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As advances in functional magnetic resonance imaging (fMRI) have transformed the study of 

human brain function, they have also widened the divide between standard research techniques 

used in humans and those used in mice, where high quality images are difficult to obtain using 

fMRI given the small volume of the mouse brain. Optical imaging techniques have been 

developed to study mouse brain networks, which are highly valuable given the ability to study 

brain disease treatments or development in a controlled environment.  A planar imaging 

technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing 

functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS 

have provided efficient maps of functional connectivity from spontaneous brain activity in mice. 

However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of 

superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric 

neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but 

previous DOT systems for rodent neuroimaging have been limited by either sparse spatial 

sampling or by slow speed. My research has been to develop diffuse optical tomography for 

whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial 
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sampling using multiple camera views for detection and high speed using structured illumination 

sources. I have shown the feasibility of this method to perform non-invasive functional 

neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, 

the system has been built with a custom, flexible framework to accommodate the expansion to 

imaging multiple dynamic contrasts in the brain and populations that were previously difficult or 

impossible to image, such as infant mice and awake mice. I have contributed to preliminary 

feasibility studies of these more advanced techniques using OIS, which can now be carried out 

using the structured illumination diffuse optical tomography technique to perform longitudinal, 

non-invasive studies of the whole volume of the mouse brain.
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Chapter 1: Introduction 

1.1 Functional and Anatomical Neuroimaging 
Rapid technological developments throughout the 1970s revolutionized neuroscience and 

hospital care by allowing physicians to non-invasively observe brain anatomy in their patients. 

These now-standard techniques for anatomical brain imaging, for example Computed 

Tomography (CT) [1], [2], Positron Emission Tomography (PET) [3], and Magnetic Resonance 

Imaging (MRI) [4], [5], are highly effective at providing clinical diagnoses of various 

neurological problems such as tumors, bleeding, and trauma, and are all still regularly used in the 

clinic to this day. Only in recent decades, however, has neuroimaging expanded into monitoring 

brain function as well as structure, accelerated by the discoveries that PET and MRI signals can 

be sensitive to changes in blood flow [6], [7]. Given the relationship between neuronal activity 

and hemodynamic activity in the brain (known as neurovascular coupling [8]), monitoring of 

blood flow using MRI serves as a good proxy for observation of brain activity. Although in the 

beginning functional MRI (fMRI) was typically used for task-based brain imaging [9], such as 

observing the increase in oxygenated hemoglobin in the visual cortex following a visual 

stimulus, the technique provided insight into many diseases that were previously limited to 

difficult psychological assessments, and has been the gold standard of functional neuroimaging 

ever since [10]. More recently, however, spontaneous fluctuations of blood oxygenation in the 

brain were found to persist even in the absence of tasks, and were found to be network dependent 

[11]. Specifically, spontaneous fluctuations in certain brain regions tend to occur in unison with 

others, implying some sort of functional connection between these regions, even in the absence 

of a direct anatomical connection. Studying this spontaneous activity within brain networks, now 
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referred to as resting state functional connectivity, has opened up functional brain imaging to 

some of the most sensitive and important populations that are incapable of performing the tasks 

required for traditional functional brain imaging, such as neonatal infants or those having 

suffered severe stroke or trauma [12], [13].  

Resting state functional connectivity has also provided a new avenue for studying the mouse 

brain. The value of mice to biology and neuroscience is undeniable, as they can undergo highly 

controlled genetic and pharmacological manipulations to model various diseases and treatments. 

These important and clinically translatable studies can be greatly improved with functional 

neuroimaging, as longitudinal and minimally invasive studies are more accessible. 

Unfortunately, fMRI is difficult and expensive in mice, where very high magnetic field strengths 

are necessary to achieve sufficient signal-to-noise ratio (SNR) to detect resting state brain 

activity. However, while the small volume of the mouse brain is what limits the capabilities of 

fMRI (where signal is proportional to tissue volume), that exact characteristic works to the 

advantage of a different functional neuroimaging technique: optical imaging. 

1.2 Optical Neuroimaging in Mice 
In the same way that MRI signals are affected by changes in blood flow, light is preferentially 

absorbed and scattered by changes in blood oxygenation content as a function of its wavelength 

(Fig. 1.1) [14]. This can be easily demonstrated by shining a bright white light against one’s 

finger and seeing that only red light transmits through without being attenuated; shorter 

wavelengths are all completely absorbed within the first several millimeters of tissue. This 

phenomenon has become a regular part of everyday life in recent years, with smart watches 

detecting changes in reflected light intensity to measure heart rate or blood oxygenation. 

Recently, we developed an imaging system that uses this same technique to monitor brain 
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function throughout the mouse cortex by looking at the optical intrinsic signals (OIS) in the brain 

(Fig. 1.2A) [15].  

Figure 1.1. Extinction coefficients of hemoglobin. Oxygenated hemoglobin (HbO2, red) and deoxygenated 

hemoglobin (HbR, blue) have varying extinction coefficients as a function of wavelength over the visible and near-

infrared parts of the spectrum. In general, longer wavelengths are less attenuated by hemoglobin, and therefore can 

penetrate deeper into biological tissue. Differences in reflected light intensity from multiple wavelengths can be used 

to determine the relative changes in HbO2 and HbR. 

The OIS imaging system is a planar imaging system, with a charge-coupled device (CCD) 

camera used to collect relative changes in reflected light intensity from light emitting diodes 

(LEDs) that sequentially and uniformly illuminate the exposed mouse skull (Fig. 1.2B). The 

system uses four different wavelengths, three with preferential sensitivity to deoxygenated 

hemoglobin (HbR) and one with preferential sensitivity to oxygenated hemoglobin (HbO2) (Fig. 

1.2C). The camera collects light from each wavelength of illumination separately, revealing stark 

differences in reflected light intensity in sequential frames (Fig. 1.2D-G). Shorter wavelengths, 

which have higher attenuation in tissue, show a greater contrast across the field-of-view (FOV), 

with blood vessels appearing more noticeable due to greater absorption of light in these regions. 
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Figure 1.2. Optical Intrinsic Signal (OIS) mouse imaging system. (A) The OIS system consists of a ring of LEDs of 

four different wavelengths which sequentially illuminate the mouse head and a CCD camera to collect relative changes 

in reflected light intensity. (B) A white light image generated from the OIS system, illustrating the camera’s point of 

view of the exposed mouse skull after scalp retraction and the 1cm x 1cm field of view. (C) The peak spectra locations 

of the four LEDs overlaid on the extinction coefficients of hemoglobin, showing blue preferentially sensitive to HbO2 

and yellow, orange, and red preferentially sensitive to HbR. (D-G) Four sequential images taken by the OIS system, 

one from each of the four illumination wavelengths. Given the 120Hz frame rate of the system, these four images span 

~33ms, showing the significant differences in contrast between the four wavelengths. 

Changes in reflected light intensity can be converted to changes in optical properties 

(specifically, changes in the absorption coefficient, as the scattering coefficient is relatively 

constant) using the Beer-Lambert Law: 

 

Here, 𝐼(𝑡) is the time-dependent fluctuation of light intensity for a given wavelength 

and pixel, 𝐼0 is the average (baseline) intensity in that pixel from that wavelength, Δ𝜇𝑎(𝑡) is the 

time-dependent fluctuation in absorption coefficient at that pixel, and 𝐿 is the assumed constant 

differential pathlength factor (DPF) [16] for that wavelength, which describes the average 

distance that the light travels through tissue. Calculating the DPF for each wavelength requires 

(1.1) 𝐼(𝑡) = 𝐼0𝑒
−Δ𝜇𝑎(𝑡)𝐿 
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some knowledge of the baseline (average) absorption and reduced scattering coefficients [17]. 

The baseline reduced scattering coefficient, 𝜇𝑠
′ , is reasonably constant in the visible spectrum in 

biological tissue [18] and therefore assumed to be 10cm-1 for all wavelengths. The baseline 

absorption coefficient is calculated independently for each wavelength, as it depends on the 

spectra of the LEDs in use: 

 

Here, 𝐻𝑏𝑂2
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ and 𝐻𝑏𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   are the extinction spectra from Fig. 1.1, 𝐿𝐸𝐷⃑⃑⃑⃑ ⃑⃑ ⃑⃑   is the normalized LED 

spectrum for the wavelength of interest, 𝐻𝑏𝑇 is the assumed baseline total hemoglobin 

concentration (76 μM), and 𝑆𝑂2 is the assumed baseline oxygen saturation percentage (0.71) 

[19]. With an estimate of baseline absorption coefficient for each wavelength, the DPF can be 

calculated (simplified from the definition by Arridge et al. [20]): 

 

Where 𝐷 is the diffusion coefficient, and is equal to 1/[3(𝜇𝑎 + 𝜇𝑠
′)]. Once the DPF has been 

calculated for each wavelength, the Beer-Lambert law can be rearranged to solve for the 

differential changes in absorption coefficient: 

 

Calculating this time-dependent change in absorption coefficient for multiple wavelengths gives 

rise to a linear system which can be solved to calculate the corresponding changes in HbO2 and 

HbR: 

 

(1.4) Δ𝜇𝑎(𝑡) =
−𝑙𝑛(

𝐼(𝑡)
𝐼0

)

𝐿
 

(1.5) Δ𝜇𝑎(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝐸𝐻𝑏𝑂2
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑[Δ𝐻𝑏𝑂2(𝑡)] + 𝐸𝐻𝑏𝑅

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑[Δ𝐻𝑏𝑅(𝑡)] 

(1.2) 𝜇𝑎 = [𝐻𝑏𝑇] ∗ 𝑆𝑂2 ∗ (𝐻𝑏𝑂2
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ ∙ 𝐿𝐸𝐷⃑⃑⃑⃑ ⃑⃑ ⃑⃑  ) + [𝐻𝑏𝑇] ∗ (1 − 𝑆𝑂2) ∗ (𝐻𝑏𝑅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ∙ 𝐿𝐸𝐷⃑⃑⃑⃑ ⃑⃑ ⃑⃑  ) 

(1.3) 𝐿 =
1 + 3𝜇𝑎𝐷

2𝜇𝑠
′√𝜇𝑎𝐷
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The vector Δ𝜇𝑎(𝑡) is the time trace of changes in absorption coefficient for each wavelength in 

the system, and the vector 𝐸 for each of HbO2 and HbR describes the extinction coefficient of 

each wavelength for those two contrasts. This extinction matrix is calculated by taking the dot 

product of each LED’s spectrum with the extinction coefficient spectra shown in Fig. 1.1. The 

solution of this linear system is the pair of independent time traces Δ𝐻𝑏𝑂2(𝑡) and Δ𝐻𝑏𝑅(𝑡). 

Once this linear system has been solved and the data have been converted to changes in HbO2 

and HbR concentration, the time traces are filtered to the canonical resting state functional 

connectivity band (~0.009-0.08Hz) [21], and maps of resting state functional connectivity are 

generated by comparing these filtered time traces of hemoglobin concentration fluctuation across 

different regions of the brain (Fig. 1.3A).  

Figure 1.3. Resting state functional connectivity in mice using OIS. (A) Time traces of HbO2 fluctuations with respect 

to baseline over a 5-minute period in a mouse from three different locations on the cortex (marked by corresponding 

colored dots in B). The green and blue traces are seen to fluctuate together strongly, while the red trace fluctuates 

roughly the opposite of them both. (B) A correlation map showing the Pearson-R correlation coefficient between every 

pixel’s time trace and that from the blue seed. For example, the correlated green and blue traces have a correlation 

coefficient of 0.92, while the anti-correlated blue and red traces have a correlation coefficient of -0.68. (C) Maps 

showing correlation coefficients between every pixel over the brain and 7 anatomical seeds of interest, shown in each 

map as a black dot. 
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By calculating the correlation coefficient between a particular brain region of interest (referred to 

as a seed) and every other pixel in the brain, maps of correlation coefficients can be calculated 

over the entire brain for that particular seed (Fig. 1.3B). Further, these seed-based functional 

connectivity maps can be calculated for a range of seed regions of anatomical interest, revealing 

the functional structure of the mouse brain (Fig. 1.3C). This can subsequently be used to study 

diseases and treatments by observing the disruption of these functional networks in the unhealthy 

mouse brain [22], [23]. 

While optical intrinsic signal imaging has proven very useful for monitoring brain function in 

mice and studying brain disease, it has a number of significant limitations. As previously 

discussed, OIS does not provide any information about baseline optical properties, and requires 

estimates or assumptions of them to ultimately reconstruct HbO2 and HbR activity. Additionally, 

OIS imaging requires the minimally invasive procedure of scalp reflection prior to imaging. 

Given that a surgery and lengthy recovery are necessary, certain longitudinal studies, such as 

those in very young (infant) mice, are difficult to carry out using OIS. Furthermore, OIS provides 

no depth information because it is a planar imaging technique; we are limited to imaging the 

cortex, essentially looking at an average of all depths up to ~500µm beneath the brain’s surface. 

As a result, there are many inaccessible regions and higher order brain networks that cannot be 

observed using OIS. 

The broad goal of my work is to expand an optical imaging technique that has recently shown 

promise in humans, Diffuse Optical Tomography, into mouse neuroimaging to address these 

weaknesses and provide new pathways for studying mouse brain function throughout the entire 

volume. 
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1.3 Diffuse Optical Tomography 
Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical imaging modality that, 

in contrast with planar imaging techniques, illuminates with a single source at a time [24]. By 

collecting light from multiple point detectors for each individual illumination, one can 

reconstruct changes within a volume based on how the different detectors collect light from the 

same illumination (Fig. 1.4A). The near-infrared light (λ~700-900nm) in use can penetrate deep 

into tissue given its low attenuation (see Fig. 1.1), but traditional fNIRS techniques use sparse 

arrays of point sources and detectors. This confines the spatial resolution and causes non-uniform 

spatial sensitivity, which makes fNIRS a non-ideal candidate for rodent neuroimaging. 

Figure 1.4. fNIRS and DOT measurements. (A) A typical fNIRS measurement set, with multiple detectors collecting 

light from the same source. The depth of maximum sensitivity is related to the source-detector separation (d). (B) A 

two-dimensional slice of a set of typical DOT measurements, featuring a denser grid of sources and detectors, with 

more redundancy between tissue regions being probed. This type of measurement distribution provides a more uniform 

sensitivity profile over a range of depths, and can image larger volumes with more spatial precision. 

In recent years, however, Diffuse Optical Tomography (DOT) techniques have been developed 

that use the same framework as fNIRS, but incorporate much denser grids of sources and 

detectors to provide better spatial resolution and sensitivity throughout a large volume (Fig. 

1.4B). Additionally, DOT typically uses computational modeling methods to model how light is 

expected to diffuse through the volume of interest. Discrepancies from this model are then used 

to attribute observed changes to specific locations throughout the volume (see Sec. 2.2.2), which 

provides much greater spatial accuracy than simply correlating location with source-detector 

separation as is typically done in fNIRS.  
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Consequently, DOT is a much better candidate for whole-brain, non-invasive functional 

neuroimaging than fNIRS, as several early systems demonstrated. A fiber-based DOT system, 

consisting of ~10 point sources and ~10 point detectors, has shown the ability to image the rat 

cortex non-invasively with sufficient speed for monitoring hemodynamics (Fig. 1.5A), but this 

fiber array is too sparse to provide the whole-brain sensitivity that we hope to achieve with a 

mouse DOT system. The sparseness limitation has been addressed with a high-density fiber-

based DOT (HD-DOT) system for human neuroimaging. This technique implements finite 

element modeling of light transport in tissue, which helps to provide volumetric reconstructions 

of brain activity with good resolution and sensitivity, but the HD-DOT fiber array cannot easily 

be scaled down to the size of the mouse head (Fig. 1.5B).  

Figure 1.5. Previous DOT system overview. (A) A fiber-based DOT system for rodent neuroimaging [25], with too 

sparse of spatial sampling for the desired mouse neuroimaging applications. (B) A fiber-based high-density DOT 

system for human neuroimaging [26], which cannot be easily scaled to the size of the mouse head while preserving 

dense spatial sampling. (C) A CCD and laser diode-based DOT system for molecular and fluorescence imaging in 

rodents [27], which is too slow to monitor hemodynamics in the mouse brain. (D) Structured illumination using a 

spatial light modulator [28], which has been applied to numerous optical imaging techniques, such as optical 

tomography and microscopy. We aim to combine the relative strengths of each of these (green text) into a structured 

illumination DOT system for mouse neuroimaging. 

The measurement density problem has successfully been solved for rodent DOT by, instead of 

using fiber-based sources and detectors, raster scanning a laser diode over the volume of interest 

and using a CCD camera for detection (CCD-DOT, Fig. 1.5C). In this case, each pixel of the 
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CCD sensor acts as an independent detector. While this has proven useful for molecular 

fluorescence imaging, which is a valuable technique for imaging different contrasts than just 

hemoglobin (see Ch. 4), CCD-DOT is too slow for imaging hemodynamics in the brain. 

Most recently, speed issues have been addressed in similar systems by using a spatial light 

modulator to convert uniform planar light into spatially varying 2D illumination, referred to as 

structured illumination source patterns. Structured illumination patterns provide rapid whole 

sample illumination instead of only illuminating one point at a time (Fig. 1.5D). Traditional uses 

of this technique require sine wave spatial patterns, however, and are therefore not applicable to 

the arbitrary illuminations and geometries that would be desired for a mouse DOT system [29]. 

We can address each of the issues that has limited previous DOT techniques from performing 

whole brain mouse neuroimaging by combining their respective strengths into what will be the 

primary focus of the remainder of this work: Structured Illumination Diffuse Optical 

Tomography (SI-DOT). This technique combines the speed of structured illumination sources 

with the high-density detectors of the camera-based CCD-DOT and the finite element modeling 

of the fiber-based human HD-DOT into a system capable of fast mouse neuroimaging with good 

resolution throughout the cortex and good sensitivity to subcortical brain structures. Chapter 2 of 

this work discusses the development of the preliminary SI-DOT system, the theory and analysis 

techniques used to optimize the system, and a feasibility study showing its ability to perform 

non-invasive functional neuroimaging in mice. Chapter 3 discusses the expansion of the SI-DOT 

system into its full form: a “multi-view” tomography system with two separate projectors for 

multiple illumination angles and three cameras for multiple detection angles. Chapter 3 also 

focuses on the addition of an in situ surface profiling technique to greatly increase the accuracy 
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of the forward modeling of light transport in tissue and subsequently the system sensitivity and 

resolution throughout the volume of the mouse brain. 

Chapters 4 and 5 discuss preliminary work that has been carried out on problems that will 

eventually be addressed more thoroughly with the full, multi-view tomographic imaging system. 

Chapter 4 focuses on a system developed to perform awake mouse imaging, and highlights some 

results showing the ability of this system to image mice while awake and without brain function 

potentially confounded by anesthesia. Additionally, this chapter summarizes this system’s ability 

to observe higher order networks using contrasts besides just hemoglobin, via techniques such as 

optogenetics and calcium fluorescence imaging, which can ultimately be applied to DOT as well.  

Chapter 5 focuses on a preliminary study of a mouse model of fetal alcohol syndrome (FAS). 

Further motivating the removal of anesthesia from the imaging of mice, many common 

anesthetics or sedatives given to infants, which fall in the same class of drugs as ethanol, produce 

excessive spontaneous cell death in the brain and likely contribute to many of the functional 

deficits associated with FAS. This work aims to determine the ability of optical imaging to detect 

these deficits, with eventual work expanding to more commonly used drugs besides just ethanol. 

Establishing which drugs affect brain development and functional connectivity would have wide-

ranging clinical applications, and the flexible non-invasive mouse DOT imaging system will be 

the ideal means to carry out such a study. 

 



12 

 

Chapter 2: Diffuse Optical Tomography in Mice Using 

Structured Illumination 

2.1 Introduction 
As advances in functional magnetic resonance imaging (fMRI) have transformed the study of 

human brain function, they have also widened the divide between standard research techniques 

used in humans and those used in mouse models. Although both task-based evoked responses 

[30], [31] and resting state networks [32], [33] have recently been observed in mice using fMRI, 

high signal-to-noise ratio (SNR) and resolution remain challenging to achieve in the small 

volume of the mouse brain, and the logistics of MRI hinder widespread application to high-

throughput mouse studies. A need exists for a fast benchtop modality for studying brain 

networks in mice. Optical imaging techniques, such as optical intrinsic signal imaging [15] (OIS, 

see Sec. 1.2), have been developed and widely applied to task-based evoked responses [34], [35]. 

Most recently, OIS has been applied with a wide field-of-view (FOV) to monitor functional 

connectivity in cases of disease [22], [23] and development [36] in the mouse brain. However, 

traditional OIS methods are limited to planar imaging, providing only a two-dimensional view of 

cortical activity. Further, planar imaging requires, at the least, the minimally invasive procedure 

of scalp reflection, making longitudinal imaging difficult or even impossible in some 

populations, such as infant mice.  

In contrast, Diffuse Optical Tomography (DOT) provides non-invasive volumetric imaging at 

depths extending to multiple centimeters, which in principle solves some of the limitations of 

planar imaging. In addition to DOT instrumentation, algorithms have been developed for 

handling arbitrary tissue geometries that can be matched to anatomy using numerical finite 

element modeling of light transport [37]. While most papers have focused on humans [26], [38], 
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there have been some reports of the application of DOT to rodents [25], [27]. However, thus far 

most animal DOT systems have either been fiber-based, which are limited by sparse spatial 

sampling [25], or CCD-based, which are limited by slow frame rates (<0.1 Hz) that preclude 

imaging functional brain hemodynamics [27].   

Here, we present an imaging system that combines structured illumination (SI) with traditional 

DOT techniques (SI-DOT) to image a wide FOV (>1cm x 1cm) at high speed (>2Hz). 

Successful implementation of SI-DOT for mouse functional neuroimaging requires optimizing 

for structured pattern sequences that preferentially select deeper tissue. We introduce an analysis 

of the SNR of these patterns that evaluates the average light intensity as a function of an 

effective distance. This provides a light intensity versus distance analysis analogous to methods 

used in traditional fiber-based DOT. Following optimization, we validate SI-DOT for non-

invasive imaging in mice by observing, through the intact scalp, cortical responses to peripheral 

stimulation. 

2.2 Methods 

2.2.1 Structured Illumination Diffuse Optical Tomography Imaging System 

The goal of the structured illumination diffuse optical tomography instrument is to provide non-

invasive functional neuroimaging of cortical hemodynamics (through both the scalp and skull) at 

a speed >2Hz with a FOV >1cm2 to cover the dorsal convexity of the mouse brain. The system 

leverages fast, low noise detection provided by a single scientific complementary metal-oxide-

semiconductor (sCMOS) camera (Zyla 5.5, Andor Technology Ltd., South Windsor CT, USA).  

For multi-wavelength structured illumination, we used a single projector (Lightcrafter 4500, 

Texas Instruments, Dallas TX, USA). Within the projector, multi-colored LEDs were reflected 

off a 912 x 1140 digital micromirror device (DMD) array to display arbitrarily complex two-
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dimensional illumination patterns. The sizes of the DMD chip, the mouse head, and the sCMOS 

sensor were all similar, which allowed for symmetric imaging optics. 

Figure 2.1. Structured illumination DOT system. (A) System schematic showing the relative positions and 

orientations of the DMD source projector and sCMOS camera. Internal LEDs and optics illuminate the DMD with the 

desired wavelength, and illumination patterns are stored in the on-board projector memory and triggered consecutively 

to illuminate the head with the desired spatial frequencies. (B) Six example structured light patterns illuminating the 

intact mouse scalp, as collected by the sCMOS. (C) The planar-frame illumination of a mouse head as measured by 

the sCMOS camera, showing the positions of ~1,000 detectors (blue) over the intact scalp, after off-camera binning. 

A hand-drawn brain mask (yellow) removes measurements that lie outside of the exposed scalp for each mouse. 

In particular, 85mm f/1.4 lenses were used to maximize the FOV while allowing sufficient 

working distance so that the projector could illuminate the mouse head from above (Fig. 2.1A). 

To prevent specular reflection off the scalp from saturating the sensor, a polarizer (B+W 72mm 

XS-Pro Kaesemann, Schneider Optics, Van Nuys CA, USA) was placed on the projector with its 

polarization axis 90° relative to a second polarizer in front of the camera lens.  A sequence of 

pre-defined illumination patterns was created in Matlab (Mathworks, Natick, MA) and uploaded 

onto the projector’s on-board memory. Individual patterns were triggered one at a time and 

synchronized with each camera frame (Fig. 2.1B). Several illumination sequences were explored, 

typically containing 40 different structured patterns. Each pattern ranged in spatial frequency 

from 0.08 to 0.4 mm-1 with two phases (180-degree phase shifts) and two orientations included 

per frequency. Images were collected at a camera frame rate of 80 Hz, providing a full DOT 

frame rate of 2Hz. Each detection frame spanned a 12mm x 12mm FOV using the central 512 x 
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512 pixels of the sensor. The data were binned to 32 x 32 pixels prior to reconstruction to 

improve SNR, yielding a pixel size of ~400um. The binned data had a dynamic range of 104, 

with typical maximum values of ~107 counts and background standard deviations of 

approximately 103 counts.  The 40 illumination patterns combined with ~1,000 detectors over the 

scalp provided ~40,000 total measurements (Fig. 2.1C). 

2.2.2 Light Modeling/DOT Forward and Inverse Problem 

Diffuse Optical Tomography Image Reconstruction 

The diffusion of light through biological tissue can be described by the time-independent 

diffusion equation, an approximation of the radiative transport equation [39]:  

 

Here, ν is the speed of light in the medium, Φ is the photon fluence (light intensity 

per unit area), S is the source distribution, and the diffusion coefficient 𝐷 = 𝜈/[3(𝜇𝑎 + 𝜇𝑠
′)], 

where 𝜇𝑎 and 𝜇𝑠
′  are the absorption and reduced scattering coefficients, respectively. The 

scattered field (fluence) can be solved for using the Rytov approximation [40]: 

 

Here, the small perturbations in the light fluence, Φ1, are much smaller than the 

baseline, unperturbed fluence Φ0. Given that the data are ratiometric, we can solve for relative 

changes in absorption at each location within the volume by solving the linear system: 

 

 

where y is the solution of Eq. 2.2 for the perturbed fluence, a vector of differential light 

measurements for each source-detector pair: 

𝐷∇2Φ(𝑟 ) − 𝜈𝜇𝑎(𝑟 )Φ(𝑟 ) = −𝜈𝑆(𝑟 ) 

 

(2.1) 

Φ(𝑟 ) = Φ0(𝑟 )𝑒
Φ1(𝑟 ) 

 

(2.2) 

(2.3) 𝑦 = 𝐴𝑥 
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Appendix: System Design/Construction Challenges 

A.1 Introduction 
The structured illumination diffuse optical tomography (DOT) system for volumetric mouse 

brain imaging was first theorized with the goal of meeting a number of parameter improvements 

over previous systems. In particular, we needed high spatial sampling, of ideally ~0.3mm, fast 

imaging speeds of >2Hz and ideally up to 10Hz, and full volume imaging over a region of 

~3cm3. The preliminary proof of concept of the capabilities of this system were founded in 

simulations of sensitivity and point perturbation reconstructions (see Sec. 3.3.3). The initial 

design called for four projectors and three charge-coupled device (CCD) cameras symmetrically 

arranged around the mouse head. Simulations were carried out assuming optics that permit each 

projector to illuminate 120° of the mouse head, with structured patterns linearly spanning 15 

spatial frequencies from 0.04mm-1 to 0.6mm-1. Reconstructions of 200μm x 200μm x 200μm 

point perturbations revealed expected resolution and depth localization throughout the full 

volume of the mouse head. These preliminary studies showed enough validity for funding for 

this system to be obtained; hence, the initial goal of my research was to design and assemble the 

system to meet the desired characteristics. 

A.2  Structured Illumination DOT System Construction 

A.2.1 Camera Selection 

The first and most important design decision was the selection of a camera to achieve the desired 

signal-to-noise ratio (SNR) over the range of wavelengths intending to be used (visible through 

near-infrared). While very expensive (~$50k) scientific cameras have good sensitivity to all 

visible and near-infrared wavelengths, a primary goal of this system was to demonstrate that 

optical tomography can perform comparably to functional magnetic resonance imaging for 
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considerably cheaper. Therefore, we focused on finding a more affordable camera capable of 

achieving sufficient SNR for tomographic imaging. 

Using the Andor iXon 897 as the gold standard scientific camera for optical imaging systems, as 

it has already been established as a suitable camera for detecting resting state functional 

connectivity in mice (Chs. 1, 4, 5), we surveyed several cameras and compared their SNRs 

across the visible and near-infrared spectrum to that of the iXon. Adding noise to a typical set of 

our planar imaging data reveals that an SNR of at least ~1.2 is necessary to observe any resting 

state functional connectivity structure, while an SNR of greater than ~2.5 is necessary to observe 

clean (i.e. indistinguishable from data with no noise added) functional connectivity maps. This 

helped to set a lower threshold on a suitable SNR for the structured illumination DOT system. 

The signal acquired in an optical imaging system for a given wavelength is traditionally 

considered to be the product of photon flux incidence (P, the photons per pixel per second), 

quantum efficiency (Qe, the ability of a sensor to convert detected photons into electrical current 

at that wavelength), and the exposure time (t). The noise is defined as the square root of the sum 

of three components: the signal (corresponding to the shot noise, or the statistical variations in 

photon arrival rate), the dark current (D, in electrons per pixel per second, caused by thermal 

fluctuations during detection) of the sensor multiplied by the exposure time, and the square of the 

readout noise (Nr, inherent electron noise in analog-to-digital conversion) [137]. For typical 

resting state imaging, our true “signal” is the spontaneous fluctuation as a deviation from 

baseline, which is typically on the order of a 3% change [15], [54]. As a result, the SNR for all 

subsequent calculations scales the signal by 0.03: 
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At the typical photon incidence for a standard wide-field optical imaging system (~10mW 

incident LED power) of ~105 or 106 photons per pixel per second, the total noise is highly 

dominated by the shot noise (the first term in the denominator of equation A.1). In this case, the 

SNR as a function of wavelength will almost identically match the specified quantum efficiency 

of that wavelength range for the sensor in use (Fig. A.1A, B). However, if we consider lower 

light levels (~103 photons per pixel per second), which ideally this tomography system will be 

capable of imaging as well, as may be required for fluorescence imaging (Ch. 4), the dark current 

and readout noise begin to affect SNR (Figure A.1C). 

Figure A.1. Quantum efficiency and SNR vs. wavelength. (A) Quantum efficiency from ~400-800nm for three sensor 

types: an expensive CCD sensor (Andor iXon), a cheaper CCD sensor (Basler), and a mid-priced sCMOS sensor 

(Andor Zyla). (B) SNR vs wavelength for a typical wide-field imaging application, with high (~106 photons per pixel 

per second) light levels. The relative shapes over the wavelength range closely match the quantum efficiency due to 

the dominance of shot noise. (C) SNR vs wavelength for a typical low light (~1,000 photons per pixel per second) 

application. Here, the high dark current and readout noise in the cheaper camera becomes more apparent, as it performs 

more notably worse than the two more expensive cameras. 

 

Exploring the SNR vs wavelength for three types of sensors, the gold standard expensive CCD 

(Andor iXon), a cheaper CCD (Basler Aviator avA2300), and a mid-priced sCMOS sensor 

(Andor Zyla), we see that the sCMOS sensor provides sufficiently high SNR over the full visible 

(A.1) 𝑆𝑁𝑅 =
0.03 ∗ 𝑃𝑄𝑒𝑡

√𝑃𝑄𝑒𝑡 + 𝐷𝑡 + 𝑁𝑟
2
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and near-infrared spectrum. Additionally, this sensor has enough pixels (5.5 million total) to 

accommodate flexible binning and cropping, which should allow adjustments of speed and 

dynamic range to achieve the desired values. 

Having identified a sensor that will provide sufficient SNR across the full range of anticipated 

wavelengths, our camera selection was narrowed down to two similarly priced, commonly used 

sCMOS cameras which both utilize this sensor: the Andor Zyla and PCO Edge. Additionally, 

both cameras had two options for communication between camera and computer: CameraLink 

and USB3.0. While CameraLink generally affords faster frame rates, USB 3.0 is becoming a 

standard across computer types and frame grabbers (the hardware that converts the digital signal 

into usable data on the computer), so we elected to sacrifice speed slightly in the interest of 

system longevity and flexibility.  

The primary deciding factor in favor of the Andor Zyla is its flexible readout mode. Because we 

are monitoring hemodynamics over the entire volume from every region (pixel) simultaneously, 

we need a camera that reads out all pixels simultaneously. While both cameras implement a 

feature (called “global shutter”) accommodating this, only the Zyla can achieve this without 

further sacrificing frame rate. For example, the maximum frame rate that the PCO can achieve at 

full resolution in global shutter mode is 16 frames per second, while the Zyla can run at 39 

frames per second at full resolution. 

Although the well depth (maximum electrons detectable per pixel per frame) of the Zyla is 

significantly less than the Andor iXon (~30,000 electrons compared to 180,000 electrons), the 

Zyla has a surplus of pixels which can be binned to effectively increase well depth and 

consequently the dynamic range. With the Zyla sensor cropped to 512x512, it can run at 201 
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frames per second (see Sec. A.3.3), while the iXon can run at 206 frames per second with 4x4 

binning of its 512x512 pixel CCD sensor. Binning the Zyla sensor down an additional 4x4 

increases its per-pixel dynamic range to values comparable to the iXon, with the only sacrifice 

being spatial sampling. Off-camera binning after data collection condenses the data to 32x32 

pixels; this makes for a more manageable computational problem (see Secs. A.2.3 and A.3.4) 

while still preserving the desired spatial sampling. Given the pixel size, these binned “super-

pixels” are ~400x400μm each, close to the original goal of 300μm spatial sampling. While this 

camera may not be sufficient for extremely low-light-level, single-photon type applications, the 

4x decrease in cost for just slightly worse dynamic range (or equivalent dynamic range with 

slightly worse spatial sampling) is a worthy sacrifice. 

A.2.2 LED and Wavelength Selection 

Camera selection was based off of the “ideal” illumination, with typical estimates for LED 

power, attenuation, and optical throughput found in the visible spectrum used to estimate typical 

photon incidence and subsequently used to calculate SNR. However, we needed to make sure the 

full range of possible wavelengths would provide the necessary signal for this camera before 

making purchases. This problem can be solved using a concept known as detectivity, which, for 

a particular sensor and sampling rate, describes the minimum incident power detectable. To 

calculate detectivity, we start with the sensitivity of the sensor, which describes the number of 

detected counts per unit energy for a given wavelength: 

 

Here, 𝑄𝐸𝜆 is the quantum efficiency of the sensor at that wavelength, 𝐴𝐷𝐶 is the analog-to-

digital conversion rate (in counts per electron), and 𝐸𝜆 is the energy of a photon of the given 

(A.2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝑄𝐸𝜆 ∗ 𝐴𝐷𝐶

𝐸𝜆
) 
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wavelength. This can be converted to a noise-equivalent energy by taking the read noise (𝜎𝑅𝑁) of 

the sensor (in counts) and diving it by the sensitivity:  

 

To account for the sampling rate of image collection, this can be converted to a noise-equivalent 

power, which scales the noise-equivalent energy by the frame rate, and is generally then 

normalized by the square root of the frame rate (FR) to describe the quantity as a function of 

bandwidth: 

 

Finally, the detectivity is defined as this noise-equivalent power normalized by the area of the 

sensor (A): 

 

This quantity can then be calculated for a given sensor and choice of sampling rate and sensor 

area (if cropping). In our case, we can look at the expected power output of the candidate LEDs 

to make sure that their signal will remain above the detectivity of the camera over the 

transmission depths that we anticipate imaging. For the off-the-shelf Lightcrafter 4500 projector 

with built-in LEDs (see Ch. 2), the three included wavelengths are incapable of providing 

sufficient signal for the Andor Zyla sensor to allow imaging of the full volume of the mouse 

brain (which requires ~2cm total transmission length), with green and blue mostly only able to 

probe the cortex (~5mm transmission length, Fig. A.2A). 

(A.3) 𝑁𝐸𝐸 = (
𝜎𝑅𝑁

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
) 

(A.4) 𝑁𝐸𝑃 = (𝑁𝐸𝐸 ∗
𝐹𝑅

√𝐹𝑅
) 

(A.5) 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝑁𝐸𝑃

𝐴
) 
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Figure A.2. Detectivity of Andor Zyla cameras. (A) The Lightcrafter 4500’s three built in LEDs all fall below the 

detectivity of the camera before the necessary 2cm transmission length for whole volume imaging. (B) Estimates of 

power output following 2cm of light transmission for the wavelength range of 350-900nm (dotted blue). Wavelengths 

where the dotted blue line falls below the camera detectivity are not capable of probing the entire mouse brain. (C) 

Six candidate LED wavelengths with attenuation estimated from true measures of their spectra and incident power, 

with power falloffs throughout the mouse head volume up to 3cm transmission length. Near-infrared wavelengths 

show an ability to probe the entire volume of the mouse brain. 

 

To determine wavelengths that will combine to give the desired sensitivity at large (~2cm) 

depths while maintaining good resolution at shallower depths, we can approximate the intensity 

of light following a 2cm transmission through the mouse head by assuming a Gaussian LED 

spectrum to calculate baseline optical properties at all wavelengths from 350 to 900nm (Fig 

A.2B, dotted blue line). Highlighting the wavelengths of six candidate external LEDs (Mightex 

systems) shows that the shortest wavelengths will not be able to probe the full volume of the 

mouse head, but longer (near-infrared) wavelengths will have power remaining significantly 

above the noise floor of the camera. Looking at the light intensity fall-off for each of these LEDs 

using their true spectra and incident powers confirms the ability of the near-infrared wavelengths 

to probe throughout the volume of the brain (up to ~2.5-3cm transmission length) before falling 

below the noise floor of the Andor Zyla camera (Fig. A.2C). 

A.2.3 Computer Selection 

Computer selection for the structured illumination system required two main criteria to be met: 

hardware to accommodate connecting and triggering all of the various components of the system, 

and hard drive speed and throughput capable of transmitting and spooling the data at the desired 
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frame rates. At a maximum, the structured light system would incorporate 24 LEDs (four 

projectors with 6 LEDs each), 4 projectors, 3 cameras, and an electrical stimulus for evoked 

response experiments. Hence, we needed a data acquisition card capable of controlling and 

triggering up to 31 independent components, and a computer capable of supporting this card in 

addition to its other requirements. National Instruments manufactures one card that fulfills these 

requirements, the 32 analog output channel PCI-6723, which subsequently required a computer 

with a PCI bus accommodating this somewhat outdated form factor. 

To account for this, we assembled a custom control computer from Dell that met the necessary 

hardware requirements. With the expected cropped field of view, before binning, data collection 

occurs at 1024x1024 pixels and a maximum of 100 frames per second. With 16-bit imaging, this 

corresponds to 200MB/sec of data. To accommodate this, we selected an internal PCIe solid state 

drive for data spooling, which has maximum write speeds of up to 1200 MB/sec, but typically 

runs closer to 500-600MB/sec. If spooling 2x2 binned data with the same 100Hz frame rate, the 

system collects ~40MB of data per second. For a standard 5-minute imaging run, this comes to 

~12GB of data, for a total of ~80GB of data per mouse. Data are binned further before 

processing to lessen computation time, but to save raw data, hard drive space can become 

occupied very quickly. As a result, we selected a computer with hot-swappable hard drive docks, 

so that regular rapid filling of raw data drives would not require a complete system shutdown for 

replacement. Instead, data are copied from the PCIe solid state drive to removable hard drives for 

long-term storage. For the preliminary system (Ch. 2), with just one camera and one projector, 

the same computer was used for control and spooling. For the multi-view system (Ch. 3), each of 

the three cameras had its own computer for spooling, with a single separate control computer 

used. 
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A.2.4 Optics Selection 

The primary challenge in selecting lenses and designing optics for the structured illumination 

system was in preserving the desired field of view throughout illumination and detection within 

the confines of the spatial constraints of the system components. For the desired field of view of 

~1cm x 1cm (from the top down 2D view of the mouse head/brain), the lenses would have to 

magnify the 9mm x 7mm digital micromirror device (DMD) chip, which produces the structured 

light patterns, to at least 1cm along the smaller dimension to illuminate the full field of view. To 

preserve symmetry along all sources and detectors, the same lenses were desired for the cameras 

and projectors. As such, the lenses needed to scale the ~1cm x 1cm field of view to the cropped 

camera sensor size of 6.67 x 6.67mm.  

Figure A.3. System optical components arrangement. Each projector and camera has an 85mm focal length lens at a 

working distance of 21.3cm (drawn approximately to scale) from the imaging plane, with distances between the lens 

and the corresponding sensor or digital micromirror chip of 14.15cm. This generates the desired magnifications 

throughout the imaging system and allows for efficient spatial arrangement of the cameras and projectors. 

 

With the DMD, sensor, and mouse head all being close in size, optics were chosen to utilize 

close to a “2f” relay, meaning the working distance is approximately twice the focal length of the 

lens. Given the standard diameter of the large numerical aperture camera lenses in use, and the 
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sizes of the body of the Andor camera and Lightcrafter 4500 projector light source, the working 

distance was required to be around a minimum of 20cm (Fig. A.3). To optimize the two light 

paths and maintain efficient use of space, 85mm focal length lenses were chosen to sit 21cm 

from the imaging plane, and about 14cm from the sensor and DMD chip, which generates the 

desired magnifications. 

A.2.5 Software 

To control the timing of the various components in the structured illumination system, voltage 

triggers are generated in Matlab and sent to the different devices using the PCI-6723 data 

acquisition card discussed in section A.2.2. Because the Andor camera and Lightcrafter 4500 

projector are both controlled by independent software, their respective settings must be set up 

and queued before beginning collection. This consists of setting the desired exposure time 

(which defines the amount of time passing between a frame’s initialization trigger and image 

readout), number of frames (for allocating necessary space on the hard disk), and binning 

information on the camera. For the projector, all patterns are created as individual bits in a 24-bit 

.bmp image in Matlab and stored on the on-board memory. This allows more efficient storage of 

structured light patterns, as 24 separate patterns (assuming binary patterns where each DMD is 

either “on” or “off”, as opposed to the use of spatial sine waves in traditional structured 

illumination) are contained in a single .bmp image and can be triggered more rapidly. The order 

of patterns to be displayed in the sequence must be loaded from the on board memory before 

imaging, and is done using the Lightcrafter 4500 software. For the preliminary system, the color 

of each pattern was assigned in this software as well. For the multi-view system with custom 

light engine and illumination, a separate series of triggers is required for each LED (Fig. A.4). 
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Figure A.4. Structured illumination DOT trigger sequences. This sequence is for a hypothetical pattern sequence of 

10 spatial frequencies, all six wavelengths per projector, and 120 frames per second collection on the cameras. LEDs 

are sequentially illuminated while each individual pattern is triggered. Once all 10 of the patterns have been triggered 

for a given wavelength, the next wavelength is triggered and subsequently illuminated with the same 10 patterns. After 

all six wavelengths have illuminated all 10 patterns each, the same sequence is carried out for the second projector. 

All three cameras are triggered at the constant frame rate throughout. 

 

A.3  Multi-view System Construction 
While design decisions were made with the ultimate application of multiple detector views and 

multiple projector illumination angles in mind, the eventual addition of this expansion required 

solving further design challenges. 

A.3.1 Custom Light Engine 

In order to accommodate a range of LEDs and wavelengths and preserve flexibility to exchange 

LEDs in the future if necessary, we designed a light engine that would sit away from the system 

and can be adjusted independently from the cameras and projectors. Six LEDs are combined 

with appropriate dichroic lenses as a part of this light engine, with a liquid light guide 

transporting the output into the system for DMD illumination (see Fig. 3.1). Although the 

Mightex LEDs in use are manufactured with a collimating lens (Fig. A.5, C1), because the LED 
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die (the chip that produces the light output) has some breadth, the collimated light emitted from 

the LED still experiences some divergence (Fig A.5, θ1).  

Figure A.5. Light engine ray diagram sketch. Light from an LED die radiates outward before collimation by the 

manufactured collimating lens (CL). Despite collimation, the breadth of the LED die causes continued divergence 

(θ1). To focus this large diameter (h1) beam down to the size of the liquid light guide (h2), a pair of lenses (TL1 and 

TL2) is used and chosen such that the ratio of their focal lengths is equal to the desired magnification. At the point of 

focus, the divergence increases significantly (θ2) due to the conservation of the optical invariant. Optical ray tracing 

courtesy of Davidson College Physlets (http://webphysics.davidson.edu/Applets/Applets.html). 

 

The diameter of the liquid light guide, where light from the LEDs is focused in order to transport 

light to the projector (see Fig. 3.1B), is much smaller (~1cm, h2) than the diameter of the of the 

LED collimating lens (~4cm, h1). To shrink this spot size down, we can use a pair of lenses in an 

optical relay similar to a telescope (Fig. A.5, TL1 and TL2), with their focal lengths (f2 and f3) 

chosen such that their ratio equals the desired magnification. However, focusing a diverging 

beam to a smaller area causes the divergence to occur much more quickly (Fig A.5, θ2), due to 

the conservation of a quantity known as the optical invariant [138], which states that the product 

of an optical component’s diameter and its divergence angle is conserved through a system. For 

the optical components and parameters in Figure A.5, ℎ1 ∗ 𝜃1 = ℎ2 ∗ 𝜃2. Because of this rapid 
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fame rates, which would ultimately permit the necessary faster full tomography frame rates 

should large numbers of wavelengths or illumination patterns be desired. 

Figure A.8. Field of view vs. frame rate. (A) The standard field of view and spatial sampling of the system permits 

camera collection at 100 frames per second over 13 x 13mm. The sCMOS sensor reads out one column at a time, 

highlighted in yellow. (B) Cropping the sensor by ~20% generates a field of view equal to that in previous planar 

imaging systems (10mm x 10mm), with an increase in maximum frame rate to 132 frames per second. (C) Given the 

column-wise readout of each frame, cropping the horizontal dimension by a factor of two will keeping the vertical 

dimension constant yields a 50% increase in maximum frame rate. 

 

The standard field of view has a maximum frame rate of 100 frames per second (Fig. A.8A). 

Cropping this field by ~20% while keeping it symmetric yields a ~1cm x 1cm area (matching 

that which is used in typical planar imaging systems – see Chs. 1, 4, and 5), with the maximum 

frame rate increased to 132 frames per second (Fig. A.8B). However, given the column-wise 

readout of the sCMOS sensor, the vertical dimension can be kept constant while the horizontal 

dimension can be cropped for a linear increase in frame rate. For example, cropping the 

horizontal dimension by a factor of two increases the maximum frame rate to 200 frames per 

second (Fig. A.8C). Performing this same crop on each camera would remove the majority of 

overlapping measurements in exchange for an overall factor of 2 increase in system speed. 

Further, different choices for camera lenses on the projectors and cameras could permit faster 

frame rates while preserving overlapping measurements at the expense of dense spatial sampling. 
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A.3.4 Computational Challenges 

The pattern sequences in use generally yield 36 patterns (sources) and ~3,000 detectors over the 

head across all three cameras after all binning and masking is complete, for a total of ~100,000 

measurements per wavelength. The overall voxel grid has dimensions of 48x48x48, of which 

approximately 50% are generally identified as brain, which comes to ~50,000 voxels to be 

reconstructed per wavelength per run. The sensitivity matrix then has dimensions of ~100,000 x 

50,000, which with double precision accuracy corresponds to a single matrix of >32GB data size. 

Inverting the sensitivity matrix demands more than twice that amount of computational space, as 

the full information of the matrix is required in calculating its inverse. Consequently, we required 

a computer with sufficient RAM to accommodate this calculation, in addition to efficient means 

of communication and data access across collection and processing computers. Our solution has 

been to generate Green’s functions first and independently for each mouse. Then, using a 

dedicated computational server with large amounts of memory, we create and invert the 

sensitivity matrices based on the appropriate sums of the Green’s functions, following the 

methods of Section 3.2.2. Even with the computational power afforded by this distribution of 

processing across computers the full data processing for a single mouse (~35 minutes of data), if 

calculating all Green’s functions and the sensitivity matrix for this mouse, requires ~4 hours of 

computation time, making anything close to real-time feedback of in vivo imaging data difficult 

to achieve. As a result, the simulations explored in Section 3.3 are very valuable for optimizing 

system and reconstruction parameters while avoiding the massive amount of computation time 

required for full sets of in vivo data. 

 


