T, 

Hyde JL, Diamond MS. 2015. Oropouche virus infection and pathogenesis are restricted 

by MAVS, IRF-3, IRF-7, and type I interferon signaling pathways in nonmyeloid cells. J 

Virol 89:4720–37. 

50.  Proenca-Modena JL, Hyde JL, Sesti-Costa R, Lucas T, Pinto AK, Richner JM, 

Gorman MJ, Lazear HM, Diamond MS. 2016. Interferon-Regulatory Factor 5-

Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous 

System. J Virol 90:189–205. 

51.  Pinto AK, Williams GD, Szretter KJ, White JP, Proença-Módena JL, Liu G, Olejnik 

J, Brien JD, Ebihara H, Mühlberger E, Amarasinghe G, Diamond MS, Boon ACM. 

2015. Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense 

RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. J Virol 

89:9465–76. 



	  
	  

112	  

52.  Bailey CC, Zhong G, Huang I-C, Farzan M. 2014. IFITM-Family Proteins: The Cell’s 

First Line of Antiviral Defense. Annu Rev Virol 1:261–283. 

53.  Jia R, Xu F, Qian J, Yao Y, Miao C, Zheng Y-M, Liu S-L, Guo F, Geng Y, Qiao W, 

Liang C. 2014. Identification of an endocytic signal essential for the antiviral action of 

IFITM3. Cell Microbiol 16:1080–93. 

54.  Yount JS, Karssemeijer R a, Hang HC. 2012. S-palmitoylation and ubiquitination 

differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated 

resistance to influenza virus. J Biol Chem 287:19631–41. 

55.  Shan Z, Han Q, Nie J, Cao X, Chen Z, Yin S, Gao Y, Lin F, Zhou X, Xu K, Fan H, 

Qian Z, Sun B, Zhong J, Li B, Tsun A. 2013. Negative regulation of interferon-induced 

transmembrane protein 3 by SET7-mediated lysine monomethylation. J Biol Chem 

288:35093–103. 

56.  Huang I-C, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass 

AL, Ahmed A a, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, 

Bavari S, Denison MR, Choe H, Farzan M. 2011. Distinct Patterns of IFITM-Mediated 

Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathog 

7:e1001258. 

57.  Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen L-M, Gaiha GD, Ryan BJ, 

Donis RO, Elledge SJ, Brass AL. 2011. IFITM3 inhibits influenza A virus infection by 

preventing cytosolic entry. PLoS Pathog 7:e1002337. 

58.  Zucchi I, Prinetti  a, Scotti M, Valsecchi V, Valaperta R, Mento E, Reinbold R, 

Vezzoni P, Sonnino S, Albertini  a, Dulbecco R. 2004. Association of rat8 with Fyn 

protein kinase via lipid rafts is required for rat mammary cell differentiation in vitro. Proc 

Natl Acad Sci U S A 101:1880–5. 

59.  Bailey CC, Huang I-C, Kam C, Farzan M. 2012. Ifitm3 limits the severity of acute 

influenza in mice. PLoS Pathog 8:e1002909. 

60.  Mudhasani R, Tran JP, Retterer C, Radoshitzky SR, Kota KP, Altamura L a, Smith 



	  
	  

113	  

JM, Packard BZ, Kuhn JH, Costantino J, Garrison AR, Schmaljohn CS, Huang I-C, 

Farzan M, Bavari S. 2013. IFITM-2 and IFITM-3 but not IFITM-1 restrict Rift Valley 

fever virus. J Virol 87:8451–64. 

61.  Lu J, Pan Q, Rong L, He W, Liu S-L, Liang C. 2011. The IFITM proteins inhibit HIV-

1 infection. J Virol 85:2126–37. 

62.  Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi M, Huang I-C, Farzan M, Jung JU. 

2013. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block 

viral entry. Cell Host Microbe 13:452–64. 

63.  Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE, Chin CR, Feeley EM, 

Sims JS, Adams DJ, Wise HM, Kane L, Goulding D, Digard P, Anttila V, Baillie JK, 

Walsh TS, Hume D a, Palotie A, Xue Y, Colonna V, Tyler-Smith C, Dunning J, 

Gordon SB, Smyth RL, Openshaw PJ, Dougan G, Brass AL, Kellam P. 2012. IFITM3 

restricts the morbidity and mortality associated with influenza. Nature 484:519–23. 

64.  Everitt AR, Clare S, McDonald JU, Kane L, Harcourt K, Ahras M, Lall A, Hale C, 

Rodgers A, Young DB, Haque A, Billker O, Tregoning JS, Dougan G, Kellam P. 

2013. Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout 

mouse model. PLoS One 8:e80723. 

65.  Perreira JM, Chin CR, Feeley EM, Brass AL. 2013. IFITMs restrict the replication of 

multiple pathogenic viruses. J Mol Biol 425:4937–55. 

66.  Chan YK, Huang I-C, Farzan M. 2012. IFITM proteins restrict antibody-dependent 

enhancement of dengue virus infection. PLoS One 7:e34508. 

67.  Raychoudhuri A, Shrivastava S, Steele R, Kim H, Ray R, Ray RB. 2011. ISG56 and 

IFITM1 proteins inhibit hepatitis C virus replication. J Virol 85:12881–9. 

68.  Chutiwitoonchai N, Hiyoshi M, Hiyoshi-Yoshidomi Y, Hashimoto M, Tokunaga K, 

Suzu S. 2013. Characteristics of IFITM, the newly identified IFN-inducible anti-HIV-1 

family proteins. Microbes Infect 15:280–90. 



	  
	  

114	  

69.  Anafu A, Bowen CH, Chin CR, Brass AL, Holm GH. 2013. Interferon-inducible 

transmembrane protein 3 (IFITM3) restricts reovirus cell entry. J Biol Chem 288:17261–

71. 

70.  Jiang D, Weidner JM, Qing M, Pan X-B, Guo H, Xu C, Zhang X, Birk A, Chang J, 

Shi P-Y, Block TM, Guo J-T. 2010. Identification of five interferon-induced cellular 

proteins that inhibit west nile virus and dengue virus infections. J Virol 84:8332–41. 

71.  Savidis G, Perreira JM, Portmann JM, Meraner P, Guo Z, Green S, Brass AL. 2016. 

The IFITMs Inhibit Zika Virus Replication. Cell Rep 15:2323–30. 

72.  Compton AA, Bruel T, Porrot F, Mallet A, Sachse M, Euvrard M, Liang C, 

Casartelli N, Schwartz O. 2014. IFITM Proteins Incorporated into HIV-1 Virions Impair 

Viral Fusion and Spread. Cell Host Microbe 16:736–747. 

73.  Yu J, Li M, Wilkins J, Ding S, Swartz TH, Esposito AM, Zheng YM, Freed EO, 

Liang C, Chen BK, Liu SL. 2015. IFITM Proteins Restrict HIV-1 Infection by 

Antagonizing the Envelope Glycoprotein. Cell Rep 13:145–156. 

74.  Stacey MA, Clare S, Clement M, Marsden M, Abdul-Karim J, Kane L, Harcourt K, 

Brandt C, Fielding CA, Smith SE, Wash RS, Brias SG, Stack G, Notley G, 

Cambridge EL, Isherwood C, Speak AO, Johnson Z, Ferlin W, Jones SA, Kellam P, 

Humphreys IR. 2017. The antiviral restriction factor IFN-induced transmembrane protein 

3 prevents cytokine-driven CMV pathogenesis. J Clin Invest 127:1463–1474. 

75.  Foster TL, Wilson H, Iyer SS, Coss K, Doores K, Smith S, Kellam P, Finzi A, Borrow 

P, Hahn BH, Neil SJD. 2016. Resistance of Transmitted Founder HIV-1 to IFITM-

Mediated Restriction. Cell Host Microbe 20:429–442. 

76.  Warren CJ, Griffin LM, Little AS, Huang I-C, Farzan M, Pyeon D. 2014. The 

antiviral restriction factors IFITM1, 2 and 3 do not inhibit infection of human 

papillomavirus, cytomegalovirus and adenovirus. PLoS One 9:e96579. 

77.  Muñoz-Moreno R, Cuesta-Geijo MÁ, Martínez-Romero C, Barrado-Gil L, Galindo 

I, García-Sastre A, Alonso C. 2016. Antiviral Role of IFITM Proteins in African Swine 



	  
	  

115	  

Fever Virus Infection. PLoS One 11:e0154366. 

78.  Li K, Markosyan RM, Zheng Y-M, Golfetto O, Bungart B, Li M, Ding S, He Y, 

Liang C, Lee JC, Gratton E, Cohen FS, Liu S-L. 2013. IFITM proteins restrict viral 

membrane hemifusion. PLoS Pathog 9:e1003124. 

79.  Lin T-Y, Chin CR, Everitt AR, Clare S, Perreira JM, Savidis G, Aker AM, John SP, 

Sarlah D, Carreira EM, Elledge SJ, Kellam P, Brass AL. 2013. Amphotericin B 

increases influenza A virus infection by preventing IFITM3-mediated restriction. Cell Rep 

5:895–908. 

80.  Williams DEJ, Wu W-L, Grotefend CR, Radic V, Chung C, Chung Y-H, Farzan M, 

Huang I-C. 2014. IFITM3 Polymorphism rs12252-C Restricts Influenza A Viruses. PLoS 

One 9:e110096. 

81.  Weidner JM, Jiang D, Pan X-B, Chang J, Block TM, Guo J-T. 2010. Interferon-

induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus 

infection via distinct mechanisms. J Virol 84:12646–57. 

82.  Jia R, Pan Q, Ding S, Rong L, Liu S-L, Geng Y, Qiao W, Liang C. 2012. The N-

terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular 

localization. J Virol 86:13697–707. 

83.  Xu-yang Z, Pei-yu B, Chuan-tao Y, Wei Y, Hong-wei M, Kang T, Chun-mei Z, Ying-

feng L, Xin W, Ping-zhong W, Chang-xing H, Xue-fan B, Ying Z, Zhan-sheng J. 

2017. Interferon-Induced Transmembrane Protein 3 Inhibits Hantaan Virus Infection, and 

Its Single Nucleotide Polymorphism rs12252 Influences the Severity of Hemorrhagic 

Fever with Renal Syndrome. Front Immunol 7:1–13. 

84.  Schoggins JW, MacDuff D a, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar 

KB, Richardson RB, Ratushny A V, Litvak V, Dabelic R, Manicassamy B, Aitchison 

JD, Aderem A, Elliott RM, García-Sastre A, Racaniello V, Snijder EJ, Yokoyama 

WM, Diamond MS, Virgin HW, Rice CM. 2014. Pan-viral specificity of IFN-induced 

genes reveals new roles for cGAS in innate immunity. Nature 505:691–5. 



	  
	  

116	  

85.  Daffis S, Lazear HM, Liu WJ, Audsley M, Engle M, Khromykh A a, Diamond MS. 

2011. The naturally attenuated Kunjin strain of West Nile virus shows enhanced 

sensitivity to the host type I interferon response. J Virol 85:5664–5668. 

86.  Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin T-Y, Schneller S, Zust 

R, Dong H, Thiel V, Sen GC, Fensterl V, Klimstra WB, Pierson TC, Buller RM, Gale 

M, Shi P-Y, Diamond MS. 2010. 2’-O methylation of the viral mRNA cap evades host 

restriction by IFIT family members. Nature 468:452–6. 

87.  Szretter KJ, Daniels BP, Cho H, Gainey MD, Yokoyama WM, Gale M, Virgin HW, 

Klein RS, Sen GC, Diamond MS. 2012. 2’-O methylation of the viral mRNA cap by 

West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in 

vivo. PLoS Pathog 8:e1002698. 

88.  Cho H, Shrestha B, Sen GC, Diamond MS. 2013. A role for Ifit2 in restricting West 

Nile virus infection in the brain. J Virol 87:8363–71. 

89.  Güssow D, Rein R, Ginjaar I, Hochstenbach F, Seemann G, Kottman A, Ploegh HL. 

1987. The human beta 2-microglobulin gene. Primary structure and definition of the 

transcriptional unit. J Immunol 139:3132–8. 

90.  Lee E-J, Park K-S, Jeon I-S, Choi J-W, Lee S-J, Choy HE, Song K-D, Lee H-K, Choi 

J-K. 2016. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the 

Intracellular Proliferation of Salmonella typhimurium. Mol Cells 39:566–572. 

91.  Z. Z, Q. X, Y. W, Y. Y, J. W, T. H. 2011. Lysosome-associated membrane glycoprotein 

3 is involved in influenza A virus replication in human lung epithelial (A549) cells. Virol 

J 8. 

92.  Friedman RL, Manly SP, Mcmahon M, Kerr IM, Stark GF. 1984. Transcriptional and 

Posttranscriptional Regulation of Interferon-Induced Gene Expression in Human Cells 

38:745–755. 

93.  Siegrist F, Ebeling M, Certa U. 2011. The small interferon-induced transmembrane 

genes and proteins. J Interferon Cytokine Res 31:183–97. 



	  
	  

117	  

94.  Chesarino NM, Mcmichael TM, Yount JS. 2014. Regulation of the trafficking and 

antiviral activity of IFITM3 by post-translational modifications 9:1151–1163. 

95.  Smith R, Young J, Weis JJ, Weis JH. 2006. Expression of the mouse fragilis gene 

products in immune cells and association with receptor signaling complexes. Genes 

Immun 7:113–21. 

96.  Ling S, Zhang C, Wang W, Cai X, Yu L, Wu F, Zhang L, Tian C. 2016. Combined 

approaches of EPR and NMR illustrate only one transmembrane helix in the human 

IFITM3. Sci Rep 6:24029. 

97.  Perreira JM, Chin CR, Feeley EM, Brass AL. 2013. IFITMs restrict the replication of 

multiple pathogenic viruses. J Mol Biol 425:4937–4955. 

98.  Narayana SK, Helbig KJ, McCartney EM, Eyre NS, Bull RA, Eltahla A, Lloyd AR, 

Beard MR. 2015. The Interferon-induced Transmembrane Proteins, IFITM1, IFITM2, 

and IFITM3 Inhibit Hepatitis C Virus Entry. J Biol Chem 290:25946–25959. 

99.  Zhang Y-H, Zhao Y, Li N, Peng Y-C, Giannoulatou E, Jin R-H, Yan H-P, Wu H, Liu 

J-H, Liu N, Wang D-Y, Shu Y-L, Ho L-P, Kellam P, McMichael A, Dong T. 2013. 

Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with 

severe influenza in Chinese individuals. Nat Commun 4:1418. 

100.  Wang Z, Zhang A, Wan Y, Liu X, Qiu C, Xi X, Ren Y, Wang J, Dong Y, Bao M, Li 

L, Zhou M, Yuan S, Sun J, Zhu Z, Chen L, Li Q, Zhang Z, Zhang X, Lu S, Doherty 

PC, Kedzierska K, Xu J. 2014. Early hypercytokinemia is associated with interferon-

induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. 

Proc Natl Acad Sci U S A 111:769–74. 

101.  Desai TM, Marin M, Chin CR, Savidis G, Brass AL, Melikyan GB. 2014. IFITM3 

restricts influenza A virus entry by blocking the formation of fusion pores following virus-

endosome hemifusion. PLoS Pathog 10:e1004048. 

102.  Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD, Wengler G, Wengler G, Rey 

FA. 2001. The fusion glycoprotein shell of Semliki Forest virus: An icosahedral assembly 



	  
	  

118	  

primed for fusogenic activation at endosomal pH. Cell 105:137–148. 

103.  Smith TJ, Cheng RH, Olson NH, Peterson P, Chase E, Kuhn RJ, Baker TS. 1995. 

Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. 

Proc Natl Acad Sci U S A 92:10648–52. 

104.  Holland Cheng R, Kuhn RJ, Olson NH, Rossmann^Hok-Kin Choi MG, Smith TJ, 

Baker TS. 1995. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 

80:621–630. 

105.  Steele KE, Twenhafel N. 2010. REVIEW PAPER: pathology of animal models of 

alphavirus encephalitis. Vet Pathol 47:790–805. 

106.  Weston S, Czieso S, White IJ, Smith SE, Wash RS, Diaz-Soria C, Kellam P, Marsh 

M. 2016. Alphavirus restriction by IFITM proteins. Traffic. 

107.  Lange UC, Adams DJ, Lee C, Barton S, Schneider R, Bradley A, Surani MA. 2008. 

Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene 

family cluster. Mol Cell Biol 28:4688–96. 

108.  Wakeland E, Morel L, Achey K, Yui M, Longmate J. 1997. Speed congenics: A classic 

technique in the fast lane (relatively speaking). Immunol Today 18:472–477. 

109.  Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, 

Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond 

MS. 2005. Development of a humanized monoclonal antibody with therapeutic potential 

against West Nile virus. Nat Med 11:522–30. 

110.  Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A, 

Lachmi B-E, Olshevsky U, Fremont DH, Pierson TC, Diamond MS. 2006. Antibody 

recognition and neutralization determinants on domains I and II of West Nile Virus 

envelope protein. J Virol 80:12149–59. 

111.  Lazear HM, Pinto AK, Vogt MR, Gale M, Diamond MS. 2011. Beta interferon 

controls West Nile virus infection and pathogenesis in mice. J Virol 85:7186–7194. 



	  
	  

119	  

112.  Dora S, Schwarz C, Baack M, Graessmann A, Knippers R. 1989. Analysis of a large-

T-antigen variant expressed in simian virus 40-transformed mouse cell line mKS-A. J 

Virol 63:2820–2828. 

113.  Araki T, Sasaki Y, Milbrandt J. 2004. Increased nuclear NAD biosynthesis and SIRT1 

activation prevent axonal degeneration. Science (80- ) 305:1010–1013. 

114.  Cho H, Proll SC, Szretter KJ, Katze MG, Gale M, Diamond MS. 2013. Differential 

innate immune response programs in neuronal subtypes determine susceptibility to 

infection in the brain by positive-stranded RNA viruses. Nat Med 19:1–8. 

115.  Tsetsarkin K, Higgs S, McGee CE, Lamballerie X De, Charrel RN, Vanlandingham 

DL. 2006. Infectious Clones of Chikungunya Virus (La Réunion Isolate) for Vector 

Competence Studies. Vector-Borne Zoonotic Dis 6:325–337. 

116.  Morrison TE, Whitmore AC, Shabman RS, Lidbury BA, Mahalingam S, Heise MT. 

2006. Characterization of Ross River Virus Tropism and Virus-Induced Inflammation in a 

Mouse Model of Viral Arthritis and Myositis Characterization of Ross River Virus 

Tropism and Virus-Induced Inflammation in a Mouse Model of Viral Arthritis and 

Myositis. J Virol 80:737–749. 

117.  Smith SA, Silva LA, Fox JM, Flyak AI, Kose N, Sapparapu G, Khomandiak S, 

Ashbrook AW, Kahle KM, Fong RH, Swayne S, Doranz BJ, McGee CE, Heise MT, 

Pal P, Brien JD, Austin SK, Diamond MS, Dermody TS, Crowe JE. 2015. Isolation 

and characterization of broad and ultrapotent human monoclonal antibodies with 

therapeutic activity against chikungunya virus. Cell Host Microbe 18:86–95. 

118.  Wahlberg JM, Garoff H. 1992. Membrane fusion process of Semliki Forest virus. I: 

Low pH-induced rearrangement in spike protein quaternary structure precedes virus 

penetration into cells. J Cell Biol 116:339–48. 

119.  Bailey CC, Kondur HR, Huang I-C, Farzan M. 2013. Interferon-induced 

transmembrane protein 3 is a type II transmembrane protein. J Biol Chem 288:32184–93. 

120.  Edwards J, Brown DT. 1986. Sindbis virus-mediated cell fusion from without is a two 



	  
	  

120	  

step event. J Gen Virol 67:377–380. 

121.  Fros JJ, Major LD, Scholte FEM, Gardner J, Van Hemert MJ, Suhrbier A, Pijlman 

GP. 2015. Chikungunya virus non-structural protein 2-mediated host shut-off disables the 

unfolded protein response. J Gen Virol 96:580–589. 

122.  Hollidge BS, Weiss SR, Soldan SS. 2011. The role of interferon antagonist, non-

structural proteins in the pathogenesis and emergence of arboviruses. Viruses 3:629–658. 

123.  Ding S, Pan Q, Liu S-L, Liang C. 2014. HIV-1 mutates to evade IFITM1 restriction. 

Virology 454–455:11–24. 

 



	  
	  

121	  

	  SUBHAJIT	  PODDAR	  
	  
	  

EDUCATION	  
	  
	  
Washington	  University	  in	  St.	  Louis,	  St.	  Louis,	  MO	   	  2017	  
Ph.D.	  Immunology	  
	  
University	  of	  California	  at	  Berkeley,	  Berkeley,	  CA	   	  2007	  
B.S.	  Microbial	  Biology	   	  
	  

RESEARCH	  EXPERIENCE	  
	  
	  
Washington	  University	  in	  St.	  Louis,	  Department	  of	  Medicine	   2013	  –	  Present	  	  
Graduate	  Student	  Researcher	  -‐	  Michael	  Diamond	  Lab	  

• Identification	  and	  characterization	  of	  novel	  murine	  antiviral	  interferon-‐stimulated	  genes	  against	  
alphavirus	  infection.	  

o Employed	  an	  shRNA	  library	  to	  screen	  for	  antiviral	  interferon-‐stimulated	  genes	  against	  
chikungunya	  virus	  using	  flow	  cytometry.	  

o Elucidated	  the	  protective	  role	  of	  interferon-‐stimulated	  gene	  Ifitm3	  against	  chikungunya	  

virus	  in	  both	  cell	  culture	  and	  murine	  models	  of	  infection.	  
• Characterizing	  the	  role	  of	  immune	  cell	  subsets	  in	  pregnancy	  and	  testicular	  health	  upon	  Zika	  virus	  

infection.	  	  
	  

National	  Institutes	  of	  Health,	  Viral	  Pathogenesis	  Section	   2007-‐2009	  
Postbaccalaureate	  Research	  Fellow	  (IRTA)	  –	  Ted	  Pierson	  Lab	  

• Studied	  the	  pH	  dependent	  mechanisms	  of	  West	  Nile	  virus	  entry	  from	  host	  cells.	  

o Tested	  the	  hypothesis	  that	  flavivirus	  pH	  dependent	  fusion	  is	  directed	  by	  histidine	  
residues	  of	  the	  envelope	  protein.	  

o Generated	  a	  series	  of	  WNV	  mutations	  lacking	  one	  or	  more	  histidine	  residues	  on	  the	  
envelope	  protein	  using	  QuikChange	  mutagenesis.	  

o Characterized	  the	  viability	  and	  pH	  sensitivity	  of	  each	  mutant.	  
	  

University	  of	  California	  at	  Berkeley,	  Department	  of	  Plant	  and	  Microbial	  Biology	  	   2003-‐2007	  
Undergraduate	  Researcher	  –	  Krishna	  Niyogi	  Lab	  

• Honors	  Thesis:	  Characterizing	  the	  genes	  for	  LOR3	  and	  NSY	  in	  Chlamydomonas	  reindardtii.	  

o Mutagenized	  wild	  type	  Chlamydomonas	  using	  UV	  radiation,	  and	  screened	  for	  
carotenoid	  deficiencies	  using	  HPLC	  

	  
	  
	  
	  



	  
	  

122	  

PUBLICATIONS	  
	  
	  
Miner	  JJ,	  Cook	  LE,	  Hong	  JP,	  Smith	  AM,	  Richner	  JM,	  Shimak	  RM,	  Young	  AR,	  Monte	  K,	  Poddar	  S,	  Crowe	  JE,	  
Lenschow	  DJ,	  Diamond	  MS.	  Combination	  therapy	  with	  CTLA4-‐Ig	  and	  an	  antiviral	  monoclonal	  antibody	  
controls	  acute	  chikungunya	  virus	  arthritis.	  2017	  Feb	  1;9(375).	  Sci	  Transl	  Med.	  
	  
Poddar	  S,	  Hyde	  JL,	  Gorman	  MJ,	  Farzan	  M,	  Diamond	  MS.	  The	  interferon-‐induced	  gene	  IFITM3	  restricts	  
infection	  and	  pathogenesis	  of	  arthritogenic	  and	  encephalitic	  alphaviruses.	  J	  Virol.	  2016	  Sep	  
12;90(19):8780-‐94.	  
	  
Gorman	  MJ,	  Poddar	  S,	  Farzan	  M,	  Diamond	  MS.	  The	  interferon-‐stimulated	  gene	  IFITM3	  restricts	  West	  
Nile	  virus	  infection	  and	  pathogenesis.	  J	  Virol.	  2016	  Aug	  26;90(18):8212-‐25.	  

Tran	  PT,	  Sharifi	  MN,	  Poddar	  S,	  Dent	  RM,	  Niyogi	  KK.	  Intragenic	  enhancers	  and	  suppressors	  of	  phytoene	  
desaturase	  mutations	  in	  Chlamydomonas	  reinhardtii.	  PLoS	  One.	  2012;7(8):e42196.	  	  
	  
Nelson	  S*,	  Poddar	  S*,	  Lin	  TY,	  Pierson	  TC.	  Protonation	  of	  individual	  histidine	  residues	  is	  not	  required	  for	  
the	  pH-‐dependent	  entry	  of	  West	  Nile	  virus:	  evaluation	  of	  the	  “histidine	  switch”	  hypothesis.	  J	  Virol.	  2009.	  
Dec;83(23):12631-‐5.	  
	  
	  
	  

POSTERS	  
	  
	  
Poddar	  S*,	  Hyde	  JL,	  Gorman	  MJ,	  Farzan	  M,	  Diamond	  MS.	  IFITM3	  protects	  against	  arthritogenic	  and	  
encephalitic	  alphaviruses	  in	  vitro	  and	  in	  vivo.	  Poster	  presentation	  at	  the	  Keystone	  Symposia	  on	  Positive-‐
Strand	  RNA	  Viruses.	  Breckenridge.	  2016.	  
	  
Poddar	  S*,	  Wells	  A,	  Roswit	  W,	  Yun	  N,	  Paessler	  S,	  Patel	  AC,	  Holtzman	  MJ.	  Response	  to	  H5N1-‐type	  
Influenza	  A	  Virus	  Using	  Expression	  Microarrays.	  Poster	  Presentation	  at	  the	  Asthma	  and	  Allergic	  Diseases	  
Cooperative	  Research	  Center	  Meeting.	  St	  Louis.	  2009	  
	  
Poddar	  S*,	  Nelson	  S,	  Pierson	  TC.	  Protonation	  of	  individual	  histidine	  residues	  is	  not	  required	  for	  the	  pH-‐
dependent	  entry	  of	  West	  Nile	  virus:	  evaluation	  of	  the	  “histidine	  switch”	  hypothesis.	  Meeting	  for	  the	  
American	  Society	  of	  Tropical	  Medicine	  and	  Hygiene.	  New	  Orleans.	  2008	  
	  
*presenter	  
	  
	  
	  

	  
	  
	  
	  
	  
	  



	  
	  

123	  

	  
	  

LAB	  RELATED	  SKILLS	  
	  
Tissue	  culture:	   	   Growth	  and	  maintenance	  of	  primary	  and	  immortalized	  cell	  lines.	  	   	  
	   	   	   Experience	  with	  both	  mammalian	  and	  insect	  derived	  cells.	  
	  
Molecular	  biology:	   DNA	  and	  RNA	  isolation	  from	  cell	  lines	  and	  tissue.	  	   	   	   	  
	   	   	   PCR	  and	  qRT-‐PCR.	  	   	   	   	   	   	   	   	  
	   	   	   Mutagenesis	  and	  cloning	  of	  plasmids	  using	  QuikChange,	  Gateway	  or	  restriction	  

enzyme	  digestion.	  	  
Transfection	  and	  transduction	  of	  cell	  lines.	  DNA	  sequencing	  and	  analysis.	  	  
Knockdown	  and	  knockout	  of	  target	  genes	  involving	  shRNA,	  siRNA	  and	  CRISPR.	  	  
Gel	  electrophoresis	  and	  Western	  blots.	  

	  
Immunological-‐based:	   ELISA	  and	  ELISPOT.	  	  

Flow	  cytometry	  of	  cell	  lines,	  mouse	  organs	  and	  PBMCs.	  	  
Production	  and	  maintenance	  of	  bone	  marrow	  derived	  primary	  macrophages.	  	  
Cytokine	  assays	  from	  tissues	  and	  serum.	  

	  
Virology:	   	   Production	  and	  maintenance	  of	  virus.	  	  

Quantification	  of	  virus	  using	  qRT-‐PCR,	  flow	  cytometry	  or	  focus	  forming	  assay.	  	  
Analysis	  of	  viral	  infectivity	  via	  growth	  curves.	  	  	  
Analysis	  of	  virus	  binding,	  entry,	  transcription	  and	  egress.	  

	  
In	  vivo:	  	   	   General	  mouse	  handling.	  	  

Experience	  in	  ip,	  tail	  vein,	  and	  sc	  injections.	  	  
Isolation	  and	  preparation	  of	  tissue	  and	  organ	  samples	  for	  microscopy,	  flow	  
cytometry,	  virological	  analysis,	  or	  histology.	  

	  

	  

	  



	  
	  

124	  

REFERENCES	  

	  

Dr. Michael Diamond, M.D., Ph.D. 
The Herbert S. Gasser Professor 
Departments of Medicine, Molecular Microbiology, Pathology & Immunology 
Associate Director, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy 
Programs 
Washington University School of Medicine 
 
Email: mdiamond@wustl.edu 
Phone: 314-362-2842 
 
 
Dr. Deborah Lenschow, M.D., Ph.D., 
Associate Professor 
Departments of Medicine, Molecular Microbiology, Pathology & Immunology 
Washington University School of Medicine 
 
Email: dlenschow@wustl.edu 
Phone: 314-362-8639 
 
 
Dr. Marco Colonna, M.D. 
The Robert Rock Belliveau MD Professor 
Departments of Pathology & Immunology 
Washington University School of Medicine 
 
Email: mcolonna@wustl.edu 
Phone: 314-362-0367 
 
 
Dr Jacco Boon, Ph.D., 
Assistant Professor 
Departments of Medicine, Molecular Microbiology, Pathology & Immunology 
Washington University School of Medicine 
 
Email: jboon@wustl.edu 
Phone: 314-286-1522 
	  

	  
 


	Identification and Characterization of an Interferon Stimulated Gene That Restricts Alphavirus Infection and Pathogenesis
	Recommended Citation

	Microsoft Word - Subhajit Dissertation v3_for electronic submission.docx

