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ABSTRACT OF THE THESIS

Density Estimation Using Nonparametric Bayesian Methods

by

Wang, Yanyi

Master of Arts in Statistics,

Washington University in St. Louis, 2018.

Professor Todd Kuffner, Chair

In modern data analysis, nonparametric Bayesian methods have become increasingly

popular. These methods can solve many important statistical inference problems, such

as density estimation, regression and survival analysis. In this thesis, We utilize several

nonparametric Bayesian methods for density estimation. In particular, we use mixtures of

Dirichlet processes (MDP) and mixtures of Polya trees (MPT) priors to perform Bayesian

density estimation based on simulated data. The target density is a mixture of normal

distributions, which makes the estimation problem non-trivial. The performance of these

methods with frequentist nonparametric kernel density estimators is assessed according

to a mean-square error criterion. For the cases we consider, the nonparametric Bayesian

methods outperform their frequentist counterpart.
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1. Introduction

To understand the motivation for nonparametric Bayesian inference, it is helpful to

first consider alternative paradigms. Frequentist methods constitute the core of classical

statistics. In a frequentist approach, unknown parameters always have fixed (unknown)

values. The properties of frequentist methods are typically assessed by appealing to

notions of optimality from decision theory, or by studying their large-sample properties.

A frequentist probability of an event is identified with a relative frequency of that event’s

occurrence under hypothetical repetitions of the experiment which produced the random

sample. By contrast, the Bayesian notion of probability is a quantification of degrees

of belief about the occurrence of events. Such a notion of probability can be applied to

any unknown, and hence uncertain, component of an experiment. In particular, instead

of viewing parameter values as fixed, Bayesians can assign probability distributions to

the set of parameter values, which express degrees of belief about any of the possible

unknown values of the parameters.

In Bayesian parametric methods, the priors and posteriors usually have a finite (often

low) number of parameters, while nonparametric Bayesian models models assign a prior

to infinite-dimensional parameters.

Why do we need to use the nonparametric Bayesian methods? We know that it

is convenient to restrict inference to a family of distributions with a finite number of

parameters, but the simplified model may lead to misleading inference if the assumed
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parametric family is incorrect. Therefore, we need a class of statistical methods which

can flexibly adapt to unknown density or distribution functions without making restric-

tive parametric assumptions. Within the Bayesian paradigm, this leads us to consider

nonparametric Bayesian procedures.

In this thesis, we will use several nonparametric Bayesian methods to estimate the

unknown density function, f , given the observed data, yi ∼ f(yi), i = 1, . . . , n.

There are many non-Bayesian methods which have been used to estimate the density

function, such as histogram estimates, kernel estimates, estimates using Fourier series ex-

pansions and wavelet-based methods. Nonparametric Bayesian methods include mixtures

of Dirichlet process (MDP), mixtures of Poyla tree process (MPT) and Bernstein polyno-

mials. In this thesis, We will use MDP priors and MPT priors to perform nonparametric

Bayesian density estimation.

1.1 Data

The main objective in this thesis is to compare the performances of MDP- and

MPT-based nonparametric Bayesian estimation. To do so, we simulate data sets from a

mixture of 3 normal densities,

0.2×N(1, 1) + 0.6×N(3, 6) + 0.2×N(10, 2).

Figure 1.1 shows the true density function f , and we will compare the true density

plot with the estimated density plots in Chapter 3.
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Figure 1.1. The true density function f(y) = 0.2×N(1, 1)+0.6×N(3, 6)+
0.2×N(10, 2)

3



2. Statistical Models and Methods

Appropriate prior specification is crucial for good performance of Bayesian methods for

parametric problems, and this equally true for nonparametric density estimation. When

estimation is concerned with the density function, one must specify a prior distribution

on the space of possible density functions. This requires that we first restrict attention

to a particular set of functions. It is desired that this set is broad enough that it will

contain the true density, or something very close to it. In a seminal paper on Bayesian

nonparametric methods, Ferguson (1973) stipulated that prior distributions must satisfy

two properties, which can be informally stated as:

(i) The support of the prior should be sufficiently large, i.e. there should be a large

class of sets of densities functions with positive prior mass. By the support of the

prior, we mean those elements of the parameter space (i.e. those sets of density

functions) for which the prior probability is strictly positive. Any set of densities

which are not in the support of the prior have prior mass of zero.

(ii) The posterior distribution should be analytically tractable. This means that it

should be possible to exactly derive the posterior distribution via Bayes’ rule, using

only elementary calculus, and without resorting to computer-assisted approxima-

tions.

With the continued progress of Markov chain Monte Carlo (MCMC) methodology,

the second requirement is now less important. The first property ensures that the prior
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assigns positive mass to a broad range of candidate density functions. This is desired

because, a priori, we do not want to place restrictive assumptions on the true densities.

This is because any density function not in the support of the prior will not be in the

support of the posterior, either. This rather obvious observation is known as Cromwell’s

Rule in the Bayesian literature.

2.1 The Mixture of Dirichlet Process (MDP) Model

In order to introduce the MDP model, it is necessary to first introduce the Dirichlet

process, which is the most widely-used prior in nonparametric Bayesian analysis.

2.1.1 Dirichlet Process

Let X be a complete, separable metric space (also known as a Polish space) and let

A be a corresponding σ-field of subsets of X . We define a random probability P on a

measurable space (X ,A ) by defining the joint distribution of (P (A1), . . . , P (Ak)) for all

measurable partitions (A1, . . . , Ak). We say (A1, . . . , Ak) is a measurable partition of X

if Ai ∩ Aj = ∅ for i 6= j, and
⋃k
j=1 Aj = X , where Ai, Aj ∈ A , for all i, j = 1, . . . , k.

Definition 2.1.1 (Ferguson, 1973) Let α be a positive real number, G0 be a finite non-

negative measure on (X ,A ). We say the stochastic process P (A), A ∈ A , is a Dirich-

let process on (X ,A ) with parameter αG0 if the distribution of the random vector

(P (A1), . . . , P (Ak)) is Dirichlet, D(αG0(A1), . . . , αG0(Ak)), where (A1, . . . , Ak), ∀k =

1, 2, . . . , is a measurable partition of A .
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We say the (k− 1)-dimensional vector (X1, . . . , Xk−1) follows a Dirichlet distribution

D(β1, . . . , βk) if it has the density function

f(x1, . . . , xk−1|β1, . . . , βk) =
Γ(
∑k

i=1 βi)∏k
i=1 Γ(βi)

(
k−1∏
j=1

x
βj−1
j

)(
1−

k−1∑
j=1

xj

)βk−1

IS(x),

where βj > 0 for j = 1, . . . , k, Γ(β) =
∫∞

0
xβ−1e−xdx, x = (x1, . . . , xk−1), IS(x) is the

indicator function for x ∈ S and S is the simplex

S =
{
x ∈ Rk−1 : x1 + x2 + · · ·+ xk−1 ≤ 1 and xj ≥ 0, for j = 1, . . . , k − 1

}
.

For k = 2, the distribution becomes the Beta distribution, denoted by Be(β1, β2).

Since the Dirichlet process process is a discrete distribution, such a prior cannot be

used to estimate continuous density functions unless we apply smoothing. Therefore, as

is conventional, we utilize a mixture of Dirichlet processes as the prior on the space of

density functions.

2.1.2 The MDP of Normal model

Ferguson (1983) specified the density g(x) as a mixture of an infinite number of normal

distributions,

g(x) =
∞∑
i=1

wih(x|µi, σi),

where h(x|µi, σi) is the density of normal distribution with mean µi and variance σ2
i and

wi denotes the weight of each normal distribution.

Let G be a probability measure on the half-plane {(µ, σ) : σ > 0} which can give us

the mass wi to the point (µi, σi), i = 1, 2, . . . . Therefore, the previous formula can also

be denoted by

g(x) =

∫
h(x|µ, σ)dG(µ, σ).
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Ferguson (1983) notes that by using such mixtures of normals, density functions in

the function space being considered can be estimated within a preselected accuracy in

terms of the Lévy metric, and a similar result can be shown for the L1 norm. We now

define these metrics.

The Lévy metric is defined on the space F of cumulative distribution function (cdf)

of one-dimensional random variables. The Lévy distance between two cdfs F1, F2 ∈ F is

L(F1, F2) = inf{ε > 0|F1(y − ε)− ε ≤ F2(y) ≤ F1(y + ε) + ε for all y ∈ R}.

The L1 norm of the difference between function f1 and f2 is defined by

‖f1 − f2‖1 =

∫
R

|f1(x)− f2(y)|dy.

The prior distribution for the countable infinite collection of parameters (w1, w2, . . . ,

µ1, µ2, . . . , σ1, σ2, . . . ), is specified as follows:

(i) (w1, w2, . . . ) and (µ1, µ2, . . . , σ1, σ2, . . . ) are independent.

(ii) w1 = 1−u1, w2 = u1(1−u2), . . . , wj = (
∏j−1

i=1 ui)(1−uj), . . . , where u1, u2, . . . are

i.i.d. with beta distribution, Be(α, 1).

(iii) (µ1, σ1), (µ2, σ2), . . . are i.i.d. with common gamma-normal conjugate prior. That

is, ρi = 1/σ2
i follows a gamma distribution, Gamma(a, 2/b), and given ρi, µi has

the normal distribution, N(µ, ρiτ). The parameters of the prior, α, a, b, µ and τ ,

are greater than zero.

The description of the prior shows that G, metioned at the begining of this section,

is a Dirichlet process with parameter αG0, and α measures how much you trust your

prior ‘guess’. A large value of α indicates that you place great trust in your prior guess,

7



whereas a small α indicates a high degree of distrust in your prior guess. Such a G also

follows from the Sethuraman representation (Sethuraman, 1994) of the Dirichlet process,

G =
∞∑
i=1

wiδθi ,

where θi are i.i.d. with distribution G0, and wi follows the distribution described in (ii).

We can also express the MDP model as a simple Bayes model given the likelihood

pθi(yi) and the prior distribution G:

yi ∼ pθi(yi), i = 1, . . . , n, θi|G ∼ G, G ∼ DP (αG0).

Perhaps the most common variant is the MDP of normal model, due to its simplicity

and analytic tractability. This model is given by

pµ,Σ(yi) = N(yi;µ,Σ) and G0 ∼ N(µ|m1, (1/k0)Σ)IW (Σ|ν1, ψ1),

where IW (Σ|ν1, ψ1) is the inverted Wishart distribution. Therefore, G0 follows a conju-

gate normal-inverted-Wishart distribution..

2.1.3 Gibbs Sampling

We will use the R package DPpackage (Jara et al., 2018). The default MCMC sampler

is a Gibbs sampler with auxiliary parameters. This is Algorithm 8 in Neal (2000).

Let G0 be the continuous base measure in the MDP model, and let θ = (θ1, . . . , θn),

where n is the number of observations. Let φ = {φ1, . . . , φk} be the set of distinct θi’s, and

k indicates the number of distinct values in θ. We define a new vector ci = (c1, . . . , cn) as

ci = j if and only if θi = φj, i = 1, . . . , n, which indicates the “latent class” of observation

yi. Therefore, the distribution of yi|θi can be expressed as yi|ci, φ ∼ F (φci).

Also, we can rewrite the vector φ as φ = (φc : c ∈ {c1, . . . , cn}) and nj represents the

number of elements in cluster j, ci = j.
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Next, we introduce auxiliary variables. Auxiliary variables are created and discarded

within the MCMC procedure; they are used only to facilitate sampling from the posterior.

The basic idea is that if we want to sample x from a distribution πx, we can sample (x, y)

from the distribution πxy, which has marginal distribution for x equal to πx. We define

the permanent state variable as x, and the auxiliary variable is y. The algorithm proceeds

as follows:

(i) Draw a value for y(t+1) from the conditional distribution of y given x(t).

(ii) Draw a value for x(t+1) from the conditional distribution of x given y(t+1).

(iii) Repeat (i) and (ii), the constructed chain
(
x(t), y(t)

)
will have a stationary distri-

bution πxy. Discard the auxiliary variable y.

The use of auxiliary variables necessitates some further notation and description of this

method. For each i, let k− indicate the number of different cj for j 6= i and label cjs with

values in 1, . . . , k−. Let m be the number of auxiliary variables. The conditional prior

probability for ci given cj, j 6= i can be formed as n−i,c/(n− 1 + α) if ci = c ∈ {1, . . . , k−},

where n−i,c denotes how many cjs are equal to c for j 6= i, and α/(n − 1 + α) if ci has

some new value.

The Gibbs sampler proceeds according to the following steps (Neal, 2000):

(i) Repeat (ii) and (iii) for i = 1, . . . , n. Then peroform step (iv).

(ii) Update ci by drawing from the conditional distribution given the other states.

Compute k− and h = k− +m. We can sample ci from the conditional distribution

which is given above.

In summary, we can draw a new value for ci from {1, . . . , h} as follows:

9



P (ci = c|c−i, yi, φ1, . . . , φh) =


b
n−i,c
n−1+α

pφc(yi) for 1 ≤ c ≤ k−,

b α/m
n−1+α

pφc(yi) for k− ≤ c ≤ h,

where c−i is a set of cj for j 6= i, and b is an appropriate normalizing constant.

(iii) Sample φ according to the following way.

If ci = cj, for some i 6= j, since there is no connection between the auxiliary

parameters and the rest of the states, we can simply draw the values of φc for which

k− < c ≤ h independently from G0. If ci 6= cj,∀i 6= j, we can let ci become the first

of the auxiliary components and drae the values of φc for which k− + 1 < c ≤ h

independently from G0.

(iv) Sample the rest of φ.

For all c ∈ c1, . . . , cn: sample φc from the posterior in the simple Bayesian model

given by yi|φc ∼ pφc and φc ∼ G0, for i ∈ {i : ci = c}.

The use of Gibbs sampling is not restricted to conjugate priors, such as the normal-

normal MDP model or conjugate normal-inverted-Wishart model. The Gibbs sampler

can also be used with non-conjugate priors; for example, in the uniform-normal MDP

model.

2.2 Mixtures of Polya Trees

2.2.1 Polya Tree Process

Before we define the Polya tree prior, we need to fix some notation. Define U = {0, 1},

U0 = ∅, Um = U ×· · ·×U , which is an m-fold product, and U∗ =
⋃∞
m=0 U

m. Let π0 = Ω,

10



where Ω is a separable measurable space, and define Π = {πm : m = 0, 1, . . . } as a

separating binary tree partition of Ω. Then we will have following relationships: for all

ε = ε1 . . . εm ∈ U∗, Bε ∈ πm, Bε0, Bε1 ∈ πm+1, and Bε0 ∩ Bε1 = Bε, that is, Bε0, Bε1 split

Bε into two pieces. Moreover, degenerate splits are allowed, such as Bε = Bε0 ∪ ∅. The

general definition of Polya tree prior is as follows.

Definition 2.2.1 (Lavine, 1992) We define a random probability measure P on Ω as

a Polya tree prior P ∼ PT (Π,A ) if there exist some parameters A = {αε : ε ∈

U∗ and αε ≥ 0} and random variables Y = {Yε : ε ∈ U∗} that satisfy the conditions:

(i) Yε are independent, for all ε ∈ U∗;

(ii) Yε follows a Beta distribution, Be(αε0, αε1), for all ε ∈ U∗;

(iii)

P (Bε1...εm) =
m∏
j=1

(
Yε1...εj−1

× I(εj = 0) + (1− Yε1...εj−1
)× I(εj = 1)

)
,

for every m = 1, 2, . . . , ε ∈ Um and I(A) is the indicator function, I(A) = 1 if A

is true. If j = 1, we define Yε1...εj−1
as Y∅.

We can explain the Yε’s mentioned above in the following way: Y∅ and 1− Y∅ are the

probabilities that θi ∈ B0 and θi ∈ B1, respectively; Yε and 1 − Yε are, respectively, the

conditional probabilities that θi ∈ Bε0 and θi ∈ Bε1 given θi ∈ Bε, for all i = 1, 2, . . . .

Compared to Dirichlet process priors, Polya tree priors have some advantages and

disadvantages. In fact, Dirichlet processes are a special case of Polya trees if, for ev-

ery ε ∈ E∗, αε = αε0 + αε1 (Ferguson, 1974). This is because of the relationship be-

tween the Dirichlet distribution and Beta distribution. If (Z1/S, Z2/S, . . . , Zm/S) ∼

D(β1, β2, . . . , βm), where Zi ∼ Gamma(βi, 1) and S =
∑m

i=1 Zi, then the marginal distri-

bution of Z1/S follows the Beta distribution, Be(β1,
∑m

i=2 βi).
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The advantage is that Polya tree priors can be constructed to assign probability 1 to

the set of absolutely continuous random variables. The disadvantage is that binary tree

partition Π plays an important role in Polya tree priors.

There is one particular class of finite Polya tree priors which is often used in the

literature (Hanson, 2006). Assume there is a constraint on m, m = 1, . . . ,M . Let

em(k) = ε1 . . . εm represent the m-fold binary number representation of k−1, for instance,

e4(3) = 0010 and e5(7) = 00110. At level m, define

Bθ(em(k)) =


(G−1

θ ((k − 1)2−m), G−1
θ (k2−m)] for k = 1, . . . , 2m − 1,

(G−1
θ ((2m − 1)2−m), G−1

θ (1)) for k = 2m;

where Gθ is the cumulative distribution function of a continuous parametric distribu-

tion indexed by θ. Let Πm
θ = {Bθ(em(k)) : k = 1, . . . , 2m} partition Ω.

Definition 2.2.2 (Hanson, 2006) Given {Πm
θ }

M
m=1, a random distribution G follows

PTM(c, ρ,Gθ), c > 0, ρ > 0 if there exist random vectors X = {(Xem(k)0, Xem(k)1), where k =

1, . . . , 2k−1,m = 1, . . . ,M} satisfy:

(i) The vectors (Xem(k)0, Xem(k)1) are independent.

(ii) (Xem(k)0, Xem(k)1) follows Dirichlet distribution, D(cρ(m), cρ(m)).

(iii) G{Bθ(ε1 . . . εm)} =
∏m

k=1Xε1...εk , for every Bθ(ε1 . . . εm) ∈ Πm
θ .

(iv) On sets in ΠM
θ , G follows Gθ.

Polya trees are conjugate and so we only need to update some parameters to obtain

the posterior distribution. Let Y = (Y1, . . . , Yn) be the sample data from the unknown

distribution. If Y1, . . . , Yn|G
iid∼ G, G ∼ PTM(c, ρ,Gθ), then the posterior distribution of

12



G given θ and Y is updated through the following formula (update part (ii) in definition

2.2.2),

(Xem(k)0, Xem(k)1)|θ,Y ∼ D(cρ(m) + nθ(em(k)0; Y), cρ(m) + nθ(em(k)1; Y),

where nθ(ε1 . . . εm; Y) denote the number of {y1, y2, . . . , yn} fall into Bθ(ε1 . . . εm).

2.2.2 Mixtures of Polya Trees

Since there are still some drawbacks of the Polya trees priors, for instance, the results

can be strongly influenced by the specific sequence of partitions of the priors, and the lack

of smoothness at the endpoints of the specific partitions, Lavine suggests the mixture of

Polya trees processes which can allow the posterior distribution to be continuous.

Similar to the definition of the mixture of Dirichlet processes, we can index the pa-

rameter of the Polya trees processes with a random variable θ which have a parametric

distribution.

The definition of the mixtures of Polya tree processes(MDP) is as follows:

Definition 2.2.3 (Lavine, 1992) The distribution of a random probability measure P is

a mixture of Polya trees if there exist a random variable θ, known as the index variable,

with the mixing distribution H such that

P|θ ∼ PT (Πθ,Aθ),

θ ∼ H.

Or using the definition 2.2.2, we can also define the mixture of finite Polya trees (the

finite MPT prior) on distribution G as

Y1, . . . , Yn|G
iid∼ G, G|θ ∼ PTM(c, ρ,Gθ), θ ∼ dH(θ).

Therefore, the prior on G can be written as G ∼
∫
PTM(c, ρ,Gθ)dH(θ).

13



2.2.3 Sampling X

Thinking about the definition 2.2.2, Metropolis-Hastings steps are used to update the

elements in X . The concrete procedures are as follows (Hanson, 2006):

• Sample candidate (X∗em(k)0, X
∗
em(k)1) from the distribution D(q(Xem(k)0, Xem(k)1)),

where q > 0. In practice, we will set q = 20 or q = 30 for c ≥ 1 since it works

well. We can also use a more complicated choice of m, qm = h(m), where h is a

decreasing function of m.

• Accept the candidate, or replace (Xem(k)0, Xem(k)1) by (X∗em(k)0, X
∗
em(k)1) with prob-

ability

min

{
1,

Γ(qXem(k)0)Γ(qXem(k)1)× A× p(Y, β|X ∗, θ)
Γ(qX∗em(k)0)Γ(qX∗em(k)1)×B × p(Y, β|X , θ)

}
,

where

A = (Xem(k)0)qX
∗
em(k)0

−cρ(m) × (Xem(k)1)qX
∗
em(k)1

−cρ(m),

B = (X∗em(k)0)qXem(k)0−cρ(m) × (X∗em(k)1)qXem(k)1−cρ(m).

And X ∗ is the set X with (Xem(k)0, Xem(k)1) replaced by (X∗em(k)0, X
∗
em(k)1), Y is the

sample data set.

2.2.4 Sampling θ

In this section, we will introduce a special case called normal centering distribution,

which is used in DPpackage. In this special case, the PT prior is centered around a normal

distribution, Gθ = Nd(µ,Σ), in multivariate cases. When d = 1, θ follows a univariate

normal distribution N(µ, σ2). Therefore, we can set θ = (µ,Σ). And the priors we used

for µ and Σ are

µ ∼ N(m0, S0), Σ−1 ∼ W
(
ν0, (ν0T )−1

)
.

14



Note that E(Σ−1) = T−1 and so T can be considered as a “best guess” of Σ.

Let pX = (pX (1), pX (2), . . . , pX (2M)) denotes the vector of probability through pX (k),

pX (k) =
M∏
j=1

Xem(dk2m−M e),

where dxe maps x to the least integer greater than or equal to x.

The method for sampling µ:

• Sample candidate µ∗ from the full conditional distribution under normal

N
(
[S−1

0 + nΣ−1]−1[S−1
0 m0 + nΣ−1ȳ], [S−1

0 + nΣ−1]−1
)
.

• Accept the candidate with probability

min

{
1,

n∏
i=1

pX (Kµ∗,Σ(M,yi))

pX (Kµ,Σ(M,yi))

}
,

where Kµ,Σ(M, yi) is a number of k ∈ {1, . . . , 2M} such that the number (or the

vector) yi is in the set Bµ,Σ(eM(k)).

Similarly, the method for sampling Σ:

• Sample candidate Σ∗−1 from the full conditional distribution under normal

W

n+ ν0,

[
ν0T +

n∑
i=1

(yi − µ)(yi − µ)′

]−1
 .

• Accept the candidate with probability

min

{
1,

n∏
i=1

pX (Kµ,Σ∗ (M,yi))

pX (Kµ,Σ(M,yi))

}
.

Hanson (2006) also provided an alternative method when the previous approaches give

us an inaccurate results. When the data are very nonnormal, the acceptance probabilities

are very small and the MCMC method will get stuck.
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3. Data Analysis

3.1 Data Simulation

At first, we need to simulate the data from the true density function, 0.2×N(1, 1)+

0.6 × N(3, 6) + 0.2 × N(10, 2). The size of data is n. And we will set n to be 50, 100,

200 and 1000 in this chapter. The simulation method is as follows (Chapter 3.3 of Jara

et al. (2011) ):

• for i = 1, . . . , n, sample u from uniform distribution U(0, 1).

•

data[i] ∼



N(1, 1) if 0 < u < 0.2,

N(3, 6) if 0.2 ≤ u < 0.8

N(10, 2) if 0.8 ≤ u ≤ 1

3.2 Results Using MDP of Normal Model

Since we will use the R package, DPpackage (Jara et al., 2018), and the R function,

DPdensity in this thesis, we should again state the independent hyperpriors which are

used in this method and give the value of parameters in the priors.

yi|µi,Σi ∼ N(µi,Σi), i = 1, . . . , n,

(µi,Σi)|G ∼ G,

G|α,G0 ∼ DP (αG0);

16



we use the conjugate normal-inverted-Wishart:

G0 ∼ N(µ|m1, (1/k0)Σ)IW (Σ|ν1, ψ1);

We will use two priors with different value of parameters: 1) Fixed α, m1 and ψ1. 2)

Randomize all the parameters.

MDP Prior 1: We set the value of paprameters as α = 1, m1 = 1, ν1 = 4 and

ψ−1
1 = 0.5. And draw k0 from the Gamma distribution. That is,

G0 ∼ N(µ|1, (1/k0)Σ)IW (Σ|4, 2),

k0 ∼ Gamma(0.5, 50)

MDP Prior 2: We set the value of paprameters as ν1 = 4, and randomize the rest of

the parameters from the following distributions:

α ∼ Gamma(2, 1),

m1 ∼ N(0, 100000),

k0 ∼ Gamma(0.5, 50),

ψ1 ∼ IW (4, 0.5).

We can have a look at the simulated parameters (k0 and the number of clusters) for

MDP prior 1 when the sample size n = 200, see figure 3.1.The figure shows that we have 5

clusters and the posterior mean of k0 is 0.0222. We can also see that MCMC is converge.

What’s more, we can get the figure of predictive information about the means and

covariance (see figure 3.2).
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Figure 3.1. The simulated parameters we used in MDP prior 2 when n = 200.
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Figure 3.2. The prediction information about mean and covariance of
MDP prior 1 when n = 200.
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Figure 3.3. True density and estimated density of MDP priors when
n = 50, the left figure shows the density estimation of MDP prior 1 and
the right figure is of MDP prior 2.

3.2.1 True Density vs. Estimated Density

Since we want to evaluate the performance of different priors with different sample

sizes, we plot the true density and the estimated density in the same figure. Figure 3.3

shows the estimated density of two different priors when n = 50, figure 3.4 shows the

estimated density when n = 100, figure 3.5 shows the estimated density when n = 200

and figure 3.6 shows the estimated density when n = 1000.

3.3 Results Using MPT Model

We again state the MPT model as follows:

Y1, . . . , Yn|G ∼ G,

G|α, µ, σ ∼ PTM(Πµ,σ2

, A);

We also use two different priors in this thesis: 1) Fixed σ; 2) Randomize all parameters.
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Figure 3.4. True density and estimated density of MDP priors when
n = 100, the left figure shows the density estimation of MDP prior 1 and
the right figure is of MDP prior 2.

Figure 3.5. True density and estimated density of MDP priors when
n = 200, the left figure shows the density estimation of MDP prior 1 and
the right figure is of MDP prior 2.
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Figure 3.6. True density and estimated density of MDP priors when
n = 1000, the left figure shows the density estimation of MDP prior 1
and the right figure is of MDP prior 2.
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MPT Prior 1: Let σ = 20 and M = 6, and we define the rest parameters as following

distributions.

µ ∼ N(21, 100),

α ∼ Gamma(1, 0.01).

MPT Prior 2: The distribution of µ and α is the same as which in MPT prior 1, and

the distribution of σ is

σ−2 ∼ Gamma(0.5, 50).

We use R function, PTdensity in this section.

3.3.1 True Density vs. Estimated Density

The same as the section 3.2.1, we plot the true density and the estimated density of

different MPT priors with various sample sizes. Figure 3.7 shows the density of prior 1

and prior 2 when n = 50, figure 3.8 shows the density when n = 100, figure 3.9 shows

the density when n = 200 and figure 3.10 shows the density when n = 1000.

3.4 Model Comparison

We also use frequentist nonparametric method, Gaussian kermel method, to estimate

the density function. The kernel density estimator is

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
,

where h > 0 is the bandwidth and K is the kernel. We use the standard normal density

function as the kernel in this method.
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Figure 3.7. True density and estimated density of MPT priors when
n = 50, the left figure shows the density estimation of MPT prior 1 and
the right figure is of MPT prior 2.

Figure 3.8. True density and estimated density of MPT priors when
n = 100, the left figure shows the density estimation of MPT prior 1 and
the right figure is of MPT prior 2.
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Figure 3.9. True density and estimated density of MPT priors when
n = 200, the left figure shows the density estimation of MPT prior 1 and
the right figure is of MPT prior 2.

Figure 3.10. True density and estimated density of MPT priors when
n = 1000, the left figure shows the density estimation of MPT prior 1
and the right figure is of MPT prior 2.
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Figure 3.11. True density and estimated density using Gaussian kernel
method when n = 50 (left) and n = 100 (right).

Figure 3.12. True density and estimated density using Gaussian kernel
method when n = 200 (left) and n = 1000 (right).

Figure 3.11 and figure 3.12 shows the true density and the estimated density using

Gaussian kernel method. From left to right, the sample size is n = 50, n = 100, n = 200

and n = 1000, respectively. We use R function density to implement this method.
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Table 3.1
Mean-Square Error of Five Different Methods with Different Sample Sizes

Methods n = 50 n = 100 n = 200 n = 1000

Gaussian Kernel Method 1.58× 10−4 1.01× 10−4 9.81× 10−5 5.48× 10−5

MDP Prior 1 2.71× 10−4 1.01× 10−4 8.37× 10−5 4.78× 10−6

MDP Prior 2 7.51× 10−5 4.81× 10−5 2.46× 10−5 3.43× 10−6

MPT Prior 1 1.09× 10−4 1.24× 10−4 5.87× 10−5 1.85× 10−5

MPT Prior 2 2.68× 10−4 2.40× 10−4 5.35× 10−5 2.14× 10−5

To have a look at the performance in a more mathematical way, we calculate the

estimate of mean-square error. The mean-square error of an estimator f̂(xi) is defined as

MSE = Ef̂

[(
f(xi)− f̂(xi)

)2
]
.

We use the sample average to calculate the estimate of mean squared error.

M̂SE =
1

N

N∑
i=1

(
f(xi)− f̂(xi)

)2

,

where f(x) is the true density and f̂(x) is the estimated density at point xi. N = 1000

and xi, i = 1, . . . , N is a sequences on [−10, 20] with fixed increment and the length of

the sequence is 1000.

Table 3.1 shows the mean-square error of Gaussian kernel method, two MDP methods

and two MPT methods with different sample sizes, n = 50, 100, 200, 1000.
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4. Conclusion

In this thesis, we use mixtures of Dirichlet process (MDP) and mixtures of Polya

trees priors (MPT) to perform Bayesian density estimation based on simulated data with

different sizes. The data is simulated from a mixture of normal distribution. Moreover,

to compare the performance between Bayesian methods and frequentist methods, we also

use Gaussian kernel method.

According to the figures of density plot using five different methods, we can see that

MDP methods perform better than other methods. And the estimated density plots of

MPT methods are less smoother than the density plots of MDP methods.

For MDP methods, prior 2 (randomize all the parameters) performs better than prior

1 (fix α, m1 and ψ1). When the sample size n is large enough (n = 1000), the estimated

density plot is almost the same as the true density plot. As for MPT methods, prior 1

(fixed σ) is smoother than prior 2 (randomize all the parameters) since the number of

levels of the finite polya tree in prior 2 (M = 8) is larger than the levels (M = 6) in prior

1.

Looking at the table 3.1, we have a more mathematical conclusion. We can conclude

that MDP method using prior 1 is the best estimation method in these five methods.

Compare nonparametric frequentist method to nonparametric Bayesian methods, we can

see that they all perform well when n is large. And in most cases, nonparametric Bayesian

outperform their frequentist counterpart.
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