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Abstract

Robust Algorithms for Detecting Hidden Structure in Biological Data

by

Sloutsky, Roman

Doctor of Philosophy in Computational & Systems Biology,

Washington University in St. Louis, 2017.

Professor Kristen M. Naegle, Chairperson

Biological data, such as molecular abundance measurements and protein sequences, har-

bor complex hidden structure that reflects its underlying biological mechanisms. For ex-

ample, high-throughput abundance measurements provide a snapshot the global state of a

living cell, while homologous protein sequences encode the residue-level logic of the proteins’

function and provide a snapshot of the evolutionary trajectory of the protein family. In

this work I describe algorithmic approaches and analysis software I developed for uncovering

hidden structure in both kinds of data.

Clustering is an unsurpervised machine learning technique commonly used to map the

structure of data collected in high-throughput experiments, such as quantification of gene

expression by DNA microarrays or short-read sequencing. Clustering algorithms always

yield a partitioning of the data, but relying on a single partitioning solution can lead to

spurious conclusions. In particular, noise in the data can cause objects to fall into the same

xvii



cluster by chance rather than due to meaningful association. In the first part of this thesis I

demonstrate approaches to clustering data robustly in the presence of noise and apply robust

clustering to analyze the transcriptional response to injury in a neuron cell.

In the second part of this thesis I describe identifying hidden specificity determining

residues (SDPs) from alignments of protein sequences descended through gene duplication

from a common ancestor (paralogs) and apply the approach to identify numerous putative

SDPs in bacterial transcription factors in the LacI family. Finally, I describe and demonstrate

a new algorithm for reconstructing the history of duplications by which paralogs descended

from their common ancestor. This algorithm addresses the complexity of such reconstruction

due to indeterminate or erroneous homology assignments made by sequence alignment algo-

rithms and to the vast prevalence of divergence through speciation over divergence through

gene duplication in protein evolution.
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1. Introduction

By the standards of “big data”1 even the most high-throughput biological datasets are

trivially small. Yet such data can contain rich hidden structure reflecting the rich structure of

the biological mechanisms that produced it. Extracting that structure can deliver profound

biological insight. Mechanisms which produced the data, experiments by which the data

was collected, and noise, both random and systematic, all contribute layers of complexity

biologists have learned to appreciate. Much less appreciated is the fact that these layers of

complexity can make our analysis algorithms behave in unexpected ways. This is particularly

dangerous with algorithms which never fail to produce an answer, because it can be difficult

to determine whether that answer is informative or misleading.

An organizing principle connects all of the work described in this thesis: understanding

when the solutions our algorithms produce may be misleading and addressing that failure

to get a more informative answer. In chapters 2 and 3 the analyzed data is numerical

– quantified abundance of mRNA and protein post-translational modifications – and the

algorithm is clustering. In chapters 4 and 5 the data is protein sequence and the algorithms

are sequence alignment, phylogeny reconstruction, and detection of conservation patterns

indicative of residue functionality. I developed methods for quantifying the reliability of

1



solutions produced by those algorithms and applying the same underlying algorithms to

obtain more reliable and informative solutions.

1.1 Obtaining biological insight from the global state of a cell

Technological advances of the past 20 years allow collecting global snapshots of the state

of a cell. Nucleic acids-based technologies – first DNA microarrays, then next generation se-

quencing (NGS) – have enabled profiling of global transcriptional2,3, DNA methylation4,

chromatin accessibility5, and protein-DNA interaction states6. Proteins7, protein post-

translational modifications8, and metabolites9 can be profiled by mass spectrometry. These

data cannot be interpreted by eye. Obtaining biological insight requires computational anal-

ysis.

Clustering, an unsupervised machine learning technique, can identify patterns in complex

data10–12. It has been successfully applied to learn genetic network architecture13 and classify

cancer types14 from gene expression data, and to discover novel protein-protein interactions

in signaling from phospho-proteomic data15,16. Gratifyingly, clustering algorithms always

produce a partitioning of the data. However, the result may well be uninformative or even

misleading17.

One potential complication in clustering biological data is its high dimensionality when

genes, proteins, or metabolites are treated as features on which the clustering is performed.

Familiar distance metrics do not work as expected in high-dimensional spaces18, causing

many common clustering algorithms to produce meaningless partitions. Data objects may

2



have multiple, conflicting relationships in subsets of dimensions that are difficult to isolate

without projecting the data into the right subspace19. Even in as few as two dimensions

clusters may have complex shapes, rendering geometric centers meaningless and defeating

centroid-based clustering algorithms, such as k-means20.

Another complication is that high-throughput biological data are often noisy, which in-

troduces uncertainty into the relationships between objects which clustering seeks to identify.

Platform-specific noise models have been developed for DNA microarrays21–23 and NGS3,

allowing proper treatment of noise prior to clustering, but to my knowledge such models do

not exist for proteomic or metabolomic data collected by mass spectroscopy. Experimental

schemes addressing specific sources of noise in NGS experiments, such as transcriptional bi-

ases 24 and sequencing errors25 have also been developed. An ensemble clustering approach

has been used to identify robust co-clustering relationships in proteomic data15. Fuzzy

clustering has been used with metabolomic data26, attempting to capture the underlying

uncertainty of the data in the clustering solution itself. Nevertheless, experimental noise of

various origins continues to complicate the interpretation of clustering results from biological

data.

1.2 Learning about protein function from protein sequence

Protein sequences are data with incredibly complex structure. Since every aspect of a

protein’s function is encoded in its sequence, uncovering the hidden structure in this data

is one of the grand challenges of modern biology. Here I discuss how evolution of protein
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sequences impacts the cellular mechanisms that employ those proteins as components. I then

discuss algorithmic approaches that have been developed to gain insight into how sequence

encodes function and how sequence and function evolve together.

1.2.1 Gene duplication diversifies components of signaling and regulatory cir-

cuits

Nearly all of the work in cells is performed by proteins. Cells’ regulatory and signal

transduction mechanisms are no exception. Broadly speaking, regulatory and signaling pro-

teins detect signals and perform functions in response to those signals. Signals may come in

the form of post-translational modifications to one or more of the protein’s residues, small

molecule binding, or complex formation with one or more other proteins. The function per-

formed in response may be catalysis, translocation to another cellular compartment, binding

of DNA, simply providing a platform for other proteins to interact with each other, or any

combination of those and other functions. In order to understand how the mechanisms

function as wholes we must understand the function of their constituent parts, the proteins.

The number of tertiary folds available to proteins appears to be fairly limited27,28, so

evolution has adapted proteins that share a common fold to perform different functions.

Frequently this happens in the context of a common global function performed with dif-

ferent specificities. Structurally similar enzymes catalyze the same reaction on different

substrates29,30. Structurally similar transcription factors bind different DNA sequences and

respond to different allosteric regulators31. In another strategy, metazoan proteins often
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contain multiple independently folded domains, mixing and matching functions of individ-

ual domains for combinatorial effect. This is particularly true for signaling proteins which

contain various combinations of catalytic, recognition, scaffolding, membrane-interacting,

and other kinds of domains32–34. Some of the individual domains found in signaling proteins

appear in over a hundred variations in a single genome35,36, each acting on a different set

of substrates, interacting with a different set of partners, or otherwise varying in their func-

tional specificity. Since protein folds can tolerate a great number of amino acid sequences,

these highly structurally similar proteins and protein domains can vary substantially in se-

quence. Nevertheless, their sequences are sufficiently similar to allow their identification by

comparing their sequences to known representatives of the protein or domain family37,38.

The origin of this shared similarity is common descent.

Theodosius Dobzhansky famously opined: ”[n]othing in biology makes sense except in the

light of evolution”39. Common descent is a fundamental model for understanding biology,

and it applies not only to species and their genomes, but to individual fragments within those

genomes as well. Genes encoding proteins with similar sequences and structures are believed

to derive from a common ancestral sequence40 (typically in the genome of an ancient ancestral

species) which experienced a duplication event, giving rise to two identical copies. Given two

identical genes able to perform the original’s function, selection pressure to maintain that

function is relaxed, allowing the two genes to sub-specialize or one to maintain the ancestral

function while the other evolves a substantially different one41,42.
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Large families of protein domains evolved by numerous ancestral sequences undergo-

ing this process multiple times, giving rise to domains with the finely-tuned functionalities.

Furthermore, entirely new signaling systems likely evolved by this mechanism as well. In par-

ticular, phosphotyrosine-mediated signaling is thought to have emerged when the three com-

ponents necessary to facilitate it – tyrosine kinases (writers), tyrosine phosphatases (erasers),

and phosphotyrosine-recognizing SH2 domains (readers) – diverged from proteins with differ-

ent functions: serine/threonine kinases, serine/threonine phosphatases, and a transcription

elongation factor, respectively36. In fact, this development may have given rise to an entire

new kingdom of life, Metazoa35.

1.2.2 Sequence alignments have distinct evolutionary and structural interpre-

tations

Sequence alignment, and multiple sequence alignment in particular, is an incredibly

valuable tool for studying proteins. Because sequence alignment is broadly used by both

evolutionary and structural biologists, both communities have shaped the development of

alignment algorithms and software. However, the way sequence alignments are interpreted

in the two fields are somewhat different.

The evolutionary interpretation of the mappings between individual positions in each

sequence represented by their alignment is homology – descent, through mutation and selec-

tion, or lack thereof, from a specific position in their common ancestral sequence43. When a

position in one sequence maps to a gap in another sequence, the evolutionary interpretation
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is that an insertion or a deletion event occurred: either an insertion in the lineage leading to

the sequence in which the position exists, or a deletion in the lineage leading to the sequence

in which it does not.

The alternative interpretation of a mapping between sequence positions implied by align-

ment is structural correspondence, sometimes called structural homology44, although the

word “homology” itself is reserved by convention for the evolutionary interpretation45. Struc-

tural homology may or may not coincide with evolutionary homology. For example, indepen-

dent insertion events may produce structurally homologous amino acid residues which do not

share common descent and are, therefore, not homologous in the evolutionary sense. On the

other hand, insertions elsewhere in one or both sequences can cause positions with a com-

mon ancestor to be structurally non-homologous. This is particularly common in disordered

loops, which accommodate variable length better than secondary structure elements.

1.2.3 Multiple sequence alignment algorithms use heuristics to reduce complex-

ity

Sequence alignment is a core tool in the study of molecular biology and evolution, and a

over 100 methods for performing multiple sequence alignment (MSA) have been published to

date44. These algorithms, their constituent components, and their performance have been re-

viewed and compared in great detail: see for example Edgar and Batzoglou46, Notredame47,

Do and Katoh48, Pei49, Kemena and Notredame50, Dessimoz and Gil51, Thompson et al.52,

Löytynoja43, Russel53, and Chatzou et al.44. Briefly, MSA algorithms insert gaps into se-
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quences to obtain an optimal set of position correspondences according to an objective

function, which quantifies the quality of a proposed alignment in light of some model of the

process by which the aligned sequences evolved. Most commonly the objective function is the

sum-of-pairs over all pairwise mappings according to a substitution matrix (e.g. BLOSUM54

or PAM55) for position-to-position matches and a gap scoring scheme, typically consisting

of gap opening and gap extension components – so-called affine gap scoring56.

Although a family of dynamic programing algorithms have long been known which guar-

antee the exact optimal pairwise alignment of two sequences for a given scoring scheme43,56–58,

their O(ln) complexity, where l is the average sequence length and n is the number of se-

quences, makes them computationally intractable as a general approach to multiple sequence

alignment. In fact, finding the globally optimum alignment under sum-of-pairs objective

functions is known to be an NP-complete problem44,48. Because of this, all MSA algorithms

rely on heuristics, usually greedy heuristics44,45,50, to search the space of possible alignments

more efficiently, albeit without an optimality guarantee. Because of its generally superior

performance on commonly used benchmarks50, most modern algorithms incorporate the

progressive alignment heuristic59,60, which splits the overall alignment problem into a series

of smaller alignment problems according to a guide tree, typically derived from exhaustive

pairwise comparisons of the inputs61. Unfortunately, when progressive alignment algorithms

incorporate errors at early steps, these errors propagate through the rest of the alignment

process, which is informed by homology assignments made at previous steps. Iterative refine-

ment schemes with alternating guide tree and alignment refinement and consistency-based
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objective functions are sometimes employed, separately or in combination, to address this

problem43,48, though at additional computational cost.

1.2.4 Large Alignments Are Significantly Less Accurate

In light of the rapid increase in availability of biological sequences, two recent stud-

ies specifically addressed how alignment accuracy varies with the number of aligned se-

quences62,63 and reached two main conclusions. First, almost all of the large panel of tested

alignment tools, including all of the most accurate ones, failed to align the largest datasets

(>10,000 sequences) and either failed or experienced impractically long running times (up

to one month) when aligning between 5,000 and 10,000 sequences62. Second, alignment

accuracy decreased with the number of aligned sequences. In a particularly elegant experi-

ment, Sievers et al.63 supplemented sequences from small curated structural alignments from

alignment benchmarking databases BAliBASE364 and Homstrad65 with increasing numbers

of homologous sequences from Pfam37, aligned the resulting set of sequences, and compared

the accuracy of the embedded alignment of curated sequences to the accuracy of those se-

quences aligned alone by the same tool. All tested alignment tools experienced substantial,

and progressively larger accuracy drop-offs with the addition of 500 or more Pfam sequences.

A possible explanation for this is cumulative error propagation during progressive alignment

increasing proportionately to the number of aligned sequences50.
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1.2.5 Phylogenetic reconstruction and sequence alignment inform each other

Phylogenetic inference always starts with a sequence alignment and is primarily concerned

with the mutations which led to the observed differences between aligned sequences. The

next step is typically the reconstruction of a phylogeny which describes the divergence of

aligned sequences from their common ancestor. Most other phylogenetic analyses, such as

detection of adaptive evolution66–68, reconstruction of ancestral sequences69, and inference

of orthology and paralogy relationships between genes42 require both an alignment and a

phylogeny.

Inference of phylogenies for substantially diverged sequences, such as protein sequences

in the “Twilight Zone” of homology, is extremely difficult70. While computationally effi-

cient distance-based and parsimony-based methods perform with competitive or even higher

accuracy for closely related sequences71, the much more computationally expensive Max-

imum Likelihood and Bayesian statistical approaches outperform them on more distantly

related datasets72–74. Statistical methods use explicit models of nucleotide, amino acid, or

codon substitution and jointly infer the parameters of these models, the tree topology, and

the branch lengths75. The need to use these methods makes accurate inference of large

phylogenies of distantly related sequences particularly challenging76.

Part the difficulty with inferring phylogenies of substantially diverged sequences is the

frequent phylogenetic implausibility of alignments generated by general-purpose methods77,

particularly for large data sets (as discussed later in this chapter). This may result from

the prevalent evaluation of alignment algorithms on structural alignment benchmarks, which
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do not always accurately reflect evolutionary processes78–80, for example by biasing repre-

sentation to slowly evolving protein core regions at the expense of faster diverging coils64,

which are more likely to experience indel events43,45. Although general-purpose progressive

alignment algorithms rely on guide trees, which are intended to account for evolutionary

divergence59,60, speed is generally prioritized over accuracy in guide tree inference. Gener-

ally some version of the distance-based Neibor Joining algorithm81–83 is used, often resulting

in inaccurate guide trees for substantially diverged sequences, which can in turn lead to

alignment errors that cannot be fixed by iterative guide tree refinement43.

Recognizing this weakness, a meta-method called SATé84–86 was recently introduced,

which co-estimates a phylogeny and an alignment by alternating between alignment with

an accuracy-focused progressive alignment algorithm and phylogeny inference by Maximum

Likelihood, using the inferred phylogeny as the guide tree for progressive alignment at the

subsequent step. Although this approach can produce more accurate alignments than any

progressive alignment method alone84,85, it can still fail to produce a phylogenetically plausi-

ble placement of gaps43,45. PRANK45,77 was developed specifically to address this concern by

modeling gap placement in a “phylogeny-aware” manner. It performs well for phylogenetic

applications51,87,88, but is particularly sensitive to the accuracy of its guide tree89 because of

its use of inferred ancestral sequences to represent sub-alignments during progressive align-

ment45.

The gold standard in accuracy remains Bayesian joint inference of alignment and phy-

logeny90–93, which integrates over all alignments and all phylogenies in its search. Unlike
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the sum-of-pairs objective functions used in other approaches, in this context the optimality

criterion is maximal likelihood of the data – the alignment – given some parameters of an

explicit character substitution model43. Unfortunately, due to their extreme computational

complexity these methods remain limited to very small data sets43,76.

Still, some general-purpose aligners work better for phylogenetic applications than others.

In particular MAFFT’s61,94 accuracy-focused protocol, L-INS-i is consistently one of the best

performers for downstream statistical phylogenetics applications51,62,74,87, which is why it was

selected as the default alignment algorithm in SATé84,85.

1.2.6 Drawing functional inferences from protein MSAs

Under certain assumptions about how protein sequences evolve, multiple sequence align-

ments can be used to make functional inferences about homologous protein sequences. In

statistical phylogenetics formal statistical frameworks exist for testing hypotheses about

functional divergence of paralogous genes95 and about correlated substitutions at multiple

positions96–98, the latter framework, covarions, having been introduced over 40 years ago.

However, these approaches have not been adopted broadly, possibly due to the complexity of

performing and interpreting the required statistical tests. They have not, to my knowledge,

been used by molecular biologists. I do not discuss them here. Instead I focus on more

commonly used heuristic approaches which reason about evolution implicitly by analyzing

patterns in MSA columns.

12



Broadly, the heuristic approaches can be split into two categories: “unsupervised” meth-

ods, which identify correlations between amino acid patterns in pairs of alignment columns

without using any information about the aligned sequences99–121, and “supervised” methods,

which identify correlations between patterns in individual alignment columns and classes into

which the aligned sequences are grouped122–145.

Unsupervised approach: identification of co-evolving residues

The underlying assumption of this approach is that natural selection may jointly constrain

a pair of positions in a protein sequence, while not constraining either position to a specific

amino acid. These methods can use information theoretic108,114,117, statistical101, correlation

mode analysis116, and maximum entropy115,119, approaches among others. Because they

analyze character patterns, reasoning about substitutions indirectly, they are forced to treat

the phylogenetic relationship between sequences as noise, with the most accurate methods

addressing this noise explicitly114–117,119.

Although, in principle, residues need not be physically proximal to be under a joint sub-

stitution constraint, in practice the vast majority of such residue pairs form physical contacts

in the protein’s 3D structure. So prevalent are such pairs in fact, that these relationships

have been used in a manner similar to NMR-derived distance constraints to determine pro-

tein folds de novo 146–148 and to map paths of transmission of information through protein

cores between distant locations on protein surfaces149,150.
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Supervised approach: identification of functionally important residues

The underlying assumption of the supervised approach is that functional requirements

constrain certain positions in protein sequences to specific amino acids, and that, therefore,

such functionally important positions can be identified based on high degree of conservation.

When the function under consideration is shared by all analyzed proteins, the analysis simply

seeks the most conserved residues151–153. The more interesting case, however, is when the

analyzed proteins share a global function, with different subsets of sequences performing the

function with different specificities. In this case the positions of interest are expected to be

conserved within each set of sequences sharing specificity, but not globally. Such positions are

often referred to as specificity determining positions (SDPs).122,124,126,127,129,130,132–135,137,139–145

1.2.7 Effects of uncertainty and error in multiple sequence alignments

Because the true alignment of a set of biological sequences cannot be known, a constructed

alignment of such sequences necessarily comes with some uncertainty. For example, in all

but the most trivial cases different MSA algorithms will produce differing alignments of the

same set of input sequences. Furthermore, most alignment algorithms hide the uncertainty of

their own procedures by arbitrarily selecting among equally good solutions according to hard-

coded rules, e.g. always deferring gap opening as late as possible, opting for reproducibility

at the expense of accuracy45,154. Since the number of nearly equally good solutions is often

very large155,156, the preference for reproducibility masks non-trivial amounts of uncertainty.
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Artifacts, such as the fact that most aligners produce different alignments when the input

sequences are reversed157, can also result.

Alignment errors propagate to downstream snalyses

Despite well known concerns about alignment uncertainty, downstream applications which

require an alignment as input treat that alignment as an observation, assuming its correct-

ness158. This problem has been widely recognized in phylogenetics, where a number of studies

have demonstrated the sensitivity of downstream phylogenetic applications to differences in

alignment of the same input sequences62,72,74,88,158–161. In fact, phylogeny reconstruction

appears to be more sensitive to the method used to produce the input alignment than to

the method used for the reconstruction itself159, at least for some types of tree topolo-

gies73. Alignment errors also produce false positives when detecting positive selection in

genes87,88. In one of the most comprehensive studies, which used both sequences simulated

under known phylogenies and natural sequences with available high-confidence structural

alignments, Wang et al.74 found that, above a certain threshold of alignment accuracy, that

accuracy was only weakly correlated with the accuracy of resulting trees. All “reasonably”

accurate alignments resulted in quite accurate trees and differences between the alignments

did not substantially affect tree topologies. However, for less accurate alignments the accu-

racy of the alignment correlated strongly with the accuracy of the inferred tree, with less

accurate alignments resulting in significantly less accurate trees. This result makes sense

when you consider that all phylogenetic tree inference methods in some way integrate signal
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over every column in the alignment. Given an alignment with overall sufficiently accurate

“phylogenetic signal” – sufficient fraction of correctly aligned columns – errors in the re-

maining columns can be tolerated without affecting the accuracy of the inferred tree.

Alignment curation

A number of tools have been developed to address this problem by identifying and remov-

ing alignment columns likely to contain errors, and, therefore, likely to decrease the accuracy

of downstream analyses. Since actual alignment errors are impossible to identify, these tools

use properties such as degree of column conservation162, stability of pairwise position matches

across varied gap scoring parameters163 or guide tree topologies164, statistically significant

differences from randomly generated sequences165, and the posterior probability of pairwise

position matches derived from pair-HMMs166 as proxies for likelihood of containing errors.

Such filtering approaches can indeed improve the accuracy of phylogeny inferences162,166.

Unfortunately, unlike phylogeny inference, column-wise functional analyses of alignments

lose effectiveness with every alignment column containing errors, as results for positions

aligned in these columns are likely to be erroneous. Nor can column-wise analyses take

advantage of column filtering without sacrificing their effectiveness.

1.3 Research motivation

The central motivation of all work described in this thesis is uncovering the deeply hid-

den structure in biological data, improving and extending existing analysis algorithms when
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their existing formulations cannot accommodate that hidden structure. This required devel-

oping means of quantifying the accuracy and reliability of solutions produced by the existing

formulations, as well as of synthesizing those solutions into deeper insights.

The first two chapters concern analysis of numerical data reflecting global state of a cell.

In chapter 2 I use an ensemble of clustering solutions using different data transformations,

distance metrics, and clustering algorithms to analyze transcriptional response in a neuron

cell in response to injury. In chapter 3 I discuss approaches to robustly handling experimental

noise when clustering numerical data through several re-sampling strategies.

The next two chapters discuss approaches to analyzing multiple sequence alignments. In

chapter 4 I demonstrate that protein families violate assumptions made in detection of speci-

ficity determining positions and, after correcting this shortcoming, identify numerous new

putative specificity determinants in the LacI family of transcriptional regulators. In chapter

5 I use a novel approach to decomposition and synthesis of tree topologies in an algorithm for

reconstructing the ancient history of duplication events that give rise to paralogous proteins.
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2. Injury-Induced HDAC5 Nuclear Export Is Essential for Axon

Regeneration

This chapter is adapted from part of the following published manuscript:

Cho, Y., Sloutsky, R., Naegle, K. M. & Cavalli, V. Injury-induced hdac5 nuclear
export is essential for axon regeneration. Cell 155, 894–908 (2013)
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2.1 Abstract

Reactivation of a silent transcriptional program is a critical step in successful axon regen-

eration following injury. Yet how such a program is unlocked after injury remains largely un-

explored. We found that axon injury in peripheral sensory neurons elicits a back-propagating

calcium wave that invades the soma and causes nuclear export of HDAC5. Injury-induced

HDAC5 nuclear export enhances histone acetylation to activate a pro-regenerative gene-

expression program. HDAC5 nuclear export is required for axon regeneration, as expression

of a nuclear-trapped HDAC5 mutant prevents axon regeneration. These studies suggest a

role for HDAC5 as a transcriptional switch controlling axon regeneration.

2.2 Introduction

Injured peripheral neurons successfully activate intrinsic signaling pathways to enable

axon regeneration168. Within hours of a peripheral nerve injury, damaged axon tips are trans-

formed into new growth-cone-like structures, and the expression of regeneration-associated

genes in the cell body enhances axon regenerative capacity. In contrast, neurons within the

central nervous system (CNS) typically fail at these tasks, leading to permanent neurologi-

cal impairments. Defining how these intrinsic regenerative pathways are initiated may thus

suggest therapeutic approaches to improve neuronal recovery following axon injury.

Activation of a genetic regeneration program is an important determinant of successful

axon regeneration169,170. During development, multiple transcriptional pathways regulate the

genes that control axons? intrinsic growth capacity. Once axons have reached their targets,
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however, these transcriptional pathways are turned off, and the growth program is shut down.

Peripheral neurons are able to successfully reactivate this growth program by expressing

regeneration-associated genes that allow for robust axonal regrowth169,170, whereas CNS

neurons are typically unable to do so. Activation of such a pro-regenerative program is

illustrated by the conditioning injury paradigm, in which a sensory neuron exposed to a

prior peripheral lesion exhibits a dramatic improvement in axon regeneration compared to

that of a naive neuron169,171,172.

Although many studies have identified injury signals and transcriptional signaling path-

ways activated by nerve injury, the epigenetic mechanisms that control the switch from silent

to growth-competent state following injury remain largely unexplored. Here we reveal that

axon injury elicits nuclear export of histone deacetylase 5 (HDAC5), leading to enhanced his-

tone acetylation. Promoting HDAC5 nuclear export mimics the conditioning injury paradigm

and accelerates axon regeneration, whereas expression of an HDAC5 mutant that is retained

in the nucleus prevents axon regeneration. Our results suggest that injury-induced HDAC5

nuclear export underlies an epigenetic switch controlling regenerative competence in adult

sensory neurons.

2.3 Results

2.3.1 Axon Injury Stimulates HDAC5 Nuclear Export

Calcium influx and PKCµ are known to promote nuclear export of the class II histone

deacetylase HDAC5 in cardiomyocytes173 and hippocampal neurons174, and we have shown
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that PKCµ phosphorylates HDAC5 locally in injured axons175. Cultured dorsal root ganglia

(DRG) neurons expressing GFP-HDAC5 were axotomized, and fluorescence intensity in the

nucleus visualized over time. Control uninjured DRG nuclei displayed a stable level of fluo-

rescence intensity, whereas axotomy induced a dramatic decrease in GFP-HDAC5 intensity

in the nucleus.

2.3.2 HDAC5 Nuclear Export Is Required for Axon Regeneration

Peripheral nerve injury activates a pro-regenerative gene expression program that is es-

sential to promote axon regeneration169. If HDAC5 nuclear export is required to activate

such a pro-regenerative gene expression program, then preventing HDAC5 nuclear export

should limit axon regeneration. We tested this possibility by engineering an HDAC5 mu-

tant that is trapped in the nucleus and unable to be exported to the cytoplasm of DRG

neurons. Based on previous studies173,176, we mutated serine residues 259, 280, and 498

to aspartic acids (GFP-HDAC5nuc). In contrast to GFP-HDAC5, which reaches injured

axon tips, GFP-HDAC5nuc was trapped in DRG nuclei and failed to reach axons following

axotomy. DRG expressing GFP-HDAC5nuc also displayed decreased levels of acetylated hi-

stone H3 (Ac-H3) compared to DRG expressing GFP as a control, indicating that mutation

of these serine residues affects GFP-HDAC5nuc localization but not its ability to regulate

H3 de-acetylation.

We then monitored axon regeneration in vitro in DRG neurons expressing GFP-HDAC5nuc.

We visualized axon regrowth by live-cell fluorescence imaging after in vitro axotomy in DRG
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expressing GFP only or GFP together with GFP-HDAC5nuc and measured the regenerative

capacity of injured axons after axotomy, as previously described175. Axotomized control

axons displayed robust regeneration, with a regeneration index of 70.1% ± 4.1%, whereas

GFP- HDAC5nuc expression strongly suppressed axon regeneration to 36.1% ± 6.9%.
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Figure 2.1.: Robust clustering of differentially expressed genes
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Figure 2.1.:

Consistent with the idea that cytoplasmic localization of HDAC5 correlates with axon growth capacity, we

observed that in freshly dissociated embryonic DRG neurons, which display high growth capacity, HDAC5

was mainly found in the cytoplasm, whereas, after 15 days in vitro, HDAC5 was mostly in the nucleus.

Together these experiments point to a critical role of HDAC5 sub-cellular localization in the control of

axon growth capacity. (A) Dependence of basal gene expression on GFP-HDAC5nuc expression. Red

dots: differentially expressed probes with FDR-corrected q value <0.05 (1,637 probes, 6.4%); violet dots:

probes below level of detection in both conditions (13,902, 54.1%); blue dots: remaining probes (10,158,

39.5%). (B) Heatmap representation of the pairwise co-clustering frequency matrix of 646 expression vectors

corresponding to 323 probes in GFP- and GFP-HDAC5nuc-expressing DRG neurons. Ordering of probes

along horizontal and vertical axis based on hierarchical clustering. (C and D) Post-axotomy time course

dynamics of HDAC5-independent and HDAC5-dependent genes. Four example clusters each of HDAC5-

independent (C) and -dependent (D) genes are shown. (C) Probes whose expression vectors in control and

HDAC5nuc conditions co-clustered most frequently, suggesting that their post-axotomy dynamics are not

regulated by HDAC5. Clusters i and ii exhibit rapid responses with a compensatory returns which first

overshoot, then stabilize around basal expression level. Clusters iii and iv exhibit slower responses with

less pronounced overshoot upon return to basal expression. (D) Probes whose expression vectors in control

and HDAC5nuc conditions co-clustered least frequently, suggesting that their post-axotomy dynamics are

subject to HDAC5 regulation. Clusters i and ii exhibit little response to axotomy under normal conditions,

but a robust down-regulation in excess nuclear HDAC5. Clusters iii and iv exhibit the opposite: a robust

post-axotomy down-regulation in control condition, but discordant mis-regulation in excess nuclear HDAC5.

2.3.3 HDAC5 Nuclear Export Activates a Pro-regenerative Transcriptional Pro-

gram

To further determine the function of HDAC5 nuclear export in the expression of pro-

regenerative genes following axon injury, we examined changes in gene expression in cultured

DRG by microarray analysis, comparing DRG expressing GFP or GFP-HDAC5nuc at 0, 3,

8, 12, and 40 hr after in vitro axotomy. Comparison of pre-axotomy time points using differ-

ential fold-change analyses revealed that global expression differences were similar to those

seen between replicates, indicating that gene expression was not generally affected by the

expression of GFP-HDAC5nuc (Figure 2.1A). Several transcription factors, previously iden-
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tified to play important roles in neuronal injury response and axon growth, were identified as

HDAC5-dependent genes. These include jun 177,178, KLF4 and KLF5179,180, Fos 181,182, and

Gadd45a 183, and their expression was modulated by GFP-HDAC5nuc at one or more time

points examined. This analysis suggests that injury-induced HDAC5 nuclear export plays

an important role in the regulation of regeneration-associated genes.

To uncover dynamic temporal patterns of genes regulated by HDAC5, we conducted a

robust clustering analysis on the 323 genes that exhibited a strong response to injury in

either GFP- or GFP-HDAC5nuc-expressing neurons. A robustness metric for the similarity

of temporal profiles was calculated by counting the number of times a pair of gene expression

profiles co-clustered across all clustering sets (Figure 2.1B). Because we treated the temporal

vectors of the GFP and GFP-HDAC5nuc conditions separately, but in the same clustering

analysis, we were able to explore specific dynamics of patterns that were similar in the two

conditions, versus different according to their co-occurrence in clusters (Figure 2.1C,D and

Figure 2.1A). The patterns of genes uncovered in response to injury had varying temporal

responses, consistent with previous reports184,185. These analyses support the notion that

injury-induced HDAC5 nuclear export regulates the expression of genes important for axon

regeneration.

2.4 Discussion

Injured adult peripheral neurons successfully regain growth competence via changes in

gene expression to promote successful regeneration169,170. Yet little is known about the
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Figure 2.2.: HDAC5-dependent gene expression

(A) Plots of genes that respond significantly to injury at 8 hr. Red dots indicate those affected by GFP-

HDAC5nuc expression, and the black line indicates a 1.5 ratio of GFP control neurons upregulation to

GFP-HDAC5nuc neuron upregulation. (B) Venn diagram of HDAC5-dependent genes at the indicated time

points after axotomy. The percentage of all genes at each time point that are HDAC5-dependent is indicated.

mechanisms by which injury signals unlock a silent pro-regenerative transcriptional program.

Our study demonstrates that the changes are elicited via HDAC5 nuclear export.

2.4.1 Histone Modifications and the Tuning of Transcriptional Regenerative

Pathways

The modification of histones by HATs and HDACs shapes chromatin to finely tune tran-

scriptional profiles. Recent observations point to a role for histone modifications in the

response of neurons to injury. Increasing histone acetylation promotes axon regeneration in

CNS neurons, including cerebellar and retinal neurons186,187. In agreement with these stud-

ies, our results revealed that enhanced HDAC5 nuclear export in sensory neurons accelerates
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axon regeneration. HDAC5 nuclear export may have a direct role in transcriptional regula-

tion. Indeed, HDACs can deacetylate transcription factors in addition to histones and inhibit

transcription via interaction with co-repressors188. Given that HDAC5 also functions as a

repressor of the myocyte enhancer factor-2 (MEF2) transcription factor189, injury-induced

HDAC5 nuclear export may also regulate a pro-regenerative transcriptional program via

transcriptional mechanisms.

HDAC5 nuclear export likely represents a part of an epigenetic response to injury. Indeed

the role of DNA methylation has been suggested to regulate axon regeneration in the CNS190.

Because chromatin remodeling plays an important role in neuronal function188, future studies

are needed to understand the epigenetic mechanisms induced by injury that promote axon

regeneration in the adult nervous system.

2.4.2 Dual Role of HDAC5 in Axon Regeneration

We have previously shown that injury to peripheral neurons leads to HDAC5 accumu-

lation at the tip of injured axons and local tubulin deacetylation, a process required for

growth-cone dynamics and axon regeneration175. Here we present evidence that axon in-

jury leads to export of HDAC5 from the nucleus to the cytoplasm. Our results strongly

suggest that HDAC5 plays a dual role in peripheral axon regeneration: its exit from the

nucleus permits activation of a pro-regenerative transcriptional program, and its transport

in axons modulates growth-cone dynamics to sustain axon regeneration. This dual function

of HDAC5 likely explains the decreased axon regeneration in HDAC5 KO compared to WT
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mice. The complexity of roles of HDAC in neuronal development, function, and maintenance

is rapidly coming to light, and future studies are needed to elucidate the multiple roles of

distinct HDACs in axon growth and regeneration.

2.5 Experimental Procedures

2.5.1 DRG Culture, In Vitro Axotomy, and Regeneration Assays

Mouse embryonic DRG spot culture, in vitro axotomy, and regeneration assays were per-

formed as described175. For in vitro regeneration assays, GFP-expressing DRG neurons were

fixed at the indicated time after axotomy, and axons visualized by fluorescence microscopy.

2.5.2 Adult DRG Cultures and In Vivo Axon Regeneration Assay

For preconditioning injury, the sciatic nerves of 4-month-old mice were axotomized or not.

L4 and L5 DRGs were dissected 3 days later, cultured for 8 hr, and immunostained with

TUJ1, and axon projection length was calculated as previously described191. To test for axon

regeneration in vivo, sciatic nerves were dissected 3 days after a crush injury. Longitudinal

sections of fixed sciatic nerves were stained with SCG10 and TUJ1. SCG10 fluorescence

intensity was measured along the length of the nerve using ImageJ and a regeneration index

that was calculated by measuring the distance away from the crush site and in which the

average SCG10 intensity is half that observed at the crush site.
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2.5.3 RNA Preparation and Microarray

DRG spot cultures were axotomized at DIV7. RNA was extracted at 0, 3, 8, 12, and

40 hr after axotomy on duplicate samples using PureLink RNA extraction kit (Invitrogen).

Quality control of extracted RNA was performed using 2100 Bioanalyzer (Agilent). RIN

scores from all samples were more than 7.0 (minimum 8.8 and maximum 10). To analyze gene

expression, MouseRef-8 v2.0 Bead-Chips were used from Genome Technology Access Center

at Washington University. Data-quality assessment and normalization were performed using

GenomeStudio (Illumina).

2.5.4 Data Analysis of Time-Course Dynamics

Background-subtracted data were normalized using the quantile algorithm192 and in any

given analysis if less than 40% of the measurements considered indicated values above the

noise floor of detection (detection p-value > 0.01), the measurements were removed for the re-

mainder of that analysis. Differential expression analysis and multiple hypothesis correction

of significance values (q-values) using the Benjamini-Hochberg false discovery rate (FDR)

were performed using Cyber-T software193. Probes whose basal expression was significantly

affected by HDAC5nuc expression were removed from consideration (1,637 probes). For full-

vector analyses, the remaining data set was reduced to include only probes whose expression

changed by at least two-fold in response to axotomy in either the control or HDACnuc cells in

the time points measured. The final reduced set included 323 probes. Raw expression values

smaller than 1, including negative values, were set to 1 for the purposes of clustering analysis.
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Replicate measurements, where available, were averaged. Control and HDAC5nuc condition

vectors were treated independently during clustering (resulting in a matrix of 646 vectors

across 5 time points). Multiple clustering analysis (MCA) was performed using MCAM194

software in MATLAB (The MathWorks Inc., 2011). MCA was run with the following pa-

rameters: default (none), log2, Z score, normMax, pareto, normMax-log2, and Z score-log2

transformations; K-means, Affinity Propagation, Hierarchical, self-organizing maps (SOMs)

and N-Cut clustering algorithms; Euclidean, correlation, city block, cosine, and Chebychev

distance metrics; and K values ranging from 5 to 70 in increments of 2. The range of K

values was centered around K = 37, which was the K value determined by running the Affin-

ity Propagation clustering algorithm with cosine distance metric on log2-transformed data.

The combined parameters produced a final MCA with 1,980 individual clustering solutions

and the number of times any two probes co-clustered was summed across all clustering so-

lutions to produce the co-occurrence matrix. To identify features of HDAC5-independent

and -dependent transcriptional responses, probes with highly similar (co-clustering at least

75% of the time) and least similar (co-clustering no more than 15% of the time) dynamics in

control and HDAC5nuc conditions were clustered again with the same clustering parameters

but with ranges of K more suited to the sizes of these subsets, again determined by Affinity

Propagation clustering with the same parameters. “Most similar” probes were clustered on

data vectors consisting of all (averaged) measurements in both conditions, with K ranging

from 3 to 15 in increments of 1, resulting in 780 clustering solutions. “Least similar” probes

were clustered twice, once on control condition data and once on HDAC5nuc condition data,
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with K ranging from 3 to 15 in increments of 1 in both cases, resulting in 780 clustering

solutions. Probes failing to meet the two-fold expression change criterion in the clustered

condition were removed prior to clustering, resulting in 62 probes in control condition and

27 probes in HDAC5nuc.
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3. Accounting for Noise When Clustering Biological Data

This chapter is adapted from the following published manuscript:

Sloutsky, R., Jimenez, N., Swamidass, S. J. & Naegle, K. M. Accounting for noise
when clustering biological data. Brief Bioinform 14, 423–36 (2013)
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3.1 Abstract

Clustering is a powerful and commonly used technique that organizes and elucidates

the structure of biological data. Clustering data from gene expression, metabolomics, and

proteomics experiments has proven to be useful at deriving a variety of insights, such as

the shared regulation or function of biochemical components within networks. However, ex-

perimental measurements of biological processes are subject to substantial noise—stemming

from both technical and biological variability—and most clustering algorithms are sensitive

to this noise. In this paper we explore several methods of accounting for noise when analyzing

biological datasets through clustering. Using a toy dataset and two different case-studies—

gene expression and protein phosphorylation—we demonstrate the sensitivity of clustering

algorithms to noise. Several methods of accounting for this noise can be used to establish

when clustering results can be trusted. These methods span a range of assumptions about

the statistical properties of the noise, and can therefore be applied to virtually any biological

data source.

3.2 Introduction

High-throughput experimental technologies that capture large numbers of molecular mea-

surements, such as gene expression, metabolomics, and proteomics technologies, are increas-

ingly common in routine biological research. In order to understand the data in high-

throughput biology, researchers often use clustering algorithms to organize, visualize and in-
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fer relationships between objects (e.g. proteins, genes, or samples) within a high-dimensional

dataset.

A variety of clustering algorithms have been employed to analyze biological data, such

as Hierarchical clustering and K-means clustering. See Jain et al.196 for a detailed review.

Clustering algorithms partition a dataset into clusters where measurements within a cluster

are more similar to each other than they are to members of other clusters. The similarity

measure is based on a distance metric, such as the Euclidean distance. This improves our

ability to visualize complex data by reducing the number of objects into a smaller number

of clusters. Doing so helps us understand the underlying process which generated the data.

Clustering has been used in a variety of contexts for elucidating a variety of biochemical

processes13,14,26,197.

However, biological data is noisy and clustering algorithms are sensitive to this noise.

Noise in experiments arises from the techniques used to make those observations, human error

and variability, and the intrinsic stochasticity of the system itself. Certainly, experimental

design and technological advances can reduce biological noise, but there usually remains

some non-negligible uncertainty about each measurement. The best way to quantify this

uncertainty is to replicate the measurement several times21,198. Analysis done using these

measurements should account for measurement uncertainty. Unfortunately, most clustering

algorithms do not explicitly account for the underlying uncertainty of measurements.

Our goal is to explore how noise within real datasets impacts the clustering results and

interpretation of clustering. We will cover four methods of accounting for noise, which
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can be combined with any clustering algorithm of choice. These methods span a range of

assumptions regarding the independence of measurements and requirements for the number

of replicates. The focus of this work is on algorithm-independent methods that can easily be

combined with virtually any commonly-used clustering algorithm. First, we present a toy

example to demonstrate explicitly how noise affects a controlled clustering problem. Next,

we will introduce four example methods of accounting for noise. Finally, we will discuss two

case studies using real biological data: a phosphoproteomic dataset of insulin signaling and

a dynamic microarray experiment of EGF-induced gene expression.

3.3 Toy Example

The toy example in Figure 3.1A could represent a variety of experiments, such as the mea-

surement of 100 mRNA transcripts in cancer cells versus normal tissue, or of 100 metabolites

in untreated versus cells treated with a drug. Using this toy model we can start to under-

stand how uncertainty in experimental measurements affects our confidence in the clustering

solution.

The toy system is made up of five Gaussian processes, with 20 points generated from each

process. We will refer to this as the ‘true’ data. The clusters in Figure 3.1A were generated

by K-means clustering with K=5. This solution matches the underlying processes. Black

lines indicate cluster boundaries, such that for every point inside a cluster’s boundary area

its Euclidean distance to that cluster’s centroid is smaller than its Euclidean distance to any

other centroid. Of course, true empirical measurements would have some noise associated
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Figure 3.1.: Toy clustering example

(A) Five clusters were generated by sampling from five different 2-dimensional Gaussian distributions. The

cluster labels and boundaries are generated from a K-means solution that recapitulates the true clusters.

(B) Gaussian noise was randomly generated for every individual data point and is shown here by shading

the area that captures one standard deviation in both dimensions. (C) A toy triplicate experiment was

generated by randomly choosing two points in addition to the mean of the distributions shown in panel B.

For simplicity, only one object is shown per cluster and those where triplicates cross clustering boundaries

were chosen. For descriptive purposes, they are referred to here as “genes”. (D) Empirical distributions are

calculated from the individual triplicates and are shown outlined in their respective cluster color with the

true distribution represented by shaded area.
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with them, so noise has been superimposed on each of the 100 data points in the toy dataset.

Shaded areas in Figure 3.1B indicate one standard deviation of each noise distribution. It

now becomes obvious that noisy measurements near dense cluster boundaries, such as those

between clusters 1, 2 and 4, could lead to misinterpretations of the relationships between

members of these clusters.

The most common approach to clustering experimental data with replicates is to cluster

means of replicate measurements. See Method A in the next section. Important information

may be lost when replicates are condensed in this manner prior to clustering analysis. For

example, outlier points may seriously diminish or overemphasize a relationship between

objects. Some data points may simply mis-cluster because their measurement average does

not accurately reflect the underlying data.

In order to test typical clustering approaches on our toy dataset, we generated two

additional replicates for each point in the original dataset by randomly drawing from the

noise distributions indicated in Figure 3.1B. For visualization purposes, replicates of only

one object from each cluster are plotted in Figure 3.1C. While the objects from clusters

3 and 5 had no misclassified replicates, objects from clusters 1, 2, and 4 had at least one

replicate which mis-clustered. Figure 3.1D shows the resulting empirical means and standard

deviations (outlines) compared to the means and standard deviations of underlying noise

distributions (shaded regions). This is a demonstration of how limited replicates may not

accurately reflect the true underlying process. Although the average value representations of

most of the objects in Figure 3.1D clustered accurately, the average of the object from cluster
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2 is mis-clustered. Additional experimental replicates improves our confidence regarding

measurement accuracy, and can also improve our confidence in clustering solutions. Please

see Dougherty et al.199 for an in-depth discussion of the relationship between experimental

replication and clustering precision.

We repeated the in silico experiment of generating two additional replicates from the

noise models in Figure 3.1B and clustering the empirical averages. On average we observed

three objects per experiment, out of 100 total, mis-clustered when represented by empir-

ical averages. Mis-clustering occurred for objects in all clusters except cluster 5. This

demonstrates that impact of noise on clustering is influenced by the distribution of data in

the multidimensional space. Measurements for objects in cluster 5 could effectively toler-

ate higher amounts of noise without impacting their association with that cluster, whereas

measurements falling close to boundaries were often assigned incorrectly in the clustering

solution. For real biological data, unlike this toy example, knowing whether correct parti-

tioning has occurred is impossible. The probabilistic nature of the result from this type of

noise analysis underscores the facts that hard cluster boundaries may not be meaningful and

that measurements with noise, which span multiple cluster boundaries, could be considered

to belong partially to multiple clusters.

3.4 Clustering Strategies

Some mixture-model based clustering methodologies have been developed which solve

for clustering solutions while taking noise or replicates into account200–202. However, there
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Example Data Matrix
D has size j x k for each replicate (n),
For example, expression for 100 genes measured across 7 time points
in triplicate (j = 100, k = 7, n = 3)

Method A: Replicate averaging
Calculate the average value of each replicate, D∗ with size j x k
C = cluster(D∗)

Results for Toy Data: Assigned to the correct cluster?
Gene 1 Gene 2 Gene 3 Gene 4
Yes No Yes Yes

Method B: Replicate co-clustering
C =cluster(D∗), D∗ has size n*j x k
Evaluate C for replicate co-clustering stability

Results for Toy Data: Percentage of correctly clustered replicates
Gene 1 Gene 2 Gene 3 Gene 4 Gene5
67% 33% 100% 67% 100%

Method C: Permutation sampling
Repeat:

Make D∗ (with size j x k) sampled from replicates
Ci = cluster(D∗)

Evaluate the ensemble of cluster solutions
Results for Toy Data: Percentage of correctly clustered replicates

Gene 1 Gene 2 Gene 3 Gene 4 Gene5
56% 46% 100% 66% 100%

Method D: Model-based sampling
Establish a statistical distribution for measurements in D
Repeat:

Make D∗ (with size j x k) by sampling from distribution
Ci = cluster(D∗)

Until: Satisfy number of repetitions or a convergence criteria
Evaluate the ensemble of cluster solutions

Results for Toy Data: Percentage of correctly clustered replicates
Gene 1 Gene 2 Gene 3 Gene 4 Gene5
48% 44% 100% 58% 100%

Figure 3.2.: Robust clustering methods

We examine four methods of clustering. The results of five genes from the toy dataset (Figure 3.1C) are

reported. In this case, we know the true correct cluster of each gene, and report the percentage of times

that each Gene is correctly classified. In practice, the percentage of times each gene pair clusters together

would be reported.

are clustering methodologies which may work particularly well for a given type of data, or

which a researcher may be particularly well-equipped to implement, for which a model-based

incorporation of noise or replicate handling does not exist. Therefore, we are going to focus

on methods that can be used in combination with any clustering algorithm and chosen set

of clustering parameters.

We consider four methods of handling noise in clustering (Figure 3.2). In Method A,

the data is collapsed by averaging each replicate experiment, and this averaged data is

clustered. In Method B, the complete data with all the replicates expanded is clustered,

and the concordance of replicate clustering is quantified, see related work in Yeung et al.203.

Methods C and D are different ways of “ensemble” clustering, which are combinations of

clustering new instances of a data matrix, which themselves are likely representations of the
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data. In Method C, new data matrices are formed by shuffling the data between replicates.

In Method D, new data matrices are produced by sampling from an analytic distribution of

the data. Examples of handling noise by ensemble clustering can be found in Kerr et al.23

and Bittner et al.204.

While most methods of accounting for noise in clustering can be viewed as special cases of

these four methods, this section does not constitute a fully comprehensive review of the field.

Rather, the focus of these methods is on testing a single clustering algorithm’s sensitivity to

noise. We do not address whether a particular clustering solution is in fact optimal for a given

dataset or desired information outcome. Moreover, we do not discuss previously developed

methods which directly modify clustering algorithms, in non-trivial ways, to handle noise.

Some of these methods can be found in the following references: Medvedovic et al.200, Ng

et al.201, and Cooke et al.202. In this way, we hope to focus on the methods most broadly

applicable across a wide range of biological analysis.

3.4.1 Method A: Clustering Replicate Averages

The majority of studies cluster biological data one time on single vector representations

of the data. In the case where multiple replicates exist, it is common to use the average of

the replicates to represent the data. This method of average-value clustering will be referred

to as Method A, Figure 3.2A. If there are enough replicates, this is a reasonable way of

managing experimental noise, because the average of the replicates converges to the average

of the true distribution. In high-throughput biology experiments, however, there are usually
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a limited number of replicates. With few replicates, as we will see, this is a poor method of

managing experimental noise.

3.4.2 Method B: Replicate Co-Clustering

The second method works by clustering all the data, with all the replicates, and measuring

the robustness of a result by quantifying if replicates of each object are placed in the same

cluster.

The advantage of this method is that it is easily implemented and evaluated. A visual

demonstration of replicate co-clustering is shown in Figure 3.1C for a subset of the 100

objects. The results are also summarized in Figure 3.2B, which indicate the percentage of

times the five example genes have replicates in the correct cluster. It immediately becomes

clear that we have gained important information about the potential misclassification of Gene

2 that occurred from clustering the average of the replicates, which is indicated by only one

of the three replicates correctly being assigned to cluster number 2. Additionally, Genes

1 and 4 each have one mis-clustered replicate, despite the average values being correctly

classified.

The disadvantage of this method is that the degree of associations between measure-

ments and clusters can take on only finite values, such as 0%, 33%, 67%, and 100% in

the case of triplicates. This becomes even more problematic in the case of duplicates, where

different clustering results for two replicates would not allow for the selection of a single clus-

ter by majority vote. Regardless of its limitations, this is still an important improvement

42



over average-value clustering since it can highlight the potentially non-robust assignment of

certain measurements. Other methods which directly use replicates have been used. For

example in Yeung et al.203, they explore forcing replicates into the same subtree as a seed

for further Hierarchical clustering.

3.4.3 Ensemble Clustering

In ensemble clustering, the clustering algorithm is applied to resampled versions of the

data to generate multiple clustering solutions. These clustering solutions are combined to

create a consensus, or ensemble solution20,205–208. The critical reason ensemble clustering

is more powerful than replicate co-clustering is that it enables generation of many more

samples than there are replicates. This enables better resolution of co-clustering confidence.

Furthermore, as we shall see, this method can be applied even to single-replicate datasets.

The ensemble has been used to address a variety of issues that arise in clustering includ-

ing the effect of initialization on non-deterministic algorithms (such as K-means)20,209,210,

sensitivities to algorithm, distance metric, and data transformation selections211 and incor-

porating the effect of noise23,204,207,212. In essence, the ensemble has been used to address

how to handle variations in clustering results that arise from the factors that could alter the

solution, such as the distance metric used or data variability.

Different groups have used different methods of generating an ensemble solution in the

context of noise sensitivities23,204. For example, Bellec et al.212 use ensemble clustering to find

stable features of brain networks in resting-state fMRI with sampling from noise distributions
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of data and allowing the initialization of K-means to change randomly. Unfortunately, studies

like this, which account for the effect of experimental noise on a clustering solution, are not

published frequently enough.

In this discussion we focus on a variation of the method used by Bellec et al.212 because

of its ease of implementation. In this method, clustering results are combined to create

an ensemble solution by computing a co-occurrence matrix, which indicates the fraction of

times each pair of objects cluster together across all clustering sets. Objects that co-cluster

frequently are said to “robustly” cluster, and are the connections that can be most trusted.

Several groups are exploring methods of evaluating the co-occurrence matrix gener-

ated from the cluster ensemble. These methods range from linkage-based clustering of the

co-occurrence matrix to define a final ensemble clustering solution20,207,210,213,214 to graph

theoretical-based methods, where the co-occurrence matrix is viewed as a weighted associa-

tion matrix between objects215.

An advantage of ensemble clustering is that the final ensemble result can take on shapes

that are different from the constraints of the underlying clustering algorithm used209. For

example, as we will see in the case studies, the network visualization of the co-occurrence

matrix can have a different number of clusters than the K-means clustering algorithm form

which it was sampled. Additionally, an important piece of information contained in the

ensemble is not just the decrease in probability of one object clustering with a second object,

but in balance, what other clusters that object could alternately be associated with.

44



Ensemble clustering naturally lends itself to a probabilistic, fuzzy clustering interpreta-

tion. When the same clusters are consistently identified across clustering sets, the probability

of an object belonging to a cluster is simply estimated by the frequency of this occurring in

the ensemble, thereby defining fuzzy cluster boundaries. For many real datasets, however,

cluster identities cannot be mapped between clustering sets because the identified clusters

are so different between clustering solutions. Nevertheless, co-clustering frequencies between

pairs of objects may be treated as probabilities of belonging to the same cluster. Robust

clusters may then be built up from the most robust pairwise relationships.

We will introduce two methods of producing an ensemble result that accounts for noise.

In the first method, the replicates themselves will be reshuffled to produce a new dataset.

In the second method, an alternate dataset will be created by sampling from a noise model.

The case studies have been chosen to explore various nuances of these methods, including

how to deal with single-replicate data.

3.4.4 Method C: Permutation Sampling

In permutation sampling, which could be considered a form of bootstrapping, the data

vectors for each object’s replicates are shuffled to generate each sample (Figure 3.2C). This

is done by randomly picking a value of each measurement to form a novel replicate. Exhaus-

tively enumerating all permutations of the dataset’s replicates is computationally expensive

for realistically-sized datasets.
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A permutation sampling method is attractive because it is easy to implement, and makes

no explicit assumptions regarding the underlying distribution of the data samples. It is not

entirely assumption free. It implicitly assumes, for example, that sample to sample noise for

a given object is independent, an assumption sometimes violated if data is not effectively

normalized. Also this method assumes there are sufficient replicates to adequately sample

each object. The problem with this requirement is subtle. There is a large number of objects

in typical biological datasets, so with a handful replicates it is almost certain that a few of

these objects will have non-representative samples216.

3.4.5 Method D: Model-Based Sampling

In the final and most powerful method samples are drawn from a mathematical model

of the data-generating process that explicitly defines the experimental noise. This model is

computed from the observed data and appropriate, domain-specific assumptions about the

noise.

Sampling consists of generating random values from probability distributions character-

izing the replicate data for each point in each vector to create a resampled dataset, D*.

Normal distributions are used when normality conditions apply to the data. These distribu-

tions can be defined by the means and standard deviations of replicates, or may be inferred

from the data by more sophisticated methods216. However, experimental data may deviate

from normality and other parametric models of noise can be used for sampling. The advan-

tage of this method is that if a noise model can be defined for a certain process, even datasets
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with no replicates can be evaluated for the effect of noise on the analysis by clustering. The

potential limitation of this application is when assumed distributions deviate drastically from

the sampled distribution leading to a skewed, or over- or under-representation of the noise.

3.4.6 Modeling Noise

In order to use Method D, some effort must be made towards defining an appropriate

model of the experimental uncertainty in the data. When there are two or more replicates,

it is commonly assumed that the noise is normally distributed and that each object’s noise

is independent. The sample mean and standard deviation of each object are used to pa-

rameterize normal distributions from which sampling replicates are drawn217 . For this to

be sensible, the data must be transformed onto a scale where the data is approximately

normally distributed. For example, expression data is usually normalized and transformed

onto a log-scale to accomplish this.

With domain- and technology-specific studies, it is possible to use better models. In

the case of gene expression, several researchers have proposed better noise models22,216,218.

For example, Posekany et al.22 argues that microarray noise has a fatter tail than a normal

distribution, and suggest using a t-distribution instead.

The sliding-window prior, proposed by Baldi and Long216, merits special attention be-

cause it is likely to be applicable across several types of biological data. They note that

there is a strong, non-linear relationship between the mean and standard deviation of genes

in expression data (Figure 3.3A). Furthermore, when there are few replicates, the most prob-
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Figure 3.3.: The relationship between mean and variance

Left: In gene expression data (shown here), there is a strong relationship between the mean expression and

the sample variance. The higher the expression level, the higher the variance. Right: In log-space, the

relationship flips. The higher the expression level, the lower the variance. The sliding-window prior averages

the variance of genes with similar expression levels. The figure displays variance estimates as a line.

lematic error in modeling is underestimating sample variance, which implies there is more

confidence in the true mean than is warranted. In order to mitigate the risk of dramatically

underestimating the variance, they propose averaging the variance of genes with similar mean

expression levels (Figure 3.3B) . There is often a strong, but non-linear, dependence between

the mean and variance in real biological data, so this regularization is often sensible.

Most methods of modeling noise require that there is at least one replicate of the exper-

imental data. Replicate datasets are not always collected. It is still possible to model noise

in this context if the technology is well understood. An example of this is demonstrated in

the second case study.
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3.5 Case Studies

To illustrate how these method work in practice, we will present two case studies, one

using phosphoproteomic profiling data and one using gene expression data.

3.5.1 Case 1: Phosphoproteomic Data with Replicates

This case study focuses on a quantitative LC-MS/MS phosphoproteomic experiment,

which captures phosphotyrosine signaling dynamics in 3T3-L1 adipocytes stimulated with

insulin219. The dataset was downloaded from PTMScout194 for analysis and it represents

120 phosphopeptides measured at 0, 5, 10 and 30 minutes after stimulation with insulin.

Although biological triplicates were measured, due to technological limitations, 15% of the

phosphopeptides have no replicate information and 29% of the phosphopeptides are only

measured in duplicate. Since this dataset contains replicates, we applied all four methods to

this dataset in order to compare the results of each, for a particular dataset and clustering

implementation. In this section, we will present results relative to Method A results, i.e.

clustering using the average of the replicates.

Method A: Clustering Replicate Averages

Hierarchical clustering, with a Euclidean distance metric and average linkage was chosen

as the method for clustering. The dendrogram was cut such that 12 clusters were formed (i.e.

K=12). This set of clustering parameters was chosen based on relatively good performance

for producing clusters enriched for biological terms, such as Gene Ontology labels (deter-
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mined by using the PTMScout interface194). The heat map of the co-occurrence matrix for

average-value clustering is shown in Figure 3.4A, a matrix of ones and zeros. The size of

each cluster is shown in a bubble diagram in Figure 3.5. The clustering set solution for this

implementation is composed of two large clusters, four smaller clusters, and outlier clusters

composed of, at most, two members. The two largest clusters can be seen in the upper-right

and lower-left portions of the co-occurrence matrix, Figure 3.4A.

Method B: Replicate Co-Clustering

Since 85% of the dataset has at least one replicate, we applied Method B and clustered all

replicates together to see how co-clustering was affected, Figure 3.4B. Using the same order of

phosphopeptides as shown in Figure 3.4A, this heat map clearly shows the two largest clusters

have replicates which cluster between both groups, which is indicated by the appearance of

clustering between the upper-left and lower-right clusters, Figure 3.4B. Additionally, the

next two largest clusters also have replicates co-clustering between the two groups. The

two smallest clusters, which are separated by the clusters made of single members, do not

appear to change as dramatically in structure when replicates are considered. For those

phosphopeptides with at least one replicate, 27.5% of them have replicates which cluster

differently. Even this simplistic attempt at considering noise within an experiment has

informed our understanding about the relationship amongst clusters beyond that of average-

value clustering. In particular, it indicates that replicates between the largest groups co-

cluster when considered as individual vectors within clustering.
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Figure 3.4.: Co-occurrence Matrices

(A) Co-occurrence matrix from clustering averaged data (Method A). A co-occurrence matrix was generated

from the single clustering result of the averaged data matrix, using Hierarchical clustering, K=12, of 120

phosphopeptides measured across four time points. Co-occurrences amongst all members of a cluster is

set to a value of 1 and was re-ordered according to linkage by the Ward algorithm, this order is referred

to as Order 1. (B) Co-occurrence Matrix of co-clustered replicates (Method B). The number of replicates

co-clustered between phosphopeptides was summed and normalized by the minimum number of replicates

between the two phosphopeptides. This matrix is plotted in the same order as panel A. The same two large

clusters appear in the upper left and lower right area of the heat map, but one can see that those clusters

have members that have replicates co-clustered, as indicated by the lower left and upper right portions

of the heat map. Since phosphopeptides have one, two or three replicates, co-occurrence values can only

take on a value of 0, 1/3, 1/2, 2/3 or 1. (C) The co-occurrence matrix of an ensemble result (Method D).

Co-occurrences are summed between pairs across all clustering results of an ensemble formed by sampling

from a normal distribution defined by the replicate mean and standard deviation. The matrix is shown in

two phosphopeptide orderings: the same order as panel A and one defined by a new linkage using the Ward

algorithm.
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Ensemble Results: Methods C and D

Ensemble clustering by permutation and model-based sampling were accumulated across

5000 iterations. Figure 3.4C shows the co-occurrence matrix that results from sampling

a normal distribution model of noise, defined by a measurement’s experimental mean and

standard deviation. For measurements with no replicates the experimental mean was as-

sumed to be the single replicate data and the standard deviation was derived from a global

estimate of the ratio of sample standard deviation to sample mean, known as the coefficient

of variation (CV). Global CV was estimated by averaging CV’s of measurements with repli-

cates. This simple approach assumes a linear relationship between variance and mean across

the dataset, but a more complicated model could be fit to that relationship if necessary.

Standard deviations for measurements without replicates were calculated from their means

and the global CV estimate. The co-occurrence matrices were only subtly different between

the two methods of sampling. The approximate behavior of the ensembles is the same as

co-clustering replicate data; those cluster boundaries which break down when replicates are

considered are also blurred when ensemble clustering is used. In this method probabilities of

pairwise relationships can take on a finer range of values versus simply clustering replicate

data directly.

As mentioned earlier, there are many methods for finding a single clustering solution from

an ensemble. Here we used the Ward algorithm to hierarchically cluster the co-occurrence

matrix and chose a cutoff to assemble eight clusters20, which appeared to be the naturally

occurring breakdown of the co-occurrence matrix for both Methods C and D (Figure 3.4).
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Figure 3.5 illustrates the results of the sampling methods; both compared to the cluster

structure of Method A results. The basic structures match well to the information contained

in the heat maps of the co-occurrence matrices (Figure 3.4), i.e. the two largest clusters are

remixed to varying extents in the ensemble result and there are two relatively stable smaller

clusters (clusters 3 and 5 in the middle panel). It becomes clear from this illustration that one

of the strengths of ensemble clustering is the ability to naturally capture outliers (cluster

number 4). These phosphopeptides are outliers based on two pieces of evidence, they do

not cluster robustly with any other phosphopeptide and they undergo drastically different

dynamics compared to the rest of the dataset (Figure 3.5). Interestingly, despite being

outliers, when joined by ensemble analysis, they form a potentially biologically meaningful

subset of phosphorylation sites belonging to proteins involved in regulation of vesicle fusion.

Mapk1 T183/Y185 (Mapk1-p2), Mapk1 Y185 (Mapk1-p1) and Irs1 Y935 are particularly

interesting examples to explore in more depth since their cluster membership changes with

consideration of noise. Mapk1-p2 and Mapk1-p1 are members of a relatively stable cluster

enriched for members of the MAPK cascade, however, permutation sampling indicates that

the singly phosphorylated form of Mapk1 instead resides in the cluster containing Irs1 Y935.

The disparate results amongst the methods can be more clearly understood by observing

the data used in clustering for each method (Figure 3.5). The middle panels of Figure 3.5

demonstrate that Mapk1-p2 and Irs1 Y935 are relatively low variance measurements, with

distinctly different down-regulation profiles. In contrast, Mapk1-p1 replicates have much

higher variance, and that variance acts in such a way as to make its association with either
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Figure 3.5.: Phosphoproteomic data clustering results

Upper panels: Ensembles formed from data permutation and normal distribution sampling compared to a

single clustering of the averaged data matrix. Cluster sizes are proportional to the number of phosphopeptides

contained; the smallest contains one phosphopeptide (left panel) and the largest contains 35 phosphopeptides

(right panel). A single clustering was produced for the ensemble sets by cutting the clustered co-occurrence

matrix (Figure 3.4D) to form eight clusters. Middle Panels: Dynamics of three example phosphopeptides,

Mapk1 T183/Y185 (referred to as a doubly-phosphorylated form of Mapk1, Mapk1-p2) and Irs1 Y935 ro-

bustly cluster in their respective groups. The middle panel of the Mapk and Irs1 phosphopeptide dynamics

show all possible permutations of their replicates. The right panel of the Mapk and Irs1 phosphopeptide

dynamics indicate the area that contains +/- a standard deviation of all vectors produced by sampling 5000

times from the normal distribution defined by their respective replicates. Lower Panel: The average rep-

resentation of the dynamics in each cluster produced by Method C, Upper Middle Panel (cluster numbers

map directly between the Upper and Lower panels). If Gene Ontology enrichment occurs in the cluster, a

representative label appears. Note that cluster 4 y-axis scale is double that of the other clusters.
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Irs1 or Mapk1-p2 indeterminable. Both Mapk1 and Mapk3 singly and doubly phosphorylated

forms behave identically, indicating that this could in fact represent biologically meaningful

information. In cases such as these, it is perhaps best to view these as fuzzy clustering

relationships. In this way one would describe the singly phosphorylated forms of Mapk1 and

Mapk3 as belonging partially to the cluster containing Irs1 Y935 and partially as belonging

to the doubly phosphorylated forms of the Map kinases.

Since this dataset represents a real-world example with an unknown “ideal” clustering

solution, it is impossible to say which method of handling noise is best. However, from

this study it is possible to see that average-value clustering is the least informative when

it comes to understanding the robustness of a given solution with regards to experimental

noise. The remaining three methods, clustering replicates and the ensemble methods, follow

surprisingly similar trends when it comes to highlighting relationships that are not robust

to noise. The advantage of the ensemble methods appears to be their ability to define a

finer range of co-clustering values, which could be helpful in defining either an improved,

definitive clustering solution, or a fuzzy clustering solution.

3.5.2 Case 2: Gene Expression Data Without Replicates

In this case we examine a single measurement microarray gene expression experiment.

HeLa cells were stimulated with epidermal growth factor (EGF) for 0, 20, 40, 60, 120, 240,

and 480 minutes, followed by gene expression profiling by hybridization to the Affymetrix
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HG-U133A array220. The dataset is publicly available from www.ncbi.nlm.nih.gov/geo/,

record GSE6783.

The subject of this study was transcriptional response, and the authors focused their

analysis on putative regulators of transcription induced by EGF. To model the intent of the

original study, we performed ensemble clustering on a subset of 655 probe sets meeting the

following criteria: 1) both “DNA” and “transcription” appear in Gene Ontology annotations

of the quantified transcripts, and 2) at least a two-fold increase in expression was observed

at any time point between 20 and 240 minutes, relative to the basal condition.

In contrast with Case 1, no replicate data was collected, a common scenario in high-

throughput biological experiments. The absence of replicate data restricts our methodolog-

ical options.

Methods A, B, and C

In the absence of replicate measurements Methods A, B, and C cannot be used to account

for noise. Unlike Case 1, where averaging replicate measurements constitutes an accounting

of noise, albeit a naive one, clustering single measurements completely ignores it. In this

case Method D, employing sampling from probability distributions, must be used to account

for noise.
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Figure 3.6.: Noise model preparation

Left panel: Unscaled foreground (GSE6783) and background (GSE1417 and GSE7009) data, ordered by

expression level. Although internally consistent, expression levels cannot be compared between datasets.

Middle panel: Background data rescaled to the 75th quantile of foreground data. Expression levels across

all quantiles now comparable between datasets. Right panel: Regularized noise model derived from back-

ground data using Cyber-T. In log-space noise is higher for genes with low expression levels.

3.5.3 Sampling Without Replicate Data

Single measurements can be used to estimate positions (first moments, expectations, or

means) of probability distributions from which the measurements were drawn. However,

they provide no information about the shapes (second moments, or variances) of those dis-

tributions. In order to estimate the variances we used, as ‘background’, other data collected

on the same microarray platform to create a mapping between means and variances, based

on the assumption that there is a strong and non-linear relationship. Microarray experiments

assay gene expression globally, but the majority of genes will not change significantly in any

single experiment. Therefore, we assume that we can use datasets collected from the same

cell line and on the same microarray platform to generate a model for noise in the absence

of replicates in a particular experiment.

57



We selected two expression datasets, which were also collected in HeLa cells and on

the Affymetrix HG-U133A platform, accessible from www.ncbi.nlm.nih.gov/geo/ as records

GSE1417221 and GSE7009222. The first experiment was measured in triplicate and the

second in quadruplicate. Since measurements are not comparable between datasets without

adequate scaling (Figure 3.6, left panel), background datasets were rescaled by the factor

(75th quantile expression in foreground/75th quantile expression in background) to map

them to the expression range of the ‘foreground’ (GSE6783) experiment, while preserving

all pairwise fold-differences between probe sets within each background dataset. Rescaling

makes all three datasets comparable across the entire range of expression (Figure 3.6, middle

panel).

For the purpose of this demonstration we modeled the noise of log-transformed expres-

sion data with normal distributions216,223. From rescaled background data we generated

a mapping from mean log2(expression) to standard deviation (Figure 3.6, right panel) us-

ing Cyber-T software216, which employs the sliding window prior to calculate regularized

standard deviation estimates for each set of replicates under normality assumptions. This

mapping was interpolated to select standard deviation values for each foreground experi-

mental measurement.

Normal distributions may not adequately model noise for some microarray expression

data224, and heavier-tailed t-distributions have been proposed as a suitable alternative22,225.

Background data may be similarly used to parametrize a t-distribution noise model, for
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example using the algorithm developed by Posekany et al.22, which may then be interpolated

to obtain distribution parameters for foreground data.

Method D

Replicate measurements were generated for the 655 selected probe sets by sampling from

the normal distributions parametrized as described above. Those samplings were then clus-

tered by K-means with cosine distance metric and K=20. Here, we present results from

500 iterations of sampling, followed by clustering, since co-clustering frequencies >0.5 did

not change appreciably with larger number of replications. K=20 was selected because it

roughly fits the square root of number of objects, a general rule of thumb for selection of K,

and it seemed to produce relatively well-formed clusters.

Only 11% of probes met the threshold requirement of co-clustering with any other probe

50% of the time or more. A robustnesscutoff of >0.65 was chosen for determining robust

clusters, since it maximized the number and size of distinct clusters, shown in Figure 3.7.

More stringent choices for the threshold significantly dissipated the formation of robust

clusters and lowering the stringency resulted in clusters that were too large to interpret. At

this cutoff, Clusters 1 and 2 are still clearly distinct (Figure 3.7, bottom panel), although

AKAP17A may be thought of as partially belonging to both. As discussed earlier, robustness

analysis via noise sampling ensembles naturally produces fuzzy clusters with probabilistic

boundaries.
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Figure 3.7.: Expression data clustering results

Top two rows: Average representation of dynamics in each robust cluster at K=20, co-clustering frequency

>0.65. Emphasized black lines in Clusters 1 and 2 represent dynamics of AKAP17A, which co-clusters

robustly with at least one member of both clusters. Bottom panel: Graph representation of Clusters 1

and 2. Nodes represent genes. Edges represent co-clustering relationships above the 0.65 robustness cutoff.

KLF6 p1 and KLF6 p2 represent separate probe sets hybridizing to KLF6, and similarly for JUN. Node

outlined in black represents AKAP17A, belonging partially to both clusters.
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Figure 3.8.: Expression trajectories of genes clustering with varying degrees of robustness

Shaded areas indicate +/- one standard deviation of all resampled vectors for that gene. JUNB clusters

most robustly of any gene, AKAP17A is just above the robustness cutoff, and NR2F6 clusters least robustly

of any gene. Although relative noise of NR2F6 measurements is higher than that of the other two genes,

JUNB and AKAP17A noise is comparable. However, the trajectory of JUNB is more unique, resulting in

more robust clustering.

Noise, however, is not the sole determinant of clustering robustness, as previously ob-

served with cluster 5 of the toy example. In ensemble clustering objects belonging to highly

separable clusters co-cluster more robustly than objects with comparable noise, but belong-

ing to more densely packed clusters. Figure 3.8 shows trajectories of three genes which cluster

with varying degrees of robustness. Despite having comparable amounts of noise, JUNB and

AKAP17A do not cluster with the same degree of robustness. JUNB likely clusters sub-

stantially more robustly than AKAP17A due to separability properties of their respective

61



trajectories. While standard deviation of replicate measurements adequately estimates noise,

distinguishing clustering properties of JUNB and AKAP17A requires robustness analysis of

clustering.

3.6 Conclusions

Unfortunately, experimental measurements are associated with noise, which reduces our

confidence in those values. Handling this uncertainty in the process of analyzing large

biological datasets by clustering may greatly aid in highlighting those cluster associations

which in turn have low or high confidence in light of this noise. Although the incorporation

of noise in clustering requires new layers of analysis, compared to not handling noise, these

results will ideally help researchers avoid misinterpreting clustering results and allow them

to focus on highly probable hypotheses for further study.

We focused this work on those methods that can be used in an algorithm-independent

fashion. By analyzing an in silico toy dataset and two real biological datasets with very

different structures and noise values, we were able to explore how one can incorporate noise

in clustering analysis. One of the recurrent lessons across all of these datasets is that the

amount of noise alone in a particular measurement does not determine its sensitivity to

mis-clustering. The highest sensitivity to noise lies in those regions of high spatial density.

Conversely, well partitioned vectors are much less sensitive, indicating noise analysis at the

very least can highlight uncertainties in clustering partitions. Additionally, this observation

indicates that pre-filtering a dataset to remove observations with a large degree of variation
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could remove data from consideration that might be separated well by clustering, despite

noise.

The most appropriate method of those presented here is entirely dependent on the dataset

being evaluated. The advantage to Method D is that as long as a model for the data and

its noise can be assumed, it can be used for single-, low- or missing-replicate data as a way

to test the sensitivity of a solution to unobserved noise. However, erroneous noise models

could result in over- or under-representation of the sensitivity of the clustering solution for

missing- or no-replicate data. Replicate co-clustering or replicate sampling are ways to avoid

making assumptions about a particular model of noise, but come at the cost of co-clustering

resolution. Since the attainment of these multidimensional datasets typically comes with a

large financial or resource burden, it is rare that average-value clustering will be sufficient

to handle noise during analysis, given low numbers of replicates. Despite the differences in

assumptions and requirements for each method covered here, in toy and phosphoproteomic

data, they had fairly rough agreement, and added a great deal of value to the understanding

of the stability of a clustering solution, so perhaps the use of any method, despite potential

flaws, is still an improvement over not accounting for noise at all in clustering results.
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4. High-resolution identification of specificity determining

positions in the LacI protein family using ensembles of

sub-sampled alignments

This chapter is adapted from the following published manuscript:

Sloutsky, R. & Naegle, K. M. High-resolution identification of specificity de-
termining positions in the laci protein family using ensembles of sub-sampled
alignments. PLoS One 11, e0162579 (2016)
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4.1 Abstract

Since the advent of large-scale genomic sequencing, and the consequent availability of

large numbers of homologous protein sequences, there has been burgeoning development of

methods for extracting functional information from multiple sequence alignments (MSAs).

One type of analysis seeks to identify specificity determining positions (SDPs) based on

the assumption that such positions are highly conserved within groups of sequences sharing

functional specificity, but conserved to different amino acids in different specificity groups.

This unsupervised approach to utilizing evolutionary information may elucidate mechanisms

of specificity in protein-protein interactions, catalytic activity of enzymes, sensitivity to

allosteric regulation, and other types of protein functionality. We present an analysis of

SDPs in the LacI family of transcriptional regulators in which we 1) relax the constraint

that all specificity groups must contribute to SDP signal, and 2) use a novel approach

to robust treatment of sequence alignment uncertainty based on sub-sampling. We find

that the vast majority of SDP signal occurs at positions with a conservation pattern that

significantly complicates detection by previously described methods. This pattern, which we

term “partial SDP”, consists of the commonly accepted SDP conservation pattern among a

subset of specificity groups and strong degeneracy among the rest. An upshot of this fact

is that the SDP complement of every specificity group appears to be unique. Additionally,

sub-sampling gives us the ability to assign a confidence interval to the SDP score, as well as

increase fidelity, as compared to analysis of a single, comprehensive alignment – the current

standard in multiple sequence alignment methodologies.
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4.2 Introduction

Rapid advances in DNA sequencing technologies in recent decades have enabled an ex-

ponential increase in the number of fully sequenced genomes. Combined with advances

in automated gene annotation and functional assignment227–229, this has resulted in the

availability of homologous protein sequences from thousands of species. This abundance of

sequence data, in turn, motivated development of numerous computational strategies for

inferring functional roles of individual protein residues from the amino acid composition

patterns of multiple sequence alignment (MSA) columns.

One such type of analysis seeks to identify residues responsible for specificity differences

in families of homologous proteins that share a common function, but differ in substrate,

ligand, protein interaction partner, or various other forms of specificity. Starting with the

model, first postulated by Susumu Ohno in his seminal book40, that specificity diversification

occurs through gene duplication followed by specialization of each duplicate, the approach

further pre-supposes that such specificity-determining positions (SDPs) experience a specific

pattern of substitutions following duplication. While positions responsible for their common

function remain under constant purifying selection in both duplicates, and positions evolv-

ing neutrally diverge through random drift230, SDPs mutate as the duplicate genes acquire

new specificity, then come back under purifying selection once that specificity becomes fixed.

Subsequent duplications again relax the purifying selection pressure on SDPs, followed by

renewed purifying selection after further specialization. Eventually each specialized gene

evolved by repeated duplication gives rise to a set of orthologs – homologs descended from
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speciation events – which share both the global function of the protein family and the speci-

ficity of their pre-speciation ancestor gene. In the context of SDP identification these are

often called specificity groups. Positions responsible for global function remain conserved to

the same amino acid across all specificity groups, while neutral positions diverge within each

group. SDPs, on the other hand, remain conserved within groups due to purifying selection,

but are conserved to different amino acids in each group, as required by its unique specificity.

Although the numerous SDP identification algorithms123,124,126,127,129,131–135,137,139,141,142 dif-

fer in their scoring functions, they all reward maximally this “conserved within specificity

groups, different between” amino acid composition pattern. Because all methods agree on

this, we generically refer to columns with conservation patterns approximating this ideal as

having “SDP signal”.

Sub-specialization within protein families commonly involves multiple sites in a protein

in a combinatorial fashion, possibly including catalytic, allosteric, and interaction sites, as

well as other aspects of protein function. In a diverse protein family, each member’s spe-

cialized function is very unlikely to be determined by the same set of positions. More

plausibly, positions acquire and lose specificity roles along different lineages over multiple

duplications, resulting in “partial” SDPs which contribute to specialized function in some

specificity groups, but not in others. Among the fraction of groups which use a particular

position as an SDP, the position should exhibit a conservation pattern consistent with SDP

signal. Among remaining groups purifying selection pressure will have been lost, and the

position likely reverted to evolving neutrally: diverging through random drift, resulting in
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low conservation both within and between groups. In fact, we expect relatively few positions

to be under purifying selection in all ortholog sets, with many more positions experiencing a

patchwork of purifying selection and neutral evolution across different lineages. If this is the

case, one expects to find many positions with a “heterogenous” conservation pattern across

ortholog sets: conserved in some sets, degenerate in others. Heterogeneous conservation was

previously reported by Casari et al122 in the Ras/Rab/Rho family, in G2/M and B-type

cyclins, and in a small subset of SH2 domains. In larger protein families, at least some

heterogeneous positions may contain detectable SDP signal among the specificity groups

in which the position is conserved – indicating that this fraction of ortholog sets use the

position in a specificity-determining role. Although several methods allow limiting conser-

vation analysis to a subset of input sequences by only considering sequences corresponding

to leaves descendant from an internal node in a phylogeny130,143,231, doing so assumes are

relevant signal is contained in this monophyletic subset. However, a partial SDP position

that acquired and lost its specificity-determining role multiple times would not have its SDP

signal confined to any monophyletic subset of ortholog sets. Identifying SDPs in the context

of such non-uniform evolutionary history remains a challenge to understanding specificity in

large protein families.

Another, fundamental challenge to all sequence analyses requiring an input MSA, like

SDP identification, comes from the uncertainty and imperfect accuracy of the alignment

process itself. In all but the most trivial cases, different multiple sequence alignment tools

produce differing alignments of the same collection of input sequences. And yet, subsequent
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downstream applications treat input alignments as an observation, assuming their correct-

ness158, even though a number of studies62,72–74,88,158–161 have demonstrated sensitivity of

downstream applications to alignment variability. To make matters worse, two recent stud-

ies demonstrated strong positive correlation between the number of aligned sequences and

the overall amount of alignment error for every tested alignment tool62,63. Furthermore, af-

ter repeatedly aligning a constant subset of sequences with different collections of additional

homologs, Sievers et al.63 found that the embedded alignment of the constant subset was

affected by the variable additional sequences – illustrating sensitivity of pairwise alignments

embedded in an MSA to the total number and context of aligned sequences. Although a

number of approaches for identification and removal of alignment columns with the most

uncertainty have been developed162–166, simply removing columns is of limited utility for

column-wise analyses like SDP identification. Therefore, using all available sequence data,

in a manner robust to alignment uncertainty and inaccuracy, is a second challenge in SDP

analysis of large protein families.

In this work we identify numerous partial SDPs in the LacI family of bacterial transcrip-

tional regulators, previously analyzed by multiple SDP identification methods126,129,132,139,144.

LacI family members vary in their DNA binding specificity, allosteric regulator identity and

promiscuity, and even regulatory logic – with some members dissociating from DNA upon

binding their regulators and others requiring their regulator to bind DNA232. Since the

LacI family contains at least 34, possibly as many as 45 members, each represented by a

set of orthologs from numerous bacterial species233, it also poses the challenge of robustly
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analyzing MSAs of large collections of homologs. To address this challenge we employ sub-

sampling to generate an ensemble of LacI MSAs, taking advantage of a large amount of

sequence data, while aligning relatively few sequences at any one time. We extend an ex-

isting SDP identification method, GroupSim 142, in order to account for partial SDPs and

to calculate group-specific scores – allowing us to determine whether a position is an SDP

for some groups, but not for others. We find support for partial SDP in the physical in-

teractions of corresponding side chains in solved structures of LacI and its homologs. In

comparing group-specific SDP scores in our work with two other methods, SDPPred126,129

and Speer139,144, we find that group-specific scoring identifies many positions that cannot

be detected by existing methods and highlights where these methods are likely making false

positive SDP calls for subsets of specificity groups. Consistent with our expectation for a

protein family with complex specificity, and in contrast to SDPPred, Speer, and GroupSim,

SDP complements identified by our group-specific method vary dramatically between family

members. The resulting aggregate analysis is robust to alignment uncertainty and inaccu-

racy, with individual sequence position results demonstrating a wide range of sensitivity to

alignment variation. Our sub-sampling approach constitutes a general framework for robust

treatment of any SDP method and, more generally, of any computational analysis of multiple

sequence alignments.
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4.3 Results

We assembled a pool of 1814 unique sequences covering 20 members of the LacI protein

family, each represented by a set of orthologs, consisting of between 28 and 192 sequences,

from different bacterial species. Since a multiple sequence alignment (MSA) of this many

sequences will suffer from significantly higher error63, we opted to align a subset of 200

sequences randomly sampled from the pool. To create sufficient sampling of the full sequence

space, we repeated this sub-sampling and alignment 5000 times to form an ensemble of MSAs.

In order to merge analysis results across the ensemble, we included a reference sequence

in each set, for a total of 201 sequences in every alignment. Results were aggregated by

reference sequence position and are referenced that way throughout the text. To avoid bias

the reference sequence was withheld from analysis and only the 200 sampled sequences were

used. Six separate ensembles were generated, each with a respective reference sequence

representing one of the six family members with a solved structure: AscG, CcpA, FruR,

LacI, PurR, and TreR. Positions in reference sequences were independently mapped to each

other with a structural alignment, allowing us to compare results for structurally homologous

sequence positions in different family members. Because results from all six ensembles were

highly similar, we report results based on the LacI reference sequence (LacI of Escherichia

coli, UniProt accession P03023), unless otherwise specified.

Our ensemble approach allowed us to quantify the variability column-wise metrics expe-

rience as a result of differences in alignment inputs and specific errors, which will be high-
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lighted throughout the remaining results. In short, by using the average SDP score across

the ensemble, the result becomes more robust to uncertainty in the alignment process.

4.3.1 Detection of SDP signal at heterogeneously conserved positions

We assume each member of the LacI family has unique specificity and, therefore, we

treat sets of family member orthologs as specificity groups for the purposes of SDP analysis.

This assumption is predicated on the fact that paralogs with identical function are extremely

rare. Instead, when the two copies of a gene resulting from a duplication event fail to evolve

functional differences, one copy tends to become a pseudogene234.

Throughout the text “ortholog set” and “specificity group” both refer to the collection

of orthologs of a family member protein from different bacterial species. “Family member”

is also used to refer broadly to all orthologs of a protein.

Relationships between conservation, agreement, and SDP signal

We find it useful to represent alignment columns as points projected into a two-dimensional

space – where the first dimension is the variable quantifying net amino acid conservation

within specificity groups (group-wise conservation) and the second dimension is the vari-

able quantifying net agreement between amino acid compositions of groups (between-group

agreement) (Fig. 4.1). This projection is conceptually similar to the two entropies projection,

total column entropy and sum of entropies of each specificity group, used by Ye et al.134. We
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Figure 4.1.:

In every panel, the color gradient represents strength of SDP signal, as quantified by average group-wise

conservation minus average between-group agreement. Dark red (bottom right quadrant) represents maximal

SDP signal. (A) Projections of hypothetical alignment columns for illustration: Column II has maximal SDP

signal, while columns I and III have low signal. (B,C,D,E) Projections of LacI reference sequence positions

with group-wise conservation and between-group agreement computed either (B,D) over every specificity

group or (C,E) over conserved groups only, where group conservation is >0.6. (D) Points corresponding

to LacI positions are colored in grayscale corresponding to the red color gradient of (B). (E) Points are

positioned according their SDP signal calculated over conserved groups only, but using the grayscale of (D)

for illustration of the shift individual sequence positions undergo as a result of the altered scoring scheme of

(C).

then calculate SDP signal according to the method in GroupSim 142, defined as the difference

between group-wise conservation and between-group agreement.

Fig. 4.1(A) illustrates the fundamental relationships between group-wise conservation,

between-group agreement, and SDP signal in the two-dimensional space. Conservation is

maximal and agreement is minimal when every specificity group is strictly conserved to a

different amino acid – the ideal SDP pattern (Fig. 4.1, Column II). Regardless of its specific

scoring function, every SDP identification method awards its maximum score to alignment

columns with this pattern. Similarly, every method awards a low SDP score to columns where

every group is conserved to the same amino acid (Fig. 4.1, Column I): high conservation and

high agreement, since it is proposed such positions cannot determine specificity differences.

Low SDP signal is also assigned when most groups are degenerate (Fig. 4.1, Column III) – i.e.

conservation is a mandatory component of SDP signal. The consequence of this requirement

is that the larger the fraction of degenerate groups, the more the SDP signal degrades.

75



ScrR-BD

FruR

TreR

AscG

ScrR-A

3K4H

PurR

3KJX

Mal-B

CscR

CytR

EbgR

RbsR-A

GntR

GalR-B

IdnR

3H5T

CcpA

GalRS

0.3 0.6
Conservation

LacI

Pos
88

Pos
189

Pos
280
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Figure 4.2.:

Historgrams at left show group conservation distributions at position 88 over the MSA ensemble for each

family member. The dotted line indicates threshold for “conserved” designation, separating high conservation

in blue from low conservation in gray. Amino acid content of each of the 20 ortholog sets is represented by

sequence logos for three positions that demonstrate heterogeneous conservation. Rows correspond to LacI

family members. Sequence logos for ortholog sets with average group conservation above the conservation

cutoff are outlined in maroon.

Quantifying group conservation and between-group agreement across the ensem-

ble

Analysis of any property of an alignment column can be extended across an ensemble

of alignments. A benefit of the ensemble approach is the ability to explore the distribution

of a property over collections of input sequences. For example, Fig. 4.2 demonstrates the

distributions of conservation within each of the 20 ortholog sets representing 20 LacI family

members for a single position (LacI reference position 88). In almost all cases there is

variability in this calculation (the only exceptions are the strictly conserved scR-BD and

fruR families). By taking the average value for conservation and agreement, we are, ideally,

creating robustness to the variability of these metrics as a function of alignment.

In order to establish a metric for high conservation within a specificity group across the

ensemble, we call a group conserved if its average conservation score is 0.6 or greater. For

a group of eight sequences, this threshold corresponds to six or more amino acids being

identical. In Fig. 4.2 ScrR-BD and FruR orthologs are most conserved at reference position

88, with conservation of 1.0 in every ensemble alignment, while LacI orthologs are least

conserved, and consistently so across the ensemble. We define a column as heterogeneously

77



conserved, or heterogeneous, when specificity groups in it span conservation extremes: at

least six groups have conservation greater than 0.6 and at least six others have conservation

less than 0.5.

Conservation heterogeneity is pervasive

A third of LacI reference sequence positions (124 of 360) exhibit heterogeneous group

conservation. We represent both conservation and amino acid content over the ensemble at

three positions with heterogeneous conservation (positions 88, 189, and 280) by sequence

logos235,236 (Fig. 4.2). The subset of conserved groups varies dramatically from one hetero-

geneous position to another. On average, a specificity group is conserved at only 55 of 124

positions, and no group is conserved at more than 82 positions, suggesting that purifying

selection pressure is acting on a unique subset of positions in each ortholog set.

Noise from degenerate groups masks strong SDP signal at some positions

Plotting reference sequence positions in conservation-agreement space illustrates the im-

pact of conservation heterogeneity on SDP signal across all positions (Fig. 4.1(B,D)). Since

so much of the LacI sequence is heterogeneously conserved across family members, the area

of strongest SDP signal (bottom right quadrant Fig. 4.1(B)) is relatively unpopulated. Noise

from degenerate groups hampers detection of SDP signal among conserved groups by low-

ering group-wise conservation and making the position as a whole indistinguishable from

positions with uniformly lower conservation across all groups.
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In Fig. 4.1(C,E) amino acid positions are re-plotted according to a calculation includ-

ing only the subset of groups identified as being conserved (group conservation ≥ 0.6) at a

position. This process ideally removes the noise contributed by degenerate groups normally

included in traditional SDP calculations. Naturally, when only conserved groups are consid-

ered, group-wise conservation increases for all positions, except those at which every group is

conserved – resulting in a shift of all positions to the right. However, comparing Fig. 4.1(D)

and Fig. 4.1(E) demonstrates that this shift is far from homogeneous. Two color gradients

are used in order to compare the original, all group calculation, with the calculation based

only on the subset of groups that demonstrate conservation. In Fig. 4.1(E), where positions

are plotted by conserved groups only, the area of strongest SDP signal is populated by a

mixture of points having variable SDP signal in the original scoring scheme. For example,

positions 88, 189, and 280, whose group amino acid composition is shown in Fig. 4.2, are

three of the biggest beneficiaries of the modified scoring scheme. While removing noise from

degenerate groups increases SDP signal overall, individual positions still vary in the strength

of signal among their conserved groups. Based on this analysis, we incorporated this filter

into a high-resolution SDP metric.

4.3.2 Detection of SDP signal in individual specificity groups

As expected for a diverse protein family, the vast majority of noise-filtered SDP signal

in the LacI family is contributed by positions with high heterogeneity of conservation, i.e.

positions at which a subset of specificity groups are degenerate and another subset of groups
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are conserved. We propose a simple method for identifying partial SDPs by evaluating SDP

signal in a group-specific manner. Here, we compare the results of this approach to three

existing methods, SDPPred, Speer, and GroupSim, which – like all existing methods – assign

a single score to every specificity group in an alignment column. Our results suggest that

the standard approach can produce both false positives and false negatives as a result of

heterogeneous conservation across groups.

A group-specific SDP score

We compute a modified GroupSim score, filtered for noise from degenerate groups by

only including conserved groups, where group conservation ≥ 0.6, in the score calculation.

We refer to these conserved groups as “support” groups, since only these groups can provide

support for an SDP call. For each specificity group in an alignment column, we then modulate

the score by a weight that accounts for the evidence of the position’s importance to this group,

based on the group’s conservation. Specifically this is calculated according to the following:

Wgroup × ( group-wise conservation over support −

between-group agreement over support )

(4.1)
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where

Wgroup =


1 if group ∈ support

group conservation otherwise

(4.2)

Averaging this score over the ensemble of MSAs accounts for heterogeneity in a group’s

conservation. Groups conserved at a position in every ensemble MSA receive a higher score

than groups conserved at the position in a fraction of MSAs. The outcome of this approach

is an individualized score for every specificity group (Figs. 4.3 and 4.4).

SDP signal is highly variable across specificity groups

We compare results of our group-specific method with the GroupSim method, on which

our method is based, and with two other existing methods, SDPPred and Speer, for the

20 highest scoring LacI sequence positions as judged by either of the latter two methods

(Fig. 4.3). SDPPred, Speer, and GroupSim scores for a position apply to every specificity

group. Overlap between SDPPred, Speer, and GroupSim is high – 16 positions are among

the top 20 for all three methods – confirming that different methods generally detect the

same SDP signal. However, group-specific scoring demonstrates that SDP signal, defined as

being in the top 7.5% of all group-specific scores, is never uniformly high across all specificity

groups. SDP signal detected by SDPPred, Speer, or GroupSim is supported by, on average,

only 12 of 20 specificity groups. Therefore, the group-specific scoring scheme is able to

identify groups with low SDP signal due to low conservation. Given that conservation within
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Figure 4.3.: SDP results for the highest scoring positions by SDPPred and Speer
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Figure 4.3.:

Each position receiving a top-20 score from at least one of the comparative methods, SDPPred and Speer, are

shown. Ensemble score for SDPPred is the average ranking. Ensemble score for Speer is the average z-score.

See Methods for details on SDPPred and Speer ensemble averages. Position scores are shown for SDPPred,

Speer, and GroupSim. Group-specific scores for each specificity group at the corresponding position are also

shown. Marker size and color correspond to score according to color bars. Note that top 7.5% of scores make

up the vast majority of color scale for each method. For column-wise scoring methods the 27th highest score

corresponds to the 92.5th percentile, since 27÷ 360 = 0.075, or 7.5%.

a specificity group is a requisite for hypothetical importance in a specificity determining role,

it is likely that traditional methods are overcalling SDPs at these positions for those groups

and a group-specific scoring scheme rectifies this.

Our method identified 15 additional LacI positions with strong SDP signal, where at

least one group’s score is in the top 5% of all group-specific scores (Fig. 4.4). All of these

positions score outside the top 20 for both SDPPred and Speer, likely due to the fact that,

on average, only 7.4 of 20 groups have detectable signal in this set. Position 29 scores 11th

highest with GroupSim, underscoring the modest differences between existing methods, but

the remaining 14 positions in Fig. 4.4 score outside of the top 20 for GroupSim as well.

Noise from numerous degenerate groups masks the SDP signal at these positions when SDP

is calculated as a property of all groups. Our group-specific method detects partial SDPs

even when the signal is present in a small fraction of specificity groups.

Figs. 4.3 and 4.4 offer a striking illustration of the complexity of specificity encoding in

LacI family proteins. Every single position with detectable signal is a partial SDP to some

extent, and no two positions appear to have signal in the same subset of family members.

There are some positions (62, 81, 128, 189, 191, 196, and 277) that additionally highlight the
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Figure 4.4.: Group-specific SDP signal undetected by SDPPred or Speer

Marker size and color corresponds to group-specific score according to color bar in Fig. 4.3

sensitivity of SDP analysis to available sequence data, since all of these positions would have

failed to have high SDP signal, should the latter three ortholog sets not been included in this

analysis. Non-inclusion of a group could easily occur if there was low representation of these

orthologs in currently sequenced species. This highlights the sensitivity of SDP analysis to

input and importance of using all available data.

A subset of positions score among the top 20 with either SDPPred or Speer, but outside

of the top 7.5% for our group-specific method: 149, 73, 274, 87, 291, and 187. Of these, 149,
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73, 87, and 291, but not 274 or 187 score in the top 7.5% for GroupSim (Fig. 4.3), though

GroupSim scores each position lower than SDPPred or Speer. The fact that GroupSim

ranks these positions higher than the group-specific method is misleading: group-specific

scores for conserved groups at these positions are actually higher than GroupSim scores

(because the two methods use the same scoring function, scores can be compared directly).

However, because their SDP signal is selectively boosted by the noise filtering in our method,

positions in Fig. 4.4 crowd positions 149, 73, 87, and 291 outside of the top 7.5%. The group-

specific method prioritizes positions that are very different from those prioritized by existing

methods.

From exploring the similarities among positions ranked higher by other methods than

by our group-specific method (Supporting Information), a clear pattern emerges: strength

of SDP signal detected by any method falls as the fraction of groups conserved to the same

amino acid increases, resulting in greater between-group agreement. While SDPPred, Speer,

and GroupSim detect SDP signal at some or all of these positions, none of the four methods

detect signal at positions 22 or 25 (Supporting Information). In addition, it appears that

the GroupSim scoring function penalizes between-group agreement somewhat more severely

than those of SDPPred and Speer, explaining why each position with this pattern is ranked

lower by GroupSim (Fig. 4.3). Detecting SDP signal in conservation patterns like positions

22 and 25, at which a large fraction of groups are conserved to the same amino acid, presents

a considerable challenge to all SDP identification methods.
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4.3.3 Structural organization of group-specific SDPs

The position of a residue in the 3-dimensional structure of a protein can provide clues

to its role in protein function and specificity. Therefore, we explored SDP positions for

those families where structures are available. We mapped positions scoring in the top 5%

of all group-specific SDP scores onto family members with solved structures (Figs. 4.5, 4.6,

Supporting Information, Supporting Information, Supporting Information, and Supporting

Information). Based on group-specific scores, this results in a unique structural collection of

SDPs for each family member.
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Figure 4.5.: SDP scores mapped onto reference structural alignment

Locations of alignment positions in structural features are indicated in the top track. The allosteric site is

located at the interface of N-terminal and C-terminal regulatory sub-domains, each of which is split into two

linear segments of the polypeptide chain, as indicated. Heatmap colors correspond to group-specific scores

for indicated specificity groups and whole-position Speer and SDPPred scores, according to the color bars

in Fig. 4.3.
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LacI CcpA

Figure 4.6.: Structural distribution of SDP complements of LacI and CcpA

LacI (left) and CcpA (right) SDPs scoring in top 5% of all group-specific SDP highlighted on LacI (2pe5)

and CcpA (3oqo) structures. Each protein is shown as a homo-dimer complexed with DNA, with one

monomer shown in blue and the other in green. SDP side chains shown in space-filling representation in

color matching their monomer. LacI ligand and CcpA binding partner protein shown in gray. CcpA binding

partner is semi-transparent.

SDP complements of family members have unique structural organization

In order to compare SDPs in their sequence alignments to structure, we created a struc-

tural sequence alignment of the AscG, CcpA, FruR, LacI, PurR, and TreR reference sequences

and compared this to SDP scores (Fig. 4.5). There is, overall, substantially more SDP signal

in the N-terminal half of the alignment, corresponding to the helix-turn-helix DNA binding
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subdomain, the inter-domain linker, and the N-terminal regulatory subdomain. Together

these account for DNA binding functionality and, most likely, the conformational transition

induced by binding and dissociation of the allosteric regulator. In addition, several SDPs

in the C-terminal regulatory subdomain are in the allosteric site located at the interface of

N-terminal and C-terminal regulatory subdomains. By comparison, the remainder of the

C-terminal sub-domain is relatively devoid of SDP signal.

In order to locate the positions of top-scoring SDPs within the 3-dimensional structure,

we mapped SDPs onto the structures of two family members, LacI and CcpA (Fig. 4.6).

SDP complements of LacI and CcpA identified by the group-specific method clearly have

different spacial organization. LacI SDPs cluster near the allosteric binding site and in

the adjacent protein core region, where they are likely participate in ligand-induced confor-

mational changes. Only a single DNA contacting residue has strong SDP signal in LacI,

although additional DNA contacting residues have an SDP-like conservation pattern, impos-

sible to detect by any of the four methods due to high between-group agreement (as discussed

earlier). On the other hand, CcpA SDPs cluster almost exclusively at monomer-monomer

and protein-DNA interfaces, with three SDPs contacting DNA. The prevalence of positions

at the interface between monomers suggests CcpA diverged from the rest of the LacI family

in some functional aspect of dimerization.

Structural maps of AscG, FruR, PurR, and TreR SDP complements are shown in Sup-

porting Information through Supporting Information. The comprehensive mapping of SDP

signal onto available structures suggests that family members diverged through specializa-
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tion in varying aspects of function, as indicated by clustering of SDPs at different locations

in the protein.

TreR

A
FruR
B

CcpA

C

LacI

D AscGE

Figure 4.7.: Structural evidence of partial SDP at LacI position 101

Interactions of TreR (A), FruR (B), CcpA (C), LacI (D), and AscG (E) positions corresponding to LacI

position 101, according to the structural alignment. The side chain at the position homologous to LacI 101

is shown in light blue. Side chains at neighboring positions are shown in salmon, if those positions are SDPs,

and in gray otherwise. Amino acid composition of the ortholog set is represented by sequence logo. Packing

interaction of TreR F102 with F127 and hydrogen bonding interaction of FruR D101 with R149 are highly

specific. CcpA Q101 and LacI R101 do not form specific interactions, although CcpA Q101 does participate

in a single hydrogen bond. Glutamic acid and asparagine, capable of making the same interaction, also

occur among CcpA orthologs. LacI R101 is exposed to solvent, and several other polar amino acids occur

at the position. AscG H101 participates in two different interactions. (E), top: hydrogen bonding with

cis-monomer backbone (gray) and coordinated water molecule (red dot). (E), bottom: hydrogen bond

network with cis-monomeric N68, trans-monomeric E88 (light violet backbone), and another coordinated

water.
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Structural evidence that an SDP is used by only a fraction of family members

In comparison to other methods, our method has increased the total number of positions

with significant SDP signal. Additionally, our group-specific scoring scheme uses group

conservation to identify subsets of specificity groups that are most and least likely to use

the position as a specificity determinant. We illustrate our method’s ability to identify

these subsets by highlighting the structural roles of residues at a position where our method

identified a partial SDP – position 101 in the LacI reference sequence (Fig. 4.7). These

residues (TreR F102, FruR D101, CcpA Q101, LacI R101, and AscG H101) are homologous

to each other, according to the structural alignment, and correspond to position 101 of the

LacI reference sequence in our analysis. In TreR, FruR, and AscG this position is conserved

to three unique amino acids and accordingly, all three received very high group-specific SDP

scores. In their respective structures all three participate in highly specific hydrophobic

packing (TreR) or hydrogen bonding (FruR, AscG) interactions which cannot be satisfied

by other amino acids. In contrast, in LacI and CcpA this position is degenerate and receives

low group-specific scores. Accordingly, R101 of LacI has no obvious interactions with either

the nearby ligand or any neighboring residues, none of which are SDPs. Since the position

is exposed to solvent, theoretically any polar residue should be tolerated. This is borne out

by the range of amino acids occurring at this position in LacI orthologs. In CcpA Q101

forms a single hydrogen bond with a nearby backbone nitrogen atom. Again, none of the

neighboring positions are SDPs. Asparagine and glutamic acid, both capable of forming

the same hydrogen bond, are present at this position in other CcpA orthologs. AscG H101
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presents a particularly interesting case study for this partial SDP position. Histidine is

strictly conserved in AscG orthologs and the group-specific SDP score is high. In Fig. 4.7(E),

the two H101 residues in an AscG dimer participate in two different interactions - one trans

and one cis - neither of which alone appears to strictly require histidine. However, only

histidine can satisfy both interactions simultaneously, consistent with its conservation among

AscG orthologs.

These structural observations support the hypothesis that position 101 contributes to

specificities of TreR, FruR, and AscG, but not of LacI or CcpA. For AscG, although nei-

ther H101 interaction alone provides evidence supporting SDP, the two taken together are

consistent with the SDP call. This example demonstrates the usefulness in group-specific

scoring, which detected both the importance of position 101 to specificity groups in which

it is conserved and its lack of a specific role in specificity groups in which it is degenerate.

4.3.4 Sensitivity of ensemble SDP scores to alignment uncertainty

Results reported so far were obtained from an ensemble of MSAs. In order to compare en-

semble results to the traditional single-MSA approach, we created a single, “comprehensive”

alignment of all 1814 sequences and scored it with our group-specific SDP method. Even for

SDP signal in the top 1%, when groups are most conserved, comprehensive alignment scores

are often outliers with respect to score distributions over the ensemble (Fig. 4.8). Consistent

agreement between the average score from the ensemble and the score from the comprehen-
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Figure 4.8.: SDP score distributions vs comprehensive alignment scores

Score distributions and the comprehensive alignment scores for specificity groups with a score falling in the

top 1% are plotted for positions 29, 81, and 110. Score distributions shown as box plots, with medians

indicated by white lines and means indicated by yellow dots. Boxes cover middle two quartiles of score

distributions, while whiskers cover middle 95%. Comprehensive alignment scores shown as red dots. These

can fall below (position 29), above (position 81), or within (position 110) the middle two quartiles of the

ensemble distributions. Some ortholog sets (IdnR, RbsR-A, ScrR-A at position 29, LacI at position 81) can

be substantially more sensitive to alignment variability than other ortholog sets at the same position. This

fact is reflected in their ensemble score (distribution average - yellow dot), but not in the comprehensive

alignment score.

sive alignment, such as seen at position 110, is rare. More often the comprehensive alignment

score falls in the tails of ensemble score distributions, such as seen at positions 29 and 81.

In most cases ensemble score distributions are symmetric, as indicated by similar mean

and median values of the distribution. Symmetric score distributions with low variance

suggest that the same amino acid nearly always aligned to this reference sequence position for

all orthologs in that specificity group. The ensemble method identifies specificity groups for

which conservation varied dramatically between alignments, indicating greater uncertainty
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in the alignment of those orthologs at that position – e.g. IdnR and RbsR-A at position

29 – and penalizes the specificity group for this uncertainty with a lower ensemble score

(ensemble distribution average). The comprehensive alignment approach cannot account for

different degrees of alignment uncertainty between specificity groups: all groups receive a

single score.

4.4 Discussion

In this work we demonstrated that a substantial fraction of positions in the LacI family

are heterogeneously conserved – i.e. only a fraction of family members are highly conserved,

while a comparable fraction are highly degenerate. In order to accurately identify the speci-

ficity determinants among positions with this conservation pattern, we implemented a scoring

approach in which we 1) boost SDP signal-to-noise ratio by considering only the specificity

groups that are conserved at a position and 2) modulate the score in a group-specific man-

ner – based on each group’s degree of conservation. The paralog-specific collections of speci-

ficity determining residues identified using our method cluster on their representative protein

structures in configurations that are consistent with our understanding of the functional spe-

cialization of those proteins. Importantly, the modulation of the score appears consistent

with the importance of the corresponding residue, given its physical interactions. Our scor-

ing method avoids spurious SDP identification for family members in which a position is

degenerate and detects “hidden” SDPs used by a small fraction of family members.
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In the course of our investigation, we encountered a conservation pattern that occurred

at positions ranked significantly lower by our method than by SDPPred, Speer, or even

GroupSim, which uses the same scoring function as our method. The pattern is characterized

by conservation of a large fraction of specificity groups to the same amino acid, consistent

with specialization of the common ancestor of those groups, followed by maintenance of

the same functional role through the more recent duplications that gave rise to present

day specificity groups. For example, at position 22, 15 of the 20 groups are conserved to

arginine, while the remaining groups are conserved to one of four other amino acids. While

SDPPred and Speer do tolerate a marginally greater amount of between-group agreement

than the GroupSim scoring function, their, and GroupSim’s ability to rank these positions

higher than our method is a side-effect of their failure to detect SDP signal at a number

of positions identified by our method (Fig. 4.3), rather than a strength. In addition, they

too fail to identify positions with conservation patterns like that of positions 22 and 25

(Supporting Information) as SDPs.

Several SDP methods can simultaneously identify SDPs and optimal specificity groups127,132,137,143

by grouping sequences so that total SDP signal across all alignment columns is maximized.

However, as Supporting Information illustrates, such columns often have mutually exclusive

optimal sequence groupings, which further conflict with many partial SDPs identified in this

work. These observations suggest that further development of SDP identification methods

may be required to identify SDPs with high between-group agreement.
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In this work we also tackled the common challenge of MSA-based computational analyses

that arises from uncertainty of the alignment process due to both sensitivity to the input

collection of sequences and to alignment error. This concern is particularly acute when

analyzing large collections of sequences, because overall alignment error increases rapidly

with the number of aligned sequences. We avoided making large alignments, while still

taking advantage of all available sequence data, by building and analyzing ensembles of sub-

sampled MSAs. Using an ensemble average improves the robustness of any metric computed

on a sequence alignment and allows for the detection of regions in the alignment that may be

especially prone to error. We believe this robust approach can be generalized to any analysis

that requires an MSA input.

Whether “specificity determining position” is a biologically meaningful designation re-

mains an open question. Highly targeted experiments are necessary to demonstrate this

functional role: for example, by demonstrating that substituting the amino acids at these

positions with the amino acids present at the homologous positions in a paralog is sufficient

to switch the functional specialization of the protein to that of the paralog. The partial SDPs

identified in this work, together with the ortholog sets in which these positions are conserved,

will significantly reduce the number of candidates for mutation that must be considered by

experimentalists when investigating specialization in the LacI family.
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4.5 Methods

4.5.1 Generation of MSA ensembles

We downloaded all protein sequences from the LacI family resource AlloRep233 and sup-

plemented each ortholog set with sequences from EnsemblBacteria release 26237. A supple-

mental sequence was added to an ortholog set, if: 1) it had 35% or greater identity to each

ortholog in the set and 2) its lowest identity to any ortholog in the set was higher than its

identity to any other sequence in the pool. We then dropped from our analysis any ortholog

set containing fewer than 20 sequences in order to ensure adequate statistical coverage. The

final sequence pool contains 1814 sequences split among 20 ortholog sets ranging from 28

ortholog sequences (IdnR) to 192 ortholog sequences (CcpA).

The subsamples of 200 sequences were sampled from each ortholog set according to its

frequency in the full sequence set. We required a minimum allocation of eight sequences

to avoid small number effects and limited the maximum to 13 sequences per ortholog set.

This sampling procedure was repeated 5000 times. Each 200 sequence sample was combined

with a reference sequence and the 201 sequences were aligned using MAFFT’s L-INS-i (most

accurate) protocol94,238. In addition to the LacI reference sequence, AscG (P24242), FruR

(W8ZE48), PurR (X7PN48), and TreR (P36673) of Escherichia coli and CcpA (P25144) of

Bacillus subtilis were used as reference sequences.
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4.5.2 SDP scoring

Pairwise comparisons between sequence positions, comp(s1, s2), were made using the

identity matrix which had previously produced the most accurate results with both XDet135

and GroupSim 142 SDP identification methods. Conservation within a specificity group was

defined as the average of pairwise comparisons between all sequences in the group:

〈 comp(s1, s2) 〉{(s1,s2) ∀ s1∈group, ∀ s2∈group | s1 6=s2} (4.3)

For an alignment column, group-wise conservation was defined as the average of each group’s

conservation:

〈
〈 comp(s1, s2) 〉{(s1,s2) ∀ s1∈group, ∀ s2∈group | s1 6=s2}

〉
groups

(4.4)

and between-group agreement was defined as the average pairwise sequence comparison

between sequences belonging to different groups, averaged over all pairs of groups:

〈
〈 comp(s1, s2) 〉{(s1,s2) ∀ s1∈g1, ∀ s2∈g2}

〉
{(g1,g2) ∀ g1∈groups, ∀ g2∈groups | g1 6=g2}

(4.5)

5000 alignments from the LacI ensemble were scored with SDPPred126,129, accessed via

its web interface at http://bioinf.fbb.msu.ru/SDPpred/, and Speer139,144, downloaded from

ftp://ftp.ncbi.nih.gov/pub/SPEER/ and run locally.
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SDPPred produces a ranking of positions with statistically significant scores for every

alignment. The number of ranked positions varies from alignment to alignment, and there

is no clear way to rank positions without statistically significant scores. For each position in

the LacI reference sequence we averaged its rank across all ensemble MSAs to generate an

ensemble score. All positions not ranked by SDPPred for a particular MSA received the next

rank after the last explicitly ranked position: e.g., if SDPPred ranked 20 positions, every

unranked position received rank 21 for averaging purposes. Because of this, ensemble scores

for SDPPred are not discriminatory beyond, roughly, rank 30.

Speer produces several scores, including a z-score based on the mean and variance of

scores for each position in an alignment. We averaged the z-scores of each LacI position over

the MSA ensemble to produce an ensemble Speer score.

4.5.3 Structural mapping of SDPs

We aligned representative protein structures for each reference sequence with MUS-

TANG239 to produce an independent structural alignment of the reference sequences. Struc-

tures 3dbi (AscG), 3oqo (CcpA), 2iks (FruR), 1jwl, 1tlf, 2pe5 (LacI), 1jft, 2pua (PurR), and

4xxh (TreR) were aligned. Structures with multiple ligands were used for LacI and PurR.

The DNA binding subdomain and inter-domain linker segments were not included in any

structures of AscG, FruR, or TreR. In order to obtain a complete mapping, full reference

sequences were aligned to the structural alignment using MAFFT’s seeded alignment option.
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4.5.4 Implementation

Group-specific scoring code is available at http://naegle.wustl.edu/software.

4.6 Supporting Information
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Figure 4.9.: S1 Fig
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Figure 4.9.:

Amino acid content at SDPs with excess between-group agreement Amino acid content of each of 20

ortholog sets, represented by sequence logos, at positions with an SDP-like group-wise conservation pattern.

Between-group agreement increases from left to right. Position 18 receives high scores from SDPPred,

Speer, and the group-specific scoring method. Positions 149 through 187 are detected, with progressively

lower scores, by at least one of SDPPred and Speer, but not by the group-specific method. Positions 25 and

22 are not detected by any method.

Figure 4.10.: S2 Fig

SDP complement of AscG. SDPs mapped onto structure 3brq and highlighted in space-filling represen-

tation. Structure only contains N- and C-terminal regulatory subdomains.
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Figure 4.11.: S3 Fig

SDP complement of FruR. SDPs mapped onto structure 2iks and highlighted in space-filling represen-

tation. Structure only contains N- and C-terminal regulatory subdomains.
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Figure 4.12.: S4 Fig

SDP complement of PurR. SDPs mapped onto structure 2puc and highlighted in space-filling represen-

tation.
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Figure 4.13.: S5 Fig

SDP complement of TreR. SDPs mapped onto structure 4xxh and highlighted in space-filling represen-

tation. Structure only contains N- and C-terminal regulatory subdomains.
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5. Accuracy through Subsampling of Protein EvolutioN:

Analyzing and reconstructing protein divergence using an

ensemble approach

This chapter is adapted from a manuscript in submission, co-authored by myself and Kristen

Naegle.
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5.1 Abstract

Mapping the history of gene duplications which gave rise to a protein family encoded in

a genome (a set of paralogs) can be critical to understanding how those proteins function

in their host cells today. However, since each member of a family is recapitulated in the

genomes of related species (a set of orthologs), selection of sequences to be included in the

history reconstruction is non-trivial. Reconstruction is extremely sensitive to the choice of

sequences, which is deeply problematic given no mechanism exists for assessing the accu-

racy of individual reconstructions. Here, we capitalize on the variability of phylogenetic

tree reconstruction to selected input sequences, by subsampling from the available ortholog

sequences of a protein family to create an ensemble of trees, which explores the space of plau-

sible tree topologies. We hypothesize that the most consistent topological features across an

ensemble are more likely to be true and propose a tree reconstruction algorithm (ASPEN)

based on this hypothesis. We simulate 600 protein families over known phylogenies, with

varying branch lengths, and compare the accuracy of ASPEN reconstructions to those of

traditional phylogeny inference methods. We find that ASPEN trees are more accurate than

trees reconstructed traditionally. Additionally, we develop an observable metric calculated

form subsampling, reconstruction Precision, for assessing the likely accuracy of a traditional,

single-alignment all-sequence reconstruction of the divergence history for a set of paralogs.

Together these findings suggest that an ensemble of imperfect reconstructions can provide

more accurate insight than any individual reconstruction.
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5.2 Introduction

Protein families grow in size and diversity through duplication of genes encoding exist-

ing family members followed by functional divergence of the duplicates40,42. Immediately

following a gene duplication event the affected genome contains two identical copies of the du-

plicated gene. Because the genes are redundant, relaxed purifying selection allows mutations

to accumulate rapidly. Since the added energy cost of expressing identical products from

redundant loci confers a selective disadvantage, mutations resulting in loss of functionality

by one of the copies are typically favored by selection. However, the rapid accumulation of

mutations can also result in partial or complete functional divergence between the two copies.

This may create a selective advantage due to increased functional repertoire through neo-

functionalization, greater efficiency and control through sub-functionalization, and possibly

resistance to deleterious mutations through vestigial functional overlap (functional moon-

lighting)41,234,240, leading to retention of both diverged copies (paralogs). After subsequent

speciation events give rise to diverged genomes (species), each of those genomes contains a

gene descended through speciations from each paralog in the ancestral genome (Figure 5.1).

These genes are orthologs characterized by a “same gene, different genome” relationship.

Ortholog sets are related to each other as paralogs, since their respective Most Recent Com-

mon Ancestors (MRCAs) were the original paralogs in the ancestral genome. The genome

of each species encodes a paralog gene belonging to each ortholog set.

Reconstructing the divergence history (topology) of a protein or protein domain family

is crucial to understanding the proteins’ (protein domains’) function(s) and evolution. In
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Figure 5.1.: A hypothetical protein divergence history

Two paralogs emerge after a duplication event and are passed along through subsequent speciation events.

If no additional duplication events occurred, paralogs A and B existed at one time as Most Recent Common

Ancestors (MRCAs) of two ortholog sets and exist today in the genomes of species emerged through the

series of speciations. Each ortholog set can be thought of as representing its MRCA’s paralog.

addition to facilitating powerful in silico analyses66,68,130,241–245, reconstructions of paralog

divergence guide experimental design and data interpretation246–251. Accordingly, divergence

reconstructions for well-studied protein domain families29,30,252 have been relied upon exten-

sively by the scientific community. Because such reconstructions are created from single

sequence alignments, they ignore the great deal of uncertainty in topology reconstruction

under equally valid alignment representations of input sequence data.

Divergence topology reconstruction is extremely sensitive to the input alignment. For

example, the same sequences aligned by different algorithms62,73,74,158,253 or using different

guide trees84 yield different topology reconstructions. So does reversing input sequences prior

to alignment157,166, or removing less than 0.1% of columns from an alignment containing
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over 600,000 columns254. For paralog divergence topologies, another source of uncertainty

likely to influence reconstruction is the set of orthologs selected to represent each paralog.

Because duplications usually predate numerous speciation events, they tend to correspond

to deep internal nodes – nodes with many descendant leaves – in full phylogenies of protein

families. MRCAs of ortholgs descend from duplications (Figure 5.1), meaning every ortholog

descended from each MRCA is also descended from the duplication. Deep internal nodes

tend to be most sensitive to perturbations of the input alignment255. Unfortunately, since

the true history of protein divergence is hidden from us in time, we have no way of knowing

which divergence topologies are more accurate, given the equal validity of input alignments.

Although traditional tree reconstruction produces phylogenies – topologies parametrized

with branch lengths reflecting extent of divergence – we disregard the branch lengths here

to focus on the topologies alone. In traditional inference topologies and branch lengths are

inferred jointly, alternating between topology modifications and branch length optimization

in the case of statistical (Maximum Likelihood and Bayesian) methods. Because the like-

lihood function is evaluated many times for each proposed topology, and topology space

is almost unfathomably large, statistical methods can suffer extremely long run times on

large sequence collections. However, if accurate candidate topologies can be identified by

other means, the computational cost of optimizing branch lengths for individual topologies

is nearly trivial, while optimization for multiple topologies is embarrassingly parallel. Our

approach permits separating topology reconstruction from branch length optimization.
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Furthermore, we focus on reconstructing only the hardest topology nodes – the deep

internal nodes corresponding to protein or domain paralog divergence. We treat MRCAs

of ortholog sets as leaves in our reconstructions and disregard ortholog divergence, which

overwhelmingly recapitulates the species tree. Species divergence is reconstructed more ac-

curately by other approaches254,255. Instead, we capitalize on the variance in reconstructed

topologies under changes in ortholog representation of paralogs to separate topological fea-

tures we believe to be supported by phylogenetic signal from spurious ones we believe to

result from noise. We hypothesize that features observed more frequently under ortholog

resampling are more likely to reflect signal and, therefore, be more accurate, than less fre-

quently observed ones. We explore the relationship between accuracy and variability in

reconstructing paralog divergence topologies and propose a metric for assessing the likely

accuracy of a single-alignment reconstruction for a given protein family. We then present

ASPEN, a topology reconstruction algorithm that integrates over the uncertainty of single

alignment reconstructions to build and rank trees according to observations across recon-

structions from many equally valid alignments. ASPEN produces more accurate topologies

than traditional reconstructions from single, all-sequence alignments.

5.3 Experimental framework for reconstruction analysis

We generated test sequence data by simulating evolution of protein families instead of

using natural protein sequences for two previously noted reasons74. First, simulating evo-

lution over known phylogenies allowed us make a quantitative assessment of reconstruction
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Figure 5.2.: Analysis framework for comparing reconstruction Accuracy and Precision

(A) Sequence evolution was simulated over synthetic phylogenies. Synthetic phylogenies were pruned to

MRCAs of ortholog sets and branch lengths were discarded to obtain true paralog divergence topologies.

Simulated sequences were aligned, phylogenies were inferred from those alignments, and “all-sequence” re-

constructions of paralog divergence topologies were extracted. (B) Sequences were repeatedly sampled from

each ortholog set in a family and phylogeny inference and topology extraction were done to produce a “sub-

sampled topology”. Repeating this N times yields an ensemble of topologies. (C) We define Accuracy as

the similarity between the all-sequence reconstruction and Precision as the comparison between subsampled

topologies and the all-sequence topology.

accuracy compared to the “true” divergence topology. Second, it allowed us to explore a

range of divergence conditions by systematically varying branch lengths of input phyloge-

nies, while controlling for other factors such as overall sequence length and the distribution

of secondary structure elements and disordered loops. Assembling a comparable biological

data set would have been impossible.

We simulated families containing 15 paralogs, each represented by 66 orthologs. In or-

der to make the assessment statistically robust, we generated 600 families across a range
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of post-duplication branch lengths. An alignment of human tyrosine kinase domains (me-

dian length 269 a.a.) was used as template for all simulations (see Methods for simulation

details). We then used all combinations of three multiple sequence alignment algorithms

(MAFFT’s L-INS-i protocol94, ClustalOmega256, and Muscle257) and two phylogeny infer-

ence algorithms (FastTree2258 and RAxML259) to reconstruct phylogenies for the 600 sim-

ulated families. We compared the reconstructed paralog divergence topologies, excluding

speciation nodes by pruning orthologs’ MRCAs to leaves, to the true divergence topology

over which evolution was simulated (Figure 5.2A). We quantified topology differences with

the Robinson-Foulds symmetric distance metric260, modified to account for the occasionally

non-monophyletic reconstruction of ortholog sets (RF ∗, Methods). For convenience we define

the accuracy of a reconstruction as 1−RF ∗ distance between reconstructed and true paralog

divergence topologies. Consistent with earlier studies62,74,158–160,253,261, choice of alignment

algorithm substantially affected accuracy, with L-INS-i alignments producing most accurate

reconstructions, while FastTree2 and RAxML performed very similarly across all alignments

(Supplementary Figure). Based on these results, we selected the combination of L-INS-i and

FastTree2 for all remaining analysis.

5.3.1 Subsampling reveals an observable measure of accuracy

Given the known sensitivity of reconstruction to input alignment, we explored recon-

struction variance resulting from differences in ortholog representation of paralogs using the

framework outlined in Figure 5.2. We gathered the sets of ortholog sequences represent-
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ing each paralog in a simulated family (Fig. 5.2A) and performed a resampling experiment

(Fig. 5.2B): 50 times we randomly sampled 60 of 66 sequences (91%) from each ortholog set

and performed traditional reconstruction, using L-INS-i and FastTree2 with each collection of

subsampled input sequences. We retained a large fraction of sequences to minimize both the

input variation and the loss of phylogenetic signal. To quantify reconstruction uncertainty,

we measured the similarity (1− the average of RF ∗ ) between topologies reconstructed from

most of the sequences to the “all-sequence” topology (Fig. 5.2C). Since this quantity is a

measure of how close the estimates are to each other, we refer to it as Precision.
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Figure 5.3.: Precision vs Accuracy of reconstruction

Reconstruction Precision plotted vs 1−Accuracy of all-sequence reconstruction for each simulated protein

family. 1−Accuracy used on x-axis to make families with most accurate reconstructions appear on the left

and those with least accurate on the right. Families were binned by 1−Accuracy. Tick marks on x-axis

indicate bin boundaries.

Figure 5.3 demonstrates the striking relationship between accuracy of the all-sequence

reconstruction (Accuracy) and Precision of reconstruction for families across a range of post-

duplication branch lengths. Due to their strong correlation we use Precision, an observable
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quantity for natural protein families, as a measure of a family’s reconstruction Accuracy

(unknowable for natural proteins) and, by proxy, the overall “complexity” of reconstruction

for that family. Importantly, this also suggests that our 600 synthetic protein families span a

range of complexities, allowing us to observe the performance of reconstruction as a function

of complexity, via its proxy – Precision.

5.3.2 Using variability to distinguish phylogenetic signal from noise

Although we observed high reconstruction Precision for many families, only four of 600

families had identical paralog divergence topologies reconstructed from every subsampled

alignment (Precision=1). Even among families with the highest Precision, and under dense

subsampling, reconstruction variability was pervasive. On the other hand, Salichos and

Rokas255 argued that pairwise RF distances smaller than 1 (the average RF distance among

randomly generated topologies) indicates consistent phylogenetic signal among the topologies

being compared. Most of our 600 families had Precision (1−〈RF ∗〉) significantly greater than

0, but less than 1. Thus we sought to go a step further and test our central hypothesis: not

only does intermediate Precision indicate consistent signal, but more frequently recapitulated

features are more likely to be accurate, and this fact can be used to reconstruct more accurate

topologies. In order to test this we first needed a way to extract frequently recapitulated

features, and then a way to identify topologies most consistent with those features. Next we

describe our method, ASPEN, which accomplishes both tasks.
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5.4 Reconstructing topologies from ensemble sampling

We created a method we call ASPEN, for Accuracy through Subsampling of Protein

EvolutioN, to construct and score topologies according to their consistency with topological

features frequently represented in an ensemble of subsampled reconstructions (Fig. 5.2B).

It relies on two key innovations: 1) extraction of topological features from an ensemble

as frequencies of path lengths between leaves, and 2) an algorithm to construct and score

topologies according to their consistency with observed path length frequencies.

5.4.1 Transforming topology sets into path length distributions

ASPEN’s foundation is the equivalent representation of a topology (an acyclic, bifurcat-

ing graph) as a matrix of path lengths between leaves in terms of the number of internal

nodes encountered along a path. First we demonstrate equivalence of graph and matrix

representations by presenting a simple algorithm for interconverting between the two (Fig-

ure 5.4). Then we discuss how ensembles of topologies are transformed into path length

frequency distributions.

Transforming a topology graph into a path length matrix

A topology can be equivalently represented as a matrix of leaf-to-leaf path lengths in

terms of internal nodes encountered along the path. Transformation of a topology into its

path lengths matrix representation is trivially accomplished by counting internal nodes along

each path between pairs of leaves (Figure 5.4A).
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Figure 5.4.: Aggregating topological features across an ensemble of topologies using the path
lengths matrix representation

(A) Decomposition of a topology into a matrix of leaf-to-leaf path lengths. Sample paths (A↔B,1), blue,

(D↔E,2), green, (E↔F,3), violet, and (B↔C,4), orange, are highlighted. Dots indicate internal nodes along

path. (B) Construction of a topology from a matrix of path lengths. First, the matrix is transformed into a

sorted list of path lengths. Construction of internal nodes is triggered by path lengths encountered traversing

the list: 1) Node {A,B} joins leaves A and B and completes path (A ↔ B, 1), blue. 2) Node {C,D} joins

leaves C and D and completes path (C ↔ D, 1), pink. 3) Node {{C,D}, E} joins leaf E to internal node

{C,D} and completes path (C ↔ E, 2), green. Path (D ↔ E, 2), grey, is completed by the same node

and can be skipped during list traversal. 4) Node {{A,B}, {{C,D}, E}} joins internal nodes {A,B} and

{{C,D}, E} and completes path (A ↔ E, 3), orange. Four paths of length 4 which appear further down

the in the list are also completed by this node. Finally, 5) node {{{A,B}, {{C,D}, E}}, F} joins leaf F

to internal node {{A,B}, {{C,D}, E}} and completes path (A ↔ F, 3), dashed line. This completes the

reconstruction, since all leaves are connected by the resulting topology. Path (B ↔ F, 3) and all subsequent

paths are already completed and can be ignored. (C) Each topology in the ensemble is decomposed into

a matrix of leaf-to-leaf path lengths. Observed path lengths for each pair of leaves are aggregated into

distributions. (D) Each distribution is then converted into a set of constraints on the length of the path

between that pair of leaves. In the expanded section of the path lengths matrix, distributions of lengths for

paths (A ↔ B) and (A ↔ C) are turned into constraints on the lengths of these paths by inserting each

observed distance for each path, together with the frequency with which that distance was observed, into a

list of path lengths. Vertical ellipses represent other paths of lengths 1, 2, 3, 4, etc. coming from elsewhere

in the matrix.
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Transforming a path length matrix into a topology graph

The reverse transformation can be accomplished using a simple bottom-up construction

procedure (Figure 5.4B). Internal nodes are constructed by joining pairs of leaves and/or

previously constructed internal nodes to recapitulate observed leaf-to-leaf path lengths. This

bottom-up construction (“outside-in” for unrooted topologies) continues until all leaf nodes

are connected by a single graph. Note that it is possible to encounter path lengths during

list traversal which, at that state of construction, cannot be accommodated by constructing

an internal node. For example, if the order of paths (A ↔ E, 3) and (A ↔ F, 3) in the list

in Figure 5.4B were reversed and path (A ↔ F, 3) was encountered first, it could not be

accommodated because internal node {{A,B}, {{C,D}, E}} would not yet be available to

join to leaf F. Such path lengths are skipped and then revisited on the subsequent traversal

of the list. Traversal is repeated as necessary until construction is completed. Because all

path lengths are derived from a single topology, they are guaranteed to be consistent, making

the construction unambiguous.

Generating path length frequency distributions

We take advantage of the alternate matrix representation to capture the individual vari-

ation of each leaf-to-leaf path length across an ensemble of topologies. Each topology is

transformed into a path lengths matrix. Then path lengths for each pair of leaves are ag-

gregated into a path length distribution for that pair (Figure 5.4C). Although ortholog sets

overwhelmingly group into monophyletic subtrees across ensemble topologies (their MR-
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CAs have no descendant leaves besides themselves), occasionally reconstructions do yield

non-monophyletic ortholog sets. Because this violates an underlying assumption of the re-

construction, as well as the true topology of each synthetic protein family, we preclude paths

compromised by this incorrect reconstruction from contributing to path length distributions:

the length of any leaf-to-leaf path that contains a compromised internal node is not included

in the distribution for that leaf pair.

5.4.2 Path length frequencies guide topology reconstruction

A score reflecting consistency with extracted features

ASPEN uses a quantitative metric for measuring the consistency of a proposed topology

with observations from an ensemble of topologies. The score assigned to a topology is

expressed in terms of log frequencies of leaf-to-leaf path lengths, log(fL
pair) where L is the

length of path between leaves in pair, incorporated into the topology:

score =
∑
leaf
pairs

log(fL
pair)

This scoring function rewards incorporation of frequently observed path lengths and penalizes

rarely observed path lengths.
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A branch-and-bound topology construction algorithm

Using the bottom-up procedure for constructing a topology graph from its path lengths

matrix representation (Figure 5.4B), we developed an algorithm that uses a branch-and-

bound strategy to construct the requested number of highest-scoring topologies according

to the scoring function above. We describe the branching and bounding procedures in the

next two sections.

Branching By analogy with the single-topology procedure in Figure 5.4B, construction of

internal nodes is triggered by path length entries encountered during list traversal. However,

this list contains every observed path length for every leaf pair, together with its frequency

(Figure 5.4D). Unlike the single-topology case, list entries cannot be assumed to be consistent

with each other. In fact, many combinations of path lengths on the list cannot be incor-

porated into one topology. For example, for hypothetical leaves A, B, and C, path lengths

(A↔ B, 1) and (B ↔ C, 1) are mutually exclusive because in a bifurcating topology B can

be one internal node removed from either A or C, but not both. In single topology recon-

struction, if a path length could be completed by the introduction of an internal node, that

node could be safely constructed because it was guaranteed to satisfy every other list entry.

Since that guarantee no longer holds, multiple topologies are constructed simultaneously by

allowing the construction path to branch (Figure 5.5).

“Assemblies” are used to track simultaneous reconstruction of multiple topologies. Each

assembly holds a copy of the path length frequencies list, a partially constructed topology,

and the current topology score according to the scoring function (discussed below in the
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(A↔C)=3,	f=0.5	
	

Figure 5.5.: Branching construction of topologies by incorporating path lengths observed in
an ensemble

Construction begins with the empty topology assembly on the left. Every possible extension is constructed

in a copy of the initial assembly: Node {A,B} completes path (A ↔ B, 1), node {C,D} completes path

(C ↔ D, 1), and node {B,C} completes path (B ↔ C, 1), branching the initial assembly into three new

assemblies. Path lengths completed by the introduced node and path lengths incompatible with it are marked

and not revisited. Nodes {A,B} and {C,D} preclude path (B ↔ C, 1), while node {B,C} precludes paths

(A ↔ B, 1) and (C ↔ D, 1). Completed paths are shown in blue, precluded paths are greyed out in the

corresponding assemblies. Intermediate topology scores are calculated according to the scoring function. On

the next iteration construction paths for assemblies {A,B} and {C,D} collide, indicated in red. A single

copy of the resulting assembly, {A,B}, {C,D}, is retained. Assembly {A,B} is separately extended with

node {{A,B}, C}. Additional construction paths, indicated by ellipses, are not shown.

section on bounding). Reconstruction proceeds in iterations, starting with a single empty

assembly (Figure 5.5, left). On the first iteration, the entire list is traversed and every

possible extension by introduction of a new node is created simultaneously in a copy of the

original assembly (Figure 5.5, middle). In each new assembly, all path lengths completed
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by the new node and all path lengths incompatible with it are marked and not re-examined

on subsequent iterations. Remaining path lengths are not completed by the new node, but

remain compatible with it. On subsequent iterations the same procedure is repeated for all

tracked assemblies.

In principle, branching and iteration alone yield every topology consistent with path

lengths observed in the ensemble. In practice, this results in a combinatorial explosion

which must be carefully managed to allow construction to proceed to completion. First,

Figure 5.5 (right) demonstrates how branching to satisfy non-conflicting path lengths can

lead to collisions between diverged construction paths on later iterations. This occurs because

many topologies can be constructed by introducing internal nodes in multiple orders. Each

branched path represents a particular order of internal node introduction. In a practical

implementation collisions must be managed in order to prevent multiple reconstructions of

the same topology by multiple paths – an enormous replication of effort.

Second, even if each distinct topology is constructed once, in most cases reconstructing

every topology consistent with observations from the ensemble, no matter how infrequent,

is neither practical nor useful. Bounding, described in the next section, guarantees recon-

struction of only the requested number of top scoring topologies.

Bounding The score is used to rank completed topologies, where ranking is updated every

time a new topology is finished. The number of top scoring topologies to reconstruct, X, is

requested at the beginning of a reconstruction run (10,000 was used in ASPEN evaluation).

Once the initial X topologies are constructed, the Xth topology score constitutes the bound.
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Partially constructed topologies are abandoned if no complete topology that can be derived

from that construction state will score above the bound. We determine this by calculating

the score for already-incorporated path lengths and projecting the best possible score for a

complete topology by assuming the most frequent remaining path length will be incorporated

for every unconnected leaf pair:

projected =
∑

incorporated
paths

log(fL
path) +

∑
remaining

paths

max(log(fL
path))

As more high-scoring topologies are constructed, the bounding criterion becomes more strict

allowing both more and earlier abandonment of unproductive construction paths. The

branch-and-bound strategy guarantees that the X topologies remaining on the list at the

end of a run are the X highest scoring topologies according to the scoring function.

5.5 Evaluation and Discussion of ASPEN reconstructions

To test our algorithm, for each protein family we generated ensembles of 1000 subsampled

topologies with each ortholog set represented by 30 of 66 orthologs (≈45%). Then we used

ASPEN to reconstruct 10,000 top scoring topologies for two-thirds of the families. Because

accuracies of all reconstructions vary substantially across the range of reconstruction Pre-

cision, as does the relative accuracy of ASPEN-reconstructed topologies, the families were

binned by their Precision for the purposes of this analysis. Next we examine the relationship

between reconstruction Precision and the discriminatory power of the log-frequency func-
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tion with respect to accuracy, and then compare ASPEN reconstructions with all-sequence

reconstructions and discuss the implications of our observations.

5.5.1 Log-frequency score is correlated with accuracy

To understand the relationship between the log-frequency score and the accuracy of re-

constructed topologies, we plotted the ASPEN topology rank vs the bin-average accuracy

of topologies (Figure 5.6B-G). Among higher-Precision families (Figure 5.6B-D), top-ranked

log-frequency scores are strongly correlated with accuracy, particularly for topologies ranked

in the top ∼50, which indicates the independent scoring function based on observed frequen-

cies across the ensemble are indicative of accuracy. The strength of correlation decreases as

difficulty of reconstruction increases (lower Precision bins, Figure 5.6E-G), indicating less

discriminatory power with respect to accuracy. Nevertheless, ASPEN’s top-ranked topology

is, on average, also its most accurate across all Precision bins.

5.5.2 Top ASPEN topology beats all-sequence reconstructions

Next, we compared ASPEN’s best topology to all-sequence single-alignment reconstruc-

tions (Figure 5.6A). Like all other methods, ASPEN’s accuracy is a function of Precision, or

difficulty of the reconstruction task. As discussed earlier, MAFFT L-INS-i alignments yielded

the most accurate all-sequence reconstructions across all Precision bins, while FastTree2 and

RAxML performed very similarly on all alignments. Both top-ranked ASPEN topologies and

L-INS-i all-sequence reconstructions have nearly perfect accuracy on families in the highest-
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Precision bin – not particularly surprising, since subsampled topology ensembles for ASPEN

reconstruction were generated using the combination of L-INS-i and FastTree2 (Methods).

Much more intriguing is the fact that top-ranked ASPEN topologies are consistently more

accurate than any all-sequence reconstruction across the remaining Precision bins. Moreover,

although the accuracy of all reconstructions degrades with difficulty of the reconstruction

task (lower Precision), ASPEN’s accuracy degrades much more slowly. ASPEN’s top topol-

ogy provides the greatest accuracy improvement over single-topology reconstructions when

reconstruction is the most difficult.

5.5.3 ASPEN produces many accurate topologies at low Precision

To compare more ASPEN topologies with the most accurate all-sequence reconstructions,

bin-average accuracies of L-INS-i / FastTree2 topologies are plotted alongside bin-average

accuracies of top-300 ranked topologies (Figure 5.6B-G). Although the log-frequency score

provides less discrimination with respect to accuracy, more of ASPEN’s topologies outper-

form single-alignment reconstructions as Precision decreases and reconstruction becomes

harder. In the two lowest-Precision bins (Figure 5.6E-G), all top-300 ASPEN topologies are

more accurate than the best all-sequence reconstruction. Taken together, these observations

suggest that ASPEN results should be considered differently for families with high and low

reconstruction Precision.
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Figure 5.6.: Accuracy of topologies reconstructed by ASPEN

(A) Accuracy, as a function of 1−Precision of a family’s reconstruction, of the top-ranked ASPEN topology

and all-sequence reconstructions. Families were binned according 1−Precision. Ticks on x-axis correspond

to bin edges. Average accuracy of each type of reconstruction across families in the bin is plotted. For

all-sequence reconstructions with MAFFT L-INS-i and FastTree2 (orange, solid line) a unique marker shape

is used in each Precision bin. (B)-(G) For each Precision bin in (A), accuracy of ASPEN topologies ranked

1 through 300, averaged for each rank across all families in the bin, plotted as a function of rank. Average

accuracy of the L-INS-i / FastTree2 all-sequence reconstruction is plotted for comparison on the left of each

panel.
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5.5.4 How to use ASPEN in different Precision conditions

The top few topologies are best for high-Precision families

For families with high Precision, where one may reasonably expect to reconstruct an

accurate topology, ASPEN’s top, or top few topologies are likely more accurate than any

single-alignment reconstruction. One or a few of these topologies can be confidently used for

downstream applications. This result is far from trivial, given that ASPEN’s subsampling

approach scales far better with the overall number of input sequences than traditional sta-

tistical reconstruction methods. With the advent of affordable genome sequencing and the

resulting explosion in the number of sequenced and annotated species’ genomes262,263, all-

sequence reconstruction of paralog divergence by statistical methods has become infeasible

for many families with large numbers of orthologs. Therefore, subsampling large samples of

orthologs to yield a Precision score can now be used to identify how likely the full sequence

topology is to be accurate, determining if one is working in a high or low Precision/Accuracy

regime.

Diverse representation is critical at lower Precision

Accuracy of all reconstructions suffers for families with lower reconstruction Precision

(greater difficulty for reconstruction). Even top-ranked ASPEN topologies cannot be ex-

pected to be completely accurate. In this Precision regime all of the top 300 ASPEN topolo-

gies, or more, can be considered comparably plausible models, given the sequence data.
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Since all of these topologies are very likely to be more accurate than any individual single-

alignment reconstruction, under these conditions ASPEN topology reconstruction should be

treated as a mechanism for sampling a large number of imperfect, but quite accurate topolo-

gies. As the true topology cannot be distinguished from other, fairly accurate topologies on

the basis of such sequence data, any downstream analysis relying on a divergence topology

should aim to integrate over this topological uncertainty.

5.6 Conclusion

Subsampling in the process of reconstruction proved to be extremely powerful – it iden-

tified two measures (Precision and Score based on observed frequencies) of something un-

knowable (Accuracy) and guided a reconstruction method that identifies much more accurate

topologies than traditional approaches. That ASPEN reconstructions were more accurate

than single-alignment reconstructions, is evidence that the central hypothesis of this work is

supported – relationships found consistently amongst the variance produced by subsampling

are more likely to be reflective of true protein divergence histories. We anticipate that, as a

meta analysis approach to tree evaluation and reconstruction, ASPEN is likely to continue

to boost the accuracy of individual approaches.

We also conclude from this study that it is worth revisiting the reconstruction accuracy

of real protein families, particularly for those widely relied-upon reconstructions29,30,252. The

reconstruction of proteins from a single alignment of small numbers of orthologs may suffer

from the same or worse accuracy issues we saw in single alignment approaches of our synthetic
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family. They may be worse in accuracy than what we observed in this study, since such

reconstructions are derived from much smaller subsamples of ortholog sequences than we

used in our subsample presented here and we found for small subsamples even for relatively

high-Precision families individual reconstructions are extremely unreliable.

5.7 Materials and Methods

5.7.1 Preparation of synthetic sequence data

All sequence simulation materials and simulated sequence alignments are available via

Figshare (10.6084/m9.figshare.5263885).

Construction of phylogenies representing protein family divergence

Random 15-leaf phylogenies representing paralog divergence were generated at

http://www.trex.uqam.ca264 using the procedure of Kuhner and Felsenstein265. 100 phy-

logenies were generated with each average branch length of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0,

600 in all. The Ensembl Compara species tree topology266 containing 66 metazoan species

was used for the divergence of each ortholog set. The topology was parametrized with

branch lengths corresponding to species divergence times at http://www.timetree.org267,268.

For each of 15 leaves in each random phylogeny, a copy of the parametrized species tree

was randomly scaled in overall height and had each individual branch randomly perturbed

around its true length to maintain a realistic scale of divergence. The roots of these ran-
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domized trees (representing the MRCAs of an ortholog sets) were grafted at the leaves of

the paralog phylogenies, resulting in 990-leaf synthetic protein family phylogenies.

Preparation of sequence template and sequence simulation

Human tyrosine kinase domains were aligned using MAFFT L-INS-i with default pa-

rameters. This alignment was used as the template for sequence simulations as follows.

The alignment was divided into 24 segments on the basis of local sequence similarity and

analysis of solved tyrosine kinase structures. Each segment was assigned a substitution rate

scaling factor and an insertion/deletion model to match degree of conservation and solvent

exposure in solved structures. Simulation was carried out over synthetic phylogenies using

indel-seq-gen269–271 under the JTT substitution model.

5.7.2 Phylogeny reconstruction

All-sequence phylogenies were inferred using all combinations of MAFFT L-INS-i, ClustalOmega,

and Muscle for sequence alignment and of FastTree2 and RAxML for phylogeny inference.

Subsampled phylogenies for Precision calculations (60 of 66 orthologs sampled from each

ortholog set, 50 phylogenies reconstructed per protein family) were inferred with FastTree2

only, due to run time considerations. Subsampled phylogenies for ensembles (30 of 66 or-

thologs sampled, 1000 phylogenies per protein family) were reconstructed using L-INS-i and

FastTree2 only.
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Alignment algorithms were used with their default settings. FastTree2 was used with de-

fault settings and the WAG substitution model. RAxML was used with default settings and

the PROTGAMMAWAGF variant of the WAG substitution model. The WAG substitution

model was deliberately used for topology inference, instead of the JTT substitution model

used for simulating protein families, in order to emulate the more realistic scenario where

models used for reconstruction of phylogenies for natural families do not precisely match the

substitution patterns in those families.

Accuracy and Precision of reconstruction for a protein family are defined in terms of the

L-INS-i / FastTree2 all-sequence and subsampled topology reconstructions.

5.7.3 Modified Robinson-Foulds topology comparison metric

The Robinson-Foulds (RF ) metric is defined in terms of leaf partitions at internal topol-

ogy nodes for two topologies with identical sets of leaves. For a tree with N leaves there are

N − 3 informative splits. The normalized form of the Robinson-Foulds comparison metric

for two topologies, A and B, is:

RF =
x+ y

2N − 6
(5.1)

Where x is the number of leaf partitions in A but not in B, y is the number of leaf partitions

in B but not in A, N is the number of leaves in each topology, and 2N − 6 = 2× (N − 3) is

the number of informative splits in the two topologies.

130



In order to compare reconstructed paralog divergence topologies we had to modify the

RF metric to accommodate cases when the MRCA of an ortholog set has as descendants

one or more MRCAs of other ortholog sets. Such topologies are poorly formed because

they require inference of additional unobservable events – loss of paralogs in some lineages

– in order to be reconciled with a duplication/speciation divergence history. Because the

offending ortholog set cannot be pruned to a leaf MRCA, the resulting topology cannot

be compared to properly formed topologies (e.g. the true topology) using the standard RF

metric. In effect, when ortholog leaves and speciation internal nodes of the offending ortholog

set are pruned, the resulting topology is missing a MRCA leaf, because that MRCA maps

to an internal node, making that node ambiguous in its duplication vs speciation status.

This is problematic for RF because it affects the denominator. Nevertheless, their internal

nodes representing pre-duplication common ancestors of the offending ortholog set/paralog

and other paralogs can match, in terms of induced partition of paralogs, equivalent nodes in

other topologies.

In the modified RF ∗, N represents the number of paralogs (ortholog sets) in each com-

pared topology, not the number of leaves. In addition to x and y we define z as the number

of MRCA leaves missing from A but not from B and z′ as the number of MRCA leaves

missing from B but not from A. The modified metric is then calculated as:

RF ∗ =
x+ y + z + z′

2N − 6
(5.2)
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5.7.4 ASPEN

ASPEN is implemented in python 2.7. The ASPEN development repository is publicly

available at https://github.com/NaegleLab/ASPEN.

5.8 Supplementary Materials
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Figure 5.7.: Supplementary Figure

Accuracy of all-sequence reconstructions by all combinations of alignment and phylogeny inference tools

plotted against protein family rank according to same reconstruction accuracy.
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6. Conclusions and Future Directions

6.1 Why analysis algorithms can fail to identify structure in data

The overarching theme of work presented in this dissertation was identifying cases when

existing, somewhat naive analysis algorithms fail to detect the complex hidden structure in

biological data, and then adapting and extending those algorithms to handle the complexity.

In some cases, actual structure is convoluted with and obscured by noise, leading to interpre-

tation of noise artifacts as spurious structure. This is often evidenced by conflicting analyses

resulting from multiple, equally valid applications of an algorithm. For example, numerical

data structured in poorly separable clusters may yield different partitions on different runs

of a randomly initialized clustering algorithm. In other cases, actual structure cannot be

detected because it violates underlying assumptions explicitly or implicitly encoded in ex-

isting algorithms. An example of this is the implicit assumption by clustering algorithms of

globular cluster shape rendering clusters with more complex shapes undetectable17. Data

resampling is a powerful tool for detecting the unreliability of individual solutions and for

separating actual structure from random noise. Unfortunately, I know of no systematic way

of identifying cases when data violates underlying assumptions of analysis methods.

In this work I described two cases – clustering noisy numerical data and reconstructing

paralog divergence topologies – where resampling approaches led to substantial improvements
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in accuracy. However, in a third case – detection of partial SDPs – resampling only led to a

marginal improvement. A much more substantial improvement resulted from modifying an

SDP detection algorithm in light of the key insight that partially conserved positions may

have strong SDP signal. Formalizing the investigative approach which led to this insight is

beyond the scope of this thesis.

6.2 Robust data partitioning with parametric and non-parametric resampling

6.2.1 Ensemble clustering with non-parametric sampling

In chapter 2 I described applying ensemble clustering with sampling over clustering al-

gorithms, data transformations, distance metrics, and cluster number, using the approach

and software originally described by Naegle et al.211 to analyze the role of nuclear export

of HDAC5 in injury response. We found that export of HDAC5 from the nucleus acti-

vates a pro-regenerative transcriptional program, including export-dependent up-regulation

of transcription factors jun, KLF4 and KLF5, Fos and Gadd45a.

In chapter 3 I described permutation sampling from replicate time course data as a

means of bootstrapping a non-parametric model for the noise present in a high-throughput

phosphoproteomic data set. We built an ensemble of clustering solutions over multiple data

sets resampled under this noise model and identified robustly co-clustering phosphopeptide

time courses.
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6.2.2 Ensemble clustering with sampling from parametric noise models

Another approach I described in chapter 3 is using parametric distributions to model

noise. We built an ensemble of clustering solutions from data sets constructed by perturb-

ing measurements with noise sampled from a parametric noise model. We selected for this

analysis a “foreground” gene expression data set that contained no replicates and two “back-

ground” data sets with replicates collected using the same microarray platform. We used

the background data to model the mean-dependent variance for the foreground data set.

Background data sets were rescaled to the 75th quantile of the foreground dataset, which

produced a high degree of agreement in probe intensity across the entire range of all data

sets, indicating that background data could indeed be used to model noise for the foreground.

Finally, we used the program Cyber-T216 to generate a mapping from mean log2(expression)

to standard deviation, the second parameter needed to parametrize a noise distribution.

6.3 Detection of partially conserved Specificity Determining Positions

The LacI family had previously been used to test several algorithms for detecting Speci-

ficity Determining Positions126,129,132,139,144. Only a small fraction of available LacI sequences

(52 of thousands) representing a subset of known LacI paralogs (15 out of at least 20 repre-

sented by 28 or more sequences) were used in all of those analyses because the same alignment

originally produced in 2002 was re-analyzed by each method.
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6.3.1 Nearly all SDPs are only used by a subset of LacI paralogs

In chapter 4 I described the SDP analysis I performed on a much larger LacI data

set containing 1814 unique sequences representing 20 paralogs. I found that the group-

wise conservation pattern associated with SDPs was present in as many as one third of all

sequence positions, but that no more than 15, and usually closer to 10 paralogs, were group-

wise conserved at any position. After implementing a modified scoring function capable of

detecting partial group-wise conservation, I identified 10 to 20 positions with strong SDP

signal in each paralog. Critically, each paralog’s complement of SDPs was unique, suggesting

that evolution uses a strategy of mixing and matching positions capable of contributing to

specificity in order to determine the unique specificity of each paralog.

6.3.2 Additional group-wise conservation among higher order groups

In addition to the numerous paralog-wise conserved positions, I identified several posi-

tions with a group-wise conservation pattern, where subsets of paralogs were conserved to

the same amino acid. When each ortholog set was treated as a specificity group, such posi-

tions did not have particularly strong SDP signal because of relatively high between-group

agreement. However, these positions may in fact be specificity determinants shared by mul-

tiple paralogs. I found this higher-order conservation pattern to be much more prevalent

among SH2 domains (unpublished data), which are both substantially more numerous than

LacI paralogs (120 in the human genome) and may overlap in their recognition specificity in

non-trivial ways272,273. Detecting specificity determinants among domain families with this
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conservation pattern is likely to require a dynamic definition of specificity groups which can

be modified from position to position.

6.4 Reconstructing divergence histories of protein families

The genesis of this project was my attempt to infer a phylogeny for 3000+ scrupulously

curated SH2 domain sequences. Since I was only interested in the divergence of paralogs,

not the subsequent divergence of orthologs, I abandoned the all-sequences approach after I

got tired of waiting for the maximum likelihood reconstruction to finish. Instead, inspired

by my earlier work resampling numerical data, I decided to try a subsampling strategy with

ortholog sequences, naively expecting to a single paralog divergence topology to dominate

all resampled reconstructions. Instead, to my great surprise and deep consternation, nearly

every resampled reconstruction was unique. After replicating this result with numerous sim-

ulated protein families, I came to doubt the reliability of any single topology reconstruction

for any protein family.

6.4.1 Subsampling to assess accuracy of single-alignment reconstructions

Simulating sequence evolution affords one the luxury of knowing the true phylogenetic

tree according to which the sequences diverged. This allowed me to measure the accuracies

of various reconstructions and to correlate accuracy with other quantities which can be

measured from the reconstruction(s) alone. Unlike accuracy, such quantities are observable

for natural, as well as simulated families. In chapter 5 I described the strong correlation I
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discovered between the accuracy of a single-alignment, all-sequence reconstructions of paralog

divergence and a quantity I call precision of reconstruction, defined in terms of agreement

among subsampled reconstructions. This is a critical finding that provides the first means

of assessing how accurate a traditional single-alignment reconstruction is likely to be.

6.4.2 Building topologies from common features of subsampled reconstructions

While paralog divergence reconstructions from subsampled sequence sets frequently, and

alarmingly, disagree with each other, topological features on which the reconstructions do

agree are most likely to reflect the true divergence topology. ASPEN, the topology recon-

struction algorithm I described in chapter 5, takes advantage of this fact by extracting shared

topological features from an ensemble of subsampled topology reconstructions in the form

of frequently occurring path lengths between paralogs in terms of internal topology nodes

representing pre-divergence common ancestors. ASPEN incorporates the frequencies with

which specific path lengths between leaves were observed into its scoring function and uses a

branch-and-bound strategy to build topologies containing, according to the scoring function,

the most frequently observed topological features. Resulting topologies are more accurate

than single-alignment reconstructions.

6.4.3 Improving ASPEN

ASPEN already provides a powerful means to reconstruct paralog divergence, but I would

like to implement a number of improvements to its methodology. Although the branch-and-
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bound guarantee that all highest-scoring topologies have been identified only holds if ASPEN

reconstruction runs to completion, I frequently observe drastically diminishing returns as a

reconstruction progresses. For the number of highest-scoring topologies requested at the

beginning of a reconstruction, the very best topologies are usually identified early on, while

the bottom of the requested ranked list takes much longer to finalize. Empirically esti-

mating the likelihood of encountering a new top-scoring topology, given dynamics observed

in the ranked list of topologies so far, would allow terminating a reconstruction run early

with high confidence that all of the best topologies have been identified. Furthermore, a

greater empirical understanding of the relationship between the frequency-based score and

topology accuracy might facilitate rationally selecting the number of top-scoring topologies

that should be used for downstream applications. Finally, the relationship between sub-

sample size during assembly of the ensemble of subsampled topologies, the duration of the

subsequent reconstruction, and the accuracy of resulting topologies remains to be explored.

Anecdotally, subsample size can affect both reconstruction accuracy an run time, so it may

be used to tune the desired balance between the two.

6.5 Downstream applications of paralog divergence reconstruction

I believe the findings about group-wise conservation patterns and paralog divergence

reconstruction described in chapters 4 and 5 form a strong foundation for functional evo-

lutionary analysis of large and complex protein or protein domain families. I am currently

using ASPEN to reconstruct the divergence history of SH2 domains in order to facilitate
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dynamic specificity group redefinition in identification of specificity determinants. Because

many SH2 domains appear to pairwise overlap in their recognition specificity, I believe their

residue-level specificity encoding may be deeply hierarchical, with some SDPs shared by

large domain classes and others differentiating individual paralogs or small paralog groups.

This approach may also be applied to dissect the residue-level logic which encodes the bind-

ing specificity of other recognition domains involved in signal transduction, such as SH3,

PDZ, WW, PH, and, more broadly, to analyze the functional divergence of any protein

family containing many paralogs. I believe this kind analysis can be used to generate tar-

geted hypotheses which would allow dissecting protein function in a manageable number of

experiments.
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