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ABSTRACT OF THE DISSERTATION 

Understanding the Interplay Between Microbial Communities and Their Hosts 

by 

Boahemaa Adu-Oppong 

Doctor of Philosophy in Biology and Biomedical Sciences 

Evolution, Ecology and Population Biology 

Washington University in St. Louis, 2017 

Professor Gautam Dantas, Chair 

Microbes are bountiful and associated with every animal and plant kingdom. 

Furthermore, microbes can alter host phenotype, development, health and functioning. However, 

this is not a one-way interaction, hosts can structure microbial communities by changing the 

environment to be suitable for certain microbial species. Several studies have characterized 

microbial communities associated with hosts to answer two main questions in ecology: who’s 

there, and what are they doing? However, two questions from the field of community ecology 

are often ignored (1) what forces are structuring the microbial communities (how was the 

community formed) and (2) how stable are these communities. Vellend synthesized that all 

communities are governed by four main processes: drift, selection, speciation and dispersal. 

These processes can be grouped into 2 components of assembly, either deterministic (selection, 

speciation, dispersal) or stochastic (drift, dispersal limitation). The goal of my thesis was to (1) 

understand the relative contribution of these processes on microbial communities and (2) how 

stable is the assemblage of microbial community over time and during an infection.  

In order to determine if microbial communities are structured deterministically or 

stochastically, I studied the root endophytic microbiome, which has been shown to directly 

impact plant physiology. By analyzing 252 root endophytic bacterial (REB) communities, which 
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had been perturbed using antibiotics and sterilization, I show the communities are assembled 

deterministically. The strongest selective force structuring the REB communities was plant 

identity even in a perturbed state. I demonstrate the interplay between REB communities and 

plant phenotype by linking the variation in the reduction of biomass in autoclaved soils to 

changes in the abundance of bacterial species. This suggests hosts can selectively increase or 

decrease the abundance of bacterial species that will increase the plant’s fitness. Consequently, 

this allows plants to co-exist by specializing on different bacterial species.   

To determine the stability of microbial community structure, I studied the urine 

microbiome of individuals who are do not have urinary symptoms and those who are suspected 

to have a  Urinary Tract Infection (UTI). By analyzing the urine microbiome of 220 urine 

samples,  I show that the urine microbiome is in an altered state during an infection and is stable 

over time in asymptomatic women. Asymptomatic individuals are enriched with Lactobacillus 

crispatus and L. iners while individuals with suspected UTIs are enriched with Ruminococcus 

torques, Propionibacterium acnes and Escherichia coli. There is a plethora of putative pathogens 

uncovered only with non-conventional culturing methods. Roughly 21% of individuals with 

suspected UTIs did not have the putative cultured pathogen at high relative abundance but a 

different known UTI pathogen when direct sequencing was utilized. This suggests that UTIs 

could be caused by a dysbiosis of the urine microbiome rather than direct inoculation of an 

organism from the gastrointestinal tract.  

Collectively these studies show that microbial communities can be structured by the host 

and host state, and are deterministically assembled. Further work to investigate how the host can 

structure the microbial community possibly through changing environmental conditions or 

through immune response is warranted. 
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Chapter 1 Introduction to Microbiota and Host 

Dynamics 
 
 Bacteria are one of the most ancient and abundant extant organisms on our planet with  4 

x 1030 individuals [1]; these microbes  live in diverse habitats [2]. Due to their large population 

size, short generation time, small size, ability to disperse passively [3-6], ability to dormant for 

decades [7] and phenotypic plasticity [8, 9] it has been a challenge implementing a macro-

ecological framework of community assembly to micro-organisms [10]. However, we have 

discovered that bacteria do display biogeographic patterns [2, 11-14] and can be limited by 

dispersal [15]. Therefore, we can reject the simplistic notion which impacted microbial ecology 

for decades that  “Everything is everywhere, but the environment selects” [16]. This is extremely 

important regarding the microbiota of humans and plants which have been evolving with 

eukaryotes for thousands and millions of years, respectively. The environment is not the only 

force driving the assemblage of microbes associated with hosts.  

 Vellend produced a unified framework for community assembly [17] and has 

incorporated into microbial ecology [10, 18-21]. This framework is centered on 4 main processes 

which shape community assembly (1) drift, (2) selection, (3) dispersal and (4) speciation. Drift is 

random changes in species relative abundance [17]. For microbial communities, drift becomes 

important when communities are under weak selection and have low alpha diversity and 

observed species richness [10]. This process can cause extinction of low abundant species; 

therefore, it is important to estimate drift to protect focal species. The ideal approach to 

determining if a community is assembled stochastically is by applying a ‘null model’ which 

randomizes community composition data [22, 23]. Deviations from the null model are used to 
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quantify the relative influence of stochastic and deterministic processes [24, 25]. Therefore, great 

consideration should be taken when choosing a null model since they can lead to different 

interpretations of the observed data [26, 27]. Many studies provide evidence that drift has a 

strong influence on microbial communities [28-31]. For example, the structure of microbial 

communities in zebrafish were explained by neutral processes [30].  Therefore, random process 

should not be ignored when determining what processes drive community assembly in microbial 

communities.  

The second process, selection, is a force that is directly impacting the relative abundance 

of species in a community [10]. Many studies have quantified the effect of abiotic conditions 

[32-37] and biotic interactions [38-43] on structuring microbial communities which suggests 

selection can play a large role. However, few have quantified the amount of variation which can 

be explained by solely selection [37, 44, 45]. For example, the bacterial communities on aquifers 

found in the Hanford formation range (coarse-grained) have weaker selection forces structuring 

the microbial communities compared to those found in the Ringold range (finer-grained) [37]. 

This implies that selection can explain some of the variation in microbial community 

composition but is rarely acting alone. Therefore, studies that solely show that some of the 

variation in microbial community composition is explained by an abiotic or biotic interaction 

does not prove that selection is the only force shaping the community.  

The third process, dispersal, is the movement of microbes within space and time [18]. 

Many assume dispersal for microbes is a stochastic process since many disperse passively. 

Consequently, passive dispersal (dispersal limitation) is not enough to cause variation in 

microbial community composition [37]. The combination of passive dispersal and drift can lead 

to differences in composition between communities [37, 46]. However, each microbial species 
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can differ in dispersal probability which could cause the assembly process to be non-random 

[10].  If dispersal is active and frequent, then communities would have similar compositions 

[37]. For example, the dominant process which shapes the presence or absence of bacterial taxa 

in the gut microbiome of adults in Papua New Guinea is high dispersal while in the United States 

it is a combination of high dispersal and selection [44].  This further proves that bacteria can 

actively disperse which could lead to the homogenization of microbial community composition.  

  The last process, speciation or local diversification, is the creation of new species in the 

environment. For microbial communities, this can happen over a short period of time due to 

horizontal gene transfer (HGT) and over decades due to the ability for microbes to remain 

dormant for thousands of years [10, 18]. Mutation is another form of diversification for microbial 

communities. For example, a bacterial community may rapidly evolve to become resistant in the 

presence of an antibiotic  [47]. Applying these four processes on microbial community assembly 

can shed light on the variation seen between host microbiota [18]. The four processes can further 

be grouped into two processes: stochastic and deterministic [25]. Stochastic processes are 

unpredictable disturbance, probabilistic dispersal and random births-deaths, while deterministic 

processes are abiotic environment (‘environmental filtering') and both antagonistic and 

synergistic species interactions [25, 31]. In Chapter 2, we will focus only on the first three 

processes (Figure 1), and in Chapter 3 we will focus on selection and speciation.   

With current sequencing technology such as targeted marker gene sequencing (ex. 16S 

rRNA), whole genome sequencing, and shotgun metagenomic sequencing, we can interrogate 

microbial communities and understand not only “who is there”, but also elucidate function [19]. 

Marker gene sequencing, such as  sequencing the 16S rRNA gene, amplifies housekeeping genes 

which are used to create phylogenetic species trees [48]. This technology has allowed us to 
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characterize the 99% that is not readily culturable with conventional culture media [49]. Whole 

genome sequencing has allowed us to sequence entire isolate genomes to study population 

dynamins which we commonly use to understand disease outbreaks [50-53]. Lastly, shotgun 

metagenomics has allowed us to answer both questions “who is there” and “what are they doing” 

using a community ecology perspective. Bacterial communities can be tracked over time so we 

can better understand the relationship between host and their microbiome [54-57].    

The evolution and diversity of animals and plants have been impacted through symbiotic 

relationships with microbes [58]. Two relationships I explore in my thesis are the microbiome 

harbored in the human urinary bladder and prairie plant roots. The root is an organ which 

facilitates in nutrient uptake such as nitrogen of phosphorous from the soil [59]. The urinary 

Ⓐ 

Ⓑ 

Ⓒ 

Figure 1-1. Community assembly processes which could give rise to different REB 
communities. Each panel is the result of one of the three process which could affect local 
assembly in 2 individuals from 5 plant species (red, grey, dark green, light green, and blue) from 
the same regional species pool. The regional species pool is comprised of 20 different bacterial 
species. (A) The REB communities are assembled randomly and differ among individuals of the 
same plant species. (B) the REB communities are assembled deterministically and individuals of 
the same plant species have identical communities. In (C) the REB communities are assembled 
deterministically since the species not greyed out are the only ones able to disperse into plant 
roots and the communities across plant species are heterogeneous due to random processes. 
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bladder is an organ which stores the filtrates from blood in the human body. The concept of the 

urine microbiome is in its infancy; therefore, the function of microbes in the bladders is still 

unknown [60]. Many have speculated that the microbes are able to outcompete pathogens and 

stimulate the immune system [60]. The root microbiome harbors a diverse community of 

microbes which are regarded as the host’s extended phenotype [59, 61, 62] and the same can be 

speculated about the urine microbiome. Therefore, changes in composition or functionality of the 

microbiome, will affect the host. To combat microbial diseases such as Urinary Tract Infections 

(UTIs) we need to understand the ecology of the disease and its impact on the native microbiome 

of the urinary tract. 

 Many studies within microbial ecology have focused on characterizing and cataloguing 

microbial communities across various habitats. However, experimental manipulation is 

necessary to link patterns and processes [63]. With the ability to perturb communities we can 

begin to understand their stableness [64]. If the composition of the microbial community is 

unchanged, the community is resistant to disturbance. If the composition is altered but after time 

returns to the original composition, the community is resilient. If the composition is altered but 

performs the same functions as the previous community, the community has functional 

redundancy [64]. This can then be used in conjunction with disease state and community 

assembly theories to understand the interplay between host phenotype and the microbiome.  

My first objective was to determine if microbiomes associated with hosts are assembled 

deterministically and shaped primarily by the host. To evaluate this, we conducted a greenhouse 

experiment where plant roots are grown in different soil treatments for the duration of four 

months. We sequenced the 16S rRNA gene of bacteria that resided inside the roots of the plants. 

To determine the strengths of non-random and random processes on the assembly of REB 
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communities, we implemented a null model. To determine which selective force could explain 

the most variation in the REB communities, we conducted a multi-variate analysis which 

partitioned the variance by our treatments. I collaborated with the Mangan Lab to conduct the 

greenhouse experiment. I performed the sequencing analysis, as well as generating figures and 

will be the primary author of this chapter.  

My next objective was to determine if the microbiome can shift into an altered state due 

to host state (diseased vs health) and if the microbiome of the urine is comprised of clonal or 

diverged bacteria. We collected remnant banked urine samples from patients suspected to have 

UTI patients and urine from asymptomatic women. We cultured and sequenced isolates from 

patients with suspected UTIs to determine if the putative pathogens were clonal or non-clonal. 

We sequenced culturable bacteria on conventional media to determine if the population was 

similar between diseased and non-diseased state. To determine if there is a difference in the urine 

microbiome between patients presumed to have urinary tract infection and asymptomatic 

patients, we performed shotgun sequencing on the urine of both populations. I collaborated with 

the Burnham lab to collect, culture and extract DNA from cultured isolates. I performed the 

sequencing analysis, as well as generating figures and will be the primary author of this chapter.  
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2.1 ABSTRACT  

 
Plant associated microbes can influence community assembly, the maintenance of 

biodiversity and stability of ecosystems. However, we know little about the relative strength of 

forces (host-based selection or environmental-based selection) which can contribute to the 

assembly of plant associated microbes and how they are assembled (deterministically or 

stochastically). Even less is known about how the composition of the microbes can directly 

impact plant fitness. We grew five prairie species in perturbed soils to test for the relative 

strength of selection on the assembly of root endophytic bacterial communities. Despite soil 

perturbations, root endophytic bacterial communities assembled deterministically structured by 

host identity which explained most of the variation in the difference of composition between root 

endophytic bacterial communities. Additionally, biomasses correlated with turnover of bacterial 
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community composition and individual bacterial taxa. These results suggest plants co-exist due 

to stabilizing niche differences by controlling the assemblage of root endophytic bacterial 

communities.  

2.2 INTRODUCTION  
 
Elucidating mechanisms that structure communities and affect ecosystem processes is a 

long-standing goal in plant ecology. Plant community composition, diversity and stability are 

driven by a multitude of abiotic and biotic factors: climate, age, environmental harshness, area, 

isolation, disturbance, environmental heterogeneity and plant-soil feedback [65, 66]. Over the 

past few years, plant-microbe interactions have been identified as a mechanism driving plant 

structure and affecting ecosystem processes [67-73]. Although there has been an emphasis in 

understanding plant-microbe interactions, there is a dearth of studies focusing on the driving 

forces structuring microbial communities.   

Understanding the mechanisms which lead to the divergence of microbial communities is 

essential to understanding how plants and microbes interact. The microbial community is an 

extension of the plant phenotype by increasing uptake of nutrients from the environment [61]. If 

microbial communities are structured mainly by plant hosts, then different plant species can co-

exist due to differences in acquisition of microbes from the same environment. Optimization on 

assemblage of microbes could lead to different abilities in resource uptake which can cause 

stabilizing niche differences [74]. Therefore, if microbes can influence plant community 

composition and diversity then plant biomass should correlate with the divergence in 

composition of microbes. 

Plants interact with microbes mainly through the soil and reside in three niches: bulk soil, 

endosphere, and rhizosphere. Prior root-associated microbiome studies in both model plants (e.g. 
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Arabidopsis thaliana), agricultural plants (e.g. corn, rice) and non-agricultural plants (e.g. 

eastern cottonwood, agave) have established that the microbiome inside the root endophytic 

compartment (endosphere) is distinct from both bulk soil microbiomes and the microbes 

associated on the outside surface of plants roots (rhizosphere)  [75-82]. Bacterial endophytes are 

defined as bacteria that can be isolated from surface-sterilized plant tissue and do not visibly 

harm the plant [83]. We focused on the endophytic bacteria because they can influence the 

growth and development of plants [84-86] and provide greater beneficial effects than 

rhizosphere-colonizing bacteria [87].  

Endophytic microbes are thought to be structured by a two-step selection process [88]. 

The first selection is host rhizodeposition and cell wall features which promote growth of 

organotrophic bacteria [88]. The second selection is host genotype factors which fine-tunes the 

microbial community [88]. The theory of the two-step selection process has been hypothesized 

using observational data from studies rather than experimentally manipulating conditions to test 

the strengths of deterministic factors. It neglects other deterministic factors which could lead to 

the same divergence pattern. Most importantly, the two-step selection process assumes that 

divergence of microbial communities is deterministic rather than stochastic. 

Our first hypothesis is root endophytic bacterial (REB) communities are influenced by 

host, if most of the variation in the differences in composition of REB communities after 

perturbations is explained by host. Perturbations provides insight to the key drivers of 

community dynamics [89]. After perturbation, we can test the strength of deterministic factors on 

the assembly of the REB communities. Rhizosphere bacterial communities are heavily 

influenced by plant hosts [90-92]. Multiple studies have shown that soils trained by one plant 

species can affect the growth of conspecifics and heterospecifics [66, 93, 94]. However, it has 
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yet to be determined whether the resulting REB communities are assembled due to strong host 

selection or due to dispersal limitation. If dispersal is not limited then when plants are grown in 

the same trained soils, the REB communities would be homogenous. Alternatively, if dispersal is 

limited then when plant hosts are grown in the same trained soils, the REB communities would 

be heterogeneous. We also introduced two other types of perturbations: autoclaving of soils and 

application of antibiotics. If the communities are resilient, then after perturbations we would 

expect the divergence in microbial communities to be largely still explained by deterministic 

factors.   

Our second hypothesis is that root bacterial endophytic communities are structured by 

deterministic processes. Divergence in microbial communities can be influenced by either 

stochastic or deterministic processes. Variation in microbial communities can arise through 

stochastic processes such as dispersal limitation, diversification, mass effects and random 

demographics [10, 11, 18, 95]. Deterministic processes can also shape microbial communities 

through environmental heterogeneity, species interaction and niche partitioning [10, 11, 18, 95]. 

Distinguishing between the two processes can be done by creating a null model which produces 

a pattern that would be expected in the absence of an ecological mechanism (i.e. selection) [27].  

Our third hypothesis is that if REB communities can influence plant community 

composition, then REB can influence plant fitness. Plant-soil interactions have largely been 

studied through the framework of the influence of soil communities on plant fitness [96-100]. 

However, most of these studies have either treated soil microbes as an undefined, “black-boxed” 

variable, or have used culture-based methods which interrogate less than 1% of known soil 

microbes [101-104]. Therefore, we have focused on a subset of microbes known to influence 

plant fitness and have not been investigated before.   
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We conducted a greenhouse experiment using 5 prairie species because the prairie is one 

of the most endangered ecosystems in the world [105]. We perturbed soil communities by 

disturbance (antibiotics and autoclaving) and soil history (soil was trained by plant hosts). We 

conducted a null model in the absence of selection to test for the strength of determinism or 

stochasticity on the resulting microbial community. Additionally, we correlated plant fitness to 

the diversity of endophytic communities to elucidate the influence of REB communities on plant 

fitness. We found that most of the variation in REB composition was explained by host and 

assembled deterministically. Correlations between growth and composition of root endophytic 

bacterial community were evident for 4 of the 5 plant hosts tested. This suggest that plants co-

exist due to their ability to structure the REB communities resulting in stabilizing niche 

differences.    

2.3 MATERIALS AND METHODS 
 
2.3.1 PLANT HOSTS AND SEED COLLECTION 

We chose 5 prairie species: Monarda fistulosa (Wild Bergamot, Ratibida pinnata (Grey-

head coneflower), Carduus nutans (Musk Thistle), Conyza canadensis (Horseweeed) and 

Heliopsis helianthoides (Smooth oxeye). These species were chosen because they are highly 

abundant in the prairie; therefore, we could collect enough soil to conduct the greenhouse 

experiment. We began collecting seeds June 2013. We purchased all seeds from Prairie Moon 

Nursery (Winona, Minnesota, USA) except Conyza canadensis which were donated from Mike 

Dryer from the Greenhouse Facility at Washington University in St. Louis and Carduus nutans 

was collected at Tyson Research Center.  

2.3.2 DETERMINING STRENGTH OF DETERMINISTIC FACTORS 

 
Greenhouse experimental set up 
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To ensure that roots were colonized by microbes in the collected inoculum, we surface 

sterilized and germinated seeds in autoclaved (gravity cycle for 65 min twice) Propagation Mix 

(Sungro horticulture Agawam, MA, USA). 

We conducted a semi-full factorial design to investigate if dispersal limitation or host 

selection was a driving force in structuring REB communities. To link changes in biomass to the 

soil biota, we controlled for abiotic soil effects by filling pots with 6% inoculum and 94% 

background soil [99]. The inoculum comprised of rhizosphere collected from each species in the 

experimental prairie site. The background soil was an autoclaved (gravity cycle for 65 min 

twice) mixture of aggregated field soil-sand mixture (2:1).  

Fourteen replicates of each plant host received heterospecific inoculum. Twenty-four 

replicates of each plant host received conspecific inoculum. Six replicates for each plant host 

received conspecific and heterospecific autoclaved inoculum. Half of all replicates were 

subjected to an antibiotic treatment. This was our third perturbation which would allow us to 

further test the strength of deterministic factors on REB community composition. This resulted in 

5 (plant hosts) x [4 (heterospecific inoculum) x 2 (antibiotic treatment) x 7 replicates + [1 

(conspecific inoculum) x 2 (antibiotic treatment) x 12 replicates]] + [5 (plant hosts) x 5 

(autoclaved inoculum) x 2 (antibiotic treatment) x 3 replicates] = 550 experimental units in a 

semi-full factorial design.  

Perturbations: Autoclaving and Antibiotics 

Autoclaving soil perturbs the microbial community by reducing the number of bacterial 

species in a community. We autoclaved half of the collected inoculum (gravity cycle for 65 min 

followed by a second gravity cycle for 65 min 24 hours later). After perturbations, we calculated 

the strength of deterministic factors in the structuring of the altered REB communities.  
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Antibiotics were chosen as a perturbation due to its ability to directly affect microbial 

communities by eliminating species from the communities without directly impacting plant 

growth. We chose four antibiotics: chloramphenicol (8mg/L), oxolinic acid (0.2 μg/mL), 

gentamicin (32mg/L or 4mg/L), streptomycin (512mg/L). Chloramphenicol and gentamicin are 

used in agar plates when isolating fungi to decrease the presence of bacteria. Oxolinic acid, 

gentamicin and streptomycin are used in the plant-agriculture community to target bacterial 

pathogens that affect crops. Chloramphenicol is a broad range antibiotic that is bacteriostatic and 

inhibits protein synthesis by binding to the 50S ribosomal subunit (Sigma Product Information). 

Oxolinic acid is effective against gram-negatives and is a quinolone compound. It inhibits the 

DNA gyrases (Sigma Product Information). Gentamicin is a broad range antibiotic that inhibits 

bacterial protein synthesis by binding to the 30S subunit of the ribosome (Sigma Product 

Information). Streptomycin is a broad range antibiotic but has been known to be less effective 

against gram-negative aerobes. It blocks protein synthesis by targeting the 70S ribosome. The 

concentrations of the antibiotics were determined from EuCast2 or from searching the literature.  

Pots not treated with antibiotics were administered 10ml of autoclaved DI water. The first 

treatment was given July 12, 2013; we administered 10 mL of the antibiotic cocktail. For the 

other treatments (July 20th, July 29th, August 5th, August 22nd, September 13th) we administered 

15 mL of the antibiotic cocktail. 

Plant care and trait measurement  

The experimented started July 2013 and ended October 2013. The duration was chosen to 

give all plants optimal time for growth. Plants were top watered as needed with RO water. All 

pots arranged twice into randomized blocks and maintained in controlled greenhouse conditions 

for the duration of the experiment. Dropped leaves were collected and included in total biomass 
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for the individual. To minimize insects traveling from pot to pot, yellow sticky traps were set up 

throughout the bays. At the end of the experiment, we harvested both above and below ground 

biomass and placed biomass in envelopes. We measured dried biomass.   

Characterization of REB communities 

To characterize the REB communities, we weighed approximately a gram of 

belowground biomass for microbial extraction and stored in -80o C. To accurately measure 

belowground biomass, total belowground biomass was weighed before and after removal of 

portion used for microbial extraction. The estimated loss was calculated and added to the dried 

biomass weight.  

Belowground biomass was resuspended in 15 mL of filter sterilized PBS-S buffer (130 

mM NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4, pH 7.0, 0.02% Silwet L-77) and sonicated 

(Fisher Scientific Sonic Dismembrator Model 500, Pittsburgh, PA, USA) at low frequency for 5 

min with 5 30 sec bursts followed by 5 30 sec rests for 252 root samples. We collected 14 

samples (After Sonication) after this stage and submitted them for sequencing. Then roots were 

resuspended in 15 mL of filter sterilized PBS-S buffer and centrifuged at 1,500 g for 20 minutes. 

We collected another 14 samples (After Wash) after this stage and submitted them for 

sequencing. The roots were aseptically transferred to a new 15 mL conical tube and freeze dried 

overnight. Microbial community was extracted from roots per manufacture’s protocol using the 

PowerSoil DNA Isolation Kit (Mo-Bio Laboratories, Carlsbad, CA, USA).  We performed PCRs 

in triplicates to control for bias in PCR reactions and amplified the 16s rRNA gene V4 region  

(http://www.earthmicrobiome.org/emp-standard-protocols/16s/) using the barcodes designed in 

[106]. Before sequencing, we visualized the bands on gels. After a positive confirmation, we 

combined all samples and sequenced on Illumina MiSeq (Illumnia Inc., San Diego, CA, USA) 
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with 2x250 bp paired-end reads at the Center for Genome Sciences at Washington University in 

St. Louis. Sequences were demultiplexed using QIIME [107]. Paired-end reads were truncated at 

the first base with a quality score of <Q4 and then merged with usearch [108], with a 100% 

identity in overlap region and a combined length of 253±5 bp. The merged reads were then 

quality filtered by usearch with a maximum expected error of 0.5. Operational taxonomic units 

(OTUs) were picked using the usearch pipeline [108] and known chimera OTUs were filtered 

from the list. Reads were matched to OTUs at 100% sequence identity. Representative sequences 

from each OTU were aligned using PyNAST and assigned taxonomy using RDP Classifier using 

QIIME version 1.5.0-dev. Any sample with fewer than 30 OTUs were not dropped from the 

study. Additionally, OTUs which were not found in at least one sample or had fewer than 30 

individuals were removed from the dataset for a total of 595 OTUs.  

Microbial community count data was transformed using the DESeq2 package in R based 

on previous recommendations [109]. All analyses were performed using the package ‘vegan’ 

v.2.4.1 [110], ‘RVAideMemoire’ v.0.9.61 [111] and ‘phyloseq’ v.1.18.1 [112] in R version 

3.2.2. Principal coordinates (PCoA) of Bray-Curtis pairwise dissimilarities were identified using 

the vegan function ‘capscale’. To explain the difference in dissimilarity of microbial 

communities, we tested the effect of host, soil history, autoclaving of field soil and exposure to 

antibiotics in a full model using the non-parametric permutation test ADONIS II in package 

‘RVAideMemoire’ with 999 permutations. We corrected for multiple comparisons with the False 

Discovery Rate post-hoc test to determine which pairs were significantly different. 

2.3.3 DETERMINISTIC VS STOCHASTIC PROCESSES  

 
We wanted to study the effect of our treatments on the assembly of the REB 

communities.  Measures of β diversity can be used to determine whether communities are 
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assembled deterministically or stochastically. However, because β diversity is dependent on α, 

any effect of our treatments on α can alter β simply through numerical sampling effects. 

Therefore, we implemented the Raup-Crick (RC) null model described in [113] to estimate 

effects on β diversity not simply due to changes in alpha that are stochastic with respect to 

species identity. Changes in RC beta-diversity can be used to infer the strength of underlying 

assembly mechanisms (deterministic vs neutral) [113-115], with some caveats. Both low alpha 

diversity and demographic stochasticity can limit inferences from this metric [116]. However, 

alpha diversity and total microbial abundance is high in all our treatments (Figure 2-S1).  

We determined the species pool as the total number of species and their observed 

occupancy across the plant host by soil inoculum. Species were randomly sampled from the pool 

in proportion to their occupancy, and assigned to local communities to create a null distribution 

of the expected number of shared species between pairwise plant hosts. The RC value will 

indicate whether the REB communities is less similar (approaching 1), as similar (approaching 

0.5) or more similar (approaching 0), than expected by chance. The higher the deviance from 0.5 

(purely stochastic), the more deterministic is the community assembly.   

2.3.4 LINKING BELOWGROUND SPECIES COMPOSITION TO PLANT FITNESS 

 
To understand if differences in composition of REB communities could affect plant 

diversity, we first characterized differences in fitness which could be explained by the different 

perturbations. We log transformed biomass to compare fairly treatment effect on biomass for 

different species [99] and conducted an ANOVA to test for the effect of autoclaving of field soil, 

exposure to antibiotics, plant host and soil history. We also tested for the effect of interactions 

between plant host and location of soil collection to ensure soils collected in different plots did 

not affect biomass. To link fitness to acquisition of REB communities in perturbed states, we 
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tested for an interaction between plant host and autoclaving of field soil and plant host and soil 

history. To test whether those differences in fitness could result in turnover in REB communities, 

we correlated composition of REB communities and biomass. We used a Mantel test with 999 

permutations in the package ‘ade4’ v.1.7-4. To test whether a taxon of bacteria could affect 

biomass, we correlated biomass and abundance of bacteria taxon. We used cort.test with pearson 

correlations in the package ‘stats’ v.3.3.2. P values were adjusted using Bonferroni. All results 

were graphed using ‘ggplot2’ v.2.2.0 [117] in R version 3.3.2.  

2.4 RESULTS 
 
2.4.1 PLANT HOST CONTROLS ASSEMBLAGE OF ROOT BACTERIAL ENDOPHYTIC 

COMMUNITIES 

 
The variation in composition of REB communities are largely influenced by plant host 

(R2
ADONIS = 0.073, P < 0.001) and autoclave treatment (R2

ADONIS = 0.078, P < 0.001) (Table 2-

S1). However, soil history (R2
ADONIS = 0.019, P < 0.008) and antibiotic treatment (R2

ADONIS = 

0.005, P < 0.026) also explained variation in composition of root microbial communities (Table 

2-S1). Therefore, other deterministic factors can shape the REB community. These results are 

supported by CAP analysis, in which samples clustered by host identity (Figure 2-S2a), soil 

history (Figure 2-S2b), antibiotic treatment (Figure 2-S2c) and autoclave treatment (Figure 2-

S2d). 

The REB community was heavily perturbed by the autoclave treatment (Figure 2-S3); 

therefore, we tested for the strength of determinism in the live and autoclaved field soils.  The 

variation in composition of REB communities were still largely explained by plant host in the 

live (R2
ADONIS = 0.11, P < 0.001, Figure 2-1) and autoclaved (R2

ADONIS = 0.23, P < 0.001, Figure 

2-S4b) field soil treatments. Despite complete turnover of REB community, the community was 
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largely influenced by plant host suggesting that the REB community is resilience to 

perturbations. Additionally, soil history (R2
ADONIS = 0.03, P <0.001, Figure 2-S5a) and antibiotic 

treatment (R2
ADONIS = 0.008, P < 0.006, Figure 2-S5b) did explain some of the variation between 

root microbial communities.  

2.4.2 ROOT BACTERIAL ENDOPHYTIC COMMUNITIES ARE DETERMINISTIC 

 Our perturbation treatments influenced changes in alpha diversity (Figure 2-S3); 

therefore, we implemented a null model which removed selection and controlled for stochastic 

changes which could be due to sampling effects. All REB communities independent of antibiotic 

and soil history perturbations were highly convergent (low variation) and deterministically 

assembled (values of RC approached 0) (Figure 2-2). Therefore, we reject the null hypothesis 

that the REB communities are not under selection. This provides evidence that the deterministic 

force shaping the REB communities is the host.  

Figure 2-1: REB communities stratified by host identity. Plant host explains more of the 
variation than soil history and antibiotic treatment in the live soil. Ordination of Bray-Cutis 
dissimilarities shows clustering of root endophytic bacterial communities by plant host. 
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Figure 2-2: REB communities are structured by non-random processes. Raup Crick 
values generated from the null model for each plant host grown in soils trained by each plant 
host (A-E) without antibiotics (F-J) with antibiotics. 
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2.4.3 DIFFERENCES IN BIOMASS CORRELATE WITH DIFFERENCES IN MICROBIAL 

COMMUNITY COMPOSITION 

 
Overall, host responded to the autoclave treatment in a species dependent manner. Total 

biomass was affected by autoclave treatment (Anova p < .0001, Figure 2-3, Table 2-S2). Three 

plant hosts had lower biomasses in autoclaved field soils, M. fistulosa, H. helianthodies and R. 

pinnata (Table 2-S2). C. nutans and C. canadensis had equivalent fitness in field soils and 

autoclaved field soils (Table 2-S2).  

We then tested whether differences in biomass could correlate with composition of REB 

communities. C. nutans (Mantel r=0.2, p < 0.013, Figure 2-4a), H. helianthodies (Mantel r=0.4, 

p<0.001, Figure 2-4c), M. fistulosa (Mantel r =0.2, p < 0.01, Figure 2-4d), and R. pinnata 

(Mantel r=0.7, p < 0.0001, Figure 2-4e) all demonstrated strong correlation between biomass and 

community similarity except C. canadensis (Mantel r = -0.04, p = 0.7, Figure 2-4b). 

We tested if biomass was correlated with abundance of bacteria taxa to demonstrate that 

presence of a bacteria taxa could affect plant fitness. There were positive and negative significant 

correlations found for H. helianthoides (Figure 2-5a), M. fistulosa (Figure 2-5b) and R. pinnata 

(Figure 2-5c).  

2.5 DISCUSSION 
 
Plant roots have been hypothesized to harbor bacteria that are not randomly assembled 

from the soil but deterministically assembled via a two-step process: edaphic and host factors 

[88, 118]. Many studies have mainly characterized the communities rather than experimentally 

manipulating conditions to quantify the strengths of edaphic and host factors on the assembly of 

REB communities and to create a null hypothesis to understand what the composition of the 

community would be under no selection [75, 77-79, 82]. In this study, we perturb the bacterial 
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communities to test whether they are deterministically assembled and determine the strengths of 

edaphic and host on the assembly of the REB communities. Additionally, we investigated 

whether if plants with similar fitness (biomass) had similar REB communities. If so, individuals 

of the same plant species would be competing for similar resources which could impact growth 

of conspecifics negatively while allowing for co-existence with heterospecifics through niche 

stabilizing mechanisms. This study goes beyond simply characterizing the composition of REB 

communities to understanding the mechanisms driving assembly alongside building links 

between composition and plant fitness.  

 
 
 
 

Figure 2-3: Total biomass is effected by microbial disturbance differentially by plant 
identity. Total biomass (above + belowground biomass) is dramatically reduced in field 
autoclaved soils compared to field soil for R. pinnata, H. helianthoides, and M. fistulosa. Total 
biomass remained unchanged for C. nutans and C. canadensis. 
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Figure 2-4: Differences in biomass can be explained by variation in microbial community 
composition for 4 out of 5 plant hosts. Correlations between differences in total biomass and 
differences in REB communities for (a) C. nutans (b) H. helianthoides (c) M. fistulosa (d) R. pinnata 
(e) C. canadensis. 
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Figure 2-5: Differences in total biomass is explained by certain bacteria taxa. 
Correlations between log total biomass and abundance of OTUs which were significantly 
correlated for (a) H. helianthoides (b) M. fistulosa (c) R. pinnata. 

Ratibida pinnata 

Monarda fistulosa 

Heliopsis helianthoides 
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2.5.1 RESILIENCE OF ROOT ENDOPHYTIC MICROBIAL COMMUNITIES DUE TO HOST 

CONTROL OF COMMUNITY COMPOSITION 

 To ensure we characterized the REB, we sequenced the samples collected after sonication 

and after washing and showed that the community composition was different (Figure 2-S6). 

Some studies have reported that the REB community is dominated by Proteobacteria [77-79, 81, 

119-121] while others are dominated by Actinobacteria [75, 76]. Our results support the theory 

that plants have a core REB microbiome which is dominated by Proteobacteria. The dominating 

phyla across all REB communities in this study in decreasing order is Proteobacteria, Firmicutes, 

Bacteriodetes and Actinobacteria (Figure 2-S7) which have all been reported as dominant 

members of various REB communities [88]. The main difference in dominating phyla is due to 

comparisons with Arabidopsis thaliana which is a model organism used to understand plant 

genes and function but do not reflect the ecology of non-agricultural and agricultural plants due 

the absence of symbiotic relationships with arbuscular mycorrhizal fungi.  

We chose to perturb the microbial communities by autoclaving soil, application of 

antibiotics and host presence in soil prior to collection (soil history). This allowed us to test the 

strength of deterministic factors that are thought to be responsible for structuring microbial 

communities. The composition of REB communities was perturbed but the turnover in 

composition was largely driven by plant hosts (Figure 2-S2, Table 2-S1). In both field and 

autoclaved field soil, the REB communities clustered based on plant host (Figure 2-1, Figure 2-

S4b). Soil history explained only 1.9% of the variation in REB communities (Table 2-S1) 

suggesting that dispersal may be weak. There were only three bacterial taxa which were 

differentially abundant and these taxa did not cluster based on soil history (Figure 2-S8).  This 

corroborates theories that microbial taxa may disperse over very short distances, creating non-
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random distributions [95]. Other studies have shown that REB communities are very similar 

regardless of soil source [75, 76, 78]. It is known that fungal communities are also structured by 

plant host [42, 122, 123] suggesting that plant host structure microbial communities across 

different kingdoms and provides community resistance to disturbance. 

To directly test the resilience nature of the REB communities, we perturbed the 

communities with antibiotics. We discovered that antibiotics did not affect plant fitness (Table 2-

S2) but it did alter the diversity and composition of the bacterial communities (Table 2-S1). The 

two taxa that were differentially abundant (Figure 2-S9) are in the same phyla, Actinobacteria 

and family, Conexibacteraceae, which has not been intensively studied. Conexibacteraceae are 

known to reduce nitrates, live in high nitrogen environments and are sensitive to streptomycin 

[124-126]. We have provided evidence that not all strains in the Conexibacteraceae family are 

sensitive to streptomycin. One strain relative abundance increased in the presence of 

streptomycin while the other decreased. Even in an altered state, this did not weaken the 

deterministic factors structuring the REB communities. We can conclude that REB communities 

are resilient to perturbations due to the strong selection force from hosts.  

Observational data provide evidence that the REB communities are not stochastically 

assembled. To directly test this hypothesis, we implemented a null model which created random 

assemblages of our data set. We used the RC metric because it provides information on the 

probability that pairs of communities are more similar (or different) than expected by chance 

[113].  For soils treated with and without antibiotics, the RC values approached 0 providing 

evidence that the communities are deterministically assembled and more similar than expected 

by chance (Figure 2-2). This provides direct evidence that endophytic bacterial communities are 

highly deterministic and the selection is driven by host identity.  
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2.5.2 THE LINK BETWEEN BELOW AND ABOVE GROUND SPECIES INTERACTION  

 
 One way for belowground species to influence plant community composition is by 

affecting fitness either indirectly or directly. We confirmed that changes in biomass can be 

attributed to the soil biotic components and not abiotic since biomass in sterile soils were 

uniform (Figure 2-S4a). Plant biomass was altered by the autoclaving of soil and soil history 

(Table 2-S2) demonstrating that composition of the soil biotic community could have altered 

biomass. Previous studies use plant fitness differences in autoclaved soils to approximate 

whether soils contain beneficial or inhibitory soil biota [66, 93, 127-129]. This could lead to 

changes in plant diversity through positive or negative feedbacks [100]. Positive feedbacks are 

when microbial composition increases relative performance of abundant plant species and 

negative feedbacks reduce relative performance of abundant plant species [100]. Feedbacks 

regulate coexistence of plant communities through direct feedbacks on conspecifics and indirect 

feedbacks of competing species [38].   

C. nutans and C. conyza, biomass was not affected by the reduction of microbial species 

which indicates that our invasive and weedy plant, respectively, do not have an established 

relationship with the microbial communities (neither beneficial nor inhibitory) in the prairie 

system. As for M. fistulosa, R. pinnata, and H. helianthoides which are all native (non-weedy) 

species, there was a reduction in biomass when grown in autoclaved field soils indicating the 

potential beneficial relationship between the prairie plants and the microbial community. 

However, to appropriately test if the reduction of biomass in autoclaved soils could be explained 

by the divergence of REB communities, we correlated differences in biomass to turnover of REB 

communities. Not surprisingly, C. nutans was the only host which did not have a strong 

correlation between bacterial community and total biomass (Figure 2-4b). We did not measure 
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any differences in growth for C. nutans when grown in autoclaved soils; therefore, we did not 

expect there to be a significant correlation. For the three-native species, we identified a 

correlation between fitness and composition of REB communities. We identified taxa with 

higher abundance in the field soils compared to autoclaved field soils for R. pinnata (Figure 2-

S10), H. helianthoides (Supplementary Figure 2-S11) and M. fistulosa (Figure 2-S12). We 

determined a core set of taxa which were found in all three natives (Figure 2-S13). Which further 

suggests that there is a core community of bacteria that can directly impact plant fitness. To 

directly test this hypothesis, we looked for correlations between individual bacterial taxon 

abundance and biomass. We demonstrated that there are several bacterial taxa that are correlated 

with biomass for H. helianthoides (Figure 2-5a), M. fistulosa (Figure 2-5b) and R. pinnata 

(Figure 2-5c). Two of the taxa that were enriched, Ochrobactrum sp. and Sphingomonas sp., 

have been identified as potential growth enhancing bacteria in previous experiments [130, 131]. 

Additionally, the depletion of certain OTUs belonging to the family Planctomycetaceae, 

Legionellaceae and Chitinophagaceae were consistent across plant species. This shows that there 

are bacteria that can be classified as potential growth inhibitors and could be used as a biocontrol 

for weeds or invasive species. Interestingly, each plant species responded differently to the 

abundance of bacterial species. Therefore, if individuals of the same plant species are competing 

for the same resources (bacterial species), then that could lead to negative feedbacks and restrict 

proliferation of conspecifics. It has already been shown with arbuscular mycorrhizal fungi [132]. 

To directly test this hypothesis for REB, future studies should focus on characterizing REB 

communities in the presence or absence of competition with conspecifics and heterospecifics.  
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2.6 CONCLUSIONS 
 
Our study provides direct evidence that the endophytic root bacterial communities are 

assembled deterministically mainly driven by host and the strength of this relationship is 

unaffected by perturbations. Therefore, plant identity is a major determinant of root endophytic 

microbial communities. There is a strong correlation between plant growth and REB 

communities proving that the composition of the community is vital for plant growth, but that is 

not true for all plants. We conclude that there are many complex interactions between 

aboveground and belowground species that should be accounted for and not lumped into a black 

box.  Our ability to study microbes in different niches will allow us to focus on vital species that 

will enhance our understanding of how to maintain or restore ecosystems. 
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2.8 SUPPLEMENTARY FIGURES & TABLES 
 

 

Table 2-S1: Statistical analysis conducted on Bray-Curtis of REB communities by different 
treatments. Condition = Autoclaved vs Field Soil. Treatment = Antibiotics vs No Antibiotics. 
Species = Host identity. Soil = Soil history. 

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  
Condition 1 5.932 5.9321 22.461 0.07836 0.001 *** 

Figure 2-S1: Observed species richness is high between treatments. Observed species richness 
for each plant host in each soil trained by each plant host. 
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Table 2-S2: Statistical analysis of treatment effects on biomass. Full Anova model was used 
which condition was autoclaved field soil vs. field soil. Treatment was with antibiotics or 
without antibiotics. Species was the plant identity and soil was soil history or trained soil. 

 Df Sum 
Sq 

Mean Sq F value Pr(>F)  

Condition 1 83.58 83.58 506.581 <2e-16 *** 
Treatment 1 0.07 0.07 0.402 0.5265  

Species 4 56.65 14.16 85.841 <2e-16 *** 
Soil 4 2 0.5 3.033 1.73E-02 * 

Condition:Species 4 83.63 20.91 126.717 <2e-16 *** 
Condition:Species:Soil 36 9.86 0.27 1.659 0.011 * 

Treatment 1 0.409 0.4093 1.5499 0.00541 0.026 * 
Species 4 5.562 1.3904 5.2645 0.07347 0.001 *** 

Soil 4 1.467 0.3667 1.3884 0.01938 0.008 ** 
Residuals 236 62.329 0.2641  0.82338   

Total 246 75.699   1   

Ⓐ Ⓑ 

Ⓒ Ⓓ 

Figure 2-S2: Bacterial communities were altered by host, soil history, antibiotics and soil 
autoclave treatment. Ordination of Bray-Cutis dissimilarities shows clustering of root 
endophytic bacterial communities by (a) plant host (b) soil history (c) antibiotic treatment, (d) 
autoclaving treatment. 
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Plot 5 1.27 0.25 1.542 0.1753  
Species: Plot 16 1.25 0.08 0.475 0.9587  

Residuals 465 76.72 0.16    
 

 
 

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  
Species 4 2.8847 0.72116 6.3511 0.10987 0.001 *** 

Soil 4 0.9184 0.22959 2.0219 0.03498 0.001 *** 
Treatment 1 0.2127 0.21268 1.873 0.0081 0.002 ** 

Plot 5 1.0144 0.20289 1.7868 0.03864 0.001 *** 
Species:Plot 16 1.9205 0.12003 1.0571 0.07315 0.164  

Residuals 170 19.3036 0.11355  0.73526   
Total 200 26.2542   1   

 

Figure 2-S3: Boxplots of observed bacterial species richness in soil treatments. Observed 
species richness is lower in autoclaved field soils but not affected by antibiotic 

Table 2-S3: Statistical analysis of treatment effects on composition of REB in field soils. 
Treatment was with antibiotics or without antibiotics. Species was the plant identity and soil 
was soil history or trained soil. 
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Ⓐ 

Ⓑ 

Figure 2-S4: Biomass and composition of microbial communities in autoclaved field soils. 
(a) Total biomass summed across soil autoclaved treatment. (b) Ordination of Bray-Cutis 
dissimilarities shows clustering of root endophytic bacterial communities by plant host for plants 
grown in sterile soils.  
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Ⓐ 

Ⓑ 

Figure 2-S5: Ordination of REB communities in field soils. Bray-Cutis dissimilarities shows 
clustering of root endophytic bacterial communities by (a) soil history, (b) antibiotic treatment. 

Ⓐ 
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Figure 2-S8: Phyla abundance summed across all REB communities. 

Figure 2-S9: Heatmap and dendrogram of OTUs differentially abundant in soils trained by 
plant hosts. There is no clustering based on soils.  
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Figure 2-S11: Heatmap of OTUs differentially abundant in R. pinnata’s REB communities 
clustered by field vs autoclaved soil treatment.  

Figure 2-S10: Heatmap of OTUs differentially abundant in H. helianthoides’ REB 
communities clustered by field vs autoclaved soil treatment.  
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Figure 2-S12:  Heatmap of OTUs differentially abundant in M. fistulosa’s REB 
communities clustered by field vs autoclaved soil treatment. 
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3.1 ABSTRACT  
 
Urinary Tract Infections (UTIs) are one of the most pervasive urological disorders affecting 

millions yearly. Current clinical practices are focused  primarily of understanding a single, 

easily-cultured pathogen, that is the most common cause of UTI-- uropathogenic Escherichia 

coli, while ignoring other bacteria (pathogens and commensals) that may not be culturable. We 

believe valuable, clinically-actionable information could be  lost when this uncultured 

community is ignored. Additionally, improper use of antibiotics, the primary treatment for UTIs 

and generally targeted against E. coli, can lead to substantial selection pressure for the evolution 

of resistance in uropathogens and commensals. Our study evaluates the extent to which current 

clinical standards may be not detect key bacterial strains in the setting of  UTI (cryptic pathogens 
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or commensal) which may be important to our understanding of UTI biology and treatment. We 

establish that the urinary microbiome in asymptomatic women is stable over time and a 

suspected UTI urine microbiome is compositionally and functionally different with an increase 

abundance of Proteobacteria and bacteriocin. We demonstrate that for 21% of positive UTI 

cases, the putative uropathogen identified through conventional diagnostic methods was not the 

most abundant species in the urine specimen but instead dominated by another known 

uropathogen. These results suggest the current methodology for classifying UTIs can be 

amended by the incorporation of next-generation sequencing methods. This will decrease 

diagnostic time and the risk of evolving antibiotic resistance.  

 3.2 INTRODUCTION  
 

Urinary Tract Infections (UTIs) are one of the most pervasive urological disorders 

affecting millions yearly [133, 134]. UTI is a condition in which the urinary tract is colonized 

by pathogenic bacteria. The bacteria cause inflammation and travel to the bladder and the 

kidneys [135]. Unlike most bacterial diseases, incidence of UTIs is greater in women than in 

men. Over the span of a lifetime, women are 50 times more likely than men to contract a UTI 

[134]. Higher risk of UTIs begins at birth and continues until the age of 60 [136, 137]. Women 

are at increased risk due to anatomical differences such as a shorter urethra that can be easily 

colonized by normal vaginal flora [138, 139]. Translocation of external bacteria can happen 

during sexual intercourse or subsequent to medical interventions such as catheterization [134, 

138, 139].  

Antimicrobial therapy is the primary treatment for UTIs, but its efficacy is being challenged 

by increasing antimicrobial resistance (AMR) in UTI pathogens [140]. The growing prevalence 

of AMR bacterial pathogens has led to more frequent use of broad-spectrum antibiotics, which in 
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turn indirectly selects for increasingly multi-drug resistant (MDR) pathogens [141-146]. One of 

the major risks of developing MDR infections is previous exposure to antibiotics [147] and this 

is primarily because antibiotic usage can drastically change the environment of the urethra 

causing the structure of the bacterial community to change [148]. Additionally, the gut is 

frequently the source for organisms ultimately contributing to UTI [136], and there is an overall 

selective pressure for more resistance in gut-resident bacteria [149-151] due to ingested 

antibiotics. Therefore, antibiotic therapy may not be a sustainable form of treatment in the near 

future, as its continued use selects for an increase of MDR uropathogens, steadily decreasing the 

number of effective treatment options.  

Numerous studies of the gut microbiota have established the fundamental role of bacterial 

community structure in regulating health [152]. It has been proposed that the structure of the gut 

microbiota is strongly correlated to the incidence of type 2 diabetes, stronger than host genotype. 

From basic science and translational perspectives, there is great interest in understanding if this 

strong microbiota-host health dynamic is restricted to the gut or if this correlation to disease 

occurs in other habitats of the human body as well.  

Unfortunately, our understanding of the population structure of microorganisms in the 

urinary tract is limited [152]. The urinary tract was regarded as a sterile site for decades and only 

recently acknowledged as a body site that harbors microbes, as evidenced by culture-independent 

16S rRNA gene sequencing [153-155]. Additionally, research on uropathogens has been largely 

focused on uropathogenic E. coli (UPEC). Approximately 80% of UTIs in the outpatient setting 

can be attributed to UPEC, while the remaining 20% can be attributed to other bacteria such as 

enterococci and staphylococci [140, 156]. However, these statistics are driven by culture 

dependent methods. Current diagnostic testing approaches include quantifying bacterial density 



41 
 

using culture, microscopy, and/or rapid dip stick or automated urinalysis for biochemical 

characterization of urine specimens; these methods are tuned for optimal detection of E. coli, and 

likely under-diagnose other uropathogens [135, 157]. Traditional culture methods commonly 

used for urinary tract pathogens are not suitable for growth of fastidious organisms and/or 

anaerobic bacteria, and these may be underappreciated as urinary tract pathogens.  Unbiased, 

sequence-based approaches to query urine samples for pathogens would be one way of 

addressing this question, with the potential to inform improved urine culture methods in the 

future. 

The handful of studies that have performed 16S rRNA gene sequencing on male and female 

urine samples have reported that an array of bacterial taxa reside in the urinary tract of 

asymptomatic individuals, such as Lactobacillus, Prevotella, Gardnerella, Streptococcus and 

even Staphylococcus species. Some of these bacterial taxa discovered in asymptomatic patient 

urines have been recognized as potential uropathogens (e.g. Streptococcus and Staphylococcus) 

[152]. Therefore, the current antimicrobial therapy for UTI,  treatment, based on reviewing the 

antimicrobial profile of a single uropathogenic bacterium (generally UPEC) may not be 

appropriate to treat many patients [158]. For example, in a study of 32 suspected UTI samples, 

34.4% were determined to be caused by two or three etiological agents [159]. Additionally, as a 

consequence of considering urine from asymptomatic individuals to be sterile, most UTI studies 

have focused on solely studying urine samples from infected patients, neglecting to consider the 

urine microbial composition of asymptomatic patients [160].  

We studied the ecology of the urine microbial community in symptomatic and asymptomatic 

individuals  through a combination of culture-dependent and culture-independent next-

generation sequencing (NGS)-based methods. In the context of the urine microbiome, we will 
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characterize the abundance and diversity of known and potentially new uropathogens, their 

antimicrobial resistance determinants, and their virulence genes. We hypothesize that UTIs 

should be studied from a bacterial community perspective rather than simply as individual 

isolates to 1) more accurately identify the etiologic agent(s), and 2) to understand the ecology of 

the disease by quantifying the community state and dynamics between bacterial species during 

an infected versus an asymptomatic state. We demonstrate that NGS recapitulated the current 

standard of care culture based techniques in the state of an infection, highlighting the potential 

function of NGS in UTI diagnostics.  

3.3 MATERIALS AND METHODS  
 
3.3.1 SAMPLE COLLECTION 

All suspected UTI patient samples were de-identified and collected from frozen remnant 

urine specimens and approved by the Human Research Protection Office (approval number 

201401115). The samples were submitted to the Barnes-Jewish Hospital/Washington University 

School of Medicine in Saint Louis, Missouri, United States as part of routine clinical care. In 

total we selected 162 specimens to use in this study. Of the 152 specimens, 52 specimens have 

significant growth of one or two uropathogens and classify as positive cultures [161], 71 had no 

bacterial growth and 20 had less than 10-5 CFU/ml of bacterial growth. The remaining 9 

specimen have more than 3 bacterial species growing in concentrations above threshold in the 

standard-of-care clinical routine and classify as contaminated cultures [161]. 

3.3.2 SAMPLE PRCESSING AND PHENOTYPING  

Only the positive specimens were subjected to all culturing protocol. Prior to the 

culturing protocol, all samples were initially cultured using standard of care methods: 1 uL was 

plated to each of a BAP and MAC using a 1 uL calibrated loop and incubated at 35C in CO2  for 
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24  hours.  Our culturing protocol consisted of two different methods. The first method, 

conducted on asymptomatic and positive specimen, consisted of collecting all of the colonies that 

are grown on MacConkey and sheep’s blood agar plates (Hardy Diagnostics) in combination as a 

“slurry” for DNA extraction using the BiOstic Bacteremia DNA Isolation Kit (Mo-Bio). For the 

asymptomatic, we did enhanced culturing. The second method, most similar to current clinical 

methods [161], involve picking four individual colonies per bacterial species from dilutions of 

the urine sample plated on MacConkey and sheep’s blood agar plates and separately extracting 

gDNA using the BiOstic Bacteremia DNA Isolation Kit (Mo-Bio). Where appropriate, 

antimicrobial susceptibility testing was performed using Kirby Bauer disk diffusion testing 

performed and interpreted in accordance with Clinical and Laboratory Standards Institute (CLSI) 

guidelines [162]. We assayed enteric gram-negative bacteria for susceptibility to nitrofurantoin, 

cefazolin, cefotetan, ceftazidime, cefepime, ciprofloxacin, trimethoprim-sulfamethoxazole and 

ceftriaxone. Prior to whole genome sequencing, species identity of isolates was determined with 

VITEK MALDI-TOF MS v2.0 knowledgebase (bioMerieux) as previously described [163, 164]. 

For all urine samples, 2ml was used to isolate metagenomic DNA using the BiOstic Bacteremia 

DNA Isolation Kit (Mo-Bio). 

3.3.3 ILLUMINA LIBRARY PREPARATION  

Sequencing libraries were prepared from 15 ng – 500 ng of total DNA from each slurry, 

isolate, and urine sample. DNA was sheered to a target size range of approximately 500-600 bp 

using the Covaris E220 sonicator with the following settings: peak incident power, 140; duty 

cycle, 10%, cycles per burst 200; treatment time 75 seconds; temperature 7oC; sample volume 

130 µl. Sheared DNA was purified and concentrated using MinElute PCR Purification Kit 

(Qiagen), eluting in 20 µl pre-warmed nuclease-free H2O per barcode. Purified sheared DNA 
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was then end-repaired and Illumina adapters were ligated using the following protocol: A 25 µl 

reaction volume was prepared containing 20 µl of purified sheered DNA, 2.5 µl T4 DNA ligase 

buffer with 10mM ATP (10X, New England BioLabs), 1 µl dNTPs (1mM, New England 

BioLabs), 0.5 µl T4 polymerase (3 U µl-1, New England BioLabs), 0.5 µl T4 PNK (10 U ul-1, 

New England BioLabs), and 0.5 µl Taq Polymerase (5 U ul-1, New England BioLabs). The 

reactions were incubated at 25oC for 30 min followed by 20 min at 75oC.  

For the barcode mix forward and reverse sequencing adapters were stored in TES buffer 

(10mM Tris, 1mM EDTA, 50 mM NaCl, pH 8.0) and annealed by heating the 1mM mixture to 

95oC followed by slow cooling (0.1 oC per second) to a final holding temperature of 4oC.  

A 2.5 µl volume of prepared barcode mix and 0.8 µl of T4 DNA ligase (New England BioLabs) 

were added to each end-repair reaction and the reaction was incubated at 16OC for 40 min 

followed by 10 min at 65oC.  

Reactions were purified using a MinEluted PCR Purification Kit (Qiagen), eluting in 16 

µl pre-warmed elution buffer (Qiagen). The adaptor-ligated, sheered DNA was then size-selected 

to a target range of 400-900 bp on a 1.5% agarose gel in 0.5X Tris-Borate-EDTA (TBE), stained 

with GelGreen dye (Biotium) and enriched using the following protocol: A 25 µl reaction 

volume was prepared containing 2 µl of purified DNA, 12.5 µl 2x Phusion HF Master Mix (New 

England BioLabs), 1 µl of 10 MM Illumina PCR Primer Mix (5’- AAT GAT ACG GCG ACC 

ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T -3’ and 5’- 

CAA GCA GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC 

GCT CTT CCG ATC T -3’) and 9.5 µl of nuclease-free H2O. The PCR cycle temperatures were 

as follows: 98 oC for 30s, then 18 cycles of [98 oC for 10 s, 65 oC for 30 s, 72 oC for 30s], then 

72 oC for 5 min.  
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Amplified DNA was then size-selected to a target range of 500bp on a 1.5% agarose gel 

in 0.5X TBE, stained with GelGreen dye (Biotium) and purified using a MinEluted PCR 

Purification Kit (Qiagen), eluting in 15 µl of elution buffer (Qiagen). The purified DNA was 

measured using the Qubit fluorometer HS assay kit (Life Technologies) and 10nM of each 

sample were pooled for sequencing. Subsequently samples were submitted for paired-end 150bp 

sequencing using the Illumina NextSeq-High platform at CGS (Center for Genome Sciences & 

Systems Biology at Washington University in St. Louis).  

Prior to all downstream analysis, Illumina paired-end shotgun metagenomics sequence 

reads were binned by barcode (exact match of first 7bp), quality filtered using Trimmomatic 

v0.3.0[165] (java -Xms1024m -Xmx1024m -jar trimmomatic-0.33.jar PE -phred 33 

ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:10 TRAILING:10 

SLIDINGWINDOW:4:20 MINLEN:60) and human DNA was removed from the slurry and urine 

samples using DeconSeq [166] using build 38 of the human genome using default parameters.  

The other 54 sequencing libraries were prepared using the Illumina Nextera XT [167] method 

and submitted for paired-end 150pb sequencing using the Illumina NextSeq-High platform at 

CGS.  

3.3.4 DE NOVO ASSEMBLY  

De novo assembly of reads for each isolate genomic DNA was completed using 

VelvetOptimiser (http://bioinformatics.net.au/software.velvetoptimiser.shtml) 

(VelvetOptimiser.pl -s 45 -e 91 -t 1 –optFuncKmer ‘n50’). Optimal assembly was determined by 

n50.  

3.3.5 REFERENCE BASED ASSEMBLY 

http://bioinformatics.net.au/software.velvetoptimiser.shtml
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The best reference sequence was chosen for each isolate by mapping 10,000 reads chosen 

randomly from that isolate against all reference genomes (from NCBI Genome downloaded 

April 19, 2016) of the same species as predicted by MALDI-TOF and reconfirmed with 

MetaPhlAn 2.0 [168] (metaphlan2.py 

<forward_paired_reads>,<reverse_paired_reads>,<unpaired_reads> --mpa_pkl 

mpa_v20_m200.pkl --bowtie2db mpa_v20_m200 --bowtie2out <output_bowtie2_file> --nproc 5 

--input_type fastq > <output_file>). If there was not a consensus between the prediction from 

MALDI-TOF and MetaPhlAn, that isolate was removed from the analysis. Reads were mapped 

using SNAP 1.0beta1.8 [169] (snap paired <index> <forward reads> <reverse reads> -t 1). 

The genome against which the highest percentage of reads mapped was used as the reference 

sequence for that assembly. All reads were mapped to the reference sequence (bowtie2 -x 

<reference index> -1 <forward_paired_reads> -2 <reverse_paired_reads> -U 

<unpaired_reads> -q –phred33 –very-sensitive-local -I 200 -X 1000 -S <sam_file_output> -2> 

<bowtie2_log_file>). Variants from the reference were called using samtools (samtools view -

buS <sam_file_output> |samtools sort -m 4000000000 -o <bam_output>) (samtools index 

<bam_output>) (samtools mpileup -Ud -f <reference_fasta_file> <bam_output_sorted> > 

<mpileup_output>) (bcftools call –variants-only -O b -c -o <mpileup_bcf_output> 

<mpileup_output>) (bcftools view -O v -o <mpileup_vcf_output> <mpileup_bcf_output>). The 

variant call format file was then filtered to remove SNPs with coverage greater than twice the 

average coverage expected per base (vcftools –vcf <mpileup_vcf> --max-meanDP 2 --recode --

out <filtered_mpileup>).  

3.3.6 COMBINATION OF DE NOVO AND REFERENCE BASED ASSEMBLY  
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After both assemblies were completed, then another de novo assembly was performed 

using the data from both assemblies. The contigs from the de novo assembly and reference 

mapping were put in an additional velvet assembly step as long reads with the original reads 

files. We determined hash value based on the optimized velvet assembly hash value (velveth 

<output_directory> <hash_value> -fastq -short <unpaired_reads> -fastq -shortPaired 

<forward_paired_reads> <reverse_paired_reads> -fasta long 

<contigs_from_ref_bases_assembly> <contigs_from_denovo_assembly>) (velvetg 

<output_directory> -ins_length 400 -clean yes -conserveLong yes -scaffolding yes -

long_mult_cutoff 0). Finally, all contigs were ordered using ABACAS[170] to the reference 

genome (abacas.1.3.1.pl -r <reference_genome> -q <contigs> -p ‘nucmer’ m -b -o 

<output_contig_file>).  Pilon[171] was used to improve the draft assembly by filling gaps and 

identifying local misassemblies (java -jar pilon-1.13.jar –genome <contig_file> --frags 

<bam_file> --output <pilon_contig_output>).  

3.3.7 OPEN READING FRAME PREDICTION AND ANNOTATION 

Open reading frame prediction for each genome was performed separately using Prokka 

[172] . Each open reading frame was compared to five databases ResFams, Pfam and 

TIGRFAMs using ResFams [173] (annotate_functional_selections.py -proteins 

<protein_fasta_file> --resfams -o <output_directory>), the Comprehensive Antibiotic 

Resistance Database [174], and an in house curated virulence HMM database. All annotations 

were combined and the annotation with the highest bit score and lowest e-value were assigned to 

the open reading frame.  

3.3.8 METAGENOME ASSEMBLY 
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Iterative De Bruijn Graph De Novo Assembler for Short Reads Sequencing data with 

Highly Uneven Sequencing Depth (IDBA-UD) [175] was used to assemble metagenomes using 

quality filtered reads with all human reads removed (methods described above).  

3.4 RESULTS  
3.4.1 DETERMINING STABILITY OF ASYMPTOMATIC URINE MICROBIOME  
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The control group consisted of clean-catch urine samples collected at three different time 

points from 10 asymptomatic adult women volunteers who had no evidence of an UTI during the 

time of collection and had not taken antibiotics in the 14 days prior to collection. Within our 

control group, we evaluated intraindividual variation (within subject) and  interindividual  

variation (between patients) of the cultured slurries and directly sequenced urine microbiome 

compositions to determine if the urine microbiome is stable over time. We studied the 

microbiome via shotgun sequencing and determined taxonomy by MetaPhlAn2 [176]. We noted 
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higher similarity in intra-variation for both cultured slurries and direct sequenced urine 

microbiome indicating that the microbiome is individual-specific; therefore, we can average the 

urine microbiome composition to compare against the samples from suspected UTI patients 

(Cultured Slurries: P =1.2 x 10-13, Direct Sequenced Urine: P=1.6 x 10-6, Figure 3-1a).  

3.4.2 ASYMPTOMATIC URINE MICROBIOME IS COMPOSITIONALLY DIFFERENT FROM 

SUSPECTED UTI MICROBIOME 

Banked remnant urine samples from suspected UTI patients (n=152, Table 3-S1) were 

Figure 3-1. Diversity of Urine Microbiome over time and between clinical classifications. a, 
Box plot quantifying difference in microbial composition over time for the same patient (intra 
AS) and across patients (inter AS) for the cultured slurries and direct sequenced urine 
microbiome. b, Bar chart depicting the relative abundance of eukaryotes, bacteria and viruses 
present in the cultured urine microbiome of asymptomatic (n=10) and positive (n=47).  c, Bar 
chart depicting the relative abundance of eukaryotes, bacteria and viruses present in the 
uncultured urine microbiome of asymptomatic (n=10), positive (n=48), insignificant (n=17), 
contaminated (n=7) and no growth (n=61). All P values were calculated using the permutation 
ANOVA. 
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classified into one of four categories based on current standard-of-care clinical procedures: (1) 

positive, if the specimen had significant growth (>100,000 CFU/mL) of one or two uropathogens 

(n=52), (2) contaminated, more than 3 bacterial species growing in concentrations above 

threshold in standard-of-care clinical culture (105) (n=9), (3) insignificant (<100,000 CFU/mL 

during standard-of-care culture)  (n=20), and (4) no growth, specimen had no visible signs of 

bacterial or fungal growth during culturing (n=71) (Table 3-S2).  

 The microbial communities of asymptomatic cultured slurries were enriched with 

Firmicutes while clinically classified positive specimens were enriched with Proteobacteria 

(Figure 3-1b). This relationship was reinforced within the directly sequenced urine specimens; 

however, there was a plethora of viruses and Actinobacteria which were discovered in all 

suspected UTI specimen (Figure 3-1c). Stratification by gender and race was not significant 

(Gender: P = 1.04, Race: P = 0.36, Table 3-S3); however, since nearly all of our asymptomatic 

volunteers were Caucasian females we compared those samples against Caucasian females from 

the other cohorts. Examination of the principal component axes of variation in cultured slurries 

and direct sequenced urine microbiomes showed that asymptomatic specimen segregated from 

suspected UTI specimen regardless of whether we compared only the Caucasian females or the 

entire cohort (Caucasian Female Only Cultured Slurries: P < 0.001, Figure 3-2a; Caucasian 

Female Only Direct Sequenced Urine: P < 0.001, Figure 3-2b; Entire Cohort Cultured Slurries: P 

< 0.001, Figure 3-2c; Entire Cohort Direct Sequenced Urine: P < 0.001 , Figure 3-2d). To 

determine the taxa which were differentially abundant between the categories, we used ANCOM 

[177]. Escherichia coli dominate cultured slurries positive specimens and Staphylococcus 

epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, Streptococcus anginosus, 

Corynebacterium auriucosum, C. sp HFH0082, Lactobacillus crispatus, and L. jensenii in the 
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cultured slurry asymptomatic specimens (Figure 3-S1, FDR-adjusted P < 0.05). For the 

insignificant specimens, E. coli remained differentially abundant in positive specimen. 

Lactobacillus crispatus and L. iners was abundant in asymptomatic and contaminated specimens 

(Figure 3-S2, FDR-adjusted P < 0.05). Propionibacterium acnes dominated no growth 

specimens while Ruminococcus torques were exclusively found in contaminated and 

insignificant specimens (Figure 3-S2, FDR-adjusted P < 0.05).  

 

 

 

 

 

 

 Positive
No Growth
Contaminated
Insignificant
Asymptomatic Time Point 1
Asymptomatic Time Point 2
Asymptomatic Time Point 3

Figure 3-2. Urine microbiome alternative states between clinical classifications. 
Canonical analysis of principal coordinates: a, the cultured microbiome between only 
asymptomatic samples from Caucasian females (n=10) and positive urine samples from 
Caucasian females (n=23). b, the cultured microbiome between positive (n=10) and 
asymptomatic samples (n=47). c, the uncultured microbiome between only 
asymptomatic(n=10), positive (n=22), insignificant (n=6), and no growth (n=16) samples 
from Caucasian females. c, the uncultured microbiome between asymptomatic (n=10), 
positive (n=48), insignificant (n=17), contaminated (n=7), and no growth (n=51) samples. 
All P values were calculated using the ADONIS and pairwise ADONIS was corrected with 
false discovery rate (FDR).  
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Stratification by age when assigned into age groups (A – 19-49, n=88; B – 50 – 69, n= 

37; C – 70+, n = 28) was significant (Figure 3-3, P= 0.034). Gardnerella vaginalis was 

differentially abundant in group A and B relative to group C. Group A and B had a lower overall 

proportion of Proteobacteria when compared to Group C (Figure 3-3a, P =0.03, P = 0.004). 

When stratified by clinical classifications and age group, within the no growth samples group A 

was compositionally different from group B (Figure 3-3b, P = 0.048 A - n=28, B - n=17, C -  

 

 

Figure 3-3. Urine microbiome of putative UTI patients clustered by age. Bar plots depicting 
the relative abundance of eukaryotes, bacteria and viruses present in the uncultured urine 
microbiome a, stratified by age group, A – ages 19-49 (n = 88), B – ages 50 – 69 (n = 37), and C 
– age 70+ (n = 28).  b, stratified by age group and clinical classification Positive (P) A (n = 18), 
B (n = 14), C (n = 17), Insignificant A (n = 10), B (n = 4), C (n = 3), Contaminated A (n= 2), B 
(n = 2), C (n = 2), No Growth A (n = 28), B (n= 17), C (n = 6). All P values were calculated 
using the ADONIS and pairwise ADONIS was corrected with FDR. 
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We were able to identify metabolic pathways which could be enriched or depleted in 

asymptomatic individuals using HUMAnN [178]. Bacteriocins were enriched while protein 

SopB were depleted when comparing the cultured slurries (Table 3-1).   

Table 3-1. Cultured slurry metabolic pathways significantly enriched in asymptomatic and 
positive specimen. Means and p-values of metabolic pathways were calculated using HUMAnN.  

 Asymptomatic Mean Positive Mean p-value q-value 
Bacteriocin-type 
signal sequence 

96.17 0 8.699e-05 0.002523 

Protein SopB 0 42.23 2.803e-05 0.00117 
 

3.4.3 URINE MICROBIOME IS REPRESENTATIVE OF CULTURED SLURRY MICROBIOME FOR 

SPECIMEN CLASSIFIED AS POSITIVE  

 Whole-metagenome sequencing of both the cultured slurries and direct sequenced urine 

allows us the ability to investigate the similarity in compositions across methods. The alpha 

diversity of the asymptomatic cultured slurry was significantly higher when compared to positive 

cultured slurry (Figure 3-4a, P = 2.11 x 10-19). However, the alpha diversity was the same in the 

asymptomatic and positive direct sequenced urine (Figure 3-4b). In order to compare 

composition across methods, the reads in the cultured slurries were assembled using IDBA-UD 

[175]. Then reads from the direct sequenced urines were mapped to contigs from the cultured 

slurries using bowtie2 [179]. The percentage of reads aligned was higher in positive specimens 

when compared to asymptomatic specimens (Fig 3-4c, P = 2.2. x 10-16) which supports the 

current methodology for identifying potential uropathogens. The high similarity between direct 

sequenced urine and cultured slurries is noteworthy since it supports the notion that the number 

of days it takes to classify a UTI can be decreased by directly sequencing the urine. 
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Figure 3-4. Direct sequenced urines are representative of cultured slurry for positive but 
not asymptomatic urine specimen. a. Boxplots of Shannon diversity index for cultured slurry. 
b. Boxplots of Shannon diversity index for direct sequenced urine. c. Boxplots of percentage of 
urine reads which mapped to contigs assembled from cultured slurry reads.   

3.4.4 POPULATION STRUCTURE OF PUTATIVE UROPATHOGENIC ESCHERICHIA COLI  

 To investigate clonality and similarity of putative uropathogenic E. coli, individual 

colonies were picked from agar plates and subjected to MALDI-TOF MS for organism 

identification, Kirby-Bauer Disk Diffusion for antimicrobial resistance detection, and sequenced. 

Sequencing reads were assembled using both de novo and reference based assembly. Single-

nucleotide polymorphisms (SNPs) were identified using kSNP [180] with our cohort of isolates 

alongside previously sequenced E. coli from various clades and pathotypes. A core SNP 

alignment parsimony tree was used to infer clonality. Multilocus sequence typing (MLST) was 

identified by mapping contigs to a PubMLST typing schemes 

(https://github.com/tseemann/mlst). Isolates classified into clades A (6.67%), B1 (10%), B2 

(62.5%), D (16.6%), and F (4.2%) (Figure 3-5). Isolates classified as ST-648 from 2 patients 

clustered into a newly diverging clade in F (Figure 3-5). This indicates that putative 

uropathogens are evolving in other clades.  

Isolates from the same patient clustered together and were the same MLST type, one 

metric to suggest  that  that the strains recovered from a single specimen are identical. However, 

https://github.com/tseemann/mlst
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similar MLST types in the same clade did not have similar antimicrobial resistance profiles 

proving that resistance is not tied to phylogeny (Figure 3-5). 

 

 

Figure 3-5. Uropathogenic E. coli are found in almost every clade and resistance is not 
mapped to phylogeny. Parsimony core SNP tree of all E. coli isolates (n = 120). MLST is 
depicted in the first row and antibiotic resistance profile for drugs commonly used to treat UTIs 
are depicted in the next 8 rows.  

3.5 DISCUSSION 
The confirmation of an active microbial community in the bladder have been an interest 

to many [153, 155, 181, 182] but understanding the relationship between the microbiome and 

urological disease has yet to be explored [152] using deep shotgun sequencing . This study 

focuses on comparing the microbiome of asymptomatic and suspected UTI patients of four 

different specimen interpretive classifications to gain knowledge on different methods which 

could be used to diagnose and treat UTIs. 

Many studies have relied on marker gene surveys of the urine microbiome which 

provides a limited scope into function of the microbiome [182]. By utilizing isolate metagenomic 

and whole-metagenomic shotgun sequencing, we are not only able to study composition but gain 
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insight into the function. The results presented here prove that whole metagenomic sequencing 

could be a potential method in diagnosing and treating a UTI rather than using culturing methods 

which are biased and could take up to a week [51]. Our ability to identify putative pathogens and 

metabolic pathways that are enriched in specimen that are clinically designated as inconclusive 

allows us the ability to provide a foundation of new methods to accurately classify patients who 

have a UTI and provide antibiotics that will not disturb the commensal flora or increase 

antibiotic resistance.  

We observed that the microbiome of asymptomatic individuals is stable over time. 

Therefore, the urine microbiome is not in flux and a diseased state that is compositionally 

different is in a state of dysbiosis. This is clear when we compared cultured slurries and direct 

sequenced urines from asymptomatic and suspected UTI specimens. The composition of the 

asymptomatic specimen were similar to many other studies who did targeted marker gene 

sequencing [181] and this is mainly due to the low diversity of the urine microbiome. The 

composition of suspected UTI specimen which were classified as positive, no growth, and 

insignificant were compositionally different from asymptomatic specimen but not contaminated. 

This suggests that the specimen clinically classified as contaminated may be the commensal flora 

of the urine microbiome rather than a contamination of the skin flora. Future studies where urine 

is directly extracted from the bladder rather than clean-catch will be necessary to determine if the 

contamination is from the skin or part of the commensal urine microbiome.  

 Our ability to recapitulate the cultured slurry microbiome of suspected UTI specimen but 

not asymptomatic proves to the capability in direct sequencing of the urine to measure disease. 

Since the urine microbiome has low diversity, samples do not have to be sequenced to the same 

depths as fecal microbiome studies to fully capture all individuals in the community. Therefore, 
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culturing only increases time to treatment. All isolates which were extracted from culture were 

identified in the direct sequenced specimen. The fact that in specimen where the putative 

pathogen was not the abundant species in the community but rather a different putative pathogen 

suggests that UTIs can be a multi-pathogen infection rather than a single pathogen. Therefore, 

culturing only limits our detection to a single pathogen and treatment is based on that single 

pathogen which could lead to recurrent UTIs and increase in antibiotic resistance. 

3.6 CONCLUSIONS 
 We hypothesize that the urine microbiome of suspected UTI patients classified into the 4 

categories was compositionally different when compared to asymptomatic specimens. The 

results validate this hypothesis, providing evidence that the urine microbiome does not decrease 

in diversity but compositionally which could lead to a diseased state. The altered state does not 

mean a dominance of a single pathogen but could be a multi-pathogenic infection. With whole 

metagenomic sequencing becoming easier to analyze, we predict with the inclusion of such 

technologies within the clinical classification and treatment of a UTI will aid in precise treatment 

strategies.  
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3.8 SUPPLEMENTARY FIGURES & TABLES 
 

Table 3-S1. Demographic and specimen characteristics 

Clinical 
variable 

Entire 
cohort 
(n=162) 

Asymptomatic 
(n = 10 ) 

Positive 
(n=52) 

Contaminated 
(n=9) 

No 
Growth 
(n= 71) 

Insignificant 
(n = 20) 

Age (yr), mean 
(SD) 

50.8 
(20.1) 

31.4 (8.77) 52.3 
(21.2) 

48.9 (20.8) 50.3(19.5) 48.1 (21) 

Gender, no. 
(%) 

      

Females 103 (63.6) 10 (100) 40 (76) 8 (88) 30 (42.2) 15 (75) 
Males 59 (36.4) 0 12 (23) 1 (11) 41 (57.8) 5 (25) 

Race/ethnicity, 
no. (%) 

      

Caucasian 99 (61.1) 9 (90) 30 (57) 4 (44) 45 (63.3) 11 (55) 
Black  57 (35.2) 0 21 (40) 4 (44) 23 (32.4) 9 (45) 
Asian 2 (1.2) 1 (10)   1 (1.4) 0 
Not 

Specified 
4 (2.5) 0 1 (1) 1 (11) 2 (2.8) 0 

Patient Type, 
no. (%) 

      

Inpatient  48 (29.6)  17 (32) 4 (44) 23 (32.4) 4 (20) 
Ouptatient 103 (63.6)  34 (65) 5 (55) 48 (67.6) 16 (80) 
Not 

Specified 
1 (0.6)  1 (1) 0 (0) 0 0 

Patient 
Location , no. 
(%) 

      

Emergency 
Department 

17 (10.5)  9 (17) 0 (0) 8 (11.3) 0 

Medicine 52 (32.1)  13 (25) 4 (44) 29 (40.8) 6 (30) 
Oncology 15 (9.3)  3 (5) 1 (11) 10 (14.1) 1 (5) 
Gynecology 19 (11.7)  5 (9) 2 (22) 6 (8.5) 6 (30) 
Surgery  5 (3.1)  3 (5) 0 (0) 2 (2.8) 0 
Other 43 (34)  19 (36) 2 (22) 16 (22.5) 7 (35) 

Type of Urine 
Specimen, no 
(%) 

      

Catheter 21 (12.9)  5 (9) 0 (0) 16 (22.5) 0 
Illeal Loop 1 (0.6)  1 (1) 0 (0) 0 0 
Midstream 86 (53.1)  21 (40) 8 (88) 42 (59.2) 15 (75) 
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Table 3-S2. Number of samples meeting the inclusion criteria during each step of the 
analysis.  

 Obtained Sequenced Minimum Number of 
Reads Acquired 

Successfully 
Analyzed with 
Pipeline 

Isolates 224 220 219 212 
Slurries     

Asymptoma
tic 

30 30 30 30 

Positive 52 48 48 47 
No-Growth 6 6 6 6 

Urines     
Asymptoma

tic 
30 30 30 30 

Insignifican
t 

20 17 17 17 

Contaminat
ed 

9 7 7 7 

Positive 52 49 49 48 
No-Growth 71 69 61 61 

 
 
 
Table 3-S3. Statistical analysis of conducted on Bray-Curtis of direct sequenced urine 
specimen. Category = Positive, Asymptomatic, Insignificant, Contaminated and No Growth.  

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  
Category 4 6.034 1.50838 4.4433 0.09236 0.001 *** 
Age 60 27.405 0.45675 1.3455 0.41952 0.001 *** 
Gender 1 0.482 0.48229 1.4207 0.00738 0.104  
Race 2 0.719 0.35946 1.0589 0.01101 0.36  
 
 

Urine 
Not 

Specified 
40 (24.7)  25 (48) 1 (11) 11 (15.5) 5 (25) 
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Figure 3-S1. Differentially abundant bacteria between asymptomatic, positive, contaminated, 
insignificant and no growth direct sequenced specimen. Boxplots depicting log relative abundance of 
bacterial species between positive (n=47), asymptomatic (n = 30), contaminated (n = 7), insignificant (n =  
17), no growth (n = 61). Differential abundance was calculated using ANCOM and FDR was used to 
correct p-values.  

Figure 3-S2. Differentially abundant bacteria between asymptomatic and positive cultured 
slurries. Boxplots depicting log relative abundance of bacterial species between positive (n = 47) 
and asymptomatic (n = 30) cultured slurries. Differential abundance was calculated using 
ANCOM and FDR was used to correct p-values. 
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Chapter 4 Conclusions and Future Directions 
My work has shown that the microbiome can directly affect the fitness of the host. 

Endophytic root bacteria are correlated with total biomass of plant hosts which are sensitive to 

microbial composition disturbance. However, this disturbance does not affect the strength of the 

assembly processes on the overall composition. We provide evidence that the assemblage of root 

endophytic bacteria is structured by deterministic factors and the identity of the host has the 

strongest effect. This study provides a foundation to study root endophytic communities in 

prairie plants. However, we have yet to know if the bacterial species identified truly can alter 

plant fitness. Challenging plants with bacterial species found in the roots will elucidate direct 

function of bacterial species alongside whole genome sequencing.  

Our results show that the urine microbiome is in an altered state when the individual has 

a suspected UTI. The microbiome is enriched with pathogens and often more than one. This 

poses a potential problem as conventional clinical diagnostics typically view UTI as a 

monomicrobial infection and focus on the isolation of a single pathogen.  Furthermore, 

conventional urine culture methods are primarily tuned for the isolation and recovery of E. coli.   

The results shown in my dissertation provides further evidence that direct sequencing not only 

recapitulates the cultured composition but provides further necessary details for future diagnostic 

testing. Therefore, there isn’t a need to spend time culturing when we can sequence the urine 

directly. Before we can make such claim, we need to have a solid classification system that can 

replace the current clinical classifications. To do so, we need to have access to all patient 

outcomes and treatments to better compare the treatment recommendations concluded using 

solely sequencing data compared to the current method.  
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Studying two different habitats have led to similar conclusions: microbiomes can affect 

their hosts. Microbes have been shown to expand the genetic architecture of their hosts by 

providing a service the hosts are not genetically capable of doing. However, these microbes are 

not randomly placed in certain niches and then co-opted based on a function. Instead, the 

microbes are directly selected by the host based on their function. Due to evolution of 

sequencing technology, elucidating function of microbiomes and single bacterial species is 

feasible. Once we can tie both function and assembly theory, we will be able to understand 

answer the questions central to ecology: how did they get there, what are they doing and why are 

they there.  
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