








CM and the average asset revenues.
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Figure 2.7: Price in CM (p) and the Weighted Asset Price (q)

However, since sellers are ex ante heterogeneous in asset payoffs and liquidity

shock, the aforementioned simple weighted calculation is misleading to some ex-

tent. As shown in Proposition 3, market co-existence can be sustained under some

conditions. In this scenario, sellers with high-quality asset, prefer to bear search

friction in DM rather than subsidize low-quality assets in CM. As a result, closing

DM would make those sellers worse off. The discussion on the government asset

purchase program equips us with a further illustration of this observation.

2.4 Government Asset Purchase Program

Prior to the financial recession, MBS was considered to be information insensitive

assets and thus there did not appear to exist an information asymmetry. However,

the outbreak of the financial crisis reminded the market of the potential information

asymmetry within the MBS market. Consequently, financial markets tended to be

illiquid and some markets, such as the federal funds market, were also frozen. See

Heider, Hoerova and Holthausen (2010) and Gale and Yorulmazer (2013) among

others for the background description and theoretical explanation.
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The US government launched the Troubled Asset Relief Program (TARP) to

curb the recent financial crisis. More specifically, the US Treasury implemented

the TARP by purchasing mortgage backed securities (MBS) from the financial in-

stitutions.15 In this section, we use the baseline model to address the implication

of government intervention for the seller’s welfare. We focus on the seller’s welfare

since buyers are assumed to be fully competitive and thus they would make zero

profit in equilibrium. In particular, we raise the following question. Does a self-

financing government intervention make all sellers better off? If not, how would the

heterogeneous treatment effect be related to the seller’s asset quality?

Thanks to Corollary 1, we can concentrate on the simplified case with π = 1, i.e.,

all sellers are hit by liquidity mismatch and thus have to sell their assets to buyers

before the asset payoffs are realized. Then we can index each seller as seller-x rather

than seller-(x, δ) in the baseline. Due to the free entry condition of information

investment and trading in the decentralized market (DM), if the government has

to incur a higher information cost than do the normal buyers in the baseline, or

if its matching efficiency in the DM is lower, then the government would make a

loss from its intervention. To make the analysis non-trivial, we assume the asset

purchase program is self-financing. In turn we make the following assumption.16

Assumption 3. The government enjoys a lower information cost than buyers, and

market co-existence is always sustainable, i.e., κg < κb < κ ≡ λ(1− η)xH .

To implement the program, the government issues perfectly enforceable debts

to buyers at the beginning of t = 1. Thus the government receives consumption

goods produced by buyers. When government steps into asset markets, it does

not necessarily have an information advantage over the uninformed buyers in the

baseline on asset payoffs. We adopt a more reasonable assumption by treating the

government in a similar position as uninformed buyers. That is, the government

could always set up a pooling price in the CM. Alternatively, the government can

15See the following link for more details of this program:
http://www.federalreserve.gov/bankinforeg/tarpinfo.htm.

16Alternatively, we could assume λg > λb, i.e., the government would enjoy a higher match-
ing efficiency in DM after paying the same information cost. Moreover, we can easily relax the
assumption that κb < κ.
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make an information investment and kick off bilateral trade with sellers in the DM.

They can also launch the trade in both markets in the same time.

In sum, with these consumption goods at hand, the government buys seller’s

assets in the CM, and decides whether or not to pay the information cost and buy

assets from DM. At t = 2, the government receives consumption goods from the

pooling assets it purchases from CM (and DM, if it co-exists with CM) at t = 1.

The government clears its liabilities by repaying buyers with the goods. Since buyers

are fully competitive, buyers make zero profit just like the self-financing government

intervention does.

On the one hand, since the information cost of government is lower than that

of the normal buyers, the free entry condition on information investment in DM

suggests that only the government survives in asset exchange in DM with information

investment. On the other hand, since the government is self-financing and buyers are

fully competitive, neither of them gain positive profit from trading in CM. Without

loss of generality, we assume only the government trades with sellers in the CM.

Therefore in the presence of Assumption 1, only the government would trade with

sellers in either markets in equilibrium. We summarize the key findings in the

following proposition.

Proposition 7. (Welfare Effect of Government Asset Purchase Program)

Under Assumption 1, a self-financing government asset purchase program makes

high-quality sellers better off while the low quality sellers worse off. More specifically,

there exists a cutoff point x̂ ∈ (xL, xH) such that,

1. Sellers with x ≥ x̂ are better off. Moreover, the net gain strictly increases with

their asset quality x.

2. Sellers with x < x̂ are worse off. Moreover, the net loss weakly increases with

their asset quality x.

The above proposition states that, with Assumption 1, i.e., even though the

government has an information advantage than the normal buyers, the government

cannot deliver a Pareto improvement for the heterogeneous sellers. The decrease of
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the information cost by the government encourages it to acquire more information

in the DM. As a result, sellers who stay in the DM after the government intervention

enjoy a more favorable extensive margin. Moreover, the favorable market tightness in

general equilibrium drives more sellers to switch from the CM to the DM. Therefore

the average quality of assets in the CM decreases. In turn, the pooling price in the

CM decreases and those who continue to trade in the CM are worse off. Consequently

some sellers are better off while the others are worse off. We illustrate the logic and

the cut-off value of the above proposition in Figure 2.8.
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Figure 2.8: When government steps in with a lower information cost (κ′ <
κ).

2.5 Conclusion

Asset exchange with market co-existence is prevalent. To this end, we develop a

simple model to characterize conditions under which co-existence of centralized and

decentralized markets can be sustained and its implication for asset liquidity. There

are two-dimensional private information, one is asset payoff while the other one is

liquidity shock of asset sellers. On one hand, the latter dimension is always un-

observable by others. Buyers can either stay uninformed or choose to acquire costly
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information on the former dimension. If buyers incur no information cost, then they

post a pooling and publicly displayed price at which asset demand equals supply.

This is what we mean by centralized market (CM), which is free of search friction,

but is subject to adverse selection. In contrast, those buyers with costly information

acquisition may propose a trading menu different from the pooling price. Since

we assume each information investment can only be used to detect the quality of

one unit of asset, the bilateral trading between sellers and informed buyers may be

subject to search frictions. This is what we mean by decentralized market (DM),

which is characterized with search friction and bilateral bargaining. That is, the

endogenous information investment delivers the emergence of DM with bilateral

trading.

Due to strategic complementarity between sellers and buyers, there always exists

an equilibrium in which only CM survives for asset exchange. To ease the analysis

comparative statics, we always pick up the equilibrium with markets co-existence

whenever it can be supported. Market co-existence emerges only when the following

three conditions are satisfied: i) the search friction in DM is low enough, ii) the

information friction in CM is severe enough, and iii) the information cost is low

enough. Given market co-existence, the trading share of DM over CM increases

with matching efficiency in DM and severeness of adverse selection in CM, while

decreases with information cost. Then we conclude that, as matching efficiency in

DM increases and the information cost decreases, more trade migrates from CM

with adverse selection to DM with search frictions. In the limit, DM with search

frictions converges to CM with complete information.

Our model with information and search frictions is more than just explaining

conditions under which CM and DM co-exist for asset trading. We also address the

implication of government asset purchase program, such as the Troubled Asset Relief

Program (TARP), through the lens of our model. Since sellers are heterogeneous in

asset payoffs, even though the government is better at information cost or matching

efficiency, the treatment effect of self-financing government asset purchase program is

heterogeneous. Moreover, in the presence of government intervention, we show that

sellers with high-quality assets are better off while the others are worse off in general

equilibrium. Therefore even though the government has an information advantage
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than the normal buyers, the government cannot generate a Pareto improvement for

all those heterogeneous sellers.

We close the paper with several possible lines for future research. First, we

assume assets are indivisible. This assumption is innocuous in the paper since

we also assume all agents are risk neutral. Both restrictions contribute greatly

to tractability. It could be interesting to extend the idea into the scenario with

perfect divisible asset. The advancement from indivisibility to divisibility is not a

trivial exercise. As emphasized by Lagos and Rocheteau (2009), “...As a result of the

restrictions they imposed on asset holdings, existing search-based theories neglect

a critical feature of illiquid markets, namely, that market participants can mitigate

trading frictions by adjusting their asset positions to reduce their trading needs...”.

Both Lagos and Wright (2005) and Lagos and Rocheteau (2009) have contributed a

tractable framework for asset trading with perfectly divisible asset.

Secondly, to neatly model endogenous information acquisition and the emergence

of DM, we assume direct trading between sellers and buyers in a finite-horizon

model. In our real life, however, a large number of asset trading in DM are dealer-

intermediated, say corporate bonds. To better characterize the trading details in

DM, such as bid-ask spread, it may be worthwhile for us to introduce dealer between

sellers and buyers in DM.

Thirdly, it might be desirable for us to integrate the idea in this paper into a dy-

namic general equilibrium model. Eisfeldt (2004) and Kurlat (2012), among others,

are excellent examples of integrating pooling price with adverse selection into RBC

models. As suggested throughout this paper, buyers in our paper undertake endoge-

nous level of information investment to lessen adverse selection. Furthermore, we

have endogenous trading venues for market liquidity. In sum, the RBC model with

our story might deliver additional insights for dynamic decision on real investment

and information investment and their interactions with each other.
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2.6 Appendix

2.6.1 Appendix A - Proofs

Proof of Proposition 1 and 2

Proof. Substituting c1 and c2 into the objective function yields

US(x, δ) = max
a∈{0,1}

{max {
m(b, s)

s
ηx, p(x)} · a+ δ · [a · 1

{m(b,s)
s
·ηx>p(x)}

· (1−
m(b, s)

s
) · x+ (1− a) · x]}

=


max
a∈{0,1}

{max {m(b,s)
s

ηx, p(x)} · a} when δ = 0

max
a∈{0,1}

{max {m(b,s)
s

ηx, p(x)} · a+ a · 1
{m(b,s)

s
·ηx>p(x)}

· (1− m(b,s)
s

) · x+ (1− a) · x} when δ = 1

As a result, when δ = 0, a∗ = 1, i.e., investors with preference shock have to sell

the claim of their projects. Investors with δ = 1, however, could either participate in

centralized or decentralized market (a = 1) or simply wait till t = 2 (a = 0). However,

the above optimization implies that investors would never try centralized market due to

search friction and bargaining.

First of all, competitive buyers set p(x) = x in complete information. In this scenario,

p(x) > m(b,s)
s ηx for all sellers-(x, δ = 0) and thus they trade in centralized market. More-

over, sellers-(x, δ = 1) would be indifferent between selling in centralized market at t = 1

and waiting till t = 2.

Secondly, in the presence of information asymmetry, p(x) = p for all sellers pooling

in centralized market. On one hand, for sellers with δ = 0, if decentralized market does

not exist, their only choice is the centralized market. If the decentralized market exists,

however, they would compare m(b,s)
s ηx with p. Furthermore, if m(b,s)

s ηx1 > p, we would

also have m(b,s)
s ηx2 > p provided x2 > x1. Thus there may exist a cut-off point x̃ on the

choice of trading venues. If x̃ ∈ (xL, xH), then m(b,s)
s ηx̃ = p holds by definition. On the

other hand, for sellers with δ = 1, as argued above, they would never consider trading in

decentralized market even though it would be available. Instead, they simply compare p

and x. As a result, those with x < p would sell their asset claims in the centralized market

at t = 1 while those with x ≥ p would enter either markets and wait till t = 2.

96



Finally, based the above two pieces of observation, we have

Us(x, δ) =



p if δ = 0 and x ≤ x̃

x
x̃ · p if δ = 0 and x > x̃

p if δ = 1 and x ≤ p

x if δ = 0 and x ≤ x̃

=

max{
x
x̃ , 1} · p if δ = 0

max{xp , 1} · p if δ = 1

= max{ x

p+ (x̃− p) · 1{δ=0}
, 1} · p

Proof of Corollary 1

Proof. It is immediately obtained by using Proposition 1 and 2.

Proof of Lemma 1

Proof. The results in the general case in proved as below.

First of all, we show that p ≤ x̃. Eq. (2.4) suggests that

p =
πF (x̃)E(x|x ≤ x̃) + (1− π)F (p)E(x|x ≤ p)

πF (x̃) + (1− π)F (p)

=
π
´ x̃
xL
xdF (x) + (1− π)

´ p
xL
xdF (x)

πF (x̃) + (1− π)F (p)

≤
π
´ x̃
xL
x̃dF (x) + (1− π)

´ p
xL
pdF (x)

πF (x̃) + (1− π)F (p)

=
πx̃F (x̃) + (1− π)pF (p)

πF (x̃) + (1− π)F (p)
,

where the inequality strictly holds iff x > xL. Thus p ≤ πx̃F (x̃)+(1−π)pF (p)
πF (x̃)+(1−π)F (p) . Multiplying

both side of this inequality with πF (x̃) + (1− π)F (p) and rearranging then yields p ≤ x̃,

where the equality holds iff x̃ = xL(= p).

Secondly, Eq. (2.4) can be rewritten as

G(p, x̃, π) ≡ π
ˆ x̃

xL

xdF (x) + (1− π)

ˆ p

xL

xdF (x)− πpF (x̃)− (1− π)pF (p) = 0.
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Thus we have

Gp ≡
∂G

∂p
= −[πF (x̃) + (1− π)F (p)] < 0

Gx̃ ≡
∂G

∂x̃
= π(x̃− p)f(x̃) > 0

According to Implicit Function Theorem, we have

dp

dx̃
= −Gx̃

Gp
=> 0.

Thus we can denote the above result as p = PAS(x̃, π), which is an increasing function

of x̃. Furthermore, since x̃ ≥ xL, we immediately have p ≥ xL. When x̃ = xL, Eq. (2.2)

is reduced as follows.

p =

´ p
xL
xdF (x)

F (p)
= E(x|x ≤ p),

which is a classic problem of adverse selection by Akerlof (1970) and the unique solution

is p = xL. As a result, PAS(x̃ = xL) = xL and thus p ≥ xL. So far we finish the proof

that xL ≤ p ≤ x̃, where both inequality strictly holds if x̃ > xL.

Moreover, we have

∂G

∂π
= [

ˆ x̃

xL

xdF (x)− pF (x̃)]− [

ˆ p

xL

xdF (x)− pF (p)]

Define H(a; p) ≡
´ a
xL
xdF (x) − pF (a). Then we have ∂H

∂a = (a − p)f(a) and thus

H(a; p) increases with a when a > p. Since x̃ > p, we have

Gπ ≡
∂G

∂π
= H(x̃; p)−H(p; p) > 0,

which in turn, by using Implicit Function Theorem again, implies that

dp

dπ
= −Gπ

Gp
> 0.

Denote p = PAS(x̃, π). Thus p = PAS(x̃, π) ≤ PAS(x̃, π = 11) = E(x|x ≤ x̃) ≤ E(x|x ≤

xH) = µ(θ).

Finally, when π = 0, Eq. (2.4) is reduced to

p =

´ p
xL
xdF (x)

F (p)
= E(x|x ≤ p),

98



which has been discussed above in the case when x̃ = xL. The only solution is p =

PAS(x̃, π = 0) = xL and CM totally collapses.

Now we prove the second part of Proposition 3.

When x
U∼ X = [xL, xH ], we have

F (x) =


0 if x < xL

x−xL
xH−xL if xL ≤ x ≤ xH

1 if x > xH

.

Substituting F (x) into Eq. (2.2) and making some algebraic manipulation yields Eq.

(2.3).

Proof of Lemma 2

Proof. The results in the general case in proved as follows. For the ease of argument, we

list Eq. (2.4) and Eq. (2.3) as below.

m(1, α)r(x̃) =
κ

1− η

m(
1

α
, 1)x̃ =

p

η

In the above simultaneous equations, x̃ and α are endogenous variables while κ, p and

η are exogenous. To prove ∂x̃
∂p > 0, we differentiate both sides of the above two equations.

Then we have  m2(1, α)r(x̃) m(1, α)r′(x̃)

−m1( 1
α ,1)

α2 x̃ m( 1
α , 1)

 dα
dp

dx̃
dp

 =

 0

1
η

 (#)

Since m1 > 0, m2 > 0 and r′(x̃) > 0, Cramer rule immediately suggests that

dx̃

dp
=

det

 m2(1, α)r(x̃) 0

−m1( 1
α ,1)

α2 x̃ 1
η


det

 m2(1, α)r(x̃) m(1, α)r′(x̃)

−m1( 1
α ,1)

α2 x̃ m( 1
α , 1)

 > 0 and
dα

dp
=

det

 0 m(1, α)r′(x̃)

1
η m( 1

α , 1)


det

 m2(1, α)r(x̃) m(1, α)r′(x̃)

−m1( 1
α ,1)

α2 x̃ m( 1
α , 1)

 < 0 (∗)

Following the same strategy delivers that dx̃
dκ > 0 and dx̃

dη < 0.
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Now we prove the second part of Lemma 2. It is immediately done with the assumption

x
U∼ X = [xL, xH ] and m(b, s) = λ ·min{b, s}.

Proof of Proposition 3

Proof. We proceed with the strategy of guess-and-verify. Assume market co-existence can

be supported, i.e., x̃ ∈ (xL, xH), then we have

λ ·min{b, s}
b

(1− η)E(x|x ≥ x̃) = κ

λ ·min{b, s}
s

ηx̃ = p

s = π · [1− F (x̃)]

p = ϕx̃+ (1− ϕ)xL

Additionally, we assume that s < b, i.e., α ≡ s
b < 1, then the above equations suggest

that x̃ = ( 1−ϕ
λη−ϕ)xL. We now have to check whether the guess that α < 1 is valid. It then

is easy for us to check that α < 1 when κ ≤ κ. Moreover, we have to guarantee that

x̃ = ( 1−ϕ
λη−ϕ)xL ∈ (xL, xH), which is true if and only λη > ϕ and σ > σ̂.

Similarly, we assume x̃ ∈ (xL, xH), but α ≥ 1. Then we can show this guess is true if

and only λη > ϕ and σ > σ̂ and κ ∈ (κ, κ).

Finally, based on the above analysis, x̃ = xH would be the only equilibrium result if

κ ≥ κ when λη > ϕ and σ > σ̂, or, for all κ ∈ R+, we have λη ≤ ϕ and σ ≤ σ̂.

Proof of Proposition 4

Proof. First, based on Proposition 3, we have market co-existence both before and after

government intervention. Moreover, since κg = κ′ < κb = κ, we know from Proposition 3

that x̃(κg) ≤ x̃(κb) and thus p(κg) ≤ p(κb). Additionally, the decrease of information cost

implies a more favorable extensive margin for sellers. Therefore, we know that

U(x̃(κg)) = p(κg) ≤ p(κb) =
m(s(κb), b(κb))

s(κb)
ηx̃(κb) ≤

m(s(κg), b(κg))

s(κg)
ηx̃(κb) = U(x̃(κb)).

Since U(x) increases with x, there exists a cut-off point x̂ ∈ (x̃(κg), x̃(κb)) such
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that

U(x)

≤ p(κb) if x ≤ x̂

≥ p(κb) if x ≥ x̂
.

2.6.2 Extension: Robustness Check

In our baseline model, we use random search to characterize search frictions in DM. Be-

sides, we assume liquidity shock, δ, only adopts two mass points, zero and one. Thus

buyers could infer only sellers with δ = 0 could show up in DM. We use this appendix

to undertake two pieces of robust check. First, we revisit the model with directed search

rather than random search in DM. That is, each buyer in DM only run submarket-x, where

sellers-(x, δ) would meet buyers. Secondly, we treat the general case on liquidity shock,

in which δ is continuously distributed over an interval, just like the asset payoff x. In the

general case, buyers can only detect asset payoff x with costly information acquisition, but

have idea on liquidity shock δ. Thus buyers in DM would instead launch optimal contract

to extract true value of δ for those sellers self-selecting into DM. Finally, we have so far

focused on an exchange economy, i.e., all of potential sellers is exogenous endowed with

one unit of asset at t = 0.

Directed Search

In direct search, each buyer with information investment only engage in certain submarket-

x. Correspondingly, seller-(x, δ) directly trade with buyers there. Since in equilibrium

buyers would be indifferent among different sub-markets in DM, the following equation

holds for all seller-(x, δ) self-selecting into DM.

m(b(x), s(x))

b(x)
(1− η)x = κ, (2.13)

which immediately implies that α(x) ≡ s(x)
b(x) , the market tightness at submarket-x, in-

creases with x. In turn, the expected revenue of entering DM by seller-(x, δ), m(b(x),s(x))
s(x) ηx

increases with x, just as that in random search. As a result, the property of cut-off point

on market participation is preserved in the case with directed search. Following the pro-
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cedure in Section 2 and 3, we have the following results on equilibrium choice of trading

venues with directed search.

Corollary 11. (Equilibrium Choice of Trading Venues) Denote κ′ ≡ λ(1−η)( 1−ϕ
λη−ϕ)xL,

κ ≡ λ(1−η)
2 [( 1−ϕ

λη−ϕ)xL + xH ] and κ ≡ λ(1− η)xH .

1. (Choice of Trading Venues)

(a) For sellers with δ = 0, there exists a cut-off point x̃′ ∈ [xL, xH ] such that if

x ≥ x̃′, they would self-select into DM, and enter CM otherwise at t = 1.

(b) For sellers with δ = 1, if x < p, they would choose CM, and if x ≥ p, they

would participate in neither DM nor CM at t = 1, but instead wait to consume

at t = 2.

2. (Characterization of Cut-off Value x̃′)

(a) When λη > ϕ and σ > σ̂ ≡ ( 1−λη
1+λη−2ϕ)µ (i.e., λη > ϕ + (1 − ϕ) xLxH ), where

ϕ = ϕ(π) ≡
√
π√
π+1

, we have κ′ < κ < κ and

x̃′ = min{xH , max{(
1− ϕ
λη − ϕ

) · xL,
κ

λ(1− η)
}}

=


xH if κ > κ

κ
λ(1−η) if κ′ < κ ≤ κ

( 1−ϕ
λη−ϕ )xL if κ ≤ κ′

.

p = ϕ(π) · x̃′ + (1− ϕ(π)) · xL.

(b) When λη ≤ ϕ(π) or σ ≤ σ̂ (i.e., λη ≤ ϕ+ (1− ϕ) xLxH ), we have

x̃ = xH for all κ ∈ R+.

Proof. Since m(b(x), s(x)) = λ · min{b(x), s(x)}, Eq. (2.13) suggests that, to recover

information investment, informed buyers in DM would only accept to trade with sellers

with x ≥ κ
λ(1−η) . Then following the proof strategy of Proposition 5 yields the desired

results.

This corollary implies the main results in the benchmark with random search are

still preserved in our robust check with directed search. We illustrate key results of this
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corollary in Figure 2.9. Two comments are made here. First of all, the patten of venue

choice is qualitatively the same between random and directed search. Secondly, x̃′ ≤ x̃,

i.e., the size of DM tends to smaller under directed search than that under random search.

As suggested in Section 4, a smaller DM would be save more social resources. Therefore

our result is complementary to the findings by Moen (1997) on efficiency obtained by

directed search.
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Figure 2.9: Choice of Trading Venues: Direct vs Random Search

Optimal Contract with a Continuum of δ

Now we return to random search with matching function m(b, s) = λ · min{b, s}. The

second line of model extension on switching from δ ∈ {0, 1} to δ ∈ [0, 1]. Notice that

buyers can no longer infer the true value of δ. Now we assign all bargaining power to buyers

in DM and they could initiate optimal contract {q(x, δ), τ(x, δ)} after paying information

cost κ in DM. Given any x, q(x, δ) and τ(x, δ) denote the quantity of asset transferred to

buyers and the consumption paid to sellers respectively if sellers report his type of private

value as δ. Note that x is verifiable after buyers incurring information cost κ.

In the same spirit in the benchmark, there exists a cut-off value of κ, say κ′, above which

DM cannot not be supported whatever the contract buyers propose in DM. In contrast,

the equilibrium with market co-existence is not only sustainable, but also stable if κ < κ∗.

Moreover, there exists another cut-off point κ∗ < κ∗ such that b < s in equilibrium if

κ < κ∗. Since the co-existence of CM and DM is the most intriguing part, we assume
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κ < κ∗ holds. Moreover, to focus on the characterization of optimal contract by buyers

in DM, we assume κ < κ∗ < κ∗ throughout this subsection such that DM can not only

be supported, but also there are more buyers than sellers flowing into DM. We can prove

that the qualitative results shown below are still held if κ ∈ κ∗ < κ∗ (and 0 < b < s

correspondingly).

Denote U(x, δ) as the gain of seller-(x, δ) by enrolling in the contract by buyers in DM.

Now seller-(x, δ) makes her discrete choice among three alternatives.

max { p︸︷︷︸
CM

,
m(b, s)

s
· U(x, δ) + [1− m(b, s)

s
] · δx︸ ︷︷ ︸

DM

, δx︸︷︷︸
No−trade

}.

In this part, we focus on the most intriguing case, i.e., the co-existence between CM

and DM. Thanks to Revelation Principle, given any x, we could simply focus on buyer’s

direct mechanism in DM, which is formulated as below.

ΠB(x) ≡ max
{q(x,δ)∈[0,1],τ(x,δ)∈[0,∞)}ZDM |x

{
ˆ
δ∈ZDM |x

[−τ(x, δ) + q(x, δ) · x]}

subject to

U(x, δ) ≡ Ux(δ; δ) = max
δ′∈ZDM |x

{Ux(δ; δ′)}

Ux(δ; δ′) ≡ [1− q(x, δ′)] · δx+ τ(x, δ′) (IC)

m(b, s)

s
· U(x, δ) + [1− m(b, s)

s
] · δx ≥ U(p, δx) ≡max{p, δx} (IR).

Similar to standard mechanism design, both Incentive Compatibility (IC) and Indi-

vidual Rationality (IR) should be satisfied. What makes our setup challenging is that,

buyer’s mechanism design would affect ZDM , the content of seller-(x, δ) self-selecting into

the contracts in DM. Moreover, it is worth noting the outside option is type-dependent

and thus may involve in the so-called countervailing incentive a la Lewis and Sappington

(1989), Maggi and Rodriguez-Clare (1995) and Jullien (2000).

The following lemma on seller’s choice of trading venues generalizes the results of

Proposition 2.

Lemma 6. (Seller’s Choice of Trading Venues) For any seller-(x, δ), given p in CM

and contract {q(x, δ), τ(x, δ)} in DM, there exists cut-off values δ(x) and δ(x) such that,

1. if δ ∈ [0, δ(x)], she sells her asset at CM;

2. if δ ∈ (δ(x), δ(x)], she sells her asset at DM;
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3. if δ ∈ (δ(x), 1], she chooses not to trade.

Proof. We rewrite the IR condition of this mechanism design as below.

U(x, δ) ≥ V (x, δ, p) ≡ δx+
1

λ̂
max{p− δx, 0},

where λ̂ ≡ m(b,s)
s and thus V (x, δ, p) decreases with δ when δx < p while increases

when δx > p. The non-monotone property of V stems from the fact that, relative to DM,

seller-(δ, x) have two outside options. One is sell at CM at price p while the other one

is pure autarky, i.e., participating in neither CM nor DM. When δx is low, the outside

option with CM is larger than that in with autarky. It is just opposite when δx is high

enough.

Secondly, given any x, Envelope Theorem suggests that

∂U(x, δ)

∂δ
= [1− q(x, δ)]x ≥ 0.

Combining these two observations yields the results in the lemma with

δ(x) = max{0, p− λ̂ · U(x, δ)

(1− λ̂) · x
}

δ(x) = min{1, U(x, δ)

x
}

Finally,a figure with δ in horizontal axis and U , V in vertical axis would help illustrate

our findings. Due to space concern, we omit it here.

Based on the above lemma, we reach the optimal contract in DM and in turn obtain

the explicit solution on (δ(x), δ(x)).

Proposition 8. (Optimal Contract Offered in DM) When δ
U∼ ∆ = [0, 1] and

m(b, s) = λ ·min{b, s} and κ is small enough, given any x in DM, buyer’s optimal contract

is in the form as take-it-or-leave-it in the following form.

{q∗(x, δ)) = 1, τ∗(x, δ) = τ(x)},

where

τ(x) =


p+x

2 if x ∈ [p, 2−λ
λ · p]

p
λ if x ∈ ( 2−λ

λ · p,
2·
λ p]

x
2 if x ∈ ( 2

λ · p, xH ]

.
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In turn, we have

δ(x) = max{0, p− λ · τ(x)

(1− λ) · x
} =



1 if x ∈ [xL, p]

(1−λ2 )p−λ2 x
(1−λ)x if x ∈ (p, 2−λ

λ · p]

0 if x ∈ ( 2−λ
λ · p,

2
λ · p]

0 if x ∈ ( 2
λ · p, xH ]

.

δ(x) = min{1, τ(x)

x
} =



1 if x ∈ [xL, p]

p+x
2x if x ∈ (p, 2−λ

λ · p]

p
λx if x ∈ ( 2−λ

λ · p,
2
λ · p]

1
2 if x ∈ ( 2

λ · p, xH ]

.

Proof. The first part is proved as below.

To ease illustration while preserving the key insights, we have assumed that information

cost κ is low enough such that b > s is always true in equilibrium. In turn, we have

m(b,s)
s = λ ∈ (0, 1), a constant. This would help us focus on characterizing optimal

contract by buyers. We break down the proof into the following steps.

First of all, since sellers could always seller their assets at price p in CM and δ ∈ [0, 1],

buyers in DM would have no customers if U(x, δ) < p. Meanwhile, to recover information

cost, buyers in DM ex ante would never accept sellers with x < p.

Secondly, for seller-(x, δ) self-selecting into DM and is allowed to trade with buyers

there, denote δ̃(x) = min{ px , 1} = p
x . Since Then we can check that δ(x) ≤ δ̃(x) ≤ δ(x),

where δ(x) and δ(x) are characterized in the proof of Lemma 1. For each x, buyers launch

direct mechanism for two groups respectively. One is δ ∈ ∆1 = [δ(x), δ̃(x)] while the other

group is δ ∈ ∆2 = [δ̃(x), δ(x)]. On one hand, for each group, buyers make sure IR and

IC conditions are satisfied. On the other hand, buyers have to make sure sellers in group

∆1 ∪∆2 would have no incentive to deviate the other group. After all, even though x is

verifiable after buyers incur information cost, δ is still un-observable. As a result, incentive

compatibility of not deviating to another group has to be additionally taken into account.

In the next two pieces of analysis, we first solve the within-group contract and then go to

discussion of IC on across-group.

Buyer’s objective function for group ∆1 is

ΠB(x)|∆1
≡ max
{q(x,δ)∈[0,1],τ(x,δ)∈[0,∞)}

{
ˆ δ̃(x)

δ(x)

[−τ(x, δ) + q(x, δ) · x]}
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Meanwhile, for group with δ ∈ ∆1, the outside option is simplified as V (x, δ, p) ≡
δx+ 1

λmax{p−δx, 0} = p
λ− ( 1

λ−1)δx. That is, for sellers in this group, the outside option

decreases with δ. Following Maggi and Rodriguez-Clare (1995), among others, we define

Υ(x, δ) = U(x, δ)− V (x, δ, p). Envelope Theorem suggests

∂Υ

∂δ
= [

1

λ
− q(x, δ)] · x.

Thus

[1− q(x, δ)]δx+ τ(x, δ)− [
p

λ
− (

1

λ
− 1)δx] =

ˆ δ

δ(x)

[
1

λ
− q(x, δ′)]xdδ′.

Expressing the above equation for τ(x, δ) and substituting it into the buyer’s objec-

tive function for group ∆1 mentioned above, we can easily prove that, for group ∆1,

q∗(x, δ)|∆1 = 1. Substituting it into the above equation suggests that τ∗(x, δ)|∆1 has

nothing to with δ and is thus denoted as τ∗(x)|∆1 .

Similarly, we can show that q∗(x, δ)|∆2 = 1 and τ∗(x, δ)|∆2 also has nothing to do with

δ and is thus denoted as τ∗(x)|∆2 . Finally, to make sure the IC condition of across-group

is satisfied, we have to make sure τ∗(x, δ)|∆1 = τ∗(x, δ)|∆1 ≡ τ(x)|∆1∪∆2 = τ(x). In sum,

given x > p and buyers and sellers are matched in DM, the optimal contract would take

the form as {q∗(x, δ) = 1, τ∗(x, δ) = τ(x)}. It is obvious that τ(x) ≤ x is always held.

In turn, we have U(x, δ) = τ(x) and thus

δ(x) = max{0, p− λ · τ(x)

(1− λ) · x
}

δ(x) = min{1, τ(x)

x
} =

τ(x)

x
.

As a recap, buyer’s profit function focusing on sellers with x is

ΠB(x) ≡ max
{q(x,δ)∈[0,1],τ(x,δ)∈[0,∞)}ZDM |x

{
ˆ
δ∈ZDM |x

[−τ(x, δ) + q(x, δ) · x]}

Using the optimal contract and cut-off values just obtained above, ΠB(x) is refined as

below.

ΠB(x) = max
τ(x,δ)∈[0,x]

[x− τ(x)][G(δ(x))−G(δ(x))]

subject to

δ(x) = max{0, p− λ · τ(x)

(1− λ) · x
}

δ(x) = min{1, τ(x)

x
} =

τ(x)

x
,
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where G denotes the CDF of δ with support [0, 1]. If we further assume δ
U∼ ∆ = [0, 1],

then we obtain τ(x) as that in Proposition 5. In turn, we obtain δ(x) and δ(x) as in the

second part of this proposition. We are done.

We illustrate Proposition 5 in Figure 2.10 and 2.11 respectively the terms of trade by

buyers and choice of trading venues by sellers.
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Figure 2.10: (p, τ(x)): Assets Prices in CM and DM

Several remarks are made here. First of all, the optimal contract by buyers in DM

only focus on sellers with x > p. On one hand, p is always an outside option of any

seller-(x, δ) and thus buyers in DM would attract no sellers if τ(x, δ) < p. On the other

hand, buyer’s profit is x − τ(x, δ). To make the profit non-negative, it must that they

would trade with x > p and x can always be verifiable. Secondly, given price in CM p,

seller’s choice over CM, DM and autarky not depends on common value x, but also on

private value δ. Thirdly, we are still in the position of partial equilibrium since price in

CM is taken as given. Based on Proposition 7, p is solved in equilibrium as below.

p =

´ p
xL
xdF (x) +

´min{ 2−λ
λ ·p,xH}

p
xG
(

(1−λ2 )p−λ2 x
(1−λ)x

)
dF (x)

F (p) +
´min{ 2−λ

λ ·p,xH}
p

G
(

(1−λ2 )p−λ2 x
(1−λ)x

)
dF (x)

, (2.14)
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Figure 2.11: Seller’s Choice of Trading Venues

where F and G denotes the CDF of x and δ respectively. Moreover, we have implic-

itly assumed G(δ) is a uniform distribution. However, even though F (x) is a uniform

distribution, the above equation has no explicit solution on p.
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Chapter 3

A Search-Based Theory of The

Life-Cycle Pattern of Asset

Holding

3.1 Introduction

The vast majority of financial assets, such as corporate bonds, US federal funds and

mortgage-backed securities, are typically traded in decentralized markets. As docu-

mented by Harris (2003), Duffie, Gârleanu and Pedersen (2005, DGP thereafter) and

Duffie (2012), decentralized markets, which are sometimes called over-the-counter

markets (OTC), are mainly characterized with search frictions and bilateral bar-

gaining.1 Liquidity mis-allocation emerges since it takes time for buyers and sellers

to be matched with each other for the trading surplus.2

All of the literature on asset search assumes an infinite horizon environment,

which in turn contributes to tractability. Moreover, as shown by Storesletten, Telmer

and Yaron (2004), Chambers and Schlagenhauf (2003), and Chang and Hong (2012),

1Not only for financial assets, it is also true that non-financial durable goods, such as used
aircraft, are also traded with search frictions. See Gavazza (2011) for details.

2There may exist more fundamental reasons than just search frictions. For example, as suggested
by Wasmer and Weil (2004), imperfections in labor and credit markets may stem from moral
hazard or adverse selection. For simplicity, we throughout this paper sticks to search friction as a
convenient reduced form rather than assuming any information asymmetries.
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investment on financial assets, including stocks and bonds, is hump-shaped over

one’s life. Motivated by the empirical regularity, we investigate the implications of

search frictions for the life cycle as well as for the aggregate distribution of investor’s

asset holdings. Based on the model, we further address the effect of search friction

on asset mis-allocation in terms of both cross section and time series. We fully

characterize not only the stationary distribution, but also the transitional dynamics

of asset holding. More importantly, we obtain analytic results for the life cycle of

asset holdings by each cohort. To the best of our knowledge, this paper is the first

to analytically characterize the life-cycle pattern of asset trading.

The model developed in this paper has several pieces of testable implications.

First of all, the stationary size distribution of asset holding follows a logarithmic

pattern. Secondly, the life cycle of asset holding by each cohort conforms to a

geometric distribution while the size distribution of asset holding in each cross-

section follows a logarithmic pattern. Thirdly, the average growth rate of asset

holding is irrelevant to the size of current asset holdings. Meanwhile, the volatility

of growth rate of asset holding decreases with the size of current asset holdings.

That is, we reach the results on Gibrat’s law on asset trading in OTC.3

This paper is mostly related to DGP (2005) and Lagos and Rocheteau (2009).

The former considers asset trading by risk-neutral investors in OTC with two types

of preference (low and high) and strict restriction on asset holding (zero or one unit

of asset). The latter uses quasi-linear utility to model general types of preference

and relaxes the assumption on asset indivisibility. There are several key differences

and connections between these two works and this paper. First of all, DGP (2005)

considers only two types of preference and asset holdings are assumed to be either

zero or one unit. In contrast, our paper allows general types of preference and

investors could accumulate any countable units of assets. Secondly, DGP (2005)

focuses on steady state while our paper takes in account both stationary equilibrium

and transitional dynamics. It is true that Lagos and Rocheteau (2009) already

proposes a tractable model to admit asset divisibility, transitional dynamics and

3See Sutton (1997) and Klette and Kortum (2004), among other, for the detailed description of
Gibrat’s law for firm dynamics.
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general types of preference. As shown in Lagos and Rocheteau (2007), one of the

key limits in Lagos and Rocheteau (2009) is that, when there are only two types of

preference as in DGP (2005), there are only four mass points for the equilibrium size

of asset holdings.4 In contrast, we not only consider the general preference, but also

show that, even with only two types of preference, there are countably infinite types

for the size distribution of asset holdings. Thirdly, both DGP (2005) and Lagos and

Rocheteau (2009) address a closed system, i.e., investors always live in the financial

market to re-balance their asset holdings from time to time. As a result, our paper

complements to these two works by using birth-and-death process in firm dynamics

to model the implication of search friction for the life-cycle pattern of asset holding.

Finally, we incorporate into our model the empirical findings of fire-sale and fire-

purchase by Coval and Stafford (2007). These empirical features are absent in both

works.

The issues our paper addresses belong to the literature on asset search while the

modeling strategy originates from the literature on firm dynamics. Early works con-

sists of Lucas (1978), Jovanovic (1982), Hopenhayn (1992) and Ericson and Pakes

(1995) among others. Recent research includes Cooley and Quadrini (2001), Cabral

and Mata (2003), Klette and Kortum (2004) and Luttmer (2007, 2011). The method-

ology our paper mainly adopts from the field of firm dynamics is stochastic process

of birth and death. That is, the modeling block of this paper essentially stems from

Klette and Kortum (2004) and Luttmer (2011).

The rest of this paper proceeds as below. Section 2 describes the environment

of asset trading in OTC. Section 3 formulates the dynamic system and pins down

the stationary equilibrium. Section 4 fully characterizes the non-stationary life-cycle

pattern of asset holding by each cohort of investors. It also offers analytic solutions

to transitional dynamics of the distribution of asset holdings. Section 5 investigates

the implication of search frictions for several dimensions of asset liquidity. Section

6 explores several pieces of model extension. Section 7 concludes. All proofs are

pooled in the Appendix.

4In general, as shown in Lagos and Rocheteau (2009), if investors have I ∈ N types of preference,
there would be I2 pieces of masses points in equilibrium for the size distribution of asset holdings.
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3.2 Environment

Time proceeds continuously from zero to infinity. There are two kinds of risk-neutral

agents in the economy: investors and market-makers (dealers). There is one kind of

non-depreciable and non-reproducible asset circulating in this exchange economy.5

We use s ∈ R++ to denote the fixed supply of this asset. Each unit of the asset

constantly delivers x units of fruits.

Every investor has a risk-free bank account, in which she can deposit her real

money balance with the interest rate r ∈ R++, the same as her discount rate. Addi-

tionally, investors in the financial market may be hit by preference shock, i.e., they

may switch between low-preference (L) and high-preference (H).6 Heterogeneity on

preference types may be due to investor’s heterogeneous financing cost or ability in

managing assets. Preference shock is assumed to be public information.7 Similar

to DGP (2005) and Lagos and Rocheteau (2009), we specify investor’s preference

directly over their asset holding. We use xL and xH to denote the valuation of one

unit of asset by low-preference and high-preference investors respectively. Without

loss of generality, we assume 0 < xL < xH = x.

All trade is assumed to be dealer-intermediated. There is no short sell. Without

loss of generality, investors with any preference type are allowed to hold any count-

able units of assets.8 Each unit of asset is randomly matched with dealer with an

independent Poisson process, which governs the amounts of assets investors hold. In

particular, dealers encounter each asset as buyers and sellers with Poisson rate λ−i

and λ+
i respectively, where i ∈ {L,H} denotes the preference type of investors. See

5The asset could be treated as either stock or bond. I don’t distinguish them in the model.
6We analyze the case with general types of preference in the section on model extension.
7We focus on the effect of search friction on life cycle of asset trading and size distribution of

asset holding. Thus we assume there is no information asymmetry on the public or private values
of assets. Discussion on adverse selection of asset quality in OTC includes Guerreri, Shimer and
Wright (2010), Chiu and Koeppl (2011), Guerreri and Shimer (2012a,b) and Chang (2012). Zhang
(2012), on the other hand, considers liquidity mis-allocation in OTC due to private values on asset.

8Lagos and Rocheteau (2009) and Gârleanu (2009) imposes no restriction on the amount of
asset holding. However, in equilibrium, there are only countable (actually finite) levels of asset
holdings.

113



 

market 
maker 

inter-dealer 

market 

market 
maker 

 

B 

S 

S 

S 

S 

S 

S 

B 

B 

B 

Figure 3.1: An Example on the Snapshot of Trading Structures for Investors

(Asset Sellers and Buyers) and Market Makers. Some investors have multiple

units of assets while the others have one unit.

Figure 3.1 for illustration of trading in certain snapshot of time. Complementing

to the cross-section illustration on asset trading in OTC, Figure 3.2 presents the

dynamics of asset trading as well as entry and exiting the financial market. In-

tuitively, low-preference investors desire to sell while high-preference ones to buy

assets. Moreover, to accommodate the empirical findings by Coval and Stafford

(2007), we allow the possibility of fire-purchase and fire-sale by low-preference and

high-preference investors respectively. In sum, the Poisson rate of selling and buying

one unit of assets by investor with type-i preference are n ·λ−i and n ·λ+
i respectively,

where i ∈ {L,H}.9

Search intensity is exogenously given in the baseline. On one hand, investors

are interpreted to exit the market if she sells the last unit of her asset holdings.

On the other hand, potential investors can enter OTC by paying certain fixed cost

and then buying one unit of assets. In our baseline, the measure of market-makers

is exogenously given and normalized to be one. To keep the model under control,

we follow the assumption made in DGP (2005) and Lagos and Rocheteau (2009)

that market-makers never hold asset inventory. Market-makers manage to do so by

9See Morris (1998), among others, for the additive property of independent Poisson process.

114



having access to immediate inter-dealer market.10

In the next two sections, we first address each investor’s value function and the

size distribution of asset holding in steady state. Then we switch to the discussion

on individual’s life cycle of asset trading. In the end, we characterize the transitional

dynamics on the size distribution of asset holdings.
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Figure 3.2: Comparison of Model Structure between DGP (2005) and This

Paper.

3.3 Steady State

3.3.1 Value Function

In our baseline model, investors have two states on preference, i.e., i(t) ∈ {L,H}.
Denote Wt as the current wealth in her risk-less bank account with interest rate

r > 0. Intuitively, high-preference investors would like to buy while low-preference

ones to sell. Correspondingly, we denote At the ask price at which high-type investors

buy from market-makers, Bt the bid price at which low-type investors sell to market-

makers in normal time. Moreover, we denote P fire-purchase
t the price at which low-type

10Weill (2007) and Lagos, Rocheteau and Weill (2011) extend DGP (2005) and Lagos and Ro-
cheteau (2009) by considering the possibility of inventory by dealers.
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investors buy from market-makers due to fire purchase and P fire-sale
t the price at which

high-type investors sell to market-makers due to the shock of fire sale.11 Then the

value function of a investor-{i(t), nt,Wt} is formulated as below.

V (i(t), nt,Wt) = sup
C,n

Et
ˆ ∞

0
e−rτdCt+τ

subject to

dWt = rWtdt− dCt + nt(x− δ1{i(t)=L})dt− P̃tdnt

where Et denotes Ft-conditional expectation, Ct is a cumulative process on con-

sumption, nt ∈ N is a feasible process on asset holdings, ξn is the type process

induced by n, and at the time t of a trading event, P̃t ∈ {At, Bt, P fire-sale
t , P fire-purchase

t }

is the trade price, which depends on the type of counterparty. There are triple state

variables {i, n,W}. For notational ease, we use Vi(n,W ) for V (i, n,W ) throughout

the rest of the paper. Then we obtain the following value functions in steady state.12

rVL(n,W ) = n · xL + nλ−L · [VL(n− 1,W +B)− VL(n,W )] + nλ+
L · [VL(n+ 1,W − P fire−purchase)− VL(n,W )]

+λu · [VH(n,W )− VL(n,W )] +
∂VL(n,W )

∂W
· rW

rVH(n,W ) = n · xH + nλ+
H · [VH(n+ 1,W −A)− VH(n,W )] + nλ−H · [VH(n− 1,W + P fire−sale)− VH(n,W )]

−λd · [VH(n,W )− VL(n,W )] +
∂VH(n,W )

∂W
· rW

First of all, when low-preference and high-preference investors have the oppor-

tunity to be matched with dealers to sell and buy their asset, it is a mutually

beneficially process. Following the standard way in search literature, we use Nash

bargaining to split trading surplus between both parties. In particular, assume bar-

gaining power of market-makers and investors is z ∈ (0, 1) and 1 − z respectively.

Denote M as the price prevalent in the inter-dealer market. Then bid-price B and

ask-price A are determined as below.

B(n,W ) ∈ argmax
B≥0

[VL(n− 1,W +B)− VL(n,W )]1−z[M −B]z

A(n,W ) ∈ argmax
A≥0

[VH(n+ 1,W −A)− VH(n,W )]1−z[A−M ]z

11See Coval and Stafford (2007) for empirical document on fire-sale and fire-purchase.
12See Dixit and Pindyck (1994) or the appendix of DGP (2005), among others, for the deriving

strategies on value functions with continuous-time setup.
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Secondly, investors suffer loss when the negative shocks, i.e., shocks on fire-sale or

fire-purchase, knocks the door. There are multiple ways to determine P fire−purchase

and P fire−sale. For the ease of expression and calculation, we simply assume that

dealers makes zero profit and investors incur loss when they are matched in the

presence of negative shock.13 That is,

P fire-purchase
t = P fire-sale = M.

Finally, assume asset price in the inter-dealer market is determined by

M ∈ argmax
M′≥0

{
∞∑
n=1

[VL(n−1,W+B)−VL(n,W )+M−B]·µnL}
ε ·{
∞∑
n=1

[VH(n+1,W−A)−VH(n,W )+A−M ]·dµnH}
1−ε,

where µni denotes the measure of type-i agents with n units of assets at time t,

i ∈ {L,H}, n ∈ N while ε denotes the bargaining power of buyer-side.

To make it tractable for us to obtain analytic results on the size distribution of

asset holding, we make the following restrictions on {λ+
L , λ

−
L , λ

+
H , λ

−
H}.

Assumption 4. θ ≡ λ+
L

λ−L
=

λ+
H

λ−H
∈ (0, 1)

Moreover, we make the following assumption as a sufficient condition to make

Proposition 1 hold.

Assumption 5. 0 < z < 1− θ.

Proposition 9. (Value Function and Bid-Ask Spread)

1. For investors with preference-type i ∈ {L,H}, n units of financial assets and

W units of liquid assets, the value function is the following form.

Vi(n,W ) = vi · n+W,

13We can check that other forms of specification would not change the results qualitatively. For
example, we could set P fire−purchase = vH and P fire−sale = vL, in which dealers make positive
profits while investors suffer more.
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where

vH − vL =
xH − xL

r + λu + λd + (1− ε)[λ−H − λ
+
H(1− z)] + ε[λ−L (1− z)− λ+

L ]
> 0

vL =
xL
r

+ {ε[λ−L (1− z)− λ+
L ] + λu} ·

vH − vL
r

∈ (
xL
r
, vH)

vH =
xH
r
− {(1− ε)[λ−H − λ

+
H(1− z)] + λd} ·

vH − vL
r

∈ (vL,
xH
r

)

2. The bid and ask prices, the spread and asset price of the inter-dealer market

are obtained as below.

B(n,W ) = vL + (1− z)ε(vH − vL) ∈ (vL, A)

A(n,W ) = vH − (1− z)(1− ε)(vH − vL) ∈ (B, vH)

Spread ≡ A−B = z · (vH − vL)

M = εvL + (1− ε)vH ∈ (A,B)

Two pieces of comments are made here. First of all, according to Proposition 1,

even though there is no information asymmetry as in Glosten and Milgrom (1985),

the bid-ask spread still emerges in the presence of search frictions (λ+
L , λ

−
L , λ

+
H , λ

−
H <

∞), heterogeneity in preference types (xH 6= xL) and positive bargaining power of

dealers (z > 0). Secondly, notice that similar analytic results are also obtained in

DGP (2005). Thus another key message of this proposition is that, even removing

the restriction on asset holdings, we could still have very neat and intuitive results

for the effects of search friction on bid-ask spreads.

3.3.2 Free Entry of New Investors into Financial Markets

The market participants makes the following decision on entering financial markets.

On one hand, if they does not participate in the market, then given their real money

balance m̃, the value function in steady state is characterized by

rUNOT (W̃ ) =
∂UNOT (W̃ )

∂W̃
rW̃ .
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On the other hand, if they choose to enter the market, then

rU iIN (W̃ ) = −κiηi + ηi[Vi(1, W̃ )− U iIN (W̃ )] +
∂U iIN (W̃ )

∂W̃
rW̃ for i ∈ {L,H}

In equilibrium, we have UNOT (W̃ ) = UHIN (W̃ ) = ULIN (W̃ ) for any W̃ ∈ R. Thus

κi = Vi(1, W̃ ) − U iIN (W̃ ) for i ∈ {L,H}. The entry rate {ηL, ηH} is not pinned down

here. Instead, it would be determined using other conditions to be shown in the

next sub-section.

3.3.3 Distribution of Asset Holding in Steady State

Denote µni (t) as the measure of type-i agents with n units of assets at time t, where

i ∈ {L,H}, n ∈ N and t ∈ R+. Denote µentryi (t) as the measure of investors newly

entering the financial markets at t. For simplicity, each new-entry investor starts

with one unit of asset.
Corresponding to Figure 3.2, the dynamics on µni (t) is formulated as below.

dµnL(t)/dt =



(n+ 1)λ−L · µ
n+1
L (t)− n(λ−L + λ+

L ) · µnL(t) + (n− 1)λ+
L · µ

n−1
L (t)

+λd · µnH(t)− λu · µnL(t) whenn ∈ N \ {1}

(n+ 1)λ−L · µ
n+1
L (t)− n(λ−L + λ+

L ) · µnL(t)

+λd · µnH(t)− λu · µnL(t) + µentryL (t) · ηL(t) when n = 1

dµnH(t)/dt =



(n+ 1)λ−H · µ
n+1
H (t)− n(λ+

H + λ−H) · µnH(t) + (n− 1)λ+
H · µ

n−1
H (t)

−λd · µnH(t) + λu · µnL(t) whenn ∈ N \ {1}

(n+ 1)λ−H · µ
n+1
H (t)− n(λ+

H + λ−H) · µnH(t)

−λd · µnH(t) + λu · µnL(t) + µentryH (t) · ηH(t) when n = 1

Taking dµnL(t)/dt with n ≥ 2 for example, the first and the third items denote

the inflow from investors with the same preference type while the second one the

outflow to investors with the same preference type. Meanwhile, the fourth and the

fifth items are the inflow and outflow due to preference shocks.

The stability of the dynamic system requires outflow be equal to inflow, i.e., for

i ∈ {L,H} and t ∈ R+,

µentryi (t)ηi(t) = λ−i µ
1
i (t).

Then the total measure of sellers and buyers are constant over time. That is, the
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total population µ(t) ≡ µL(t) + µH(t) ≡
∑+∞

n=1 µ
n
L(t) +

∑+∞
n=1 µ

n
H(t) is constant, which

is to be determined. WLOG, we normalize such that µentryL (t) = µentryH (t) = 1 for all

t ∈ R+.

Additionally, the market clearing condition is formulated as below.

+∞∑
n=1

λ−Lnµ
n
L(t) +

+∞∑
n=1

λ−Hnµ
n
H(t) =

+∞∑
n=1

λ+
Hnµ

n
H(t) +

+∞∑
n=1

λ+
Lnµ

n
L(t) +

∑
i∈{L,H}

µentryi (t)ηi(t) (3.1)

+∞∑
n=1

nµnL(t) +

+∞∑
n=1

nµnH(t) = s (3.2)

where s denotes the total amount of assets circulating in the economy. On one

hand, Eq. (3.1) states that, since dealers are assumed to never hold no inventory, the

amount of assets investors sell to dealers (left-hand side) must equal to that dealers

sell to investors (right-hand side). Eq. (3.2), on the other hand, requires that at

each point the aggregate demand of assets by investors in OTC must be equal to

the fixed supply.

In steady state, dµni (t)/dt = 0 for all i ∈ {L,H} and n ∈ N. In turn, we reach

Proposition 1.

Proposition 10. We formulate the distribution of asset holding in steady state as

well as the Gibrat’s law for asset holding as below.

1. (Stationary Size Distribution of Asset Holding) The size distribution

of asset holding conforms to a logarithmic distribution with parameter θ, i.e.,

µni =
µ1
i · θn−1

n
for i ∈ {L,H} and n ∈ N.

where µ1
L = s(1 − θ)πL, µ1

H = (λuλd ) · µ1
L = s(1 − θ)πH , πL ≡ λd

λu+λd
, πH ≡ λu

λu+λd
,

and the total population of investors in the economy is

µ ≡
+∞∑
n=1

(µnL + µnH) =
s(1− θ)

θ
· ln(

1

1− θ
).

Moreover, the endogenous entry rate is

ηL = λ−Lµ
1
L = s(1− θ)λ−LπL.

ηH = λ−Hµ
1
H = s(1− θ)λ−HπH
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2. (Gibrat’s Law) The average growth rate of asset holding is independent of

investor’s size while the volatility of growth rate decreases with the size of

asset holdings, i.e., for i ∈ {L,H}, we have

E
[
dni(t)/dt

ni(t)

]
= λ+

i − λ
−
i

V ar

[
dni(t)/dt

ni(t)

]
=

λ+
i + λ−i
ni(t)

Based on the proposition, for i ∈ {L,H} and n ∈ N, the probability distribution,

Mn
i ≡

µni
µ

, and the total probability,Mn ≡Mn
L +Mn

H , are immediately obtained as

below.

Mn
L =

πL · θn

n · ln( 1
1−θ )

, Mn
H =

πH · θn

n · ln( 1
1−θ )

, Mn =
θn

n · ln( 1
1−θ )

for n ∈ N.

and the probability of both types is

ML ≡
+∞∑
n=1

Mn
L = πL, MH ≡

+∞∑
n=1

Mn
H = πH ,

We illustrate the (truncated) probability distribution of asset holding in Figure

3.3.
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Figure 3.3: The Size Distribution of Asset Holdings and Its Decomposition in

Steady State (parameter values: λu/λd = 2 and θ = 0.9.)
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3.4 Transition Dynamics

The previous section mainly focuses on the stationary distribution of asset holdings

in each cross section. This section advances to the analysis on non-stationary life-

cycle pattern of each cohort. Let pni (t;n0) denote the probability that certain investor

with i-type preference has n units of asset holdings at time t given that she has n0

units at time 0. In contrast to the dynamics on the aggregate size distribution of asset

holding in Section 3.3, by definition there is no new entry into each cohort. More

specifically, the associated dynamics associated with the (in-truncated) probability

of investors is formulated as below.

dpnL(t;n0)/dt =



(n+ 1)λ−L · p
n+1
L (t;n0)− n(λ−L + λ+

L ) · pnL(t;n0) + (n− 1)λ+
L · p

n−1
L (t;n0)

+λd · pnH(t;n0)− λu · pnL(t;n0) whenn ∈ N \ {1}

(n+ 1)λ−L · p
n+1
L (t;n0)− n(λ−L + λ+

L ) · pnL(t;n0) + λd · pnH(t;n0)− λu · pnL(t;n0) when n = 1

(n+ 1)λ−L · p
n+1
L (t;n0) when n = 0

dpnH(t;n0)/dt =



(n+ 1)λ−H · p
n+1
H (t;n0)− n(λ+

H + λ−H) · pnH(t;n0) + (n− 1)λ+
H · p

n−1
H (t;n0)

−λdpnH(t;n0) + λu · pnL(t;n0) whenn ∈ N \ {1}

(n+ 1)λ−H · p
n+1
H (t;n0)− n(λ+

H + λ−H) · pnH(t;n0)− λd · pnH(t;n0) + λu · pnL(t;n0) when n = 1

(n+ 1)λ−H · p
n+1
H (t;n0) when n = 0

and by definition we have

+∞∑
n=1

pnH(t;n0) +

+∞∑
n=0

pnL(t;n0) = 1.

Then we reach the following proposition.

Proposition 11. (Life Cycle of Asset Holding)

1. If we set the boundary conditions for both types as below.

p1
L(0, n0 = 1) = πL ≡

λd
λu + λd

, p1
H(0, n0 = 1) = πH ≡

λu
λu + λd

,
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then we have

p0
L(t;n0 = 1) =

πLλ
−
L · [1− e−(λ−L−λ

+
L )t]

λ−L − λ
+
L · e−(λ−L−λ

+
L )t

=
πL · [1− e−(1−θ)λ−L t]

1− θ · e−(1−θ)λ−L t

p1
L(t;n0 = 1) = [πL − p0

L(t;n0 = 1)] · [1− σ(t)]

pnL(t;n0 = 1) = pn−1
L (t;n0 = 1) · σ(t) for n ∈ N \ {1}

pnH(t;n0 = 1) = (
λu
λd

) · pnL(t;n0 = 1) for n ∈ N ∪ {0}

pn(t;n0 = 1) ≡ pnH(t;n0 = 1) + pnL(t;n0 = 1) =
pnL(t;n0 = 1)

πL
for n ∈ N

where σ(t) ≡ (
λ+
L

λ−L
) · p0

L(t;n0 = 1) = πL·θ·[1−e−(1−θ)λ−
L
t
]

1−θ·e−(1−θ)λ−
L
t

. Furthermore, at time

t, conditioning on still staying in OTC, the (truncated) size distribution of

investors with preference type i from the zero-cohort conforms to a geometric

distribution as below.

pni (t;n0 = 1)

1− p0
i (t;n0 = 1)

= [1− σ(t)]σ(t)n−1, for n ∈ N.

and thus it also holds for the aggregate level pn(t;n0 = 1).

2. If we remove the restriction on the boundary condition for investors with either

preference, but instead assume that λ−L = λ−H ≡ λ− and λ+
L = λ+

H ≡ λ+ = θλ−,

and p1(0, n0 = 1) = 1, then pn(t;n0 = 1), the life-cycle evolution of both type,

is formulated as below.

p0(t;n0 = 1) =
λ− · [1− e−(λ−−λ+)t]

λ− − λ+ · e−(λ−−λ+)t
=

[1− e−(1−θ)λ−t]

1− θ · e−(1−θ)λ−t

p1(t;n0 = 1) = [1− p0(t;n0 = 1)] · [1− σ(t)]

pn(t;n0 = 1) = pn−1(t;n0 = 1) · σ(t) for n ∈ N \ {1},

where now σ(t) in this case is adjusted to σ(t) ≡ (λ
+

λ− )·p0(t;n0 = 1) = θ[1−e−(1−θ)λ−t]

1−θ·e−(1−θ)λ−t .

Moreover, the (truncated) size distribution of investors with n units of asset

holding from the zero-cohort has a geometric distribution as in the first case.

The key differences between these two results lie in their assumption. In the first

case, we have strong assumption on the initial condition for both types of investors,
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and obtain the life-cycle pattern of asset holding for not only the aggregate level,

but also for each type. In contrast, the second case relaxes the above restriction but

instead only imposes assumption on the aggregate level. Then the analytic results

still applies to the aggregate level, but the dynamics for either types of investors are

typically unavailable.

Based on either case in the above proposition, we use Figure 3.4 to present the

transitional dynamics of asset holdings by investors in the same cohort at t = 0.
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Figure 3.4: Transitional Dynamics of Asset Holdings by Investors of Each Co-

hort

Moreover, notice that ηH
ηH+ηL

=
(
λ
−
H

λ
−
L

)·(λuλd )

(
λ
−
H

λ
−
L

)·(λuλd )+1

. If we additionally assume λ−H = λ−L ,

then ηH
ηH+ηL

= πH and thus the above transitional dynamics within one cohort also

characterize the evolution of new entrants in the same cohort. [More comments here:

to be completed.]

Finally, the above proposition immediately helps to reach the following result.

Corollary 12. (Expected Length of Trading in OTC)

E(Ti) =
ln(

λ−i
λ−i −λ

+
i

)

λ+
i

=
ln( 1

1−θ )

λ+
i

.
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Intuitively, when θ = λ+

λ−
∈ (0, 1) decreases, on average it takes less time for

investors to sell out all of their assets and then exit the financial markets.

3.4.1 Preference Shock

With the same notations as before, we use Mn
i (t) to denote the proportion of in-

vestors with preference type i ∈ {L,H} and holding n units of assets at time t.

Then dynamics on Mn
i (t) is characterized as below.

dMn
L(t)/dt =


(n+ 1)λ−L · M

n+1
L (t)− n(λ−L + λ+

L ) · Mn
L(t) + (n− 1)λ+

L · M
n−1
L (t)

+λd · Mn
H(t)− λu · Mn

L(t) whenn ∈ N \ {1}

(n+ 1)λ−L · M
n+1
L (t)− nλ+

L · M
n
L(t) + λd · Mn

H(t)− λu · Mn
L(t) when n = 1

dMn
H(t)/dt =


(n+ 1)λ−H · M

n+1
H (t)− n(λ+

H + λ−H) · Mn
H(t) + (n− 1)λ+

H · M
n−1
H (t)

−λd · Mn
H(t) + λu · Mn

L(t) whenn ∈ N \ {1}

(n+ 1)λ−H · M
n+1
H (t)− nλ+

H · M
n
H(t)− λd · Mn

H(t) + λu · Mn
L(t) when n = 1

Then we get to the following explicit solution on the transitional dynamics due

to preference shock.

Proposition 12. (Dynamics by Preference Shock) Assume that we’ve been in

the position of steady state by t = 0−, i.e.,

Mn
L(t) =

πL · θn

n · ln( 1
1−θ )

, Mn
H(t) =

πH · θn

n · ln( 1
1−θ )

for n ∈ N.

Then, suddenly the proportion of low-preference investors increases, i.e.,ML(t) ≡∑+∞
n=1Mn

L(t)(t) goes up fromML(0−) = πL to anyML(0) ∈ (πL, 1]. Then the dynam-

ics of {Mn
i (t)}t∈R++

i∈{L,H},n∈N is characterized as follows.

Mn
L(t) =

ML(t) · θn

n · ln( 1
1−θ )

, Mn
H(t) =

MH(t) · θn

n · ln( 1
1−θ )

for n ∈ Nand t ∈ R++,

where

ML(t) ≡ [1− e−(λu+λd)t] · πL + e−(λu+λd)t · ML(0)

MH(t) ≡ [1− e−(λu+λd)t] · πH + e−(λu+λd)t · MH(0)
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As a result, {Mn
L(t)}t∈R++ decreases while {Mn

L(t)}t∈R++ increases over time with

lim
t→∞
Mn

L(t) =Mn
L, lim

t→∞
Mn

H(t) =Mn
L.

Figure 3.5 shows the transitional dynamics due to preference shock on asset

holdings.
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Figure 3.5: Transitional Dynamics of Asset Holdings Due to Preference Shock;

Parameter values are to be added.

The dynamics of {µni (t)}t∈R++

i∈{L,H},n∈N is immediately obtained as below.

µni (t) =
Mn

i (t)

µ
for n ∈ Nand t ∈ R++

where µ ≡ s(1−θ)
θ · ln( 1

1−θ ).

3.4.2 Redistributing Asset Holdings by Lessening Inequal-

ity

We are also in the position of dynamics system on {Mn
i (t)}t∈R++

i∈{L,H},n∈N. In addition

to preference shock, another interesting departure from the stationary distribution

is about redistributing asset holdings. One example is formulated as below.
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Assume that we’ve been in the position of steady state by t = 0−, i.e.,

Mn
L =

πL · θn

n · ln( 1
1−θ )

, Mn
H =

πH · θn

n · ln( 1
1−θ )

for n ∈ N.

If we redistribute the asset holdings such that at t = 0, we have M1
L(0) = πL

and M1
H(0) = πH , i.e., there is no inequality on asset holdings within each group

i ∈ {L,H}. Then the dynamics of {Mn
i (t)}t∈R++

i∈{L,H},n∈N is characterized as in the

following proposition.

Proposition 13. (Dynamics by Redistribution of Asset Holding) If all in-

vestors are endowed with only unit of assets, then the dynamics shown in Section

4.2 has the following solutions,

Mn
L(t) = πL · qn(t), Mn

H(t) = πH · qn(t) for n ∈ N,

where qn(t) is presented as below. {qn(t)}t∈R+

n∈N adopts the solution as below.

qn(t) = qn +

+∞∑
m=1

Anme
−mλ+

L t

= qn +
+∞∑
k=0

[
(−θλ−L t)k

k!
f(n, k)] for n∈ N and t ∈ R+

where qn ≡ θn

n·ln( 1
1−θ )

, and f(n, k) ≡
∑+∞

m=1Anm ·mk satisfies the following recursive

conditions.

f(n, 0) =


1− qn when n = 1

−qn when n ∈ N \ {1}

f(n, k) =


−n+1

θ f(n+ 1, k − 1) + nf(n, k − 1) when n = 1 and k ∈ N

−n+1
θ f(n+ 1, k − 1) + nf(n, k − 1) +

∑n−1
j=1 f(j, k) when n ∈ N \ {1} and k ∈ N

Using the proposition equips us to reach that

lim
t→∞
Mn

i (t) =Mn
i for all n ∈ N and i ∈ {L,H}.
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3.5 Asset Liquidity

In addition to bid-ask spread already characterized in Section 2, measurement of

asset liquidity also includes the trading volume, trading turnover and liquidity mis-

allocation.

3.5.1 Trading Volume and Turnover

By definition, the trading volume and the turnover of asset trading are given as

below respectively.

V(t) ≡
+∞∑
n=1

λ−Lnµ
n
L(t) +

+∞∑
n=1

λ−Hnµ
n
H(t)

T (t) ≡ V(t)

s

Then we reach the following corollary by Proposition 1.

Corollary 13. (Trading Volume and Turnover) Given any (µ1
L(t), µ1

H(t)), we

have

V(t) = [µ1
L(t)λ−L + µ1

H(t)λ−H ] · ( s

1− θ
)

T (t) =
µ1
L(t)λ−L + µ1

H(t)λ−H
1− θ

In turn, the steady state is formulated as

V = µ[λ−L

+∞∑
n=1

nMn
L + λ−H

+∞∑
n=1

nMn
H ] = s · (λ−LπL + λ−HπH)

T =
V
s

= λ−LπL + λ−HπH .

Based on the corollary, we know that the trading volume is positively propor-

tional to s, the total amounts of assets. Besides, both trading volume and turnover

increases with {λ−L , λ
−
H}. The intuition is that, when λ−L , λ

−
H increases, more old

investors exit and more new investors enter the financial market.
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3.5.2 Liquidity Mis-allocation on Asset Holdings

Steady State

The measurement of asset mis-allocation is defined as below.

∆SS ≡
∑+∞

n=1[(xH − xL) · n · µnL]

xH · s
= (

xH − xL
xH

) · ( λd
λu + λd

) =
∆x

xH
· πL.

where the numerator denotes the mis-allocation value of assets held by low-

preference investors, the denominator denotes the aggregate value of the assets in

the exchange economy.

Transitional Dynamics

First of all, if we are the position of Section 4.2, i.e., investors are subject to unex-

pected preference shock, then the rate of liquidity mis-allocation is

∆(t) ≡
∑+∞

n=1[(xH − xL) · n · µnL(t)]

xH · s
=

∑+∞
n=1[(xH − xL) · n · µ · Mn

L(t)]

xH · s
= (

xH − xL
xH

)·ML(t),

where ML(t) ≡ [1− e−(λu+λd)t] · πL + e−(λu+λd)t · ML(0). Then we have lim
t→∞

∆(t) =

∆SS ≡ (xH−xLxH
) · πL.

Secondly, if investors suffer the shock on redistribution of asset holding, as illus-

trated in Section 4.3, then the rate of liquidity mis-allocation is

∆(t) ≡
∑+∞

n=1[(xH − xL) · n · µnL(t)]

xH · s
=

∑+∞
n=1[(xH − xL) · n · µ · Mn

L(t)]

xH · s
,

whereMn
L(t) = πL ·qn(t) and qn(t) is characterized in Section 4.3. Again, we have

lim
t→∞

∆(t) = ∆SS ≡ (xH−xLxH
) · πL.

3.6 Model Extension

This section is devoted to several pieces of extension for the benchmark developed so

far. First of all, motivated by Lagos and Rocheteau (2005), we endogenize investor’s

search intensity. Secondly, we switch from the high-or-low preference to a general
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case. Finally, we take into account the endogenous entry decision by market-makers

into OTC.

3.6.1 Endogenous Search Intensity

In the spirit of DGP (2005) and Lagos and Rocheteau (2005), we use this part

to endogenize investor’s search intensity in a tractable way. More specifically, we

assume both types of investors have access to a search technology such that the

trading intensity is modified from {λ−i , λ+
i } to {γ−i ≡ λ−i Ωi(ei, n), γ+

i ≡ λ+
i Ωi(ei, n)}

where ei ∈ R+denotes the effort of investor with type-i preference. We assume the

coefficient of endogenous search intensity, Ω(e, n), has the following property: i)

Ω strictly increases with (e, n) and is homogeneous of degree one with respect to

(e, n), ii) Ω is strictly concave in e, and iii) Ω(0, n) = 1 . Then the value functions

of Section 3.1 is adjusted as below.

rVL(n,W ) = max {
eL∈R+

n · xL − eL + nγ−L · [VL(n− 1,W +B)− VL(n,W )]

+nγ+
L · [VL(n+ 1,W − P fp)− VL(n,W )]

+λu · [VH(n,W )− VL(n,W )] +
∂VH(n,W )

∂W
· rW}

rVH(n,W ) = max {
eH∈R+

n · xH − eH + nγ+
H · [VH(n+ 1,W −A)− VH(n,W )]

+nγ−H · [VH(n− 1,W + P fs)− VH(n,W )]

−λd · [VH(n,W )− VL(n,W )] +
∂VH(n,W )

∂W
· rW}

where the bid and ask prices as well as those of fire-sale and fire-purchase are

determined in a similar way as in Section 3.1. The we characterize the endogenous

search intensity in the following corollary.

Corollary 14. (Endogenous Choice of Search Intensity) For i ∈ {L,H}, there

exists vi ∈ R+ and σi ≥ 1 such that Vi(n,W ) = n · vi +W ,
γ−i
n·λ−i

=
γ+
i

n·λ+
i

= σi, where

130



{vi, σi}i∈{L,H} are jointly characterized as below.

rvL = xL − hL(σL) + σL · [λ−L (1− z)− λ+
L ](1− ε)(vH − vL)}+ λu(vH − vL)

rvH = xH − hH(σH)− σH · [λ−L − λ
+
L (1− z)]ε(vH − vL)} − λd(vH − vL)

h′L(σL) = [λ−L (1− z)− λ+
L ](1− ε)(vH − vL)

σH = 1

where hi(·) ≡ ω−1
i (·) and ω(·) ≡ Ω(·, 1).

Based on the corollary, the equilibrium matching frequency {γ−i , γ+
i }i∈{L,H} are

obtained in turn. Then we could easily rewrite the whole story of Sections 3 and 4.

3.6.2 General Types on Preference

For the ease of illustration, we follow DGP (2005) to consider only two types of

preference over the same assets: high and low. Motivated by Lagos and Rocheteau

(2009), we extend our baseline model by allowing for general types of preference.

More specifically, we now assume investors could have I ∈ N types of preference. For

investors with preference-type i, her valuation on one unit of asset is denoted as xi.

Investors may subject to preference shock with Poisson rate δ > 0. Conditioning on

a preference shock, investors, currently with preference i, will switch to preference

j with probability πij > 0. For simplicity, we assume the preference shock are iid

distributed across investors and over time. Thus we use πj to denote πij for all

i ∈ I ≡ {1, 2, · · · , I}.14 By definition, we always have
∑I

i=1 πi = 1. Without loss of

generality, we assume {xi}i∈I is an increasing sequence.

Based on the above setup, given the idiosyncratic state variables (i, n,W ), the

corresponding value function is correspondingly adjusted as below.

rVi(n,W ) = n · xi + nλ−i · [Vi(n− 1,W +Bi)− Vi(n,W )] + nλ+
i · [Vi(n+ 1,W −Ai)− Vi(n,W )]

+δ ·
I∑
j=1

πj [Vj(n,W )− Vi(n,W )] +
∂Vi(n,W )

∂W
· rW

14In the baseline model with two types of preference, δ = λu+λd, πL = λd
λu+λd

, and πH = λu
λu+λd

.
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In the spirit of Proposition 1, we guess it always holds with general types of

preference that Vi(n,W ) = n · vi + W with {vi}i∈I being an increasing sequence,

all of which would be verified later. Moreover, there exists a unique i∗ ∈ I such

that vi∗ ≤ M < vi∗+1. Define the low-preference and high-preference subgroups

respectively as IL = {1, · · · , i∗}, IH = {i∗ + 1, · · · , I} such that IL ∩ IH = ∅ and

IL ∪ IH = I. Then we know that investors with preference i ∈ IL are eager to sell.

That is, λ−i and λ+
i denote positive and negative shocks respectively. The scenario

is just opposite for investors with preference i ∈ IL. Then the bid and ask prices are

determined as below.

Ai(n,W ) = argmax
A≥0

[Vi(n+ 1,W −A)− Vi(n,W )]1−z[A−M ]z for i ∈ IH

Bj(n,W ) = argmax
B≥0

[Vj(n− 1,W +B)− Vj(n,W )]1−z[M −B]z for j ∈ IL.

Besides, the prices of fire-sale and fire-purchase are given as follows.

P fire−salei = P fire−purchasej = M for i ∈ IH and j ∈ IL.

Moreover, as in the baseline model, we pin down the price in the inter-dealer
market, M , in the following way.

M ∈ argmax
M′≥0

{
∑
n∈N

∑
j∈IL

[Vj(n−1,W+B)−Vj(n,W )+M−B]·µnj }ε·{
∑
n∈N

∑
i∈IH

[Vi(n+1,W−A)−Vi(n,W )+A−M ]·dµni }1−ε,

Finally, by modifying Assumption 1, we make the following assumption in this

section for general types of preference.

Assumption 6. λ+
i = λ+

j ≡ λ+, λ+
i = λ+

j ≡ λ+ = θ ·λ−, for all i, j ∈ I, where θ ∈ (0, 1)

is close enough to 1.

Using the proof strategy of Proposition 1 immediately reaches the following corol-

lary.

Corollary 15. (Value Function and Bid-Ask Prices) Under Assumption 3,

1. For investors with preference-type i ∈ I ≡ {1, 2, · · · , I}, n units of financial
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assets and W units of liquid assets, the value function is the following form.

Vi(n,W ) = vi · n+W,

where, given (M, i∗), {vi}i∈I is determined as below.

vi =
yi + δ · v
r + δ + κi

,

and,

κi ≡


(1− z)λ− − λ+ if i ∈ IL

λ− − (1− z)λ+ if i ∈ IH
yj ≡ xj + κj ·M

v ≡
∑
j∈I

πjvj =

∑
j∈I(

πjyj
r+δ+κj

)

1− δ ·
∑

j∈I(
πj

r+δ+κj
)

i∗ = arg{i′ ∈ I : vi′ ≤M < vi′+1}

2. {vi}i∈I is an increasing sequence.

3. (M, i∗) are jointly determined the following restrictions

M = ε · ( y1 + δ · v
r + δ + κ1

) + (1− ε) · ( yI + δ · v
r + δ + κI

)

i∗ = arg{i′ ∈ I :
yi′ + δ · v
r + δ + κi′

≤M <
yi′+1 + δ · v
r + δ = κi′+1

}

4. The bid and ask prices are formulated as below.

Bi(n,W ) = Bi ≡ (1− z)M + zvi for i ∈ IL

Aj(n,W ) = Aj ≡ (1− z)M + zvj for j ∈ IH

We close this part by solving the distribution of asset holdings with general types

of preference. For all preference i ∈ I, the dynamics of µni (t) is formulated as below.
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dµni (t)/dt =



(n+ 1)λ−i · µ
n+1
i (t)− n(λ−i + λ+

i ) · µni (t) + (n− 1)λ+
i · µ

n−1
i (t)

+δ · πi
∑
j 6=i µ

n
j (t)− δ(1− πi) · µni (t) whenn ∈ N \ {1}

(n+ 1)λ−i · µ
n+1
i (t)− n(λ−i + λ+

i ) · µni (t) + µentryi (t) · ηi(t)

δ · πi
∑
j 6=i µ

n
j (t)− δ(1− πi) · µni (t) when n = 1

Taking the scenario with n ≥ 2 for example. Comparing with the dynamics in

the case with two types of preference, there is nothing new with the first three items.

They are the inflow and outflow of investors with the same preference types. The

fourth item denotes the inflow because of the preference shock from other types of

investors with the same units of asset holding. The fifth item is the outflow due to

the preference shock to the current investor. In steady, dµni (t)/dt = 0 for all i ∈ I

and n ∈ N. Then we have the following corollary.

Corollary 16. (Stationary Size Distribution of Asset Holdings) For all

(i, n) ∈ I× N, we have

Mn
i ≡

µni∑
i∈I
∑

n∈N µ
n
i

=
πi · θn

n · ln( 1
1−θ )

,

and thus

Mn =
∑
i∈I
Mn

i =
θn

n · ln( 1
1−θ )

Mi =
∑
n∈N
Mn

i = πi

Similar to the results of Proposition 2, the size distribution of asset holdings is

still analytically tractable even with general types of preference. Meanwhile, we still

preserve the pattern of logarithmic distribution even though restriction on {0, 1}-

asset holding is removed.

3.6.3 Free Entry of Market-makers

We could endogenize the trading frequency as what Lagos and Rocheteau (2009)

does. Denote κ > 0 as the fixed cost to become a dealer in OTC. Denote λ+
i · ϕ(·)

and λ−i · ϕ(·) as the matching intensity in OTC. Then the free entry condition of
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dealers in either the seller or buyer side is written as below, which in turn pins down

{µdB, µdS}.

∞∑
n=1

Mn
L ·

nλ−Lϕ(µdS)

µdS
(M −B) = κ =

∞∑
n=1

Mn
H ·

nλ+
Hϕ(µdB)

µdB
(A−M)

where Mn
i = πiθ

n−1

n·ln( 1
1−θ ))

, i ∈ {L,H}. Moreover, based on Proposition 1, {M −
B,A−M} are accordingly adjusted as below.

M −B = (1− ε)(vH − vL)

A−M = ε(vH − vL)

and

vH−vL =
xH − xL

r + λu + λd + {(1− ε)[λ−H · ϕ(µdS)− λ+
H(1− z) · ϕ(µdB)] + ε[λ−L (1− z) · ϕ(µdS)− λ+

L · ϕ(µdB)]}
.

Then {µdB, µdS} can be easily pinned down and in turn we can recover the en-

dogenous trading intensity.

3.7 Conclusion

This paper uses the birth-and-death process in the literature of firm dynamics to

analytically characterize the non-stationary life-cycle asset trading in OTC, which

involves in search frictions and bargaining. Although the indivisibility restriction on

asset holding in DGP (2005) is removed, we still manage to obtain explicit solutions

on the value functions, bid and ask prices and the size distribution of asset holding

in both steady state and transitional dynamics. The mis-allocation rate of asset

liquidity is shown to be related to the speed of preference shock as well as to that

of trading intensity. Moreover, we fully characterize the life-cycle pattern of asset

holding by each cohort of investors.

Our model has several pieces of testable implications. First of all, the stationary

size distribution of asset holding follows a logarithmic pattern. Secondly, the life

cycle of asset holding by each cohort conforms to a geometric distribution while the

size distribution of asset holding in each cross-section follows a logarithmic pattern.
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Thirdly, the average growth rate of asset holding is irrelevant to the size of current

asset holdings. Meanwhile, the volatility of growth rate of asset holding decreases

with the size of current asset holdings. That is, we reach the results on Gibrat’s law

on asset trading in OTC.

Throughout this paper we mainly focus on the implication of search frictions for

life cycle as well as the size distribution of asset holdings. Thus we have deliberately

assumed away information frictions from the context. However, OTC is sometimes

called opaque market.15 It is not only due to search frictions and bargaining, but

also because of information frictions. Therefore it could fruitful to introduce into

the model adverse selection on asset quality or information asymmetry on investor’s

private evaluation of the same assets. Additionally, the framework developed in

our paper produces several pieces of testable implications. Empirical tests on these

predictions could be put in our research agenda in the near future.

3.8 Appendix : Omitted Proofs in the Context

Proof of Proposition 1

Proof. Conjecture that, there exits pairwise values (vL, vH) such that, for i = L,H, we

have

Vi(n,W ) = vi · n+W.

In turn, given (M, vL, vH), the bid price(s) B(n,W ) could be simplified as below.

B(n,W ) = argmax[VL(n− 1,W +B)− VL(n,W )]1−z[M −B]z

= argmax[B − vL]1−z[M −B]z

= zvL + (1− z)M.

Similarly, the ask prices A(n,W ) could be solved as

A(n,W ) = zvH + (1− z)M.

15See Zhu (2012) among others for the discussion on opaqueness of OTC.
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As a result, we have

Spread = B −A = z(vH − vL)

Using the conjecture that Vi(n,W ) = vi · n + W again for the formula on how to

determine M , the inter-dealer market price, and then we have

M = εv1 + (1− ε)vH .

Substituting the above formula on M into B(n,W ) and A(n,W ) yields that

B = vL + (1− z)ε(vH − vL)

A = vH − (1− z)(1− ε)(vH − vL)

Substituting all of the above-mentioned results into the original value functions for

investors with preference L and H yields the following simultaneous equations.

rvL = xL + λ−L (1− z)ε(vH − vL)− λ+
L (M − vL) + λu(vH − vL)

rvH = xH + λ+
H(1− z)(1− ε)(vH − vL)− λ−H(vH −M)− λd(vH − vL)

Taking difference between the above two equations yields

{r + λu + λd + (1− ε)[λ−H − λ
+
H(1− z)] + ε[λ−L (1− z)− λ+

L ]}(vH − vL) = xH − xL

and thus

vH − vL =
xH − xL

r + λu + λd + (1− ε)[λ−H − λ
+
H(1− z)] + ε[λ−L (1− z)− λ+

L ]
.

Using Assumption 2 immediately implies that vH−vL > 0. Moreover, substituting the

above results into either of the simultaneous equations could recover vH and vL. Finally,

using Assumptions 1 and 2 together suggests that vH < xH
r and vL >

xL
r .

137



Proof of Proposition 2

Proof. For the first part.

We have dµni (t)/dt = 0 in steady state and thus all time scripts are removed. Then

the dynamic system in Section 3.3 is simplified as below.

λd · µnH = λu · µnL,

and for i ∈ {L,H}, we have

(n+ 1)λ−i µ
n+1
i − n(λ−i + λ+

i )µni + (n− 1)λ+
i µ

n−1
i = 0 for n ∈ N/{1}

(n+ 1)λ−i µ
n+1
i − n(λ−i + λ+

i )µni + µentryi ηL = 0 for n = 1

As a result, we have

(n+ 1)λ−i µ
n+1
i = nλ+

i µ
n
i for n ∈ N/{1}

λ−i µ
n
i = µentryi ηL for n = 1

Thus we have

µni =
µ1
i θ
n−1

n
(#).

Using Assumption 1 simplifies Eq. (3.1) as

(1− θ)λ−L
+∞∑
n=1

nµnL(t) + (1− θ)λ−H
+∞∑
n=1

nµnH(t) =
∑

i∈{L,H}

ηi(t)

Additionally, combining Eq. (3.1) and Eq. (3.2) suggests that

+∞∑
n=1

nµnL(t) =

∑
i∈{L,H} ηi(t)− s(1− θ)λ

−
H

(1− θ)(λ−L − λ
−
H)

+∞∑
n=1

nµnH(t) =
s(1− θ)λ−L −

∑
i∈{L,H} ηi(t)

(1− θ)(λ−L − λ
−
H)

To make sure the above two equations well-defined, we must have s ∈ (
∑
i∈{L,H} ηi(t)

(1−θ)λ−L
,
∑
i∈{L,H} ηi(t)

(1−θ)λ−H
)

hold in equilibrium. We use guess-and-verify to show that the above internal restrictions

is always held in equilibrium.
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Substituting (#) into the above equations yields

µ1
L = s(1− θ)πL, and µ1

H = s(1− θ)πH ,

where πL ≡ λd
λu+λd

and πH = 1−πL. In turn, the total measure of asset holders in the

economy is

µ ≡
+∞∑
n=1

(µnL + µnH) = (1 +
λu
λd

) · µ1
L ·

+∞∑
n=1

(
θn−1

n
) =

s(1− θ)
θ

· ln(
1

1− θ
)

Moreover, since we normalize that µentryL = µentryH = 1, the endogenous entry rate is

pinned down as below.

ηL = λ−Lµ
1
L = s(1− θ)λ−LπL.

ηH = λ−Hµ
1
H = s(1− θ)λ−HπH

Finally, we could check that s ∈ (
∑
i∈{L,H} ηi(t)

(1−θ)λ−L
,
∑
i∈{L,H} ηi(t)

(1−θ)λ−H
) is satisfied indeed.

For the second part.

According to the dynamic system in Section 3.3,

ni(t+ ε) =


ni(t) + 1 w.p. λ+

i ni(t)ε

ni(t)− 1 w.p. λ−i ni(t)ε

ni(t) o.w.

As result, we have

E[
dni(t)/dt

ni(t)
] = lim

ε→0

E[ni(t+ ε)− ni(t)]
ε · ni(t)

= λ+
i − λ

−
i

Similarly, we have

V ar[
dni(t)/dt

ni(t)
] =

λ+
i + λ−i
ni(t)

.

Proof of Proposition 3

Proof. The first case:
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Given our initial conditions, we guess that in the dynamic transition path, we always

have

pnH(t;n0 = 1) = (
λu
λd

) · pnL(t;n0 = 1) for n ∈ N ∪ {0}.

Since it is always held that

∞∑
n=0

pnH(t;n0 = 1) +

∞∑
n=0

pnL(t;n0 = 1) = 1.

Combining the above two conditions suggests that

∞∑
n=0

pnL(t;n0 = 1) =
λd

λu + λd
= πL.

Now, suggested by Klette and Kortum (2004), we define probability-generating func-

tion as below.

GL(α, t) =

∞∑
n=0

pnL(t) · αn.

Then we have

∂GL(α, t)

∂α
=

∞∑
n=1

n · pnL(t) · αn−1

∂GL(α, t)

∂t
=

dp0
L(t)

dt
+
∞∑
n=1

dpnL(t)

dt
· αn

Combining the above two equations with the dynamic system in Section 4.1 suggests

that GL(α, t) satisfies the following partial-differential equation (PDE).

∂GL(α, t)

∂t
= [λ+

L · α
2 − (λ−L + λ+

L ) · α+ λ−L ] · ∂GL(α, t)

∂α
.

Following Narendra and Richter-Dyn (1974), we set up the initial condition as in

Proposition 3. By definition of GL(α, t), we have

GL(α, 0;n0) =
∞∑
n=0

pnL(t;n0) · αn = πL · αn.

Combining this initial condition with the above PDE produces the analytic solution
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on GL(α, t) as below.

GL(α, t;n0) =

∞∑
n=0

pnL(t;n0) · αn = [
λ−L (α− 1)e−(λ−L−λ

+
L )t − (λ+

Lα− λ
−
L )

λ+
L (α− 1)e−(λ−L−λ

+
L )t − (λ+

Lα− λ
−
L )

]n0 .

Then, the Taylor series expansion of GL(α, t;n0) around α = 0 yields pnL(t;n0) as below.

pnL(t;n0) =
1

n!

∂nGL(α, t;n0)

∂αn
|α=0, for n ∈ N

p0
L(t;n0) = GL(0, t;n0)

In particular, when n0 = 1, we reach the results on {pnL(t;n0)}n∈N∪{0} in Proposition 3.

As a result, {pnH(t;n0)}n∈N∪{0} is by recovered by revoking the relationship of pnH(t;n0 =

1) = (λuλd ) · pnL(t;n0 = 1) for all n ∈ N ∪ {0}.

Finally, at time t, conditioning on still staying in OTC, the (truncated) size distri-

bution of investors with preference type i from the zero-cohort conforms to a geometric

distribution as below.

pnL(t;n0 = 1)

1− p0
L(t;n0 = 1)

= [1− σ(t)]σ(t)n−1, for i ∈ {L,H} and n ∈ N.

The second case:
Since λ−L = λ−H = λ− and λ+

L = λ+
H = λ+, combining the dynamics of pnL(t;n0) and

pnH(t;n0) yields the dynamics for pn(t;n0) = pnL(t;n0) + pnH(t;n0) as below.

dpn(t;n0)/dt =


(n+ 1)λ− · pn+1(t;n0)− n(λ− + λ+) · pn(t;n0) + (n− 1)λ+ · pn−1(t;n0) whenn ∈ N \ {1}

(n+ 1)λ− · pn+1(t;n0)− n(λ− + λ+) · pn(t;n0) when n = 1

(n+ 1)λ− · pn+1(t;n0) when n = 0

Then we can solve pn(t;n0) by resorting to the procedure proposed in the first case for

solving pnL(t;n0).
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Proof of Corollary 1

Proof. Given the initial asset holding as n0 = 1, define FL(t, n0) as the CDF of investors

with preference type L exiting OTC before time t. Then we have

E[TL] =

ˆ +∞

0
t · dFL(t;n0) =

ˆ +∞

0
[1− FL(t;n0)]dt,

where the second equation is obtained by using integration by parts.

Notice that FL(t;n0) = p0
L(t;n0)/

∑∞
n=0 p

n
L(t;n0) due to law of large numbers. Using

the analytic results of p0
L(t;n0) in Proposition 3 yields

E[TL] =

ˆ +∞

0
[p0
L(t;n0 = 1)/

∞∑
n=0

pnL(t;n0)]dt =
ln(

λ−L
λ−L−λ

+
L

)

λ+
L

.

We can then get E[TH ] in a similar way. Finally, since
λ+
L

λ−L
=

λ+
H

λ−H
= θ, we can also

express E[Ti] in terms of θ.

Proof of Proposition 4

Proof. Given the initial condition, we guess that, for all (t, n) ∈ R+×N, dynamic system

in Section 4.2 is simplified as below.

dMn
L(t)/dt = λd · Mn

H(t)− λu · Mn
L(t)

dMn
H(t)/dt = −λd · Mn

H(t) + λu · Mn
L(t)

and

(n+ 1)λ−i · M
n+1
i (t)− n(λ−i + λ+

i ) · Mn
i (t) + (n− 1)λ+

i · M
n−1
i (t) = 0 whenn ∈ N \ {1} (A1)

(n+ 1)λ−i · M
n+1
i (t)− nλ+

i · M
n
L(t) = 0 whenn = 1 (A2)

Denote Mi(t) =
∑∞

n=1Mn
i (t). Then the above simplified dynamic system implies

dML(t)/dt = λd · MH(t)− λu · ML(t)

dMH(t)/dt = −λd · MH(t) + λu · ML(t)
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Combining the above two equations yields that

dML(t)/dt+ dMH(t)/dt = 0,

and thus MH(t) = 1−ML(t). In turn, we have

dML(t)/dt = λd · [1−ML(t)]− λu · ML(t) = λd − (λu + λd) · ML(t)

Then the ordinary differential equation (ODE) onML(t) admits the solution as below.

ML(t) ≡ [1− e−(λu+λd)t] · πL + e−(λu+λd)t · ML(0),

and in turn,

MH(t) = 1−ML(t) = [1− e−(λu+λd)t] · πH + e−(λu+λd)t · MH(0).

Finally, by using equations (A1) and (A2) and following the procedure of Proposition

1, we can obtain that

Mn
i (t)/Mi(t) =

θn

n · ln( 1
1−θ )

.

Proof of Proposition 5

Proof. The dynamic system in Section 4.2 is essentially an infinite-dimensional linear

dynamic system. Given the initial condition, we follow Bryson and Ho (1975) to get the

solutions in the form shown in this proposition.

143



Proof of Corollary 2

Proof. First, by definition, the trading volume at each time t is,

V(t) ≡
+∞∑
n=1

λ−Lnµ
n
L(t) +

+∞∑
n=1

λ−Hnµ
n
H(t)

= λ−L

∑
i∈{L,H} ηi(t)− s(1− θ)λ

−
H

(1− θ)(λ−L − λ
−
H)

+ λ−H
s(1− θ)λ−L −

∑
i∈{L,H} ηi(t)

(1− θ)(λ−L − λ
−
H)

=

∑
i∈{L,H} ηi(t)

1− θ
= [µ1

L(t)λ−L + µ1
H(t)λ−H ] · ( s

1− θ
).

where the second equation is derived by using Proposition 1.

Secondly, the turnover of the asset is defined as below.

T (t) =
V(t)

s
= (

µ

s
) · [λ−L

+∞∑
n=1

nMn
L(t) + λ−H

+∞∑
n=1

nMn
H(t)]

= (
1− θ
θ

) · ln(
1

1− θ
). · [λ−L

+∞∑
n=1

nMn
L(t) + λ−H

+∞∑
n=1

nMn
H(t)]

=
µ1
L(t)λ−L + µ1

H(t)λ−H
1− θ

.

Finally, in steady state, we have

V = µ[λ−L

+∞∑
n=1

nMn
L + λ−H

+∞∑
n=1

nMn
H ] = s · (λ−LπL + λ−HπH)

T =
V
s

= λ−LπL + λ−HπH .

Proof of Corollary 3

Proof. First of all, in spirit of Proposition 1, we guess and then would later verify that,

there exits vi ∈ R+ such that Vi(n,W ) = n·vi+W . Secondly, since Ω(e, n) is homogeneous

of degree one in (e, n), we have γ−i = λ−i Ωi(ei, n) = λ−i n · Ωi(
ei
n , 1) ≡ λ−i n · ωi(

ei
n ), where

ω(·) is a strictly increasing and strictly concave function. Denoting hi(·) ≡ ω−1
i (·), we

have ei = n · hi(
γ−i
n·λ−i

) = n · hi(
γ+
i

n·λ+
i

). Since γ−i ≡ λ−i Ωi(ei, n), γ+
i ≡ λ+

i Ωi(ei, n), we

have
γ−i
λ−i

=
γ+
i

λ+
i

. Substituting ei into the original value functions yields the following two
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conditions.

rvL = max
σ′L≥1
{xL − hL(σ′L) + σ′L[λ−L (1− z)− λ+

L ](1− ε)(vH − vL)}+ λu(vH − vL)}

rvH = max
σ′H≥1

{xH − hH(σ′H)− σ′H [λ−L − λ
+
L (1− z)]ε(vH − vL)} − λd(vH − vL)}

First order condition on {σL, σH} are in turn obtained as below.

h′L(σL) = [λ−L (1− z)− λ+
L ](1− ε)(vH − vL)

σH = 1

The corner solution on σH is reached because of Assumption 1. Pooling the the above

condition finishes the proof of this corollary.

Proof of Corollary 4

Proof. Again, we use guess-and-verify for the form of value functions, i.e., we guess that

Vi(n,W ) = n · vi +W.

Substituting it into the original value function in Section 6.2, we know that {v1, · · · , vI ; i∗,M}

are jointly determined as below.

rvi = xi + κi(M − vi) + δ ·
I∑
j=1

πj(vj − vi)

M = εv1 + (1− ε)vI

i∗ = arg
i∈I
{vi∗ ≤M < vi∗+1}

where

κi ≡


(1− z)λ−i − λ

+
i if i ∈ IL

λ−i − (1− z)λ+
i if i ∈ IH
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By Assumption 3, κi can be rewritten as below.

κi ≡


(1− z)λ− − λ+ if i ∈ IL

λ− − (1− z)λ+ if i ∈ IH

Given (M, i∗), {vi}i∈I can be solved as below.

vi =
yi + δ · v
r + δ − κi

,

where

yj ≡ xj + κj ·M

v ≡
∑
j∈I

πjvj =

∑
j∈I(

πjyj
r+δ+κ)

1− δ ·
∑

j∈I(
πj

r+δ+κj
)
.

Due to Assumption 3, θ is close enough to one and thus κi is close enough to κj , for all

i ∈ IL and j ∈ IH . Besides, we already know that {xi}i∈I, then the result that vi = yi+δ·v
r+δ−κi

immediately suggests that vi > vi−1 holds for all i ∈ I.

Since M = εv1 + (1− ε)vI , we have

M = ε · ( y1 + δ · v
r + δ + κ1

) + (1− ε) · ( yI + δ · v
r + δ + κI

).

Moreover, substituting vi into the definition of i∗ yields

i∗ = arg{i′ ∈ I :
yi′ + δ · v
r + δ + κi′

≤M <
yi′+1 + δ · v
r + δ + κi′+1

}.

Combining the above two equation pins down (M, i∗), which in turn can be used to

recover {vi}i∈I.

Proof of Corollary 5

Proof. We have dµni (t)/dt = 0 in steady state and thus all time scripts are removed. Then

for for all i ∈ Ithe dynamic system in Section 3.3 is simplified as below.
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πi ·
∑
j 6=i

µnj = (1− πi) · µni for n ∈ N,

and

(n+ 1)λ−i µ
n+1
i − n(λ−i + λ+

i )µni + (n− 1)λ+
i µ

n−1
i = 0 for n ∈ N/{1}

(n+ 1)λ−i µ
n+1
i − n(λ−i + λ+

i )µni + µentryi ηL = 0 for n = 1

The first equation immediately implies that

µni = πiµ
n,

where µn ≡
∑∞

j=1 µ
n
j .

The second equation suggests that

(n+ 1)λ−i µ
n+1
i = nλ+

i µ
n
i for n ∈ N/{1}

λ−i µ
n
i = µentryi ηL for n = 1

Thus we have

µni =
µ1
i · θn−1

n
.

Then we are done by following the argument in Proposition 1, which considers the

scenario with two types of investor preference.
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