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Cold shock domain (CSD) proteins are the most evolutionarily conserved family 

of nucleic-acid binding proteins. There are four functional genes that contain 

CSDs in humans and mice: YBX1, MSY4, MSY2, and CSDE1. YBX1 is 

overexpressed in most cancers, and is frequently associated with poor outcomes 

and chemotherapy resistance. Both YBX1 and MSY4 are highly expressed in 

normal hematopoietic progenitors, and both are downregulated with terminal 

myeloid differentiation; both genes are highly expressed in virtually all cases of 

acute myeloid leukemia (AML). These two genes are functionally redundant as 

well: Msy4 has been shown to complement Ybx1 function in late-stage 

embryogenesis in mouse knockout models. Nevertheless, most studies that have 

sought to clarify the role of YBX1 in cancer have failed to consider a possible role 
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for MSY4 complementation in cells where both genes are expressed. In mice 

deficient for either Ybx1 or Msy4, hematopoiesis is not altered. However, the loss 

of both proteins leads to a reduced ability for MLL-AF9 (a potent leukemia-

initiating gene) expressing bone marrow cells to proliferate and serially replate in 

vitro, suggesting that Ybx1 and Msy4 have redundant functions in this model 

system.  Since these proteins are involved in the prevention of senescence 

during proliferative stress, the inhibition of both proteins may provide a novel 

strategy for the treatment of AML and other cancers. 

To create a system to study the roles of Ybx1 and Msy4 in the earliest stages of 

hematopoiesis (i.e. progression from pluripotency to committed hematopoietic 

stem cells), we developed a system to study the production of hematopoietic 

stem and progenitor cells from murine embryonic stem cells (ESCs) and induced 

pluripotent stem cells (iPSCs). By comparing the hematopoietic potentials of 

ESCs, and 24 independent iPSC clones obtained from a single adult mouse, we 

discovered considerable functional heterogeneity among the clones. To 

determine whether the basis of this heterogeneity was genetic, we sequenced 

the exomes of all 24 clones.  Although each had a set of private mutations that 

defined its clonal origins, none of the mutations readily explained why some 

clones had a reduced potential to form hematopoietic progenitors in vitro. Finally, 

we compared the expression profiles of clones with extreme outlier phenotypes 

for hematopoiesis in vitro; this study yielded a small set of candidate genes 

(including Wt1 and Lef1) that could be relevant for the hematopoietic 

differentiation potential of mouse iPSCs. These findings have provided new 
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insights into the origins of genetic heterogeneity among iPSC clones, and may 

ultimately provide new information about the genes that govern the earliest steps 

of hematopoietic commitment. 
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1.1 Cold shock domain proteins are evolutionarily conserved  

Cold shock domain (CSD) proteins belong to one of the most evolutionarily 

conserved nucleic-acid-binding protein families. Structurally, CSD proteins are 

highly conserved among bacteria, archaea, plants, and vertebrates. Functionally, 

CSD proteins are involved in various stress response throughout evolution. 

Interestingly, CSD proteins are not found in yeast. 

1.1.1 Bacterial cold shock proteins 

Bacterial cold shock proteins (Csps) are small proteins (~7kDa) containing a 

single CSD, and are found in more than 50 bacterial species.1 They bind single-

stranded RNA and DNA (ssRNA/ssDNA), but not double-stranded DNA 

(dsDNA).2 Three-dimensional (3-D) structural analysis of CspA in Escherichia coli 

revealed a β barrel formed by five antiparallel β strands, adopting an 

oligonucleotide and/or oligosaccharide binding (OB) fold.1,2 Strands β2 and β3 

contain conserved ribonucleoprotein1 (RNP1) and RNP2 motifs respectively, 

which are thought to be responsible for the protein-nucleic acid interaction of 

CspA.2,3  

Csps have been shown to respond to different environmental stresses, and also 

thought to be important during normal growth conditions for bacteria. Among the 

11 family members of Csps found in E. coli, CspA, CspB, CspG, and CspI 

respond to temperature downshift, CspD is induced by nutrition starvation, while 

CspC and CspE are constitutively expressed.1,4 The cold-shock response leads 

to cessation of growth and reduction in protein synthesis in bacteria. Csps are 

thought to mediate this process by functioning as RNA chaperones to destabilize 

and recover functionality of the RNAs, which tend to be folded into unfavorable 

structures at low temperatures. Csps are also involved in transcription, 

translation, and RNA turnover.3,5,6  

1.1.2 Archaeal Csps 

In archaea, Csp homologues have been identified in a small number of 

psychrophiles, including Methanogenium frigidum (which have the lowest known 



 3 

upper growth temperature limit at 18°C); they do not appear to be present in any 

thermophiles thriving at relatively high temperatures (45-80°C). Archaeal Csps 

have a similar structure as bacterial Csps, with a higher content of solvent-

exposed basic residues located on the nucleic acid binding surface. They have 

been shown to complement a cold-sensitive growth defect in E. coli. Further, 

purified M. frigidum Csp was found to bind E. coli ssRNA.7  

1.1.3 CSD proteins in plants 

Eukaryotic CSD proteins contain C- and/or N-terminal auxiliary domains in 

addition to a CSD. CSD proteins are presented across lower and higher plants. 

They all contain a highly conserved CSD and a diverse combination of Glycine-

rich regions and CCHC zinc fingers on the C-terminus. CSD proteins have been 

shown to be essential for acquisition of freezing tolerance in plants,8 and are 

involved in other stress responses, such as rapid cell division, dehydration, and 

salt stress.9  

1.1.4 CSD proteins in nematodes 

Caenorhabditis elegans Lin-28 contains one CSD and two CCHC zinc-finger 

motifs. These domains are thought to cooperate in RNA target recognition. Lin-

28 can regulate gene expression associated with development, differentiation, 

and cancer progression by directly binding to target mRNAs or indirectly 

regulating microRNA (miRNA) processing.3  

1.1.5 Vertebrate CSD proteins  

Human CSD proteins Y-box binding protein 1 (YBX1), Cold shock domain protein 

A (MSY4), and Y-box binding protein 2 (YBX2) share about 40% CSD homology 

with bacteria, and more than 84% overall amino acid homology with their mouse 

homologues. These proteins all contain a divergent alanine- and proline-rich N-

terminal domain and a structurally similar C-terminal domain with basic/acidic 

amino acid repeats (B/A repeat)6.  
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Vertebrate CSD proteins have been associated with cold-adaptation10, but more 

importantly, they are associated with stress responses more common in 

vertebrates, i.e. maintaining rapid cell growth. Both Ybx1 and Msy4 are highly 

expressed throughout murine embryogenesis.11 High levels of Ybx1 are detected 

in vivo in regenerating liver tissue following chemical-induced damage12 or 

hepatectomy13 and actively proliferating colorectal epithelial glands14. In various 

human cell types, YBX1 levels increase in response to mitogenic stimuli, 

including cytokine-stimulation of T cells15, serum-activation of fibroblasts13, and 

agonist-stimulation of endothelial cells16.  

Another family member, Cold Shock Domain Containing E1 (CSDE1, also known 

as Upstream of N-ras, or UNR), has a unique structure containing five copies of 

the CSD and, unlike other family members, has not been associated with stress 

response. It is involved in the regulation of translation and mRNA stability in 

translation.3 For example, CSDE1 is required for efficient initiation of translation 

from the internal ribosome entry sites (IRES) of both Rhinovirus and Pollovirus17; 

it also plays a key role in translationally coupled mRNA decay mediated by the c-

fos major protein coding-region determinant18.  

1.2 Structural and functional organization of the YBX1 protein 

Ybx1 is the most well known member among all the vertebrate CSD proteins, 

and has been the most widely studied, both structurally and functionally. Through 

its interactions with DNA, RNA, and proteins, Ybx1 is thought to play an essential 

role in normal cellular functions and stress responses, including transcription 

regulation, translation regulation, and DNA repair. 

1.2.1 Structure and properties of YBX1 protein 

The cold shock domain (CSD) of YBX1 contains a β-barrel structure comparable 

to bacterial cold shock proteins, with a similar arrangement of RNA-binding motif. 

It binds only weakly and non-specifically to DNA6, but has a strong affinity to 

single-stranded pyrimidine-rich sequences and triplex/single-stranded H-

DNA.12,19 The CSD is thought to be required for nuclear import of the Ybx1 
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protein 3 and RNA target sequence recognition 20, and has been shown to assist 

the formation of Ybx1 fibrils.20   

The C-terminal domain consists of a B/A repeat, with 30 amino acids of alternate 

regions of basic or acidic amino acids. It is highly divergent among vertebrate 

CSD proteins and is used to distinguish between germ and somatic cell types.9 It 

has been shown to have a strong but non-specific affinity for ssDNA/ssRNA in 

vitro, as it interacts with negatively charged phosphate groups of nucleic acids.6 It 

is thought to be involved in protein binding, including dimer formation and 

homomultimerization.9,20 It also contains the nuclear localization signal (NLS) and 

the cytoplasmic retention site (CRS).20  

Finally, the alanine- and proline-rich N-terminal Domain is thought to be a trans-

activation domain involved in protein interaction.20  

YBX1 binds to a variety of proteins (Table 1-1), and it can bind to a number of 

proteins using more than one domain. 20 YBX1 also binds to both DNA and RNA, 

in both sequence-specific and sequence-nonspecific fashions.  

Table 1-1. Protein binding partners of YBX1  

Functional category Protein binding partners 

Transcription Factors Activating Protein-2 (AP2) 21 
CCCTC-binding factor (CTCF) 22 
Interferon Regulatory Factor-1 (IRF-1) 23 
p53 21,24 
p65 25 
Smad3 26 
Sox21 27 
Yin Yang 1 (YY1) 28 

RNA-binding Proteins Heterogeneous nuclear ribonuclearprotein K (HnRNPK) 
29,30 
SRp30c 31 
U2 auxiliary factor (U2AF) 32 

Viral Proteins Human Polyomavirus JC Virus Large T Antigen (JCV 
LT) 33 
Tat 34 
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DNA Repair Proteins Human apurinic/apyrimidinic (AP) endonuclease 
(APE1/Ref-1) 35,36 
Endonuclease III 37 
DNA ligase IIIα 38 
DNA polymerase β 38 
DNA polymerase δ 39 
Ku80 39 
MutS protein homolog (MSH2) 39 
Nei endonuclease VIII-like 2 (NEIL2) 38 
Proliferating Cell Nuclear Antigen (PCNA) 40 
Werner syndrome, RecQ helicase-like (WRN) 39,41 

Cytoskeletal Proteins Actin filaments 42 
Microtubules 43 

Oncogenes Ewings sarcoma breakpoint region 1 (EWS) 44 
Fused in sarcoma (FUS/TLS) 44 

Others Ankyrin repeat domain 2 (Ankrd2) 45 
Cardiac Ankyrin Repeat Protein (CARP) 45,46 
Cyclin D1 47 
Histone deacetylase (HDAC2) 48 
Heat shock protein (HSP60) 49 
Iron-Regulatory Protein 2 (IRP2) 30 
Karyopherin β2 50 
Purine-rich element binding protein A (Purα) 51,52 
Purβ 52 
Ybx1: dimer 30 or fibril 53 
Y-box Protein-associated Acidic Protein (YBAP1) 54 

 

1.2.2 YBX1 in transcriptional regulation 

YBX1 regulates transcription of a number of genes involved in normal cellular 

functions, including cell cycle, apoptosis, immune responses, as well as stress 

responses, tumor growth, and multidrug resistance.  It has also been shown to 

regulate the transcription of some viral genes. (Table 1-2)  

Table 1-2. YBX1 in transcription regulation 6,9,20  

Regulation Regulated gene 

Activation Adenovirus late genes under control of promoter E2 
Chemokine (C-C motif) ligand 5 (CCL5) 
CD44 
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CD49f 
cyclin A and cyclin B1 
DNA polymerase α  
Epidermal growth factor receptor (EGFR)  
v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 
(ERBB2/HER-2) 
Fas 
Gelatinase A/matrix metalloproteinase 2 
Genes under control of HIV-1 TAR-promoter 
GM-CSF 
LRP/MVP 
Human Multidrug transporter (MDR1) 
MET proto-oncogene (MET) 
myosin light-chain 2v (MLC-2v) 
p21 
PDGF B 
Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic 
subunit alpha (PI3KCA) 
Polyomavirus JCV promoters (late) 
Protein tyrosine phosphatase, non-receptor type 1 (PTP1B) 
Smad7 

Repression ATP-binding cassette, sub-family C (CFTR/MRP), member 
2 (Abcc2/Mrp2) 
α-actin 
c-Myc 
COLα1 
COLα2 
Carbamoyl-phosphate synthase 1 (CPS-1) 
Fas 
γ-globin 
GM-CSF 
Heat shock 70kDa protein 5 (HSPA5/GRP78/BiP) 
MVP major vault protein (MVP/LRP) 
MMP12  
MMP13 
MHC I 
MHC II (HLA DRα, I-Aβ) 
p21 
p53 
Polyomavirus JCV promoters (early) 
Thyrotropin receptor 
VEGF 

 



 8 

YBX1 was first identified as a transcription factor by its ability to bind to the 

inverted CCAAT motifs (Y-box sequence) of Major Histocompatibility Complex 

(MHC) class II promoter.55 Y-box-binding and recruitment of other transcription 

factors has been shown to upregulate myosin light-chain 2v and human Multidrug 

Transporter (MDR1), and to downregulate human collagen α2 (COLα2).6 

However, YBX1 has also been reported to regulate transcription independent of 

Y-box binding. 

YBX1 can bind to other transcription factors to co-activate gene transcription. For 

example, Ybx1 has been reported to interact with TP53 and activate transcription 

of P21 24; it has also been shown to activate the Granulocyte-Macrophage 

Colony-stimulating Factor (GM-CSF) promoter in Jurkat T cells through 

interaction with transcription factors such as RELA/NF-κB p65 56. 

YBX1 can also bind to single-stranded regions of promoters (S1-nuclease 

hypersensitive sites), with a higher affinity to pyrimidine-rich regions. For some 

genes, including Collagen, type I alpha 2 (COLα2) and Vascular endothelial 

growth factor A (VEGF), binding of YBX1 to pyrimidine-rich promoter regions 

directly correlates to inhibition of their transcription. It is hypothesized that binding 

of YBX1 inhibits transcription factors from binding to the DNA. For other genes, 

such as c-myc, metalloproteinase 2, and human JCV polyoma virus early and 

late genes, binding of YBX1 to pyrimidine-rich promoter regions stimulates 

transcription. It is thought that YBX1 can recruit transcription factors to these 

promoters and as a result activates their transcription. 20 The mechanism for both 

transcription inhibition and activation through YBX1-pyrimidine-rich-DNA binding 

remains unclear.  

1.2.3 YBX1 in translation regulation 

YBX1 plays a vital role in various stages of mRNA life cycle, including stabilizing 

mRNA as a chaperone in cytoplasm, pre-mRNA splicing, cap-dependent and 

independent translation initiation, in both sequence-specific and non-specific 

fashions. 
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YBX1 binds to nascent pre-mRNA on chromosomes9 and acts as an mRNA 

chaperone in messenger ribonucleoprotein particles (mRNPs)20. It has been 

shown to be a global cap-dependent mRNA stabilizer that protects mRNA from 

degradation.6 The CSD is required for mRNA recognition3, while the first half of 

the C-terminal domain has been proposed to interact with the cap structure (or its 

adjacent region) and prevent Eukaryotic translation initiation factor 4G (eIF4G) 

from binding. mRNA stabilization through sequence-specific binding has also 

been reported, such as the CU-rich elements in the 3’ untranslated region (UTR) 

of renin mRNA and the c-Jun N-terminal kinases (JNK)-response element in the 

5’ UTR of Interleukin 2 (IL-2) mRNA.20  

The ratio of YBX1/mRNA decides whether YBX1 stabilizes mRNA or initiates its 

activation. When the YBX1/mRNA ratio is high, YBX1 stabilizes mRNA, 

protecting it from degradation while suppressing translation initiation. When the 

YBX1/mRNA ratio is low, YBX1 has been proposed to stimulate translation 

initiation by releasing the cap structure from the C-terminal domain and allowing 

eIF4G to bind.6,9,20 YBX1 is also involved in cap-independent translation 

regulation for mRNAs such as Snail1 and the myc family proto-oncogenes.20 It 

has not been shown to play a role in translation elongation or termination. 

Nevertheless, YBX1 could also influence translation through its interaction with 

other RNA-binding proteins.30  

YBX1 has also been shown to be a spliceosome-associated factor and may play 

a role in alternative splicing of pre-mRNA. It has been reported to be involved in 

exon skipping in MDM2 mRNA, as well as exon inclusion in CD44 and NF1 

mRNA. YBX1 is proposed to recognize specific sequences in certain mRNAs and 

potentially recruit splicing factors to them (Table 1-1).20,32 However, it is not 

thought to be a core component of the spliceosome.20 

1.2.4 YBX1 in DNA repair 

YBX1 has been implicated in DNA repair due to its ability to interact with many 

DNA repair proteins (Table 1-1) that are involved in base excision repair, 
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nucleotide excision repair, mismatch repair, repair of DNA single-stranded and 

double stranded breaks, as well as recombination repair.20 It has also been 

reported to have stronger affinity towards secondary structures in damaged DNA, 

such as duplex DNA containing mispaired bases, abasic sites, or cisplatin 

modifications.39,40,57,58  

1.3 Regulation of YBX1  

As a protein with pleiotropic functions, YBX1 is highly regulated on 

transcriptional, translational, and post-translational level. It shuttles between 

cytoplasm and nucleus upon various signals. Moreover, it can be secreted to act 

as an extracellular ligand. 

1.3.1 Transcriptional and translational regulation of YBX1  

The human YBX1 promoter does not contain typical RNA polymerase II 

regulatory sequences, such as a TATA box or the CCAAT element. Its 

transcriptional regulation is largely dependent on several E-boxes (CATCTG) 

containing GC-repeats and GATA motifs located at the beginning of the first 

exon.59 Several E-box binding proteins, including MYC, P73 60, TWIST61, GATA-

1 and GATA-220,62, have been shown to activate the transcription of YBX1 in 

different cell lines. The expression level of some of these transcriptional factors, 

such as GATA-1 and GATA-2, has been correlated with mRNA level of YBX1.20 

YBX1 is expressed differently in different tissues. It is consistently found to be 

abundant in testis13,63, fetal liver12,13, and early precursors of hematopoietic cells: 

(erythroid, lymphoid, [Gene Report/BioGPS] and myeloid progenitors64). Murine 

Ybx1 is expressed at lower levels in kidneys13,63, adult liver, and lungs.13 

Interestingly, the YBX1 protein abundance in different tissues is not tightly 

correlated with the mRNA levels11,65, indicating it is regulated at the post-

transcriptional level as well. 

YBX1 translation can be regulated through both 3’UTR and 5’UTR. There is an 

evolutionarily conserved AC-rich sequence on the 3’UTR. In a cell-free system, it 

has been shown that the binding of YBX1 to this sequence will suppress the 
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translation of YBX1 mRNA66, while the binding of Poly (A)-binding protein (PABP) 

will activate the translation.67 miR-216a microRNA may also inhibit translation of 

murine Ybx1 mRNA through its 3’ UTR.68 Further, YBX1 has also been shown to 

bind to 5’UTR of YBX1 mRNA and inhibit its translation.69  

1.3.2 Post-translational regulation of YBX1  

YBX1 is post translationally modified by phosphorylation, acetylation, 

ubiquitination, and limited proteolysis with the 20S proteasome. These 

modifications are highly correlated with its pleiotropic functions. 

YBX1 can be phosphorylated at Ser102 by AKT70,71, which decreases its ability 

to bind mRNA cap regions,72 and minimizes cap-dependent translation71. It is 

also phosphorylated by the kinase RSK73. YBX1 can also be phosphorylated by 

the kinases ERK2 and GSK3β, which enhance its binding to the VEGF 

promoter.74 Other phosphorylation sites revealed by mass spectrometric studies 

include Ser165 and/or Ser167, Ser174 and/or Ser176, Ser313 and/or Ser314, 

and Tyr162.20  

YBX1 is proposed to be acetylated at Lys301 and Lys304, which may be 

important for its secretion from cells.75  

Ubiquitination of YBX1 is mediated by the F-Box protein 33 (FBX33), which leads 

to its complete degradation by the 26S proteasome.76  

YBX1 also undergoes ATP- and ubiquitin-independent limited proteolysis by the 

20S proteasome, which cleaves Ybx1 into two fragments. This modification has 

been reported to occur with genotoxic stresses77 and upon treatment of 

endothelial cells with thrombin.78  

1.3.3 YBX1 shuttles to the cell nucleus in response to stress signals 

YBX1 is predominantly found in the cytoplasm, where it is associated with 

mRNA, stress granules, and processing bodies. Upon various cellular signals, 

including stress responses, it can be shuttled to the nucleus where it is most 

frequently located on chromatin.20  
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YBX1 normally shuttles from the cytoplasm to the nucleus during the G1/S 

interphase. This transition is dependent on its NLS sequence and is associated 

with transcriptional activation of CCNA2 (Cyclin A2) and CCNB1 (Cyclin B1).79 

YBX1 also moves to the nucleus in response to growth factors and cytokines26,80, 

through interaction with other proteins like SRSF931 and TP53 41,81,82, and in 

response to various stress signals (including UV-radiation83, DNA-damaging 

agent treatments84, oxidative stress38, and hyperthermia85). YBX1 has been 

shown to interact with KPNB2 50, which is a member of the transporter family 

Import-Karyopherin that is responsible for the nuclear import of numerous RNA 

binding proteins. However, this is not experimentally proven to be the nuclear 

import mechanism for YBX1.  

YBX1 nuclear export has also been reported upon signaling with Platelet-Derived 

Growth Factor beta (PDGF-B), which also leads to upregulation of YBX1 

transcription. This is observed in kidney cells with mesangioproliferative 

glomerular disease, in which PDGF-B is a key mediator.86 The export of YBX1 

has been shown to be independent of CRM1 87, which is an exportin protein that 

controls the nuclear export of many proteins, including MDM2/TP53 and CCNB1. 

The mechanism for the nuclear export of YBX1 remains unidentified. 

1.3.4 YBX1 secretion and extracellular functions 

YBX1 secretion is mediated via a non-classical mechanism within endolysosomal 

vesicles, instead of the Golgi apparatus and the endoplasmic reticulum.  

Secretion presumably requires acetylated Lys301 and Lys304, as the substitution 

of these residues by alanine completely inhibits secretion of YBX1.88 YBX1 is 

secreted when cells are exposed to lipopolysaccharide, hydrogen peroxide, 

PDGF-B, or TGFβ.75 Increased levels of secreted YBX1 have been detected in 

the sera of sepsis patients89, suggesting that the secretion is a consequence of 

inflammatory stress. Secreted Ybx1 can act as a ligand for the Notch-3 receptor, 

which is able to activate the transcription of multiple target genes, including 

members of the HES gene family.88  
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1.4 CSD proteins YBX1 and MSY4 are highly expressed in various cancers  

YBX1 is expressed at high levels in almost all types of cancer, including Acute 

Myeloid Leukemia (AML). It is frequently associated with advanced stages, poor 

prognosis, and drug resistance, and suggested to be a biomarker for diagnosis, 

as outlined below. The role of YBX1 in cancer biology has also been explored 

extensively using cell lines. More recently, MSY4 has been reported to be 

expressed in various cancer types, and has been suggested to play a role in 

tumor progression. 

1.4.1 CSD protein expression in malignant tumors and cancer cell lines 

YBX1 is highly expressed in almost all major types of solid tumors and in 

leukemia samples. In most reports of clinical specimens, protein levels have 

been detected using immunohistochemistry, while mRNA abundance has been 

estimated using microarrays and/or RT-PCR. Both high expression level (mRNA 

and protein) and nuclear localization have been associated with advanced stages 

of cancer, including metastatic disease, relapsed disease, drug resistance, and 

poor outcome (Table 1-3).  Many groups have suggested that these findings are 

markers of poor prognosis. 

MSY4 has also been detected in primary samples of gastric cancer, 

hepatocellular carcinoma, and AML. Its expression has not been consistently 

correlated with poor prognosis. (Table 1-3) 

Table 1-3. CSD protein expression in clinical specimen of human tumors 
CSD protein Cancer type Overexpressed 

species 
Prognosis association 

YBX1 Breast cancer Protein90  Nuclear YBX1 associated with 
intrinsic multidrug resistance 

  mRNA91  Highly associated with relapse and 
poor survival 

  mRNA20  Associated with metastasis 

  Protein92  Significantly associated with poor 
outcome and relapse in patients 
with or without postoperative 
chemotherapy 



 14 

  Protein20  High expression level associated 
with estrogen receptor-negative 
and lymph node positive breast 
tumors; low expression level 
associated with lower recurrence 
risk among patients who did not 
receive adjuvant chemotherapy 

  Protein93  Correlate with reduced expression 
of E-cadherin (indication of 
metastasis) and poor patient 
survival 

  Protein20  Correlate with large tumors (more 
than 5 cm) and metastasis of small 
neoplasms 

  Protein94  N/A 

  Protein95  Nuclear YBX1 associated with poor 
survival in early breast cancer 

 Ovarian cancer Protein96  Nuclear YBX1 associated with poor 
survival 

  Protein97  Poor survival associated with co-
expression of P-glycoprotein 

  Protein98  Nuclear YBX1 associated with poor 
survival 

  mRNA99 Associated with primary tumor and 
metastatic sites in epithelial ovarian 
cancer 

  Protein96 Nuclear YBX1 associated with 
recurrent lesions 

 Colorectal 
carcinoma 

Protein14  N/A 

 Gastric cancer Protein100  Not correlated with overall survival, 
but vascular invasion, liver 
metastasis, and shortened disease-
free survival 

 Melanoma mRNA101  N/A 

 Lung cancer Protein102  Nuclear YBX1 associated with poor 
prognosis in non-small cell lung 
cancer and squamous cell 
carcinoma 

  Protein103  Nuclear YBX1 associated with 
reduced survival times in non-small 
cell lung cancer 
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  Protein104  Nuclear YBX1 associated with poor 
prognosis in non-small cell lung 
cancer and adenocarcinoma 

  Protein54  Associated with T3-4 and Stage II-
IV tumors 

 Synovial 
sarcoma 

Protein105  Nuclear YBX1 associated with poor 
prognosis 

 Osteosarcoma Protein106  Nuclear YBX1 associated with poor 
overall survival 

 Glioblastoma mRNA (Faury 
2007) 

N/A 

  Protein (Gao 
2009) 

N/A 

  Protein 
(Fotovati 2011) 

YBX1 expression increases with 
tumor grade 

 Neuroblastoma mRNA 
(Wachowiak 
2010) 

Not correlated with poor prognosis 

 Prostate 
cancer 

Protein 
(Gimenez-
Bonafe 2004) 

N/A 

 Diffuse large 
B-cell 
lymphoma 

Xu 2009 Nuclear YBX1 associated with poor 
prognosis 

 Non-
Hodgekin’s 
Lymphoma 

Protein 
(Szczuraszek 
2011) 

Associated with poor prognosis 

 Thyroid 
anaplastic 
carcinoma 

Protein (Ito 
2003) 

N/A 

 Dialysis-
associated 
renal cell 
carcinoma 

Protein 
(Fushimi 2013) 

N/A 

 Bladder cancer mRNA and 
protein (Song 
2013) 

mRNA level correlated with grad 
and invasiveness; protein level 
correlated with invasiveness and 
co-expression level with Twist 
correlated with poor overall survival 
rate 

 Resectable 
esophageal 
squamous cell 

Protein (Li 
2011) 

Associated with high recurrence 
and lower survival rate 
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carcinoma 

 AML FAB type 
M0-M7  

mRNA (Payton 
2009, cancer 
genome 
research 
network 2013) 

Not correlated with patient outcome 

MSY4 AML FAB type 
M0-M7  

mRNA (Payton 
2009) 

N/A 

 hepatocellular 
carcinoma  

mRNA (Yasen 
2012) 

Not correlated with poor prognosis 

  Protein (Yasen 
2005) 

Nuclear MSY4 associated with 
poor prognosis 

 Gastric cancer Protein (wang 
2009) 

N/A 

 

YBX1 protein is also highly expressed in various cancer cell lines, including the 

human leukemia cell lines K562 and Kasumi, the human lymphoma cell line 

U937, the human breast cancer cell line MDA (MDA-MB-231), the human 

melanoma cell line A375, and the human cervical cancer cell line HeLa. It is also 

highly expressed in the mouse lymphoma cell lines Yac-1, Wehi, and RMAS, the 

mouse mastocytoma cell line P815, and the mouse skin melanoma cell line B16. 

MSY4 is expressed in most human cancer cell lines, but has only been detected 

in mouse P815 cells. In contrast, the CSD family member MSY2 protein is not 

detected in any of the cell lines noted above.11 (Figure 1-1) 

CSDE1 is expressed in cancer cell lines such as MCF-7107. However, its 

expression is thought to be co-regulated with oncoprotein N-ras107,108, which is 

often overexpressed in cancer. 

1.4.2 CSD protein expression in AML patients and mouse models 

AML is a heterogeneous hematopoietic malignancy in which hematopoietic 

progenitor cells fail to differentiate normally, resulting in the accumulation of 

immature cells in the bone marrow and blood.109 The French-American-British 

(FAB) classification divides AML into eight major subtypes (M0-M7) based on 

morphology and cytochemical staining patterns.110 
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In a cohort of 200 AML samples from all eight FAB subtypes, YBX1 and MSY4 

mRNA expression levels were found to be very high compared to mature 

neutrophils isolated from healthy bone marrow donors. MSY2 was not expressed 

in any AML samples, nor in normal healthy marrow samples. Another CSD family 

member, UNR/CSDE1, is expressed the same in AML patients and mature 

neutrophils.64 (Figure 1-2A) No correlation has been found between the 

expression of either Ybx1 or Msy4 and patient outcomes.111  

Ybx1 and Msy4 mRNA expression levels have also been measured in a mouse 

model of Acute Promyelocytic Leukemia (APL), also known as FAB subtype M3. 

The chromosomal translocation t(15;17)(q21;q22) is found in 98% of APL 

patients112, which results in the fusion of the promyelocytic leukemia (PML) gene 

on chromosome 15 with the retinoic acid receptor alpha (RARA) gene on 

chromosome 17.113,114 In Ctsg-PML-RAR transgenic mice, a human PML-RARA 

cDNA is knocked into the endogenous murine cathepsin G locus, which is 

maximally expressed in early myeloid progenitor cells, Common Myeloid 

Progenitors (CMPs) and Granulocyte-Macrophage Progenitors (GMPs).115 About 

60% of the Ctsg-PML-RAR mice develop a fatal myeloid leukemia that closely 

resembles human APL.116  

Expression profiling has revealed that Ybx1 mRNA is highly expressed in all the 

myeloid progenitor compartments, including SLAM, KLS, Promeylocytes, and 

Neutrophils of both 6 week old Ctsg-PML-RARA mice and wildtype mice, and in 

all 15 tested APL tumors arose in these mice. Msy4/Csda1 expression is not 

significantly different in the myeloid progenitors derived from Ctsg-PML-RARA 

vs. wildtype mice, but Msy4 expression is uniformly very high in mouse APL 

samples. Msy2 was not detected in any mouse APL samples or progenitor cell 

populations, and Csde1 expression level was not altered in APL tumors 

compared to healthy myeloid compartments.115 (Figure 1-2B) 

1.4.3 YBX1 has been implicated in several cancer pathways 
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Because YBX1 is expressed in many human cancers, and associated with poor 

outcomes, numerous studies have been carried out to reveal the mechanism by 

which Ybx1 acts to promote cancer. Most of the data were acquired in cell lines, 

and many of the studies have limitations due to experimental design.  

First, the most significant and frequently reported phenotype of YBX1 is its role in 

proliferation. Knockdown of YBX1 has been shown to induce apoptosis and/or 

inhibit cell proliferation in many cancer cell lines, including cell lines derived from 

patients with melanoma117, liver cancer117, lung cancer117–119, bladder cancer120, 

multiple myeloma121,122, glioblastoma123, breast cancer118–120,124,125, prostate 

cancer120, colon cancer117,118, and leukemia126. Several technical issues exist 

with these published studies including the use of empty vector controls rather 

than scrambeled siRNAs 121,126, and single siRNA or shRNAs used without 

controlling for potential off-target efffects119,121–123. Among studies with 

appropriate controls, only 3 of 5 found a correlation between YBX1 knockdown 

and more than 50% reduced cell division rates. 120,125 118,124,127  

Secondly, YBX1 has been implicated in key signaling pathways that are crucial 

for cancer development, including the E2F pathway, the PI3K/Akt/mTor pathway, 

MAPK pathways, and the p53 signaling pathway, among others; all of these 

studies have used cancer cell lines.128 Nuclear YBX1 has been shown to be a 

negative regulator of transcription of TP53, leading to a reduced level of TP53 

protein.117 It also physically interacts with TP53 and selectively facilitates TP53-

induced transactivation of genes such as Matrix metalloproteinase-2 (MMP2), 

Cyclin-dependent kinase inhibitor 1A (CDKN1A), and MDM2. YBX1 also 

prevents TP53 from transactivating cell death genes such as BAX, which is a 

Bcl-like protein that promotes apoptosis.21,24,48,81,82,129 In addition, TP53 is 

required for the nuclear localization of YBX1 82, which completes a negative 

feedback loop. Dysregulation of the TP53 signaling by YBX1 could lead not only 

to limitless replicative potential, self-sufficiency in growth signals, and escape 

from normal programmed cell death, but also genomic instability; all are all 

hallmarks of cancer.130 Similarly, dysregulation of the PI3K/Akt/mTor pathway by 
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YBX1 overexpression is associated with dysregulated energy metabolism, since 

this pathway regulates many components of glycolysis. By drawing conclusions 

from weak data and overreaching correlations, YBX1 has been proposed to be a 

master regulator of malignancy, similar to that of Myc and Ras128. However, its 

role in oncogenesis has not yet been convincingly demonstrated in a mouse 

model of cancer. 

Thirdly, YBX1 overexpression is frequently correlated with metastasis in human 

solid tumors. E-cadherin (CDH1), which is involved in maintaining cell-cell 

adhesion within tumors, is frequently inactivated in metastatic cancers. YBX1 has 

been reported to promote the translation of the mRNAs of several proteins that 

can lead to transcriptional repression of CDH1, including SNAIL, LEF1, and 

TWIST1.93,128 Interestingly, TWIST1, which is an E-box binding protein, has been 

shown to regulate the expression of YBX1 in cancer cell lines.120,131–133  

Finally, YBX1 was associated with drug-resistance when it was identified as a 

protein that is bound to the regulatory region of the MDR1 gene promoter.134 The 

gene product of MDR1, P-glycoprotein, is one of the transporter proteins from the 

ABC family (ATP-Binding Cassette), and is known to be important for the 

development of multidrug resistance. Since YBX1 overexpression is frequently 

associated with high levels of P-glycoprotein in various cancers20,135, it has been 

hypothesized to activate the transcription of MDR1. The evidence for this, 

however, is controversial. Although the expression levels of YBX1 and MDR1 

have been correlated in some settings, no experiments have yet proven that 

MDR1 is a direct transcriptional target of YBX1. Further, YBX1 is not found in the 

complex bound to the MDR1 promoter, and its expression level does not 

correlate with P-glycoprotein or chemo-sensitivity in several cell lines tested.20,136  

Interestingly, YBX1 has also been found to be a tumor suppressor that can 

prevent transformation of chicken embryo fibroblasts induced by PI3K or Akt, but 

not other oncoproteins such as Src, Jun, or Qin. This phenotype disappears 

when the RNA binding motif within the CSD is mutated. 137 However, the 

mechanism by which YBX1 could act as a tumor suppressor remains unclear.  
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In conclusion, YBX1 is highly expressed in various cancers and is frequently 

associated with poor outcomes and chemotherapy resistance. Several lines of 

evidence suggest a role in cell cycle kinetics, tumor suppression-function, and 

MDR regulation. However, the mechanism by which it influences cancer 

development is yet clear. A mouse model is needed to better define the role of 

YBX1 in the development of cancer. 

1.4.4 MSY4 may also play a role in cancer 

MSY4 overexpression has been shown to promote tumor cell growth and 

metastasis in squamous cell carcinoma cell lines, Chronic Myeloid Leukemia 

(CML) cell lines, and human gastric cancer cell lines138–140.  Conversely, it has 

been shown to inhibit angiogenesis and lymphangiogenesis in aortic and 

lymphatic endothelial cells.141 Its exact role in cancer remains unclear. 

1.5 Murine cold shock domain protein Ybx1 and Msy4 are required for late-
stage embryogenesis 

There are four mouse CSD genes. Ybx1 is expressed throughout embryogenesis 

and in virtually all adult tissues11(Figure 1-3A-B). Msy4 is expressed at high 

levels in mid-stage embryos; its expression declines in late-stage 

embryos(Figure 1-3A), and it is expressed only in testis(Figure 1-3B) and 

CD34+ hematopoietic progenitor cells in adults11,64 (Figure 1-2). Ybx2 is only 

expressed in germ cells and the testis11,142. (Figure 1-3A-B) Csde1 mRNA is 

expressed in all tissues and developmentally regulated in testis.108 (Figure 1-3C-
D) 

Thus far, only constitutive knockout animals have been reported for the four CSD 

genes. Ybx2 expression is limited to the testis in adult animals, and the knockout 

has a testis-specific phenotype.143 Although Csde1-/- mice are embryonic 

lethal144, Csde1 is structurally and functionally distinct from the other three family 

members as discussed in 1.1.5, and it is not developmentally regulated in 

hematopoietic cells as discussed in 1.4.2. Due to these reasons, only Ybx1 and 

Msy4 knockout animals will be discussed in detail in this section 
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1.5.1 Ybx1 deficient mice 

Two knockout Ybx1 models were generated by independent groups in 2005. Lu 

et al. 145 created a targeted deletion of exon 3 of the Ybx1 gene, which encodes a 

portion of the Ybx1 CSD. This targeting strategy creates a deletion of exon 3 and 

a frame shift that leads to termination of translation within exon 4, completely 

disrupting the cold shock domain. Ybx1-/- embryos developed normally up to 

embryonic day 13.5 (E13.5). These embryos exhibited severe growth retardation 

starting from E13.5, and died between E18.5 and gestation. However, Ybx1 

deficiency did not result in “global” changes in the transcriptome, proteome, or 

rates of protein synthesis in Murine Embryonic Fibroblasts (MEFs) derived from 

Ybx1-/- embryos.145 In addition, it did not cause alterations in gene expression 

patterns in E13.5 embryos (Li and Ley, unpublished). Ybx1-/- MEFs exhibit an 

elevated sensitivity to oxidative (20% O2 in vitro culture), genotoxic (mitomycin C 

and cisplatin), and oncogene-induced stress (c-Myc overexpression) compared 

to WT and Ybx1+/- MEFs.  Importantly, sensitivity to oxidative stress was found to 

be due to premature senescence, not increased apoptosis. Re-expression of 

exogenous Ybx1 rescued the normal growth phenotype, suggesting that it was 

caused directly by the lack of Ybx1, and not a nearby gene.145 Ybx1-/- MEFs have 

been reported to produce significantly more viral particles when infected by 

Dengue Virus, and lead to higher expression level of Dengue Virus proteins, 

suggesting that Ybx1 has an antiviral effect.146  

Ybx1+/- mice are phenotypically indistinguishable from their wildtype (WT) 

littermates in the resting state.145 However, when challenged with 

lipopolysaccharide (LPS), Ybx1+/- mice were protected from LPS-associated 

mortality (20% vs. 80% in Ybx1+/+ controls). Immunosuppression of Ybx1+/- mice 

resulted in 50% mortality (0% in Ybx1+/+ controls). These data suggest that Ybx1 

may be an important mediator of bacterial and sterile inflammation.89 The 

targeted mutation in the mouse model used in these studies was generated in 

129/SvJ ES cells, and after germline transmission, was backcrossed to C57BL/6 

mice for more than ten generations. The phenotype that Lu et al. reported from 
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129/SvJ genetic background remained consistent after the ten generations of 

backcrossing to B6 mice (Li and Ley, unpublished data). 

In a separate study, Uchiumi et al. 147 created a targeted mutation involving exon 

5 and 6 of the Ybx1 gene. This targeting strategy creates a deletion of exon 5 

and 6 and a frame shift that leads to termination of translation within exon 7, 

leaving an intact cold shock domain in the truncated mutant protein. The Uchiumi 

Ybx1-/- embryos developed normally up to E11.5. These embryos exhibited 

growth retardation, hemorrhage, and severe anemia starting from E11.5, and 

died between E18.5 and gestation, similar to that of the Lu Ybx1-/- mice. Neural 

tube closure was impaired in the Uchiumi Ybx1-/- embryos examined from E10.5-

E13.5. Translational elongation factor-1 (EF-1) was found to be overexpressed in 

the Uchiumi Ybx1-/- embryos on E11.5. Meanwhile, the Uchiumi Ybx1-/- MEFs 

exhibited decreased growth, which was rescued by re-expression of Ybx1. 

Spontaneous transformation activity was reduced in immortalized Uchiumi Ybx1-/- 

MEF lines, which was rescued by introduction of recombinant Ybx1.147 The 

Uchiumi Ybx1-/- embryos had reduced neural stem cell markers (including Sox-2, 

nestin, and musashi-1) that are normally expressed in the subventricular zone of 

fetal brain.148 The growth of Uchiumi Ybx1+/- MEFs and ES cells were similar to 

that of wildtype cells.147,149 However, the Uchiumi Ybx1+/- ES cells showed 

increased sensitivity to cisplatin and mitomycin C, but not to etoposide, X-

irradiation, or UV irradiation.149  

In summary, the two Ybx1 knockout models showed the same embryonic 

lethality. The growth phenotype in normal and stress conditions for both Ybx1+/- 

and Ybx1-/- MEFs were different between the two models, which could potentially 

be explained by differences between the targeted mutations generated in the two 

models. 

1.5.2 Msy4 knockout mice 

Msy4 knockout mice were generated by deleting exons 2 to 5, including a part of 

the Msy4 CSD, resulting in a subsequent frame-shift. 11 Msy4+/- mice are viable, 
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fertile, and phenotypically instinguishable from their wildtype littermates. Msy4-/- 

mice are viable, but the testes of Msy4-/- males displayed excessive 

spermatocyte apoptosis and seminiferous tubule degeneration. Msy4-/- males 

were less fertile than their Msy4+/- and wildtype littermates11, and become infertile 

at 3 to 6 months of age (unpublished data, Lu and Ley). Interestingly, the 

otherwise phenotypically normal Msy2-/- mice exhibited infertility in both male and 

females143, suggesting that Msy4 and Msy2 have non-overlapping functions.  

Mice deficient for both Ybx1 and Msy4 died between E8.5 and E11.5. The 

expression pattern of Msy4 during embryogenesis suggests that Msy4 can 

compensate for Ybx1 deficiency during early embryogenesis. However, Msy4 

expression declines starting from E17.5, and the absence of both Ybx1 and Msy4 

is associated with the onset of severe runting and death.11  

In conclusion, a Ybx1 conditional knockout model is needed to study the roles of 

the Ybx1 and Msy4 proteins in cancer development in adult animals. 

1.6 Summary 

Cold shock domain (CSD) proteins are the most evolutionarily conserved family 

of nucleic-acid binding proteins. Studies from the knockouts of Ybx1 revealed 

that it plays a crucial role in cellular stress responses, and the prevention of 

senescence in rapidly dividing cells. YBX1 overexpression is associated with 

many types of cancer in humans, and has been implicated in metastasis, drug 

resistance, and poor outcomes. Unfortunately, most papers that have sought to 

clarify the role of YBX1 in cancer have provided incomplete datasets that have 

been inconclusive. Most investigations to date have also ignored the fact that 

MSY4 can clearly complement YBX1 functions in cells where they are both 

expressed. Lu et al. first described the finding that Msy4 can compensate for 

Ybx1 deficiency: Ybx1 knockout embryos display severe runting starting from 

E13.5, and die on E18.5, while mice deficient for both Ybx1 and Msy4 die much 

earlier at E8.5.11 In 2009, our studies showed for the first time that Msy4 was not 

only expressed in the testes of adult animals, but also in hematopoietic 



 24 

progenitor cells of the myeloid lineage.64 Therefore, to better understand the role 

of YBX1 in normal development and cancer, a conditional knockout mouse 

model of Ybx1 is absolutely required. Further, to fully understand the roles of 

CSD proteins in hematopoietic cells, it is predicted that both YBX1 and MSY4 

would need to be knocked out in adult cells, since they evidently have redundant 

functions. 
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Figure legends. 
 
Figure 1-1. Expression of CSD proteins in human and mouse cell lines11  
 

Western Blotting of various human and mouse cancer or immortal cell 
lines, using rabbit Msy4/CSDA, Yb-1, and Msy2 antibody against 
human/mouse antigen. Actin and Tubulin antibodies are used as loading 
controls. Testis sample is used as a positive control for all three CSD 
proteins. Figure is from Lu et al, reference 11. 

 
Figure 1-2. Expression of CSD genes in mouse and human flow-sorted 
bone marrow cells and leukemia samples 
 

A.  Expression data for four CSD gene family members from 8 FAB subtypes 
(M0-M7, and also not classified [nc]) of human AML samples, as well as 
flow-sorted CD34+ cells (CD34), promyelocytes (Pros), and neutrophils 
(PMNs) from healthy donors, all analyzed with the Affymetrix U133 Plus 2 
platform.64,111  

B.  Expression data for four CSD gene family members in indicated wildtype 
and Ctsg-PML-RARA flow-sorted bone marrow cells, and 15 Ctsg-PML-
RARA splenic leukemia samples (Mouse APL), all using Nugen amplified 
mRNA and Affymetrix Mouse Exon 1.0ST arrays.115 The KLS (Kit+Lin-

Sca+) population is highly enriched for hematopoietic stem cells (HSPCs), 
and the SLAM (Kit+Lin-Sca+CD150+CD41-CD48-) compartment is 
comprised of nearly all HSPCs. 

 
Figure 1-3. Developmental stage-specific and tissue-specific expression 
patterns of CSD proteins in wildtype mice11,108  
 

A.  Western blotting of lysates from whole-embryos (E9.5-E17.5) and one day 
old neonates (P1). Figure is from Lu et al, Reference 11.  

B.  Western blotting of whole-tissue lysates from organs of 2-month-old mice. 
Figure is from Lu et al, Reference 11. 

C.  Northern blotting of total RNA of various tissues from 7-week old mice 
against a unr/csde probe consisted of the entire unr/csde cDNA. Figure is 
from Jeffers et al, Reference 108. 

D.  Northern blotting of total RNA isolated from the testis of 13 day old 
immature (I) and 49 day old mature (M) mice using a unr/csde probe 
consisted of the entire unr/csde cDNA. Figure is from Jeffers et al, 
Reference 108. 
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Figure 1-1. Expression of CSD proteins in human and mouse cell lines 
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Figure 1-2. Expression of CSD genes in mouse and human flow-sorted 
bone marrow cells and leukemia samples  
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Figure 1-3. Developmental stage-specific and tissue-specific expression 
patterns of CSD proteins in wildtype mice11,108 
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ABSTRACT 

Genes containing cold shock domains (CSD) encode the most evolutionarily 

conserved family of nucleic-acid binding proteins. There are four family 

members: YBX1, MSY4, MSY2, and CSDE1. YBX1 is commonly overexpressed 

in many cancer types, and overexpression is frequently associated with poor 

outcomes and chemotherapy resistance. Studies in knockout mice have shown 

that Ybx1 is important for stress responses and the prevention of cellular 

senescence; Msy4 has overlapping, redundant functions in embryonic 

development. In virtually all Acute Myeloid Leukemia (AML) samples, YBX1 and 

MSY4 are highly expressed; they are also highly expressed in the myeloid 

progenitors of healthy donors. Here we report the hematopoietic phenotypes of 

mice deficient for Ybx1, Msy4, or both. The loss of Msy4 does not alter normal 

adult hematopoiesis. Msy4-/- mice have normal complete blood counts (CBCs), 

normal hematopoietic stem and progenitor cell (HSPC) numbers, and normal 

numbers of progenitors/colony-forming units (CFUs); competitive repopulation 

assays showed that loss of Msy4 does not alter the long-term repopulating 

potential of hematopoietic stem cells (HSCs). Expression arrays performed on 

Lin-Kit+Sca+ (KLS) cells (which are highly enriched in HSPCs) showed that 

deficiency of Msy4 does not lead to significant changes in mRNA expression 

patterns. Loss of Msy4 did not alter hematopoiesis in Ctsg-PML-RARA mice, and 

did not reduce the ability of MLL-AF9 to induce AML in mice. Similarly, we 

demonstrated that a complete loss of Ybx1 does not alter hematopoiesis in Ybx1-

/- fetal liver cells (used since Ybx1 deficiency causes perinatal lethality). Ybx1-/- 

E14.5 fetal liver cells contained normal numbers of hematopoietic CFUs, and 

displayed normal engraftment in lethally irradiated recipients. Mice engrafted with 

Ybx1 deficient fetal liver cells have normal CBCs and normal numbers of CFUs in 

their marrow; their HSCs do not have a defect in competitive repopulation 

assays. In contrast, a heterozygous, conditional truncating mutation of Ybx1 

(Ybx1lox/+) was found to cause a severe defect in competitive repopulation assays 

upon floxing of the conditional allele, suggesting that it has a dominant negative 

activity. Finally, we demonstrated that Ybx1lox/- x Msy4-/- bone marrow cells that 
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express MLL-AF9 fail to serially replate in vitro upon floxing of the conditional 

allele. In conclusion, Ybx1 and Msy4 appear to have redundant functions in 

normal and leukemic hematopoietic cells. Expression of one or the other of these 

cold shock domain proteins is adequate to prevent senescence in the 

hematopoietic compartment. Inhibition of both, however, may represent a novel 

approach for limiting the survival of AML cells. 
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INTRODUCTION 

Cold shock domain (CSD) proteins are the most evolutionarily conserved family 

of nucleic-acid binding proteins. Among the four CSD protein family members, 

YBX1 overexpression is associated with many types of cancer in humans, and 

has been implicated in metastasis, drug resistance, and poor outcomes.1,2 To 

date, most studies that have sought to clarify the role of YBX1 in cancer have 

generated in vitro datasets that have not been validated in mouse models, or 

have not considered the potential role of MSY4 complementation of YBX1 

functions in cells where they are both expressed.  

 

In mammals, Ybx1 is expressed throughout embryogenesis, and in virtually all 

adult tissues. Ybx1-/- mouse embryos display severe runting starting from 

embryonic day 13.5 (E13.5), and die on E18.53. Msy4 is expressed at high levels 

in mid-stage embryos, but its expression declines in late-stage embryos, and it 

was thought to be expressed only in the testis of adults.4 Msy4-/- mice survive into 

adulthood, but exhibit progressive male infertility. Importantly, mice deficient for 

both Ybx1 and Msy4 die at E8.5, suggesting that Msy4 is can substitute for Ybx1 

during late embryogenesis in Msy4+/+ x Ybx1-/- mice. When Msy4 expression 

declines at E17.5 in Msy4+/+ x Ybx1-/- embryos, the lack of both Ybx1 and Msy4 

causes runting and death.4 Based on these knockout mouse studies, and 

mechanistic studies in cells derived from these mice, Ybx1 is now known to play 

a major role in the stress response signaling pathway, where it helps to suppress 

senescence3.  

 

YBX1 and MSY4 are both highly expressed in many human cancer cell lines, 

such as the human leukemia cell lines K562 and Kasumi, the human breast 

cancer cell line MDA (MDA-MB-231), the human melanoma cell line A375, and 

the human cervical cancer cell line HeLa.4 They are also highly expressed in 

virtually all primary Acute Myeloid Leukemia (AML) samples from all eight FAB 
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subtypes. Both genes are minimally expressed in mature myeloid cells 

(promyelocytes and neutrophils) isolated from healthy bone marrow donors.5,6 

Surprisingly, YBX1 and MSY4 are both highly expressed in CD34+ myeloid 

progenitors from healthy bone marrow donors. This was unexpected, since 

previous studies did not detect expression of Msy4 in Western blotting studies of 

whole bone marrow lysates from wildtype mice.4 It is therefore possible that 

MSY4 can complement YBX1 functions in hematopoietic progenitors and 

leukemia cells, since they are both expressed in these cells.  

 

In this study, we investigated the impact of Ybx1 and Msy4 deficiency in normal 

and leukemic hematopoiesis. Lu et al. showed that Msy4-/- mice are viable, but 

the testes of Msy4-/- males displayed excessive spermatocyte apoptosis and 

seminiferous tubule degeneration.4 Hematopoiesis was not characterized in 

these animals, since Msy4 was not detected in lysates of the whole bone marrow 

or spleen of wildtype mice, and since CBCs were normal in Msy4-/- mice. In this 

report, we show that loss of Msy4 does not alter normal or leukemic 

hematopoiesis. Although Ybx1-/- embryos die late in embryogenesis, they 

develop normally up to E14.5, which allowed us to use fetal liver samples to 

study the effects of Ybx1 deficiency in hematopoiesis. Our data demonstrated 

that loss of Ybx1 does not alter normal hematopoiesis. However, we found that a 

conditional truncation mutation in Ybx1 causes a defect in the competitive 

repopulating activity of HSCs, suggesting that this mutation may act in a 

dominant negative fashion. Finally, we investigated the impact of Ybx1 and Msy4 

deficiency on “stress” hematopoiesis induced by expression of MLL-AF9; the loss 

of either protein has no phenotype, but loss of both caused a failure of MLL-AF9 

cells to serially replate in vitro. We have therefore demonstrated that Ybx1 and 

Msy4 have redundant functions in normal and leukemic hematopoietic cells, and 

are required for their ability to grow and survive long term. 
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MATERIALS AND METHODS 

Mice 

Knockout mouse models for Ybx1 and Msy4, and mice expressing PML-RARA 

from the murine Cstg locus (Ctsg-PML-RARA) have previously been reported.3,4,7 

All three strains have been backcrossed more than 10 generations into the 

C57BL6/J background. Mice with a floxed allele for Ybx1 were generously 

provided by Anna Mandinova at Massachusetts General Hospital. Using 

homologous recombination mediated targeting, exons 5 and 6 were flanked with 

LoxP sites in C57BL6/J x SVJ129 embryonic stem cells. This strain was 

backcrossed for more than five generations into the C57BL6/J background for 

these studies. B6N.Cg-Tg(Vav1-cre)A2Kio/J mice were obtained from The 

Jackson Laboratory (Bar Harbor, ME) on a C57BL6/J background. Vav1-Cre-

mediated recombination has been shown to occur in most hematopoietic cells, 

endothelial cells, and germ cells.8  

 

Transplantation and Competitive Repopulation 

The bone marrow cells from adult mice of various phenotypes were harvested, 

treated with ACK lysis buffer (0.15M NH4Cl, 10mM KHCO3, 0.1mM Na2EDTA 

[Na2-ethylenediaminetetraacetic acid]), counted, and injected retroorbitally into 

wildtype recipient mice 24 hours after receiving 1100 cGy of total body irradiation 

(Mark1 cesum137 irradiator; J.L. Shepard).  

Timed matings of Ybx1+/- mice were used to generate fetal livers from E14.5 

embryos, which were cryopreserved in 10% dimethylsulfoxide. Genomic DNA 

was prepared from the limbs of each embryo to determine their genotype. 1.0 x 

106 viable fetal liver cells were injected retroorbitally into wildtype C57BL6/J 

recipient mice 24 hours after receiving 1100 cGy of total body irradiation.  

Competitive repopulation experiments were performed using retro-orbital 

injections of 1.5 x 106 bone marrow cells into wildtype B6 Ly5.1 x Ly5.2 recipient 
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mice (CD45.1 x CD45.2) 24 hours after receiving 1100 cGy of total body 

irradiation. Two or three independent experiments were performed, and the data 

were analyzed individually. Peripheral blood was collected every 4-8 weeks, and 

bone marrow cells were harvested at 3-12 months for evaluation of engraftment 

using flow cytometry. 

All mice were monitored for disease 3 times per week by abdominal palpation 

and observation. Peripheral blood was obtained in heparinized capillary tubes by 

retro-orbital phlebotomy after adequate methoxyflurane anesthesia (Vedco, Saint 

Joseph, MO). The Washington University Animal Studies Committee approved 

all animal experiments. 

 

Flow cytometry and flow sorting 

After lysis of red blood cells in ACK buffer, peripheral blood, bone marrow, or 

fetal liver cells were treated with anti-mouse CD16/32 (clone93; eBioscience, 

San Diego, CA) and stained with the indicated combinations of the following 

antibodies: B220, CD3e, Gr1, Ter119, Kit, Sca, CD34, CD16/32 (FCg), CD11b, 

FcεRI, CD45.1, and CD45.2 (eBioscience, San Diego, CA); or CD117 

MicroBeads, mouse (Miltenyi Biotec, Bergisch Gladbach, Germany). 

Analysis was performed using a FACScan (Beckman Coulter, Pasadena, CA), 

and data were analyzed using FlowJo (TreeStar, Ashland, OR).  

Flow-sorting was performed on a Reflection high-speed cell sorter (iCyt, 

Champaign, IL) or on an autoMACS Pro Separator (Miltenyi Biotec, Bergisch 

Gladbach, Germany). 

 

Expression array profiling 

Total RNA was purified using TRIzol reagent (Life Technologies, Carlsbad, CA) 

and amplified using the whole transcript WT-Ovation RNA Amplification System 
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and biotin-labeled (NuGen Technologies, San Carlos, CA). Amplified RNA was 

then applied to the Mouse Exon 1.0ST array (Affymetrix, Santa Clara, CA) 

according to standard protocols from the Genome Technology Access Center at 

Washington University in St. Louis. (https://gtac.wustl.edu/index.php) Partek 

Genomics Suite (Partek, St. Louis, MO) was used for unsupervised hierarchical 

clustering and two-way ANOVA. 

 

Hematopoietic progenitor assays 

After red blood cell lysis in ACK buffer, bone marrow cells from individual mice or 

fetal liver cells from individual embryos were counted using a hemocytometer 

and plated (in triplicate) at a density of 10,000 cells per 1.1mL of methylcellulose-

based media MethoCult M3534 containing interleukin-3 (IL-3), IL-6, and stem cell 

factor (SCF), or MethoCult M3334 containing Erythropoietin (Epo) (Stem Cell 

Technologies, British Columbia, Canada). Colonies with >30 cells were counted 

on day 7. Total cells were collected from the MethoCult media in Dulbecco 

modified Eagle medium with 2% fetal bovine serum (FBS), washed, and 

counted.9,10 Cells were replated at same density, or in 1:5 or 1:10 dilution to 

avoid high colony numbers (>500-1,000 colonies per plate). This process was 

repeated for 6 weeks, or until serial replating failed. 

 

Retroviral production and transduction 

MSCV-MLL-AF9-IRES-GFP11 retroviral supernatants were generated and viral 

titers were determined by flow cytometry by GFP positivity in transduced 3T3 

cells, as described previously.12 MSCV-IRES-GFP versus MSCV-MLL-AF9-

IRES-GFP retroviral constructs were transduced into bone marrow cells derived 

from 6-8 week old mice. The transduced marrow was then transplanted into 

lethally irradiated wildtype C57BL6/J mice obtained from The Jackson 

Laboratory, as previously reported.12,13 Briefly, after red blood cell lysis in ACK 

buffer, mononuclear bone marrow cells were cultured in media containing RPMI, 
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20% FBS, SCF, FLT3L, IL-3, and TPO (PeproTech, Rocky Hill, NJ 08553) for 24 

hours. The cells were then spinfected on days -1 and 0. After a 2-hour rest 

period, 1 x 106 transduced bone marrow cells were then injected retroorbitally 

into wildtype C57BL6/J recipient mice 24 hours after receiving 1100 cGy of total 

body irradiation. 

 

Western blotting 

Primary antibodies included anti-Ybx1 (2397-1; Epitomics), anti-Actin (Clone C4 

[MAB1501R]; Millipore), and anti-Msy4 generated by Lu et al.4 Bone marrow and 

spleen cells were first treated with ACK buffer to lyse red blood cells, and then 

the remaining nucleated marrow cells (or total organs) were lysed in urea buffer 

(7M urea, 2M thiourea, 4% chaps, 30mM Trizma) containing 1x Protease 

Inhibitor (Sigma-Aldrich, St. Louis, MO) and freeze-thawed in liquid nitrogen 

three times. The whole tissue or cell lysates were measured for their protein 

concentration using Precision Red Advanced Protein Assay (Cytoskeleton, Inc., 

Denver, CO) The lysates were electrophoresed in 10% sodium dodecyl sulfate-

polyacrylamide (SDS) gels, and the proteins were transferred to a polyvinylidene 

difluoride membranes (GE Healthcare, Pittsburgh, PA). Western blotting was 

performed as previously described.3,4 The horseradish peroxidase signal was 

detected by an ECL detection system (Bio-Rad, Hercules, CA). 

 

TAT-cre induction of floxing 

After red blood cell lysis in ACK buffer, bone marrow cells from ROSA-lox-STOP-

lox-YFP mice or mice with the Ybx1 floxed allele were incubated with 100 

units/ml TAT-cre (Excellgen, Rockville, MD) dissolved in media containing RPMI, 

20% FBS, SCF, FLT3L, IL-3, and TPO for 2 hours. Cells were harvested by 

centrifugation, and resuspended in fresh media containing RPMI, 20% FBS, 

SCF, FLT3L, IL-3, and TPO for transplantation or viral transduction. 
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Quantitative PCR 

The efficiency of Ybx1 floxing was determined using genomic DNA derived from 

whole cell preparations. Quantitative PCR was performed using Taqman Gene 

Expression MasterMix (Life technologies, Carlsbad, CA) and a StepOnePlus 

Real Time PCR Systems (Life technologies) per the manufacturer’s 

specifications. The Actb Taqman Gene Expression Assay (Primer Limited) 

containing primers for genomic Actin b and probes with VIC-MGB dye were 

purchased from Life Technologies. The Custom FloxedYbx1 Taqman Gene 

Expression Assay was designed to contain a forward primer 

(TAGGATGGTGGCTCTAATTGGA), a reverse primer 

(CGGATCCAAGCTTATGCATGAA), and a probe (TGACCACATGAACACAG) 

labeled with FAM-MGB dye, manufactured by Life Technologies. In the 

multiplexed platform, both the Actb and FloxedYbx1 reagents were added in the 

same reaction and detected by their distinct fluorescent signals, which allows for 

an internal control to be present in every sample. 0.5 ng of genomic DNA was 

used per 20 µl reaction. Data analysis was performed using using StepOnePlus 

v2.2.2 software and Microsoft Excel. 

 

Statistical analysis 

Exon-level summary data were generated using the RMA algorithm in Partek 

Genomics Suite (Partek, St. Louis, MO). Only core probe sets were used to limit 

the analysis within well-annotated exons. The ratio of average signal intensity for 

KLS samples and fetal liver engrafted bone marrow samples was calculated as 

fold change, and a one-way analysis of variance (ANOVA) was used to define 

genes with altered patterns of expression.  

Statistical comparisons were made using Student’s 2-tailed t test unless 

otherwise noted. P ≤ 0.05 was considered to be significant. 
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RESULTS 
 
Msy4 and Ybx1 are highly expressed in normal and leukemic hematopoietic cells 

We assessed the expression patterns of all four mouse and human CSD genes 

in normal and leukemic hematopoietic cells. Ybx1 is expressed throughout 

embryogenesis and in virtually all adult tissues.4 Msy4 is expressed at high levels 

in mid-stage embryos, but its expression declines in late-stage embryos, and it 

was thought to be expressed only in the testis of adults 4. Ybx2 is expressed only 

in the germ cells and the testis of adult mice4,14 (Figure 1-3A-B). Finally, Csde1 

is expressed in all tissues of adult mice, and is developmentally regulated in 

testis15 (Figure 1-3C-D). 

 

In a cohort of 200 Acute Myeloid Leukemia (AML) samples that included all FAB 

subtypes, YBX1 and MSY4 mRNA expression levels were found to be very high 

compared to mature promyelocytes and neutrophils isolated from healthy bone 

marrow donors. Surprisingly, YBX1 and MSY4 are both highly expressed in 

CD34+ myeloid progenitors from healthy bone marrow donors. This was 

unexpected, since previous studies did not detect expression of Msy4 in Western 

blotting studies of whole bone marrow lysates from wildtype mice.4 MSY2 

expression was not detected in any AML samples, nor in normal healthy marrow 

samples. UNR/CSDE1 is expressed at similar levels in AML samples and mature 

myeloid cells (Figure 1-2A). No correlation has been found between the 

expression levels of either YBX1 or MSY4 and patient outcomes.5  

 

In mice, Ybx1 mRNA is highly expressed in all the myeloid progenitor 

compartments of 6 week old animals, including SLAM (Lin-Kit+Sca+CD150+CD41-

CD48-), KLS (Lin-Kit+Sca+), common myeloid progenitors (CMPs), granulocyte-

macrophage progenitors (GMPs), megakaryocyte-erythroid progenitors (MEPs)  
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Promyelocytes, and Neutrophils. Expression levels were similar in Ctsg-PML-

RARA mice and wildtype mice, and in 15 Acute Promyelocytic Leukemia (APL) 

tumors arising in the Ctsg-PML-RARA mice. Msy4/Csda1 was likewise 

expressed in the hematopoietic stem/progenitor cell (HSPC) compartments noted 

above, and its expression was not significantly different in Ctsg-PML-RARA mice. 

However, Msy4 expression was uniformly high in mouse APL samples. Msy2 

was not detected in any mouse APL samples, or in HSPC compartments or 

mature myeloid cells. Csde1 expression was not different in APL tumors vs. 

healthy myeloid cells at any stage of differentiation16 (Figure 1-2B). 

 

Resting hematopoiesis is minimally altered in Ybx1+/- and Msy4-/- mice 

To determine the importance of Ybx1 and Msy4 for normal and leukemic 

hematopoiesis, we first assessed resting hematopoiesis in Ybx1+/- and Msy4-/- 

adult mice in the C57BL6/J background. Peripheral blood from Ybx1+/- and Msy4-

/- mice and their wildtype littermates between 6 to 12 weeks of age (n=6) showed 

no significant difference in complete blood counts (CBCs), except that platelet 

counts were slightly but significantly higher in Msy4-/- mice (average of 1954 K/µL 

vs.1729 K/µL, P < 0.05). Next, we sacrificed Ybx1+/-, Msy4-/-, and wildtype 

littermates (n=2) and harvested bone marrow for immunophenotypic analysis of 

HSPC compartments. HSPC profiling was done by fluorescent staining of cell 

surface lineage markers that were detected by flow cytometry. Lin-, KLS, MEP, 

GMP, and CMP compartments were unaltered in Ybx1+/- and Msy4-/- mice 

compared to their wildtype littermates (Figure 2-1).  

 

We also performed colony-forming assays in methylcellulose with different 

cytokines to quantify functional hematopoietic progenitors.9,10 Two different 

methylcellulose-based media were used: MethoCult M3534 (containing stem cell 

factor [SCF], interleukin [IL]-3, and IL-6) was used to assess CFU-GMs (colony 

forming unit-granulocyte, monocyte), which are derived from CMPs; MethoCult 
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M3334 (containing only erythropoietin) was used for the quantification of CFU-Es 

(colony forming units-erythroid), which are derived from MEPs. Bone marrow 

cells from each mouse were plated in triplicate in MethoCult for CFU-GM and 

CFU-E assessment. Colony numbers were not significantly altered in Ybx1+/- or 

in Msy4-/- derived bone marrow cells (Figure 2-1). Myeloid and erythroid 

development is therefore not detectably altered by Ybx1 haploinsufficiency or 

Msy4 deficiency. 

 

Loss of Msy4 does not alter the long-term repopulating potential of HSCs  

In a competitive repopulation assay, bone marrow cells from Msy4-/- and Msy4+/+ 

(CD45.2) mice were mixed 1:1 with bone marrow from wildtype mice with a 

different surface marker Ly5.1 (CD45.1), and transplanted into lethally irradiated 

wildtype B6 Ly5.1 x Ly5.2 (CD45.1 x CD45.2) recipients (Figure 2-2A). We did 

not observe significant differences of the percentage of CD45.2+ cells in the 

peripheral blood at any time points (P > 0.05) (Figure 2-2B). 

 

We analyzed the expression profiles of flow-sorted KLS cells (which are highly 

enriched in HSPCs) derived from Msy4-/- and Msy4+/+ mice using the Mouse 

Exon1.0 ST array. The expression level of Msy4 in wildtype KLS cells confirmed 

the finding that Msy4 is expressed in HSPCs, as predicted from human 

studies5,6,16. Msy4-/- KLS cells did not express Msy4, as expected (Figure 2-3A). 

Unsupervised hierarchical clustering revealed no significant differences between 

the global expression patterns of Msy4-/- and Msy4+/+ samples (Figure 2-3B). 

When we performed a supervised analysis (Two-way ANOVA), the only gene 

that was differentially expressed with statistical significance (P < 0.05, fold 

change >2 or <-2) was Msy4 itself. Therefore, loss of Msy4 does not lead to 

significant changes in mRNA expression patterns in KLS cells. 
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Hematopoiesis is minimally altered in Ybx1-/- fetal liver-derived cells 

Ybx1+/- mice are phenotypically identical to their wildtype littermates3 and have 

normal basal hematopoiesis (Figure 2-1A); however, Ybx1-/- mice uniformly die 

at E18.5-E19.5. Ybx1-/- E14.5 embryos are phenotypically smaller than their 

Ybx1+/+ littermates, and their total fetal liver cell numbers are significantly lower 

than that of wildtype littermates (Figure 2-4A-B). Fetal liver cells obtained from 

Ybx1-/- and Ybx1+/+ E14.5 embryos were plated on MethoCult M3534 (containing 

IL-3, IL-6, and SCF) and had equivalent numbers of CFU-GMs (P > 0.05)  

(Figure 2-4C). 

 

We injected 1 x 106 Ybx1-/- or Ybx1+/+ E14.5 fetal liver cells into lethally irradiated 

wildtype C57BL6/J recipients. Both Ybx1-/- and Ybx1+/+ E14.5 fetal liver cells 

engrafted in all recipient mice, although white blood cell counts were slightly but 

significantly lower in Ybx1-/- engrafted mice at 2 months post transplantation (P < 

0.05). Immunophenotyping of HSPCs and CFUs from MethoCult plating of 

engrafted whole bone marrow cells from the fetal livers did not show any 

significant differences (Figure 2-5A). 

 

Mouse Exon 1.0ST arrays were performed on the engrafted whole bone marrow 

cells derived from Ybx1-/- or Ybx1+/+ fetal livers. The only gene that was 

differentially expressed with statistical significance (P < 0.05) by Two-way 

ANOVA was Ybx1 itself (Figure 2-5B). Unsupervised hierarchical clustering 

revealed that loss of Ybx1 does not lead to significant differences in global 

mRNA expression patterns (Figure 2-5C).  

 

To quantify the long term engrafting potential of Ybx1 deficient fetal liver cells, we 

performed a competitive repopulation study. Ybx1-/- or Ybx1+/+ fetal liver 

engrafted bone marrow cells (CD45.2) were mixed 1:1 with bone marrow from 
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wildtype B6 Ly 5.1 mice (CD45.1) and transplanted into lethally irradiated 

wildtype B6 Ly5.1 x Ly5.2 recipients (CD45.1 x CD45.2) (Figure 2-5D).  Although 

both showed reduced numbers of engrafting cells over time (probably because 

the samples were derived from fetal livers and not adult bone marrow), there was 

no significant difference between the percentages of CD45.2+ cells in the 

peripheral blood of the two groups at any time point (P > 0.05) (Figure 2-5E).  

 

The effect of a conditional Ybx1 allele on adult hematopoiesis  

Ybx1lox/+ mice were generated by targeting LoxP sites to flank exons 5 and 6 of 

the Ybx1 gene (Mandinova et al., unpublished). This targeting strategy creates a 

deletion of exon 5 and 6, and a frame shift that is predicted to cause termination 

of translation within exon 7, leaving a truncated protein with an intact cold shock 

domain (Figure 2-6A). The predicted effect of the floxed allele is similar to the 

Ybx1 allele described by Uchiumi et al,17 which produced homozygous mice that 

were embryonic lethal; the phenotype of these mice was nearly identical to mice 

with a deletion of exon 3 that was generated in in our laboratory3.  

 

Surprisingly, when Ybx1lox/+ mice were intercrossed, adult mice homozygous for 

the floxed allele were not detected, either in our laboratory, or the Mandinova 

Lab. However, when Ybx1lox/+ mice were intercrossed with our laboratory’s 

Ybx1+/- mice, Ybx1lox/- mice were born at a ratio similar to that of Ybx1lox/+ mice 

(43% vs 36.4%) (Table 2-1). Ybx1lox/- mice live to adulthood, which demonstrates 

that the floxed allele does not create haploinsufficiency (if it did, these mice 

should die at E18.5-19.5). Importantly, CBCs obtained from adult Ybx1lox/+ and 

Ybx1lox/- mice were essentially normal, except that hemoglobin levels were 

slightly but significantly lower in Ybx1lox/+ mice (average of 13.18 g/dL vs. 14.03 

g/dL, P < 0.05), and platelet counts were slightly higher in Ybx1lox/- mice (average 

of 913.5 K/µL vs. 729.7 K/µL, P < 0.05) (Figure 2-7A). 
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Ybx1lox/+ mice were crossed with our laboratory’s Ybx1+/- mice, and also with 

Vav1-Cre+/- mice obtained from The Jackson Laboratory. Vav1-Cre is expressed 

primarily in the hematopoietic cells of mice, with some ‘leakage’ in endothelial 

cells, and germ cells17. We performed Western blotting of tissue extracts from the 

bone marrow, spleen, intestine, liver, and kidney of Ybx1lox/+ x Vav1-Cre+/-, 

Ybx1lox/- x Vav1-Cre+/-, and Vav1-Cre+/- littermates (Figure 2-6B). Ybx1 protein 

levels appear to be slightly reduced in Ybx1lox/+ x Vav1-Cre+/- bone marrow and 

spleen cells. Levels are further reduced (but not eliminated) in the bone marrow 

cells of Ybx1lox/- x Vav1-Cre+/- mice, and minimally reduced in the spleen and 

intestines. No reduction was detected in the liver or kidneys. Residual Ybx1 

expression in bone marrow cells may be due to incomplete floxing by Vav1-Cre, 

or from non-floxed stromal cells that are also present in whole bone marrow 

samples. Western blots of sorted hematopoietic cells from these mice are in 

progress to resolve this issue. Importantly, Msy4 protein levels were not altered 

in Ybx1lox/+ x Vav1-Cre+/- or Ybx1lox/- x Vav1-Cre+/-mice, as expected (data not 

shown). 

 

CBCs obtained from Ybx1lox/+ x Vav1-Cre+/- mice are normal. The red blood cell 

counts (average of 8.12 M/µL vs. 9.53 M/µL, P < 0.01) and hemoglobin levels 

(average of 12.65 g/dL vs. 13.8 g/dL, P < 0.01) in Ybx1lox/- x Vav1-Cre+/- mice 

were slightly but significantly lower than wildtype C57BL6/J mice (Figure 2-7A). 

 

To investigate the importance of Ybx1 for the long-term repopulating potential of 

adult hematopoietic stem cells (HSCs), we performed a competitive repopulation 

by mixing bone marrow cells from Ybx1lox/+ x Vav1-Cre+/-, Ybx1lox/- x Vav1-Cre+/-, 

or Vav1-Cre+/- littermates (CD45.2) with equal numbers of wildtype B6 Ly5.1 

competitors, and injected these cells retroorbitally into lethally irradiated wildtype 

B6 Ly5.1 x Ly5.2 recipients (CD45.1 x CD45.2). Surprisingly, both Ybx1lox/+ x 

Vav1-Cre+/- and Ybx1lox/- x Vav1-Cre+/- recipients showed significantly lower 
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percentages of CD45.2+ cells engrafted at 4 weeks, compared to Vav1-Cre+/- 

control recipients (P < 0.001). The percentage of CD45.2+ cells in both Ybx1lox/+ x 

Vav1-Cre+/- and Ybx1lox/- x Vav1-Cre+/- declined further from week 4 to week 8 (P 

< 0.05), and was stable at week 12. These data suggest that bone marrow cells 

with the Ybx1 conditional allele in the Vav1-cre background (with or without a null 

Ybx1 allele) have a striking defect in both engraftment and long-term 

repopulating potential. Since Ybx1+/- bone marrow cells (with the exon 3 deletion) 

do not have alterations in their ability to engraft and repopulate long-term (data 

not shown), and since Ybx1-/- fetal liver cells appear to engraft normally (Figure 
2-5E), the Ybx1 floxed allele does not appear to be a simple null allele that is 

equivalent to the exon 3 deletion of Ybx1. 

 

Loss of Msy4 or Ybx1 does not affect leukemic hematopoiesis 

To test whether the loss of Msy4 alters leukemic hematopoiesis, we crossed 

Msy4-/- mice with Ctsg-PML-RARA mice to obtain Msy4+/+ x Ctsg-PML-RARA+/-, 

Msy4+/- x Ctsg-PML-RARA+/-, and Msy4-/- x Ctsg-PML-RARA+/- animals. In a serial 

replating experiment in MethoCult M3534 (containing IL-3, IL-6, and SCF), we 

examined the impact of Msy4 deficiency on the aberrant replating potential of 

progenitors from Ctsg-PML-RARA+/- bone marrow (Figure 2-8A). As expected, 

wildtype and Msy4-/- progenitors did not replate after the second week. Bone 

marrow cells with the Ctsg-PML-RARA allele replated for 7 weeks, and the gene 

dosage of Msy4 did not alter the replating potential (P > 0.05) (Figure 2-8B). 

 

We next transduced bone marrow cells from Msy4-/- mice, Ybx1lox/- x Vav1-Cre+/- 

mice, and wildtype C57BL6/J mice with either MSCV-IRES-GFP (empty vector) 

or MSCV-MLL-AF9-IRES-GFP. We injected 1x106 transduced cells into lethally 

irradiated C57BL6/J mice, and also performed serial replating in MethoCult 

M3534 (containing IL-3, IL-6, and SCF) (Figure 2-9A). Bone marrow cells from 

both the Msy4-/- mice and the Ybx1lox/- x Vav1-Cre+/- mice did not exhibit an 
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altered replating ability with MSCV-MLL-AF9-IRES-GFP in vitro, nor was 

leukemia-free survival altered after transplantation into adult mice (Figure 2-9B-
C). 

 

Hematopoietic phenotypes in bone marrow cells deficient for both Ybx1 and 

Msy4  

To reduce the complexity of breeding experiments, we decided to induce floxing 

in bone marrow cells ex vivo by incubating the cells with purified TAT-Cre protein 

derived from E.coli, which can directly traverse cell membranes, and efficiently 

induce floxing in living cells18,19. To test the efficiency of this process, we first 

treated both unfractionated and flow-sorted Kit+ bone marrow cells (purified on an 

autoMACS Pro Separator) from ROSA-lox-STOP-lox-YFP mice (generously 

provided by Fehniger Lab at Washington University in St. Louis). After treating 

the cells with varying doses of TAT-Cre for varying times in vitro, we measured 

YFP expression (which is induced by floxing). We observed no alterations in cell 

viability when cells were treated with TAT-cre for 2-4 hours, with >90% viable 

cells present at 72 hours, which was not different from non-treated controls (data 

not shown). YFP expression was dependent on the concentration of TAT-cre 

used, but was not sensitive to the length of treatment, suggesting that the entry 

of TAT-Cre into cells is relatively rapid (Table 2-2).  We chose an optimal dose of 

100 units/mL TAT-cre for 2 hours as the standard for all subsequent experiments 

(Figure 2-10). 

 

Ybx1lox/+ animals were bred into our laboratory’s Ybx1+/- and Msy4-/- mice to 

produce Ybx1lox/- and Ybx1lox/- x Msy4-/- mice. CBCs obtained from these adult 

mice are normal, except that white blood cell, neutrophil, lymphocyte, and 

platelet counts were slightly but significantly higher in Ybx1lox/- x Msy4-/- mice (P < 

0.05) (Figure 2-7A). We treated bone marrow cells from Ybx1lox/- and Ybx1lox/- x 

Msy4-/- mice with TAT-cre to induce floxing in the Ybx1 allele. After 48 hours, 
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TAT-Cre treated bone marrow cells were spinfected with either MSCV-IRES-GFP 

(empty vector) or MSCV-MLL-AF9-IRES-GFP, followed by serial replating in 

MethoCult M3534 (containing IL-3, IL-6, and SCF). The Ybx1-floxed population 

was quantified using a multiplexed qPCR analysis, which uses different 

fluorescent probes to measure amplification of the floxed Ybx1 allele. Actin b 

served as an internal control (Figure 2-11A). Based on the Western blotting 

results from Ybx1lox/- x Vav1-Cre+/- animals, production of the floxed allele in 

Ybx1lox/- x Msy4-/- cells should cause a near complete loss of expression of Ybx1 

in the Msy4 deficient background.  

 

TAT-cre treated Ybx1lox/- and Ybx1lox/- x Msy4-/- cells were transduced with MSCV-

MLL-AF9-IRES-GFP to determine whether bone marrow cells experiencing a 

proliferative stress require the CSD proteins for survival. Hematopoietic cells 

expressing MLL-AF9 have a strong serial replating phenotype, caused by 

increased progenitor self-rewenal. The Ybx1-floxed population did not change in 

abundance after serial replating of the samples derived from Ybx1lox/- mice, 

suggesting that the near complete loss of Ybx1 does not alter the ability for these 

cells to self-renew and proliferate in this ex vivo replating assay. However, the 

Ybx1-floxed population from Ybx1lox/- x Msy4-/- marrow slowly declined in 

abundance after 3 weeks of replating (Figure 2-11B). Ybx1 and Msy4 are 

therefore both required to prevent the loss of hematopoietic cells that are rapidly 

proliferating due to MLL-AF9 expression. 

 

  



	
   62	
  

DISCUSSION  

Based on the studies of knockout mice, we have previously suggested that the 

cold shock domain proteins Ybx1 and Msy4 play a critical role in rapidly 

proliferating tissues, where they suppress senescence. Ybx1 deficient mice 

exhibit late embryonic lethality, while Ybx1 x Msy4 double knockout embryos die 

at E8.5. The embryonic expression of Msy4 compensates for Ybx1 loss during 

mid-stage embryogenesis, but because Msy4 expression declines in late-stage 

embryogenesis, the mouse dies because it cannot sustain rapid cell growth.  

Both YBX1 and MSY4 are highly expressed in diverse human cancers, 

suggesting that high level expression of these proteins may be a critical 

adaptation that cancer cells require to sustain their long term proliferative 

potential. In this study, we evaluated the roles of Ybx1 and Msy4, the two major 

cold shock domain proteins, in normal and leukemic hematopoietic cells. 

Although Ybx1 had previously been known to be expressed in all adult tissues 

(including bone marrow cells) it was not previously known that Msy4 is highly 

expressed in early hematopoietic progenitors2. We observed no hematopoietic 

phenotype in fetal liver or bone marrow cells lacking either protein individually. 

However, the double knockout revealed the redundancy of these two proteins in 

hematopoietic cells under proliferative stress provided by a leukemia-initiating 

oncogene: both proteins were required for MLL-AF9 expressing cells to serially 

replate. 

 

We first evaluated the consequences of Msy4 and Ybx1 deficiency individually. 

Since Msy4-/- mice are viable, we simply evaluated hematopoiesis in adult 

animals. These animals have normal peripheral blood counts, and normal 

numbers of HSPCs and CFUs in their bone marrow. A competitive repopulation 

assay revealed a normal number of long term repopulating cells in Msy4 deficient 

marrow. Since Msy4 is primarily expressed in early hematopoietic cells, we used 

expression array profiling to evaluate the consequences of Msy4 deficiency in 

KLS cells (which are highly enriched in hematopoietic stem and progenitor cells). 
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Remarkably, there were no differences in gene expression in Msy4 deficient KLS 

cells—except for the loss of Msy4 itself.  

 

In two independent leukemia models characterized by aberrant self-renewal of 

HSPCs (Ctsg-PML-RARA mice and MLL-AF9 expressing bone marrow cells), we 

demonstrated that the loss of Msy4 did not affect the abnormal serial replating 

ability (i.e. self-renewal) of progenitors. Similarly, Msy4 deficiency did not alter 

the ability of MLL-AF9 to cause a rapidly fatal leukemia in mice. Therefore, Msy4 

deficiency did not produce a measureable hematopoietic phenotype, either in 

basal or stressed systems. 

 

Since Ybx1 deficiency causes perinatal lethality, we used fetal liver cells from 

E14.5 Ybx1-/- embryos to initially evaluate their hematopoietic potential. Although 

Ybx1-/- fetal livers are smaller than their wildtype counterparts, they contained the 

same relative proportion of CFUs (in terms of colonies counted per 10,000 fetal 

liver cells), and exhibited the same engraftment potential when transferred to 

adult mice. The long term repopulating potential of Ybx1 deficient fetal liver cells 

was not different from their wildtype littermates. The engrafted bone marrow cells 

derived from Ybx1-/- E14.5 fetal liver transplants had global mRNA expression 

profiles that were essentially identical to that of their wildtype counterparts—

except for the loss of Ybx1 itself. Collectively, these results showed that 

homozygosity for the null allele of Ybx1, provided by the deletion of exon 3, does 

not detectably alter the hematopoietic potential of fetal liver cells derived from 

these mice. 

 

We obtained mice with a conditional, floxed Ybx1 allele (Ybx1lox/+), to study the 

loss of Ybx1 in adult hematopoietic cells. Mice heterozygous for this allele are 

phenotypically normal and have normal blood counts. However, for unexplained 

reasons, heterozygous breeding pairs do not produce homozygous (Ybx1lox/lox) 
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adult animals. This result suggests that this allele does not represent a simple 

null mutation. Indeed, since Ybx1lox/- mice are viable and born in the expected 

ratios, it is clear that the two Ybx1 mutations are not equivalent. The data 

strongly suggests that the floxed allele has a phenotype that is independent of its 

effect on Ybx1 itself. 

 

By breeding Ybx1lox/+ and Ybx1lox/- mice with Vav1-cre+/- mice, we showed that 

the floxing of the Ybx1 allele caused a drastic reduction of protein levels within 

the bone marrow compartment. Surprisingly, however, bone marrow cells from 

both Ybx1lox/+ x Vav1-cre+/- and Ybx1lox/- x Vav1-cre+/- mice demonstrated 

reduced engraftment and long-term repopulating potentials, again suggesting 

that the floxed Ybx1 allele must have a dominant negative phenotype in this 

specific system (unlike the null allele with the deletion of exon 3). 

 

When exons 5 and 6 of the floxed Ybx1 allele are removed by Cre-mediated 

recombination, a truncated protein that retains the cold shock domain is 

predicted (Figure 2-6A). The Uchiumi Ybx1 mutation targets the same exons (5 

and 6), and ES cells heterozygous for this mutation have a phenotype, displaying 

increased sensitivity to cisplatin and mitomycin C, but not to etoposide, X-

irradiation, or UV irradiation20. In contrast, mice and/or embryonic fibroblasts that 

are heterozygous for the Ybx1 mutation targeting exon 3 (a true null allele) have 

no measurable phenotypes3. To determine whether the floxed allele could 

produce the truncated protein that is predicted, we cloned the predicted open 

reading frame of the floxed Ybx1 allele into the pcDNA3.1 vector with a 3XFlag 

tag at the 3’ end of the cDNA.  After transient transfection into 293T cells, we 

were able to detect a truncated Ybx1 protein of the predicted length with 

antibodies that detected either the N-terminal domain of Ybx1, or the Flag tag 

(Figure 2-12). However, we have not been able to detect this product in lysates 

made from the bone marrow cells of Ybx1lox/+ x Vav1-Cre+/- or Ybx1lox/- x Vav1-
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Cre+/- mice (data not shown). Further studies of the effects of this truncated Ybx1 

protein will be required to clarify the hematopoietic phenotype of the conditional 

knockout mice. 

 

Since mice deficient for both Ybx1 and Msy4 die early in embryogenesis, fetal 

livers were not available for analysis of hematopoietic phenotypes. We therefore 

bred the conditional, floxed Ybx1 allele (Ybx1lox/+) to our Ybx1+/- mice and Msy4-/- 

mice to produce Ybx1lox/- and Ybx1lox/- x Msy4-/- mice; both were viable and had 

normal CBCs. To eliminate the need for breeding these triply transgenic mice to 

various Cre-expressing mice, we applied TAT-Cre protein ex vivo to induce 

floxing. This system also allows us to examine the consequences of Ybx1 floxing 

exclusively in hematopoietic cells, eliminating the potentially confounding effects 

of floxing in other tissues, such as bone marrow stromal cells, etc. The floxing of 

bone marrow cells from Ybx1 lox/- x Msy4-/- creates a population of cells that have 

neither protein, which can be quantified and tracked with a qPCR assay specific 

for the Ybx1 floxed allele.   

 

We transduced TAT-cre treated bone marrow samples from both Ybx1lox/- and 

Ybx1lox/- x Msy4-/- mice with the MSCV-MLL-AF9 retrovirus, and serially replated 

these cells in MethoCult M3534 (containing IL-3, IL-6, and SCF). The Ybx1-

floxed population remained stable after many rounds of plating, probably 

because these cells were rescued by Msy4. However, the Ybx1-floxed population 

in Ybx1 lox/- x Msy4-/- samples slowly disappeared with serial replating, suggesting 

that expression of either Ybx1 or Msy4 is required to maintain the high rates of 

self-renewal and proliferation induced by MLL-AF9. 

 

Collectively, these data suggest that highly proliferative cells, such as 

hematopoietic progenitors and leukemia cells (as well as other primary tumors, 

and cancer cell lines) may require high levels of YBX1 because it suppresses 
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senescence, allowing for the long term expansion of these cells. The expression 

of MSY4, which clearly has functions similar to and overlapping with YBX1, may 

provide a “fail-safe” system to back up the essential activity of YBX1. Our data 

clearly demonstrate that the loss of both proteins leads to a reduced ability for 

leukemic cells to proliferate in vitro, and also suggests that both proteins may be 

required to maintain normal hematopoiesis. Since both of these proteins are 

highly expressed in all AML samples (and many other cancers), inhibition of their 

combined functions (perhaps by inhibiting the shared cold shock domains) may 

provide a novel approach for inducing senescence and death in transformed 

cells. 
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FIGURE LEGENDS. 
 
Figure 2-1. Resting hematopoiesis in Ybx1+/- and Msy4-/- mice 
 

A. Comparisons of hematopoietic values between Ybx1 haploinsufficient 
mice and wildtype littermates. Complete blood counts were performed, 
including white blood cells (WBC), neutrophils (NE), lymphocytes (LY), 
monocytes (MO), hemoglobin (Hb), and platelet (PLT) counts. Values for 
hematopoietic stem and progenitor cell populations were measured, 
(including Lin-, KLS, GMP, CMP, and MEP compartments) by flow 
cytometry. A comparison of the numbers of CFU-GM and CFU-E present 
in the bone marrow cells of adult mice was also performed. 

B. Comparisons are shown for peripheral blood CBCs, hematopoietic stem 
and progenitor cell populations, and numbers of CFU-GM and CFU-E for 
adult Msy4-/- mice and their wildtype littermates. 
 

Figure 2-2. Competitive repopulation of Msy4-/- mice 
 

A. Experimental schema. 
B. The peripheral blood was analyzed at weeks 4, 6, 12, 19, 30, and 44. 

Donor contributions were analyzed for the percentage of CD45.2+ cells 
(experimental donors) over the total of CD45.1+ (competitors) and 
CD45.2+ cells. Values for individual recipients are displayed. No significant 
differences were found at any sampling time between Msy4-/- and Msy4+/+ 
donor mice. 

 
Figure 2-3. Expression array data comparing KLS cells from Msy4-/- and 
Msy4+/+ mice 
 

A. Expression profiles of KLS cells from Msy4-/- mice or their wildtype 
littermates. Individual data points represent results from each mouse. A 
Student’s 2-tailed t test was used to compare values from all the Msy4-/- 
vs. Msy4+/+ mice. 

B. Unsupervised hierarchical clustering of all samples, which did not organize 
by genotype. 

 
Figure 2-4. Characterization of Ybx1-/- E14.5 fetal livers 
 

A. Ybx1-/- E14.5 embryos are smaller in size compared to Ybx1+/+ littermates. 
B. Total cell numbers from Ybx1-/- E14.5 fetal livers are significantly less than 

that of Ybx1+/+ littermates. 
C. Numbers of CFU-GMs from 10,000 E14.5 fetal liver cells plated in 

MethoCult M3534 (containing SCF, IL-3, and IL-6) are not significantly 
different between Ybx1-/- and Ybx1+/+ littermates. 
 



	
   70	
  

Figure 2-5. Hematopoiesis in mice engrafted with Ybx1-/- E14.5 fetal liver 
cells 
 

A. Comparison of peripheral blood CBCs, hematopoietic stem and progenitor 
cell populations, and numbers of CFU-GM and CFU-E between mice 
engrafted with Ybx1-/- and Ybx1+/+ E14.5 fetal liver cells. 

B. Expression profiles of Ybx1 in whole bone marrow from mice engrafted 
with Ybx1-/- or Ybx1+/+ E14.5 fetal liver cells. Individual data points 
represent results from each tested mouse.  

C. Unsupervised hierarchical clustering of all samples, which do not organize 
by genotypes. 

D. Experimental schema for competitive repopulation. 
E. Peripheral blood from the competitive repopulation recipients were 

analyzed at week 4, 8, 12, 20, and 44. Donor contributions were analyzed 
for the percentage of CD45.2+ cells (experimental donors) over the total of 
CD45.1+ (competitors) and CD45.2+ cells. Values for individual recipients 
are displayed. No significant differences were found at any sampling time 
between bone marrow from mice engrafted with Ybx1-/- or Ybx1+/+ E14.5 
fetal liver cells by using Student’s 2-tailed t test. 
 

Figure 2-6. Characterization of Ybx1lox/+ mice 
 

A. The mutational strategies and predicted consequences of the Ybx1 
mutations used in this study are shown.  

B. Tissue survey of Ybx1 protein expression in Vav1-Cre+/-, Ybx1lox/+ x Vav1-
Cre+/-, and Ybx1lox/- x Vav1-Cre+/- mice. Western blot analyses of whole 
tissue lysates from 6-8 week old mice are shown. Top panel, anti C-
terminal Ybx1 antibody. Bottom panel, anti-Actin antibody, as a loading 
control. 

 
Figure 2-7. Effects of the Ybx1 floxed allele on adult hematopoiesis 
 

A. CBCs of Ybx1lox/+ mice with various genetic backgrounds. Comparison of 
peripheral blood CBCs for Ybx1lox/+, Ybx1lox/-, Ybx1lox/- x Msy4-/-, Ybx1lox/+ x 
Vav1-Cre+/-, and Ybx1lox/- x Vav1-Cre+/- mice. N = 2-6 for each genotype. 
All mice were 6-12 weeks of age, except for one 4-week-old Ybx1lox/- x 
Vav1-Cre+/- mouse. 

B. Competitive repopulation of Ybx1lox/+ x Vav1-Cre+/-, Ybx1lox/- x Vav1-Cre+/-, 
and Vav1-Cre+/- mice. Peripheral blood cells were analyzed every 4 weeks 
for 12 weeks. Donor contributions were analyzed for the percentage of 
CD45.2+ cells (experimental donors) over the total of CD45.1+ 
(competitors) and CD45.2+ cells. Values for individual recipient mice are 
displayed.  
 

Figure 2-8. Effects of Msy4 deficiency on serial replating by Ctsg-PML-
RARA bone marrow cells 
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A. Experimental schema. 
B. Colony formation and serial replating. Bone marrow cells from littermate-

matched 6-12 week old mice (2-3 mice from each genotype) were plated 
in triplicate in MethoCult M3534 (containing SCF, IL-3, and IL-6). After 7 
days, colonies quantified on each plate. Cells were replated in triplicate 
and 7 days later, colonies were counted and replated. Replating continued 
for 6 weeks, or until colony formation failed. 

 
Figure 2-9. Effects of Msy4 or Ybx1 deficiency on a retroviral MLL-AF9 
leukemia model 
 

A. Experimental schema. 
B. Tumor watch. The indicated cohorts of mice transplanted with Msy4-/-, 

Ybx1lox/- x Vav1-Cre+/-, and wildtype bone marrow cells spinfected with 
either MSCV-IRES-GFP (empty vector) or MSCV-MLL-AF9-IRES-GFP 
were prospectively established in a tumor watch. Mice were followed for 
100 days, and all moribund animals were sacrificed and examined. Fatal 
leukemia occurred in mice transplanted with bone marrow cells 
transduced with MSCV-MLL-AF9-IRES-GFP, but not with MSCV-IRES-
GFP. There were no significant differences in the leukemia penetrance 
among mice transplanted with MSCV-MLL-AF9-IRES-GFP transduced 
Msy4-/-, Ybx1lox/- x Vav1-Cre+/-, or wild type bone marrow cells. (P > 0.05) 

C. Colony formation and serial replating of Msy4-/-, Ybx1lox/- x Vav1-Cre+/-, 
and wildtype bone marrow cells spinfected with either MSCV-IRES-GFP 
(empty vector) or MSCV-MLL-AF9-IRES-GFP. Transduced cells were 
plated in in MethoCult M3534 (containing SCF, IL-3, and IL-6). Replating 
continued for 6 weeks, or until colony formation failed. 

 
Figure 2-10. Optimal induction of floxing by TAT-cre 
 

Flow cytometric analysis of ROSA-lox-STOP-lox-YFP bone marrow cells 
48 hours after treatment with 0 or 100 units/mL TAT-cre for 2 hours. YFP 
expression is dependent on floxing. Only TAT-cre treated cells displayed 
YFP expression. 
 

 
Figure 2-11. Effects of Ybx1 and Msy4 deficiency on aberrant replating of 
bone marrow cells expressing MLL-AF9 
 

A. Multiplexed platform measuring Ybx1-floxed (FloxedYb1) and actin b 
(Actb) signals in the same sample. Standard curves can be generated by 
ΔΔCT value of controls with a set percentage of floxed Ybx1 alleles. 

B. Colony formation and serial replating of Ybx1lox/- and Ybx1lox/- x Msy4-/-

bone marrow cells treated with TAT-cre, and then spinfected with either 
MSCV-IRES-GFP (empty vector) or MSCV-MLL-AF9-IRES-GFP. 
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Transduced cells were plated in MethoCult M3534 (containing SCF, IL-3, 
and IL-6). Replating continued for 4 weeks, or until colony formation has 
failed. Genomic DNA was harvested from the cells each time they were 
replated, and evaluated with the qPCR assay for the fate of the floxed 
population.  

C. Percentage of Ybx1-floxed cells (Ybx1-/-) present after each weekly 
replating event.  

 
Figure 2-12. Expression of the truncated Ybx1 protein predicted from the 
floxing of the Ybx1 conditional allele 
 

293T cells were transfected with pcDNA3.1-Ybx1Trunc (encoding the 
putative Ybx1 product resulting from deletion of exon 5 and 6), or 
pcDNA3.1-Ybx1TruncFlag with 3xFlag sequence at the 3’ end of 
Tbx1Truc. 48 hours post transfection, total cell lysates were prepared in 
RIPA buffer containing 1x Protease inhibitor. Lysates were loaded on 
SDS-PAGE gels and transferred to polyvinylidene difluoride membranes. 
Western blotting was performed using an antibody against the N-terminal 
domain of Ybx1 (Ab12148, Abcam), and an anti-Flag antibody (Clone M2, 
Sigma-Aldrich). Both detected the truncated Ybx1 mutant, An anti-actin 
antibody was used for loading control. An Ybx1-/- MEF cell extract was 
used to define the Ybx1-specific protein band. 
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Figure 2-1. Resting hematopoiesis in Ybx1+/- and Msy4-/- mice  
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Figure 2-2. Competitive repopulation of Msy4-/- mice  
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Figure 2-3. Expression array data comparing KLS cells from Msy4-/- and 
Msy4+/+ mice 
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Figure 2-4. Characterization of Ybx1-/- E14.5 fetal livers  
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Figure 2-5. Hematopoiesis in mice engrafted with Ybx1-/- E14.5 fetal liver 
cells  
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Figure 2-5. Hematopoiesis in mice engrafted with Ybx1-/- E14.5 fetal liver 
cells (Continued) 
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Figure 2-6. Characterization of Ybx1lox/+ mice  
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Figure 2-7. Effects of the Ybx1 floxed allele on adult hematopoiesis 
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Figure 2-8. Effects of Msy4 deficiency on serial replating by Ctsg-PML-
RARA bone marrow cells 
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Figure 2-9. Effects of Msy4 or Ybx1 deficiency on a retroviral MLL-AF9 
leukemia model 
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Figure 2-9. Effects of Msy4 or Ybx1 deficiency on a retroviral MLL-AF9 
leukemia model (Continued) 
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Figure 2-10. Optimal induction of floxing by TAT-cre 
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Figure 2-11. Effects of Ybx1 and Msy4 deficiency on aberrant replating of 
bone marrow cells expressing MLL-AF9 
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Figure 2-12. Expression of the truncated Ybx1 protein predicted from the 
floxing of Ybx1 conditional allele 
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Table 2-1. Genotype distribution from Ybx1lox/+ crosses  
  
 
Ybx1lox/+ x Ybx1lox/+  

 

Genotype Predicted % frequency of 
total 

No. of pups (% frequency 
of total ***) 

Ybx1+/+ 25% 0 (0) 
Ybx1lox/+ 50% 26 (100) 
Ybx1lox/lox 25% 0 (0) 
 
*** P < 0.001 
 
 
Ybx1lox/+ x Ybx1+/- 

 

Genotype Predicted % frequency of 
total 

No. of pups (% frequency 
of total ***)  

Ybx1+/+ 25% 10 (9.3) 
Ybx1+/- 25% 12 (11.2) 
Ybx1lox/+ 25% 46 (43.0) 
Ybx1lox/- 25% 39 (36.4) 
 
*** P < 0.001 
Statistical comparisons were made using Chi-square test 
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Table 2-2. TAT-cre testing on ROSA-lox-STOP-lox-YFP bone marrow cells. 
Floxing efficiency is shown in YFP percentage by flow cytometry 

 

WBM	
   50	
  units/mL	
   75	
  units/mL	
   100	
  units/mL	
  
2hr	
   15.30%	
   27.30%	
   41.50%	
  
3hr	
   17.00%	
   34.10%	
   44.40%	
  
4hr	
   8.09%	
   28.10%	
   41.20%	
  

 

Kit+	
   50	
  units/mL	
   100	
  units/mL	
  
2hr	
   21.80%	
   42.50%	
  
3hr	
   25.90%	
   44.40%	
  
4hr	
   4.89%	
   45.90%	
  

 



 

 

 

 

 

 

Chapter 3 

 

 

 

Genetic and Functional Heterogeneity of Induced Pluripotent Stem Cells 

Derived from Adult Skin Fibroblasts 
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ABSTRACT 

Induced pluripotent stem cells (iPSCs) have tremendous potential as a tool in 

disease modeling, drug testing, and other applications. However, functional 

heterogeneity has been frequently observed among iPSC clones, leading to 

concerns about the validity of studies using single iPSC clones to functionally 

characterize a given genetic alteration. Published studies characterizing genetic, 

epigenetic, and transcriptional heterogeneity among iPSCs have thus far been 

small in scale (2 to 5 clones produced from the same parental cells), or have not 

addressed functional heterogeneity. Here, we report a study of 24 mouse iPSC 

(miPSC) clones derived from skin fibroblasts obtained from two different sites of 

the same 8-week-old C57BL6/J male mouse. We first assessed the ability of 

each clone to differentiate into hematopoietic progenitor cells in vitro, and found a 

wide range of potentials. To determine whether the hematopoietic potential of the 

miPSCs was associated with specific genetic alterations, we performed exome 

sequencing on all 24 clones and the two parental fibroblast pools from which they 

were derived. The exomes of the two parental fibroblast pools were essentially 

identical, as expected. When we compared each clone to its parental fibroblasts, 

we found an average of 28 variants per clone, and of which an average of 26 

were unique for each clone. No specific association was found between the 

mutational spectrum and the hematopoietic potential of each miPSC clone. 

Finally, we selected three miPSC clones with the greatest and three with the 

least potential to produce hematopoietic progenitors, and assessed differences in 

gene expression using an array-based platform. Although the expression profiles 

of these six samples were nearly identical, 96 genes were differentially 

expressed between the clones with normal vs. low hematopoietic potential. The 

transcription factors Wilms tumor 1 (Wt1) and Lymphoid enhancer binding factor 

1 (Lef1) were expressed at significantly lower levels in all three clones with low 

potential to make hematopoietic progenitors. The roles of these genes for 

defining the hematopoietic potential of mouse ESCs and iPSCs are currently 

under investigation. 
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INTRODUCTION 

Pluripotent stem cells, such as embryonic stem cells (ESCs), are defined by their 

ability to self-renew and differentiate into any somatic cell type. In 2006, the 

Yamanaka group successfully reprogrammed mouse somatic cells into 

pluripotent stem cells, referred to as induced pluripotent stem cells (iPSCs), by 

introducing a combination of four transcription factors: Oct3/4, Sox2, c-Myc, and 

Klf4.1 One year later, both the Yamanaka group and the Thomson group 

successfully reprogrammed human somatic cells to iPSCs.2,3 Like ESCs, iPSCs 

demonstrate unlimited self-renewal in culture, express markers associated with 

pluripotency (such as alkaline phosphatase and SSEA-1), and can generate 

teratomas comprised of all 3 germs layers (ectoderm, mesoderm and endoderm) 

in immunodeficient mice.1  

 

iPSCs reprogrammed from patient cells can be valuable reagents for studying 

the pathobiology of specific diseases.4 However, concerns over the use of iPSCs 

in translational studies have been raised. For example, reprogramming may 

select for cells within the pool of parental cells that are the most “fit” for 

reprogramming.  Previous studies have shown an association with human iPSC 

(hiPSC) reprogramming and mutations known to be related to cancer 5,6; 

however, cells containing these mutations may pre-exist at low frequencies in the 

parental cell lines.5,7 Indeed, using whole genome sequencing to characterize 

multiple derived mouse iPSC (miPSC) clones from three independent 

reprogramming experiments, and the parental MEFs (mouse embryo fibroblasts) 

from which they were derived, Young et al. found that all 4 iPSC clones from one 

experiment shared 157 genetic variants, which could also be detected in <1 in 

500 cells in the parental cell pool; in the other two reprogramming experiments, 

all genetic variants were unique to each clone.8 These data suggested that 

reprogramming and its associated cloning “captures” the mutational history of the 

reprogrammed cell, and that some cells within a given MEF population may have 
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a higher fitness for reprogramming due to specific background mutations. 

Further, iPSC clones have been shown to retain an epigenetic memory of the 

donor cell types, which may influence their ability to differentiate into different 

lineages.9–11 In two independent studies, Kim et al. showed that as a result of 

such epigenetic differences, miPSC clones derived from mouse peripheral blood 

cells had a greater potential to differentiate into hematopoietic cells than 

fibroblast-derived, neural progenitor-derived, or smooth muscle cell-derived 

miPSC clones.10,11 Finally, iPSC clones derived from the same parental cells can 

show variable potentials to differentiate into a specific lineage, such as 

neurons9,10,  hematopoietic progenitors10,14, or hepatocytes15. This is perhaps not 

surprising, considering that each clone is derived from an individual cell within a 

heterogenous population of parental cells.8    

 

While some studies have characterized the genetic, epigenetic and 

transcriptomic heterogeneity among different iPSC clones 16,17 (Table 3-1), only a 

handful have evaluated functional heterogeneity, and these have been limited to 

only a few iPSC clones each.  For example, using 3 iPSC lines derived from the 

same parental fibroblasts, Mills et al. found an association between the iPSC 

proliferative rate and hematopoietic potential, as well as a distinct expression 

profile and copy number variants (CNVs).14 Further, Bock et al. described a 

“deviation scoreboard” (derived from genome-wide maps of DNA methylation by 

reduced representation of bisulfite sequencing, and also gene expression 

patterns) to predict the neural lineage potentials of hiPSC lines18; this data was 

validated in an independent study using the same hiPSC lines to differentiate into 

motor neurons.12 In contrast, Kajiwara et al. found that gene expression or DNA 

methylation patterns could not predict the propensity for hepatic differentiation 

from different hiPSC clones.15  
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Although limited in scope, these studies clearly demonstrated that functional and 

genetic heterogeneity exists within iPSC clones derived from the same source, 

and that the current standards for pluripotency testing do not fully define the 

differentiation potential of iPSC clones.  This heterogeneity is very important for 

studies of patient-derived iPSCs, since most studies employing these cells have 

analyzed only a small number of iPSC clones from each donor source.  

 

In this study, we characterized the genetic and functional heterogeneity of 24 

miPSC clones derived from skin fibroblasts taken from two different sites (right 

and left axilla) of the same adult C57BL6/J mouse. Reprogramming was 

achieved with an integrating polycistronic lentivirus (containing cDNAs encoding 

Oct3/4, Sox2, and Klf4, as well as an IRES-GFP cassette), so that the genetic 

identity of each iPSC clone could be confirmed by mapping lentiviral integration 

sites. Twelve clones from each fibroblast pool (24 total) were generated; all were 

shown to express standard pluripotency markers. The 24 miPSC clones 

exhibited widely variable abilities to generate hematopoietic progenitors in vitro 

(compared to wildtype mouse embryonic stem cells); some clones consistently 

demonstrated little or no ability to generate hematopoietic progenitors. We 

performed exome sequencing on all clones, as well as the two parental 

fibroblasts from which they were derived.  Each clone had a unique pattern of 

lentiviral integration sites that assured the identity of each clone.  We found an 

average of 28 (range 5-56) total exomic mutations per clone, of which 26 (on 

average) were unique for that clone. Although a subset of clones contained a 

small number of common mutations, no common mutations were found among 

the clones with poor hematopoietic potential. Finally, expression array analyses 

of six hematopoietic “outlier” clones (three with high and three with low 

hematopoietic potential) revealed lower expression of the transcription factors 

Wilms tumor 1 homolog (Wt1) and Lymphoid enhancer binding factor 1 (Lef1) in 

all three clones with poor hematopoietic potential.  These findings will serve as a 
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foundation to investigate the reasons why some iPSC clones have a limited 

ability to differentiate into hematopoietic progenitor cells.  
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MATERIALS AND METHODS 

Production of miPSC clones 

Skin fibroblasts from the right and left axillae (Ax1 and Ax2) of a single 8 week 

old adult C57BL6/J male mouse were prepared, and iPSC clones were 

generated as previously described.19 Briefly, 2.5x105 fibroblasts were seeded on 

6-well plates. The next day, the cells were transduced with the OSK-GFP 

lentivirus (kindly provided by Dr. Tim Townes) at an MOI of 1:3. After 24 hours of 

incubation with the virus, the cells were trypsinized and transferred to a 100-mm 

petri dish with a feeder mouse embryonic fibroblast (MEF) layer and mouse 

embryonic stem cell (ESC) media containing recombinant LIF. Cells were grown 

for 2-3 weeks with daily media changes before individual clones were picked and 

expanded on MEF feeder layers. 

 

Pluripotency characterization 

After passaging for at least 4 weeks, 24 clones were analyzed by flow cytometry 

for GFP expression, which indicated that the lentivirus is stably integrated. All 

clones were tested for expression of the ESC marker Oct3/4, using wildtype 

mESC and MEFs as controls. For intracellular Oct3/4 staining (eBioscience, San 

Diego, CA), cells were fixed with 4% paraformaldehyde and permeabilized with 

1% saponin.  Pluripotency staining for other markers, including Nanog, SSEA-1, 

and Alkaline Phosphatase for all 24 clones, as well as teratoma formation in NSG 

mice for the 6 hematopoietic outlier clones, are in progress. 

 

In vitro hematopoietic differentiation from miPSCs 

The miPSCs hematopoietic differentiation assay is modified from an hiPSC 

hematopoietic differentiation protocol.20 Briefly, 1x105 single miPSCs or mESCs 

were seeded in gel-coated 100-mm petri dish with OP9 stromal cells overgrown 

for 8-10 days in differentiation media containing 10% fetal bovine serum (FBS), 
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100 µM monothioglycerol (Sigma-Aldrich, St. Louis, MO), and 50µg/ml ascorbic 

acid (Sigma-Aldrich, St. Louis, MO). Media was changed daily for 7 days, at 

which time all the cells in the dish, including OP9s, were collected. Up to 1x107 

unsorted cells were stained with the following monoclonal antibodies:  B220, 

CD3e, Gr1, Ter119, Kit, Sca, CD34, and CD16/32 (FCg) (eBioscience, San 

Diego, CA) and analyzed by flow cytometry. 1x105 unsorted cells were plated 

into 1.1 ml of methylcellulose media containing Epo, SCF, IL-3, and IL-6 

(MethoCult GF M3434; Stem Cell Technologies, British Columbia, Canada) in 

60-mm petri-dishes in triplicate. Colony numbers were counted after 7-8 days of 

culture. After dissolving the MethoCult in warm media, cells were stained with the 

myeloid and erythroid lineage markers CD34, CD11b, Kit, Gr-1, and Ter119 

(eBioscience, San Diego, CA) and analyzed by flow cytometry. 1x105 unsorted 

cells were stained with Wright-Giemsa stain (Sigma-Aldrich, St. Louis, MO) for 

morphologic examination, both after 7 days of OP9 culture and after another 7 

days in MethoCult. Multiple lots of OP9 cells from ATCC and multiple lots and 

brands of FBS were systematically tested, and hematopoietic differentiation 

efficiency was found to be dependent on neither. (Table 3-2) 

 

Illumina library construction and exome sequencing 

Genomic DNA from all 24 miPSC clones and the two parental fibroblast lines 

were fragmented using a Covaris LE220 DNA Sonicator (Covaris, Woburn, MA) 

within a size range between 100-400bp using the following settings: volume = 

50µL, temperature = 4°C, duty cycle = 20, intensity = 5, cycle burst = 500, time = 

120 seconds. The fragmented samples were transferred from the Covaris plate 

and dispensed into a 96 well BioRad Cycle plate by the CyBio-SELMA 

instrument. Small insert dual indexed Illumina paired end libraries were 

constructed with the KAPA HTP sample prep kit according to the manufacturer's 

recommendations (KAPA Biosystems, Woburn, MA) on the SciClone instrument 

according to the manufacturer's recommendations (Perkin Elmer, Waltham, MA). 

Dual indexed adaptors were incorporated during ligation; the same 8bp index 
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sequence is embedded within both arms of the library adaptor. Libraries were 

enriched with a single PCR reaction for 8 cycles. The final size selection of the 

library was achieved by a single AMPure XP paramagnetic beads (Agencourt, 

Beckman Coulter Genomics, Beverly, MA) cleanup targeting a final library size of 

300-500bp. The libraries undergo a qualitative (final size distribution) and 

quantitative assay using the HT DNA Hi Sens Dual Protocol Assay with the HT 

DNA 1K/12K chip on the LabChip GX instrument (Perkin Elmer, Waltham, MA). 

Twenty six libraries (from the 24 iPSC clones and the two parental fibroblast 

pools), at 192ng per library, were pooled pre-capture on the Ep5075 platform, 

captured (see Exome capture, and validation capture), and sequenced on an 

Illumina HiSeq 2000 using 100 bp paired-end reads. Exome sequencing 

coverage for the 24 iPSC clones and the fibroblast preparations from which they 

were derived are included in Table 3-3.  

 

Variant detection pipeline  

Sequence data was aligned to mouse reference sequence mm9 (with the OSK 

vector sequence added) using bwa version 0.5.921 (params: -t 4 -q 5::). Bam files 

were deduplicated using picard version 1.46. 

Single Nucleotide Variants (SNVs) were detected using the union of three callers: 

1) samtools version r96322 (params: -A -B) intersected with Somatic Sniper 

version 1.0.223 (params: -F vcf -q 1 -Q 15) and processed through false-positive 

filter v1 (params: --bam-readcount-version 0.4 --bam-readcount-min-base-quality 

15 --min-mapping-quality 40 --min-somatic-score 40) 2) VarScan version 2.2.624 

filtered by varscan-high-confidence filter version v1 and processed through false-

positive filter v1 (params: --bam-readcount-version 0.4 --bam-readcount-min-

base-quality 15 --min-mapping-quality 40 --min-somatic-score 40), and 3) Strelka 

version 0.4.6.225 (params: isSkipDepthFilters = 1). 

Indels were detected using the union of 4 callers: 1) GATK somatic-indel version 

533626 filtered by false-indel version v1 (params: --bam-readcount-version 0.4 --
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bam-readcount-min-base-quality 15), 2) pindel version 0.527 filtered with pindel 

false-positive and vaf filters (params: --variant-freq-cutoff=0.08), 3) VarScan 

version 2.2.624 [filtered by varscan-high-confidence-indel version v1 then false-

indel version v1 (params: --bam-readcount-version 0.4 --bam-readcount-min-

base-quality 15), and 3) Strelka version 0.4.6.225 (params: isSkipDepthFilters = 

1). 

Viral integration sites were detected using Breakdancer version 1.4.128  

 

Exome capture, and validation capture  

Two library pools were made for exome capture, each containing all 26 libraries 

and a total input of ~5ug into capture. One pool was captured using the Agilent 

SureSelect Mouse All Exon Library Kit according to manufacturer's 

recommendations with these exceptions: 

1)  5 µg Mouse Cot DNA and 1mM library adapter blockers were added to the 

hybridization reaction.   

2) Each sample was amplified in the PCR using 20µl of enriched ssDNA library 

fragments, KAPA HotStart Polymerase, and 200nM each forward primer and 

reverse primer. 

The other pool was captured using the Nimblegen SeqCap EZ Library reagent 

with the same exceptions. Both products have a probe space of ~50Mb. The final 

concentration of each capture pool was verified through qPCR utilizing the KAPA 

Library Quantification Kit - Illumina/LightCycler® 480 kit according to the 

manufacturer's protocol (Kapa Biosystems, Woburn, MA) to produce cluster 

counts appropriate for the Illumina HiSeq2000 platform. Each capture pool was 

loaded across 5 lanes of the HiSeq2000 version 3 flow cell according to the 

manufacturer's recommendations (Illumina, San Diego, CA). 2 X 101bp read 

pairs were generated for each sample, yielding approximately 6-7Gb of data per 

sample.  
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For the validation array, genomic DNA of all 24 miPSC clones was isolated from 

sorted GFP positive iPSCs to minimize MEF contamination. The custom capture 

reagent (NimbleGen) contained all predicted somatic mutations from all 24 iPSC 

clones.  Capture was performed as described above for the NimbleGen exome 

reagent. The capture validation array coverage for the 24 iPSC clones, and the 

fibroblast preparations from which they were derived are included in Table 3-4. 

 

Expression profiling 

Expression arrays were performed as previously described.29 Briefly, RNA from 

six miPSC clones as well as wildtype mESC B6/GFP (2 replicates) were 

prepared from sorted GFP positive cells to minimize MEF contamination; RNA 

was purified using the TRIzol reagent (Life Technologies, Carlsbad, CA), 

processed with the WT-Ovation RNA Amplification System (NuGen 

Technologies, San Carlos, CA) and analyzed using the Mouse Exon 1.0ST array 

(Affymetrix, Santa Clara, CA) according to standard protocols from the Genome 

Technology Access Center at Washington University in St. Louis 

(https://gtac.wustl.edu/index.php). Partek Genomics Suite (Partek, St. Louis, MO) 

was used for unsupervised hierarchical clustering of miPSC and mESC global 

RNA levels and two-way ANOVA. A P value of ≤ 0.05 was considered to be 

significant. 



	
   100	
  

Results 

Functional heterogeneity among miPSC clones derived from the same parental 

fibroblasts 

To investigate functional heterogeneity among iPSC clones derived from the 

same parental cells, we generated 12 miPSC clones from two independent pools 

of fibroblasts from the same adult C57BL6/J mouse.  Reprogramming was 

performed using an established polycistronic lentivirus containing cDNAs 

encoding OCT3/4, SOX2, KLF4 (OSK)19, and an IRES-GFP cassette to mark 

stably transduced cells. All clones were GFP positive and expressed Oct3/4 

(Table 3-5).  Six of the 24 iPSC clones were evaluated for pluripotency by 

injecting them into immunodeficient mice, with assessment for cystic teratoma 

formation currently pending.  Three of the tested clones (Ax1-35, Ax2-26 and 

Ax2-39) were from lines with robust hematopoietic potential, and three were from 

lines (Ax1-18, Ax2-34 and Ax2-48) with little or no ability to generate 

hematopoietic progenitors (see below). 

 

To induce the production of murine hematopoietic stem/progenitor cells (HSPCs) 

from ESCs and iPSCs, we modified a protocol for hiPSC hematopoietic 

differentiation, as described in Methods and Materials. After co-culture on OP9 

stromal cells for one week, control wild type mESC lines derived from C57BL/6 

mice (B6/BLU or B6/GFP) consistently differentiated into hematopoietic 

progenitors, as determined by morphologic examination (Figure 3-1A), and the 

identification of cells with the immunophenotypic characteristics of KLS cells (Lin-

Kit+Sca+), common myeloid progenitors (CMPs), granulocyte-macrophage 

progenitors (GMPs), and megakaryocyte-erythroid progenitors (MEPs) (Figure 3-
1B). After another week of culture in MethoCult with hematopoietic cytokines 

(SCF, IL-3, IL-6, and Epo), colony forming units (CFUs) were enumerated as an 

independent measure of hematopoietic progenitor production. Erythrocytes and 

mast cells were readily identified by morphologic examination (Figure 3-1C) and 
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cells expressing CD34, Kit, Ter119, and CD11b were quantified by flow 

cytometry (Figure 3-1D).  

 

In two independent experiments, the 24 miPSC clones exhibited variable but 

reproducible potentials in their ability to produce functional hematopoietic 

progenitor cells, as measured by colony formation in methylcellulose (Figure 3-
2A).  Although most iPSC clones produced colonies as efficiently as wild type 

mouse ESC lines, a few consistently displayed a reduced potential.  One clone 

(Ax1-18) was incapable of forming colonies. Immunophenotyping of the cells 

from the MethoCult cultures from several clones with a low level of hematopoietic 

colony production (Ax2-48, Ax1-10, and Ax2-34) revealed an unaltered 

percentage of CD11b+, CD34+, Kit+, and Ter119+ cells (Figure 3-2C), indicating 

that the few progenitor cells that differentiated from these clones were 

phenotypically normal.  

 

Immunophenotypic analysis of the miPSC-derived progenitors revealed variable 

numbers of KLS cells, GMPs, CMPs, and MEPs among the 24 clones. This 

variability did not directly correlate with the colony performing ability, except for 

one clone (Ax1-18). After 7 days of co-culture on OP9 cells, Ax1-18 produced 

very few cells with the immunophenotypic characteristics of KLS cells, GMPs, 

CMPs, or MEPs; this clone was incapable of forming hematopoietic colonies on 

Methocult media (Figure 3-2B). 

 

Genetic heterogeneity among miPSC clones derived from the same parental 

fibroblasts 

We performed exome sequencing on all 24 miPSC clones (and the two parental 

fibroblast pools from which they were derived) to determine the genetic 

relationships of the miPSC clones to each other, and to their parental fibroblasts. 
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Exome sequencing coverage is shown in Figure 3-3A and Table 3-3. Using 

genomic DNA collected from miPSCs purified by flow cytometry (GFP-positive), 

all variants were validated using a liquid phase custom capture array and deep 

digital sequencing, which also allowed us to accurately determine the variant 

allele frequency (VAF) and clonal architecture of each iPSC clone. The validation 

array coverage for the 24 iPSC clones and parental fibroblasts are shown in 

Figure 3-3B and Table 3-4; average coverage was 604x. As expected, few 

differences were detected between the two parental fibroblast pools from the 

same mouse; most had VAFs of <20%, suggesting that they arose during 

expansion in tissue culture. In contrast, when comparing the miPSCs to their 

parental fibroblasts, a total of 606 miPSC variants (Table 3-6; 3-7) were detected 

in the 24 clones (mean 28, range 5-56); 27 of these 606 variants were shared 

among different clones (Table 3-7). No correlation was observed between the 

number of mutations and the hematopoietic differentiation potential of the miPSC 

clones (r2=0.0006065) (Figure 3-3C).  

 

Among the common mutations, five Ax2 clones (Ax2-11, Ax2-16, Ax2-24, Ax2-

26, and Ax2-39) shared a missense mutation in Hjurp (Holliday junction 

recognition protein; VAF ~20%), while five Ax1 clones (Ax1-3, Ax1-5, Ax1-8, Ax1-

10, and Ax1-18) shared a missense mutation in Dux (Double homeobox; VAF 

~20%). Both of these genes have been implicated in cancer (Table 3-7).  

However, since nearly all of these shared mutations have VAFs in the iPSCs that 

are in the 5-20% range, and since most of these mutations were also detected at 

low levels in the parental fibroblast pools, the data are not consistent with the 

idea that the clones are derived from the same parental cells (where the shared 

mutations in the iPSC clones would be expected to have VAFs of ~50%). The 

origin and significance of these shared mutations is therefore unclear.  However, 

the large, identical indel present in the Ppig gene of clones Ax1-2 and Ax1-35 is 

diagnostic of a shared parental origin: these two clones arose from the same 

small population of fibroblasts, and they clearly acquired additional mutations 
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later (10 private mutations exist in Ax1-2, and 35 in Ax1-35, assuring their unique 

identities; each has distinct lentiviral integration sites [Table 3-8]).    

 

Among the private mutations (excluding silent mutations), there are mutations in 

several genes that have been implicated in cancer development, such as Flt1 in 

Ax1-10 (VAF ~50%), Bcl-6 in Ax-16 (VAF ~40%), and Ptpn9 in Ax-23 (VAF 

~50%); there are also mutations in genes with important roles in ESC 

development and hematopoiesis, such as Dnmt1 in Ax1-23 (VAF ~50%), Dot1l in 

Ax1-8 (VAF ~50%), and Gata-4 in Ax2-30 (VAF ~50%) (Table 3-6).  Since the 

VAFs of these mutations are all in the range of 50%, they are probably 

heterozygous mutations present in all the cells of the iPSC clone. They may 

represent random but relevant mutations in the parental cells that contributed to 

reprogramming ‘fitness’, or they may have occurred at the time of 

reprogramming, and facilitated the expansion of cells5,7,8. 

 

An average of 3 OSK lentiviral integration sites (range 1-8) were identified in all 

24 miPSC clones; each had a unique set of integration events, establishing 

clonal identity (Table 3-8).  No insertion events were identified in genes known to 

be important in ESC/iPSC function or hematopoietic development. No integration 

sites were shared by all four miPSC clones with poor hematopoietic potential. 

Several integration “hotspots” was identified: Chr2: 98502394-98507281 (14 

clones from both Ax1 and Ax2), Chr9: 3000297-3034834 (15 clones from both 

Ax1 and Ax2), and ChrX: 100516732- 100525464 (5 clones from both Ax1 and 

Ax2). Of these, only the hotspot on Chromosome 2 has previously been 

reported30. Integrations at these “hotspots” were identified in clones with both 

good and poor hematopoietic potential (Table 3-9).  Breakpoint assemblies 

revealed two integration sites that were shared by three clones, breakpoint 

(ChrX:100525589; OSK:6660) was shared between Ax2-30 and Ax2-48, and 

breakpoint (ChrX:100516717  OSK:3115) was shared among Ax2-30, Ax2-48, 
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and Ax2-11.  Finally, we evaluated the expression of “nearest neighbor” genes 

for each integration site in the six outlier clones with good and poor 

hematopoietic potential. Only one gene, Zfp280d, displayed altered expression; it 

lies 149Kb downstream from a lentiviral integration site in clone Ax2-26, and was 

expressed at ~50% the level found in the other 5 clones. The integration sites in 

the three clones with poor hematopoietic potential were not associated with 

altered expression of any nearest neighbor genes (Table 3-10).  These data 

suggest that lentiviral integration sites are unlikely to explain the functional 

heterogeneity observed among the 24 clones. 

 

Most of the iPSC clones have a distinct group of variants with VAF clusters of 

approximately 50%, suggesting that these represent heterozygous mutations 

present in nearly all of the cells in the clone (Figure 3-3D). These data suggest 

that these variants were most likely present in the cell that was reprogrammed, 

and represent private mutations in each parental cell that were “captured” by 

cloning8. Analysis of the sequencing data from the parental fibroblasts did identify 

a variant in Dcbld1 with a VAF of 4.69% in Ax1, and 3.11% in Ax2 fibroblasts, 

suggesting that a small fraction of cells within each independent skin sample 

(about 7-8% of cells) contained this mutation; it probably represents mosaicism 

within the skin of this animal. Indeed, 4 independent iPSC clones (2 from Ax1, 

and 2 from Ax2) had the same exact variant, but with VAFs of ~50%. These data 

clearly demonstrate how preexisting mutations in parental cells are captured by 

reprogramming and cloning. To determine whether this mutation improved fitness 

for reprogramming, we analyzed a total of 96 iPSC clones from skin fibroblasts of 

this mouse, and found the variant in a total of 9 clones (9.4%). From the VAF in 

the primary skin samples, we estimate that 7.8 % of the skin cells contained the 

variant, which is not statistically different from the number of iPSCs that 

contained the mutation (9.4%, P = 0.78).  Many of the miPSCs also contained 

several variants at a frequency lower than 50%, suggesting that these mutations 

were most likely acquired after reprogramming, during expansion of the cells in 
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tissue culture. Some of the clones, such as Ax1-5 and Ax2-6, clearly have 

prominent VAF clusters of 25% and 10%, respectively, which probably represent 

subclones that arose shortly after the reprogramming event. Since these 

subclones represent only a portion of the cells in the clone, they may not provide 

a significant growth advantage, since they had not become dominant at the time 

of sampling. 

 

Expression profiling of selected miPSC clones with different hematopoietic 

potential 

To identify differences in gene expression in clones with different functional 

properties, we selected three miPSC clones (Ax1-35, Ax2-26 and Ax2-39) with 

hematopoietic potential similar to that of wildtype mESC from the B6/BLU line, 

and three clones with a consistently limited potential to form hematopoietic 

progenitors in the colony assay (Ax1-18, Ax2-34 and Ax2-48). RNA was 

prepared from each miPSC clone after sorting for GFP positive cells (to remove 

contaminating MEFs), and then analyzed on the Mouse Exon1.0 ST array 

(Affymetrix). Wildtype B6/GFP mESCs were also analyzed as an ESC control. All 

clones were maintained on MEFs in ESC media to maintain pluripotency prior to 

the collection of cells. 

 

Unsupervised hierarchical clustering revealed no significant differences in the 

global expression patterns among the six miPSC clones and B6/GFP mESCs 

(Figure 3-4A). However, when we performed a supervised analysis (two-way 

ANOVA) comparing the three clones with good and poor hematopoietic 

progenitor potentials, we found 96 genes that were expressed at significantly 

different levels between the two groups: 42 genes were downregulated and 54 

genes were upregulated in the 3 clones with poor hematopoietic potential (P < 

0.05, fold change >2 or <-2) (Figure 3-4B). We next examined the annotation 

and known functions of each named gene. Two transcription factors known to be 
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important for embryonic and/or hematopoietic development (Wilms tumor 1 

homolog [Wt1] and Lymphoid enhancer binding factor 1 [Lef1]) were expressed 

at significantly lower levels in the three clones with poor hematopoietic potential.  

However, the expression of Wt1 in these clones was similar to that of B6/GFP 

ESCs, which represent the “gold standard” for hematopoietic potential (P > 0.05). 

Importantly, the pluripotency genes Pou5f1 (encoding Oct3/4), Nanog, and Sox2 

were expressed at similar levels in all six iPSC clones, and in B6/GFP ES cells 

(Figure 3-4C).  
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Discussion 

In this study, we evaluated functional differences among the hematopoietic 

potentials of 24 miPSC clones derived from two independent preparations of skin 

fibroblasts from the same 8-week-old C57BL6/J mouse. Among the 24 clones, 

we observed varying abilities to produce hematopoietic progenitor cells that could 

produce colonies in methylcellulose plating experiments. We defined the 

mutational landscapes in the exomes of all 24 clones in an attempt to define 

genetic mechanisms that might be relevant for phenotypic variation, but did not 

identify specific mutations that explained the phenotypes. Finally, we compared 

the expression profiles of clones with extreme outlier phenotypes for 

hematopoiesis in vitro; this study yielded a small set of candidate genes 

(including Wt1 and Lef1) that could be relevant for hematopoietic differentiation in 

mouse iPSCs. These genes are currently being assessed in functional assays. 

 

Our observations regarding clonal heterogeneity are consistent with previous 

studies by Kim et al., using 8 miPSC clones derived from mouse peripheral blood 

cells10, and Mills et al., using 3 hiPSC clones derived from human fibroblasts14. 

Other studies have also reported clonal differences in the abilities of iPSCs to 

differentiate into neurons9,10, hepatocytes15, or embryoid bodies (EBs)18. Among 

these reports, Boulting et al. found one iPSC line (out of three derived from the 

same parental line) that failed to differentiate into motor neurons, for reasons that 

were unclear 12. Several of these studies also used molecular tools such as SNP 

karyotyping, pyrosequencing, bisulfite sequencing, and microarrays to 

characterize iPSCs, but no clear cut mechanism was defined to explain the 

phenotypic variation among clones in any of these reports. 

 

In an attempt to determine whether mutations specific to individual iPSC clones 

might contribute to phenotypic heterogeneity, we performed whole exome 

sequencing of the 24 miPSC clones used in this study, along with the two 
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parental fibroblast pools from which they were derived. After identifying potential 

mutations in each clone, we validated them all using a custom capture array that 

included all variants for all clones, followed by deep digital sequencing. Most of 

the variants found in most of the clones had VAFs that clustered at ~50%, 

suggesting that all of the cells in the clone contained these heterozygous 

mutations. Studies from our laboratory8 previously suggested that mutations 

present in all the cells of an iPSC clone were probably present in the individual 

fibroblasts that were reprogrammed and cloned, which in essence “captures” the 

mutational history of each cell. The data obtained in this study (which is the 

largest collection of exome sequencing data of iPSCs from a single source), 

supports the hypothesis that most genetic variation in iPSCs comes from the 

parental cells from which the iPSCs were derived5,16,17,31,32.  

 

The average number of mutations found in each iPSC clone in this study was 28 

(with a range of 5-56). In contrast, Young et al. found an average of 11 mutations 

in the coding regions of each miPSC clone sequenced in that study.8 There are 

at least two potential explanations for this discrepancy: first, the number of 

mutations may be higher in this study because the fibroblasts were derived from 

an 8 week old mouse, instead of the mouse embryo fibroblasts (from E13.5 

embryos) used in the Young et al. study: aging is associated with an increased 

mutational burden in fibroblasts.35 Secondly, the exome sequencing performed in 

this study had greater coverage than the whole genome sequencing study (~50x 

vs. ~20x). Deeper coverage allows for a higher likelihood of identifying variants 

present in a fraction of the cells in the sample, which were identified in all of the 

iPSC clones in this study.   

 

We found no association between the hematopoietic potential of each clone, and 

the number or type of mutations that were identified in each. In the clones with 

limited ability to form hematopoietic progenitors, we did not find recurring 
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mutations in genes that are known to affect hematopoietic lineage determination 

(e.g. HoxB4, Gata2, Pu.1, Cebpa, etc.). Likewise, we did not detect any common 

mutations (or mutations in common pathways) among these clones, and no 

commonality among the lentivirus integration sites among these clones. 
However, since our analysis was restricted to the exomes, it is possible that 

these clones could have common mutations in non-coding regions that could 

somehow alter the developmental fate of iPSCs. Since mutations of this kind 

could potentially cause alterations in gene expression, we decided to perform 

expression profiling on extreme outlier clones. 

 

We compared the expression profiles of 3 iPSC clones with little or no ability to 

form hematopoietic colonies to that of 3 clones with robust differentiation 

potential, and 2 replicates from a mouse B6 ES cell line. The expression profiles 

of all 8 samples were remarkably similar, but we were able to identify a very 

small subset of genes with highly significant expression differences among the 

clones with high and low hematopoietic potentials. After annotating these genes, 

two strong candidates emerged: the transcription factors Wt1 and Lef1 both were 

expressed at lower levels in the clones with reduced hematopoietic potential, 

although Wt1 expression in these clones was similar to that of B6/GFP ES cells 

(which robustly form hematopoietic progenitors). Validation of protein levels, and 

rescue experiments with ectopic expression of Wt1 and Lef1, are currently in 

progress.    

 

Wt1 encodes a zinc-finger transcription factor that is inactivated in a subset of 

embryonic kidney cancers termed Wilm’s tumors.33–35 Wt1 functions as a tumor 

suppressor, and its mutations are frequently linked to malignancies such as 

acute leukemia36, breast cancer37, lung cancer38, retinoblastoma39, and others. 

Wt1 is expressed during mammalian embryonic development in many tissues, 

and disruption of the Wt1 gene in mice has shown that it plays a critical role in 
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development of the heart, adrenal gland, spleen, kidney, and retina.40–43 

Cunningham et al. recently reported that Wt1-deficient mESC exhibit a markedly 

reduced potential in hematopoietic differentiation in vitro, using two independent 

Wt1 knockout ESC lines.44  Lef1 is a member of the LEF-1/FCF family of 

transcription factors, which have been identified as nuclear mediators of Wnt 

signaling45. Lef1 is expressed in developing B and T cells, as well as neural 

crest, mesencephalon, tooth germ cells, whisker follicles, and other sites during 

embryonic development46–49. Lack of Lef1 leads to abnormal patterning of 

somites, which give rise to skeletal muscle, cartilage, tendons, vertebrae, spinal 

nerves, and blood vessels.50 In hematopoietic development, Lef1 is not only 

critical for lymphopoiesis47–49, but also for myelopoiesis51,52 and self-renewal of 

hematopoietic stem cells53. Based on the Cunningham study, Wt1 

downregulation may represent the most likely candidate gene for hematopoietic 

phenotype. However, the level of expression in the poor differentiators is similar 

to that of B6 ESCs; clearly, direct testing of Wt1 and Lef1 replacement in these 

iPSC lines will be required to define their roles for this phenotype. 

 

In summary, we have characterized the functional heterogeneity and mutational 

landscapes of 24 iPSC clones derived from the same mouse. We did not find 

exomic mutations that directly explained phenotypic heterogeneity for 

hematopoietic potential. However, we identified two hematopoietic transcription 

factors (Wt1 and Lef1) that are dysregulated in clones with a reduced potential to 

form hematopoietic progenitors. To determine whether either gene is truly 

relevant for the phenotype, we will overexpress these cDNAs (both individually, 

and combined) in clones with normal and low hematopoietic potential, and knock 

them down in mESCs and miPSCs with normal hematopoietic potential.  These 

studies may provide novel insights into the regulation of these transcription 

factors, and new information regarding the factors that govern hematopoietic 

lineage determination. 
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Figure Legends 
 
Figure 3-1. Hematopoietic differentiation from mESCs/miPSCs  
 

A. Morphology of wild type mESC-derived cells after 7 days of OP9 coculture 
(unsorted) by Wright-Giemsa staining. A scale bar of 20µm is shown. 
Arrows indicate cells with the morphologic characteristics of primitive 
hematopoietic cells.  

B. Immunophenotyping of hematopoietic progenitor cells from wild type 
mouse bone marrow cells, wildtype mESCs after 7 days of OP9 coculture, 
and OP9 cells themselves (exposed to same culture condition without 
seeding mESCs): Lineage- (Lin-), KLS (Lin-Kit+Sca+), progenitors (Lin-

Kit+Sca-), CMPs (Lin-Kit+Sca-CD34+FCg-), GMPs (Lin-Kit+Sca-

CD34+FCg+), and MEPs (Lin-Kit+Sca-CD34-FCg+). 
C. Morphology of day 7 OP9 cocultured mESC-derived cells after 7-8 days of 

additional culture in MethoCult media containing hematopoietic cytokines 
(SCF, IL-3, IL-6, and Epo). A scale bar of 20µm is shown. Arrows indicate 
mast cells, while other cells are predominantly erythrocytes at different 
stages of maturation. 

D. Immunophenotyping of day 7 OP9 cocultured mESC-derived cells after 7-
8 days of additional culture in MethoCult media containing hematopoietic 
cytokines (SCF, IL-3, IL-6, and Epo), using myeloid and erythroid markers 
CD11b, Gr-1, CD34, Kit, and Ter119. 

 
Figure 3-2. Hematopoietic differentiation potential of the 24 miPSC clones 
 

A. 100,000 cells from OP9 cocultured mESCs (B6Blu) or miPSCs were 
plated in MethoCult media containing hematopoietic cytokines (SCF, IL-3, 
IL-6, and Epo). CFUs were counted after 7 additional days of culture. The 
relative number of CFUs per 100,000 cells plated from Day7 miPSC-
derived progenitors vs. Day7 mESC (B6/BLU)-derived progenitors is 
shown. iPSC clones are ranked from the highest to the lowest average of 
two independent experiments. Error bars represent the means +/- one 
standard deviation.  

B. Fractions of Lin- cells, KLS cells, GMPs, CMPs, and MEPs from miPSCs 
relative to mESCs after 7 days of OP9 coculture (unsorted), presented in 
the same order as panel A. 

C. Fractions of CD11b+, CD34+Kit+, and Ter119+ cells obtained after 7 days 
of MethoCult culture containing hematopoietic cytokines (SCF, IL-3, IL-6, 
and Epo), comparing miPSC-derived progenitors relative to mESC-derived 
progenitors, in the same order as panel A. 

 
Figure 3-3. Mutational landscapes of the 24 miPSC clones  
 

A. Mean exome sequencing coverage for the 24 miPSC clones and the 
fibroblast preparations from which they were derived 



	
   117	
  

B. Mean validation array coverage for the 24 miPSC clones and the fibroblast 
preparations from which they were derived 

C. The number of validated mutations detected by exon capture reagent per 
clone, in the same order as Figure 3-2A. No correlation is found between 
the number of validated mutations and their hematopoietic potential. 
(r2=0.0006065) 

D. Variant allele frequencies of all validated mutations for each clone. 
Samples from miPSC preparations derived from the fibroblasts from Axilla 
1 (Ax1) and Axilla 2 (Ax2) are shown in separate panels. 

 
Figure 3-4. Expression array data comparing six miPSC clones with normal 
vs. low hematopoietic potential 
 

A. Unsupervised hierarchical clustering of RNA expression data from the six 
miPSC clones and two wildtype B6/GFP mESCs. The six clones do not 
organize by their hematopoietic phenotypes. miPSC clones with low 
hematopoietic potential are shown in red; miPSC clones with normal 
hematopoietic potential are shown in black; B6/GFP mESCs are shown in 
green. 

B. Differentially expressed genes in clones with distinct hematopoietic 
differentiation potentials. Two-way ANOVA was performed comparing the 
three clones with normal vs. the three clones with low hematopoietic 
potential. Z-scores of probesets with P-value less than 0.05 and fold 
change greater than 2 are shown, in order of the most downregulated to 
the most upregulated in clones with low hematopoietic potential. miPSC 
clones with low hematopoietic potential are shown in red; miPSC clones 
with normal hematopoietic potential are shown in black; B6/GFP mESCs 
are shown in green. 

C. Expression data (from the Affymetrix arrays) for candidate transcription 
factors with the most significantly altered expression in iPSC clones with 
low hematopoietic potential, and the pluripotency genes Pou5f1, Nanog, 
Sox2, for the six miPSC clones and two B6/GFP mESC samples. 
Individual data points represent expression data from each cell line. 
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Figure 3-1. Hematopoietic differentiation from mESCs/miPSCs 
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Figure 3-2. Hematopoietic potential of the 24 miPSC clones 
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Figure 3-2. Hematopoietic potential of the 24 miPSC clones (Continued) 
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Figure 3-3. Mutation landscapes of the 24 miPSC clones  
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Figure 3-3. Mutation landscapes of the 24 miPSC clones (Continued) 
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Figure 3-4. Expression array comparing six miPSC clones with normal vs 
low hematopoietic potential 
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Figure 3-4. Expression array comparing six miPSC clones with normal vs 
low hematopoietic potential (Continued) 
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Table 3-1. Summary of the iPSC heterogeneity literature 
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Boulting 
201112 Human Neuron 3      

Hu 201013 Human Neuron 5      
Hussein 
201154 Human   5 SNP array    

Laurent 
20116 Human 

  

28 

SNP array 
(parental 
sample 
NOT 
tested) 

 

  

Martins-
Taylor 
201155 

Human 
  

7 aCGH 
     

Ji 201232 Human   5 Exome Seq      
Gore 20115 Human   2 Exome Seq      
Cheng 
201256 Human   2 WGS      

Ruiz 
201331 Human   2 WGS      

Young 
20128 Mouse   4 WGS      

Mills 
201314 Human Blood 3 

SNP 
Karyotypin
g 

  
Microarray 

 

Abyzov 
20127 Human   3 WGS   Microarray 

RNA-Seq 
 

Kajiwara 
201215 Human Hepatocytes 5   Pyroseq Microarray 

(2 clones) 
 

Bock 
201018 Human EB 3   RRBS Microarray  

Kim 201010 Mouse Blood 
Osteoblast 8   CHARM    

Kim 201111 Mouse  5  CHARM   
Lister 
201157 Human   3   MethylC-

Seq 
    

Phanstiel 
201158 Human 

  
4 

    Targeted 
bisulfide 
seq 

Mass spec 
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Table 3-2. OP9 and FBS lot compatibility (Based on number of CFUs 
produced by B6 ESC-derived hematopoietic progenitors) with the 
hematopoietic differentiation assay  
 
OP9 ATCC Lot# FBS Brand & Lot# Compatibility with 

hematopoietic 
differentiation assay  

Lot # 58105522 FisherBrand – Research Grade 
Serum – Cat# 03-600-510 (Lot# 
FB-004) 

✔ 

Lot # 58105522 Hyclone – FBS Characterized – 
Cat# SH30071 (Lot# AXF42326) 

✔ 
Lot # 58105522 Hyclone – FBS Characterized – 

Cat # SH30071 (Lot# AXE41320) 
✔ 

Lot # 58105522 Hyclone – FBS Characterized – 
Cat# SH30071 (Lot# AWC99942) 

✔ 
Lot # 60484552 Hyclone – FBS Characterized – 

Cat# SH30071 (Lot# AWC99942) 
✔ 

Lot # 60053041 Hyclone – FBS Characterized – 
Cat# SH30071 (Lot# AWC99942) 

✔ 
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Table 3-3. Whole exome sequencing coverage 
 

Sample 

NimbleGen 
Mean 

Coverage 

NimbleGen 
Median 

Coverage 

Agilent 
Mean 

Coverage 

Agilent 
Median 

Coverage 
Ax1-2 50.97 39.91 71.24 58.69 
Ax1-3 50.72 37.85 67.02 55.19 
Ax1-5 53.99 42.99 75.18 60.49 
Ax1-7 47.38 35.97 65.11 53.14 
Ax1-8 49.87 38.76 68.97 57.88 
Ax1-10 42.04 31.79 59.70 48.90 
Ax1-11 50.68 38.94 67.58 55.65 
Ax1-14 49.18 37.68 66.41 55.68 
Ax1-16 71.62 55.49 102.50 83.39 
Ax1-18 52.35 40.72 73.54 59.80 
Ax1-23 46.82 35.28 63.74 52.18 
Ax1-35 65.58 50.83 90.71 74.75 
Ax1 parental fibroblast 39.76 31.21 51.00 42.39 
Ax2-4 51.18 40.33 72.68 60.48 
Ax2-6 53.40 42.19 75.34 61.58 
Ax2-11 51.03 39.96 73.56 59.24 
Ax2-16 47.93 36.47 66.50 54.69 
Ax2-20 44.55 33.72 62.85 51.43 
Ax2-24 47.22 36.68 68.59 56.31 
Ax2-26 54.30 42.27 73.54 62.44 
Ax2-27 48.11 36.59 64.76 53.11 
Ax2-30 43.88 33.61 60.87 49.81 
Ax2-34 41.62 32.17 60.06 49.29 
Ax2-39 56.74 44.10 80.00 64.48 
Ax2-48 45.28 34.37 61.48 50.22 
Ax2 parental fibroblast 67.05 53.26 91.18 75.36 

     
     Mean 50.89 39.35 70.54 57.95 
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Table 3-4. Validation array coverage 
 
Sample Mean	
  Coverage Median	
  Coverage 
Ax1-2 571.98 431.46 
Ax1-3 800.73 606.67 
Ax1-5 618.36 465.09 
Ax1-7 853.38 652.16 
Ax1-8 532.74 401.38 
Ax1-10 495.42 371.31 
Ax1-11 946.35 727.55 
Ax1-14 928.85 703.41 
Ax1-16 597.40 452.26 
Ax1-18 480.24 348.80 
Ax1-23 470.90 350.81 
Ax1-35 404.18 303.20 
Ax1 parental fibroblast 417.30 303.40 
Ax2-4 665.04 500.78 
Ax2-6 538.68 403.43 
Ax2-11 447.50 335.88 
Ax2-16 450.58 338.16 
Ax2-20 694.01 532.81 
Ax2-24 562.92 422.89 
Ax2-26 530.64 396.95 
Ax2-27 549.81 414.58 
Ax2-30 916.81 695.59 
Ax2-34 556.11 417.81 
Ax2-39 531.33 396.36 
Ax2-48 533.86 398.94 
Ax2 parental fibroblast 621.84 454.89 

   
   Mean 604.50 454.87 
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Table 3-5. GFP and Oct3/4 expression of miPSC clones 
 
Clone	
   GFP	
   Oct3/4	
  
Ax1-­‐2	
   96.29%	
   99.40%	
  
Ax1-­‐3	
   82.35%	
   94.00%	
  
Ax1-­‐5	
   86.86%	
   99.95%	
  
Ax1-­‐7	
   83.72%	
   99.70%	
  
Ax1-­‐8	
   88.81%	
   99.77%	
  
Ax1-­‐10	
   91.29%	
   91.00%	
  
Ax1-­‐11	
   76.23%	
   99.60%	
  
Ax1-­‐14	
   82.73%	
   99.48%	
  
Ax1-­‐16	
   74.90%	
   99.91%	
  
Ax1-­‐18	
   94.53%	
   99.91%	
  
Ax1-­‐23	
   93.77%	
   99.92%	
  
Ax1-­‐35	
   90.93%	
   99.96%	
  
Ax2-­‐4	
   79.28%	
   98.30%	
  
Ax2-­‐6	
   91.59%	
   98.96%	
  
Ax2-­‐11	
   88.64%	
   95.20%	
  
Ax2-­‐16	
   81.58%	
   98.20%	
  
Ax2-­‐20	
   82.96%	
   97.43%	
  
Ax2-­‐24	
   88.96%	
   98.10%	
  
Ax2-­‐26	
   41.31%	
   98.43%	
  
Ax2-­‐27	
   93.48%	
   98.86%	
  
Ax2-­‐30	
   95.32%	
   94.78%	
  
Ax2-­‐34	
   89.43%	
   98.94%	
  
Ax2-­‐39	
   70.65%	
   91.24%	
  
Ax2-­‐48	
   91.72%	
   97.31%	
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Table 3-6. Private mutations in all 24 miPSC clones 
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Ax1-2 1 75143105 75143105 A C SNP Fam134a missense p.S368R 366 0 0 249 259 50.98 
Ax1-2 1 95921940 95921940 T G SNP Neu4 missense p.L462V 357 0 0 221 263 54.34 
Ax1-2 2 20583621 20583621 A G SNP Etl4 missense p.M202V 317 1 0.31 259 226 46.6 

Ax1-2 2 40512974 40512974 A G SNP Lrp1b missense 
p.C4239
R 366 0 0 196 172 46.74 

Ax1-2 3 65861204 65861204 C T SNP Veph1 silent p.V775 294 0 0 304 178 36.93 
Ax1-2 5 35440918 35440918 T G SNP Lrpap1 missense p.K162T 355 0 0 237 239 50.21 
Ax1-2 10 51795649 51795649 C A SNP Ros1 silent p.V1963 360 0 0 228 243 51.59 
Ax1-2 14 75623932 75623932 C T SNP Lcp1 silent p.D519 324 0 0 214 241 52.97 
Ax1-2 16 22987658 22987658 T C SNP Kng2 missense p.Q415R 402 0 0 316 282 47.16 

Ax1-3 1 45914261 45914261 T C SNP 
EG43329
7 silent p.E119 258 0 0 220 193 46.73 

Ax1-3 1 89316937 89316937 T C SNP Gigyf2 missense p.L660P 337 0 0 433 393 47.58 
Ax1-3 1 137949518 137949518 A C SNP Cacna1s missense p.K14T 329 0 0 357 341 48.85 
Ax1-3 2 89033849 89033849 A G SNP Olfr1226 missense p.L114P 367 0 0 296 286 48.97 
Ax1-3 2 158206753 158206753 A G SNP Snhg11 rna NULL 334 0 0 345 313 47.57 
Ax1-3 3 81912539 81912539 T A SNP Gucy1a3 missense p.N355Y 315 0 0 241 291 54.7 
Ax1-3 3 126645598 126645598 A G SNP Ank2 missense p.I131T 335 0 0 281 284 50.18 
Ax1-3 4 141313330 141313330 T C SNP Agmat silent p.C256 326 0 0 377 360 48.85 
Ax1-3 5 136577537 136577537 A G SNP Rasa4 missense p.K349R 291 0 0 333 290 46.55 
Ax1-3 6 3658515 3658515 G C SNP Calcr missense p.P224A 332 0 0 326 301 48.01 
Ax1-3 8 107608921 107608921 A C SNP Gm4738 silent p.T53 352 0 0 324 291 47.32 
Ax1-3 9 39278118 39278118 G T SNP Olfr955 missense p.S64R 345 0 0 489 62 11.25 
Ax1-3 11 35499816 35499816 C T SNP Slit3 nonsense p.Q1125* 287 0 0 418 216 34.07 
Ax1-3 12 31624444 31624444 C T SNP Sh3yl1 silent p.S99 384 0 0 307 338 52.4 
Ax1-3 13 100989769 100989769 A G SNP Naip5 silent p.L1098 249 0 0 278 267 48.9 

Ax1-3 14 30916854 30916854 A C SNP Cacna1d missense 
p.L1023
R 306 0 0 307 298 49.26 

Ax1-3 14 38535895 38535895 A T SNP 
LOC382
871 rna NULL 300 0 0 317 299 48.54 

Ax1-3 14 51979250 51979250 T C SNP 
LOC633
238 rna NULL 314 0 0 275 266 49.08 

Ax1-3 14 55566949 55566949 A G SNP Myh6 missense 
p.L1540
P 275 0 0 296 337 53.24 

Ax1-5 1 36894883 36894883 A G SNP 
Tmem13
1 missense p.V240A 337 0 0 300 267 47.01 

Ax1-5 1 125273216 125273216 C A SNP Dpp10 missense p.D508Y 395 0 0 312 87 21.8 
Ax1-5 1 180179510 180179510 G T SNP Pppde1 nonsense p.E166* 323 0 0 346 99 22.25 
Ax1-5 2 32812773 32812773 T A SNP Lrsam1 missense p.K57I 318 0 0 361 148 29.08 
Ax1-5 2 32845128 32845128 T G SNP Garnl3 missense p.K902T 338 0 0 391 144 26.92 
Ax1-5 2 36924294 36924294 T C SNP Olfr360 silent p.S156 234 0 0 189 176 48.22 
Ax1-5 2 131066205 131066205 T G SNP Mavs missense p.V91G 285 0 0 355 100 21.93 
Ax1-5 3 22088832 22088832 C A SNP Tbl1xr1 missense p.A116D 283 0 0 503 185 26.81 
Ax1-5 3 90063506 90063506 T G SNP Crtc2 silent p.G204 373 0 0 313 353 53 
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Ax1-5 3 97950412 97950412 A G SNP Notch2 missense 
p.E2156
G 256 0 0 294 90 23.26 

Ax1-5 4 63390783 63390783 T G SNP Tnfsf15 missense p.K200T 301 0 0 267 221 45.29 
Ax1-5 4 107576929 107576929 A T SNP Cpt2 missense p.S629T 331 0 0 404 154 27.6 
Ax1-5 4 120550586 120550586 G T SNP Rims3 missense p.G38V 314 0 0 339 142 29.52 
Ax1-5 4 120726886 120726886 A G SNP Col9a2 silent p.G606 354 1 0.28 419 159 27.51 
Ax1-5 4 122868094 122868094 A C SNP Hpcal4 missense p.K191T 271 0 0 332 117 26.06 

Ax1-5 4 144212771 144212771 T G SNP 
Gm1317
7 missense p.L232V 321 0 0 247 234 48.65 

Ax1-5 5 14978170 14978170 A C SNP 
Speer8-
ps1 rna NULL 23 1 4.17 37 7 15.56 

Ax1-5 5 74398750 74398750 T C SNP Usp46 missense p.S320G 365 0 0 283 252 47.1 
Ax1-5 5 135589541 135589541 A G SNP Mlxipl missense p.K113R 336 0 0 266 257 49.14 
Ax1-5 6 67423914 67423914 T C SNP Il23r missense p.S177G 272 0 0 386 135 25.91 
Ax1-5 6 113397633 113397633 A T SNP Jagn1 missense p.Q157H 352 0 0 283 260 47.79 
Ax1-5 7 114009125 114009125 T A SNP Olfr704 silent p.A210 243 0 0 243 93 27.6 
Ax1-5 7 127370926 127370926 A G SNP Abca14 missense p.Q427R 300 0 0 259 261 50.19 
Ax1-5 8 3744088 3744088 T C SNP Cd209a missense p.K238R 382 0 0 360 303 45.7 
Ax1-5 8 15098375 15098375 T G SNP Myom2 missense p.V517G 346 0 0 339 88 20.56 

Ax1-5 8 19682090 19682090 C T SNP 
LOC624
198 rna NULL 66 10 

13.1
6 157 43 21.5 

Ax1-5 8 37166207 37166207 T C SNP 
D8Ertd82
e missense p.S102P 235 5 2.07 262 91 25.78 

Ax1-5 8 72388376 72388376 A T SNP Pbx4 missense p.E128V 380 0 0 392 157 28.6 
Ax1-5 8 107258769 107258769 T G SNP Ces6 missense p.S83R 287 0 0 306 83 21.34 
Ax1-5 8 126847946 126847946 C A SNP Galnt2 missense p.D175E 338 0 0 464 54 10.42 

Ax1-5 8 127943120 127943120 T G SNP Sipa1l2 missense 
p.E1698
D 308 0 0 375 115 23.42 

Ax1-5 10 93052411 93052411 G A SNP 

ENSMU
SG00000
086419 rna NULL 224 1 0.44 280 69 19.77 

Ax1-5 10 100075141 100075141 A C SNP 
1700017
N19Rik missense p.N300T 352 1 0.28 389 119 23.43 

Ax1-5 10 126608769 126608769 A C SNP B4galnt1 missense p.K494N 295 0 0 368 133 26.44 
Ax1-5 11 48910061 48910061 T C SNP Ifi47 silent p.S384 284 0 0 369 144 28.07 
Ax1-5 11 67025077 67025077 A G SNP Myh1 silent p.Q897 383 1 0.26 482 131 21.34 
Ax1-5 11 82713043 82713043 T G SNP Fndc8 missense p.F279V 373 0 0 308 278 47.44 
Ax1-5 11 98018697 98018697 T C SNP Med1 silent p.G862 356 0 0 546 190 25.82 

Ax1-5 11 115656677 115656677 T C SNP 
2310067
B10Rik silent p.T1001 308 0 0 327 291 47.09 

Ax1-5 12 117381450 117381450 T G SNP Vipr2 missense p.F376V 315 0 0 341 128 27.29 
Ax1-5 13 27215817 27215817 A C SNP Prl3d2 missense p.T70P 374 0 0 342 131 27.7 
Ax1-5 14 50654785 50654785 A G SNP Olfr725 silent p.L98 297 0 0 271 257 48.67 
Ax1-5 14 65639321 65639321 T G SNP Ints9 missense p.I371S 315 0 0 452 172 27.56 
Ax1-5 14 121885934 121885934 G A SNP Slc15a1 missense p.R161W 310 0 0 235 263 52.81 
Ax1-5 15 42924847 42924847 A G SNP Rspo2 silent p.S45 381 0 0 349 134 27.74 
Ax1-5 16 22895290 22895290 T G SNP Ahsg missense p.L145V 339 0 0 233 283 54.84 
Ax1-5 16 32750339 32750339 A C SNP Muc4 missense p.T32P 340 0 0 271 262 49.06 

Ax1-5 17 20493783 20493783 T G SNP 
Vmn2r10
4 missense p.F161V 350 0 0 255 245 49 

Ax1-5 17 50746557 50746557 A G SNP Plcl2 missense p.K423R 419 0 0 353 128 26.61 

Ax1-5 17 74887067 74887067 T A SNP 
LOC624
159 rna NULL 153 0 0 203 68 25.09 

Ax1-5 18 37562659 37562659 A G SNP Pcdhb9 missense p.E684G 292 0 0 322 112 25.81 

Ax1-5 19 41668313 41668313 A C SNP 
AI60618
1 rna NULL 402 0 0 515 126 19.66 

Ax1-7 1 99614019 99614019 C A SNP Hisppd1 missense 
p.D1096
Y 325 0 0 321 339 51.21 
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Ax1-7 2 172298214 172298214 G A SNP 
1700029
J11Rik missense p.G41E 308 0 0 354 363 50.56 

Ax1-7 4 146092582 146092582 T A SNP 
Gm1305
1 missense p.N394K 26 1 3.7 91 19 17.27 

Ax1-7 5 116120300 116120300 G A SNP Ccdc64 silent p.L261 328 10 2.96 377 398 51.35 
Ax1-7 7 4095211 4095211 G A SNP Leng8 missense p.V407I 276 0 0 319 307 49.04 
Ax1-7 7 97395651 97395651 C A SNP Ccdc83 missense p.K73N 263 0 0 309 341 52.46 

Ax1-7 12 102173940 102173940 C A SNP Ccdc88c missense 
p.E1216
D 197 1 0.51 271 316 53.83 

Ax1-7 13 34980005 34980005 A G SNP Prpf4b silent p.R475 427 9 2.06 395 372 48.5 
Ax1-7 17 66159963 66159963 T C SNP Ppp4r1 silent p.A127 373 0 0 421 441 51.16 
Ax1-8 1 24037271 24037271 A G SNP Fam135a missense p.L452P 353 1 0.28 200 206 50.74 
Ax1-8 1 53700343 53700343 A C SNP Dnahc7 missense p.L233V 335 1 0.3 199 207 50.99 
Ax1-8 1 54604841 54604841 A G SNP Pgap1 missense p.L140P 305 0 0 236 195 45.14 
Ax1-8 1 74829327 74829327 A G SNP Wnt6 silent p.A164 350 0 0 215 237 52.43 

Ax1-8 1 91153255 91153255 T A SNP 
LOC383
542 rna NULL 163 0 0 113 111 49.55 

Ax1-8 1 175146497 175146497 C A SNP Olfr1404 silent p.A238 304 0 0 161 156 49.06 
Ax1-8 1 175394081 175394081 A G SNP Aim2 missense p.K83R 421 0 0 272 285 51.08 

Ax1-8 2 26285618 26285618 A G SNP Sec16a missense 
p.S1443
P 372 0 0 287 238 45.33 

Ax1-8 2 69509108 69509108 A T SNP Kbtbd10 missense p.E285D 366 0 0 238 256 51.82 

Ax1-8 2 125566371 125566371 A C SNP 
Secisbp2
l missense p.L967R 255 0 0 190 137 41.77 

Ax1-8 2 174283335 174283335 A G SNP Tubb1 silent p.E436 390 0 0 230 258 52.76 
Ax1-8 3 135946888 135946888 C T SNP Bank1 nonsense p.W135* 346 0 0 242 195 44.62 
Ax1-8 5 77391513 77391513 A G SNP Paics missense p.E250G 402 0 0 260 289 52.64 
Ax1-8 5 88922200 88922200 A T SNP Enam missense p.D157V 325 1 0.31 246 235 48.76 
Ax1-8 7 31657839 31657839 A G SNP Cd22 missense p.W410R 332 0 0 217 228 51.24 
Ax1-8 7 120704954 120704954 T A SNP Far1 missense p.S398T 352 0 0 263 297 53.04 
Ax1-8 7 130412558 130412558 T C SNP Slc5a11 silent p.L486 311 0 0 240 249 50.82 

Ax1-8 7 148938654 148938654 C - DEL Muc2 
frame_shif
t_del p.K744fs 244 0 0 230 182 42.72 

Ax1-8 8 54598973 54598973 T C SNP Aga missense p.C69R 447 0 0 183 230 55.69 

Ax1-8 8 128194789 128194789 T C SNP 
4933403
G14Rik silent p.T340 335 0 0 209 215 50.71 

Ax1-8 9 18299972 18299972 T G SNP Muc16 missense 
p.K8587
T 385 0 0 307 94 23.38 

Ax1-8 9 19942252 19942252 T A SNP Olfr869 missense p.S203T 334 0 0 201 212 51.33 
Ax1-8 9 120376656 120376656 A C SNP Myrip missense p.S838R 299 0 0 195 169 46.43 
Ax1-8 10 70844544 70844544 T G SNP Ipmk missense p.L390R 278 0 0 195 156 44.44 

Ax1-8 10 80252098 80252098 T C SNP Dot1l missense 
p.S1145
P 254 1 0.39 205 195 48.63 

Ax1-8 10 82049452 82049452 T C SNP 
LOC544
716 rna NULL 402 0 0 219 252 53.5 

Ax1-8 10 116715724 116715724 T C SNP Lyz2 missense p.R119G 327 0 0 235 195 45.35 
Ax1-8 10 127747505 127747505 G A SNP Pan2 missense p.V400I 256 0 0 226 172 43.22 
Ax1-8 11 3605099 3605099 T G SNP Osbp2 missense p.K899T 247 0 0 189 151 44.41 
Ax1-8 11 20140320 20140320 A G SNP Cep68 missense p.S232P 260 1 0.38 168 186 52.54 

Ax1-8 11 68921969 68921969 T C SNP Per1 missense 
p.S1185
P 257 1 0.39 187 187 50 

Ax1-8 11 80700114 80700114 T G SNP Accn1 missense p.E475D 340 0 0 205 177 46.34 
Ax1-8 13 9165677 9165677 T A SNP Larp4b missense p.L551M 377 0 0 234 206 46.82 

Ax1-8 13 54626205 54626205 T C SNP 
4732471
D19Rik missense p.L335P 352 0 0 203 218 51.78 

Ax1-8 14 53047666 53047666 C A SNP TRAV1 missense p.L9I 335 0 0 229 229 50 
Ax1-8 14 56199914 56199914 A G SNP Psme1 missense p.E203G 340 0 0 243 261 51.79 
Ax1-8 15 12082565 12082565 A C SNP Zfr missense p.K487T 384 0 0 295 283 48.96 
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Ax1-8 15 15873418 15873418 G T SNP 
EG23934
1 missense p.R140S 254 0 0 182 98 35 

Ax1-8 15 34358306 34358306 T C SNP Matn2 missense p.V687A 365 0 0 221 223 50.23 

Ax1-8 15 76128418 76128418 A T SNP Oplah missense 
p.L1024
H 297 0 0 228 237 50.75 

Ax1-8 17 14138279 14138279 T C SNP 
EG66482
1 missense p.D206G 286 0 0 177 171 49.14 

Ax1-8 17 37020207 37020207 A C SNP Trim40 missense p.L180V 341 0 0 283 254 47.21 
Ax1-8 18 20629494 20629494 A C SNP Dsg4 missense p.K839T 327 0 0 235 187 44.31 
Ax1-8 18 37090945 37090945 A C SNP Pcdha11 missense p.K336T 336 0 0 239 228 48.61 

Ax1-8 18 37834988 37834988 A G SNP 
Pcdhga1
1 missense p.K280R 351 0 0 249 259 50.98 

Ax1-8 19 5884607 5884607 A G SNP Slc25a45 missense p.K201R 382 0 0 309 311 50.16 

Ax1-8 X 121247120 121247120 A G SNP 
Vmn2r12
1 missense p.I141T 48 1 2.04 61 14 18.67 

Ax1-8 X 163680837 163680837 A G SNP Tlr8 missense p.L983P 209 0 0 0 226 100 
Ax1-10 1 65119819 65119819 A C SNP Crygc missense p.F57V 158 0 0 92 75 44.91 
Ax1-10 2 89770728 89770728 T G SNP Olfr1258 missense p.F254C 340 0 0 196 171 46.59 
Ax1-10 5 148426814 148426814 G T SNP Flt1 missense p.N714K 278 0 0 168 152 47.5 
Ax1-11 1 93202033 93202033 T G SNP Scly splice_site e4+2 348 0 0 406 423 51.03 
Ax1-11 1 162971897 162971897 A G SNP Dars2 missense p.S638P 303 0 0 397 376 48.64 
Ax1-11 2 87372495 87372495 A G SNP Olfr153 missense p.I102V 285 0 0 359 327 47.6 
Ax1-11 2 88586688 88586688 C T SNP Olfr1198 missense p.R119Q 366 0 0 477 162 25.35 

Ax1-11 3 92233277 92233277 G A SNP 

ENSMU
SG00000
042165 silent p.P13 180 0 0 203 198 49.38 

Ax1-11 4 46561647 46561647 T A SNP Coro2a missense p.D154V 353 0 0 431 415 49.05 

Ax1-11 6 49326191 49326191 G T SNP 
D330028
D13Rik missense p.A110S 302 0 0 375 388 50.79 

Ax1-11 6 97245592 97245592 A G SNP Frmd4b silent p.S890 240 0 0 359 345 49.01 
Ax1-11 6 130044628 130044628 C T SNP Klra11 missense p.V23M 373 0 0 311 312 50.08 
Ax1-11 7 28876894 28876894 T C SNP Fcgbp missense p.F854L 297 0 0 437 403 47.92 
Ax1-11 7 30680882 30680882 T G SNP Zfp27 missense p.T226P 350 0 0 450 444 49.66 

Ax1-11 8 126426510 126426510 A G SNP Nup133 missense 
p.L1107
P 290 0 0 458 455 49.84 

Ax1-11 9 120475484 120475484 C T SNP Entpd3 missense p.P472L 302 0 0 362 335 48.06 
Ax1-11 10 126535960 126535960 T G SNP Os9 missense p.N352T 366 1 0.27 477 484 50.31 

Ax1-11 11 54184417 54184417 G T SNP 
4930404
A10Rik missense p.L52F 404 0 0 453 454 50 

Ax1-11 11 70813237 70813237 T C SNP Dhx33 missense p.K213E 222 0 0 313 313 50 
Ax1-11 12 7996197 7996197 G T SNP Apob missense p.A493S 364 0 0 347 369 51.46 
Ax1-11 15 78502820 78502820 G C SNP Elfn2 missense p.D652E 300 0 0 385 339 46.76 
Ax1-11 17 56985536 56985536 G T SNP Acsbg2 nonsense p.S636* 304 0 0 418 426 50.47 
Ax1-11 18 37100731 37100731 C T SNP Pcdha11 missense p.S587L 370 0 0 447 399 47.16 

Ax1-11 19 5880022 5880022 T C SNP 
LOC674
488 rna NULL 310 0 0 418 454 52.06 

Ax1-11 19 45822680 45822680 T G SNP Npm3 missense p.K170T 303 0 0 411 396 49.01 

Ax1-11 X 86651213 86651214 - A INS Pet2 
frame_shif
t_ins p.Q217fs 130 2 1.52 37 185 83.33 

Ax1-11 X 138159389 138159389 T A SNP Irs4 missense p.K118M 139 0 0 0 267 100 
Ax1-14 2 180735200 180735200 C T SNP Col20a1 missense p.P733L 328 0 0 390 366 48.35 
Ax1-14 4 141188401 141188401 T G SNP Plekhm2 missense p.K343N 275 1 0.36 406 371 47.75 

Ax1-14 4 146553590 146553590 C T SNP 
Gm1313
9 silent p.C438 48 2 4 81 15 15.62 

Ax1-14 6 67675361 67675361 T A SNP 

ENSMU
SG00000
076503 missense p.V23E 368 0 0 373 333 47.03 

Ax1-14 7 17743811 17743811 A G SNP 
Ceacam
3 missense p.T377A 308 0 0 403 377 48.33 
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Ax1-14 9 75303490 75303490 A T SNP Leo1 missense p.K462N 254 0 0 358 326 47.66 
Ax1-14 10 75874905 75874905 T A SNP Pcnt silent p.R933 282 0 0 423 397 48.36 
Ax1-14 15 85649257 85649257 A C SNP Pkdrej silent p.R969 368 0 0 425 420 49.65 
Ax1-14 17 56996331 56996331 G T SNP Acsbg2 missense p.P234T 365 0 0 443 472 51.47 
Ax1-14 18 37455036 37455036 T C SNP Pcdhb2 missense p.L136P 369 0 0 368 323 46.68 
Ax1-14 X 45316398 45316398 T C SNP Ocrl silent p.S849 179 0 0 1 408 99.76 
Ax1-16 2 25360071 25360071 T C SNP Fbxw5 missense p.L463P 238 0 0 228 201 46.85 

Ax1-16 2 111026889 111026889 A C SNP 
LOC623
301 rna NULL 359 1 0.28 244 231 48.63 

Ax1-16 3 35907712 35907712 A T SNP 

ENSMU
SG00000
086392 rna NULL 353 0 0 244 269 52.44 

Ax1-16 3 40661800 40661800 A C SNP 

ENSMU
SG00000
074621 missense p.K54T 304 0 0 208 190 47.62 

Ax1-16 3 85942467 85942467 A C SNP Rps3a missense p.I204S 296 0 0 251 234 48.25 
Ax1-16 3 94231900 94231900 T G SNP Tdrkh missense p.L336R 272 0 0 210 217 50.82 
Ax1-16 3 98684383 98684383 G T SNP Hao2 silent p.R218 223 0 0 185 234 55.71 
Ax1-16 4 82629308 82629308 T C SNP Frem1 silent p.G962 298 0 0 238 236 49.79 
Ax1-16 4 108304211 108304211 A C SNP Cc2d1b missense p.Q746H 318 0 0 274 260 48.69 

Ax1-16 4 143556040 143556040 T C SNP 

ENSMU
SG00000
078510 missense p.Q111R 315 2 0.63 185 196 51.44 

Ax1-16 5 88757576 88757576 T C SNP Prol1 missense p.S228P 433 2 0.46 273 244 47.2 
Ax1-16 7 110926421 110926421 A C SNP Olfr68 missense p.L146R 383 0 0 245 274 52.59 
Ax1-16 7 114734198 114734198 A C SNP Olfml1 missense p.E318D 293 0 0 275 270 49.54 
Ax1-16 8 113565421 113565421 T G SNP Aars missense p.F175V 324 0 0 314 280 47.14 
Ax1-16 8 122157205 122157205 A G SNP Kcng4 missense p.F111L 291 1 0.34 228 249 52.2 

Ax1-16 9 3032385 3032385 A T SNP 

ENSMU
SG00000
061971 silent p.L99 58 1 1.69 57 8 12.31 

Ax1-16 9 56469055 56469055 G A SNP Lingo1 missense p.P19L 234 0 0 199 181 47.63 

Ax1-16 9 79499815 79499815 C T SNP Col12a1 nonsense 
p.W1866
* 315 0 0 356 71 16.63 

Ax1-16 11 23319006 23319006 G A SNP Usp34 nonsense 
p.W1732
* 340 0 0 263 229 46.54 

Ax1-16 11 82258626 82258626 C T SNP 
Tmem13
2e missense p.R919C 284 0 0 240 252 51.22 

Ax1-16 11 94278210 94278210 T C SNP Cacna1g missense 
p.K1732
R 299 0 0 269 161 37.44 

Ax1-16 11 117710694 117710694 G C SNP Birc5 missense p.W10C 270 0 0 281 235 45.45 
Ax1-16 13 12336225 12336225 G A SNP Mtr silent p.S235 371 0 0 414 102 19.73 
Ax1-16 13 21703077 21703077 T G SNP Olfr1362 missense p.S254R 283 0 0 216 192 47.06 
Ax1-16 13 43264151 43264151 G A SNP Tbc1d7 missense p.A62V 300 0 0 210 203 49.15 
Ax1-16 14 55577447 55577447 G T SNP Myh6 missense p.H577Q 362 0 0 289 272 48.48 
Ax1-16 15 57654086 57654086 A C SNP Zhx2 missense p.K432T 266 0 0 212 226 51.48 
Ax1-16 15 88653536 88653536 A G SNP Creld2 missense p.N209S 369 0 0 303 331 52.21 
Ax1-16 16 23966264 23966264 G T SNP Bcl6 missense p.Q691K 356 0 0 278 180 39.3 
Ax1-16 16 72989899 72989899 C T SNP Robo1 silent p.I851 281 0 0 212 214 50.23 
Ax1-16 17 35482121 35482121 A G SNP H2-Q2 missense p.D302G 312 0 0 235 204 46.47 
Ax1-16 17 35577019 35577019 A C SNP H2-Q7 missense p.K167T 628 0 0 871 252 22.44 
Ax1-16 17 37222430 37222430 T G SNP Olfr90 missense p.S227R 283 0 0 233 233 50 

Ax1-16 17 76683820 76683820 A C SNP 
LOC100
043886 missense p.F128V 411 0 0 252 208 45.22 

Ax1-16 X 7515520 7515520 A C SNP Hdac6 silent p.P415 174 0 0 0 309 100 
Ax1-16 X 143825460 143825460 A G SNP Il13ra2 missense p.F204L 160 1 0.62 2 192 98.97 

Ax1-18 1 20191259 20191259 C A SNP Pkhd1 missense 
p.Q3050
H 342 0 0 157 132 45.67 
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Ax1-18 1 87411143 87411143 A C SNP 
LOC100
039794 missense p.E415D 196 0 0 92 74 44.58 

Ax1-18 1 133560888 133560888 A G SNP Ctse missense p.Q125R 332 0 0 168 209 55.44 
Ax1-18 2 67352880 67352880 T C SNP Xirp2 silent p.S2469 337 0 0 177 175 49.72 
Ax1-18 2 120128566 120128566 A G SNP Pla2g4f silent p.T629 402 0 0 228 227 49.89 
Ax1-18 4 115314478 115314478 A T SNP Cyp4b1 missense p.Y99N 271 0 0 194 173 47.14 
Ax1-18 5 38938318 38938318 T A SNP Wdr1 missense p.K81M 332 0 0 176 184 51.11 
Ax1-18 5 149114848 149114848 G T SNP Mtus2 nonsense p.E12* 330 0 0 183 148 44.71 

Ax1-18 6 69676796 69676796 T C SNP 

ENSMU
SG00000
076563 missense p.S40G 359 0 0 140 127 47.57 

Ax1-18 7 11165910 11165910 G T SNP Vmn1r69 missense p.A81E 376 0 0 174 190 52.2 
Ax1-18 7 11300297 11300297 C T SNP Nlrp4b silent p.C359 283 0 0 140 114 44.88 

Ax1-18 7 111970448 111970448 C A SNP 
LOC233
637 missense p.S280Y 321 0 0 149 187 55.49 

Ax1-18 9 19724859 19724859 G C SNP Olfr77 missense p.V69L 312 0 0 154 158 50.64 
Ax1-18 9 107454037 107454037 G A SNP Rassf1 missense p.G37D 321 1 0.31 137 141 50.54 
Ax1-18 10 78480380 78480380 T A SNP Olfr1351 missense p.F104L 215 0 0 115 105 47.51 

Ax1-18 11 84113937 84113937 A T SNP Acaca missense 
p.Q1338
H 373 0 0 216 493 69.53 

Ax1-18 12 116404150 116404150 G T SNP 

ENSMU
SG00000
076715 missense p.L47M 368 1 0.27 132 132 50 

Ax1-18 13 100991748 100991748 T G SNP Naip5 silent p.R978 318 1 0.31 152 148 49.33 
Ax1-18 15 84972004 84972004 C T SNP Ribc2 silent p.D182 271 0 0 0 383 100 
Ax1-18 16 17257523 17257523 C G SNP Hic2 missense p.A41G 312 0 0 193 192 49.87 
Ax1-18 17 29320950 29320950 C G SNP Cpne5 missense p.E219Q 388 0 0 193 242 55.5 

Ax1-18 18 65408553 65408553 T G SNP 

ENSMU
SG00000
065402 rna NULL 354 0 0 161 201 55.52 

Ax1-18 19 47590702 47590702 T A SNP Obfc1 nonsense p.K164* 319 0 0 190 190 50 
Ax1-23 1 57942740 57942740 A T SNP Spats2l missense p.E131V 421 0 0 190 180 48.65 
Ax1-23 1 135255968 135255968 G T SNP Ren1 missense p.G359C 314 0 0 187 201 51.67 
Ax1-23 2 76609401 76609401 G A SNP Ttn silent p.F16879 362 0 0 231 214 48.09 
Ax1-23 3 96518016 96518016 A G SNP Polr3c splice_site e12+2 334 0 0 254 205 44.66 

Ax1-23 4 3186316 3186317 - C INS 
LOC100
039044 rna NULL 226 0 0 223 46 17.1 

Ax1-23 5 81330151 81330151 A C SNP 
LOC100
039384 rna NULL 375 0 0 124 151 54.91 

Ax1-23 6 65651546 65651546 A C SNP 
A930038
C07Rik missense p.S100R 369 0 0 191 167 46.52 

Ax1-23 7 27342992 27342992 A C SNP Nlrp9a missense p.I339L 339 0 0 197 187 48.57 
Ax1-23 9 20734598 20734598 A C SNP Dnmt1 missense p.S279R 365 0 0 206 213 50.84 
Ax1-23 9 56904547 56904547 T G SNP Ptpn9 missense p.F386V 379 0 0 233 200 46.08 
Ax1-23 10 20737728 20737728 A C SNP Ahi1 missense p.N851H 259 0 0 192 155 44.67 

Ax1-23 10 39472453 39472453 T C SNP 
EG66630
4 rna NULL 252 0 0 179 127 41.5 

Ax1-23 10 50473896 50473896 T G SNP Ascc3 silent p.T1762 377 0 0 197 167 45.88 

Ax1-23 10 62285496 62285496 T G SNP 

ENSMU
SG00000
047146 missense p.S90R 289 0 0 173 156 47.42 

Ax1-23 10 102007890 102007890 G T SNP Rassf9 silent p.R166 324 0 0 154 171 52.45 
Ax1-23 10 128687916 128687916 G T SNP Olfr1518 nonsense p.E109* 301 0 0 148 164 52.56 
Ax1-23 11 22920255 22920255 A C SNP Fam161a missense p.K117N 373 0 0 223 221 49.77 
Ax1-23 14 20964303 20964303 A G SNP Kcnk5 missense p.F114L 267 1 0.37 181 193 51.6 

Ax1-23 17 34027423 34027423 C A SNP 
LOC100
042970 missense p.Q145H 171 0 0 183 50 21.46 

Ax1-23 17 35279510 35279510 T C SNP Bat3 silent p.T512 264 0 0 169 169 50 
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Ax1-23 19 25235615 25235615 G A SNP Dock8 silent p.L1271 335 0 0 182 172 48.59 
Ax1-23 X 40068274 40068274 G A SNP Odz1 silent p.C816 177 0 0 0 184 99.46 
Ax1-35 2 12321721 12321721 A G SNP Fam188a silent p.L168 387 0 0 172 175 50.43 
Ax1-35 4 53055238 53055238 A T SNP Abca1 missense p.I1902N 334 0 0 161 181 52.92 
Ax1-35 4 108180887 108180887 A C SNP Zcchc11 missense p.K586T 330 0 0 237 208 46.74 
Ax1-35 4 130508754 130508754 A C SNP Matn1 missense p.K409T 325 0 0 166 140 45.75 
Ax1-35 4 136574150 136574150 T G SNP Zbtb40 missense p.E162D 341 0 0 145 153 51.17 
Ax1-35 5 15219883 15219883 C G SNP Speer4c missense p.W46C 52 2 3.7 26 4 13.33 
Ax1-35 5 120132643 120132643 T A SNP Tbx3 missense p.L590M 260 0 0 127 95 42.79 
Ax1-35 6 34454428 34454428 A T SNP Bpgm missense p.K253N 380 0 0 162 145 47.23 

Ax1-35 7 39232345 39232345 T A SNP 
EG62559
4 silent p.P624 724 0 0 464 102 18.02 

Ax1-35 7 49224724 49224724 T G SNP 
Gprc2a-
rs1 missense p.K166T 351 0 0 211 195 48.03 

Ax1-35 7 80608620 80608620 G C SNP Chd2 missense 
p.S1166
C 296 0 0 147 152 50.84 

Ax1-35 7 111836866 111836866 C A SNP Olfr661 nonsense p.C112* 337 0 0 171 173 50.29 

Ax1-35 7 148179245 148179245 T A SNP 
LOC665
143 rna NULL 245 0 0 135 152 52.96 

Ax1-35 8 16127148 16127148 T C SNP Csmd1 missense 
p.Q1367
R 373 0 0 153 158 50.8 

Ax1-35 8 95898445 95898445 T C SNP 
2310039
D24Rik silent p.L40 313 0 0 127 158 55.44 

Ax1-35 9 38662724 38662724 C A SNP Olfr26 missense p.P26T 326 0 0 160 149 48.22 
Ax1-35 9 44196902 44196902 A T SNP Hyou1 nonsense p.R802* 378 0 0 191 199 51.03 
Ax1-35 9 106556450 106556450 C T SNP Grm2 missense p.R57H 312 0 0 98 109 52.66 
Ax1-35 9 107848526 107848526 A T SNP Camkv missense p.K140M 340 0 0 142 154 52.03 
Ax1-35 9 109396055 109396055 A G SNP Fbxw19 silent p.A120 340 0 0 157 122 43.73 

Ax1-35 10 13610681 13610681 T G SNP 
EG66685
9 rna NULL 148 0 0 76 66 46.48 

Ax1-35 10 79289955 79289955 A T SNP 
9130017
N09Rik missense p.E487V 324 0 0 214 160 42.78 

Ax1-35 11 69713019 69713019 C A SNP 
2810408
A11Rik missense p.R209M 322 0 0 210 201 48.91 

Ax1-35 11 87540958 87540958 C A SNP Rnf43 missense p.P64T 323 0 0 140 151 51.54 

Ax1-35 11 99797964 99797964 T G SNP 
Krtap31-
2 missense p.C103G 96 0 0 48 45 48.39 

Ax1-35 12 110956969 110956969 A C SNP 

ENSMU
SG00000
070105 rna NULL 353 1 0.28 145 136 48.4 

Ax1-35 13 22474628 22474628 C T SNP 
Vmn1r19
9 silent p.F74 376 0 0 149 183 54.95 

Ax1-35 13 33924701 33924701 A G SNP 
Serpinb6
e missense p.L254P 373 0 0 197 157 44.35 

Ax1-35 13 113891125 113891125 A G SNP Gzma missense p.L12P 307 0 0 191 179 48.38 

Ax1-35 15 45811374 45811374 A G SNP 
EG43295
1 silent p.I70 360 0 0 130 129 49.81 

Ax1-35 15 101862298 101862298 A C SNP Krt18 missense p.N393T 330 0 0 174 161 48.06 
Ax1-35 17 47537242 47537242 A T SNP Guca1a missense p.F43I 395 0 0 211 212 50.12 
Ax1-35 17 84217761 84217761 A G SNP Mta3 missense p.S549G 332 0 0 186 175 48.48 
Ax1-35 18 42146203 42146203 T A SNP Grxcr2 missense p.N242I 379 0 0 166 172 50.89 

Ax2-4 2 76561769 76561769 T G SNP Ttn missense 
p.K2913
6N 532 0 0 445 87 16.35 

Ax2-4 2 144190261 144190261 C T SNP 
LOC635
097 rna NULL 87 1 1.14 52 49 48.51 

Ax2-4 4 96436355 96436355 T G SNP 
Gm1269
5 missense p.Q89H 380 0 0 189 227 54.57 

Ax2-4 4 108491783 108491783 A G SNP Btf3l4 silent p.L110 393 0 0 399 167 29.51 
Ax2-4 4 143748122 143748122 C T SNP Oog3 silent p.G330 250 0 0 141 133 48.54 
Ax2-4 5 10949006 10949006 C A SNP LOC667 rna NULL 373 0 0 156 160 50.63 



	
   137	
  

880 

Ax2-4 11 73055276 73055276 A G SNP Trpv1 missense p.S405G 494 0 0 421 132 23.83 
Ax2-4 13 9157432 9157432 A G SNP Larp4b missense p.T399A 534 0 0 294 296 50.17 
Ax2-4 15 100349028 100349028 A C SNP Tcfcp2 silent p.P267 552 3 0.54 360 275 43.31 
Ax2-4 17 7455948 7455948 C A SNP Rps6ka2 missense p.D173E 586 0 0 389 156 25.74 
Ax2-4 17 24859135 24859135 C A SNP Ndufb10 missense p.R153I 467 0 0 477 63 11.67 
Ax2-4 17 56454643 56454643 A C SNP Uhrf1 missense p.S373R 573 1 0.17 578 128 18.1 

Ax2-4 19 9085928 9085928 C T SNP Ahnak missense 
p.S3362
L 250 0 0 350 19 5.15 

Ax2-4 X 84664565 84664565 A G SNP Il1rapl1 silent p.C53 276 0 0 104 119 53.36 

Ax2-6 1 4761376 4761376 A C SNP 
LOC620
009 rna NULL 329 0 0 182 144 44.17 

Ax2-6 2 89629257 89629257 A T SNP Olfr1254 missense p.L84H 589 0 0 366 71 16.25 
Ax2-6 3 95304786 95304786 C T SNP Ctsk silent p.P10 402 0 0 243 267 52.35 

Ax2-6 5 11257169 11257169 A C SNP 
LOC667
948 rna NULL 263 2 0.75 150 16 9.64 

Ax2-6 5 11257188 11257188 A T SNP 
LOC667
948 rna NULL 240 1 0.41 141 13 8.44 

Ax2-6 6 30514346 30514346 A C SNP Cpa2 missense p.K392T 413 0 0 162 191 54.11 
Ax2-6 10 23640683 23640683 A G SNP Taar1 missense p.I158V 551 0 0 350 71 16.86 
Ax2-6 10 38864683 38864683 A G SNP Tube1 missense p.K253R 562 0 0 377 37 8.94 

Ax2-6 10 39382513 39382513 T G SNP 
LOC667
964 rna NULL 597 0 0 459 85 15.62 

Ax2-6 10 69360871 69360871 T G SNP Ank3 missense p.V739G 509 0 0 266 172 39.18 

Ax2-6 11 3046909 3046909 A G SNP 
LOC100
044660 silent p.Y260 147 1 0.68 147 6 3.92 

Ax2-6 11 21406951 21406951 G - DEL 
4932414
J04Rik 

frame_shif
t_del p.R204fs 385 0 0 154 160 49.84 

Ax2-6 11 54988185 54988185 C T SNP Slc36a2 silent p.A165 568 0 0 292 261 47.2 
Ax2-6 11 74160970 74160970 A C SNP Olfr411 missense p.L39V 521 0 0 230 202 46.76 
Ax2-6 14 50980534 50980534 C A SNP Tlr11 missense p.P96T 554 0 0 154 184 53.8 

Ax2-6 14 70009098 70009098 C G SNP 

ENSMU
SG00000
071316 missense p.W21C 619 1 0.16 323 182 36.04 

Ax2-6 14 102381654 102381654 C T SNP 
LOC545
567 rna NULL 68 0 0 40 5 11.11 

Ax2-6 17 18210663 18210663 C A SNP 
EG63702
1 missense p.P627T 388 0 0 133 138 50.92 

Ax2-6 17 26423661 26423661 T G SNP 
EG38322
9 missense p.N71H 561 0 0 237 230 49.25 

Ax2-6 X 81719578 81719578 T A SNP Dmd missense 
p.L2465
Q 245 0 0 0 188 100 

Ax2-11 1 137021000 137021000 G T SNP Ptprv missense p.T347N 505 0 0 340 29 7.86 
Ax2-11 1 182624755 182624755 A C SNP Mixl1 missense p.F231V 572 0 0 358 28 7.25 
Ax2-11 2 29666441 29666441 A C SNP Slc27a4 missense p.K313T 483 0 0 352 23 6.13 
Ax2-11 2 60186501 60186501 T G SNP Ly75 silent p.R676 498 0 0 423 10 2.31 
Ax2-11 2 120832661 120832661 A C SNP Tmem62 missense p.K571T 425 0 0 345 17 4.7 
Ax2-11 4 34691487 34691487 T C SNP Gm136 missense p.K202R 307 0 0 281 23 7.57 
Ax2-11 6 115792520 115792520 T C SNP Mbd4 missense p.K550E 585 0 0 424 16 3.64 
Ax2-11 7 134466068 134466068 G T SNP Itgal missense p.A809S 393 0 0 325 17 4.93 

Ax2-11 8 19493139 19493139 G C SNP 
LOC100
041511 silent p.L68 75 0 0 24 14 36.84 

Ax2-11 9 3003295 3003295 T A SNP 

ENSMU
SG00000
087580 rna NULL 52 3 5.26 31 5 13.89 

Ax2-11 10 78262858 78262858 C A SNP Slc1a6 silent p.G337 584 0 0 291 33 10.19 

Ax2-11 10 97144806 97144806 A G SNP 

ENSMU
SG00000
074776 missense p.V82A 502 0 0 336 10 2.89 
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Ax2-11 11 56272886 56272886 T G SNP 
LOC624
168 silent p.T27 435 0 0 232 21 8.3 

Ax2-11 11 70805689 70805689 T G SNP Dhx33 missense p.K541T 583 0 0 378 34 8.25 

Ax2-11 12 54241494 54241494 C A SNP Akap6 missense 
p.S1568
Y 470 0 0 330 24 6.78 

Ax2-11 14 27419209 27419209 T C SNP Fam116a silent p.L140 531 1 0.19 384 31 7.47 

Ax2-11 14 45593979 45593979 A C SNP 

ENSMU
SG00000
085500 rna NULL 557 0 0 349 17 4.64 

Ax2-11 14 52074660 52074660 T G SNP Vmn2r89 missense p.F82V 508 0 0 371 29 7.25 

Ax2-11 14 113714508 113714508 A C SNP 

ENSMU
SG00000
058126 missense p.E204A 472 0 0 246 16 6.11 

Ax2-11 17 15059264 15059264 C T SNP Wdr27 splice_site e7+1 496 0 0 236 145 38.06 
Ax2-11 17 35562716 35562716 G T SNP H2-Q6 missense p.A179S 1004 1 0.1 618 22 3.43 

Ax2-11 17 79172997 79172997 G A SNP Heatr5b missense 
p.H1389
Y 571 0 0 347 20 5.45 

Ax2-11 18 28593311 28593311 G T SNP 
EG62599
7 rna NULL 276 11 3.83 144 17 10.56 

Ax2-11 18 36908229 36908229 A G SNP Ik silent p.Q87 642 0 0 427 33 7.17 
Ax2-11 18 42805516 42805516 T C SNP Ppp2r2b missense p.R403G 494 0 0 313 33 9.54 
Ax2-11 19 45080226 45080226 A G SNP Mrpl43 missense p.L148P 610 0 0 396 26 6.16 
Ax2-11 19 47090218 47090218 A G SNP Ina missense p.E325G 599 1 0.17 360 35 8.86 
Ax2-16 1 10398403 10398403 T G SNP Cpa6 missense p.K263T 550 0 0 334 44 11.64 
Ax2-16 1 22394576 22394576 C A SNP Rims1 missense p.R833I 571 0 0 261 129 33.08 

Ax2-16 1 102110283 102110283 T G SNP 
Cntnap5
b silent p.T562 537 0 0 284 31 9.84 

Ax2-16 1 133496834 133496834 T C SNP Avpr1b missense p.S173P 433 0 0 213 112 34.46 

Ax2-16 2 64706352 64706352 G T SNP 
LOC667
291 rna NULL 424 0 0 230 28 10.85 

Ax2-16 2 140226636 140226636 G T SNP Macrod2 nonsense p.E29* 568 0 0 253 128 33.6 
Ax2-16 2 158210426 158210426 C A SNP Snhg11 rna NULL 552 0 0 260 148 36.1 
Ax2-16 3 88787474 88787474 G T SNP Ash1l missense p.A913S 404 0 0 327 185 36.13 
Ax2-16 3 132989610 132989610 A G SNP Ppa2 splice_site e4-2 479 0 0 372 55 12.88 

Ax2-16 4 88322198 88322198 T C SNP 
Gm1328
0 missense p.E188G 228 0 0 117 79 40.31 

Ax2-16 5 13791671 13791671 T C SNP Speer3 missense p.L5P 373 0 0 237 34 12.55 

Ax2-16 5 62997324 62997324 T C SNP Arap2 missense 
p.K1572
R 524 0 0 178 101 36.2 

Ax2-16 5 105757568 105757568 A C SNP Gbp11 missense p.C231W 518 0 0 279 48 14.68 

Ax2-16 5 110105330 110105330 A T SNP 

ENSMU
SG00000
072763 silent p.A424 477 0 0 349 54 13.4 

Ax2-16 6 50166388 50166388 A C SNP Dfna5 silent p.T409 564 0 0 313 25 7.4 
Ax2-16 8 13388812 13388812 T C SNP Atp4b missense p.K188R 551 0 0 399 65 14.01 

Ax2-16 8 19682091 19682091 C T SNP 
LOC624
198 rna NULL 146 11 7.01 64 14 17.72 

Ax2-16 8 93557557 93557557 T G SNP Chd9 silent p.T2010 416 0 0 245 137 35.86 
Ax2-16 8 119567182 119567182 C A SNP Pkd1l2 missense p.S1145I 530 0 0 266 128 32.41 

Ax2-16 9 78026216 78026216 C T SNP 

ENSMU
SG00000
087566 rna NULL 372 5 1.32 264 13 4.69 

Ax2-16 11 45794573 45794573 A T SNP Sox30 missense p.D251V 465 0 0 333 62 15.62 

Ax2-16 12 85760952 85760952 A C SNP 
2900006
K08Rik missense p.K181T 553 0 0 366 54 12.86 

Ax2-16 13 49326564 49326564 T C SNP Susd3 missense p.N251D 571 0 0 285 150 34.48 
Ax2-16 14 31708632 31708632 A G SNP Itih4 silent p.Q574 455 0 0 353 51 12.59 
Ax2-16 15 10908392 10908392 T C SNP C1qtnf3 missense p.S235P 506 1 0.2 232 154 39.9 
Ax2-16 17 6033826 6033826 A G SNP Synj2 silent p.R1069 492 0 0 271 118 30.33 
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Ax2-16 17 25768682 25768682 C A SNP Lmf1 missense p.A219D 390 0 0 249 121 32.61 
Ax2-16 17 34194363 34194363 G T SNP Col11a2 missense p.G815W 353 0 0 183 89 32.72 
Ax2-16 18 37129340 37129340 G A SNP Pcdha6 missense p.R644H 449 0 0 286 47 14.07 
Ax2-16 19 6931605 6931605 A G SNP Ccdc88b missense p.L148P 367 0 0 189 131 40.94 
Ax2-16 X 148654373 148654373 T A SNP Iqsec2 missense p.F867I 330 0 0 62 146 70.19 

Ax2-20 1 90131582 90131582 A T SNP 

ENSMU
SG00000
079429 missense p.N330I 2125 0 0 1874 162 7.95 

Ax2-20 2 5955219 5955220 - 

G
A
A INS Upf2 

in_frame_i
ns 

p.1034in
_frame_i
nsE 583 0 0 623 236 27.47 

Ax2-20 2 78651820 78651820 C A SNP 
LOC100
040494 rna NULL 413 0 0 312 79 20.2 

Ax2-20 3 54598373 54598373 T C SNP Smad9 missense p.L371P 466 0 0 309 271 46.64 

Ax2-20 5 94862957 94862957 A C SNP 
LOC665
521 rna NULL 117 0 0 63 25 28.41 

Ax2-20 5 148113556 148113556 G T SNP Cdx2 silent p.S266 433 0 0 248 265 51.66 
Ax2-20 7 104420355 104420355 T A SNP Gab2 silent p.S142 388 1 0.26 231 252 52.17 
Ax2-20 7 138080091 138080091 A G SNP Htra1 silent p.R102 401 0 0 244 245 50.1 
Ax2-20 8 90863314 90863314 C T SNP Brd7 silent p.L479 546 0 0 573 12 2.05 
Ax2-20 9 72741677 72741677 C G SNP Prtg missense p.D827E 419 0 0 322 287 47.13 
Ax2-20 12 45412313 45412313 A C SNP Pnpla8 missense p.E686D 570 0 0 282 284 50.18 

Ax2-20 13 22179937 22179937 A G SNP 
Vmn1r18
8 missense p.K64R 452 0 0 252 213 45.71 

Ax2-20 16 57146236 57146236 G C SNP 
Tomm70
a missense p.E480Q 568 0 0 336 378 52.87 

Ax2-20 17 18210694 18210694 C A SNP 
EG63702
1 nonsense p.S637* 323 0 0 285 27 8.63 

Ax2-20 17 28212319 28212319 G A SNP 
4930526
A20Rik rna NULL 508 0 0 364 320 46.78 

Ax2-20 17 33786654 33786657 

T
C
G
G - DEL Hnrnpm 

frame_shif
t_del p.D619fs 423 0 0 282 197 41.13 

Ax2-20 X 6562670 6562670 T C SNP Ccnb3 missense 
p.T1284
A 306 0 0 2 233 99.15 

Ax2-20 X 166426921 166426921 C T SNP Mid1 silent p.P607 1592 0 0 2528 120 4.53 
Ax2-20 X 166427034 166427034 C T SNP Mid1 missense p.A645V 1599 2 0.12 2402 115 4.57 

Ax2-24 1 66742009 66742009 T G SNP Unc80 missense 
p.F1427
V 568 0 0 428 51 10.65 

Ax2-24 1 98861948 98861948 A G SNP Slco6b1 missense p.W312R 618 1 0.16 452 41 8.32 

Ax2-24 1 144990579 144990579 A C SNP 
LOC545
369 rna NULL 475 0 0 169 182 51.85 

Ax2-24 6 22922731 22922731 T C SNP Ptprz1 silent p.D213 566 1 0.18 264 136 34 

Ax2-24 7 29075868 29075868 C T SNP 
BC08949
1 missense p.A77T 522 0 0 298 286 48.89 

Ax2-24 7 58809247 58809247 G T SNP Ano5 missense p.K224N 571 0 0 299 163 35.28 
Ax2-24 7 128536277 128536277 C T SNP Hs3st2 missense p.P12S 288 0 0 154 109 41.44 
Ax2-24 7 133929701 133929701 T A SNP Ppp4c missense p.K300M 484 0 0 572 16 2.72 

Ax2-24 7 142843575 142843575 A G SNP 

ENSMU
SG00000
086609 rna NULL 372 0 0 164 145 46.93 

Ax2-24 9 3004676 3004676 C - DEL 

ENSMU
SG00000
079720 

frame_shif
t_del p.F72fs 420 11 2.43 313 17 4.97 

Ax2-24 9 3018000 3018000 C - DEL 

ENSMU
SG00000
074563 

frame_shif
t_del p.S62fs 156 2 1.16 119 5 3.94 

Ax2-24 9 3020866 3020866 T - DEL 

ENSMU
SG00000
079719 

frame_shif
t_del p.S83fs 287 5 1.7 217 13 5.53 

Ax2-24 9 3038250 3038250 T G SNP ENSMU missense p.S203R 125 6 4.48 95 9 8.49 
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SG00000
074558 

Ax2-24 9 17538113 17538113 G A SNP 
LOC244
710 rna NULL 459 0 0 197 154 43.87 

Ax2-24 9 17538114 17538114 A T SNP 
LOC244
710 rna NULL 464 0 0 197 153 43.71 

Ax2-24 9 19143248 19143248 C A SNP Olfr845 missense p.L115I 534 1 0.19 162 174 51.79 
Ax2-24 9 24091280 24091280 A C SNP Npsr1 missense p.K155T 535 0 0 325 134 29.19 
Ax2-24 9 26581593 26581593 G T SNP Glb1l2 missense p.L273M 511 0 0 379 35 8.45 
Ax2-24 9 34719381 34719381 A G SNP Kirrel3 missense p.Q23R 528 0 0 257 215 45.55 
Ax2-24 10 25991690 25991690 T G SNP Samd3 missense p.F492V 553 0 0 184 179 49.31 
Ax2-24 10 57861767 57861767 A C SNP Lims1 splice_site e2-2 510 0 0 305 184 37.63 
Ax2-24 11 23390443 23390443 G A SNP Ahsa2 missense p.S303L 588 0 0 476 20 4.03 
Ax2-24 11 100938242 100938242 A T SNP Naglu missense p.E568V 423 0 0 298 257 46.31 
Ax2-24 14 25293394 25293394 C T SNP Polr3a splice_site e11+1 485 0 0 232 207 47.15 
Ax2-24 14 32052327 32052327 C A SNP Phf7 missense p.R259I 479 0 0 242 229 48.62 
Ax2-24 16 46035986 46035986 T C SNP Cd96 silent p.*603 462 0 0 466 11 2.31 

Ax2-24 17 34000818 34000818 T G SNP 
LOC100
042967 missense p.S40R 547 0 0 271 244 47.29 

Ax2-24 19 9088299 9088299 G T SNP Ahnak missense 
p.K4152
N 590 0 0 525 54 9.33 

Ax2-24 X 7136846 7136846 A C SNP Ppp1r3f missense p.F724V 286 0 0 210 12 5.41 

Ax2-24 X 50406443 50406443 C T SNP 

ENSMU
SG00000
065503 rna NULL 287 0 0 204 6 2.86 

Ax2-26 2 26849519 26849519 G A SNP 
Adamts1
3 silent p.L907 510 0 0 241 266 52.47 

Ax2-26 2 30888565 30888565 C T SNP Fnbp1 missense p.D544N 378 1 0.26 231 210 47.62 
Ax2-26 3 86591328 86591328 C G SNP Dclk2 missense p.A693P 240 0 0 163 168 50.76 
Ax2-26 4 11726827 11726827 G T SNP Cdh17 missense p.Q492H 385 2 0.52 377 21 5.28 
Ax2-26 6 121302003 121302003 C A SNP Slc6a12 silent p.I101 456 0 0 371 31 7.69 
Ax2-26 7 62504767 62504767 G A SNP Luzp2 splice_site e10-1 469 0 0 167 195 53.87 
Ax2-26 7 110368460 110368460 C A SNP Olfr594 nonsense p.S76* 433 0 0 161 147 47.73 
Ax2-26 7 126805771 126805771 C T SNP Acsm1 nonsense p.R566* 528 0 0 221 250 53.08 

Ax2-26 9 3018904 3018904 C T SNP 

ENSMU
SG00000
074563 missense p.S188L 56 0 0 24 5 17.24 

Ax2-26 9 3032285 3032285 C T SNP 

ENSMU
SG00000
061971 missense p.S66L 94 7 6.86 82 15 15.46 

Ax2-26 10 121265811 121265811 G A SNP Srgap1 nonsense p.R482* 501 0 0 223 201 47.41 
Ax2-26 11 61127165 61127165 C T SNP Slc47a2 silent p.E287 490 0 0 397 49 10.99 
Ax2-26 14 55580086 55580086 T G SNP Myh6 missense p.N307T 481 1 0.21 373 131 25.89 
Ax2-26 17 18159364 18159364 T G SNP Fpr-rs4 missense p.L223R 478 0 0 199 185 48.05 

Ax2-26 19 8895255 8895256 
G
A - DEL Hnrnpul2 

frame_shif
t_del p.E162fs 638 0 0 267 244 47.47 

Ax2-26 19 12173198 12173198 T A SNP Olfr1427 silent p.V310 486 0 0 225 232 50.66 
Ax2-27 1 75499591 75499591 G A SNP Obsl1 missense p.P384L 456 0 0 458 30 6.13 

Ax2-27 1 163894978 163894978 A T SNP 

ENSMU
SG00000
086277 rna NULL 602 0 0 300 170 36.17 

Ax2-27 2 144190261 144190261 C T SNP 
LOC635
097 rna NULL 87 1 1.14 48 35 42.17 

Ax2-27 4 151406726 151406726 A G SNP Tas1r1 silent p.L187 437 0 0 271 270 49.91 
Ax2-27 5 31502993 31502993 C T SNP Zfp513 silent p.P76 631 0 0 443 106 19.31 

Ax2-27 5 138671647 138671647 C A SNP 
BC05500
4 silent p.L3 485 0 0 406 73 15.24 

Ax2-27 6 113093832 113093832 A C SNP Setd5 missense p.M984L 518 0 0 338 188 35.67 
Ax2-27 6 113680883 113680883 T A SNP Sec13 missense p.S157C 604 1 0.17 316 271 46.09 
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Ax2-27 6 125592936 125592936 T G SNP Vwf missense 
p.F1520
V 558 0 0 274 247 47.41 

Ax2-27 7 49304251 49304251 C A SNP 
EG63791
3 rna NULL 360 0 0 233 31 11.74 

Ax2-27 8 37635837 37635837 C A SNP Dlc1 missense p.D957Y 567 0 0 405 71 14.92 
Ax2-27 8 63514744 63514744 C A SNP Nek1 nonsense p.S295* 583 0 0 317 140 30.63 

Ax2-27 8 64466887 64466887 G T SNP Ddx60 missense 
p.K1064
N 611 0 0 538 16 2.89 

Ax2-27 9 45064503 45064503 A C SNP Il10ra missense p.F280V 520 0 0 310 182 36.99 

Ax2-27 10 77169463 77169463 G T SNP 

ENSMU
SG00000
069584 missense p.Q25H 345 0 0 203 92 31.08 

Ax2-27 10 93308983 93308983 A T SNP Usp44 missense p.K183N 569 0 0 409 179 30.44 

Ax2-27 12 89328372 89328372 C A SNP 
EG66735
0 silent p.G268 814 0 0 481 236 32.87 

Ax2-27 12 101358293 101358293 A C SNP Psmc1 missense p.K326N 603 0 0 315 273 46.43 
Ax2-27 12 114216513 114216513 C T SNP Btbd6 silent p.D333 479 0 0 423 18 4.08 
Ax2-27 14 63027536 63027536 T G SNP Gucy1b2 missense p.K580T 448 0 0 215 183 45.86 
Ax2-27 16 10963499 10963499 C T SNP Litaf silent p.V76 373 1 0.27 357 74 17.13 
Ax2-27 16 38415523 38415523 C A SNP Pla1a missense p.A112S 408 0 0 459 18 3.77 
Ax2-27 19 47960649 47960649 T G SNP Gsto2 missense p.D239E 472 0 0 196 210 51.72 
Ax2-30 1 155688897 155688897 G C SNP Rgsl1 missense p.P32R 629 0 0 472 476 50.21 
Ax2-30 2 30139992 30139992 G T SNP Dolk missense p.D520E 535 0 0 508 357 41.27 
Ax2-30 3 96506400 96506400 T C SNP Pias3 missense p.C360R 377 0 0 413 369 47.19 
Ax2-30 5 151157093 151157093 T C SNP Fry missense p.L232P 435 0 0 379 397 51.16 

Ax2-30 7 24678857 24678857 T C SNP 
Vmn1r17
8 missense p.C104R 318 0 0 182 193 51.33 

Ax2-30 7 25076435 25076435 T C SNP Zfp61 missense p.S437G 485 0 0 366 363 49.79 
Ax2-30 7 25300372 25300372 T C SNP Zfp428 silent p.A118 475 2 0.42 424 448 51.38 
Ax2-30 7 52803417 52803417 C T SNP Plekha4 missense p.S433F 453 0 0 338 343 50.37 
Ax2-30 8 64190236 64190236 G T SNP Palld missense p.S406Y 582 0 0 376 404 51.79 

Ax2-30 9 3018028 3018028 G T SNP 

ENSMU
SG00000
074563 silent p.S71 176 3 1.63 202 8 3.52 

Ax2-30 9 3020974 3020974 G A SNP 

ENSMU
SG00000
079719 missense p.V118I 67 4 5.48 149 8 5.06 

Ax2-30 9 37855568 37855568 G A SNP Olfr884 missense p.A254T 58 0 0 61 5 7.58 
Ax2-30 10 6388470 6388470 T G SNP Plekhg1 missense p.K996T 517 0 0 413 369 47.13 
Ax2-30 10 24635545 24635545 A G SNP Arg1 silent p.T281 563 0 0 407 344 45.68 
Ax2-30 10 30411215 30411215 A C SNP Ncoa7 silent p.S424 537 0 0 375 378 50.13 

Ax2-30 10 92527895 92527895 A G SNP 
4930485
B16Rik silent p.L229 499 0 0 435 421 49.18 

Ax2-30 11 67033505 67033505 T G SNP Myh1 silent p.A1550 537 0 0 455 416 47.76 
Ax2-30 11 88790621 88790621 T G SNP Scpep1 missense p.K385T 567 0 0 435 496 53.28 
Ax2-30 11 109097212 109097212 A G SNP Rgs9 splice_site e17+2 497 0 0 424 441 50.92 
Ax2-30 11 119404552 119404552 A C SNP Nptx1 missense p.L341V 469 0 0 453 408 47.39 
Ax2-30 12 77404959 77404959 T C SNP Mthfd1 silent p.G709 513 0 0 472 480 50.42 

Ax2-30 13 12742276 12742276 A T SNP 

ENSMU
SG00000
075118 missense p.S92T 222 0 0 149 151 50.33 

Ax2-30 13 100991464 100991464 A G SNP Naip5 missense 
p.L1073
P 384 0 0 312 304 49.35 

Ax2-30 14 22667517 22667517 C T SNP Comtd1 silent p.Q81 524 0 0 441 413 48.36 
Ax2-30 14 63859543 63859543 T C SNP Gata4 missense p.Q148R 357 0 0 286 238 45.33 

Ax2-30 14 65540405 65540405 T C SNP 
LOC100
043657 rna NULL 183 2 1.08 300 11 3.54 

Ax2-30 16 16862639 16862639 T C SNP Igll1 splice_site e2-2 518 0 0 448 439 49.49 
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Ax2-30 17 21398660 21398660 A G SNP 
Vmn1r23
5 silent p.K94 531 0 0 398 415 51.05 

Ax2-30 17 25241578 25241578 G T SNP Telo2 missense p.L607I 551 0 0 433 476 52.31 

Ax2-30 18 38134289 38134289 T C SNP Arap3 missense 
p.S1315
G 601 0 0 412 394 48.82 

Ax2-30 19 6373651 6373651 A C SNP Sf1 missense p.E322D 476 0 0 415 386 48.07 
Ax2-30 19 45497667 45497667 G A SNP Btrc silent p.A31 429 0 0 349 214 38.01 
Ax2-34 2 86530369 86530369 A C SNP Olfr1087 silent p.T254 457 0 0 196 217 52.54 

Ax2-34 4 62197547 62197547 C A SNP 
4933430I
17Rik missense p.S121Y 426 0 0 434 10 2.25 

Ax2-34 4 125910866 125910866 T C SNP Mtap7d1 missense p.T725A 304 0 0 141 153 52.04 

Ax2-34 4 126194127 126194127 T - DEL Eif2c4 
frame_shif
t_del p.K238fs 414 0 0 266 221 44.74 

Ax2-34 4 127973637 127973637 A G SNP Csmd2 splice_site e8-2 404 0 0 192 198 50.77 

Ax2-34 5 4069126 4069126 A T SNP Akap9 missense 
p.K3544
N 471 0 0 243 266 52.26 

Ax2-34 5 14680949 14680949 T G SNP Pclo missense p.I3125S 509 1 0.2 200 201 50.12 
Ax2-34 6 29663536 29663536 T C SNP Tspan33 splice_site e5+2 540 0 0 288 271 48.39 

Ax2-34 6 37756264 37756264 T G SNP 
LOC100
039636 missense p.V60G 383 0 0 183 185 50.27 

Ax2-34 7 51767463 51767463 T G SNP Mybpc2 missense p.Q531H 501 0 0 256 257 50 
Ax2-34 8 91188098 91188098 A C SNP Nod2 missense p.E356A 434 0 0 165 175 51.32 

Ax2-34 8 97427222 97427222 T G SNP 
Ccdc102
a missense p.E530D 498 0 0 183 193 51.19 

Ax2-34 10 31671085 31671085 C T SNP Nkain2 missense p.R105Q 607 0 0 241 217 47.38 

Ax2-34 10 41460762 41460762 T G SNP 
2410017
P07Rik missense p.S112R 638 0 0 300 284 48.63 

Ax2-34 10 77514613 77514613 T C SNP Dnmt3l silent p.T97 514 0 0 204 220 51.89 
Ax2-34 11 7060254 7060254 A T SNP Adcy1 nonsense p.K833* 507 0 0 261 226 46.41 
Ax2-34 11 68407816 68407816 A C SNP Ccdc42 missense p.N71T 458 0 0 238 245 50.72 
Ax2-34 11 82817349 82817349 C T SNP Slfn8 missense p.M655I 563 1 0.18 275 272 49.73 
Ax2-34 11 115119409 115119409 C G SNP Grin2c missense p.A226P 350 0 0 192 218 53.04 
Ax2-34 12 77710130 77710130 G A SNP Spnb1 silent p.H1388 466 0 0 411 164 28.47 
Ax2-34 13 34838618 34838618 C A SNP Fam50b silent p.T69 454 0 0 221 237 51.75 

Ax2-34 13 46866897 46866897 T A SNP Kif13a missense 
p.E1293
V 558 0 0 225 257 53.21 

Ax2-34 14 123769206 123769206 T C SNP Nalcn missense p.N691S 634 0 0 295 279 48.52 
Ax2-34 15 76454546 76454546 G A SNP Vps28 missense p.A55V 515 0 0 186 198 51.56 
Ax2-34 15 98057945 98057945 C T SNP Olfr286 missense p.A39T 445 0 0 175 175 50 
Ax2-34 16 20211717 20211717 A G SNP Yeats2 missense p.S929G 406 1 0.25 191 196 50.65 
Ax2-34 16 25886297 25886297 T A SNP Trp63 nonsense p.L459* 407 0 0 133 163 55.07 
Ax2-34 16 37511664 37511664 A G SNP Gtf2e1 silent p.H378 321 0 0 175 145 45.31 

Ax2-34 17 20494742 20494742 A G SNP 
Vmn2r10
4 missense p.S251G 548 0 0 213 254 54.39 

Ax2-34 18 57424100 57424100 C T SNP Megf10 silent p.G532 477 1 0.21 185 204 52.04 
Ax2-34 18 84731343 84731343 T C SNP Zfp407 missense p.I346V 507 0 0 188 178 48.63 
Ax2-34 19 43943363 43943363 G T SNP Dnmbp missense p.T954N 486 0 0 179 166 48.12 
Ax2-34 X 71150019 71150019 A C SNP Arhgap4 missense p.L248R 269 0 0 0 208 100 

Ax2-39 1 90133278 90133278 A T SNP 

ENSMU
SG00000
079429 missense p.K429M 2260 0 0 1619 155 8.74 

Ax2-39 1 136319707 136319707 A G SNP Adipor1 missense p.K39R 583 0 0 261 240 47.81 

Ax2-39 1 141727771 141727771 T C SNP 
BC02678
2 silent p.T39 486 0 0 373 28 6.98 

Ax2-39 2 68427030 68427030 A T SNP 
4933409
G03Rik missense p.N22I 417 0 0 148 182 55.15 

Ax2-39 3 108784121 108784121 A C SNP Fam102b missense p.L167R 503 0 0 481 32 6.24 
Ax2-39 3 140874290 140874290 A G SNP Pdha2 silent p.T140 352 0 0 128 127 49.8 
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Ax2-39 4 153715442 153715442 T C SNP Prdm16 missense p.E665G 383 0 0 198 210 51.47 
Ax2-39 7 109242800 109242800 G A SNP Trpc2 missense p.R948Q 411 0 0 202 192 48.73 

Ax2-39 7 113654622 113654622 C A SNP 
EG66813
9 rna NULL 254 0 0 193 18 8.53 

Ax2-39 7 151789396 151789396 T C SNP Ano1 missense p.K737R 492 0 0 241 242 50.1 
Ax2-39 8 98289021 98289021 A C SNP Cnot1 silent p.T358 568 1 0.18 258 267 50.76 
Ax2-39 9 37662895 37662895 A G SNP Olfr877 missense p.Q164R 476 0 0 192 193 50.13 

Ax2-39 10 126682531 126682532 - T INS Kif5a 
splice_site
_ins e8-1 306 0 0 161 112 41.03 

Ax2-39 11 9299450 9299450 G A SNP Abca13 missense 
p.A3674
T 532 3 0.56 199 209 51.23 

Ax2-39 11 73167949 73167949 T C SNP Olfr20 silent p.A231 434 0 0 177 223 55.75 
Ax2-39 11 74724553 74724553 T G SNP Srr missense p.S131R 557 0 0 461 27 5.52 
Ax2-39 11 97535386 97535386 G T SNP Mllt6 splice_site e10+1 545 0 0 277 313 53.05 

Ax2-39 12 113975371 113975371 T C SNP 
AW5554
64 silent p.V589 465 0 0 406 18 4.25 

Ax2-39 13 51514903 51514903 T A SNP S1pr3 missense p.S250R 388 0 0 320 10 3.03 
Ax2-39 14 66768162 66768162 G A SNP Chrna2 missense p.E307K 292 0 0 141 110 43.82 

Ax2-39 16 14089095 14089095 A C SNP 
2900011
O08Rik missense p.N95T 506 0 0 468 34 6.77 

Ax2-39 17 34670083 34670083 C A SNP Btnl7 missense p.R497S 587 0 0 268 201 42.77 
Ax2-39 18 37495397 37495397 T C SNP Pcdhb6 silent p.T572 424 0 0 170 162 48.8 
Ax2-39 18 62343715 62343715 G T SNP Gm9949 silent p.L94 403 0 0 227 134 37.12 
Ax2-39 19 56983759 56983759 G A SNP Vwa2 missense p.V669I 448 0 0 169 174 50.73 
Ax2-39 X 98079710 98079710 A C SNP Tex11 missense p.L596V 308 0 0 0 201 100 

Ax2-48 5 20116935 20116935 G A SNP Magi2 missense 
p.E1158
K 583 0 0 273 240 46.78 

Ax2-48 5 20402328 20402328 A T SNP Rsbn1l silent p.T677 475 0 0 255 246 49.1 
Ax2-48 7 86528579 86528579 T C SNP Rlbp1 silent p.A20 420 0 0 215 177 45.15 
Ax2-48 7 115198851 115198851 T A SNP Olfr479 nonsense p.Y118* 437 0 0 273 60 18.02 

Ax2-48 7 134702596 134702596 T C SNP 
LOC100
043597 missense 

p.L2615
P 476 0 0 238 243 50.52 

Ax2-48 7 150856737 150856737 T G SNP Tnfrsf23 missense p.K136T 423 0 0 209 223 51.62 
Ax2-48 8 19225552 19225552 T C SNP Defb6 silent p.S16 488 0 0 390 12 2.99 

Ax2-48 9 3032387 3032387 A T SNP 

ENSMU
SG00000
061971 missense p.Y100F 101 3 2.88 56 6 9.68 

Ax2-48 10 79775100 79775100 A T SNP Apc2 missense 
p.Q1052
L 543 0 0 283 232 45.05 

Ax2-48 11 68091000 68091000 G T SNP Ntn1 missense p.R378S 406 0 0 208 197 48.17 
Ax2-48 11 85323208 85323208 T A SNP Bcas3 silent p.P500 446 0 0 212 229 51.81 
Ax2-48 12 34114754 34114754 C T SNP Twistnb missense p.L79F 216 1 0.46 191 34 15.11 

Ax2-48 12 112689142 112689142 A G SNP 

ENSMU
SG00000
087280 rna NULL 529 0 0 237 219 48.03 

Ax2-48 14 56701831 56701831 T C SNP Mcpt8 silent p.Q159 512 0 0 223 236 51.42 

Ax2-48 17 16806615 16806615 C T SNP 
LOC100
041407 silent p.P206 340 1 0.29 163 152 48.25 

Ax2-48 17 20761379 20761379 G T SNP Fpr-rs3 missense p.L155M 526 0 0 255 105 29.09 
Ax2-48 19 5753928 5753928 G C SNP Ltbp3 splice_site e18-1 441 0 0 243 241 49.69 

Ax2-48 X 5277425 5277425 T C SNP 
LOC627
412 rna NULL 266 0 0 1 136 99.27 
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Table 3-7. Common mutations shared among miPSC clones 
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e	
  

N
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N
or
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N
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AF
	
  

Tu
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m
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_v
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_c
ou

nt
	
  

Tu
m
or
_V

AF
	
  

Ax1-­‐10	
   1	
   90139354	
   90139354	
   C	
   T	
   SNP	
  

ENSMUSG
00000079
429	
   silent	
   p.I756	
   55	
   6	
   9.84	
   81	
   16	
   16.49	
  

Ax1-­‐14	
   1	
   90139354	
   90139354	
   C	
   T	
   SNP	
  

ENSMUSG
00000079
429	
   silent	
   p.I756	
   55	
   6	
   9.84	
   107	
   48	
   30.97	
  

Ax1-­‐16	
   1	
   90139354	
   90139354	
   C	
   T	
   SNP	
  

ENSMUSG
00000079
429	
   silent	
   p.I756	
   55	
   6	
   9.84	
   80	
   21	
   20.79	
  

Ax1-­‐2	
   1	
   90139354	
   90139354	
   C	
   T	
   SNP	
  

ENSMUSG
00000079
429	
   silent	
   p.I756	
   55	
   6	
   9.84	
   80	
   18	
   18.37	
  

Ax1-­‐35	
   1	
   90139354	
   90139354	
   C	
   T	
   SNP	
  

ENSMUSG
00000079
429	
   silent	
   p.I756	
   55	
   6	
   9.84	
   61	
   13	
   17.57	
  

Ax1-­‐2	
   2	
   69587414	
   69587500	
  

GAGAGTCC
AAACAGAA
AAGTAGAA
AAGGAAAA
GAAAGCTA
AAGACCAT
AAATCTGA
AAGCAAAG
AGAGAGAC
ATCAGAAG
AAATTCA	
   -­‐	
   DEL	
   Ppig	
  

in_frame_
del	
  

p.SPNRK
VEKEKKA
KDHKSES
KERDIRR
NSE413i
n_frame
_del	
   NA	
   NA	
   NA	
   NA	
   NA	
   NA	
  

Ax1-­‐35	
   2	
   69587414	
   69587500	
  

GAGAGTCC
AAACAGAA
AAGTAGAA
AAGGAAAA
GAAAGCTA
AAGACCAT
AAATCTGA
AAGCAAAG
AGAGAGAC
ATCAGAAG
AAATTCA	
   -­‐	
   DEL	
   Ppig	
  

in_frame_
del	
  

p.SPNRK
VEKEKKA
KDHKSES
KERDIRR
NSE413i
n_frame
_del	
   NA	
   NA	
   NA	
   NA	
   NA	
   NA	
  

Ax1-­‐11	
   4	
   147049481	
   147049481	
   T	
   C	
   SNP	
  

ENSMUSG
00000062
518	
   missense	
   p.K280R	
   23	
   2	
   8	
   39	
   15	
   27.78	
  

Ax1-­‐16	
   4	
   147049481	
   147049481	
   T	
   C	
   SNP	
  

ENSMUSG
00000062
518	
   missense	
   p.K280R	
   23	
   2	
   8	
   26	
   12	
   31.58	
  

Ax1-­‐23	
   10	
   52024482	
   52024482	
   A	
   G	
   SNP	
   Dcbld1	
   missense	
   p.I216M	
   325	
   16	
   4.69	
   180	
   196	
   52.13	
  

Ax1-­‐5	
   10	
   52024482	
   52024482	
   A	
   G	
   SNP	
   Dcbld1	
   missense	
   p.I216M	
   325	
   16	
   4.69	
   253	
   253	
   50	
  

Ax2-­‐34	
   10	
   52024482	
   52024482	
   A	
   G	
   SNP	
   Dcbld1	
   missense	
   p.I216M	
   498	
   16	
   3.11	
   215	
   211	
   49.53	
  

Ax2-­‐24	
   10	
   52024482	
   52024482	
   A	
   G	
   SNP	
   Dcbld1	
   missense	
   p.I216M	
   498	
   16	
   3.11	
   223	
   206	
   48.02	
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Ax1-­‐10	
   10	
   57685755	
   57685755	
   G	
   A	
   SNP	
   Dux	
   missense	
   p.P664S	
   121	
   12	
   9.02	
   146	
   40	
   21.51	
  

Ax1-­‐18	
   10	
   57685755	
   57685755	
   G	
   A	
   SNP	
   Dux	
   missense	
   p.P664S	
   121	
   12	
   9.02	
   126	
   34	
   21.25	
  

Ax1-­‐3	
   10	
   57685755	
   57685755	
   G	
   A	
   SNP	
   Dux	
   missense	
   p.P664S	
   121	
   12	
   9.02	
   200	
   58	
   22.39	
  

Ax1-­‐5	
   10	
   57685755	
   57685755	
   G	
   A	
   SNP	
   Dux	
   missense	
   p.P664S	
   121	
   12	
   9.02	
   170	
   61	
   26.41	
  

Ax1-­‐8	
   10	
   57685755	
   57685755	
   G	
   A	
   SNP	
   Dux	
   missense	
   p.P664S	
   121	
   12	
   9.02	
   145	
   43	
   22.87	
  

Ax1-­‐16	
   10	
   117032338	
   117032339	
   -­‐	
   ATGA	
   INS	
   Kifc5c	
  
frame_shi
ft_ins	
   p.C434fs	
   150	
   6	
   3.85	
   206	
   25	
   10.82	
  

Ax1-­‐23	
   10	
   117032338	
   117032339	
   -­‐	
   ATGA	
   INS	
   Kifc5c	
  
frame_shi
ft_ins	
   p.C434fs	
   150	
   6	
   3.85	
   166	
   19	
   10.27	
  

Ax1-­‐5	
   11	
   3046912	
   3046913	
   -­‐	
   ACA	
   INS	
  
LOC10004
4660	
  

in_frame_
ins	
  

p.260in_
frame_in
sV	
   77	
   13	
  

14.4
4	
   142	
   40	
   21.98	
  

Ax1-­‐8	
   11	
   3046912	
   3046913	
   -­‐	
   ACA	
   INS	
  
LOC10004
4660	
  

in_frame_
ins	
  

p.260in_
frame_in
sV	
   77	
   13	
  

14.4
4	
   125	
   24	
   16.11	
  

Ax1-­‐14	
   15	
   3003747	
   3003747	
   G	
   A	
   SNP	
  
LOC67420
7	
   rna	
   NULL	
   42	
   4	
   8.7	
   90	
   23	
   20.35	
  

Ax1-­‐5	
   15	
   3003747	
   3003747	
   G	
   A	
   SNP	
  
LOC67420
7	
   rna	
   NULL	
   42	
   4	
   8.7	
   76	
   18	
   19.15	
  

Ax1-­‐7	
   15	
   3003747	
   3003747	
   G	
   A	
   SNP	
  
LOC67420
7	
   rna	
   NULL	
   42	
   4	
   8.7	
   84	
   17	
   16.83	
  

Ax2-­‐39	
   1	
   90163167	
   90163167	
   C	
   A	
   SNP	
   Hjurp	
   missense	
   p.G198V	
   126	
   24	
   16	
   82	
   19	
   18.81	
  

Ax2-­‐26	
   1	
   90163167	
   90163167	
   C	
   A	
   SNP	
   Hjurp	
   missense	
   p.G198V	
   126	
   24	
   16	
   72	
   18	
   20	
  

Ax2-­‐24	
   1	
   90163167	
   90163167	
   C	
   A	
   SNP	
   Hjurp	
   missense	
   p.G198V	
   126	
   24	
   16	
   68	
   19	
   21.84	
  

Ax2-­‐16	
   1	
   90163167	
   90163167	
   C	
   A	
   SNP	
   Hjurp	
   missense	
   p.G198V	
   126	
   24	
   16	
   60	
   16	
   21.05	
  

Ax2-­‐11	
   1	
   90163167	
   90163167	
   C	
   A	
   SNP	
   Hjurp	
   missense	
   p.G198V	
   126	
   24	
   16	
   65	
   20	
   23.53	
  

Ax2-­‐4	
   2	
   144190261	
   144190261	
   C	
   T	
   SNP	
  
LOC63509
7	
   rna	
   NULL	
   87	
   1	
   1.14	
   52	
   49	
   48.51	
  

Ax2-­‐27	
   2	
   144190261	
   144190261	
   C	
   T	
   SNP	
  
LOC63509
7	
   rna	
   NULL	
   87	
   1	
   1.14	
   48	
   35	
   42.17	
  

Ax2-­‐34	
   4	
   146092582	
   146092582	
   T	
   A	
   SNP	
   Gm13051	
   missense	
   p.N394K	
   39	
   1	
   2.5	
   44	
   10	
   18.52	
  

Ax2-­‐30	
   4	
   146092582	
   146092582	
   T	
   A	
   SNP	
   Gm13051	
   missense	
   p.N394K	
   39	
   1	
   2.5	
   55	
   14	
   20.29	
  

Ax2-­‐27	
   4	
   146092582	
   146092582	
   T	
   A	
   SNP	
   Gm13051	
   missense	
   p.N394K	
   39	
   1	
   2.5	
   36	
   9	
   20	
  

Ax2-­‐6	
   4	
   146553590	
   146553590	
   C	
   T	
   SNP	
   Gm13139	
   silent	
   p.C438	
   48	
   1	
   2.04	
   68	
   10	
   12.82	
  

Ax2-­‐48	
   4	
   146553590	
   146553590	
   C	
   T	
   SNP	
   Gm13139	
   silent	
   p.C438	
   48	
   1	
   2.04	
   46	
   7	
   12.96	
  

Ax2-­‐30	
   4	
   146553590	
   146553590	
   C	
   T	
   SNP	
   Gm13139	
   silent	
   p.C438	
   48	
   1	
   2.04	
   90	
   20	
   18.18	
  

Ax2-­‐27	
   4	
   146553590	
   146553590	
   C	
   T	
   SNP	
   Gm13139	
   silent	
   p.C438	
   48	
   1	
   2.04	
   52	
   10	
   16.13	
  

Ax2-­‐24	
   4	
   146553590	
   146553590	
   C	
   T	
   SNP	
   Gm13139	
   silent	
   p.C438	
   48	
   1	
   2.04	
   54	
   12	
   18.18	
  

Ax2-­‐16	
   4	
   146553590	
   146553590	
   C	
   T	
   SNP	
   Gm13139	
   silent	
   p.C438	
   48	
   1	
   2.04	
   44	
   7	
   13.73	
  

Ax2-­‐4	
   4	
   146958038	
   146958038	
   A	
   T	
   SNP	
   Gm13154	
   missense	
   p.K418I	
   29	
   0	
   0	
   36	
   9	
   20	
  

Ax2-­‐27	
   4	
   146958038	
   146958038	
   A	
   T	
   SNP	
   Gm13154	
   missense	
   p.K418I	
   29	
   0	
   0	
   31	
   7	
   18.42	
  

Ax2-­‐20	
   4	
   146958038	
   146958038	
   A	
   T	
   SNP	
   Gm13154	
   missense	
   p.K418I	
   29	
   0	
   0	
   41	
   8	
   16.33	
  

Ax2-­‐16	
   4	
   146958038	
   146958038	
   A	
   T	
   SNP	
   Gm13154	
   missense	
   p.K418I	
   29	
   0	
   0	
   14	
   8	
   36.36	
  

Ax2-­‐4	
   4	
   146958044	
   146958044	
   G	
   A	
   SNP	
   Gm13154	
   missense	
   p.S420N	
   24	
   1	
   4	
   29	
   15	
   34.09	
  

Ax2-­‐27	
   4	
   146958044	
   146958044	
   G	
   A	
   SNP	
   Gm13154	
   missense	
   p.S420N	
   24	
   1	
   4	
   27	
   10	
   27.03	
  

Ax2-­‐20	
   4	
   146958044	
   146958044	
   G	
   A	
   SNP	
   Gm13154	
   missense	
   p.S420N	
   24	
   1	
   4	
   33	
   14	
   29.79	
  

Ax2-­‐6	
   4	
   147049019	
   147049019	
   T	
   C	
   SNP	
  

ENSMUSG
00000062
518	
   missense	
   p.K434R	
   33	
   1	
   2.94	
   32	
   9	
   21.95	
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Ax2-­‐4	
   4	
   147049019	
   147049019	
   T	
   C	
   SNP	
  

ENSMUSG
00000062
518	
   missense	
   p.K434R	
   33	
   1	
   2.94	
   46	
   11	
   19.3	
  

Ax2-­‐27	
   4	
   147049019	
   147049019	
   T	
   C	
   SNP	
  

ENSMUSG
00000062
518	
   missense	
   p.K434R	
   33	
   1	
   2.94	
   29	
   7	
   19.44	
  

Ax2-­‐34	
   4	
   147129614	
   147129614	
   A	
   G	
   SNP	
  

ENSMUSG
00000078
495	
   silent	
   p.C296	
   22	
   1	
   4.35	
   27	
   6	
   18.18	
  

Ax2-­‐30	
   4	
   147129614	
   147129614	
   A	
   G	
   SNP	
  

ENSMUSG
00000078
495	
   silent	
   p.C296	
   22	
   1	
   4.35	
   33	
   11	
   25	
  

Ax2-­‐27	
   4	
   147129614	
   147129614	
   A	
   G	
   SNP	
  

ENSMUSG
00000078
495	
   silent	
   p.C296	
   22	
   1	
   4.35	
   22	
   14	
   38.89	
  

Ax2-­‐24	
   4	
   147129614	
   147129614	
   A	
   G	
   SNP	
  

ENSMUSG
00000078
495	
   silent	
   p.C296	
   22	
   1	
   4.35	
   17	
   5	
   22.73	
  

Ax2-­‐48	
   7	
   148825006	
   148825006	
   T	
   A	
   SNP	
   Muc6	
   missense	
  
p.H1640
L	
   704	
   16	
   2.22	
   766	
   27	
   3.4	
  

Ax2-­‐4	
   7	
   148825006	
   148825006	
   T	
   A	
   SNP	
   Muc6	
   missense	
  
p.H1640
L	
   704	
   16	
   2.22	
   838	
   26	
   3.01	
  

Ax2-­‐20	
   7	
   148825006	
   148825006	
   T	
   A	
   SNP	
   Muc6	
   missense	
  
p.H1640
L	
   704	
   16	
   2.22	
   901	
   22	
   2.38	
  

Ax2-­‐16	
   7	
   148825006	
   148825006	
   T	
   A	
   SNP	
   Muc6	
   missense	
  
p.H1640
L	
   704	
   16	
   2.22	
   686	
   21	
   2.97	
  

Ax2-­‐11	
   7	
   148825006	
   148825006	
   T	
   A	
   SNP	
   Muc6	
   missense	
  
p.H1640
L	
   704	
   16	
   2.22	
   601	
   19	
   3.06	
  

Ax2-­‐39	
   8	
   19878743	
   19878743	
   G	
   A	
   SNP	
  
2610005L
07Rik	
   silent	
   p.V10	
   48	
   1	
   2.04	
   45	
   10	
   18.18	
  

Ax2-­‐30	
   8	
   19878743	
   19878743	
   G	
   A	
   SNP	
  
2610005L
07Rik	
   silent	
   p.V10	
   48	
   1	
   2.04	
   63	
   12	
   16	
  

Ax2-­‐6	
   9	
   3018946	
   3018946	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
563	
   missense	
   p.T202K	
   103	
   6	
   5.13	
   81	
   10	
   10.1	
  

Ax2-­‐39	
   9	
   3018946	
   3018946	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
563	
   missense	
   p.T202K	
   103	
   6	
   5.13	
   65	
   9	
   11.39	
  

Ax2-­‐30	
   9	
   3018946	
   3018946	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
563	
   missense	
   p.T202K	
   103	
   6	
   5.13	
   149	
   19	
   10.98	
  

Ax2-­‐26	
   9	
   3018946	
   3018946	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
563	
   missense	
   p.T202K	
   103	
   6	
   5.13	
   80	
   14	
   14.29	
  

Ax2-­‐16	
   9	
   3018946	
   3018946	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
563	
   missense	
   p.T202K	
   103	
   6	
   5.13	
   53	
   9	
   14.06	
  

Ax2-­‐6	
   9	
   3018970	
   3018970	
   T	
   A	
   SNP	
  

ENSMUSG
00000074
563	
   missense	
   p.F210Y	
   147	
   8	
   5.16	
   99	
   16	
   13.91	
  

Ax2-­‐27	
   9	
   3018970	
   3018970	
   T	
   A	
   SNP	
  

ENSMUSG
00000074
563	
   missense	
   p.F210Y	
   147	
   8	
   5.16	
   102	
   14	
   12.07	
  

Ax2-­‐39	
   9	
   3020852	
   3020852	
   G	
   -­‐	
   DEL	
  

ENSMUSG
00000079
719	
  

frame_shi
ft_del	
   p.S77fs	
   239	
   4	
   1.58	
   165	
   5	
   2.89	
  

Ax2-­‐24	
   9	
   3020852	
   3020852	
   G	
   -­‐	
   DEL	
  

ENSMUSG
00000079
719	
  

frame_shi
ft_del	
   p.S77fs	
   239	
   4	
   1.58	
   192	
   8	
   3.9	
  

Ax2-­‐48	
   9	
   3030594	
   3030594	
   G	
   -­‐	
   DEL	
  

ENSMUSG
00000074
559	
  

frame_shi
ft_del	
   p.S87fs	
   52	
   2	
   3.39	
   57	
   8	
   11.43	
  

Ax2-­‐34	
   9	
   3030594	
   3030594	
   G	
   -­‐	
   DEL	
  

ENSMUSG
00000074
559	
  

frame_shi
ft_del	
   p.S87fs	
   52	
   2	
   3.39	
   44	
   12	
   20.34	
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Ax2-­‐30	
   9	
   3030594	
   3030594	
   G	
   -­‐	
   DEL	
  

ENSMUSG
00000074
559	
  

frame_shi
ft_del	
   p.S87fs	
   52	
   2	
   3.39	
   69	
   14	
   15.91	
  

Ax2-­‐26	
   9	
   3030594	
   3030594	
   G	
   -­‐	
   DEL	
  

ENSMUSG
00000074
559	
  

frame_shi
ft_del	
   p.S87fs	
   52	
   2	
   3.39	
   28	
   8	
   20	
  

Ax2-­‐20	
   9	
   3030594	
   3030594	
   G	
   -­‐	
   DEL	
  

ENSMUSG
00000074
559	
  

frame_shi
ft_del	
   p.S87fs	
   52	
   2	
   3.39	
   52	
   14	
   20.59	
  

Ax2-­‐39	
   9	
   3038207	
   3038207	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
558	
   missense	
   p.S189Y	
   223	
   12	
   5.06	
   141	
   13	
   8.39	
  

Ax2-­‐27	
   9	
   3038207	
   3038207	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
558	
   missense	
   p.S189Y	
   223	
   12	
   5.06	
   168	
   17	
   9.09	
  

Ax2-­‐24	
   9	
   3038207	
   3038207	
   C	
   A	
   SNP	
  

ENSMUSG
00000074
558	
   missense	
   p.S189Y	
   223	
   12	
   5.06	
   147	
   17	
   10.12	
  

Ax2-­‐27	
   9	
   3038247	
   3038247	
   C	
   T	
   SNP	
  

ENSMUSG
00000074
558	
   silent	
   p.F202	
   123	
   15	
  

10.8
7	
   81	
   20	
   19.61	
  

Ax2-­‐26	
   9	
   3038247	
   3038247	
   C	
   T	
   SNP	
  

ENSMUSG
00000074
558	
   silent	
   p.F202	
   123	
   15	
  

10.8
7	
   94	
   24	
   20.34	
  

Ax2-­‐24	
   9	
   3038247	
   3038247	
   C	
   T	
   SNP	
  

ENSMUSG
00000074
558	
   silent	
   p.F202	
   123	
   15	
  

10.8
7	
   87	
   23	
   20.72	
  

Ax2-­‐48	
   14	
   121112967	
   121112967	
   T	
   A	
   SNP	
  
LOC66883
5	
   rna	
   NULL	
   165	
   3	
   1.79	
   171	
   15	
   8.06	
  

Ax2-­‐39	
   14	
   121112967	
   121112967	
   T	
   A	
   SNP	
  
LOC66883
5	
   rna	
   NULL	
   165	
   3	
   1.79	
   162	
   15	
   8.47	
  

Ax2-­‐30	
   14	
   121112967	
   121112967	
   T	
   A	
   SNP	
  
LOC66883
5	
   rna	
   NULL	
   165	
   3	
   1.79	
   292	
   20	
   6.41	
  

Ax2-­‐24	
   14	
   121112967	
   121112967	
   T	
   A	
   SNP	
  
LOC66883
5	
   rna	
   NULL	
   165	
   3	
   1.79	
   155	
   13	
   7.74	
  

Ax2-­‐11	
   14	
   121112967	
   121112967	
   T	
   A	
   SNP	
  
LOC66883
5	
   rna	
   NULL	
   165	
   3	
   1.79	
   129	
   8	
   5.8	
  

Ax2-­‐34	
   16	
   32755261	
   32755262	
   -­‐	
   T	
   INS	
   Muc4	
  
frame_shi
ft_ins	
   p.R326fs	
   37	
   5	
   11.9	
   48	
   10	
   17.24	
  

Ax2-­‐30	
   16	
   32755261	
   32755262	
   -­‐	
   T	
   INS	
   Muc4	
  
frame_shi
ft_ins	
   p.R326fs	
   37	
   5	
   11.9	
   69	
   15	
   17.86	
  

Ax2-­‐24	
   16	
   32755261	
   32755262	
   -­‐	
   T	
   INS	
   Muc4	
  
frame_shi
ft_ins	
   p.R326fs	
   37	
   5	
   11.9	
   36	
   9	
   20	
  

Ax2-­‐27	
   X	
   121244729	
   121244730	
   -­‐	
   TGA	
   INS	
   Vmn2r121	
  
splice_site
_ins	
   e5-­‐1	
   85	
   6	
   6.59	
   48	
   10	
   17.24	
  

Ax2-­‐11	
   X	
   121244729	
   121244730	
   -­‐	
   TGA	
   INS	
   Vmn2r121	
  
splice_site
_ins	
   e5-­‐1	
   85	
   6	
   6.59	
   48	
   11	
   18.64	
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Table 3-8. OSK lentiviral integration sites  
 

Clone 
Chromosome 

name Start End 
Supporting 
Reads Gene location 

Ax1-2 2 98506736 98507278 4 
 Ax1-2 18 42403351 42403680 7 
 Ax1-3 2 5804912 5805384 15 Cdc123 

Ax1-3 2 98502410 98507353 9 
 Ax1-3 4 130274243 130274619 14 Serinc2 

Ax1-3 9 3002047 3007568 3 
 Ax1-3 9 3024074 3027195 6 
 

Ax1-3 17 25063321 25063633 12 
Ift140 and 
Tmem204 

Ax1-5 2 98502397 98507406 40 
 Ax1-5 4 129341285 129341600 3 Zbtb8os 

Ax1-5 9 3000297 3017965 25 
 Ax1-5 9 3020843 3032855 18 
 Ax1-5 9 56271726 56272024 16 Peak1 

Ax1-5 12 3109872 3109978 8 
 Ax1-7 2 98506703 98507261 3 
 Ax1-7 4 98180096 98180353 10 
 Ax1-8 9 71779801 71780302 12 
 Ax1-8 14 8395160 8395240 4 
 Ax1-10 1 164653171 164653431 9 
 Ax1-10 5 51426546 51426987 4 
 Ax1-10 13 55365658 55366178 8 
 Ax1-11 2 98502678 98507455 14 
 Ax1-11 8 35736558 35736868 11 
 Ax1-11 9 3000351 3014078 7 
 Ax1-11 9 3024426 3034834 5 
 Ax1-11 15 101150866 101151174 14 
 Ax1-14 2 98502403 98507339 4 
 Ax1-14 12 7921237 7921438 8 AK146888 

Ax1-14 X 143932298 143932828 12 Dcx 
Ax1-16 9 3000902 3004077 3 

 Ax1-16 9 77355602 77355808 3 
 Ax1-16 X 100516732 100525473 45 
 Ax1-18 12 56243747 56243968 4 
 Ax1-18 12 56318811 56319071 10 
 Ax1-18 12 67829660 67829899 6 
 Ax1-18 X 100516732 100525474 60 
 Ax1-23 2 98507251 98507281 3 
 Ax1-23 9 3003341 3018499 3 
 Ax1-35 15 50590987 50591387 5 
 Ax2-4 2 98506401 98507270 11 
 Ax2-4 3 97567477 97568309 13 Chd1l 

Ax2-4 5 104682819 104683209 12 
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Ax2-4 9 3000533 3017095 5 
 Ax2-6 4 108996772 108997136 7 
 Ax2-11 1 95594871 95595225 3 St8sia4 

Ax2-11 X 100516736 100525464 10 
 Ax2-16 2 98506404 98507324 4 
 Ax2-16 3 126629794 126629958 15 Camk2d 

Ax2-16 9 3000531 3014067 3 
 Ax2-16 16 85940412 85940466 3 
 Ax2-20 11 96208908 96209155 8 
 Ax2-24 4 93684035 93684178 4 
 Ax2-26 2 98502408 98507283 5 
 Ax2-26 3 88776847 88777275 8 Gon4l 

Ax2-26 3 117503426 117503817 6 
 Ax2-26 9 3000474 3017976 3 
 Ax2-26 9 72125875 72125963 4 
 Ax2-27 2 98502844 98507285 4 
 Ax2-27 17 28731783 28731998 6 Mapk14 

Ax2-30 2 98502394 98507363 29 
 Ax2-30 2 146134656 146134990 13 4930529M08Rik 

Ax2-30 7 79841973 79856380 15 Anpep 
Ax2-30 8 66526382 66526800 16 

 Ax2-30 9 3000478 3020221 23 
 Ax2-30 9 3023512 3032852 10 
 Ax2-30 19 58930990 58931290 13 Hspa12a 

Ax2-30 X 100516733 100525478 85 
 Ax2-34 2 98502400 98507273 6 
 Ax2-34 8 75425873 75426388 8 
 Ax2-34 9 3000345 3014062 5 
 Ax2-34 9 107927909 107928244 8 AK014951 

Ax2-39 2 100796359 100796568 5 
 Ax2-39 X 99161831 99162249 6 
 Ax2-39 X 99570928 99571034 4 M55023 

Ax2-48 2 98502810 98507283 6 
 Ax2-48 7 19714217 19714426 8 Tomm40 

Ax2-48 9 3000924 3014061 3 
 Ax2-48 10 23250911 23251078 7 Eya4 

Ax2-48 16 77574612 77574902 5 2810055G20Rik 
Ax2-48 X 100516734 100525462 61 
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Table 3-9. Integration “hotspots” 
 

Clone 
Chromosome 

name Start End 
Supporting 

Reads 
Ax1-2 2 98506736 98507278 4 
Ax1-3 2 98502410 98507353 9 
Ax1-5 2 98502397 98507406 40 
Ax1-7 2 98506703 98507261 3 
Ax1-11 2 98502678 98507455 14 
Ax1-14 2 98502403 98507339 4 
Ax1-23 2 98507251 98507281 3 
Ax2-4 2 98506401 98507270 11 
Ax2-16 2 98506404 98507324 4 
Ax2-26 2 98502408 98507283 5 
Ax2-27 2 98502844 98507285 4 
Ax2-30 2 98502394 98507363 29 
Ax2-34 2 98502400 98507273 6 
Ax2-48 2 98502810 98507283 6 
Ax1-3 9 3002047 3007568 3 
Ax1-3 9 3024074 3027195 6 
Ax1-5 9 3000297 3017965 25 
Ax1-5 9 3020843 3032855 18 
Ax1-11 9 3000351 3014078 7 
Ax1-11 9 3024426 3034834 5 
Ax1-16 9 3000902 3004077 3 
Ax1-23 9 3003341 3018499 3 
Ax2-4 9 3000533 3017095 5 
Ax2-16 9 3000531 3014067 3 
Ax2-26 9 3000474 3017976 3 
Ax2-30 9 3000478 3020221 23 
Ax2-30 9 3023512 3032852 10 
Ax2-34 9 3000345 3014062 5 
Ax2-48 9 3000924 3014061 3 
Ax1-16 X 100516732 100525473 45 
Ax1-18 X 100516732 100525474 60 
Ax2-11 X 100516736 100525464 10 
Ax2-30 X 100516733 100525478 85 
Ax2-48 X 100516734 100525462 61 
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Table 3-10. Expression changes in genes located, upstream, or 
downstream of integration sites 
 

Clone 

Chrom
osome 

name Start End 
Supporting 

Reads 
Gene 

location Expression 
Upstream 

gene Expression 
Downstream 

gene(s) Expression 
Ax1-18 12 56243747 56243968 4 

  
Brms1l NC Nkx2-1 NA 

Ax1-18 12 56318811 56319071 10 
  

Brms1l NC Nkx2-1 NA 

Ax1-18 12 67829660 67829899 6 
  

Mdga2 NA 
Rps29/Lrr1/Rp
l36a1/Mgat2 

NA/NA/NA/N
C 

Ax1-18 X 100516732 100525474 60 
  

Igbp1 NC Dgat216 NA 

Ax1-35 15 50590987 50591387 5 
  

Csmd3 NA Trps1 NC 

Ax2-26 2 98502408 98507283 5 
  

Lrrc4c NA 
Rag1/Rag2/Tr
af6/Prr5l 

NA/NA/NC/N
C 

Ax2-26 3 88776847 88777275 8 Gon4l NA Syt11 NA 
Gon4l/Msto1/
Dap3 NA/NA/NA 

Ax2-26 3 117503426 117503817 6 
  

D3Bwg056
2e NA Snx7 NA 

Ax2-26 9 3000474 3017976 3 
    

Alkbh8 NC 

Ax2-26 9 72125875 72125963 4 
  

Tcf12 NC Zfp280d DN ~50% 

Ax2-34 2 98502400 98507273 6 
  

Lrrc4c NA 
Rag1/Rag2/Tr
af6/Prr5l 

NA/NA/NC/N
C 

Ax2-34 8 75425873 75426388 8 
  

Rasd2 NA Nr3c2 NA 

Ax2-34 9 3000345 3014062 5 
    

Alkbh8 NC 

Ax2-34 9 107927909 107928244 8 AK014951 NA Mst1r NA Actl11 NA 

Ax2-39 2 100796359 100796568 5 
  

Lrrc4c NA 
Rag1/Rag2/Tr
af6/Prr5l 

NA/NA/NC/N
C 

Ax2-39 X 99161831 99162249 6 
  

Efnb1 NA Pja1 NC 

Ax2-39 X 99570928 99571034 4 M55023 NA Pja1 NC Tmem28 NA 

Ax2-48 2 98502810 98507283 6 
  

Lrrc4c NA 
Rag1/Rag2/Tr
af6/Prr5l 

NA/NA/NC/N
C 

Ax2-48 7 19714217 19714426 8 Tomm40 NA Apoe NC Pvrl2 NA 

Ax2-48 9 3000924 3014061 3 
    

Alkbh8 NC 

Ax2-48 10 23250911 23251078 7 Eya4 NC Tcf21 NA 
Rps12/Snora3
3/Snord100 NA/NA/NA 

Ax2-48 16 77574612 77574902 5 
2810055G20

Rik NA Usp25 NC Cxadr NC 

Ax2-48 X 100516734 100525462 61 
  

Igbp1 NC Dgat216 NA 

  
NA: No probesets found for the gene, or the microarray signal intensity for all samples are <200. 
NC: No change in gene expression. 
DN: Gene expression is downregulated.	
  



 

 

 

 

 

 

Chapter 4 

 

 

 

Summary and Future Directions  
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The role of CSD proteins in normal and leukemic hematopoiesis 

In chapter 2, we investigated the roles of the cold shock domain-containing proteins, 

Ybx1 and Msy4, in normal and leukemic hematopoiesis. We found that hematopoiesis 

in Msy4-/- mice and Ybx1-/- fetal liver cells is essentially normal. However, when we 

knocked out Ybx1 in adult hematopoietic cells using a conditional Ybx1 allele, the long-

term repopulating potentials of both Ybx1lox/+ x Vav1-cre+/- and Ybx1lox/- x Vav1-cre+/- 

bone marrow cells were found to be significantly reduced, suggesting that Ybx1lox/+ x 

Vav1-cre+/- bone marrow cells are not equivalent to those that are simply 

haploinsufficient for Ybx1. Therefore, the Ybx1 conditional knockout model requires 

further characterization and the data derived from these mice needs to be interpreted 

with caution.  

 

Using TAT-cre induced floxing and a multiplexed qPCR platform to monitor the floxed 

population, we were able to track the Ybx1-floxed population in Ybx1lox/- and Ybx1lox/- x 

Msy4-/- bone marrow cells after they were transduced with MSCV-MLL-AF9-IRES-GFP, 

which is a leukemia-initiating fusion protein that results in a serial replating phenotype. 

While the Ybx1-floxed population in Ybx1lox/- samples (Ybx1-/- x Msy4+/+) was stable after 

5 weeks of serial replating, the Ybx1-floxed population in Ybx1lox/- x Msy4-/- samples 

(Ybx1-/- x Msy4-/-) was either reduced or undetectable after 3 weeks of replating. 

Collectively, these data demonstrated that expression of either Ybx1 or Msy4 is required 

to maintain the high rates of self-renewal and proliferation induced by MLL-AF9. 

 

One possible explanation for these discordant results is that the floxed Ybx1 allele has a 

dominant negative effect against wildtype Ybx1 and Msy4. Indeed, the Uchiumi et al.  

Ybx1 knockout model (which targets the same exons [5 and 6] as the Mandinova 

conditional allele) do have a phenotype in heterozygous Ybx1 knockout ES cells1, while 

haploinsufficient mice with the Lu et al. Ybx1 allele (targeting exons 3) have no 

detectable phenotype in any assay2. Even though we were able to ectopically express 

this predicted truncated version of Ybx1 in 293T cells, we have not able to detect it in 
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the bone marrow cells (or other tissues) from Ybx1lox/+ x Vav1-cre+/- or Ybx1lox/- x Vav1-

cre+/- mice, with or without treatment with a proteosomal inhibitor in vitro (data not 

shown).  

 

To determine whether the predicted truncation protein encoded by the floxed Ybx1 

allele has a dominant negative effect against wildtype Ybx1 and/or Msy4, we will clone 

the ORF of the truncated or full length Ybx1 into an MSCV-IRES-GFP vector, and 

transduce it into wildtype, Ybx1+/-, and Msy4-/- bone marrow cells (along with an empty 

vector control), inject the transduced cells into lethally irradiated C57BL6/J recipients, 

and track the fate of GFP+ cells in the peripheral blood every 4 weeks. We will also use 

Western blotting to confirm the expression of the truncated Ybx1 in the transduced bone 

marrow cells. We expect that wildtype, Ybx1+/-, and Msy4-/- bone marrow cells 

transduced with MSCV-Ybx1-IRES-GFP vector to have a stable percentage of GFP+ 

cells in their peripheral blood, since overexpression of full length, wildtype Ybx1 is not 

expected to cause a phenotype in cells with high levels of CSD proteins. If the 

truncation mutant has dominant negative activity, we expect that wildtype, Ybx1+/-, and 

Msy4-/- bone marrow cells transduced with MSCV-Ybx1Trunc (truncated)-IRES-GFP will 

have a reduction in the percentage of GFP+ cells in the peripheral blood over time. This 

phenotype may be different in mice with different germline “doses” of the CSD proteins, 

depending on the targets of the dominant negative activity produced by the truncated 

protein.  

 

We also found inconsistent results in the retroviral MLL-AF9 leukemia model using the 

Ybx1 conditional knockout mouse. Ybx1lox/- x Vav1-cre+/- bone marrow cells, which had 

a reduced long-term repopulating potential, survived normally after MLL-AF9 

transduction and serial replating in vitro, and displayed unaltered leukemia-free survival 

in vivo. In contrast, after TAT-cre induced floxing, the Ybx1-floxed population in Ybx1lox/- 

x Msy4-/- samples (Ybx1-/- x Msy4-/-) declined in abundance after two weeks of replating 

in vitro, using the same retroviral MLL-AF9 leukemia system. It is not yet clear whether 
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the discrepancies are due to differences caused by the different methods for inducing 

floxing, or the different model systems.   

 

To address these issues, we plan to do the following experiments: 1) we will inject TAT-

cre induced and MSCV-MLL-AF9-IRES-GFP transduced (or MSCV-IRES-GFP control 

transduced) bone marrow cells from Ybx1lox/- or Ybx1lox/- x Msy4-/- mice into lethally 

irradiated C57BL6/J recipients, and track the Ybx1-floxed population in the peripheral 

blood (and leukemia cells arising in these mice). Based on the serial replating data in 

vitro, we expect that the Ybx1-floxed population in Ybx1lox/- x Msy4-/- samples (Ybx1-/- x 

Msy4-/-) will not be present in the MLL-AF9 induced tumor cells (i.e. leukemic bone 

marrow and spleen); 2) We will also test these cells in two other in vivo acute leukemia 

models, using retroviruses that express c-Myc3 or Nup98-HoxA94; 3) We will breed 

Ybx1lox/- x Msy4-/- mice to Vav1-Cre+/- mice, which will definitively test whether the loss of 

both Ybx1 and Msy4 in HSPCs will prevent or delay the onset of MLL-AF9 or c-Myc 

induced leukemia in vivo, or abolish the replating phenotype in the retroviral MLL-AF9, 

c-Myc, or Nup98-HoxA9 models in vitro. 

 

If these studies confirm the hypothesis that Ybx1 and Msy4 combine to prevent 

senescence in rapidly proliferating AML cells, and that the cold shock domain contains a 

dominant negative activity against the full length proteins, this would represent a novel 

approach for the treatment of AML (and other cancers).  We would explore alternative 

ways to inhibit the activity of cold shock domain proteins, perhaps by screening for small 

molecules that bind to the CSD domain, or by delivering the CSD into AML cells with a 

TAT-CSD fusion protein. Biochemical studies of the mechanism underlying the 

dominant negative effect (prevention of CSD dimer or oligomer formation, etc.) would 

also improve our understanding of the function of these proteins, and how they might be 

inhibited with drugs. 

 

Functional and genetic heterogeneity in iPSC clones  
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In chapter 3, we evaluated functional differences among the hematopoietic potentials of 

24 miPSC clones derived from two independent preparations of skin fibroblasts from the 

same 8-week-old C57BL6/J mouse. Among the 24 clones, we observed varying abilities 

to produce hematopoietic progenitor cells that could produce colonies in methylcellulose 

plating experiments. We defined the mutational landscapes in the exomes of all 24 

clones in an attempt to define genetic mechanisms that might be relevant for phenotypic 

variation; this is the largest collection of exome sequencing data of iPSCs from a single 

source. However, this analysis did not identify specific mutations that clearly explained 

why some clones had reduced hematopoietic potential. Finally, we compared the 

expression profiles of iPSC clones with extreme outlier phenotypes for hematopoiesis in 

vitro; this study yielded a small set of candidate genes (including Wt1 and Lef1) that 

could be relevant for hematopoietic differentiation in mouse iPSCs.  

 

Wt1 and Lef1 have both been shown to be critical for embryonic and hematopoietic 

development. 5–15 Cunningham et al. recently reported that Wt1-deficient mouse ES cells 

exhibit a markedly reduced potential in hematopoietic differentiation in vitro, using two 

independent Wt1 knockout ESC lines.16 Based on this study, Wt1 downregulation may 

represent the most likely candidate gene for hematopoietic phenotype. However, the 

level of expression in the poor differentiators is similar to that of B6 ESCs; clearly, direct 

testing of Wt1 and Lef1 replacement in these iPSC lines will be required to determine 

whether they are truly relevant for the phenotype. 

 

To address this issue, we will first validate the protein levels of both Wt1 and Lef1 in 

flow-sorted B6/GFP ESCs, and the six iPSC clones used for the expression array study. 

Next, we will overexpress Wt1 and Lef1 cDNAs (individually, and combined) cloned into 

MSCV-ires-YFP and MSCV-ires-mCherry vectors to allow each transduced population 

to be tracked in living cells. These retroviruses will be transduced into iPSC clones with 

normal vs. low hematopoietic potentials. We will first determine whether CFUs increase 

with the overexpression of either or both proteins. The percentage of YFP+, mCherry+, 
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or YFP+mCherry+ double positive population in ESC- or iPSC-derived hematopoietic 

cells will further confirm the relevance of Wt1 and Lef1 expression for the “rescue” of 

hematopoietic potential in these clones. Finally, we will knock down Wt1 and Lef1 

(individually, and combined) using pooled shRNAs in a vector with a puro-selection 

marker (Sigma) in ESCs and iPSCs with normal hematopoietic potential. We will 

differentiate puro-selected ESCs or iPSCs and determine whether the CFUs decrease 

with the knock down of either or both Wt1 and Lef1, compared to scrambled shRNA 

controls. Collectively, these studies may provide novel insights into the regulation of 

these transcription factors, and new information regarding the factors that govern 

hematopoietic lineage determination. 
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