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ABSTRACT OF THE DISSERTATION 

An Exported Malaria Protein Regulates Glucose Uptake During Intraerythrocytic Infection 

by 

Tamira K. Butler 

Doctor of Philosophy in Biology and Biomedical Sciences

Biochemistry 

Washington University in St. Louis, 2014 

Dr. Daniel E. Goldberg, Chairperson 

Malaria is the world’s second biggest infectious killer after tuberculosis. It accounts for 

219 million cases each year, with an estimated 660,000 deaths. The majority of these deaths 

occur in sub-Saharan Africa, in children under 5 years old. In addition to Africa, malaria is 

endemic to Asia, Central and South America, the Caribbean and the Middle East. 

Plasmodium falciparum (P. falciparum) is the protozoan parasite that is responsible for 

the deadliest form of human malaria. Plasmodia are carried by the female Anopheles mosquito 

and infected into humans during a blood meal. The parasites invade liver cells and form 

merozoites which erupt from liver cells to invade red blood cells. The intraerythrocytic cycle of 

infection is responsible for the clinical manifestations of malaria, namely fever and chills.  The 

intraerythrocytic cycle is also the stage of disease that is most studied and targeted for treatment. 

Although treatment for malaria is available, drug-resistant forms of the parasite are 

increasingly rampant.  For this reason, new, more effective treatments for malaria are necessary.  

To develop these treatments, we must have a better understanding of the biological processes 

that the parasite employs to survive in the host to cause disease.  
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 In 1996, an international effort was launched to sequence the genome of P. falciparum 

with the expectation that the genome sequence could be exploited in the search for new drugs 

and vaccines to fight malaria. In 2002, the genome sequence was published with gaps in some 

chromosomes.  Approximately 5,300 protein-encoding genes were identified; of these about 60% 

were labeled as hypothetical proteins.   

Our studies focus on determining the function of one hypothetical protein, PFB0923c, 

that we now call Glucose Uptake Restoration Protein (GURP). We show that GURP localizes to 

novel double membrane vesicles in the RBC cytosol and is essential during P. falciparum 

intraerythrocytic infection. GURP interacts with and sequesters the host protein stomatin, which 

is known to depress glucose uptake in mammalian cells. Knockdown of GURP decreases glucose 

uptake and impairs parasite growth in RBCs. This phenotype can be rescued with antioxidants, 

suggesting that hexose monophosphate/pentose phosphate pathway impairment is lethal in the 

knockdown parasites. GURP C183 is essential to parasite viability and trafficking of GURP  

vesicles to the RBC cytosol. Together, these data demonstrate that GURP is essential to P. 

falciparum viability and glucose uptake during infection of red blood cells.  
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APICOMPLEXA 

 The phylum Apicomplexa consists of a wide range of organisms that are largely parasitic 

(Figure 1). These unicellular eukaryotes are obligate intracellular parasites that take over the host 

cell after invasion. Apicomplexans are characterized by a number of organelles in the apical end 

of the organism, hence the name, involved in host cell attachment, invasion, and the 

establishment of an intracellular parasitophorous vacuole within the host cell (Morrison, 2009).  

 Apicomplexans are furtive invaders, sheltering from the immune response in the cells of 

their hosts, while at the same time using these cells as a source of nutrients and as a space for 

development (Striepen et al., 2007). When the parasite has replicated and is ready for egress, the 

daughter parasites burst from the current cell to invade and occupy a new cell and begin the 

developmental process anew.  

 Members of the phylum include: Toxoplasma gondii, the causative agent of 

toxoplasmosis; Cryptosporidium, a waterborne pathogen with implications for immune-

compromised persons; Gregarina, an invertebrate parasite; and Plasmodium, the etiological 

agent of malaria (Wasmuth et al., 2009), which is the subject of this dissertation.  

 

 

 

 

 

 



  

3 

 

PLASMODIUM 

Plasmodium was first seen by Charles Louis Alphonse Laveran in 1880 (Mundwiler-

Pachlatko and Beck, 2013). In 1898, Giovanni Battista Grassi and Ronald Ross both showed that 

Plasmodium existed in the wall of the midgut and salivary glands of a Culex mosquito using bird 

species as the vertebrate host. Grassi showed that human malaria could only be transmitted by 

Anopheles mosquitoes.  

There are several hundred species of Plasmodium, five of which cause malaria in 

humans: P. vivax, P. malariae, P. ovale, P. falciparum (Richie, 1988) and P. knowlesi (White, 

2008). P. falciparum and vivax species are the most common cause of malaria (World Health 

Organization (WHO), 2014). P. falciparum is by far the deadliest species of human malaria. It 

causes severe infection that kills hundreds of thousands of people every year (WHO, 2014).  

Apicomplexans have multi-stage life cycles usually involving development within 2 hosts. P. 

falciparum infects both female Anopheles mosquitoes and humans (Figure 2).  

Mosquito Midgut 

The Plasmodium parasite undergoes sexual reproduction once during a life cycle, in the 

mosquito. Gametogenesis is temperature and pH dependent and occurs in the mosquito midgut 

lumen (Figure 2). Male gametocytes fertilize female gametocytes to form zygotes that undergo 

meiosis and genetic recombination to transform into an ookinete.  The ookinete goes on to 

invade the midgut epithelium and migrate through the epithelial cells (Baton and Ranford-

Cartwright, 2005). Ookinetes transform into oocysts at the end of their migration through the 

midgut epithelium. These oocysts develop into thousands of sporozoites which burst from the 

oocyst and invade the mosquito salivary glands (Aly et al., 2009). When the mosquito takes a 
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blood meal, the sporozoites are injected into the human host. These sporozoites then breach the 

capillaries, enter the bloodstream and travel to the liver to invade hepatic cells (Young, et al., 

2005).  

Liver Stage 

After traversing through a number of hepatocytes, the sporozoite actively invades a final 

hepatocyte with the formation of the parasitophorous vacuole (PV) (Mota et al., 2001). Within 

hepatic cells, sporozoites differentiate into exo-erythrocytic forms and undergo asexual 

reproduction that results in the formation of tens of thousands of merozoites (Vaughan et al., 

2008). Merozoites are packaged into specialized vesicles called merosomes which are released 

from hepatic cells and enter the bloodstream. These merozoites invade red blood cells, initiating 

the intraerythrocytic cycle (Prudencio et al., 2006).  

Intraerythrocytic Cycle 

Invasion 

 Parasite merozoites adhere to the host red blood cell, first through low affinity 

interactions (Bannister and Dluzewski, 1990) followed by apical reorientation and high affinity 

binding of parasite erythrocyte binding-like (EBL) proteins and sialic acid on host glycoproteins 

(Bannister and Mitchell, 2003; Malpede et al., 2013). A tight junction forms at the attachment 

site of the merozoite to the red cell membrane, creating an invagination in the eryrthrocyte 

membrane (Aikawa et al., 1978; Keeley and Soldati, 2004).  As the parasite pushes its way into 

the erythrocyte , it creates a parasitophorous vacuole (PV). 

 The lipids that make up the parasitophorous vacuole membrane (PVM) are largely 

derived from the plasma membrane of the red blood cell. Since the RBC lacks the machinery to 
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synthesize new lipids or proteins as the parasite grows, the PVM is expanded and modified by 

the parasite, providing a customized environment for development (Cesbron-Delauw et al., 

2008).  

 

Developmental Stages  

Ring  

 After successful merozoite invasion of the RBC, the parasite develops into the ring stage. 

Morphologically, the parasite resembles a biconcave disc with its nucleus appearing as a dot on 

the disc (Langreth, 1978; el-Shoura, 1994). Late ring stage parasites begin the process of 

exporting parasite proteins to modify the host RBC (Bannister and Mitchell, 2003). Ring stage 

parasites then develop into trophozoites. The process of hemoglobin digestion begins in the late 

ring stage (Bakar et al, 2010). 

Trophozoite  

 Trophozoites are the most active stage of parasite development. New proteins are 

exported into the RBC, more hemoglobin is degraded (Gluzman et al., 1994; Olliaro and 

Goldberg, 1995), and the parasites attain more mass at the trophozoite stage. New permeability 

pathways are established for uptake of nutrients/efflux of wastes (Ginsburg et al., 1983) and the 

presence of hemozoin, from digestion of hemoglobin, is readily visible in the parasite food 

vacuole (Slater and Cerami, 1992).  

Schizont/Merozoite 

 At the schizont stage, the parasite prepares itself to egress from its current RBC and 

invade a new RBC. About 16 nuclei are generated and packaged into individual merozoites. The 
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merozoites contain secretory vesicles necessary for RBC invasion. The merozoite surface is 

coated with proteins that facilitate adhesion to the RBC surface (Bannister and Mitchell, 2003). 

Individual merozoites are released via protease-mediated rupture of the PVM and the RBC 

membrane (Wickham et al., 2003; Soni et al., 2005; Gelhaus et al., 2005). The cyclical rupture 

of RBCs gives rise to fever and chills, common clinical symptoms of malaria.  

 

Gametocytes 

 Approximately seven to ten days after the initial asexual cycle, gametocytes are produced 

in detectable numbers (Day et al., 1998; Eichner et al., 2001). Early gametocyte stages are 

sequestered in the bone marrow and spleen (Farfour et al., 2012; Tiburcio et al., 2012), while 

late stage gametocytes are released into the blood circulation. After several days of circulation, 

mature gametocytes become infectious to mosquitoes (Smalley and Sinden, 1977; Lensen et al., 

1999). When a mosquito takes a blood meal from an infected person, gametocytes are also taken 

into the mosquito midgut and the cycle starts again.  
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MALARIA 

Malaria-causing parasites infect approximately 219 million people each year, with an 

estimated 660,000 deaths, mostly in Africa (UNICEF, 2013).  It is the leading cause of death and 

disease in many developing countries, where young children and pregnant women are the groups 

most affected. Direct costs have been estimated to be at least $12 billion per year (Centers for 

Disease Control and Prevention [CDC], 2012).   

Symptoms of malaria typically include chills, followed by fever and sweating. Headache, 

fatigue, muscular pains, and nausea are also likely to occur. The symptoms first appear ten to 

sixteen days after the infectious mosquito bite (National Institutes of Health [NIH], 2009). All of 

the clinical symptoms of malaria are associated with the blood stage of the parasite life cycle 

(Schofield, 2007).  

P. falciparum malaria results in severe complications that involve the nervous, 

respiratory, renal, and hematopoietic systems (Trampuz et al., 2003). Cerebral malaria causes 

brain swelling that may lead to brain damage (Senanayake and Roman, 1992). Acute lung injury 

leads to fluid accumulation in the lungs, which causes difficulty breathing (Gachot et al., 1995). 

Kidney and liver failure is common in falciparum malaria (Prakash et al., 1996), as is severe 

anemia (Trampuz et al., 2003). 

Malaria-causing parasites have become widely resistant to a number of common anti-

malarial drugs (Shanks, 2006). Thus, new drug treatments are sorely needed to combat the 

spread of this disease.  During intraerythrocytic infection, Plasmodium remodels the host red 

blood cell to satisfy its requirements for survival. Essential to this remodeling is export of 

parasite proteins into the RBC and their targeting to the RBC membrane and parasite derived 
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organelles. A good portion of exported proteins generally do not have homologues (Sargeant et 

al., 2006), therefore, we can target them without disruption of human proteins. 
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HOSTILE TAKEOVER: RESTRUCTURING THE HOST CELL FOR 

PARASITE SURVIVAL 

 
 The erythrocyte lacks the major histocompatibility complex and a nucleus, providing an 

immunologically privileged environment for the parasite to develop. However, the uniform 

composition of this niche also poses challenges, requiring extensive host cell modifications 

(Heiber et al., 2013). Plasmodium falciparum induces extensive host cell remodeling mediated 

by the export of hundreds of parasite proteins into the erythrocyte and under and within the host 

cell membrane (Cowman and Goldberg, 2010). The renovation of host erythrocytes by exported 

parasite proteins ensures the parasite’s survival and contributes to its virulence and pathogenesis. 

 Most parasite proteins are targeted for export by the presence of a Plasmodium export 

element (PEXEL) sequence (Marti et al., 2004; Hiller et al., 2004). The PEXEL is a pentameric 

amino acid sequence-RxLxE/Q/D, where x is any amino acid- located 20-30 amino acids C-

terminal from the signal sequence in proteins destined for export. The signal sequence targets 

these proteins to the ER where they are cleaved by plasmepsin V (Boddey et al., 2013; Russo et 

al., 2010) and subsequently translocated through the putative export machinery (PTEX) (Bullen 

et al., 2012) and finally trafficked to their final destination in the host cell (Figure 3).   

Plasmodium spp. also express a class of exported proteins, called PEXEL-negative 

exported proteins (PNEPs), that do not contain a PEXEL motif. PNEPs cannot be cleaved by 

plasmepsin V; therefore, they may use a trafficking pathway in the ER distinct from that of 

PEXEL proteins (Boddey and Cowman, 2013). Parasite exported proteins play a significant role 

in restructuring the RBC to the benefit of Plasmodium. These changes include increasing RBC 

permeability, inducing adhesion to vascular epithelial cells to avoid clearance in the spleen, and 

generating organelles to direct protein trafficking (Marti and Speilmann, 2013). 
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Plasmodial Surface Anion Channel (PSAC) 

 Parasite growth in red blood cells imposes a major demand for supply of nutrients and 

disposal of waste products (Cabantchik, 1990) and thus increases the permeability of the RBC to 

a broad range of small solutes (Overman, 1948; Kirk et al., 1994; Ginsburg et al., 1985; 

Cabantchik, 1990; Upston et al., 1995; Saliba et al., 1998; Staines et al., 2000). One hypothesis 

in the field attributes these permeability changes to the plasmodial surface anion channel (PSAC) 

(Desai et al., 2000; Kokhari et al., 2009; Desai et al., 2004). The PSAC-associated protein, 

cytoadherence-linked asexual protein 3 (CLAG3), is exported from the parasite and localizes to 

the red blood cell membrane (Nguitragool et al., 2011). CLAG3 function in nutrient uptake 

renders the PSAC essential to intracellular parasite survival.  

Knobs 

 Knobs facilitate the adherence of infected red blood cells (iRBCs) to the vascular 

endothelium (Crabb et al., 1997). This adherence is critical to prevent the circulation iRBC’s 

containing mature parasites, whose enhanced rigidity compared to uninfected RBCs would 

otherwise subject them to splenic filtration and destruction   (Leech et al., 1984),. Knobs consist 

predominantly of the knob-associated histidine-rich protein (KAHRP), assembling on the 

cytoplasmic face of the membrane (Rug et al., 2006). Plasmodium falciparum erythrocyte 

membrane protein 1 (PfEMP1), a variant surface antigen and adhesin, is also a part of the knob 

structure. PfEMP1 binds to several host receptors to mediate adherence of the iRBC (Rug et al., 

2006). PfEMP1 is trafficked to the erythrocyte surface through Maurer’s clefts (Goldberg and 

Cowman, 2010), parasite-derived organelles involved with trafficking of exported parasite 

proteins.  
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Maurer’s Clefts 

 Maurer’s clefts (MCs) are flattened vesicular structures beneath the red blood cell 

membrane (Sam-Yellowe, et al., 2004), first identified in 1902 by Georg Maurer. MCs are 

responsible for transporting parasite proteins, such as PfEMP1, to their final destination in the 

red blood cell. (Hinterberg et al., 1994; Adisa et al., 2001; Hayashi et al., 2001; Wickham et al., 

2001; Haldar et al., 2002; Przyborski et al., 2003; Bhattacharjee et al., 2008). Recently, Maurer’s 

clefts have been shown to be implicated in merozoite release, which depends on the 

phosphorylation of a MC resident protein (Blisnick et al., 2005).  

J-dots 

 The recently discovered J-dots are so named because the known contents are Hsp40 J-

proteins. These structures are highly mobile , are tightly associated with the red blood cell 

membrane, and are thought to be involved in trafficking of parasite-encoded proteins through the 

cytosol of the iRBC (Kulzer et al., 2010, 2012).  

P. falciparum contains a PEXEL-based exportome of 300-400 proteins (Hiller et al., 

2004; Marti et al., 2004; Sargeant et al., 2006; van OOij et al., 2008). Of these, 25% are 

phylogenetically unrelated to any known proteins (Sargeant et al., 2006). These “exported 

proteins of unknown function” or “hypothetical proteins” may be playing a critical role in 

pathogenesis during RBC infection, and thus, may provide attractive drug targets.  
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INTO THE ABYSS: HYPOTHETICAL PROTEINS OF Plasmodium 

falciparum 

 
The Plasmodium falciparum genome was published in 2002 in an effort to better 

understand parasite biology and develop new drug treatments. The nuclear genome is composed 

of 22.9 megabases distributed among 14 chromosomes (Gardner et al., 2002). Of the 5,268 

predicted proteins encoded, about 60% did not have sufficient similarity to proteins in other 

organisms to justify provision of functional assignments (Gardner et al., 2002). These proteins 

were subsequently annotated as “hypothetical proteins.” Currently, almost 50% of the genome 

remains classified as such (Balu, 2012).  

 My thesis project was aimed at characterizing one of these hypothetical proteins in order 

to significantly contribute to the understanding of P. falciparum biology.  To begin, we screened 

the Plasmodium genome database, PlasmoDB, for proteins that had the following features: 1) a 

molecular weight less than 30 kiloDaltons (kDa), 2) evidence for expression expressed during 

the intraerythrocytic cycle and 3) an odd number of cysteines. The rationale for these criteria are 

explained below. 

 1) The parasite genome is 80% A-T rich (Gardner et al., 2002) which can often lead to 

difficulties amplifying the gene of interest. We chose proteins with a molecular weight less than 

30 kDa to facilitate cloning the gene for further functional characterization, including 

recombinant protein expression and purification.  

 2) As aforementioned, the intraerythrocytic cycle is responsible for the manifestation of 

the clinical symptoms of malaria. This developmental stage is also amenable for in vitro culture 

and investigation. Therefore, our research focuses on this stage of parasite development. We 
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wanted to ensure that the chosen protein was expressed during the clinically relevant RBC stage 

such that its biological properties could be readily investigated. 

 3) Free cysteines are frequently observed in functionally important sites in proteins such 

as catalytic, regulatory, and cofactor binding sites (Marino and Gladyshev, 2010).  The criterion 

of an odd number of cysteines was chosen to increase the likelihood of finding a protein with a 

functionally important free cysteine that could be used as a starting point for mutagenesis as a 

step towards determining protein function.  

 Using these parameters we obtained a list of 19 exported hypothetical parasite proteins. 

Here, I will tell you about the characterization of one of those proteins that we call Glucose 

Uptake Restoration Protein, or GURP. Based on experiments described herein, we believe that 

GURP acts to regulate the infected red cell’s glucose uptake through interaction with the host 

protein stomatin. 
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SWEET TOOTH: GLUCOSE USAGE in Plasmodium falciparum 

 Blood-stage Plasmodium derives most of its energy requirements from the metabolism of 

glucose via glycolysis (Scheibel, 1988). It has been documented that the parasite-infected red 

blood cells utilize glucose at a rate much higher than that of uninfected red blood cells 

(Oelshlegel et al., 1975; Roth et al., 1982; Roth et al., 1988; Mehta et al., 2006). Without 

intracellular energy stores during most of their life cycle, parasites are dependent on a constant 

supply of glucose from the host red blood cell (Patel et al., 2008). Glucose is converted to 

glucose-6-phosphate (G6P), which is used in both glycolysis and the pentose phosphate shunt 

(Figure 5), and glucose deprivation leads to decreased ATP levels and decreased parasite 

cytosolic pH (Saliba et al., 2004). 

Conversion of glucose to G6P is catalyzed by the glycolytic enzyme hexokinase. 

Vertebrates have four hexokinase (HK) isoforms (Gonzalez et al., 1964; Katzen and Schimke, 

1965; Grossbard and Schimke, 1966), HKI, II, III, and IV. In human red blood cells, two 

isozymes are present: HKI and hexokinase R (HK-R) (Murakami et al., 1990). The HK-R 

nucleotide sequence is identical to HKI except for the 5’ extreme end (Murakami and Piomelli, 

1997).  As the RBC matures, HKI replaces HK-R, thus mature erythrocytes contain only 2-3% of 

the HK activity of reticulocytes (Shinohara et al., 1985). Parasitized RBCs demonstrate a 25-fold 

increase of overall HK activity compared with uninfected RBCs (Roth, 1987; Roth et al., 1988). 

As P. falciparum HK (PfHK) has an approximately four-fold lower substrate affinity for glucose 

compared with human HK (Roth, 1987), it is likely that most of the increase in HK activity is 

due to the erythrocyte HK. 

 Glut1is the major glucose transporter in red blood cells (Mueckler et al. 1985). The major 

erythrocyte membrane protein, stomatin, has been shown to associate with Glut1 (Zhang et al., 
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1999, 2001; Rubin et al., 2003; Kumar et al., 2004; Rungaldier et al., 2013) and to reduce Glut1 

affinity for glucose (Zhang et al., 2001). Glucose uptake (defined as glucose transport and 

phosphorylation (metabolism)) is drastically increased in P. falciparum iRBCs (Homewood and 

neame, 1974; Neame and Homewood, 1975; Sherman and Tanigoshi, 1974; Tripatara and 

Yuthavong, 1986; Izumo et al., 1989; Tanabe, 1990; Kirk et al., 1996), indicating that the 

parasite has overcome stomatin’s repression of Glut1 glucose uptake.  My thesis work on the 

parasite protein, GURP, has shed light on a potential mechanism for regulation of glucose uptake 

during intraerythrocytic infection.  
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Figure 1. Apicomplexa phylogeny.  

Tree showing the hypothetical phylogeny of the Apicomplexan phylum. Gregarina, Coccidia, 

and Hematozoa are the tree primary clades. Branch thickness indicates diversity. Adapted from 

(Slapeta and Morin-Adeline, 2011). 
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Figure 2. Plasmodium life cycle. 

The Plasmodium life cycle involves two hosts: the Anopheles mosquito and the human. The 

erythrocytic cycle is responsible for the clinical manifestations of malaria. Adapted from the 

Centers for Disease Control and Prevention (CDC). 
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Figure 3. Models of Plasmodium protein export. 

(a) Three models of PEXEL protein export. Model 1 illustrates PI3P binding, PEXEL cleavage 

by PM5, and N-acetylation of the mature protein on the outer leaflet of the ER, while these steps 

occur on the inner leaflet of the ER in Models 2 and 3. In Models 1 and 2, the mature protein is 
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recruited and escorted to the PTEX by a PEXEL receptor. In Model 3, the mature protein is 

recruited and escorted to the PTEX by Hsp101.  (b) Model of PNEP export. PNEP proteins are 

targeted to the ER by a TMD. PI3P binding at the ER is unknown. PNEPs may or may not be 

cleaved by PM5 and N-acetylated. Abbreviations: AT, acetyl-CoA transporter; ER, endoplasmic 

reticulum; N-ATase, N-acetyltransferase; PEXEL, Plasmodium export element; PI3P, 

phosphatidylinositol-3-phosphate; PM, parasite membrane; PM5, Plasmepsin V; PNEP, PEXEL-

negative exported protein; PTEX, Plasmodium translocon of exported proteins; PV, 

parasitophorous vacuole; PVM, parasitophorous vacuole membrane; REX, ring-exported protein 

2; RBC, red blood cell; TMD, transmembrane domain.  Adapted from (Boddey and Cowman, 

2013). 
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Figure 4. Scheme of glucose metabolism in erythrocytes. 

Glucose is transported by Glut1 then converted to glucose-6-phosphate by hexokinase. G6P is 

used in glycolysis to produce ATP for energy and the pentose phosphate pathway to produce 

NADPH for antioxidant defense. Abbreviations: G6P, glucose-6-phosphate; G6PD, Glucose 6-

phosphate dehydrogenase; GLUT1, glucose transporter; HK, hexokinase; GSH/GSSG, 

reduced/oxidized glutathione. Adapted from (Rogers et al., 2009). 
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Figure 5. Scheme of glucose metabolism in Plasmodium. 

Glucose is converted to glucose-6-phosphate which is used in glycolysis to produce ATP for 

energy and the pentose phosphate pathway to produce NADPH for antioxidant defense. 

Abbreviations: 6PGD, 6-phosphogluconate dehydrogenase; DHAP, dihydroxyacetone 

phosphate; EPM, erythrocyte plasma membrane; GluPho, glucose-6-phosphae dehydrogenase 6-

phosphogluconolactonase; GLUT1, glucose transporter; PfHT, P. falciparum hexose transporter; 

PPM, parasite plasma membrane; PVM, parasitophorous vacuole membrane; TPI, 

triosephosphate isomerase. Adapted from (Preuss et al., 2012). 
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CHAPTER II 

 

Malaria parasites subvert stomatin function to reestablish glucose uptake in 

infected erythrocytes 
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ABSTRACT 

Intraerythrocytic malaria parasites are dependent on glucose as a nutrient source.  

Plasmodium falciparum-infected erythrocytes consume up to 100 times more glucose than 

uninfected erythrocytes, as both glycolysis and the pentose phosphate shunt are massively 

increased. How the parasitized red blood cell (RBC) obtains glucose from the blood stream is a 

mystery.  The parasite does not use its own nutrient acquisition systems, relying instead on 

endogenous erythrocyte glucose transport. However, this does require rewiring by the parasite as 

erythrocyte glucose transport is dramatically downregulated during red blood cell maturation, via 

upregulation of stomatin. We report that a small, exported parasite protein that we call glucose 

uptake restoration protein (GURP) localizes with and sequesters stomatin to novel double 

membrane vesicles.  Conditional knockdown of GURP decreases glucose uptake and impairs 

parasite viability.  Following knockdown, parasite growth can be rescued by antioxidants, 

suggesting that glucose supply to the pentose phosphate shunt is rate limiting. 
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INTRODUCTION 

 Plasmodium falciparum, the protozoan parasite that causes the most lethal form of human 

malaria, extensively remodels the red blood cell (RBC) during infection.  Infected RBCs display 

a number of altered physical characteristics including increased rigidity and adherence to 

endothelial cells (Leech et al., 1984; Barnwell, 1989). These modifications are mediated by the 

export of hundreds of parasite proteins into the RBC (Marti et al., 2005; Maier et al., 2009).  

 Most parasite proteins are targeted for export via the Plasmodium Export Element 

(PEXEL) (Marti et al., 2004; Hiller et al., 2004). P. falciparum contains a PEXEL -based 

exportome of approximately 300-400 proteins (Sargeant et al., 2006; van Ooij et al., 2008). 

Approximately 75% of the exportome belongs to known protein families, leaving an estimated 

100 proteins labeled as “exported protein, unknown function” (Sargeant et al., 2006).  Here, we 

demonstrate that an exported protein of unknown function, that we call GURP (PFB0923c), 

regulates glucose uptake during intraerythrocytic infection.  

Plasmodium infected red blood cells (iRBCs) show a dramatic increase in glucose 

metabolism compared to uninfected red blood cells (uiRBCs); both glycolysis and the pentose 

phosphate pathway (PPP) are increased by nearly 100 fold (Roth et al., 1988; Atamna et al., 

1994). Glycolysis is the main source of ATP in Plasmodium during the blood stage and as such, 

uptake and metabolism of glucose is critical for parasite survival (Preuss et al, 2012). The iRBC 

has elevated levels of PPP activity in the parasite compartment as well as the host erythrocyte 

compartment (Atamna et al., 1994).   

Erythroid precursors take up large amounts of glucose. As the erythrocyte matures, 

expression of stomatin is induced. This is believed to decrease glucose uptake by an order of 

magnitude (Zhang et al., 2001), via an unknown mechanism. In order to satisfy its metabolic 
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demands, intraerythrocytic P. falciparum has to overcome stomatin-induced repression of 

erythrocyte glucose uptake. Interestingly, we find that stomatin localization is dramatically 

changed following erythrocyte infection. We show that GURP localizes with and sequesters 

stomatin in novel double membrane delimited vesicles. Conditional knockdown of GURP 

prevents stomatin relocalization and leads to decreased glucose uptake and severely impaired 

parasite growth. This growth defect can be rescued by antioxidants, suggesting that glucose 

supply to the PPP is rate limiting. Taken together, our data shows that GURP is essential for 

parasite development and glucose uptake during intraerythrocytic infection.  
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RESULTS 
 

GURP is exported into the host RBC and localizes to a novel compartment 

P. falciparum exports numerous proteins into the host RBC to remodel the cell for 

parasite survival during infection. GURP contains a protein export element (PEXEL) 

downstream of a signal sequence (Figure 1A), and has been computationally predicted to be 

exported from the parasite into the host RBC (Sargeant et al., 2006).  To assess export, 

antibodies raised against recombinant GURP protein (Figure 1B) were used in indirect 

immunofluorescence assays (IFA).  GURP was detected in the RBC cytosol in discrete foci in 

asexual (Figure 1C) and sexual stage (Figure S1) parasites.  Live fluorescence of parasites 

expressing a green fluorescent protein (GFP)-tagged GURP from the endogenous locus 

(described more fully in the context of Figure 3) gave similar results (Figure 1D). Staining with 

both anti-GURP and anti-GFP antibodies in parasites expressing the GFP-tagged GURP, show 

that GFP and GURP signals overlap (Figure 1E). 

The punctate staining observed for GURP is reminiscent of that seen for two previously 

described infected erythrocyte structures,  Maurer’s clefts (MCs) (Blisnick et al., 2000) and J-

dots (Kulzer et al., 2010; Kulzer et al., 2012). To determine if GURP localized to either of these, 

co-localization studies were done with markers of MCs (skeleton-binding protein 1, SBP1) and 

J-dots (Hsp40, type II). Neither SBP1 nor Hsp40 overlapped with GURP, indicating that these 

structures are distinct from MCs and J-dots (Figure 2). Taken together, these data show that 

GURP is exported into the RBC cytosol where it localizes in a novel compartment. 

GURP export is essential for parasite growth  

To explore the function of GURP, we first tried to knock out the GURP gene by double 

crossover homologous recombination; however, several attempts were unsuccessful. We then 
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turned to a conditional knockdown system using the dihydrofolate reductase (DHFR) 

destabilization domain (DDD) (Muralidharan et al., 2011; Muralidharan et al., 2012). In the 

absence of the DHFR ligand trimethoprim (TMP), DDD fusion proteins are unstable and often 

targeted for degradation. In the presence of TMP, fusion proteins are stabilized.  We integrated a 

C-terminal RFA (regulatable, fluorescent, affinity) tag at the genomic locus for GURP (Figure 

3A).  This tag encodes GFP fused to the DDD (Muralidharan et al., 2011). The resulting 

integrants, upon protein expression, produce a fusion protein that can be used to follow protein in 

live cells (Figures 1D), to do protein pulldowns (Figure 5A, Table 1) and to regulate protein 

function (Figure 4A).  Southern blot analysis of integrant clones (Figure 3B) showed 

replacement of the native GURP locus band with a higher band expected for integration of the 

RFA sequence at the open reading frame 3’ end.   

To assess knockdown of GURP, we grew parasites +/- TMP over time, magnet purified 

the mature iRBCs (Ribaut et al, 2007), and performed western blot analysis using anti-GURP 

antibodies. There was no significant decrease in GURP levels in the –TMP samples (Figure 3C). 

However, failure to export GURP was observed in cultures grown without TMP for 36 hours 

(Figure 3D).  In contrast, iRBCs cultured in the presence of TMP exported the GURP fusion 

protein as expected (Figure 3D). 

To determine the effect of impaired GURP export on parasite growth, we removed TMP 

and measured parasitemia over time by flow cytometry. A severe growth defect was apparent in 

parasites grown without TMP (Figure 4A).  To ensure that the phenotype observed is specific to 

GURP functional knockdown and not due to non-specific effects of protein mislocalization on 

the cell, we complemented the conditional knockdown parasites with a plasmid for episomal 

expression of GURP.  As before, we grew the parasites +/- TMP and measured parasitemia over 



  

38 

 

time by flow cytometry. The parasites carrying the GURP plasmid grew at wild-type levels in the 

absence of TMP, while those carrying the empty vector still grew at knockdown levels (Figure 

4B). This phenomenon of a functional knockdown without a decrease in protein levels has been 

seen in previous work (Muralidharan et al., 2012). Taken together, these data show that GURP is 

essential for parasite growth and development in RBCs. 

GURP interacts and colocalizes with host protein stomatin 

GURP has no identifiable orthologs or protein function motifs, though it has been found 

to be palmitoylated (Jones et al., 2012).  The gene is restricted to the P. falciparum species. To 

ascertain what GURP’s function might be, we looked for interacting partners. To do this, we 

performed parallel immunoprecipitation (IP) studies on the parental parasite line using anti-

GURP antibody and on RFA-tagged GURP parasites using an anti-GFP antibody.  Samples were 

digested with trypsin and analyzed by mass spectrometry to identify interacting proteins.  Table 

1 shows proteins for which four or more peptides were detected in at least one of the IP samples. 

The host protein stomatin was identified in both IPs. To confirm the interaction between GURP 

and stomatin, reciprocal IPs with anti-GURP and anti- stomatin antibodies were performed for 

western blot analysis (Figure 5A).  Stomatin was pulled down with anti-GURP and GURP was 

pulled down with anti-stomatin antibody, confirming the interaction.  IPs with anti-catalase and 

anti-carbonic anhydrase antibodies failed to confirm these candidate interacting proteins (data 

not shown).  Peptides corresponding to parasite glyceraldehyde 3-phosphate dehydrogenase were 

also seen in both IPs but this interaction was not pursued and its significance is unknown.   

To determine if GURP and stomatin colocalize, immunofluorescence (IFA) and immuno-

electron (IEM) microscopy were performed with anti-GURP and anti-stomatin antibodies 

(Figure 5B, C). The micrographs show that stomatin and GURP colocalize, thus further 
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corroborating their interaction.  Interestingly, the distribution of stomatin is noticeably different 

in iRBCs compared with uiRBCs.  Infection results in a punctate pattern by IFA and residence in 

double membrane-delimited structures by IEM. It is worth noting that this change in pattern is 

not seen for the host protein Glut1, which is the major erythrocyte glucose transporter (Figure 

S2). Previous studies have shown that stomatin is partially located in detergent-resistant 

membranes (DRMs) in uninfected RBCs (Murphy et al., 2004). Fractionation of iRBCs and 

treatment with Triton X-100 showed that GURP resides in DRMs and stomatin has completely 

shifted to the DRM fraction in iRBCs (Figure 5D). Together, these results show that GURP 

binds to and colocalizes with stomatin in iRBCs and that stomatin relocalizes upon P. falciparum 

infection.  

GURP sequesters stomatin in vesicles 

Given that stomatin is relocalized to vesicles in iRBCs and GURP interacts with 

stomatin, we hypothesized that GURP is responsible for this redistribution. To test this, we 

performed IFA on GURP-RFA parasite cultures grown +/- TMP. In cultures grown without 

TMP, stomatin localization in iRBCs was indistinguishable from that of uiRBCs (Figure 6). 

These data show that GURP is responsible for stomatin localization to vesicles in iRBCs, and 

suggests a potential mechanism behind the increase in glucose uptake in P. falciparum iRBCs.  

Functional GURP knockdown causes a decrease in glucose uptake 

Stomatin suppresses glucose uptake in mature RBCs (Montel-Hagen et al., 2008) and 

Clone 9 cells (Zhang et al., 2001). However, previous studies have shown that Plasmodium 

iRBCs dramatically increase their glucose utilization compared to uiRBCs (Mehta et al., 2006). 

Given that GURP sequesters stomatin, we hypothesized that GURP functional knockdown would 

affect glucose uptake. To test this, we measured radiolabelled 2-deoxyglucose (2-DOG) uptake 
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in GURP-RFA parasites.  Cultures grown in the presence of TMP showed rapid accumulation of 

2-DOG, whereas cultures grown without TMP for 48 hours, took up label much more slowly 

(Figure 7A). 2-DOG is taken in by the equilibrative transporter Glut1 and then gets trapped 

inside the cell by phosphorylation. Therefore, uptake differences can reflect transport or 

metabolism. When the non-metabolizable analog 3-O-methyl glucose was used instead, uptake 

was unchanged as both + and – TMP cultures reached equilibrium at similar rates (Figure 7B). 

Taken together, these data show that GURP function is important for glucose phosphorylation 

(metabolism), but not transport.  The defect in 2-DOG uptake could be rescued by providing 

GURP on a plasmid to GURP-RFA parasites (Figure 7C). 

Knockdown growth defect can be rescued by antioxidants 

Given that glucose is important for NADPH production (Atamna et al., 1994), in addition 

to ATP, we hypothesized that parasites could be under increased oxidative stress following block 

of GURP export due to lack of NADPH, resulting from decreased glucose uptake. To test this, 

we grew parasites +/-TMP and added either DMSO or a variety of antioxidants to the culture 

medium and measured parasitemia over time by flow cytometry.  Knock down growth was 

restored to +TMP levels with the addition of antioxidants, confirming that the parasites are 

oxidatively stressed due to reduced glucose levels (Figure 8) and that this is the toxicity first seen 

with decreased glucose availability 
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DISCUSSION 

Export of hundreds of proteins into the host red blood cell is essential to Plasmodium 

survival during the intraerythrocytic stage of infection. As a whole, 50% of the proteins encoded 

by the Plasmodium genome are “hypothetical proteins” (Balu, 2012). P. falciparum exports 

approximately 400 proteins into the RBC cytosol, 8% of its total proteome (Sargeant et al., 

2006). Twenty-five percent of these exported proteins are hypothetical, or “exported proteins, 

unknown function” (Sargeant, et al., 2006). Investigations into the functions of these proteins are 

important as they may provide novel drug targets. Development of new drug treatments for 

malaria is important due to parasite resistance to current antimalarials (Mita and Tanabe, 2012).  

In our work here, we have described an exported protein of unknown function, GURP. 

We have shown that GURP is indeed exported to the host RBC and localizes to double 

membrane vesicles. Co-immunofluorescence studies show that these are not components of the 

Maurer’s clefts (Blisnick et al., 2000) or J-dots (Kulzer et al., 2010; Kulzer et al., 2012) that 

have been implicated in parasite protein trafficking through the erythrocyte (Boddey, 

2013)(Figure 2). We do not yet know what these vesicles are comprised of, but we believe that 

they are parasite derived, as these vesicles are not seen in uninfected RBCs.  In our GURP 

knockdown we see that stomatin no longer localizes to vesicles (Figure 6), suggesting that 

GURP acts by sequestering stomatin in these structures. Both GURP and parasite-hijacked 

stomatin are detergent resistant (Figure 3). The physical basis for this property is unclear, but 

both proteins are known to be palmitoylated (Jones et al., 2012; Snyers et al., 1999), a post-

translational modification shown to target proteins to membranes and vesicles for transport 

(Salaun et al, 2010). 
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We have shown that GURP is essential to parasite growth, as functional knockdown of 

GURP elicits a severe growth defect (Figure 4). Since GURP sequesters stomatin and stomatin is 

known to have an effect on glucose uptake, we measured uptake in the knockdown parasites and 

showed that it is profoundly reduced. We propose, then, that GURP sequestration of stomatin 

allows the parasite to change its host cell back to a state of high glucose acquisition, similar to 

that seen in the low-stomatin erythroid precursors. Stomatin has been postulated to alter Glut1-

mediated glucose transport in mature erythrocytes (Montel-Hagen et al., 2008), though these 

findings have been disputed (Carruthers and Naftalin, 2009). Glucose trapping by 

phosphorylation upon entry into the erythrocyte has been posited as an alternative interpretation. 

In P. falciparum-infected erythrocytes, the reduction is a result of impaired phosphorylation 

rather than transport.  This suggests impaired function of the host glycolytic enzyme hexokinase 

which catalyzes the phosphorylation of glucose to glucose-6-phosphate, which is a substrate for 

glycolysis and the pentose phosphate shunt.  Interestingly, hexokinase activity is downregulated 

during erythrocyte maturation (Shinohara et al., 1985) but upregulated in P. falciparum iRBCs 

(Roth, 1987; Roth et al., 1988). Our data can therefore link together all these disparate 

observations. To determine if GURP knockdown affects hexokinase activity, we will need to 

perform detailed measurements of hexokinase activity in fractionated GURP-RFA parasites that 

have been grown with and without TMP.  

Decreased glucose acquisition in the functional GURP knockdown parasites has a drastic 

effect on parasite growth. While glycolysis generates ATP for the parasite to use as energy, the 

pentose phosphate shunt produces antioxidants, including NADPH and reduced glutathione, 

which are also important. As the parasite develops, large amounts of toxic redox-active waste are 

generated, mostly from digestion of host hemoglobin (Becker et al., 2004). The parasite uses 
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hemoglobin as its source of amino acids, but its degradation leads to formation of the toxic free 

heme and reactive oxygen species. Free heme is mostly detoxified by packing in to hemozoin 

crystals (Egan et al., 2002; Slater and Cerami, 1992), however, there is no evidence that all heme 

is sequestered and it could cause oxidative stress to the parasite (Tilley et al., 2001). Chloroquine 

functions by preventing heme detoxification and its activity can be enhanced y depletion of GSH 

(Tilley et al., 2001). This illustrates the importance of antioxidants to the parasite during 

intraerythrocytic development. There is also substantial oxidative stress to the host erythrocyte. 

If RBC NADPH generation is limited, as in G6PD deficient RBCs, parasite survival is impaired 

(Luzzatto et al, 1969). That we can rescue the GURP knockdown growth defect by supplying 

exogenous antioxidants (Figure 8), indicates that the pentose phosphate shunt is limiting in 

iRBCs and that the knockdown growth defect is due to oxidative stress stemming from the 

deficiency in glucose uptake. Whether this is due to a limitation in the host cell or the parasite 

antioxidant capacity remains to be established.  

Further study of GURP-stomatin interaction could provide information necessary to 

design specific GURP inhibitors. Drugs that prevent GURP binding to and sequestering stomatin 

may act as potent antimalarials.  
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MATERIALS AND METHODS 

DNA Sequences and Cloning 

The GURP open reading frame was amplified by PCR from P. falciparum genomic DNA 

using the primers listed in Table S1. The PCR product was then cloned into the pCR4-TOPO 

vector (Life Technologies, Grand Island, New York) and sequenced.  An internal AvrII site was 

disrupted by introducing a synonymous mutation (GURPmut-TOPO) using the primers listed in 

Table S1 and the QuickChange XL Site-Directed Mutagenesis Kit (Stratagene, Santa Clara, 

California).  A 561 bp sequence from the 3’ end of the gurp ORF was PCR amplified from 

GURPmut-TOPO using primers listed in Table S1. To construct the RFA tag vector, this 3’ 

homologous sequence was inserted into the GDB vector (Muralidharan et al., 2011) via 

XhoI/AvrII restriction sites using the In-Fusion cloning system (Clontech, Mountain View, 

California). For plasmid complementation, GURP cDNA was amplified by RT-PCR 

(SuperScript III One-Step RT-PCR, Life Technologies) from P. falciparum RNA using the 

primers listed in Table S1, spanning the entire ORF, to bypass an 189 base pair intron near the 

5’end of the gene. GURP cDNA was cloned into the pCR4-TOPO vector (Life Technologies) 

and sequenced. The internal AvrII site was mutated as above. XhoI and AvrII restriction sites 

were used to insert GURP cDNA into ptagRFP-T (Muralidharan et al., 2012) by overnight 

ligation using T4 DNA Ligase (Roche, Basel, Switzerland) at 16°C. The PFE0055c (Hsp40, type 

II) open reading frame was amplified by RT-PCR from P. falciparum total RNA using the 

primers listed in Table S1. The cDNA product was then cloned into the tyEOE vector 

(Muralidharan et al., 2012) via XhoI and AvrII restriction sites using the In-Fusion cloning 

system (Clontech), resulting in a C-terminal GFP tag fusion under control of the Hsp86 

promoter.  
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Cell Culture and Transfections 

Parasites were cultured in RPMI medium supplemented with Albumax and transfected as 

described previously (Drew et al., 2008; Russo et al., 2009).  Parasites with a hDHFR resistance 

cassette inserted at the Plasmepsin I locus (Klemba et al., 2004; Muralidharan et al., 2011) were 

transfected with pGURP-GDB. After 48h they were selected with 2.5 μg/mL blasticidin 

(Millipore, Darmstadt, Germany) and 10 μM TMP (Sigma, St. Louis, Missouri) (Muralidharan et 

al., 2011; Muralidharan et al, 2012).  TMP was re-added with every change of culture medium. 

Integration was detected after two rounds of cycling on blasticidin for 14 days and off blasticidin 

for 21 days (Wu et al., 1996). Clones were isolated via limiting dilution (Francois et al., 1994). 

For plasmid complementation, GURP-GDB parasites were transfected with pGURP-tagRFP-T or 

ptagRFP-T which contains a yeast dihydroorotate dehydrogenase selection marker allowing 

selection episome maintenance using 2 μM DSM-1 (Ganesan et al., 2011).  Greater than 90% of 

parasites displayed red fluorescence, indicating they were carrying the plasmid. Cultures 

underwent positive selection after 48h with 2.5 μg/mL BSD, 10 μM TMP, and 2 μM DSM-1.  

For knockdown assays, GURP-GDB parasites were washed three times in RPMI 1640 media 

with 2.5 μg/mL blasticidin to remove trimethoprim (TMP). Washed cultures were then equally 

divided into two separate samples, 2.5 μg/mL blasticidin/10 μM TMP (+TMP) was added to one 

sample while blasticidin only medium was added to the other (-TMP). For antioxidant rescue, 

either DMSO alone, 0.4 μM vitamin C (vitC), 5 mM N-acetyl-L-cysteine (NAC), or 10 μM 

reduced glutathione (GSH) was added to +/- TMP cultures. All cultures were plated in triplicate 

in 1mL volumes for flow cytometry. For IFA of non-transfected parasites and for Hsp40 

transfections, we used clone D10 parasites. 
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GURP Protein Expression and Antibody Production 

GURP cDNA encoding the predicted mature protein after PEXEL processing 

(GURPmat), was amplified by PCR from GURPcDNA-pCR4-Topo using the primers listed in 

Table S1. The cDNA was cloned into the pCR4-TOPO vector (Life Technologies), sequenced, 

and then inserted into the pET28a vector (Novagen, Darmstadt, Germany) using BamHI and 

EcoRI restriction sites by overnight ligation. The plasmid was transformed into C41(DE3) cells 

(Lucigen, Middleton, Wisconsin) for protein expression. Two liters of YT medium was 

inoculated with overnight culture to OD600=0.1. Cultures were shaken at 37°C to OD600=0.6 then 

induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM for 

four hours.  Cells were harvested, protein was extracted from inclusion bodies with 8M 

Guanidine-HCl (Palmer and Wingfield, 2004) and purified over His-Bind, nickel-charged resin 

(Novagen).  Antiserum was raised against purified protein in a rabbit (Cocalico Biologicals, Inc., 

Reamstown, Pennsylvania). 

Immunoprecipitation 

MACS-purified iRBCs and uiRBCs were resuspended in 500 μL 

radioimmunoprecipitation assay (RIPA) buffer. Cell suspensions were freeze/thawed three times 

on dry ice/37°C water bath then centrifuged for 3 minutes at 800 g, 4°C in an eppendorf 5415 

table top centrifuge to make lysates (Armstong and Goldberg, 2007; Dvorin et al, 2010; 

Muralidharan et al., 2011). 50 μL of Protein G-linked Dynabeads (Life Technologies) were 

incubated for 30 minutes with 0.2 μg mouse monoclonal anti-GFP, 3E6 (Life Technologies) or 

rabbit anti-GURP. The bead-antibody complex was then incubated with the uiRBC or iRBC 

lysates for 4 hours at 4°C. The beads were washed three times with PBS and resuspended in 50 

μL of SDS-PAGE loading buffer. The samples were fractionated by 10% SDS-PAGE and 
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vertical strips from each lane were cut out and analyzed by 1D-nLC-ESI-MS-MS (Dundee 

Proteomics Facility, Scotland, United Kingdom) for identification of proteins.  Reverse 

immunoprecipitation was done as above but with mouse monoclonal anti-GFP, 3E6 or rabbit 

anti-stomatin (Santa Cruz Biotechnology, Inc., Dallas, Texas). Samples were resuspended in 4x 

non-reducing SDS-PAGE sample buffer and subjected to 10% SDS-PAGE for Western blot 

analysis. Control IPs using parasites expressing GFP only were used to eliminate non-specific 

binding partners (Muralidharan et al., 2012). 

Western Blot 

Samples separated by SDS-PAGE were transferred to nitrocellulose membrane (Fisher 

Scientific, Pittsburgh, Pennsylvania) and incubated for 1 hour in blocking buffer (LI-COR 

Biosciences, Lincoln, Nebraska). The primary antibodies used were goat anti-stomatin (1:1000) 

(Santa Cruz Biotechnology, Inc.), rabbit anti-GFP (1:1000) (Abcam, Cambridge, Massachusetts), 

rabbit anti-GURP (1:500), mouse anti-HRP2 (2G12) (1:2000) (Diane Taylor) and mouse anti-

glycophorin A (1:1000) (BD Biosciences, San Jose, California).  The primary antibodies were 

detected using IRDye 680 CW (1: 10000) conjugated donkey anti-rabbit (LI-COR Biosciences) 

and IRDye 800CW (1:10000) conjugated donkey anti-mouse or anti-goat (LI-COR Biosciences). 

The western blot images were processed and analyzed using the Odyssey infrared imaging 

system software (LI-COR Biosciences). For testing rabbit anti-GURP specificity, samples were 

handled as above except the membrane was blocked in 5% BSA in PBS and the secondary 

antibody was a donkey ECL™ anti-rabbit HRP conjugate (GE Healthcare, Buckinghamshire, 

United Kingdom). Bands were visualized with ECL™ Western Detection Kit (GE Healthcare) 

and exposure to film. 
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Indirect Immunofluorescence Assay (IFA) and Live Cell Imaging 

IFA was done as described previously (McMorran et al., 2012). Briefly, thin blood 

smears prepared from parasite cultures were air-dried, fixed in methanol for 30 seconds, then 

fixed in 1% paraformaldehyde in PBS for 20 minutes.  Smears were washed in PBS then blocked 

and permeabilized with 1% BSA/0.05% Triton X-100 in PBS. Goat anti-stomatin (1:100) (Santa 

Cruz Biotechnologies, Inc.), rabbit anti-GURP (1:250), rabbit anti-GLUT1 (1:500) (WU674) 

(Mike Mueckler) or rat anti-SBP1 (1:200) (Catherine Braun-Breton) primary antibodies were 

added for 1 hour. Smears were washed 3 times in PBS then incubated with Alexa Fluor™555 

donkey anti-rabbit (1:500) and Alexa Fluor™ 488 chicken anti-goat or rat (1:500) secondary 

antibody conjugates. Smears were washed again then mounted in ProLong Gold with DAPI (Life 

Technologies). Live parasites were stained with 2 μM Hoeschst 33342 (Life Technologies) as 

described previously (Klemba et al, 2004).  Cells were observed on an Axioscope Microscope 

(Carl Zeiss Microimaging, Oberkochen, Germany). Deconvolutions were performed on Z-stack 

images using AxioVision software. 

Southern Blots 

Southern blots were performed with genomic DNA isolated using the QIAmp® Blood 

DNA Mini Kit. One μg of DNA was digested overnight with EarI and Avr II (New England 

Biolabs, Ipswich, Massachusetts).  Digested DNA was precipitated and concentration was 

determined by A280 using a Nanodrop. Integrants were screened using a probe against the 3’ 

homologous region used for integration.  All Southern blots were performed as described 

previously (Klemba et al., 2004).  
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Flow Cytometry 

Aliquots of parasite cultures (7 μL) were stained with 1.5 μg/mL Acridine Orange (Life 

Technologies) in PBS (Muralidharan et al., 2012). The fluorescence profiles of infected 

erythrocytes were analyzed by flow cytometry on a BD FACS Canto (BD Biosciences). The 

parasitemia data were fit to a standard exponential growth curve in the software package 

GraphPad Prism v 5.  

Uptake Assays 

MACS®-purified iRBCs (Ribaut et al., 2007) (> 90% parasitized) were resuspended in 

PBS and a cell count (1-2.5 x 10
7 

cells/mL) was taken on a MACSQuant Analyzer (Miltenyi 

Biotec, San Diego, California). Cells were resuspended in 1.5 mL of fresh PBS and incubated at 

room temperature for 20 minutes to deplete glucose.  Cells were washed and resuspended in PBS 

and 100 μL aliquots of cells were placed in 1.5 mL eppendorf tubes. For glucose uptake, a 200 

μL aliquot of solution containing 1.66 μCi/mL of 2-deoxy-D[1,2-
3
H]glucose (DOG, Perkin-

Elmer,Waltham, Massachusetts, 7.5 Ci/mmol) or 0.5 μCi/mL of methyl-D-glucose, 3-O-[methyl-

14
C] (3-OMG, Perkin-Elmer,56.4 mCi/mmol) alone or supplemented with 5 mM unlabelled 

glucose, was added to the cells at 25 °C. For dehydroascorbic acid uptake, a solution containing 

0.6 μCi/mL of L-[1-
14

C]-ascorbic acid (Perkin-Elmer, 7.6 mCi/mmol) with 2 μL ascorbate 

oxidase (Millipore, 1U/μL) was incubated for 15 minutes to allow conversion of ascorbic acid to 

dehydroascorbic acid. A 200 μL aliquot of this solution either alone or supplemented with 20 

mM unlabelled DHA, was added to the cells.  Uptake was terminated by addition of ice-cold 

PBS + 50 μM CytB at various timepoints. Cells were centrifuged at 2000 g for 3 minutes, 4°C in 

an eppendorf 5415 table top centrifuge and 10 μL of supernatant was taken and mixed with 

scintillation fluid (Cloherty et al., 1996; Kirk et al., 1996; Vera et al., 1996). The remaining 



  

50 

 

supernatant was aspirated and cells were washed twice in ice-cold PBS. Cells were lysed in 150 

μL dH20, bleached by addition of 150 μL of 6% perchloric acid, and centrifuged at 2000 g for 3 

minutes to pellet debris. The supernatant was removed to scintillation vials and counted in a 

Beckman LS230 scintillation counter. Zero-time points were prepared by adding ice-cold PBS to 

cells before addition of radiolabelled solution. All time points were done in triplicate and each 

experiment was performed three times. Samples measured at time zero were averaged and 

subtracted from all other timepoint-averaged counts. Distribution ratio was calculated 

(Bonventre and Imhoff, 1970) and fit to a one-phase exponential association equation in the 

software package GraphPad Prism v5.  

Ghost Membrane Preparation and Fractionation 

For subcellular fractionation, MACS®-purified iRBCs (Ribaut et al, 2007) were 

incubated for 15 minutes at 4°C in 40 volumes of hypotonic solution (RPMI 1640 diluted 1/5) 

with complete protease inhibitor cocktail (Roche) (Blisnick et al., 2000). The lysates were 

centrifuged for 5 minutes at 800 g, 4°C in an Eppendorf 5415R table top centrifuge to pellet 

parasites. The supernatants were centrifuged for 1 hour at 109,000 g, 4°C in a Beckman Optima 

XL ultracentrifuge (Brea, California) to separate soluble and insoluble fractions. The insoluble 

(pellet) fraction was resuspended by trituration and treated with 1% Triton X-100, 150 mM 

NaPO4, pH 7.4 for 30 minutes at 4°C then centrifuged at 109,000 g to separate detergent soluble 

and insoluble fractions (Sam-Yellowe et al., 2001).  All samples were resuspended in 4x 

reducing SDS-PAGE sample buffer, boiled, and subjected to 10% SDS-PAGE and analyzed by 

Western blot. 
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Figure 1. GURP is exported to the host RBC. (A) Schematic of GURP protein. (B) 

Western blot of rabbit anti-GURP antibody specificity. A band at the predicted mature 20 

kDa mass is seen. A small amount of signal at the predicted mass of 25 kDa is also detected. 

(C) Deconvoluted Z-stack image of P. falciparum infected RBCs probed with anti-GURP 

antibody and DAPI nuclear stain. (D) Live image of a parasite expressing GURP-GFP and 

stained with Hoescht nuclear dye. (E) Deconvoluted Z-stack image of GURP-GFP 

expressing parasite probed with anti-GURP and anti-GFP antibodies. Scale bar = 5 μm. 

Abbreviations: P-Im, Pre-Immune serum; Im, Immune serum. 
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Figure 2. GURP localizes to compartments distinct from Maurer’s clefts or J-dots. (A) 

Deconvoluted Z-stack images or (B) immuno-electron micrographs of P. falciparum iRBCs 

probed with anti-GURP and anti-SBP1 antibodies. (C) Deconvoluted Z-stack images of 

parasites expressing GFP-tagged Hsp40, probed with anti-GFP and anti-GURP antibodies. 

Abbreviations: SBP1, skeletal binding protein 1. A, C: Scale bar = 5 μm. B: Scale bar = 100 

nm.  18 nm, yellow arrows = GURP; 12 nm, orange arrows = SBP1
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Figure 3. GURP export is knocked down in the absence of TMP.  

(A) Scheme showing the strategy utilized to fuse the RFA-tag to the 3’ end of the 

GURP gene via single crossover homologous recombination. (B) Southern blot of 

genomic and plasmid DNA digested with an EcoRI/HindIII double digest and 

probed with the 5’ region of the GURP gene. The band expected for integration of 

the RFA-tag was seen in all clones (  ). Bands for the plasmid (  ) and 

parental strain ( ) were not seen in any of the clones. (C) Western blot of 
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cultures grown +/- TMP, lysed, and probed with anti-GURP and anti-HRP2 

antibodies. S=supernatant, P=pellet. (D) IFA of parasites grown +/- TMP for 36 

hrs and probed with anti-GFP antibody. Scale bar = 5 μm. Abbreviations: Pl, 

Plasmid; Pa, Parent. 
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Figure 4. Functional knock down of GURP causes a growth defect that is 

rescued by plasmid complementation. (A) Two independent GURP-RFA 

parasite clones (clone 1, circles; clone 2, triangles) were grown with (black) or 

without (red) 10 uM TMP and growth was monitored over 4 days via flow 

cytometry. Data are fit to an exponential growth equation and are represented as 

mean ± S. E. M. (n=3). (B) Asynchronous GURP-GBD parasites complemented 
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with an episomal plasmid with the GURP gene (pGURP-RFP) or an empty vector 

(pRFP), were grown with (black) or without  (red) 10uM TMP. Growth was 

monitored via flow cytometry. Data are fit to an exponential growth equation and 

are represented as mean ± S. E. M. (n=3). Shown are representative experiments 

from 3 biological replicates, each sample done in triplicate
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Figure 5. GURP interacts and colocalizes with stomatin in DRMs. (A) 

IP with anti-GFP and anti-stomatin (Stom) antibodies using parasites 

expressing GFP-tagged GURP. GURP and stomatin were detected by 

immunoblotting after SDS-PAGE. (B) Deconvoluted Z-stack images of 

P. falciparum iRBCs probed with anti-GURP and anti-stomatin 

antibodies. (C) Immuno-electron microscopy of P. falciparum iRBCs or 

uiRBCs probed with anti-GURP (12nm, yellow arrows) and anti-

stomatin (18nm, red arrows) antibodies. (D) Fractionation and Triton X-

100 extraction of P. falciparum iRBCs. GURP, stomatin (Stom), and 
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glycophorin A (GlyA, a control integral membrane protein) were detected 

by immunoblotting after SDS-PAGE. Abbreviations: TL, total lysate; 

LS, lysate supernatant; LP, lysate pellet; S, TX-100 soluble; P, TX-100 

insoluble; iRBC, infected red blood cell; uiRBC, uninfected red blood 

cell. B: Scale bar = 5 μm. C: Scale bar = 100 nm.
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Figure 6. GURP sequesters stomatin in vesicles. Deconvoluted Z-

stack images from IFA of parasites grown +/- 10 μM TMP for 48 hrs 

and probed with anti-stomatin antibody. Scale bar = 5 μm.
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Figure 7. Functional knockdown of GURP causes a decrease in 

glucose uptake.  
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(A) Asynchronous GURP-GDB parasite clone was grown with (black) or 

without (red) 10 uM TMP for 48 hours and incubated with 2-deoxy-D[1,2-

3H]glucose. Samples were taken over time and uptake was plotted as 

pmol per 10
7
 cells. (B) Same as (A) but incubated with 3-O-[methyl-14C]-

glucose. Samples were taken over time and radioactivity uptake was 

quantified. Results are plotted as fraction of maximum uptake. Amount of 

uptake at equilibrium was approximately 1.6 pmol per 10
7
 cells, reaching 

a distribution ratio (OMGin/OMGout) of 1.0. (C) Same as (A) but with 

plasmid complemented parasites. Results are shown as the average of 

three biological replicates. Abbreviations: T, TMP; G, 10 mM unlabelled 

glucose added as competition.  
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Figure 8. Antioxidants rescue knockdown growth phenotype.  

Asynchronous GURP-RFA parasites were grown with 10 μM reduced GSH 

(green), 0.4 μM vitamin C (vitC,blue), or 5 mM N-acetyl-L-cysteine (NAC, 

orange) in the presence (circles) or absence (squares) of 10 μM TMP. Parasites 

were also grown in the presence (black circle) or absence (red square) of 10 μM 

TMP with DMSO as a vehicle control. Growth was monitored via flow 

cytometry. Data are fit to an exponential growth equation and are represented as 

mean ± SD. (n=3). Shown is a representative experiment from 3 repetitions, each 

sample done in triplicate. 
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Table 1. Immunoprecipitation Mass Spectrometry Data. Identification of 

proteins pulled down with anti-GURP and anti-GFP antibodies from D10 

and GURP-GFP expressing parasites, respectively. In red are proteins 

identified by both parallel immunoprecipitations. Results are one 

representative experiment out of two biological replicates. 
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Supplementary Figure 1. GURP is exported to the host RBC at various 

parasite stages. Deconvoluted Z-stack images of P. falciparum infected 

RBCs probed with anti-GURP antibody. Abbreviations: R, ring; S, schizont; 

G, gametocyte. Scale bar = 5 μm.
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Supplementary Figure 2. Glut1 localization is unchanged. 

Deconvoluted Z-stack images of P. falciparum iRBCs and uiRBCs 

stained with rabbit anti-Glut1 antibody. Scale bar = 5 μm.
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     Supplementary Table 1. Sequence of primers used to generate constructs for this study. 
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CHAPTER III 

 

GURP C183 is Essential for Parasite Growth and Development  
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ABSTRACT 

GURP acts by sequestering stomatin in double membrane vesicles in the red blood cell 

cytosol (RBC) of P. falciparum infected RBCs. In a recent study GURP was predicted to be 

palmitoylated, and prediction software suggested C183 as the site of modification. 

Palmitoylation is reversible post-translational modification known to play a role in membrane 

association of proteins and trafficking of proteins between membrane compartments (Smotrys 

and Linder, 2004).  Here, we demonstrate that mutation of GURP C183 to serine traps vesicles in 

the parasitophorous vacuolar membrane (PVM). Parasites expressing the C183S mutation exhibit 

severe growth and morphological defects. Taken together, our data shows that C183 is involved 

in targeting GURP containing vesicles to the RBC cytosol and necessary for parasite growth in 

iRBCs.
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INTRODUCTION 

As aforementioned, one of the criteria we used when screening PlasmoDB for candidate 

proteins, was the presence of an odd number of cysteines. We chose this criterion because free 

cysteines are frequently observed in functionally important sites in proteins such as catalytic, 

regulatory, and cofactor binding sites (Marino and Gladyshev, 2010). Cysteines are also 

susceptible to a variety of post-translational modifications (PTMs) including S-nitrosylation 

(Hess et al., 2005), prenylation (Zhang and Casey, 1996), and palmitoylation (Tom and Martin, 

2013). Interestingly, a recent study of the P. falciparum palmitoylome identified GURP as being 

palmitoylated (Jones et al., 2012). 

Palmitoylation is the reversible addition of a 16-carbon saturated fatty acid to cysteine 

residues (Linder and Deschenes, 2007). Palmitoylation is involved in protein membrane 

trafficking, protein-protein interactions, and vesicular transport (Salaun et al., 2010). Given that 

GURP localizes to unique vesicles and was shown to be palmitoylated, we wanted to 

individually mutate each of GURP’s three cysteines to determine what, if any, effect mutation 

would have on protein localization and parasite development during the intraerythrocytic cycle. 

We provide evidence here that mutation of GURP C183 to serine causes adverse effects on 

parasite growth and morphology and that the mutant protein is trapped in the parasitophorous 

vacuolar membrane (PVM). 



  

76 

 

RESULTS 

Episomal expression of GURP-C48S or C138S has no effect on parasite growth 

 

 Parasites expressing wild-type, C48S, or C138S GURP protein were monitored in culture 

and growth was analyzed by flow cytometry. There was no visible growth difference between 

the parasites episomally expressing the wild-type or either GURP mutant protein. Interestingly, 

parasites transfected with the GURP-C183S plasmid did not come back after drug selection. All 

transfections were performed at the same time, which ruled out any technical issue. This led us to 

believe that constitutive episomal expression of GURP-C183S is toxic to the parasites. 

Conditional episomal expression of GURP-C183S ellicits severe growth and morphological 

defects in parasites 

  To determine if expression of the GURP-C183S mutation is indeed toxic to parasites, we 

utilized the RFA tag that allows for conditional expression of your protein of interest 

(Muralidharan et al., 2011; 2012). The tag contains the gene for green fluorescent protein (GFP) 

and a destabilized human dihydrofolate reductase domain (hDHFRdd). Parasites were 

transfected with episomal constructs expressing wild-type GURP or GURP harboring a mutation 

encoding C183S. Parasites were selected without trimethroprim (TMP) to keep the episomal 

GURP silent. To “turn on” the episomal wild-type or C183S mutant GURP, parasites were 

cultured in media with 10 μM TMP.  

 To determine if there was any growth defect, parasites were culture +/- TMP, collected 

over time, and analyzed by flow cytometry. Parasites carrying the GURP-C183S construct 

showed severe growth defects +TMP (Figure 3), compared to GURP wild-type expressing 

parasites. Blood smears (Figure 4), showed “empty space” in the parasite cytosol of C183S 
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parasites, while the wild-type parasites looked normal.  Electron microscopy (Figure 4), showed 

complete separation of the parasitophorous vacuole membrane (PVM) and the parasite plasma 

membrane (PPM) in the C183S expressing parasites, +TMP. Neither the growth defect nor the 

morphological defect was seen in parasites expressing a synonymous mutation at C183, 

indicating that these phenotypes are not merely due to a nucleotide change. Although more 

severe in the C183S expressing parasites, the morphological changes are similar to those seen in 

the GURP knockdown parasites mentioned in the previous chapter. These data show that 

episomal expression of GURP-C183S induces a dominant negative effect, as these parasites 

retain expression of the native GURP protein. This indicates that C183 is necessary for GURP 

function. 

C183 is necessary for targeting of GURP containing vesicles to the RBC cytosol 

 To determine if GURP C183S was still exported into the RBC, we took advantage of the 

GFP tag for live imaging of both mutant and wild-type GURP expressing constructs. While the 

wild-type GURP-RFA protein is exported into the RBC, most of GURP C183S-RFA remains in 

the parasitophorous vacuolar membrane (PVM) (Figure 5). Occasionally, one to two discreet foci 

are also seen in the mutant expressing parasites (Figure 5, white arrows). This suggests that C183 

is necessary for targeting of GURP containing vesicles to the RBC cytosol. Those few vesicles 

that do make it to the RBC cytosol may contain more of the endogenous protein than the 

episomally expressed mutant protein, thus allowing proper targeting of the vesicles. This implies 

that GURP C183S acts as a dominant negative by trapping of the vesicles in the PVM, which 

prevents any endogenous protein from sequestering stomatin. Stomatin then remains free to bind 

to Glut1, mediating the switch from glucose to DHA transport, thus causing the mutant 

expressing parasites to exhibit a severe growth defect, presumably due to insufficient glucose. 
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DISCUSSION/CONCLUSIONS 

 Knockdown of GURP showed that GURP is important for parasite growth and glucose 

uptake during intraerythrocytic infection. Mutation of C183 causes severe growth and 

morphological defects, and trapping of GURP vesicles in the PVM. Recently, a study of the 

palmitoylome of P. falciparum (Jones et al., 2012) indicated that GURP is palmitoylated and 

prediction software, such as CSS-Palm, suggests that C183 is the site of palmitoylation. 

Palmitoylation is a reversible modification that facilitates protein membrane interactions and 

trafficking, and it modulates protein-protein interactions and enzyme activity (Smotrys and 

Linder, 2004). Taken together, this suggests that palmitoylation is necessary for GURP 

containing vesicles to be targeted effectively to the host RBC cytosol. 

 It is worth noting that GURP (Jones et al., 2012) and stomatin (Snyers et al., 1999) are 

both palmitoylated. This begs the question of whether or not palmitoylation is involved in the 

GURP-stomatin interaction or in GURP’s sequestration of stomatin in double membrane vesicles 

during P. falciparum RBC infection. 
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MATERIALS AND METHODS 

DNA Sequences and Cloning 

Total RNA was extracted from iRBCs as previously described (Kyes et al., 2000). The 

GURP open reading frame was amplified by RT-PCR from P. falciparum total RNA using the 

primers listed in Table 1. The cDNA product was then cloned into the pCR4-TOPO vector 

(Invitrogen) and sequenced.  An internal AvrII site was disrupted by introducing a synonymous 

mutation (GURPmut-TOPO) using the primers listed in Table 1 and the QuickChange XL Site-

Directed Mutagenesis Kit (Stratagene).  The cysteine mutants were introduced using the primers 

listed in Table 1 and the QuickChange XL Site-Directed Mutagenesis Kit (Stratagene) with the 

GURPmut-TOPO construct as the template DNA. GURP wild-type and cysteine mutant cDNA 

was then cloned into the episomal vectors using the In-Fusion technique (Clontech). 

 

Cell Culture and Transfections 

Plasmodium falciparum 3D7 parasites were cultured in RPMI medium supplemented 

with Albumax and transfected as described previously (Drew et al.2008; Russo et al.2009).  For 

episomal expression, 3D7 parasites were transfected with pGURP-PM2GT (constitutive 

expression) or pGURP-GDB (conditional expression) which contains a human dehydrofolate 

reductase (PM2GT) or blasticidin deaminase (GDB) selection marker allowing selection for 

parasites maintaining the episome (Muralidharan et al., 2012).  Cultures underwent positive 

selection after 48h with either 10 nM WR (PM2GT) or 2.5 μg/mL BSD (GDB). For conditional 

episomal expression growth assays, GURP-GDB parasites were equally divided into two 

separate samples, with media containing 10 μM TMP (+TMP) added to one sample while drug 

free media was added to the other (-TMP).  All cultures were plated in triplicate 1mL volumes 

for flow cytometry.  
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Flow Cytometry 

Aliquots of parasite cultures (7 μL) were stained with 1.5 μg/mL Acridine Orange 

(Molecular Probes) in PBS (Muralidharan et al., 2012). The fluorescence profiles of infected 

erythrocytes were analyzed by flow cytometry on a BD FACS Canto (BD Biosystems). The 

parasitemia data were fit to a standard exponential growth curve in the software package 

GraphPad Prism v 5.  

Live Cell Imaging 

Parasites expressing GURP wild-type or C183S-RFA were grown in the presence of 10 

μM TMP for 48 hours. Samples were collected, stained with Hoescht DNA dye and imaged 

Axioscope microscope (Carl Zeiss). 

Electron Microscopy 

 Parasites expressing GURP wild-type or C183S-RFA were grown in the presence of 10 

μM TMP for 48 or 72 hours. Samples were purified by magnetic column (Ribaut et al., 2007), 

washed in PBS, fixed in 1% osmium tetroxide (Polysciences Inc.) for 1 h. Samples were then 

rinsed extensively in distilled water before en bloc staining with 1%aqueous uranyl acetate (Ted 

Pella) for 1 h. Following several rinses in distilled water, samples were dehydrated in a graded 

series of ethanol solutions and embedded in Eponate 12 resin (Ted Pella). Sections of 95 nm 

were cut with a Leica Ultracut UCT ultramicrotome, stained with uranyl acetate and lead citrate, 

and viewed on a JEOL 1200 EX transmission electron microscope. 
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Figure 1. Schematic of GURP protein.  

GURP has three cysteines and two C-terminal putative transmembrane domains, as shown. The 

PEXEL cleavage site is indicated by the dashed black line. Abbreviations: SP, signal peptide; P, 

PEXEL; TM, transmembrane domain. 
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Figure 2. Constitutive expression of C48S and C138S had no growth effect.  

GURP wild-type (black circle), GURP-C48S (pink square), and GURP-C138S (green triangle) 

expressing parasites were collected at indicated time points, stained with acridine orange, and 

anlayzed for parasitemia by flow cytometry. Data are fit to an exponential growth equation and 

are represented as mean ± S. E. M. (n = 3).  
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Figure 3. Expression of C183S causes a severe growth defect.  

GURP wild-type (black) and GURP-C183S (red) expressing parasites were grown + (circles) or 

– (squares) 10 μm TMP (T), collected at indicated time points, stained with acridine orange, and 

analyzed for parasitemia by flow cytometry. Data are fit to an exponential growth equation and 

are represented as mean ± S. E. M. (n = 3).  
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Figure 4. Expression of C183S causes severe morphological defects. 

GURP wild-type and C183S expressing parasites were  grown in 10 μM TMP. Samples were 

collected for (A) blood smear at 72 hours and (B) electron microscopy at 48 and 72 hours. Scale 

bar = 1 μm. 
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Figure 5. GURP C183 targets vesicles to the RBC cytosol.  

GURP wild-type and C183S-RFA expressing parasites were grown in 10 μM TMP for 48 hours. 

Samples were collected, stained with Hoescht DNA dye and analyzed by live microscopy. Scale 

bar = 5 μm. 
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Conclusions and Future Directions 
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INTRODUCTION 

In this body of work, we have shown that the exported P. falciparum protein, GURP, 

interacts with and sequesters the host protein stomatin, in double membrane vesicles in the RBC 

cytosol. Stomatin binds to several channels and transporters, including Glut1 (Rungaldier et al., 

2013). Overexpression of stomatin depresses Glut1 glucose transport (Zhang et al., 2001). 

Sequestration of stomatin by GURP presumably prevents stomatin binding to Glut, which we 

hypothesized would cause an increase in glucose transport. However, functional knockdown of 

GURP shows that glucose metabolism is decreased, not transport, as evidenced by lack of 2-

DOG accumulation via phosphorylation. This suggests that GURP is possibly upregulating host 

hexokinase (HK) function, as HK catalyzes phosphorylation of glucose to G6P. Interestingly, 

hexokinase activity is downregulated during erythrocyte maturation (Shinohara et al., 1985) but 

upregulated in P. falciparum iRBCs (Roth, 1987; Roth et al., 1988). Measuring RBC HK activity 

in GURP knockdown parasites will determine if GURP plays a role in regulating host HK during 

intraerythrocytic infection. 

GURP was predicted to be palmitoylated in a recent study of the P. falciparum 

palmitome (Jones et al., 2012). Palmitoylation is reversible post-translational modification 

known to play a role in membrane association of proteins and trafficking of proteins between 

membrane compartments (Smotrys and Linder, 2004).  Individual mutation of each of GURP’s 

three cysteines showed that C183 is essential for parasite growth and development. C183 is also  

necessary for targeting of the novel, GURP containing, double membrane vesicles to the RBC 

cytosol, as expression of a C183S mutant traps GURP in the parasitophorous vacuole membrane 

(PVM). These data suggest that palmitoylation plays a role in trafficking of GURP to vesicles in 

the RBC cytosol or of GURP- containing vesicles to the RBC cytosol, and that GURPs 
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localization in the cytosol is necessary for parasite growth and development during 

intraerythrocytic infection. 

GURP’s essentiality during RBC infection, and its uniqueness to P. falciparum, suggests 

it would be an appropriate drug target. Delineating the residues necessary for GURP-stomatin 

and stomatin-Glut1 interactions will provide further understanding of the mechanism of the 

parasites sequestration of stomatin, and of how stomatin acts to regulate Glut1 function. 

Determining the contents of GURP containing vesicles may lead to identification of additional 

parasite proteins that are necessary for parasite survival and open the doors for exploration of the 

RBC cytosol to discover other novel parasite-derived organelles. 
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INHIBITION OF GURP AS POTENTIAL THERAPEUTIC TREATMENT 

FOR P. FALCIPARUM MALARIA 

 Malaria infections have classically been attributed to one of five species of the human 

malaria parasites, Plasmodium falciparum, P. vivax, P. ovale, P. malariae (Richie, 1988), and P. 

knowlesi (White, 2008). In 2010, there were 219 million malaria cases, and 660,000 deaths from 

malaria; Plasmodium falciparum accounted for 91% of the overall deaths (World Health 

Organization (WHO), 2012). Treatment of malaria has been hampered by the emergence of drug 

resistant parasites.  

 Quinine was the first drug used to treat malaria (Dobson, 2001) and continues to be used 

today (Achan et al., 2011), although cases of quinine resistance have been reported in some areas 

(Dedet et al., 1988). In Thailand, mefloquine was introduced as first-line treatment in 1984 and 

significant resistance developed within 6 years (Price et al., 2004). Chloroquine (CQ), a 

derivative of quinine, was the most widely-used drug from the early 1950s to the 1990s. After 

ten years of use, mutations within P. falciparum that conferred resistance to CQ arose and since 

then, CQ-resistant mutations have been spreading quickly throughout most endemic areas 

(Bloland, 2001; Mita et al., 2009).  

Sulfadoxine-pyrimethamine (SP), a combination of two drugs, replaced CQ. However, 

resistance to SP evolved rapidly and now occurs at high frequency in major endemic regions 

(Laxminarayan, 2004). Since 2001, the WHO has recommended artemisinin-based combination 

therapy (ACT), a combined regimen of artemisinin and a longer-acting partner drug, as the 

treatment choice for falciparum malaria (WHO, 2010). The recent emergence of P. falciparum 

strains with increased resistance to artemisinins in Southeast Asia, raised the possibility that 

these drugs might already be obsolete (Noedl et al., 2008; Dondorp et al., 2009; Wongsrichanalai 
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and Sibley, 2013). Therefore, there is a dire need to develop new drug treatments against 

malaria.  

GURP is unique to P. falciparum and has no similar proteins in humans. These 

characteristics, coupled with its essentiality to parasite development during RBC infection, make 

GURP an attractive drug target. Delineating the interface of GURP-stomatin complex would be 

the first step toward designing an inhibitor to repress GURP function. This can be done by 

crystallizing the GURP-stomatin complex and identifying the residues involved in the GURP-

stomatin interaction. Obtaining purified GURP and stomatin proteins presents a challenge as 

stomatin has known membrane domains and GURP has putative membrane domains. Strategies 

successfully employed to purify other membrane proteins (Smith, 2011) could be applied to 

GURP and stomatin purification.  
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UNDERSTANDING THE GURP-STOMATIN INTERACTION  

 Although we know that GURP interacts with stomatin from IP and mass spec data, we do 

not know what residues are necessary for this interaction. Attempts to express GFP-tagged N- 

and C-terminal truncations of GURP in parasites have been unsuccessful; only the full-length 

GURP construct was expressed as evidenced by fluorescence microscopy. Ideally, crystal 

structures of the GURP-stomatin complex would elucidate the interaction interface; however, 

efforts to obtain soluble GURP protein have been unsuccessful and as stomatin is a membrane 

protein as well, similar difficulties can arise.  

Structure predictions of GURP (Figure 1) using the Robetta (robetta.bakerlab.org) and 

COACH (Yang et al., 2013) servers are similar. The Robetta prediction has a more open 

conformation while the COACH prediction is more closed. The structure prediction of GURP 

(COACH prediction) in complex with mouse stomatin (Figure 2) was made using GRAMM-X 

simulation (vakser.bioinformatics.ku.edu). This prediction has residues in putative 

transmembrane domain 2 of GURP interacting with stomatin. Although the predictions are a 

place to start, actual experimental data is necessary. Optimizing methods to express and purify 

soluble protein are crucial for determining the mechanics behind the GURP-stomatin interaction, 

and eventually designing inhibitors for the GURP-stomatin interface. 

 We have shown that GURP acts by sequestering stomatin in vesicles in the RBC cytosol 

and that C183 is necessary for targeting these vesicles to the cytosol. This implies that stomatin 

is delivered/recruited to the vesicles and subsequently bound by GURP to prevent its interaction 

with Glut1 (Figure 3). Determining the mechanism of stomatin’s delivery/recruitment to these 

vesicles would present another potential target for malaria treatment.  
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MEASURING HEXOKINASE ACTIVITY IN P. falciparum INFECTED 

RED BLOOD CELLS 

The glucose uptake assays performed with GURP knockdown parasites showed that 

metabolism (phosphorylation), not transport, of glucose was decreased upon GURP knockdown. 

Glucose is converted to glucose-6-phosphate by the glycolytic enzyme hexokinase. Hexokinase 

activity can be measured by colorimetric assay where glucose is converted to glucose-6-

phosphate (G6P) by hexokinase. The G6P is then oxidized by glucose-6-phosphate 

dehydrogenase (G6PDH) to form NADH, which reduces a colorless probe to a colored product 

with absorbance at 450 nm (Abcam). Absorbance of  unknown samples is then compared to an 

NADH standard curve to determine enzyme activity.  

As the parasite has its own active HK (Roth, 1987; Tjhin et al., 2013) that localizes to the 

parasite plasma membrane (Olafsson and Certa, 1994), steps will be taken to ensure that only the 

red blood cell HK activity is measured. P. falciparum iRBCs will be lysed with tetanolysin O 

(tetO), which selectively permeabilizes the red blood cell membrane, leaving the parasitophorous 

vacuole membrane intact (Lopez-Estrano et al., 2003). Supernatants from tetO lysis will be used 

in assays measuring HK activity, to determine if GURP knockdown affects red blood cell HK 

during infection. 
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VERIFYING THE GURP-PfGAPDH INTERACTION 

Another interesting protein that was identified in the GURP co-immunoprecipitation 

assays was P. falciparum glyceraldehyde-3-phosphate dehydrogenase (PfGAPDH). GAPDH is 

classically characterized as a glycolytic enzyme, catalyzing the oxidative phosphorylation of 

glyceraldehyde-3-phosphate into 1,3-bisphosphoglycerate. PfGAPDH is expressed throughout 

the intraerythrocytic life cycle and displays enzymatic activity with NAD
+
 (Daubenberger et al., 

2000). PfGAPDH has an active site cysteine residue that is conserved (Daubenberger et al., 

2000) and found to be essential for enzyme activity in human GAPDH (Molina y Vedia et al., 

1992; McDonald and Moss, 1993). 

Recently, independent labs have identified diverse biological properties of mammalian 

GAPDH protein (Sirover, 1999), including roles in membrane transport and membrane fusion 

(Lopez Vinals et al., 1987; Han et al., 1998; Hessler et al., 1998; de Arcuri et a., 1999; Bressi et 

al., 2001; Glaser et al., 2002). The N-terminal domain of PfGADPH binds to microsomal 

membranes in response to the GTPase Rab 2 (Daubenberger et al., 2003), suggesting that 

PfGAPDH also has functions outside of the glycolytic pathway. If the PfGAPDH-GURP 

interaction is real, PfGAPDH could be functioning in stomatin delivery/recruitment to GURP 

containing vesicles. Reciprocal immunoprecipitation assays, immunofluorescence and immuno-

EM colocalization assays will need to be performed to verify that GURP and PfGAPDH are 

interacting. 
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IDENTIFYING NEW PARASITE DERIVED ORGANELLES IN iRBCS 

 Maurer’s clefts (Sam-Yellowe et al., 2004), J-dots (Kulzer et al., 2010; 2012), and K-dots 

(Kats et al., 2014) are all parasite derived organelles or vesicles in the red blood cell cytosol. We 

have shown that GURP does not localize to Maurer’s clefts or J-dots. Whether GURP localizes 

to K-dots remains to be seen.  

 Determining the contents of the GURP vesicles may lead to the discovery of additional 

parasite proteins involved in the GURP-stomatin sequestration or in other mechanisms the 

parasite uses to hijack the RBC for its purposes. Differential velocity centrifugation of lysed 

iRBCs, followed by affinity purification with anti-GURP antibody, may be able to isolate the 

GURP vesicles for protein identification by mass spectrometry. Lysates from uninfected red 

blood cells will be included to control for non-specific hits. Proteins that are unique to the iRBC 

sample will be episomally expressed with a fluorescent tag that can be used IP and microscopy to 

verify localization.  

 The fact that GURP and FIKK4.2 (K-dots) do not localize to these known parasite 

derived structures makes one wonder what other organelles are present in the RBC cytosol. 

Determining the localization of more exported proteins of unknown function may shed light on 

what other structures the parasite has manufactured to assist in commandeering the host RBC.  
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Figure 1. GURP structure predictions.  

Structure predictions of mature GURP courtesy of (A) Robetta (http://robetta.bakerlab.org) and 

(B) COACH (http://zhanglab.ccmb.med.umich.edu/COACH) servers. TM1 (dark blue), TM2 

(light blue), and C183 (red) are highlighted. Abbreviation: TM, putative transmembrane domain. 

Images courtesy of the PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC. 
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Figure 2. GURP-stomatin complex structure prediction. 

GURP-stomatin complex prediction using GURP structure from COACH (Figure 1B) and mouse 

stomatin (light blue) structure solved by Brand et al., 2012. GURP TM2 is involved in the 

contact with stomatin. Structure courtesy of GRAMM-X (vakser.bioinformatics.ku.edu). Image 

courtesy of the PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC.  
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Figure 3. Schematic representation of the proposed mechanism of stomatin sequestration in 

iRBCs. 

(A) Glut1 transports glucose at high levels in immature RBCs. (B) In mature RBCs, when 

stomatin is highly expressed, it depresses Glut1 glucose transport. (C) In mature P. falciparum 

iRBCs, stomatin is sequestered by GURP in vesicles in the RBC cytosol, preventing its 

interaction with Glut1, thus increasing glucose uptake. Presumably, another protein 

delivers/recruits stomatin to the vesicles where it is bound by GURP. 
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APPENDIX I 

 

Half and Half: Processing of a Putative Parasite SMC Protein 

 

 

 

 

 

 

 

 

 

 



  

106 

 

INTRODUCTION 

 In addition to screening PlasmoDB for candidate hypothetical proteins to study, we also 

performed an in vitro screen with Cy5- maleimide to label proteins with free sulfhydryl groups. 

Maleimide is a chemical compound that readily reacts with the thiolate group found on free 

cysteines to form a stable carbon-sulfur bond. The Cy5 dye allows visualization of the labeled 

proteins after separation by 2D gel analysis (Figure 1). The protein that we chose from this 

screen was PFF0835w (PFF).  

PFF is a hypothetical, 53 kDa protein with three cysteines, eight predicted 

phosphorylation sites and a domain similar to the structural maintenance of chromosomes (SMC) 

family of proteins (Figure 2). Mutational analysis of the Bacillus subtilis SMC protein has shown 

that cysteines are necessary for dimerization of SMC subunits and their interaction with DNA 

(Hirano and Hirano, 2002). Furthermore, a stretch of amino acids in the PFF SMC domain was 

found to be antigenic against sera from adult donors from Burkina Faso, Tanzania, and Colombia 

(Villard et al., 2007) and children from Kenya (Agak et al., 2008).  

 SMC proteins are ATPases that play important roles in sister chromatid cohesion, 

chromosome condensation, sex-chromosome dosage compensation, and DNA recombination and 

repair (Kim et al., 2002). They are conserved in bacteria, archaea, and eukaryotes (Losada et 

al.2005). The P. falciparum SMC proteins are found to be highly conserved amongst 

Plasmodium species which suggests that they may play an important role as a component of the 

chromosomal maintenance complex and are probably indispensable for the parasite (Gangwar et 

al.2009).  
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RESULTS 

PFF mRNA is transcribed throughout P. falciparum RBC development 

 Since SMC proteins are involved with chromosomal maintenance, we hypothesized that 

the protein would be expressed at all parasite developmental stages. As we did not yet have the 

gene tagged or an antibody to the protein, we used RT-PCR to determine mRNA expression 

levels throughout the intraerythrocytic cycle. PFF mRNA was expressed at each stage of the 

parasite RBC life cycle (Figure 3A), which is in contrast to most Plasmodium genes that exhibit 

a single transcriptional peak (Bozdech et al., 2003; Le Roch et al., 2003). 

PFF is cleaved, localizes to parasite cytosol 

 Given that all other SMC proteins have been found to localize to the chromosomes, we 

hypothesized that PFF would localize to the parasite nucleus. To test this, we introduced a GFP 

tag at the 3’ end of the PFF endogenous locus by single crossover homologous recombination. 

However, although a Southern blot showed that we achieved integration, we were unable to 

visualize any GFP signal by Western blot, live microscopy, or Immunofluorescence assays 

(IFA). This suggested that tagging the C-terminus of the protein interfered with its function, 

therefore, we episomally introduced a copy of PFF with an N-terminal hemagglutinin (HA) tag.  

We were able to visualize the tagged protein by both Western blot (Figure 3B) and IFA 

(Figure 3C) with anti-HA antibody. Interestingly, the Western blot showed two bands: one at 

approximately 54 kDa and a smaller band at 25 kDa, indicating cleavage of the protein. 

Assuming this cleavage occurs at the C-terminus would explain why we failed to see any signal 

with the C-terminal GFP-tagged protein. 
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 IFA showed that PFF localized throughout the parasite cytosol and in some discreet foci 

(Figure 3C). Some staining did seem to surround the nucleus; however, there was no evidence of 

nuclear localization.  
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DISCUSSION/CONCLUSIONS 

 Maleimide staining of P. falciparum iRBC lysates identified several hypothetical 

proteins. We chose to pursue PFF0835w because of its SMC domain and the importance of SMC 

proteins across biological systems. The 53 kDa size of PFF is unconventional for SMC proteins, 

which are normally 130-145 kDa. Western blot of parasites expressing an N-terminal HA tagged 

PFF revealed that it is further cleaved almost in half, resulting in a 25 kDa protein. The size of 

the HA-tagged protein suggests that PFF is cleaved approximately at residue 211, which is 

within the SMC domain. This is not to rule out that the proteolysis could occur during cell lysis.  

As SMC proteins are involved with chromatin segregation and partitioning, one would 

expect a nuclear localization. IFA showed that PFF is distributed throughout the parasite cytosol 

with some localization to discreet foci. Taken together, these data inspire doubt that PFF is an 

actual SMC protein. However, the N-terminal tag could interfere with localization, although the 

small size of the HA-tag makes interference less plausible. Nevertheless, the constitutive mRNA 

transcription profile, the fact that PFF is processed, has several phosphorylation sites, and 

possesses a lone cysteine after cleavage, are all characteristics that warrant further study of 

PFF0835w.  

The HA-tagged PFF parasite line can be used for co-immunoprecipitation experiments to 

identify any interacting partners and potentially provide insight on PFF’s actual function in P. 

falciparum. HA-tagged protein can be purified from iRBCs and analyzed by mass spectrometry 

to determine the cleavage site. 
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MATERIALS AND METHODS 

RNA isolation and RT-PCR 

For RNA extraction, iRBC pellets were lysed in 1 ml prewarmed (37°C) Trizol LS 

reagent (Gibco Invitrogen) and then stored at −80°C in screw top cryovials. RNA was extracted 

as described previously (Kyes et al., 200), using DNase I digestion (Invitrogen) to remove 

contaminating DNA. RNA was then reverse transcribed (SuperScript III One-Step RT-PCR, 

Invitrogen) using 5’-

GGTGGTGGTGCTCGAGATGACTGAAGCTGAAAATATAAAAATCG-3’ forward primer 

and 5’-GAATTAATTCGGATCCAGCCTTAACTTTATTTGCCTTGG-3’ reverse primer. 

DNA sequences and cloning 

The PFF open reading frame was amplified by RT-PCR (SuperScript III One-Step RT-

PCR, Invitrogen) from P. falciparum total RNA using 5’-

GGGGGATCCGCGGCCGCAATGACTGAAGCTGAAAATATAAAAATC-3’ forward primer 

and 5’- GGGGTCGACGAATTCTGAAGCCTTAACTTTATTTGCCTTGGTTCC-3’ reverse 

primer. The cDNA was cloned into the pCR4-TOPO vector (Invitrogen), and sequenced. For 

episomal expression, PFF cDNA was cloned into the PM2GT vector (Muralidharan et al., 2012) 

using the In-Fusion cloning system (Clontech) and primers to introduce a 5’-HA tag (5’-

ACGATTTTTTCTCGAGGGGCCTAGGATGTACCCATACGATGTTCCAGATTACGCTAT

GACTGAAGCTGAAAATATAAAAATCGAAAAACC-3’) and a stop codon (5’-

TAACTCGACGCGGCCGCTTAAGCCTTAACTTTATTTGCCTTGGTTCCTTTGTTGTGAT

G-3’) before the GFP tag in the vector.  

Cell Culture and Transfections 
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Plasmodium falciparum 3D7 parasites were cultured in RPMI medium supplemented 

with Albumax and transfected as described previously (Drew et al., 2008; Russo et al., 2009).  

Parasites transfected with pPFF-5’HA underwent positive selection after 48h with 10 nM WR.  

WR was re-added with every change of culture medium. Greater than 90% of parasites displayed 

fluorescence when stained with anti-HA antibody and, indicating they were carrying the plasmid. 

Western Blot 

Samples separated by SDS-PAGE were transferred to nitrocellulose membrane (Fisher) 

and incubated for 1 hour in blocking buffer (LICOR Biosciences). HA-tagged PFF was detected 

with primary rat anti-HA (1:1000) (Roche) antibody and secondary IRDye 800CW (1:10000) 

conjugated donkey anti-rat (LICOR Biosciences) antibody. The western blot images were 

processed and analyzed using the Odyssey infrared imaging system software (LICOR 

Biosciences). 

Indirect Immunofluorescence Assay (IFA)  

 HA-tagged PFF expressing parasites were fixed, permeabilized (Ponpuak et al., 2007) 

and incubated with rabbit anti-HA antibody (1:50) (Sigma) and Alexa Fluor™555 donkey anti-

rabbit antibody (1:1000). Cells were pre-layered on PEI-treated coverslips and mounted in 

Prolong Gold antifade with DAPI (Molecular Probes). Cells were observed on an Axioscope 

Microscope (Carl Zeiss Microimaging). 
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Figure 1. 2D-gel analysis of Cy5-maleimide labeled parasite extracts.  

Infected RBCs were incubated with Cy5-maleimide to label free sulfhydryl groups. Samples 

were first separated by isoelectric focusing, followed by separation by SDS-PAGE. The spot 

corresponding to PFF0835w is indicated by the red square. 
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Figure 2. Schematic of PFF0835w protein. 

PFF has three cysteines as shown. Residues 12-248 contain the SMC domain (orange). Predicted 

phosphorylation sites are shown as green dots. Residues 12-47 were recognized as antigenic (red 

bar).  The putative cleavage site is indicated by the dashed black line. 
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Figure 3. PFF0835w is expressed, cleaved, and localizes to the parasite cytosol.  

(A) Agarose gel of RT-PCR done with total RNA from parasite RBC stages. (B) Western blot  

and (C) IFA of PFF-HA expressing parasites. Scale bar = 5 μm. Abbreviations: R, ring; LR, late 

ring; YT, young trophozoite; LT, late trophozoite; S, schizont. 
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APPENDIX II 

 

Plasmepsin V Licenses Plasmodium Proteins for Export into the 

Host Erythrocyte 



ARTICLES

Plasmepsin V licenses Plasmodium proteins
for export into the host erythrocyte
Ilaria Russo1{, Shalon Babbitt1*, Vasant Muralidharan1*, Tamira Butler1, Anna Oksman1 & Daniel E. Goldberg1

During their intraerythrocytic development, malaria parasites export hundreds of proteins to remodel their host cell.
Nutrient acquisition, cytoadherence and antigenic variation are among the key virulence functions effected by this
erythrocyte takeover. Proteins destined for export are synthesized in the endoplasmic reticulum (ER) and cleaved at a
conserved (PEXEL) motif, which allows translocation into the host cell via an ATP-driven translocon called the PTEX
complex. We report that plasmepsin V, an ER aspartic protease with distant homology to the mammalian processing enzyme
BACE, recognizes the PEXEL motif and cleaves it at the correct site. This enzyme is essential for parasite viability and ER
residence is essential for its function. We propose that plasmepsin V is the PEXEL protease and is an attractive enzyme for
antimalarial drug development.

The human malaria parasite Plasmodium falciparum exports an
estimated 200–300 proteins into the host erythrocyte1,2. In doing
so, the parasite remodels the cytoskeleton and plasma membrane
to create cytoadherence knobs, nutrient permeation pathways and
altered erythrocyte mechanical stability3,4. Export of these effectors is
dependent on a Plasmodium export element or PEXEL sequence,
RxLxE/Q/D5,6. Proteins destined for export are cleaved after the con-
served PEXEL leucine in the ER and mutation of the R or L residues
attenuates cleavage and export7,8. Plasmepsin V (PMV) is an aspartic
protease that has distant homology to mammalian BACE or beta-
secretase9, an enzyme involved in the processing of amyloid
precursor protein10. Both have a carboxy-terminal extension that
contains a hydrophobic membrane anchor sequence. An amino-
terminal aspartic protease ‘pro-domain’ remains unprocessed in
PMV9. PMV is expressed in intraerythrocytic P. falciparum parasites
and has orthologues in other Plasmodium species. Phytophthora
infestans, the potato blight pathogen that has a similar export
system11, has a homologous sequence in the database (PITG_02623.1).
PMV has been localized to the ER9 and is therefore a candidate to be the
PEXEL processing protease.

Role of the transmembrane domain in PMV localization

PMV lacks a classical ER retention signal. To identify the element
responsible for localization and to assess the importance of ER
residence for PMV function, we made sequential C-terminal
truncation mutants (Fig. 1a). Single crossover homologous recom-
bination into the endogenous locus was performed, introducing a
green florescence protein (GFP) tag after a full-length C terminus or
in place of C-terminal sequence (Fig. 1b). Full-length PMV–GFP
integrants (clone DC6) and integrants with deletion of the C ter-
minus downstream of the membrane-spanning segment (clone
EF2) had no phenotype and retained ER targeting (Fig. 1c–e and
Supplementary Fig. 2), whereas deletions involving the membrane
anchor were lethal (Fig. 1b). Fusion of the transmembrane region but
not other portions of PMV was sufficient to target a reporter to the
ER (Fig. 1f). Thus the transmembrane sequence is important for ER
localization and probably for cellular activity on its substrates as well.

PMV essentiality

We further assessed essentiality of the PMV gene for intraerythrocytic
parasites by using an allelic replacement approach12. An integration
vector in which the first catalytic aspartate was modified by synonym-
ous or non-synonymous mutation was transfected into parasites
(Fig. 2a) and recombinants were obtained (Fig. 2b, c). Crossover into
the endogenous PMV gene proved possible only when the aspartate
codon was preserved (replacement via the synonymous mutation
vector or downstream crossover bypassing the mutation with the
non-synonymous mutation vector) (Fig. 2d). Non-synonymous
alteration of the active site codon could not be achieved in four sepa-
rate transfection experiments. These results support the notion that
PMV has an essential function in the cell.

Dominant-negative PMV phenotype

To investigate PMV function, we episomally expressed two GFP-tagged
versions of PMV, one wild type and the other containing a D to A
mutation in the active site aspartate 108 to render expressed protein
catalytically dead. Both versions localized to the ER but the mutant had
threefold reduced signal by immunofluorescence (Fig. 3a–c) and
by western blot (Fig. 3d). Mutant enzyme-expressing parasites were
frequently seen encased in erythrocyte ghosts (Fig. 3e), indicating
impaired host cell homeostasis. Indeed the mutant PMV-expressing
culture grew more slowly than the wild-type PMV-expressing culture
(Fig. 3f). Occasional cells expressing the mutant construct had intense
signal similar to wild type; in such cases two parasites could be seen in a
single erythrocyte, one of which was not fluorescent and had presumably
lost or downregulated the plasmid (Fig. 3g). Our interpretation of this
result is that the plasmid-free parasite can export proteins normally into
the shared red blood cell, overcoming the effect that the mutant PMV
has on the neighbouring parasite. To explore this further, we assessed
processing of the exported histidine-rich protein II (HRPII) in the
PMV-transfected cells (Fig. 3h, i). Unprocessed HRPII was barely
detectable in wild-type PMV-expressing parasites. In contrast, un-
processed HRPII accumulated in mutated PMV-expressing parasites.
Plasmepsin II and DPAP1, non-PEXEL containing proteins that use the
secretory pathway but are then internalized instead of exported13,14, were
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processed normally (Fig. 3i). Export was assessed by immunofluores-
cence (Fig. 3j, k). The levels of host erythrocyte HRPII and another
exported protein, RESA (ring-infected erythrocyte surface antigen),
were diminished in the mutated PMV-expressing parasitized erythro-
cytes by 30–50%. These data indicate that episomal expression of cata-
lytically dead PMV has a dominant-negative effect on parasite growth
and on protein export. A survey of PEXEL gene essentiality estimated
that about one-fourth are required for intraerythrocytic parasite
growth15. Thus, perhaps 50–75 exported proteins are essential. Some
will be required at near wild-type levels for optimal growth, whereas
others will tolerate more drastic reduction without consequence. The
30–50% reduction in protein export is therefore about what would be
expected, given the growth phenotype seen (Fig. 3f).

Enzyme activity and specificity

To assess enzyme activity, PMV–GFP was detergent-solubilized from
recombinant clone DC6 (see Fig. 1a, c) and enzyme was isolated
using anti-GFP antibody. The enzyme was able to cleave a fluoro-
genic decapeptide based on the PEXEL motif from the exported
HRPII (Fig. 4a, b). Pull-downs from the parental strain (3D7) with
untagged PMV had no activity. When anti-PMV antibody was used
for enzyme isolation, both tagged (DC6) and untagged (3D7) enzyme
could be isolated and were active. A second PEXEL peptide based
on PfEMP2 was also cleaved by isolated enzyme (Fig. 4b). Mutation
of P1 Leu or P3 Arg abolishes export of PEXEL proteins10. Peptides
with either of these residues changed to Ala were refractory to
cleavage (Fig. 4b), confirming specificity of the enzyme for the
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PEXEL motif. Activity was seen between pH 5 and 7 (Fig. 4c). The pH
of the mammalian ER has been measured to be 7.1 (ref. 16). Although
we do not know the pH of the Plasmodium ER and cannot reproduce
the cellular ionic environment in our in vitro assays, the measured
activity is consistent with an ER function. Activity of the PMV active
site mutant enzyme was undetectable (Fig. 4d). This result shows that
PMV itself is the active protease, not an associated protein. Others
have obtained active recombinant enzyme from E. coli17, another
indication that PMV is the protease in question. PMV, but not control
preparations, cleaved a full-length PEXEL-containing proprotein
(Fig. 4e).

To confirm cleavage specificity, the products of the HRPII PEXEL
peptide incubation with isolated wild-type PMV enzyme were frac-
tionated by reverse phase HPLC (Fig. 5a) and analysed by mass
spectrometry (Fig. 5b). The fragments generated corresponded to
proteolysis after the leucine that is the in vivo processing site.
Similar results were obtained using the PfEMP2 peptide (Fig. 5c, d).

PMV interactions

We have shown that PMV is an essential ER protease in Plasmodium
falciparum. Residence in the ER is necessary for its function, as
deletion of the C-terminal tail had no effect on location or parasite
viability whereas deletion of the transmembrane (TM) region
rendered parasites non-viable (Fig. 1). Our data suggest that PMV is
the enzyme that processes PEXEL-containing proteins to send them
on their way for export into the host cell. It is not clear how PEXEL-
containing proteins are recognized by the translocon in the parasito-
phorous vacuole18 when most of the PEXEL has been cleaved off by
PMV in the ER. It is conceivable that the propeptide stays associated
with the mature polypeptide during transport, but we favour a model
(Supplementary Fig. 1) in which chaperones associate with PMV in
the ER. On PEXEL cleavage, these chaperones receive the protein
destined for export, usher it through the secretory pathway and then
thread it through the translocon channel. In support of this, PMV
pull-downs (Fig. 6) consistently identified an ER-resident HSP70 and
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2 mm. c, Fluorescence intensity of 52 transfected early trophozoites was
measured. Mean relative fluorescence units were 82,559 and 32,059 for wild-
type and mutant-transfected parasites, respectively. d, Western blot. BiP
serves as a loading control. e, Mutant PMV-expressing parasites encased in
erythrocyte ghosts. f, Growth curves. Asynchronous cultures episomally
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j, Flow cytometry. Wild-type (green) and mutant (red) PMV-expressing
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quantified. Mean relative fluorescence intensity per mm2 was 2,671 and 1,179
for wild-type and mutant, respectively.
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HSP101 (a key translocon component18) as associated proteins. Much
remains to be done to define the PMV-chaperone relationship but it is
certainly plausible that chaperones could act in a complex or relay to
shepherd proteins from ER to translocon for export.

Enzyme inhibition

In vitro enzyme activity was partially inhibited by high micromolar con-
centrations of HIV protease inhibitors or pepstatin A (Supplementary
Fig. 3a) but not by other classes of inhibitors. We tested a panel of

protease inhibitors for ability to block processing of the PEXEL-
containing exported protein HRPII but have not yet found a good
inhibitor. BACE inhibitors had minimal effect, perhaps not surprising
given the evolutionary distance between the two orthologues. Only HIV
protease inhibitors had any effect and the blockade was partial
(Supplementary Fig. 3b, c). Action on PMV is unlikely to be their
primary effect because they kill cultured parasites in the single digit
micromolar range19,20, whereas effects on protein export and on isolated
PMV were observed at 50–200 micromolar concentrations.
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We propose that plasmepsin V is the PEXEL protease. This enzyme
recognizes a simple RxL motif on secretory proteins destined for
export into the host erythrocyte. Because PMV cleaves the PEXEL
sequence away from the mature protein, the simplest conclusion is
that PMV is primarily responsible for the specificity of export. An xE/
Q/D dipeptide at the N terminus of mature exported proteins is also
important for export though not for the cleavage itself8. Perhaps this
polar residue comprises a secondary recognition element that inter-
acts with the chaperone that will bring the protein to the translocon for
export. It is very likely that the physical association of an escort system
with PMV is needed to transfer the license for export. PMV seems then
to be the gatekeeper for protein export. If potent inhibitors can be
found, blocking the entire parasite virulence and intracellular survival
program with one stroke will be a promising new strategy for com-
bating this organism.

METHODS SUMMARY
Techniques for parasite culture, 39-end integrations and truncations and their

analysis, allelic replacement, site-directed mutagenesis, fluorescence imaging, para-

site extraction and western blotting, as well as flow cytometry growth monitoring,

have been described previously12,21. Parasite fluorescence intensity was measured

blinded on random fields using Velocity 4 software (Improvision). For enzyme

isolation, 50 ml of parasite culture at 2% haematocrit, 10% parasitaemia was har-

vested and parasites freed by saponin treatment as described12. Cells were solubilized

for 30 min in 0.5% Triton X-100 in PBS buffer and incubated with anti-GFP (3E6;

Invitrogen) or anti-PMV9 antibodies for 1 h at 4 uC. Immune complexes were

collected using protein A-Sepharose, washed extensively with PBS and isolated

enzyme released in the activity buffer (see below) with 2 mM DTT. PMV enzyme

activity assays were performed by incubation at 37 uC in 50 mM Tris-malate,

pH 6.5, 50 mM NaCl, 0.05% Triton X-100 and reaction progress monitored on a

Bio-Rad fluorimeter. Activity against pro-HRPII (ref. 22) was assessed after 16 h

incubation by SDS–PAGE/anti-HRPII western blot. C18 reverse-phase liquid chro-
matography/MALDI mass spectrometry was performed as reported23. For pull-

downs, enzyme was isolated as earlier except that solubilization was performed in

RIPA buffer21. Immunoprecipitates were fractionated by SDS–PAGE and gel

slices were analysed by MS–MS after trypsinization24. Primers for allelic replace-

ment diagnosis were 241: AATTCCTAGGAGAAACTTTTAAGAAGATATTTTCT

TTTTCTCTATATTC and 247: AATTCCTAGGAGAAACTTTTAAGAAGATATT

TTCTTTTTCTCTATATTC. PMV sequences for 39 fusion constructs were full-

length, nucleotides 280 to 1770; tail deletion, nucleotides 280 to 1721; transmem-

brane region deletion, nucleotides 280 to 1623. Mutagenesis oligonucleotides for

the allelic replacements: S, CGCAAAGAATTTCTTTGATTCTAGACACAGGTT

CATCTTCGTTAAGTTTCCCGTG; NS, CGCAAAGAATTTCTTTGATTCTAGC

GACAGGTTCATCTTCGTTAAGTTTCCCGTG.
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Figure 6 | Proteomic analysis of PMV-associated proteins. Coomassie-
stained gel of an anti-GFP pull-down for the episomal GFP-expressing
control strain (GFP) and the mutant PMV–GFP-expressing strain (Mut).
Bands were excised, trypsinized and analysed by MS–MS. The same analysis
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peptides were identified from the anti-PMV pull-down and three or more
peptides from at least one of the two anti-GFP pull-downs of episomal PMV-
expressing parasites are shown. All proteins identified are tabulated in
Supplementary Table 1. None of the proteins were detected in the GFP
control pull-down.
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