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Abstract 
Longitudinal Cerebrospinal Fluid Biomarkers of Alzheimer Disease: Movement Toward the 

Diagnosis, Prognosis and Staging of Disease 

by 

Courtney Sutphen 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2017 

John Cirrito, Chair 

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that slowly claims the 

memories and experiences that comprise the life experiences of individuals that suffer from the 

disease. Despite a continually accelerating pace of research and discovery, a viable therapeutic 

intervention for AD has yet to be realized. There are a multitude of factors that may contribute to 

this difficulty including the challenge of separating the overall disease of Alzheimer’s from the 

clinically recognizable memory loss that occurs in what is now known to be the end-stage of the 

disease. Efforts to treat AD have increasingly turned toward very early disease states, before 

clinical signs and symptoms become apparent, as a number of clinical trials have failed to meet 

cognitive endpoints over the last 5-10 years – potentially due to the sole recruitment of 

individuals already experiencing significant cognitive decline.  

One important aspect of AD treatment is identification. It is now recognized that the disease 

begins more than a decade before the signature symptoms of cognitive impairment become 

apparent. Identifying individuals in this “preclinical” disease state has become a primary focus of 
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many investigators who believe that AD must be targeted and fought well before the clinical 

manifestations of memory impairment appear.  

Biomarkers, indicators of normal biological or pathological processes that may be studied as a 

means to give individuals a disease diagnosis, prognosis, or theragnosis – provided a treatment is 

available for the disease in question – are of paramount importance in many diseases. AD has 

proved a difficult target to nail down reliable, sensitive, and specific biomarkers. This is in part 

due to analytical difficulties in major, core biomarkers of disease and in part due to setbacks in 

clinical trials of promising therapeutic candidates.  

The current work begins with an overview of biomarker modalities used in AD; however, the 

primary focus is on protein biomarkers in cerebrospinal fluid (CSF). CSF provides an intimate 

window to the central nervous system that, in the case of AD, has shown the ability to identify 

and monitor disease progress over time in cohorts of cognitively normal and demented 

individuals. In an effort to pinpoint AD before clinical signs and symptoms manifest, biomarker 

research in preclinical AD has become a robust area of investigation. CSF biomarkers of amyloid 

pathology, neuronal damage, and neuroinflammation are discussed in two independent cohorts: 

the Adult Children Study (ACS) from Washington University in St. Louis and the Alzheimer’s 

Disease Neuroimaging Initiative.  

The ACS cohort is comprised of middle-aged, cognitively normal individuals recruited on a 

volunteer basis from community dwelling participants with and without a family history of AD. 

The ADNI cohort is comprised of older individuals also recruited on a volunteer basis from 

community dwelling participants, though participants are recruited with respect to clinical status 

and include cognitively normal individuals, individuals with mild cognitive impairment, and 

individuals with AD, in addition to being older than the ACS cohort. 
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In both cohorts, it was found that CSF markers of amyloid plaques – one of two required 

pathological hallmarks that indicate AD – changed earlier than those of tau tangles, the second 

required pathological hallmark.  

Currently, examining biomarkers on a group-wide basis is the best way to get an accurate picture 

of biomarkers at baseline and followup lumbar punctures (LPs). As the goal is to be able to give 

individual people a diagnosis and prognosis of their disease, the behavior of biomarkers is 

particularly interesting because studies have found that CSF Aβ42 changes up to 15 or more 

years before cognitive signs and symptoms become apparent and, hopefully, beginning treatment 

in this period will be helpful not only for diagnosing for individuals with AD dementia, but also 

for individuals with very early disease.
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Chapter 1: Introduction 
Portions of this chapter were published in the April 2014 issue of Biological Psychiatry1. 

1.1 Background 
Alzheimer disease (AD) is a chronic, progressive neurodegenerative disease that slowly strips 

individuals of their memories and other cognitive functions. In the United States alone, an 

estimated 5.5 million people are living with AD in 2017, and an estimated 253 billion dollars 

will be spent caring for individuals with AD or other dementias, with both estimates predicted to 

rise substantially as the population ages2. Unlike diseases such as heart disease or stroke, deaths 

from AD increased more than 89% between the year 2000 and 2014 - making development an 

intervention to slow or halt the disease has a paramount focus2. As AD research moves forward, 

recent proposals from some leaders in the field have trended toward defining AD on a continuum 

as the disease is multifactorial, quite variable between individuals, and a large body of research 

is still needed to fully define AD from onset to end of life3, though AD is currently diagnosed in 

clinical stages4. These stages fit in to the proposed view of a continuum; preclinical AD is 

defined by the absence of clinical signs or symptoms but evidence of pathological amyloid and 

tau accumulation in the brain, mild cognitive impairment (MCI) (or prodromal AD) is defined by 

the addition of mild clinical symptoms such as a consistent inability to remember appointments, 

and mild, moderate, and severe dementia are marked by further dramatic cognitive impairment 

ultimately resulting in complete dependence on caregivers for all daily activities. Instead of 

strictly defining each stage, research has begun to indicate – particularly in preclinical disease – 

that stages may not be clearly demarcated, and some lenience when making diagnostic, 

prognostic, and eventually theragnostic judgments may be needed3.         
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Currently, a definitive diagnosis of AD still requires postmortem identification of the 

pathological hallmarks of the disease: extracellular amyloid plaques composed mainly of 

aggregated amyloid-β (Aβ) peptides and neurofibrillary tangles composed mainly of 

hyperphosphorylated forms of the microtubule associated protein, tau (P-tau)4. Clinical diagnosis 

of AD is based on guidelines established by the National Institute of Neurological Disorders and 

Stroke–Alzheimer’s Disease and Related Disorders Association (NINDS-ADRDA), although the 

sensitivity and specificity of such a diagnosis is lower than desirable5. The addition of 

biomarkers to the diagnostic criteria for AD may increase the sensitivity and specificity of both 

the diagnostic and prognostic capabilities currently available through clinical and cognitive 

assessment. One goal of studying biomarkers is to reliably identify those with AD pathological 

changes (preclinical AD), as well as predict the odds that such individuals will clinically 

progress and at what rate.  

Intensive research has propelled the field closer to finding a disease-modifying therapy, but 

setbacks in clinical trials and inherent difficulties in successfully tracking disease progress pre-

mortem continue to be major roadblocks. The most promising clinical trials to date have focused 

on anti-Aβ antibodies that bind either aggregated or soluble forms of Aβ and encourage the 

removal or neutralization of these species from the brain. Phase III trials of the anti-Aβ 

antibodies bapineuzumab and solanezumab in mild to moderate dementia believed to be due to 

AD ended in late 2012. Two bapineuzumab trials showed no effect on the primary outcomes, the 

Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) or Disability 

Assessment for Dementia (DAD), either in carriers of the Apolipoprotein ε4 (APOE ε4) allele or 

in noncarriers, but did show encouraging changes in two disease biomarkers in the APOE ε4 

carrier group compared with placebo6. Two additional trials were halted early due to these  
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negative results and did not show the same changes in disease biomarkers7. Two trials involving 

solanezumab also failed to show efficacy in the primary outcome of ADAS-Cog and 

Alzheimer’s Disease Cooperative Study – Activities of Daily Living (ADCS-ADL) scale, but did 

show changes in blood and cerebrospinal fluid (CSF) amyloid levels, as expected based on the 

application of an anti-amyloid antibody8.  

In part because clinical trials have been unsuccessful in reversing, halting, or slowing cognitive 

decline, the investigation of AD biomarkers has been propelled forward. A widely held belief is 

that some of this failure is due to the exclusive enrollment of individuals who already exhibit 

mild or moderate dementia, stages of AD that are accompanied by robust neuronal cell death. At 

even earlier stages of the disease (very mild dementia and MCI due to AD), neuron loss in 

certain critical brain regions is already significant9. Thus, it is important to diagnose individuals 

at the preclinical and MCI disease stages - and enroll them in clinical trials - in order to identify 

and apply therapies that have the best chance of preserving normal cognitive function.  

A key roadblock is the development of robust, reliable biomarkers: as in many other medical 

conditions, the primary aim of biomarker development is to provide a diagnosis or prognosis to 

individuals with a disease or to track disease progress or severity. These are of particular 

importance because the underlying causative pathology of AD begins as many as 15-20 years 

before the appearance of cognitive symptoms10, meaning the identification of disease must take 

place when there are no clinically identifiable signs of impairment. In AD, biomarkers are most 

widely used in research – focusing on identification of individuals with preclinical disease, in 

differential diagnosis with other dementias, and perhaps most interestingly to provide a 

downstream indicator of treatment efficacy in disease-modifying agents. 
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As the AD community moves toward a treatment, it seems certain that biomarkers will play a 

key role in the process. It is the goal of investigators to determine the most effective combination 

of biomarkers to enable identification, differentiation, and treatment of the disease in question. 

Cognitive measures can serve as a biomarker of disease; however, CSF biomarkers as measures 

of underlying pathology and disease progression are the focus of this work, along with relevant 

investigations in imaging biomarkers (magnetic resonance imaging [MRI] and positron emission 

tomography [PET]). Each modality presents its own challenges for identifying and/or developing 

viable markers from assay validation, intra- and inter-lab consistency in measurement to accurate 

identification of when and how biomarkers change during disease, and these challenges add to 

those in the overarching field of biomarker usage in the clinical diagnosis of AD such as how to 

best use biomarkers in regular clinical practice. 

Nevertheless, within the last five years, groundbreaking clinical trials such as the Dominantly 

Inherited Alzheimer Network – Trials Unit (DIAN-TU)11, the Anti-Amyloid Treatment in 

Asymptomatic Alzheimer’s Disease (A4) trial12, and others have begun enrolling preclinical 

individuals, as identified by genetic testing or biomarker status, and will use various biomarkers 

to track drug target engagement and/or as endpoint measures of drug efficacy. The DIAN-TU 

will hopefully be particularly informative as to the temporal ordering and efficacy of several 

multimodal biomarkers in a genetically defined population. The comparison of biomarkers in the 

DIAN-TU population vs. sporadic, or late onset, AD could eventually allow the identification of 

the optimal window for therapeutic intervention the sporadic population. A number of caveats 

apply, particularly the development of an efficacious AD intervention, but one of the primary 

underpinnings of this theory is that ADAD and sporadic AD are the same disease; therefore 

investigations concerning biomarker trajectories of all modalities are of paramount importance. 
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1.2 Biomarker Modalities 
As outlined above, this work pertains largely to CSF biomarkers of AD, with relevant imaging 

biomarkers included as ancillary analyses. However, it is necessary to consider all biomarker 

modalities when attempting to identify a progression of disease indicators. Section 1.2 is 

dedicated to a brief literature review of current fluid (CSF, plasma, serum), imaging (MRI, PET), 

and cognitive biomarkers that aid investigators in better defining the spectrum of AD from 

preclinical through mild cognitive impairment and ultimate dementia. A brief summary of 

biomarkers covered in Chapter 1.2 can be found in Table 1.1. 

1.2.1 Core CSF Biomarkers 
CSF is considered a prime source for AD biomarkers because many proteins and metabolites in 

CSF directly reflect the internal milieu of the brain. A lumbar puncture (LP) is necessary for the 

collection of CSF which makes it somewhat more invasive than a blood draw. However, 

complications stemming from LP are not frequent13,14, and when the procedure is performed by 

experienced clinicians, it is usually not painful.  

Three proteins are typically considered the gold standard for AD CSF biomarkers – Aβ42, total 

tau (Tau) and tau phosphorylated at threonine 181 (P-tau). Aβ and tau proteins are the most 

abundant components of amyloid plaques and neurofibrillary tangles, respectively. Each of these 

analytes has been extensively studied and validated in a variety of cohorts world-wide and, while 

absolute concentrations of each marker may vary, similar results have been reported in multiple 

studies. 

Amyloid β42 
Aβ42 is a 42 amino acid peptide created from the processing of the amyloid precursor protein 

(APP). There are multiple lengths of Aβ peptides; the 42 amino acid form is the most abundant 
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in amyloid plaques. Significantly reduced levels of CSF Aβ42 in individuals diagnosed with AD, 

compared to cognitively normal, age-matched individuals, is one signature of amyloid plaques15. 

Studies have shown that CSF Aβ42 levels correlate inversely with amyloid plaque load in the 

brain as determined by postmortem histology16 and concomitant in vivo plaque measurement 

using amyloid imaging, regardless of clinical status17–23. CSF Aβ42 is likely low in the presence 

of amyloid deposition due to its sequestration in plaques24. Continued investigation on the link 

between CSF and imaging Aβ levels indicates that CSF Aβ42 begins changing prior to amyloid 

imaging25,26, which replicates changes seen in autosomal dominant AD (ADAD)27. Low CSF 

Aβ42 is useful as a marker that predicts future clinical disease progression and rate of cognitive 

decline, especially in the early clinical stages of the disease28–30. Most recently, longitudinal 

studies of AD biomarkers have shown CSF Aβ42 is perhaps the most reliable indicator of 

preclinical AD31–33. Aβ42 alone is not a sufficient biomarker for AD diagnosis and prognosis34,35, 

nor does it mark the presence of other AD pathologies, however, more recent recommendations 

do support the use of CSF Aβ42 to supplement clinical evaluation for differential diagnosis or to 

aid judgment in atypical or unclear cases36,37.  

Tau 
Tau is a microtubule associated protein that, when quantified in the CSF, is considered to be a 

biomarker of neuronal injury in AD. High levels of tau in the CSF may reflect neuronal damage, 

as is suggested by increases in tau after acute neuronal injury such as stroke, traumatic brain 

injuries, and Creutzfeld-Jakob disease (CJD)38,39. Phospho-tau levels correlate with total tau and 

also correlate closely with neurofibrillary tangle load in AD40. Tau is normally released by 

neurons in the absence of cell death. Evidence from wild type and transgenic mice expressing 

mutant human Tau (P301S) suggests tau is continuously secreted from healthy neurons into the 

brain interstitial fluid space41. In addition, both soluble and aggregated forms of tau have been 
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shown to be secreted by cultured cells42. CSF tau and P-tau are significantly increased in AD and 

Mild Cognitive Impairment (MCI)29(p200),40,43. More recent studies indicate levels of both tau and 

P-tau are also increased in preclinical AD, though likely after Aβ42 levels have already 

dropped44, which mirrors changes seen in ADAD27. Similar to CSF Aβ42 versus PET Aβ42, CSF 

Tau may also begin to increase prior to tangles being visualized with Tau PET imaging45. Levels 

of P-tau in CSF are also associated with disease progression in AD cases46 and may aid in 

differential diagnosis between AD and other dementias47. Some longitudinal studies have also 

indicated that tau and P-tau change after indicators of amyloid abnormality31. Tau and P-tau are 

similar to Aβ42 in diagnostic and prognostic performance but are not sufficient biomarkers on 

their own.  

Tau or Ptau181 to Aβ42 Ratios 
The Tau/Aβ42 ratio, when analyzed, has a history of good performance in identifying individuals 

with AD. The Geneva Task Force for the Roadmap of Alzheimer’s Biomarker report on the 

clinical validity of CSF biomarkers in AD states that the ratio of Tau or Ptau to Aβ42 often is 

superior to Aβ42 alone when predicting AD in individuals with MCI48. This was seen both in 

biomarker meta-analysis reports as well as primary research reports, however, the Task Force 

recommended against the use of such ratios because they may be abnormal in individuals where 

CSF Tau alone increases (such as in CJD).   

1.2.2 Non-Core CSF Biomarkers 
Because it is likely that no single biomarker will perform satisfactorily on its own, identification 

and development of additional CSF biomarkers that do not directly reflect AD pathology 

(plaques and tangles), but instead reflect more general processes such as neurodegeneration and 

inflammation might be very useful. Unbiased approaches such as proteomics and multi-analyte 

profiling have been used to identify novel fluid biomarkers. A unique challenge presented by 
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these unbiased approaches, however, has been identifying biomarkers that have high enough 

sensitivity and specificity to warrant investigation in large cohorts. Five CSF proteins have 

proved useful in differentiating AD from cognitively normal individuals in large, independent 

cohorts: visinin-like protein 1 (VILIP-1); Neurogranin (Ng); synaptosomal associated protein 25 

(SNAP-25); chitinase-3-like protein 1 (YKL-40); and neurofilament light (NfL).  

Amyloid β40 and Aβ42 to Aβ40 Ratio 
Aβ40 is the most abundant isoform of Aβ in the CSF at roughly ten times the concentration of 

CSF Aβ42, but relatively less reported in studies of AD biomarkers. One large meta-analysis in 

2011 did not report on Aβ40 as a CSF biomarker49, while a more recent meta-analysis from 2016 

reported that levels of CSF Aβ40 did not differ significantly between individuals with MCI due 

to AD and MCI, but did report a “significant but minor” average effect size in distinguishing AD 

from control individuals, with Aβ40 levels being slightly lower in AD50. However, unlike CSF 

Aβ42 and the Tau(s), this result was not wholly consistent across all 25 papers analyzed; 7 of 25 

studies showed almost no difference between AD and control individuals and one study showed 

higher levels. These meta-analyses reflect an interesting attitude in the research community of 

Aβ40 perhaps being less important than Aβ42 as a diagnostic or prognostic tool. A more recent 

study does report lower levels of CSF Aβ40 in individuals with preclinical AD as defined by low 

CSF Aβ42 levels and no cognitive impairment44. Reported in Chapter 2 of the current work, it 

was found that levels of Aβ40 decreased over time in middle-aged cognitively normal 

individuals, but findings were inconsistent between two assay platforms31. These inconsistencies 

likely contribute heavily to the relative dis-use of CSF Aβ40 as a common biomarker for AD. 

Despite CSF Aβ40 not performing as well as CSF Aβ42 as a biomarker of AD, the Aβ42 to 

Aβ40 ratio has nonetheless been proposed as a useful CSF biomarker because, while CSF Aβ42 
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levels may also be reduced in individuals with subcortical white matter lesions, CSF Aβ40 is 

unaffected51, resulting in better performance of the Aβ42 to Aβ40 ratio than Aβ42 alone in 

detecting amyloid pathology in MCI and AD. These and other studies indicate that the ratio may 

be a better predictor of AD pathology by adjusting for differences in overall amyloid production 

between individuals48, which becomes particularly evident when investigating CSF amyloid 

compared with amyloid PET measures. In this case, when assessing both CSF and PET amyloid, 

the concordance between CSF Aβ42 alone and amyloid PET is improved by substituting the CSF 

Aβ42 to Aβ40 ratio51–54. 

VILIP-1 
VILIP-1 is a neuron-specific intracellular calcium sensor protein. Particularly expressed in 

cortical and hippocampal neurons, VILIP-1 is found at high levels in the dendritic compartment 

mainly associated with cell membranes55.  Levels of CSF VILIP-1 have been shown to be 

elevated in stroke56. Immunohistochemical and cell culture studies on VILIP-1 localization in 

AD revealed an association with dystrophic neurites as well as amyloid plaques and tau 

tangles57,58. Increases in CSF VILIP-1 have been observed in AD compared with cognitively 

normal controls as well as individuals with MCI59,60. Elevated VILIP-1 levels also perform as a 

strong predictor of future cognitive decline in individuals with MCI/very mild dementia and in 

cognitively normal controls61–63. Longitudinal studies on VILIP-1 have not yet been widely 

executed, though VILIP-1 and Tau correlate very well in the CSF, suggesting that VILIP-1 may 

increase after amyloid changes are evident in preclinical disease31, and in ADAD may begin to 

decline after incipient cognitive impairment64. VILIP-1 may also aid in the differentiation 

between AD and other dementias such as Dementia with Lewy Bodies (DLB)65,66. When studied 

in conjunction with CSF Aβ42, Tau and P-Tau, VILIP-1 performs similarly to the Tau(s), 

indicating that it will not be a sufficient biomarker on its own. 
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Ng 
Neurogranin is a postsynaptic calmodulin-binding protein expressed largely in neuronal 

dendrites that seems necessary for sensing calcium concentration and calmodulin activity, thus 

strengthening synapses67. In AD, Ng is elevated in the CSF compared to cognitively normal 

individuals and provides diagnostic and prognostic utility similar to that of the core AD CSF 

biomarkers68,69. In preclinical AD, Ng is also elevated and predicts cognitive decline70,71, 

indicating it may be a useful biomarker across multiple disease stages. Longitudinally, levels of 

Ng in CSF increased in cognitively normal individuals at risk of developing dementia though did 

not change over time in individuals with MCI or AD72. Studies assessing Ng for differential 

diagnosis provided evidence that elevated Ng may aid in differentiation AD from behavioral 

variant frontotemporal dementia (bvFTD), LBD, Parkinson Disease (PD), progressive 

supranuclear palsy, and multiple system atrophy73,74, and major depressive disorder75. In many of 

the studies cited above, other CSF proteins such as Tau were measured, with Ng correlating with 

Tau and P-Tau. Further longitudinal research is necessary to determine where and how Ng best 

fits in the staging, diagnosis, or prognosis of AD. 

SNAP-25 
SNAP-25 is a presynaptic t-SNARE protein involved in regulating neurotransmitter release 

through facilitation of synaptic vesicle release at presynaptic terminals76. Much of the work on 

SNAP-25 pertaining to AD has been done in postmortem tissue, where decreases in SNAP-25 

protein levels are seen in AD, and other dementias, compared with control individuals77–79. Few 

studies in the CSF of demented compared with cognitively normal individuals have been 

reported. The first showed higher levels of SNAP-25 fragments in AD and prodromal AD 

compared with cognitively normal individuals80; the second showed increased levels of SNAP-

25 in the CSF of individuals with advanced PD81. Much work remains to determine the temporal 
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ordering of changes in SNAP-25 compared with other CSF proteins in AD, including 

longitudinal cohort studies. 

NfL 
Neurofilament Light is the lowest weight member of the neurofilament family found in neurons. 

Heavily involved in axonal structure, NfL levels in CSF have been studied in a wide variety of 

neurodegenerative disorders and are considered a marker of white matter lesions82,83. In 

amyotrophic lateral sclerosis (ALS)84, FTD85,CJD86, and Parkinson’s Disease Dementia (PDD)87, 

as well as vascular dementia (VaD)88, CSF NfL is elevated compared with normal controls. A 

particular focus has been the differential diagnosis of AD and FTD using CSF NfL, in which 

consistently higher levels of NfL were seen in FTD compared to AD89–91. As with other non-core 

markers, significant work remains to determine the usefulness of NfL for differential diagnosis 

among neurodegenerative diseases92,93. In AD, NfL levels are increased at the MCI and dementia 

stages of clinical impairment and may indicate disease progression94,95 but are not elevated in 

preclinical disease44,96, suggesting a later stage of NfL involvement, though further research is 

needed. 

YKL-40 
YKL-40 is the one of two non-neuronal associated proteins to show promise as a CSF AD 

biomarker; it is an astrocytic protein upregulated in a variety of neuroinflammatory conditions97–

99, however, despite being a chitinase, YKL-40 has no chitinase activity and its exact function 

remains to be elucidated. Early reports on YKL-40 in CSF showed elevations in AD vs. control 

individuals, with diagnostic and prognostic performance on par with the core CSF 

biomarkers100,101, though results were not universally replicated102.  More recent studies, 

including longitudinal analyses, have shown that YKL-40 levels increase with advancing age 

which may complicate its analysis in older cohorts31,103. However, there is evidence that YKL-40 
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could be useful to differentiate between AD and other dementias such as VaD104, DLB and 

PDD103, but not FTD105,106. YKL-40 needs more research, particularly longitudinally, to 

determine its best application as a biomarker of neuroinflammation in AD. 

TREM2 
The other non-neuronal protein is soluble Triggering Receptor Expressed on Myeloid Cells 2 

(sTREM2), associated primarily with microglia in the brain. Studies in DIAN and a LOAD 

cohort showed increases in sTREM2 in MCI and AD compared with control individuals107,108, 

but a third study showed only an association with sTREM2 and age109. Though promising, 

TREM2 is in very early stages of investigation as an AD CSF biomarker. 

1.2.3 Blood Biomarkers 
Identification of blood biomarkers (plasma and serum) for AD has proved particularly 

challenging. Possible contributing factors include low expression of target biomarker proteins in 

the periphery that could make quantification of central nervous system (CNS)-derived analytes 

difficult, as well as the relatively higher levels of total protein in plasma and serum compared 

with CSF which could interfere with analyte detection. 

Core and Novel Analytes in Blood Serum and Plasma 
Findings from studies exploring blood-based biomarkers in AD have been largely inconclusive. 

The core biomarker Aβ42, as well as the non-core Aβ40, alone have historically shown no utility 

in differentiating AD from control individuals or assessing prognosis110,111, though differences 

have been found between APOE ε4 carriers versus noncarriers110,112.However, one study did 

report reductions in the plasma Aβ42/Aβ40 ratio in individuals with MCI and in those who 

transitioned from cognitively normal to MCI113. Two recent studies also found a predictive 

association between (1) the plasma Aβ42/Aβ40 ratio and cortical amyloid burden measure by 
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PET114 and (2) the plasma Aβ42/Aβ40 an amyloid positivity defined by PET or mass 

spectrometry, in this case with high accuracy and precision115.  

Studies assessing plasma tau are at a similar uncertain stage due to the recent development of 

Tau PET agents116,117, though one study states that plasma tau and NfL levels may aid in 

identifying or ruling out neurodegeneration in rapidly progressive neurological syndromes118 and 

another identified elevated plasma Ptau181 in AD and Down Syndrome (DS) compared to control 

individuals119. The non-core analyte NfL has had some success in plasma120,121 and serum122 in 

differentiating MCI and AD individuals from control individuals. Plasma Ng, however, was not 

able to differentiate MCI or AD from control individuals123.  

Much of the focus in blood-based fluid biomarkers has involved novel multi-analyte panels124–

127. While results from these studies generally show efficacy in differentiating AD from control 

individuals, in some cases even longitudinally128, there are important factors to consider: often 

the cohort size or composition makes it difficult to translate results to other cohorts; these studies 

are often very recent and therefore not replicated in additional cohorts; the use of general multi-

analyte panels may result in lower success rates in differential diagnosis between AD and other 

dementias.  

Overall, the state of blood biomarkers in AD has been held in its infancy for a number of years. 

Largely, this status hinges upon a lack of reproducibility and an unclear path to clinical 

utilization129. As these are very early stage, many manuscripts cited above use assays developed 

“in-house” and are different from cohort to cohort. Lessons learned from studying CSF 

biomarkers indicate that a common technique or assay would likely be beneficial to more clearly 

outlining biomarker proteins in blood. 
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1.2.4 Imaging Biomarkers 
Imaging biomarkers capture a broad range of AD-associated processes, from brain size and 

structure to the presence of protein aggregates. Imaging biomarkers can be non-invasive or 

moderately invasive based on the modality used (ie, MRI vs. PET with radioactivity). One 

particular advantage for imaging biomarkers is the ability to image and track special patterns 

(e.g. regional atrophy, binding of PET tracers in regions with pathology). As with fluid 

biomarkers, inter-lab standardization is paramount but can be quite difficult due to the use of 

different makes and models of scanners, each with their own idiosyncrasies130.  

MRI Biomarkers 
Volumetric MRI is one of the most studied imaging biomarkers. The measurement of the size of 

a brain region at a single time point and within individuals longitudinally allows for detection of 

atrophy in either whole brain or targeted areas131–133. In many studies, a marked decrease in 

volume is observed in AD – this is seen both in normalized whole brain volume and in specific 

areas such as the hippocampus and entorhinal cortex134,135. Volumetric MRI performs as well as 

the CSF gold standard biomarkers for diagnosis and prognosis, from preclinical through 

advanced disease states, and has a rich history of investigation using both single timepoint and 

longitudinal data136–140. What remains to solidify MRI volumetric biomarkers for clinical use is 

similar to CSF biomarkers141 – reproducibility in large, independent cohorts; standardization of 

both imaging and image analysis throughout the field; longitudinal analysis; and identification of 

the most accurate and clinically useful brain regions for AD diagnosis and prognosis, particularly 

as regions such as caudate nucleus or hippocampus have not differentiated between AD and 

other dementias142,143. 

Both task-based and resting state functional MRI (fMRI) are promising imaging biomarkers for 

AD144. The difference in magnetization between oxygen-rich and oxygen-poor blood can be 
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measured using fMRI to detect changes in connectivity between areas of the brain while an 

individual is performing a task or resting. Some studies have shown fMRI differences between 

individuals with MCI vs. controls on task-based assessments145. Of particular interest in resting 

state fMRI assessments is the default mode network (DMN), a network of brain regions that is 

most active when a person is not engaged in a specific cognitive task and is deactivated when an 

individual is externally stimulated or is engaged in a specific task. One recent, large study of 500 

individuals showed progressive decline in resting state functional connectivity across multiple 

networks with disease progression146. Whether fMRI will prove useful in differential diagnosis, 

prognosis, or in clinical trials awaits further studies, though it has shown promise in recent 

preclinical and longitudinal studies147,148. 

PET Biomarkers 
PET biomarkers rely on radionuclide tracers specific to a molecule of interest within the body. 

Three radioligands are used regularly in AD research and, with amyloid PET, in clinical practice 

to aid in differential diagnosis of difficult or uncertain dementia cases149; 18Fluorodeoxyglucose, 

or FDG PET; amyloid PET; and tau PET. FDG PET is a highly studied radioligand that acts as 

an indicator of glucose metabolism and, by proxy, neuronal activity. A number of studies have 

shown prognostic value for FDG PET150 in identifying individuals who will progress from MCI 

to AD, but the usefulness of FDG PET as a diagnostic in differentiating cognitively normal from 

AD individuals is relatively less151. Studies using smaller cohorts have also reported longitudinal 

changes in FDG PET in individuals with MCI152,153(p3).  

Specific to amyloid-aggregating diseases, the use of amyloid PET has increased dramatically 

since the development of Pittsburgh Compound B (PiB), the first radioligand specific to fibrillar 

Aβ154. There are now 3 FDA approved amyloid-imaging agents, with evidence pointing to 
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efficacy in diagnosis in both research and clinical settings150, though extensive work remains to 

determine the relationship between amyloid PET and prognosis. Similar to CSF analytes, 

standardization of amyloid PET is a major point of concern155, including for longitudinal 

study156.  

Tau imaging remains in the early stages of development but there are indications it may be useful 

in assessing the extent of tau pathology present in individuals with AD, as well as potentially 

aiding in differential diagnosis between AD and other tauopathies such as progressive 

supranuclear palsy (PSP)157,158. One very early longitudinal report indicates Tau PET may have 

prognostic value in MCI and AD159, and yet another indicates it may have value in identifying 

high tau aggregation levels in preclinical AD160. 
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Table 1.1 Summary of Biomarker Modalities and Characteristics 
Biomarker Changes Observed 

in AD vs Cognitively 

Normal Individuals 

Disease Stage when 

Reported 

Longitudinal 

Data 

Available 

Major Obstacles to Validation as an AD Biomarker 

CSF 

Aβ42 Decreased Preclinical, MCI, Dementia Yes Assay validation, reduction in intra- and inter-lab variability 

Aβ40 Small 

Decrease/Unclear 

Preclinical, MCI, Dementia Yes May not be robust enough on its own 

Aβ42/Aβ40 Decreased Preclinical, MCI, Dementia Yes Validated assays, continued investigation in large, varied cohorts 

Tau Elevated Preclinical, MCI, Dementia Yes Must be used in combination with other biomarkers 

P-tau Elevated Preclinical, MCI, Dementia Yes Must be used in combination with other biomarkers 

Tau/Aβ42 Elevated Preclinical, MCI, Dementia Yes While reliable, Tau and Aβ42 may be better applied individually 

VILIP-1 Elevated Preclinical, MCI, Dementia Yes Continued investigation in large, varied cohorts 

SNAP-25 Elevated MCI, Dementia No Continued investigation in large, varied cohorts 

Ng Elevated Preclinical, MCI, Dementia Yes Continued investigation in large, varied cohorts 

NfL Elevated Preclinical, MCI, Dementia No Continued investigation in large, varied cohorts 

YKL-40 Elevated/Unclear Preclinical, MCI Dementia Yes May not be as robust as, e.g. sTREM2 due to age-associated elevation 

sTREM2 Elevated MCI, Dementia No Continued investigation in large, varied cohorts 
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Blood-Based Biomarkers  

Single 

Analyte 

(Aβ(s), 

Tau(s), NfL,) 

Variable Preclinical, MCI, Dementia Yes Continued investigation in large, varied cohorts 

Multi-

Analyte 

Panels 

Variable Dementia Yes May continue to have limited viability, though multi-analyte approaches 

may be useful in identifying novel single analytes 

Imaging Biomarkers 

MRI Increase in Atrophy Preclinical, MCI, Dementia Yes Must be used in combination with other biomarkers 

fMRI Change in Connected 

Regions 

Preclinical, MCI, Dementia Yes Must be used in combination with other biomarkers 

FDG PET Elevated Preclinical, MCI, Dementia Yes Must be used in combination with other biomarkers 

Amyloid PET Elevated Preclinical, MCI, Dementia Yes Continued investigation in large, varied cohorts 

Tau PET Elevated Preclinical, MCI, Dementia Yes Continued investigation in large, varied cohorts 

Table 1.1 summarizes the biomarker modalities covered in Chapter 1.2. Changes observed refers to the most commonly seen alterations in each biomarker in AD 
compared with cognitively normal individuals. Disease Stage when Reported refers to the stages of AD that a biomarker has published information available. 
Longitudinal data is available for the vast majority of the reported biomarkers, but further longitudinal research is required. The Major Obstacle column refers to 
only the most significant challenge for each biomarker. Continued investigation in large, varied cohorts is required to pinpoint the most useful diagnostic, 
prognostic or theragnostic characteristics of most biomarkers. Aβ42 and Tau(s) – are well recognized identifiers of AD pathology in living individuals but require 
further investigation as to the best application or technique for combinatorial analysis that will allow diagnosis or prognosis of AD on a within-person basis.
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1.3 Biomarkers in the Diagnosis and Prognosis of AD 
Clearly, a large body of work has been created in the study of biomarkers for AD. Despite this 

positive forward progress, an immense amount of work remains in defining high quality 

biomarkers that could be implemented worldwide. Figures 1.1-1.4 present a brief glimpse in to 

the evolution of our broad understanding of AD in terms of biomarkers.  

1.3.1 Hypothetical Biomarker Models 
In an ideal scenario, AD biomarkers will identify individuals during preclinical disease, well 

before the neuronal death that drives cognitive impairments and within a window allowing for 

secondary, or even primary, prevention of the disease. In 2009, the first of a series of 

hypothetical models was published showing how markers such as CSF Aβ42 and tau(s), fMRI, 

or FDG PET might change along the course of AD161. Biomarker behavior as a whole was in an 

early stage of exploring preclinical AD, and most biomarkers are grouped together or shown as 

changing in the very mild stage of AD.  

The second group of figures (Figure 1.2 and 1.3) were published in 2010 and 2013, 

respectively. The first of these figures is similar, grouping markers by Aβ, tau, brain structure, 

and clinical markers162. Both Figures 1.1 and 1.2 propose a temporal ordering of biomarkers 

shifting from normal to abnormal along a disease continuum, but the level of detail was 

necessarily low given the state of the field at the time.  
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Figure 1.1 Hypothesized Relationship Between the Timecourse of Changes in Various 
Biomarkers in Relation to the Neuropathology and Clinical Changes of Alzheimer’s Disease 

The first in a series of evolving proposed biomarker curves. From Craig-Schapiro et al., 2009161. 

Figure 1.2 Dynamic Biomarkers of the Alzheimer’s Pathological Cascade 

The second AD biomarker curve evolution. From Jack et al. 2010162: “Aβ is identified by CSF Aβ42 or 
PET amyloid imaging. Tau-mediated neuronal injury and dysfunction is identified by CSF tau or 
fluorodeoxyglucose-PET. Brain structure is measured by use of structural MRI. Aβ=β-amyloid. 
MCI=mild cognitive impairment.” 
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Figure 1.3 Revised Model of Dynamic Biomarkers of the Alzheimer’s Disease Pathological 
Cascade 

The third AD biomarker curve evolution. Adapted from Jack et al. 2013163: “Neurodegeneration is 
measured by FDG PET and structural MRI, which are drawn concordantly (dark blue). By definition, all 
curves converge at the top right-hand corner of the plot, the point of maximum abnormality. Cognitive 
impairment is illustrated as a zone (light green-filled area) with low-risk and high-risk borders.” The 
bottom axis reflects time rather than disease stage. 

The third iteration of hypothetical curves attempted to further incorporate known difficulties in 

representing a population through a single set of curves, as well as incorporated more recent 

findings for the temporal ordering of biomarkers163. For instance, CSF Aβ42 and amyloid PET 

reflect evidence of CSF amyloid abnormalities being detectable earlier than PET amyloid 

abnormalities. The sigmoidal curve shapes are also updated to reflect potential differing rates of 

change between the visualized biomarkers. Lastly, the uncertainty in individual cognitive reserve 

was acknowledged by adding a high- to low-risk development of cognitive impairment. As a 

reflection of this uncertainty, the x-axis was represented simply as “time” rather than “disease 

state”. The premise was to define the temporal ordering of biomarkers for eventual application 

on a person-by-person basis. The last, most recently updated model (Figure 1.4) was published 

in 20173. This model steps back from individual biomarkers to the combined groups of (1) 

amyloid, (2) cognitive performance, FDG-PET, tau PET, atrophy, and (3) clinical function, 
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reflecting the uncertainty in the application of biomarkers toward very specific disease-states or 

temporal orderings. The continued exploration of non-core CSF biomarkers such as VILIP-1, 

SNAP-25, Ng, YKL-40, and other non-CSF biomarkers has indeed introduced a higher level of 

uncertainty as to our ability to accurately pinpoint – if not diagnosis – prognosis in a single 

individual. 

These models are incredibly useful in allowing researchers a common visual scale with which to 

compare biomarkers and biomarker modalities with respect to clinical status or time. However, 

each of these sets of curves is modeled off of cross-sectional studies, with relatively little input 

from within-person longitudinal studies of biomarker change – a caveat that has been clearly 

acknowledged163. Having a clear picture of the general longitudinal, temporal changes in AD, as 

well as their relationship with the clinical syndrome of AD, is an area of incredibly active 

research. Constant thought is given as to the best translation from hypothetical models such as 

those shown in Figures 1.1-1.4 to functional clinical practice. The first example of data-driven 

biomarker curves was published using DIAN data, using cross-sectional data derive biomarker 

curves over the span of autosomal dominant AD (ADAD) by using the time difference in 

baseline biomarker measurements and each individuals parental age of AD onset as the basis for 

modeling biomarker changes over time, shown in Figure 1.527. Data from the DIAN study was a 

step toward indicating temporal changes in biomarkers from CSF Aβ42 to amyloid imaging 

changes, to CSF Tau, hippocampal atrophy and hypometabolism, and finally to mild cognitive 

decline. What remains are studies of within-person longitudinal changes that will best showcase 

temporal biomarker trajectories for diagnostic, prognostic, or theragnostic utility. 
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Figure 1.4 Change in Biomarkers Over Time 

 

 

 

 

 

 

 

 

The latest biomarker curve evolution. Adapted from Aisen et al. 20173: “Modified graph showing that 
amyloid accumulation (measured as low CSF Aβ or elevated amyloid PET standard uptake value ratio) 
occurs first and functional decline occurs late in the continuum of AD (as before), bug cognitive 
performance, FDG-PET, tau PET, and MRI atrophy change along a common, gradually steepening 
curve”. 

Figure 1.5 Comparison of Clinical, Cognitive, Structural, Metabolic, and Biochemical Changes 
as a Function of Estimated Years from Expected Symptom Onset 

Data derived biomarker curves from cross-sectional data using the DIAN cohort. From Bateman et al. 
201227: The normalized differences between mutation carriers and noncarriers are shown versus estimated 
years from expected symptom onset and plotted with a fitted curve. The order of differences suggests 
decreasing Aβ42 in the CSF (CSF Aβ42), followed by fibrillar Aβ deposition, then increased tau in the 
CSF (CSF tau), followed by hippocampal atrophy and hypometabolism, with cognitive and clinical 
changes (as measured by the Clinical Dementia Rating–Sum of Boxes [CDR-SOB]) occurring later. Mild 
dementia (CDR 1) occurred an average of 3.3 years before expected symptom onset. 
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1.3.2 Translation of Research Biomarkers to Clinical Settings 
As AD research moves forward, different predictions and diagnostic or prognostic models are 

beginning to materialize using the wealth of biomarker information amassed in the last 10-20 

years. Alongside the evolution of hypothetical models, working groups have formed, each tasked 

with aggregating the numerous and varied results from biomarker studies (which the hypothetical 

models do on a research-specific basis) and forming guidelines that may be applied in clinical 

settings. 

In 2011, the National Institute on Aging (NIA) along with the Alzheimer Association (AA) set 

forth diagnostic criteria and guidelines for AD dementia in which magnetic resonance imaging 

(MRI) or positron emission tomography (PET), and cerebrospinal fluid (CSF) proteins were 

pinpointed as the strongest biomarkers for the disease, albeit with the caveat that extensive 

biomarker validation was still needed164.  

In 2013, the International Work Group (IWG) published an update on criteria developed in 2007 

in which the presence of AD biomarkers indicates AD risk, while prodromal AD (MCI, by NIA-

AA criteria) and AD dementia can be diagnosed if an individual also has biomarkers consistent 

with AD. The IWG considers low CSF Aβ plus high CSF tau or P-tau, or abnormal amyloid 

imaging as molecular biomarkers of AD and MRI or FDG PET as topographic biomarkers165. 

As a follow-up to the NIA-AA guidelines, in 2016 a further modification was proposed. Whereas 

the 2011 guidelines set forth 3 stages of disease encompassing preclinical disease (underlying 

pathology in the absence of overt cognitive changes), Mild Cognitive Impairment (MCI) due to 

AD, and AD, the 2016 modifications propose a move from disease- or syndrome-centric 

classifications toward unbiased indicators of pathology or damage as indicated by biomarkers166. 

This evolution may be considered as the merging of the IWG and NIA-AA guidelines in to a 
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single classification scheme – though these guidelines do not specify “Alzheimer Disease” as a 

diagnosis, rather, they simply allow classification of whether or not an individual exhibits 

biomarker changes indicative of underlying AD pathology. Dubbed “A/T/N”, this classification 

scheme has three binary categories: amyloid pathology, as defined by CSF Aβ42 or amyloid 

imaging; tau pathology, as defined by CSF P-tau or tau PET; and neurodegeneration, as defined 

by CSF tau, FDG PET or MRI.  

It may seem that these diagnostic or classification schemes are nebulous or far from 

implementation on a large scale. However, each iteration of guidelines provides important 

updates that either pinpoint critical issues (such as inter- and intra-lab variability in biomarkers) 

in need of improvement or adjust the expectations of “ideal” AD diagnostic scenarios to those 

that fit more accurately with data from AD biomarker studies. Recently, a strategic roadmap for 

using biomarkers to diagnose AD at early stages was proposed that may aid in bringing the 

concepts proposed by the IWG, NIA-AA, and 2016 update together167. Specific challenges in 

biomarker development and implementation were clearly outlined to encourage continued 

investigation in a framework of five phases of development, outlined in Table 1.1, that roughly 

follow the paradigm of (1) casting a wide net for potential biomarkers; (2) developing reliable 

assays to measure promising biomarkers from step 1; (3) longitudinal studies of identified 

biomarkers paired with clinical changes to develop a full picture of disease; (4) application of 

high-performing biomarkers in prospective cohorts to assess accuracy of biomarkers in clinical 

and research settings, and (5) assess applicability of biomarkers in providing positive value in a 

clinical setting. 
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Table 1.2 Barriers to the Widespread Clinical Usage of Biomarkers for AD Diagnosis and Prognosis 

Phase Status Biomarkers Involved 

Phase 1 – exploratory 

studies 
Widely ongoing 

Non-pathologic CSF markers (eg VILIP-

1, SNAP-25, Ng, YKL-40, NfL); Imaging 

markers (tau PET, novel imaging analysis 

techniques); Blood-based biomarkers 

Phase 2 – assay 

development 
Currently developing 

Core CSF biomarkers; Non-pathologic 

CSF biomarkers; Imaging biomarkers 

Phase 3 – retrospective 

and longitudinal studies 
Limited cohorts available 

Ongoing in studies at large research 

centers and Alzheimer’s Disease Research 

Centers 

Phase 4 – prospective 

diagnostic accuracy 

studies 

Widely ongoing 

Promising biomarkers of all modalities 

have been tested in prospective cohorts 

with variable efficacy 

Phase 5 – disease burden 

reduction studies 
Minimal, in progress 

Psychiatric effects of diagnosis can be 

investigated, but not outcomes during or 

after treatment 

Information on research phase 1-5 drawn from Frisoni et al167. Information on Status and Biomarkers 
involved is drawn from information covered in Chapter 1. 
 

1.3.3 Relation of the Current Work to the Challenges Outlined by the Field 
The current work was initiated to explore CSF biomarker utility in a context specific to 

preclinical AD. The original hypothesis postulated that biomarkers of AD might change long 

before clinical symptoms manifest, and therefore that CSF protein levels in a subset of middle-

aged, cognitively normal individuals would reflect such changes longitudinally; these data will 

be covered in Chapter 2 and could apply to Phase 3 as outlined in Table 1.1. A secondary 
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hypothesis postulated that CSF biomarkers would change longitudinally in a temporally distinct 

manner as individuals progressed through different disease stages from preclinical through 

symptomatic AD; these data will be covered in Chapter 3 and could apply to Phase 3. The gold 

standard being sought is a biomarker or, more likely, panel of biomarkers capable of indicating 

disease state and prognosis at the level of a single individual. While the current work does not 

provide anywhere near such a level of detail, it is certainly a step forward for a number of the 

obstacles set forth in Table 1.1 and allows for longitudinal, within-person case studies relevant to 

the primary hypotheses; these data will be covered in Chapter 4 and could apply to Phase 3 and 

4. Lastly, as this work began in 2011, many topics in AD biomarkers have emerged necessitating 

further investigation of the analytic validation of CSF Aβ and tau which are widely considered 

the gold standard in pre-mortem diagnosis alongside amyloid and FDG PET and MRI measures; 

these data will be covered in Chapter 5 and could apply to Phase 2. 
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Chapter 2: Longitudinal Cerebrospinal Fluid 
Biomarker Changes in Preclinical Alzheimer 

Disease During Middle Age 
This work was published in the July 2015 issue of JAMA Neurology31. 

2.1 Abstract 
Importance 
Individuals in the presymptomatic stage of Alzheimer disease (AD) are increasingly being 

targeted for AD secondary prevention trials. How early during the normal life span underlying 

AD pathologies begin to develop, their patterns of change over time, and their relationship with 

future cognitive decline remain to be determined. 

Objective 
To characterize the within-person trajectories of cerebrospinal fluid (CSF) biomarkers of AD 

over time and their association with changes in brain amyloid deposition and cognitive decline in 

cognitively normal middle-aged individuals. 

Design, Setting, and Participants 
As part of a cohort study, cognitively normal (Clinical Dementia Rating [CDR] of 0) middle-

aged research volunteers (n=169) enrolled in the Adult Children Study at Washington 

University, St Louis, Missouri, had undergone serial CSF collection and longitudinal clinical 

assessment (mean, 6 years; range, 0.91-11.3 years) at 3-year intervals at the time of analysis, 

between January 2003 and November 2013. A subset (n=74) had also undergone longitudinal 

amyloid positron emission tomographic imaging with Pittsburgh compound B (PiB) in the same 

period. Serial CSF samples were analyzed for β-amyloid 40 (Aβ40), Aβ42, total tau, tau 

phosphorylated at threonine 181 (P-tau181), visinin-like protein 1 (VILIP-1), and chitinase-3-like 

protein 1 (YKL-40). Within-person measures were plotted according to age and AD risk defined 
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by APOE genotype (ε4 carriers vs noncarriers). Linear mixed models were used to compare 

estimated biomarker slopes among middle-age bins at baseline (early, 45-54 years; mid, 55-64 

years; late, 65-74 years) and between risk groups. Within-person changes in CSF biomarkers 

were also compared with changes in cortical PiB binding and progression to a CDR higher than 0 

at follow-up. 

Main Outcomes and Measures 
Changes in Aβ40, Aβ42, total tau, P-tau181, VILIP-1, and YKL-40 and, in a subset of 

participants, changes in cortical PiB binding. 

Results 
While there were no consistent longitudinal patterns in Aβ40, (P=.001-.97), longitudinal 

reductions in Aβ42 were observed in some individuals as early as early middle-age (P≤.05) and 

low Aβ42 levels were associated with the development of cortical PiB-positive amyloid plaques 

(area under receiver operating characteristic curve = 0.9352; 95% CI, 0.8895-0.9808), especially 

in mid middle-age (P<.001). Markers of neuronal injury (total tau, P-tau181, and VILIP-1) 

dramatically increased in some individuals in mid and late middle-age (P≤.02), whereas the 

neuroinflammation marker YKL-40 increased consistently throughout middle age (P≤.003). 

These patterns were more apparent in at-risk ε4 carriers (Aβ42 in an allele dose-dependent 

manner) and appeared to be associated with future cognitive deficits as determined by CDR.  

Conclusions and Relevance 
Longitudinal CSF biomarker patterns consistent with AD are first detectable during early 

middle-age and are associated with later amyloid positivity and cognitive decline. Such measures 

may be useful for targeting middle-aged, asymptomatic individuals for therapeutic trials 

designed to prevent cognitive decline. 



30 
 

2.2 Introduction 
Alzheimer disease (AD) is the most common cause of dementia in elderly individuals, 

accounting for up to 70% of all dementia cases, and is now estimated to be the third-leading 

cause of death after heart disease and cancer168. To date, clinical trials of potential disease-

modifying therapies for AD have met with little success in halting or slowing cognitive decline 

in patients who already have cognitive symptoms or dementia169. However, clinicopathologic 

and more recent biomarker data suggest that AD pathology begins to accrue approximately 10 to 

20 years before any cognitive signs or symptoms (termed asymptomatic or preclinical 

AD)9,27,64,170–175, thus providing a window of opportunity for the initiation of secondary 

prevention trials that aim to prevent the development of symptoms in individuals while they are 

still cognitively normal176. How early during the normal life span such pathologies begin to 

develop, their patterns of change over time, and their relationship with future cognitive decline 

remain to be determined. 

Because, by definition, preclinical AD eludes detection by current clinical measures, disease-

specific biomarkers are necessary to identify individuals in this asymptomatic stage. To this end, 

the Adult Children Study (ACS) of the Knight Alzheimer’s Disease Research Center at 

Washington University, St Louis, Missouri, was initiated. The ACS is a longitudinal clinical and 

biomarker research study of cognitively normal, middle-aged adults exhibiting different AD risk 

profiles including age, family history of AD, and APOE genotype (APOE ε4 carriers vs 

noncarrier)177. Participants undergo comprehensive, longitudinal clinical and psychometric 

assessments and evaluation of biomarkers in cerebrospinal fluid (CSF) and plasma, along with 

several imaging modalities. We hypothesized that biomarker patterns indicative of underlying 

AD pathology would be evident in a subset of cognitively normal individuals during middle age, 
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at a greater frequency in those at higher risk for AD (ie, older and/or carrying the ε4 allele of 

APOE), and would increase in severity over time, ultimately culminating in cognitive decline. 

The 3 CSF biomarker analytes that reflect the core neuropathologies in AD, β-amyloid 42 

(Aβ42; the primary constituent of amyloid plaques), total tau (a marker of neuronal injury and/or 

death), and hyperphosphorylated tau (P-tau; forms intraneuronal neurofibrillary tangles), 

demonstrate excellent diagnostic and prognostic utility in research cohorts64,178,179. Other recently 

identified biomarkers, including visinin-like protein 1 (VILIP-1) and chitinase-3-like protein 1 

(YKL-40) (markers of neuronal death and gliosis/neuroinflammation, respectively) have also 

demonstrated clinical utility in AD, especially when combined in an algorithm with CSF 

Aβ4261,62,65,101,180. This first report of longitudinal biomarker changes in the ACS cohort 

describes the within-person trajectories of these CSF biomarkers over time and their association 

with longitudinal changes on in vivo amyloid imaging and future cognitive decline as a function 

of risk conferred by APOE genotype. 

2.3 Methods 
Participants 
Participants were cognitively normal, community-dwelling research volunteers enrolled in the 

ACS at the Knight Alzheimer’s Disease Research Center at Washington University. Inclusion 

criteria include the following: (1) positive family history (≥1 biological parent with age at AD 

dementia onset <80 years) or negative family history (both biological parents living to age ≥70 

years in the absence of AD dementia); (2) aged 45 to 74 years at study entry (1 enrollee was aged 

43 years, 3 were aged 75 years, 3 were aged 76 years, and 1 was aged 81 years); (3) availability 

of an informant who knows the participant well; (4) normal cognition at study entry (defined as 

having a Clinical Dementia Rating [CDR]181 of 0; and (5) willingness in principle to complete all 
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study procedures at baseline and longitudinally. Exclusion criteria include the following: (1) 

presence of a neurological, psychiatric, or systemic illness that might affect cognition or interfere 

with longitudinal follow-up; (2) a known deterministic mutation for AD; and (3) medical 

contraindication to lumbar puncture for CSF collection or imaging. 

Specific inclusion criteria for the present analysis included the availability of data from at least 2 

serial clinical assessments and CSF collection procedures (mean [SD] interval between clinical 

assessment and CSF collection, 3.3 [3.8] years) as of September 2013; thus, this cohort 

represents a subset (n=169) of ACS participants to date. All procedures were approved by the 

Human Research protection Office at Washington University, and written informed consent was 

obtained from all participants and their informants. 

Clinical and Cognitive Assessments 
The presence or absence of dementia (and, when present, its severity) was operationalized with 

the CDR in accordance with standard protocols and criteria182. A CDR of 0 indicates cognitive 

normality, whereas CDRs of 0.5, 1, 2, and 3 are indicative of very mild, mild, moderate, and 

severe dementia, respectively181.  

Genotyping 
Using standard procedures, DNA was extracted from peripheral blood samples. Genotyping of 

APOE was performed by the Knight Alzheimer’s Disease Research Center Genetics Core as 

previously described183. 

CSF Collection and Processing 
A sample of CSF (20-30 mL) was collected by routine lumbar puncture at 8 AM after overnight 

fasting as described17. Samples were processed into 500 uL aliquots and immediately frozen at -

80oC. 
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CSF Biomarker Analyses 
The CSF samples were analyzed for Aβ and tau proteins using single-analyte enzyme-linked 

immunosorbent assays (ELISAs; research use only) from 2 different vendors. Samples were 

analyzed for Aβ1-40 (Aβ40), Aβ1-42 (Aβ42), total tau, and tau phosphorylated at threonine 181 

(P-tau181) using the Improved INNOTEST ELISA (Fujirebio Europe), a modified version of the 

assay most widely used in the field. In parallel, Aβ40, Aβ42, and total tau were measured at the 

same time (from the same sample aliquot) using a set of second-generation (precision-based and 

accuracy-based) EUROIMMUN ELISAs (EUROIMMUN). The Aβ42 to Aβ40 ratio was 

calculated to normalize the Aβ42 production concentrations to the total amount of Aβ (Aβ40 is 

the most abundant Aβ species in CSF)184–186. The ratio of total tau (P-tau181) to Aβ42 was also 

evaluated because it has been shown to be a predictor of future cognitive decline in elderly 

cohorts28,61,187,188. It must be stated at the outset that the focus of this study is on the clinical 

utility of the biomarker and that conclusions drawn from one assay can be confirmed or qualified 

with data derived from another immunoassay. The well-studied INNOTEST ELISA was 

considered a priori to be the reference assay; therefore, INNOTEST data are shown. 

The VILIP-1 concentration was measured using a 2-site immunoassay (Singulex)61. The YKL-40 

concentration was measured with the MicroVue ELISA (Quidel)101(p40). 

Longitudinal CSF samples from a given individual were run on the same assay plate (and same 

lot number) to minimize potential interpolate and interlot methodological variability. Samples 

underwent a single freeze-thaw cycle prior to assay, were thawed on wet ice (approximately 3 

hours) prior to analysis, and were all run in duplicate. Values had to pass quality control criteria, 

including coefficients of variation of 25% or lower, kit controls within the expected range as 
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defined by the manufacturer (where applicable), and measurement consistency of 2 common 

pooled CSF samples that were included on each plate. 

In Vivo Amyloid Imaging 
A subset (n=74) of the 169 participants with longitudinal CSF analysis had also undergone 

longitudinal in vivo amyloid imaging via positron emission tomography (PET) with Pittsburgh 

compound B (PiB)189–191 within approximately 12 months of CSF collection (mean [SD], 84.3 

[92] days). The PiB PET imaging was conducted with a Siemens 962 HR+ Emission Computer-

Aided Tomograph PET or Biograph 40 scanner (Siemens/CTI). Magnetic resonance imaing 

using magnetization-prepared rapid-acquisition gradient-echo T1-weighted imagine (1 x 1 x 1.25 

mm) was obtained for anatomical reference. 

Deposition of PiB in brain regions of interest was determined using FreeSurfer version 5.1 

software (Martinos Center for Biomedical Imaging)190,192,193, and a standardized uptake value 

ratio (SUVR) corrected for partial volume effects194 was calculated for each region of interest. 

The mean cortical SUVR was calculated from FreeSurfer regions within the prefrontal cortex, 

precuneus, and temporal cortex. Cerebellar cortex served as the reference region. Based on a 

study of 77 symptomatic and asymptomatic Knight Alzheimer’s Disease Research Center 

participants190, PiB positivity was defined as an SUVR of 1.42, commensurate with a mean 

cortical binding potential of 0.18 defined previously for PiB positivity189. 

Statistical Analysis 
Baseline demographic characteristics were summarized as mean (standard deviation) for 

continuous variables or number (percentage) for categorical variables. Demographic variables 

were compared across 3 age bins within the 2 APOE ε4 groups and between the ε4 carriers and 

noncarriers within each age bin using post hoc t tests within analysis of variance for continuous 
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variables or logistic regression for dichotomous variables. To quantify the within-person annual 

rate of change in CSF biomarkers, general linear mixed models with random intercepts and 

random time slopes at the participant level were used to regress the concentrations on time from 

study entry (baseline). These models incorporated baseline age category, APOE category, and 

time from study entry as fixed effects as well as all possible higher-order interactions among 

these factors. This facilitated the estimation of average baseline CSF biomarker concentrations as 

well as their change over time separately in each of the 6 participant groups (cross-classification 

of 3 baseline age categories by 2 APOE categories). The resulting estimated average within-

person annual rates of change in CSF biomarkers were compared among the 6 groups with 

model-derived approximate t tests with the approximate denominator df based on the 

Satterthwaite approximation195. Baseline comparisons between CSF biomarkers among the 

groups in Table 2.1 were also carried out within these general linear mixed models by testing the 

estimated average concentrations when time from study entry was equal to 0. These CSF 

biomarker comparisons, at baseline and on the longitudinal rate of change, were also reexamined 

after adjusting for family history, sex, and education by including fixed effects for these factors 

and their interactions with time from study entry. The general linear mixed model assumptions 

were evaluated via analyses of residuals. Owing to the preliminary nature of hypotheses 

examined in this cohort, no adjustment was made for multiplicity. For exploratory purposes, an 

optimal CSF Aβ42 cutoff was determined using the Youden Index after receiver operating 

characteristic analysis for discriminating between PiB-positive and PiB-negative individuals at 

baseline. For each biomarker, baseline and longitudinal comparisons between PiB-positive (PiB 

SUVR ≥ 1.42) and PiB-negative individuals were performed using general linear mixed models 

with fixed effects included for PiB category, time from study entry, and their interaction. We 
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used SAS version 9.3 statistical software (SAS Institute, Inc.) for all statistical analyses, with 

statistical significance defined as P < .05.  

2.4 Results 
Baseline data are presented in Table 2.1 and grouped into 6 bins: the absence (n=108) or 

presence (n=61) of at least 1 APOE ε4 allele (as an indicator of neutral and high AD risk, 

respectively) and middle-age bin at baseline (early [45-54 years], mid [55-64 years], or late [65-

74 years]). Ninety-nine participants underwent 2 serial CSF collections, 65 underwent 3 serial 

CSF collections, and 5 underwent 4 serial CSF collections, at intervals of approximately 3 years. 

Forty-five of the 61 ε4 carriers (74%) and 49 of the 108 ε4 noncarriers (45%) reported a positive 

family history. 

2.4.1 Comparison of the CSF Aβ40, Aβ42, and Total Tau Assays 
Data for the ACS cohort was acquired using two assays for Aβ40, Aβ42, and Tau. The data 

presented in Chapter 2 are the “Improved” INNOTEST data. With the exception of 

EUROIMMUN data in Table 2.1, analyses comparing the INNOTEST and EUROIMMUN 

assays are located in Chapter 5. 
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Table 2.1 Demographic Characteristics and Baseline Cerebrospinal Fluid Biomarkersa 

 APOE ε4 Noncarriers (n=108) APOE ε4 Carriers (n=61) 
Variable Early (n = 26)              Mid (n = 44) Late (n = 38) Early (n = 19) Mid (n = 17) Late (n = 25) 

Baseline age, mean (SD), y 50.1 (3.0) 59.4 (2.9) b 69.9 (3.5) b,c 49.6 (2.9) 59.3 (3.1) b 69.4 (3.6) b,c 

Female, No. (%) 17 (65) 32 (73) 22 (58) 14 (74) 11 (65) 16 (64) 

Positive family history, No. (%) 12 (46) 22 (50) 15 (39) 15 (79) d 13 (76) 17 (68) d 

APOE genotype, No.       

ε2/ε2 0 1 1 0 0 0 

ε2/ε3 3 8 6 0 0 0 

ε3/ε3 23 35 31 0 0 0 

ε2/ε4 0 0 0 2 2 2 

ε3/ε4 0 0 0 14 12 20 

ε4/ε4 0 0 0 3 3 3 

Education, mean (SD), y 16.1 (2.10) 16.9 (2.27) 15.6 (2.64) c 15.8 (1.95) 15.4 (3.45) d 16.3 (2.23) 

Baseline MMSE score, mean (SD) e 29.5 (0.65) 29.3 (1.10) 28.8 (1.22) b 29.8 (0.38) 28.9 (1.52) b 28.9 (1.39) b 

Received ≥1 CDR>0 at follow-up, No. f 0 1 4 1 3 5 

Participants with 2/3/4 serial LPs, No. 12/13/1 21/19/4 25/13/0 11/8/0 12/5/0 18/7/0 

LP interval, mean (SD), mo 3.3 (0.76) 3.3 (0.91) 3.1 (0.77) 3.3 (0.73) 3.6 (1.4) 3.2 (0.77) 
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Baseline biomarkers, mean (IQR)             

Improved INNOTEST ELISA       

Aβ40, pg/mL 12657 

(10461-14480) 

14319 

(12185-16371) 

15382b 

(12417-17906) 

14555 

(12984-16638) 

13103 

(10629-15838) 

14343 

(12199-16748) 

Aβ42, pg/mL 1293 

(1046-1525) 

1340 

(1132-1544) 

1270 

(1021-1608) 

1306 

(1193-1498) 

936.9 b,d 

(671-1116) 

969.7 b,d 

(733-1225) 

Aβ42 to Aβ40 ratio 0.1052 

(0.0900-0.1225) 

0.0972 

(0.0800-0.1100) 

0.0871b,c 

(0.0700-0.1000) 

0.0924 

(0.0800-0.1000) 

0.0719 b,d 

(0.0600-0.0850) 

0.0709 b,d 

(0.0550-0.0900) 

Total tau, pg/mL 202.3 

(146.0-243.2) 

259.0 

(182.6-278.7) 

324.3 b,c 

(205.2-389.3) 

257.7 

(194.4-314.6) 

298.0 

(210.2-391.6) 

321.4 

(198.6-413.2) 

P-tau181, pg/mL 39.8 

(27.7-50.3) 

51.2 

(37.2-55.4) 

58.8 b 

(41.7-68.5) 

47.7 

(38.5-55.4) 

54.4 

(37.9-67.8) 

55.4 

(38.2-69.8) 

Tau to Aβ42 ratio 0.1541 

(0.1200-0.1725) 

0.1908 

(0.1400-0.2200) 

0.3054 b,c 

(0.1500-0.3100) 

0.1986 

(0.1600-0.2300) 

0.4207 b,d 

(0.1900-0.4550) 

0.3816 b 

(0.2150-0.5200) 

EUROIMMUN ELISA       

Aβ40, pg/mL 4857 

(3525-6101) 

5408 

(4305-6220) 

5569 

(4347-6224) 

5535 

(4816-6433) 

5266 

(3966-7043) 

5257 

(4119-5942) 

Aβ42, pg/mL 616.1 

(438.1-683.1) 

616.1 

(495.90741.8) 

590.1 

(459.4-701.1) 

676.0 

(462.3-797.6) 

449.5 b,d 

(349.9-564.3) 

487.5 b,d 

(365.3-601.8) 
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Total tau, pg/mL 254.7 

(194.4-304.8) 

310.3 

(230.3-344.6) 

362.5 b,c 

(255.6-430.3) 

299.1 

(234.1-351.6) 

380.5 d 

(313.6-469.6) 

395.8 b 

(274.1-487.4) 

Tau to Aβ42 ratio 0.4050 

(0.3341-0.4851) 

0.5022 

(0.3900-0.5192) 

0.7023 b,c 

(0.4065-0.6874) 

0.4563 

(0.3675-0.5390) 

1.073 b,d 

(0.4680-1.1100) 

0.9342 b,d 

(0.5383-1.2250) 

VILIP-1, pg/mL 140.8 

(102.3-169.8) 

154.4 

(116.7-166.4) 

179.8 b,c 

(133.6-218.9) 

155.6 

(128.8-175.4) 

153.2 

(105.4-193.8) 

154.7 

(117.0-180.2) 

YKL-40, ng/mL 180.3 

(124.2-220.3) 

231.3 b 

(192.3-259.7) 

301.1 b,c 

(221.7-368.2) 

188.4 

(135.3-238.7) 

240.6 b 

(165.5-297.9) 

281.5b 

(201.8-353.8) 

Abbreviations: Aβ, β-amyloid; CDR, Clinical Dementia Rating; ELISA, enzyme-linked immunosorbent assay; IQR, interquartile range; LP, 
lumbar puncture; MMSE, Mini-Mental State Examination; P-tau181, tau phosphorylated at threonine 181; VILIP-1, visinin-like protein 1; YKL-40, 
chitinase-3-like protein 1. 
a Age groups indicate the ages within middle-age: early, ages 45-54; mid, ages 55-64; and late, ages 65-74 years 
b Significantly different from early within the same APOE ε4 group (P < .05) 
c Significantly different from mid within the same APOE ε4 group (P < .05) 
d Significantly different from the same age group of the other APOE ε4 group (P < .05) 
e The MMSE scores can range from 0 to 30, with 30 as a perfect score 
f A CDR of 0 indicates cognitively normal; a CDR higher than 0, cognitively abnormal  
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2.4.2 Baseline and Slope Analyses: CSF Biomarker Changes Occur in Middle 
Age 
Baseline biomarker levels (Table 2.1) and slopes of change within individuals (Table 2.2) were 

evaluated in the 6 bins defined earlier. Slopes were calculated as the representative mean of all 

annual individual slopes per age bin (extrapolated to 9 years for illustrative purposes) and 

superimposed on the spaghetti plots of the associated individual trajectories (Figure 2.1 shows 

the INNOTEST assay data for Aβ40, Aβ42, Aβ42 to Aβ40 ratio, total tau, P-tau181, and total tau 

to Aβ42 ratio; Figure 2.2 shows the data for VILIP-1 and YKL-40; see Figure 5.1 Chapter 5 for 

the EUROIMMUN assay data). Controlling for family history, sex, and education did not 

substantially influence the comparisons between age and ε4 categories. 

Aβ40, Aβ42, Aβ42 to Aβ40 Ratio  
Baseline levels of CSF Aβ40 (INNOTEST) were significantly higher in the late middle-aged 

group compared with the early middle-aged group in ε4 noncarriers (P = .004) (Table 2.1) but 

decreased significantly within individuals in the early (P = .04) and mid (P = .01) middle-aged 

groups over time (Table 2.2 and Figure 2.1A). In contrast, no significant differences were 

observed in ε4 carriers at baseline or longitudinally (Table 2.1 and Table 2.2). 

In contrast to Aβ40, robust decreases within individuals in all age groups were observed for 

Aβ42 in both risk groups (Figure 2.1B and Table 2.2), and this pattern was detectable in many 

participants as early as 45 to 54 years of age. While baseline concentrations did not differ among 

the age groups in the ε4 noncarriers, levels in ε4 carriers were significantly lower in the mid (P < 

.001) and late (P < .001) middle-aged groups compared with the early middle-aged group and 

also significantly lower than the levels in the mid (P < .001) and late (P < .001) middle-aged ε4 

noncarriers (Table 2.1). 
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Similar to the patterns observed for Aβ42 alone, the ratios of Aβ42 to Aβ40 were significantly 

lower in the mid (P = .02) and late (P = .005) middle-aged groups compared with the early 

middle-aged group in ε4 carriers (Table 2.1), and the within-person values significantly 

decreased over time in the 2 older age groups (both P < .001) (Figure 2.1C and Table 2.2). 

Although baseline ratios in the ε4 noncarriers were significantly lower in the late middle-aged 

group compared with the mid (P = .05) and early (P = .004) middle aged groups (Table 2.1), 

they did not change significantly within these low-risk individuals at any age (Figure 2.1C and 

Table 2).  

Total Tau and P-tau181 
Baseline total tau was higher in late middle-aged participants compared with early middle-aged 

participants in both risk groups, with intermediate levels in the mid middle-aged participants, 

although differences were statistically significant only in the ε4 noncarriers (P < .001 and P = 

.02, respectively) (Table 2.1). Within ε4 noncarriers, total tau increased significantly over time 

during late middle age (P < .001), while increases were observed earlier (mid and late middle-

age) in the higher-risk ε4 carriers (both p < .001) (Figure 2.1D and Table 2.2). Interestingly, the 

annual mean (SE) increase in total tau in mid middle-age was significantly higher in ε4 carriers 

(22.28 [4.45] pg/ml) compared with ε4 noncarriers (2.84 [2.68] pg/ml) (P < .001) (Table 2.2). 

Results for P-tau181 were virtually identical to those for total tau, including more robust 

elevations in the ε4 carriers during mid middle-age (Figure 2.1E and Table 2.2). 

  



42 
 

Table 2.2 Mean Annual Slopes of Within-Individual Longitudinal Change in Cerebrospinal Fluid Biomarkers During Middle Agea 
 APOE ε4 Noncarriers (n=108) APOE ε4 Carriers (n=61) 

Variable Early (n = 26) Mid (n = 44) Late (n = 38) Early (n = 19) Mid (n = 17) Late (n = 25) 

Aβ40             

Estimated Annual Slope, mean (SE), pg/ml -163.59 (80.50) -153.82 (61.81) -130.39 (77.20) 30.63 (102.86) 3.31 (107.75) 110.77 (97.06) 

Different from zero, P value .04b .01b .09 .77 .98 .26 

APOE ε4 carriers vs noncarriers, P value - - - .14 .21 .05 

Aβ42             

Estimated Annual Slope, mean (SE), pg/ml -14.81 (5.83) -19.34 (4.48) -22.80 (5.56) -14.99 (7.42) -29.22 (7.79) -26.76 (6.99) 

Different from zero, P value .01b <0.001b <0.001b .045b <0.001b <0.001b 

APOE ε4 carriers vs noncarriers, P value - - - .98 .27 .66 

Aβ42 to Aβ40 ratio             

Estimated Annual Slope, mean (SE), pg/ml 
0.00027 

(0.00042) 

-0.00023 

(0.00032) 

-0.00068 

(0.00042) 

-0.00090 

(0.00055) 

-0.00202 

(0.00057) 

-0.00220 

(0.00052) 

Different from zero, P value .52 .47 .10 .10 <0.001b <0.001b 

APOE ε4 carriers vs noncarriers, P value - - - .09 .007b .02b 



43 
 

Total tau             

Estimated Annual Slope, mean (SE), pg/ml 0.96 (3.44) 2.84 (2.68) 14.58 (3.08) c,d 5.40 (4.20) 22.28 (4.45) c 18.45 (3.85) c 

Different from zero, P value .78 .29 <0.001b .20 <0.001b <0.001b 

APOE ε4 carriers vs noncarriers, P value - - - .42 <0.001b .43 

P-tau181             

Estimated Annual Slope, mean (SE), pg/ml 0.23 (0.51) 0.32 (0.40) 1.84 (0.47) c,d 1.08 (0.63) 3.41 (0.67) c 1.92 (0.58) 

Different from zero, P value .66 .43 <0.001b .09 <0.001b .001b 

APOE ε4 carriers vs noncarriers, P value - - - .30 <0.001b .91 

Total tau to Aβ42 ratio             

Estimated Annual Slope, mean (SE), pg/ml 0.0026 (0.0084) 0.0081 (0.0066) 
0.0268 c 

(0.0071) 
0.0076 (0.0100) 

0.0538 c 

(0.0106) 

0.0478 c 

(0.0088) 

Different from zero, P value .76 .22 <0.001b .45 <0.001b <0.001b 

APOE ε4 carriers vs noncarriers, P value - - - .70 <0.001b .07 

VILIP-1       

Estimated Annual Slope, mean (SE), pg/ml -0.18 (1.03) -0.48 (0.80) 2.39 (1.01) d 0.79 (1.34) 5.17 (1.39) c 1.42 (1.27) d 

Different from zero, P value .86 .55 .02b .55 <0.001b .26 

APOE ε4 carriers vs noncarriers, P value - - - .56 <0.001b .55 
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YKL-40       

Estimated Annual Slope, mean (SE), pg/ml 4.80 (1.29) 4.26 (0.99) 6.91 (1.27) 6.25 (1.68) 10.83 (1.75) 4.90 (1.60) d 

Different from zero, P value <0.001b <0.001b <0.001b <0.001b <0.001b .002b 

APOE ε4 carriers vs noncarriers, P value - - - .50 .001b .32 

Abbreviations: Aβ, β-amyloid; P-tau181, tau phosphorylated at threonine 181; VILIP-1, visinin-like protein 1; YKL-40, chitinase-3-like protein 1; 
dashes, not applicable. 
a Age groups indicate the ages within middle-age: early, ages 45-54; mid, ages 55-64; and late, ages 65-74 years. Results for Aβ40, Aβ42, Aβ42 to 
Aβ40 ratio, total tau, P-tau181, and total tau to Aβ42 ratio are from the improved INNOTEST enzyme-linked immunosorbent assay 
b Statistically significant at P < .05 
c Significantly different from early within the same APOE ε4 group (P < .05) 
d Significantly different from mid within the same APOE ε4 group (P < .05)   
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Ratios of Total Tau and P-tau181 to Aβ42 
In ε4 noncarriers, the baseline total tau to Aβ42 ratio was significantly higher in late middle-age 

compared with both early (P = .005) and mid (P = .01) middle-age (Table 2.1). In at-risk ε4 

carriers, significantly higher ratios were observed even earlier (mid [P = .002] and late [P = .004] 

middle-age) compared with early middle-age (Table 2.1). Longitudinal patterns for the total tau 

to Aβ42 ratio were virtually identical to those of total tau, with significant within-person 

increases in the late middle-aged group in ε4 noncarriers (P < .001) and even earlier (mid and 

late middle-age) in the ε4 carriers (both P < .001) (Figure 2.1F and Table 2.2). Patterns for the 

P-tau181 to Aβ42 ratio were virtually identical to those of the total tau to Aβ42 ratio (data not 

shown).  
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Figure 2.1. Longitudinal Change in Cerebrospinal Fluid Biomarkers β-Amyloid 40 (Aβ40), 
Aβ42, Aβ42 to Aβ40 Ratio, Total Tau, Tau Phosphorylated at Threonine 181 (P-tau181), and 
Total Tau to Aβ42 Ratio During Middle Age 

Estimated group slopes and within-person changes for Aβ40 (A), Aβ42 (B), Aβ42 to Aβ40 ratio (C), total 
tau (D), tau phosphorylated at threonine 181 (P-tau181) (E), and total tau/Aβ42 ratio (F) are shown in the 
3 age bins for APOE ε4 noncarriers (top graph of each panel; n = 108 participants) and ε4 carriers 
(bottom graph of each panel; n = 61 participants). Annual slopes have been extrapolated to 9 years, and 
each slope begins at the mean baseline biomarker value from individuals in each age bin. Group 
baseline values and slopes represent the estimates reported in Table 1 and Table 2, respectively, 
for the different cohorts defined by baseline age in which biomarker concentrations were 
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regressed on time from study entry. Data are from the INNOTEST enzyme-linked 
immunosorbent assay (Fujirebio Europe). 

aSlope significantly different from 0 (P < .05). 

bSlope significantly different between APOE ε4 groups within a given age group (P < .05). 

 

2.4.3 Other Biomarkers of Neuronal Injury and Gliosis/Neuroinflammation 
VILIP-1 
The concentration of VILIP-1 was positively correlated with total tau during middle age 

(INNOTEST total tau: n = 401, Pearson r = 0.763 [95% CI, 0.719-0.801], P < .001; 

EUROIMMUN total tau: n = 403, Pearson r = 0.743 [95% CI, 0.696-0.784], P < .001), 

consistent with earlier reports in elderly cohorts. Similar to total tau, mean baseline VILIP-1 

concentration increased with age, with significantly higher levels in late middle-age compared 

with early (P = 0.008) and mid (P = .03) middle-age in the ε4 noncarriers (Table 2.1) and within-

person increases over time in late middle-age (P = .02) (Figure 2.2A and Table 2.2). While 

baseline levels of VILIP-1 in the at-risk ε4 carriers at baseline were not significantly different 

among the age groups, (Table 2.1), they significantly increased longitudinally within individuals 

at an earlier age (mid middle-age [P < .001]) compared with the ε4 noncarriers (late middle-age 

[P = .02]) (Figure 2.2A and Table 2.2). Also similar to total tau, the annual mean increase in 

VILIP-1 concentration in mid middle-age was greater in ε4 carriers compared with ε4 

noncarriers (P < .001).  

YKL-40 
Baseline CSF YKL-40 concentration was significantly higher in mid and late middle-age 

compared with early middle-age in both ε4 groups (all P ≤ .04) as well as in late middle-age 

compared with the mid middle-age in the ε4 noncarriers (P < .001) (Table 2.1). In both groups, 

YKL-40 concentration significantly increased within individuals over time in all age bins (P = 

.002 in late middle-age among ε4 noncarriers; all others, P < .001) (Figure 2.2B and Table 2.2). 
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In mid middle-age, YKL-40 concentration increased at a significantly higher rate in the ε4 

carriers compared with ε4 noncarriers (P = .001) (Table 2.2), similar to what was observed for 

the injury markers. 

Figure 2.2. Longitudinal Change in Cerebrospinal Fluid Biomarkers Visinin-Like Protein 1 
(VILIP-1) and Chitinase-3-Like Protein 1 (YKL-40) During Middle Age 

Estimated group slopes and within-person changes for VILIP-1 (A) and YKL-40 (B) are shown in the 3 
age bins for APOE ε4 noncarriers (top graph of each panel; n = 108 participants) and ε4 carriers (bottom 
graph of each panel; n = 61 participants). Annual slopes have been extrapolated to 9 years, and each slope 
begins at the mean baseline biomarker value from individuals in each age bin. Group baseline values and 
slopes represent the estimates reported in Table 1 and Table 2, respectively, for the different cohorts 
defined by baseline age in which biomarker concentrations were regressed on time from study entry. 

aSlope significantly different from 0 (P < .05). 

bSlope significantly different between APOE ε4 groups within a given age group (P < .05). 
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2.4.4 APOE ε4 Gene Dose Influences CSF Biomarker Patterns Consistent with 
the Presence of Preclinical AD During Middle Age 
Given the known APOE ε4 gene dosage effects on the risk of AD and age at dementia onset, we 

evaluated biomarker trajectories as a function of ε4 allele number. The majority (82%) of ε4 

noncarriers had the ε3/ε3 genotype, whereas the majority (75%) of ε4 carriers had the ε3/ε4 

genotype (Table 2.1). Nine participants were ε4 homozygotes (ε4/ε4 genotype). Trajectory 

patterns for Aβ40 did not differ as a function of ε4 allele dose (Figure 2.3A). In contrast, 

patterns differed dramatically for Aβ42 (Figure 2.3B) and the Aβ42 to Aβ40 ratio (Figure 2.3C) 

across the entire age range, with ε4 homozygotes falling among the lowest values, ε4 noncarriers 

typically falling among the highest, and heterozygotes falling in the middle range (although 

overlapping with many of the ε4 noncarriers). The longitudinal patterns for total tau, total tau to 

Aβ42 ratio, VILIP-1, and YKL-40 in ε4 carriers appeared to overlap to a greater extent with 

those for ε4 noncarriers (Figure 2.3D-F). However, the number of ε4 homozygotes is too small 

to perform rigorous statistical analyses in the current cohort. 
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Figure 2.3 Longitudinal Biomarker Trajectories in Individuals with Different APOE Genotypes  

Within-person trajectories of CSF A) Aβ40, B) Aβ42, C) Aβ42/Aβ40 Ratio, D) Tau, E) Tau/Aβ42 Ratio, F) VILIP-1, and G) YKL-40 are plotted 
as a function of age. Aβ40, Aβ42 and tau were measured with the INNOTEST assay. Colors identify APOE genotype:  no ε4 alleles (gray, ε4-/-; 
ε2/ε2, ε2/ε3, ε3/ε3), one ε4 allele (purple, ε4+/-; ε2/ε4, ε3/ε4) and two ε4 alleles (orange, ε4+/+; ε4/ε4). 
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2.4.5 Association of CSF Aβ42 and In Vivo Amyloid Imaging During Middle 
Age 
Because studies to date evaluating the concordance of CSF Aβ42 concentrations with in vivo 

amyloid load have focused on elderly cohorts, it was of interest to characterize this association in 

middle-age, a time during which a subset of individuals are expected to be in the very earliest 

stages of preclinical AD. This analysis used data from a subset of 74 participants (n = 50 ε4 

noncarriers; n = 24 ε4 carriers) within the longitudinal CSF cohort who had also undergone 

longitudinal in vivo PiB PET imaging within 376 days (mean [SD], 84.3 [92] days) of CSF 

collection. Twenty of these individuals were considered PiB positive (mean cortical SUVR ≥ 

1.42) at baseline, follow-up, or both (Figure 2.4A). Of these 20 individuals, 10 (50%) were ε4 

noncarriers and 10 (50%) were ε4 carriers. Although there was no significant association 

between the cross-sectional patterns (P = .12) or longitudinal trajectories (P = .65) of Aβ40 and 

cortical PiB binding (Figure 2.4B), PiB positivity was associated with low baseline levels of 

CSF Aβ42 (P < .001) but not longitudinal change (P = .37) (Figure 2.4C). However, 15 PiB-

negative individuals (20%) had concentrations of Aβ42 that were as low as those who were PiB-

positive. Because low Aβ42 values could conceivably reflect low production of all Aβ species 

rather than an amyloidosis-specific decrease in Aβ42, we also evaluated the relationship between 

PiB and the Aβ42 to Aβ40 ratio (Figure 2.4D). Twelve of the PiB-negative participants (16%) 

had Aβ42 to Aβ40 ratios at some point that were as low as those who were PiB-positive. 

Notably, all 4 ε4 homozygotes in this subcohort had a low Aβ42 concentration and a low Aβ42 

to Aβ40 ratio at both baseline and follow-up (Figure 2.4C and D), including the 2 young 

participants (aged <55 years at baseline) who were PiB-negative (Figure 2.4C and D, solid black 

lines). The PiB-positive individuals typically had higher baseline (P < .001) and longitudinally 

increasing (P < .001) levels of total tau (and P-tau181 [scatterplots not shown]) compared with 
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those who were PiB-negative (Figure 2.4E). The PiB associations with baseline (P = .04) and 

longitudinal (P = .004) VILIP-1 concentrations were similar to total tau but less concordant 

(Figure 2.5A). Being PiB-positive was not significantly associated with YKL-40 levels at 

baseline (P = .08) but was associated with greater longitudinal increases (P = .04) (Figure 2.5B). 

Overall, Aβ42, Aβ42 to Aβ40 ratio, total tau, and P-tau181 appeared to be more strongly 

associated with PiB positivity than were Aβ40, VILIP-1, and YKL-40. 
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Figure 2.4. Association Between Longitudinal Patterns of Cerebrospinal Fluid Biomarkers β-
Amyloid 40 (Aβ40), Aβ42, Aβ42 to Aβ40 Ratio, and Total Tau, Cortical Pittsburgh Compound 
B (PiB) Standardized Uptake Value Ratio (SUVR), and Age 

A subset (n = 74) of Adult Children Study participants had undergone longitudinal amyloid imaging via 
PiB positron emission tomographic imaging within 376 days (mean [SD], 84.3 [92] days) of 
cerebrospinal fluid collection. Biomarker measures include cortical PiB SUVR (A), Aβ40 (B), Aβ42 (C), 
Aβ42 to Aβ40 ratio (D), and total tau (E). The Aβ40, Aβ42, and total tau were analyzed by INNOTEST 
enzyme-linked immunosorbent assay (Fujirebio Europe). Being PiB positive was defined as having a 
mean cortical PiB SUVR higher than 1.42 and is represented by the dashed horizontal line in panel A. 
Gray lines indicate PiB negative at baseline and follow-up (n = 52); solid colored lines, PiB positive at 
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both baseline and follow-up (n = 14); dashed colored lines, PiB negative at baseline but positive at 
follow-up (n = 6); and solid black lines, PiB negative with discordant (low) cerebrospinal fluid Aβ 
measures at baseline and follow-up (n = 2). Colored solid and dashed lines are each differently colored 
only to facilitate visual comparisons across all analytes for each PiB-positive individual. 

Figure 2.5. Association Between Longitudinal Patterns of Cerebrospinal Fluid Biomarkers 
Visinin-Like Protein 1 (VILIP-1) and Chitinase-3-Like Protein 1 (YKL-40), Cortical Amyloid, 
and Age 

A subset (n = 74) of Adult Children Study participants had undergone longitudinal amyloid imaging via 
Pittsburgh compound B (PiB) positron emission tomographic imaging within 376 days (mean [SD], 84.3 
[92] days) of cerebrospinal fluid collection. Biomarker measures include VILIP-1 (A) and YKL-40 (B). 
Being PiB positive was defined as having a mean cortical PiB standardized uptake value ratio higher than 
1.42 (see dashed horizontal line in Figure 3A). Gray lines indicate PiB negative at baseline and follow-up 
(n = 52); solid colored lines, PiB positive at both baseline and follow-up (n = 14); dashed colored lines, 
PiB negative at baseline but positive at follow-up (n = 6); and solid black lines, PiB negative with 
discordant (low) cerebrospinal fluid β-amyloid measures at baseline and follow-up (n = 2). Colored solid 
and dashed lines are each differently colored only to facilitate visual comparisons across all analytes for 
each PiB-positive individual. 

2.4.6 Aβ42 Cutoff as Estimated Using PiB at Baseline 
Using only baseline CSF and PiB obtained within 376 days (mean [SD], 89.9 [95] days), a 

slightly larger subcohort of 105 participants was used to calculate a cutoff for CSF Aβ42 

(INNOTEST) based on PiB positivity. The optimal cutoff in this cohort is 1041 pg/mL 

(sensitivity = 1; specificity = 0.82), with an area under the receiver operating characteristic curve 

of 0.9352 (95% CI, 0.8895-0.9808).  
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2.4.7 Case Study of Participants Who Received a CDR Higher Than 0 at 
Clinical Follow-up 
Biomarker studies in cognitively normal elderly cohorts have demonstrated prognostic utility of 

baseline CSF measures for predicting future cognitive decline. To assess whether this 

relationship exists even earlier in the preclinical stages (during middle-age), as a preliminary 

analysis we compared the biomarker trajectories in participants who received a CDR higher than 

0 at some point during clinical follow-up with those who retained a CDR of 0. Of the 169 

participants evaluated, all of whom were cognitively normal (CDR of 0) at the time of baseline 

CSF collection, 14 received a CDR of 0.5 at some point during follow-up (mean [SD], 6.55 

[1.94] years; median, 6.15 years; range, 4.21-10.28 years), and 3 of these progressed further to a 

CDR of 1. The remaining 155 participants had a CDR of 0 at all follow-up (mean [SD], 6.01 

[1.94] years; median, 6.21 years; range 0.98-11.32 years). The duration of follow-up did not 

differ significantly between the groups (P > .05). All individuals who progressed to a CDR 

higher than 0 were older than 61 years at baseline. There was no apparent relationship between 

baseline or longitudinal trajectories of Aβ40 and cognitive status (Figure 2.6A). In contrast, the 

majority of progressors exhibited low Aβ42 (Figure 2.6B) and Aβ42 to Aβ40 ratio (Figure 

2.6C) at baseline and follow-up and high total tau and total tau to Aβ42 ratio (Figure 2.6D and 

E). Patterns of VILIP-1 and YKL-40 did not appear to differ between the clinical groups (Figure 

2.6F and G). However, the number of clinical progressors is too small to perform rigorous 

statistical analyses in the current cohort. 
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Figure 2.6 Cerebrospinal Fluid Biomarker Trajectories in Participants Receiving a Clinical Dementia Rating Higher Than 0 at Some 
Point During Clinical Follow-up 

Within-person trajectories of cerebrospinal fluid β-amyloid 40 (Aβ40) (A), Aβ42 (B), total tau (C), total tau to Aβ42 ratio (D), visinin-like protein 
1 (VILIP-1) (E), and chitinase-3-like protein 1 (YKL-40) (F) are plotted as a function of age. The Aβ40, Aβ42, and total tau were analyzed by 
INNOTEST enzyme-linked immunosorbent assay (Fujirebio Europe). Fourteen individuals received a Clinical Dementia Rating of 0.5 or 1 at 
some point during follow-up (mean [SD], 6.55 [1.94] years; range, 4.21–10.28 years). Orange lines indicate individuals who received a Clinical 
Dementia Rating higher than 0 at available follow-up visits; gray lines, individuals who did not receive a Clinical Dementia Rating higher than 0. 
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2.5 Discussion 
Our results demonstrate the following: (1) levels of CSF Aβ42 in some cognitively normal 

individuals decrease over time, starting as young as early middle age (45-54 years); (2) in mid 

middle-age (55-64 years), reductions in Aβ42 are associated with the development of PiB-

positive amyloid plaques; (3) elevations in neuronal injury markers total tau, P-tau181, and (to a 

lesser extent) VILIP-1 increase dramatically in some individuals in mid and late (65-74 years) 

middle-age; (4) the gliosis/neuroinflammation marker YKL-40 increases throughout middle-age; 

(5) these biomarker changes are observed in both risk groups defined by APOE genotype but are 

more evident in ε4 carriers and (for amyloid-related measures) in an allele dose-dependent 

manner; and (6) these AD-consistent trajectories are not clinically benign but instead are 

associated with future cognitive decline. These observations were confirmed in both evaluated 

immunoassays for Aβ42 and total tau. 

Reductions in CSF Aβ42 concentration within certain individuals throughout middle-age suggest 

an ongoing pathological process that for some people starts quite early (ages 45-54 years). 

Levels may begin to decrease even earlier, but additional investigation in younger cohorts is 

needed to test this hypothesis. During middle-age, the timing of this decrease is influenced by ε4 

allele dosage, consistent with studies demonstrating a major influence of APOE genotype on Aβ 

aggregation and clearance196,197. Baseline and follow-up Aβ42 levels are among the lowest in ε4 

homozygotes compared with heterozygotes and ε4 noncarriers, with reduction evident at earlier 

ages. Such effects are consistent with the ε4 dosage effects on age at dementia onset198. 

Regardless of when Aβ42 levels begin to decrease during the preclinical period, these decreases 

did not coincide with the presence of amyloid detectable by PiB PET until mid middle-age. The 

Aβ42 level was stably low or beginning to decline in some individuals while cortical PiB binding 
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was still below the threshold of positivity, and PiB binding did not begin to increase until the 

CSF Aβ42 level was already relatively low. Thus, it seems likely that Aβ42 aggregation can be 

detected earlier with CSF analysis than with cortical PiB PET imaging, consistent with recent 

studies in autosomal dominant AD27,199. This is highlighted by 2 high-risk early middle-aged ε4 

homozygotes who had stable, low Aβ42 levels (and Aβ42 to Aβ40 ratios) in longitudinal 

samples but were PiB negative. This observation may reflect sequestration of Aβ42 into 

oligomeric forms undetectable with the current assays or its deposition in nonfibrillar (PiB-

negative) diffuse plaques. In support of the latter, low CSF Aβ42 concentration in the absence of 

PiB positivity has been reported in a case in which numerous diffuse plaques, but few neuritic 

plaques, were observed at autopsy200. However, the early middle-age bin of the longitudinal PiB 

subcohort is quite small; subregional PiB analyses and evaluation of future longitudinal PiB scan 

in ACS participants are necessary to rigorously evaluate PiB changes in early middle-age.  

The calculated CSF Aβ42 cutoff in this cohort is quite high at 1041 pg/mL, higher than 

previously reported using the INNOTEST kit (typically 450-650 pg/mL)17,20,201. This apparent 

discrepancy may reflect the younger age of the ACS cohort. Most likely it reflects the fact that 

we used a newer modified, improved INNOTEST assay. This cutoff is not suggested for clinical 

use but was instead provided to evaluate amyloid positivity using CSF measures – similar to 

protocols being considered for enrollment in AD prevention trials. Using this cutoff, 51 of the 

169 participants (30%) would be considered amyloid positive and eligible for clinical trial 

enrollment based on baseline CSF Aβ42 concentration alone. Further longitudinal follow-up is 

needed to determine what percentage of these individuals will present with cognitive decline, 

which will in turn enable analysis of the efficacy of CSF Aβ42 concentration at baseline for 

determination of preclinical AD.  



59 
 

In contrast to the early changes in Aβ42, increases in total tau, P-tau181, and VILIP-1 are 

typically not apparent until later (ages ≥55 years). Notably, the rate of increase was significantly 

greater in the ε4-carrying at-risk group during mid middle-age, coincident with continuing, 

robust decreases in Aβ42 level. It was in this age range that many participants with the AD 

biomarker pattern began to exhibit cognitive decline. Interestingly, the absolute slopes (ie, rates 

of increase) of these neuronal injury markers in the ε4 carriers actually decreased from mid to 

late middle-age. This pattern is consistent with a potential slowing of an earlier robust phase of 

neuronal injury or perhaps reflects neuronal dysfunction that adversely affects the normal 

cellular secretion or release of these proteins. It will be interesting to determine whether this 

pattern is also observed in those at lower risk (ε4 noncarriers), albeit at older ages, how it 

compares with proposed early markers of synaptic function currently in development, and 

whether this proposed slowing continues into the symptomatic phase as has been reported in 

individuals with autosomal dominant AD64 and late-onset AD dementia202. The rate accelerations 

in these markers at mid middle-age observed here in the at-risk group are consistent with the 

concept of an age-related transition between stage 1 (amyloid alone) and stage 2 (amyloid plus 

neuronal injury) of preclinical AD proposed by the National Institute on Aging-Alzheimer’s 

Association Preclinical AD Working Group203. Although these proposed stages are currently 

defined by biomarker measures obtained at a single point in time, it is possible that a longitudinal 

biomarker metric may have more utility. This hypothesis awaits further investigation.  

The consistent pattern of increases in YKL-40 level in all age bins suggests that 

neuroinflammation/gliosis (the hypothesized cause of the increase in YKL-40 level) is a process 

that occurs normally with aging. However, the particularly robust increases observed in at-risk ε4 

carriers during mid middle-age suggest that this age-related process may be further exacerbated 
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in the presence of insults including amyloid deposition and neuronal injury. Whether this 

neuroinflammatory process contributes to the concomitant increase in neuronal injury remains to 

be determined.  

This study is not without limitations. As by design the ACS cohort enrolls participants with and 

without family history of AD for longitudinal imaging and CSF biomarker studies, participants 

may not be representative of the general population. Despite the large number of participants in 

this unique cohort, there are fewer in the ε4-carrying group, and most participants at the time of 

analysis had only 2 longitudinal samples available. While some individuals had 10 years of 

clinical follow-up, others had only 4. Although the results provide support for a scenario in 

which changes in amyloid-related processes precede those of tau or other neurodegeneration-

related processes, additional analyses during a longer period are required to determine the precise 

sequence of biomarker changes within a given individual. Furthermore, as expected in such a 

young, asymptomatic cohort, relatively few participants in this initial report had received a CDR 

greater than 0 during follow-up. Continued evaluation of longer clinical follow-up will provide 

an opportunity to better elucidate the biomarker patterns in middle-age that predict future 

cognitive decline.  

2.5.1 Conclusions 
The present groupwide analyses are supportive of a preclinical period of AD in which biomarker 

patterns consistent with underlying disease pathology are first detectable during middle-age, the 

timing of which is influenced by APOE genotype, with amyloid changes occurring prior to 

neuronal injury. However, proposals to use biomarkers in clinical settings require demonstration 

of their utility on a patient-by-patient basis. Importantly, our preliminary findings of an 



61 
 

association between CSF biomarker positivity in specific individuals who go on to develop 

cognitive deficits within a few years provide support for such potential use.   
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Chapter 3: Longitudinal Decreases in 
Multiple Cerebrospinal Fluid Biomarkers of 
Neuronal Injury in symptomatic Late Onset 

Alzheimer’s Disease 
This work is currently under review. 

3.1 Abstract 
Introduction  
Individuals in early stages of Alzheimer’s disease (AD) are a targeted population for secondary 

prevention trials aimed at preserving normal cognition. Understanding within-person 

biomarker(s) change over time is critical for trial enrollment and design. 

Methods 
Longitudinal cerebrospinal fluid (CSF) samples from the Alzheimer’s Disease Neuroimaging 

Initiative were assayed for novel markers of neuronal/synaptic injury (VILIP-1, Ng, SNAP-25) 

and neuroinflammation (YKL-40) and compared with Aβ42, Tau, and P-Tau181. General linear 

mixed models were used to compare within-person rates of change in three clinical groups 

(cognitively normal, mild cognitive impairment and AD) further defined by β-amyloid status. 

Results 
Levels of injury markers were highly positively correlated. Despite elevated baseline levels as a 

function of clinical status and amyloid-positivity, within-person decreases in these measures 

were observed in the early symptomatic, amyloid-positive AD group. 

Discussion 
Knowledge of within-person biomarker change will impact interpretation of biomarker outcomes 

in clinical trials that are dependent on disease stage. 
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3.2 Introduction 
Clinical trials of potential disease-modifying therapies for Alzheimer’s Disease (AD) have 

failed to slow cognitive decline in patients who have dementia or milder cognitive symptoms 

(e.g., mild cognitive impairment, MCI)169. Since AD pathology begins to develop ~20 years 

before cognitive decline (preclinical AD)27,204, it is possible that trial participants were too far 

along in the disease process for such therapies to impact cognition. Therefore, individuals at 

earlier stages, including the asymptomatic, preclinical stage (defined by biomarkers), are now 

receiving intense focus for secondary prevention trials aimed at preserving normal cognitive 

function. Understanding the patterns of biomarker(s) change over time is critical for defining 

where individuals fall along the pathologic disease cascade. 

Cross-sectional studies indicate that β-amyloid (Aβ)-related biomarkers become abnormal 

first, followed by markers of tau-related neuronal injury, both during the preclinical period205. 

Elevated injury markers in the presence of amyloid positivity then become a strong predictor of 

subsequent cognitive decline44. Interestingly, while regional brain atrophy then ensues, with 

abnormality increasing with symptomatic progression206, a recent study of individuals with 

autosomal dominant AD (ADAD) reported longitudinal decreases in CSF levels of neuronal 

injury markers including Tau, P-Tau181 and visinin-like protein 1 (VILIP-1) in symptomatic 

mutation carriers64, suggesting a slowing of acute neurodegenerative processes and/or a decrease 

in the number of viable neurons contributing to the pools of these markers in this later stage of 

the disease. Regardless of the mechanism, if confirmed in an independent cohort of persons 

developing late onset AD (LOAD), such a pattern will likely have an impact on interpretation of 

biomarker outcomes in clinical trials that is dependent on the disease stage. To this end, the 

present study evaluated the patterns of within-person longitudinal change in a variety of standard 
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(Tau, P-Tau181) and novel (VILIP-1, neurogranin, SNAP-25) CSF neuronal injury biomarker 

levels in individuals spanning the full range of AD, including normal, preclinical AD, MCI due 

to AD and symptomatic AD, and a comparison of these changes with regional brain atrophy and 

cognitive decline. 

3.3 Methods 
ADNI Study Design 
CSF Aβ42, total tau (Tau) and phospho-tau181 (P-Tau), demographic, imaging and cognitive 

data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(http://adniloni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early AD. ADNI participants have been recruited from more than 50 sites 

across the USA and Canada. Regional ethical committees of all institutions approved of the 

study, and all participants provided written informed consent. For up-to-date information, see 

www.adni-info.org.  

Study Participants 
The ADNI cohort in the present study consisted of all cognitively normal (CN) 

participants and those with MCI or AD dementia (AD) with available CSF samples from at least 

two visits as of April 2012. This cohort included 152 individuals across ADNI1, ADNI GO and 

ADNI2 (n=56 CN, n=73 MCI, n=17 AD). Demographic and cognitive data were downloaded in 

August 2015 and were collected as described (adni.loni.usc.edu/methods/documents/). By 

definition, individuals in the CN group all had a clinical dementia rating (CDR) score of 0 at the 

time of lumbar puncture (LP) and a Mini-Mental State Examination (MMSE) score ≥ 24. 

http://adniloni.usc.edu/
http://www.adni-info.org/
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Individuals with MCI also scored ≥ 24 on the MMSE but exhibited subjective memory loss (>1 

standard deviation below the normal mean of the delayed recall of the Wechsler Memory Scale 

Logical Memory II), received a CDR of 0.5, preserved activities of daily living and the absence 

of dementia. The AD group met the definition of probable AD according to criteria established 

by the National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)207, had MMSE 

scores of 20-26 and CDRs of 0.5 or 1.  Groups were designated by clinical diagnosis at the time 

of initial available CSF sample in the longitudinal cohort (defined herein as baseline). 

ADNI Clinical, CSF and Imaging Data 
Scores for MMSE and Alzheimer’s Disease Assessment Scale-cognitive 11 (ADAS11) and 

ADAS13 were downloaded from the LONI site in August 2015 via ADNIMerge R Package. 

Values for CSF Aβ42 (INNOBIA AlzBio3; Fujirebio, Ghent, Belgium) were downloaded at the 

same time from two datasets (UPENNBIOMK4 and UPENNBIOMK6) and were used to define 

amyloid-positivity based on a published, autopsy-confirmed cut-off value (<192 pg/ml)208. For 

statistical analyses, values for Aβ42, total Tau (Tau) and Ptau181 (P-Tau) generated by a single 

lot number of the novel, fully automated, electrochemiluminescent Elecsys® immunoassays 

(Roche Diagnostics, Basel, Switzerland) were downloaded from the LONI site in March 2017 

from a single dataset (UPENNBIOMK9). The Elecsys® system aims to offer a fully automated 

CSF biomarker test for AD capable of achieving In Vitro Diagnostic (IVD) capability and offers 

some improvements over current Research Use Only (RUO) assays including: reduction in 

manual steps, improved precision and accuracy both within labs and between labs, and improved 

lot-to-lot reagent performance. The Elecsys® Aβ42 immunoassay in use is not a commercially 

available IVD assay. It is an assay currently under development and for investigational use only. 
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The measuring range of the assay is 200 (lower technical limit) – 1700 (upper technical limit) 

pg/ml. The performance of the assay beyond the upper technical limit has not been formally 

established. Therefore, values above the upper technical limit have been truncated at 1700 pg/ml. 

In the current study, baseline analyses excluded these data. Longitudinal statistical analyses were 

run with and without these truncated values and performed nearly identically.  

Magnetic resonance imaging (MRI) data for the left and right hippocampal (HP) volume (white 

matter parcellation) and left and right entorhinal cortex (EC) thickness, two regions known to be 

affected early in AD, were also analyzed. EC thickness and HP volume were downloaded in 

November 2016 from the file UCSFFSL_02_01_16. Acquisition of 1.5 Tesla MRI and data 

processing methods are as described (adni.loni.usc.edu/methods/mri-analysis/). Data were 

processed with FreeSurfer v4.4, and only values that passed all quality control (QC) standards 

were included in the analyses. Values for left and right HP and EC thickness were added together 

to create a value for “total” HP volume and EC thickness. 

Novel CSF Analytes 
Samples were analyzed for YKL-40 (also known as chitinase 3-like 1, a marker of 

gliosis/neuroinflammation)209, visinin-like protein 1 (VILIP-1, a neuronal calcium sensor protein 

and marker of neuronal injury)210, neurogranin (Ng, a post-synaptic protein and marker of 

synaptic dysfunction)106 and synaptosomal-associated protein 25 (SNAP-25, a pre-synaptic 

protein and marker of synaptic dysfunction) [19]. YKL-40 was measured with a plate-based 

enzyme-linked immunoassay (ELISA) (MicroVue ELISA; Quidel, San Diego, CA)31. VILIP-

161,62, NG63,69 and SNAP-25 were measured using microparticle-based immunoassays using the 

Singulex (now part of EMD-Millipore; Alameda, CA) Erenna system, and employed antibodies 
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developed in the laboratory of Dr. Jack Ladenson at Washington University. All samples (each 

on the same freeze/thaw cycle) were run in triplicate on a single lot number for VILIP-1, SNAP-

25 and Ng and in duplicate for YKL-40. Within-person longitudinal samples were run on the 

same assay plate to reduce inter- and intra-plate variability. Quality control for VILIP-1, SNAP-

25 and Ng included analysis of three internal standard CSF pools run on each plate and two 

internal pools for YKL-40. See Appendix for assay details.  

Statistical Analysis 
Since the study intent was to compare baseline biomarker levels and their longitudinal change 

over time in individuals who span the AD continuum (from no disease [normal], to preclinical 

AD, to MCI due to AD, to AD), participants in the three diagnostic categories (CN, MCI, AD) 

were further stratified into β-amyloid-positive (Aβ+) versus amyloid-negative (Aβ-) at baseline 

based on the published ADNI CSF Aβ42 cut-off of <192pg/mL208. Baseline characteristics for 

the five resultant groups (CN-, CN+, MCI-, MCI+, AD+) were summarized as mean (standard 

deviation [SD)]) for continuous variables or number (percentage) for categorical variables. 

Group differences among the various measures were assessed using one-way ANOVA and post-

hoc Tukey tests. Correlations between measures were assessed via Spearman correlation. 

Biomarker concentrations, cognitive performance and MRI measures within individuals over 

time were compared among the five groups (all AD individuals were Aβ+) by general linear 

mixed models with random intercepts/slopes at the subject level to allow estimation and 

comparison of within-person rates of change211. In addition to the mean intercept and slope for 

each group (unadjusted models), covariates including age at baseline, APOE ε4 carriage, sex, 

education, and their interactions with subject groups on the intercepts and slopes, were also 

included as fixed effects (see Appendix). All general linear mixed models assumed a subject 
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level random effect on intercept and slope and were fitted using the maximum likelihood 

method. Statistical tests were based on the approximate F or t- tests with denominator degrees of 

freedom approximated by the Satterthwaite methods212. All analyses were performed with SAS 

version 9.4 (SAS Institute Inc.), with statistical significance defined as p < 0.05. 

3.4 Results 

3.4.1 Demographics 
Of the 152 ADNI participants who met the criteria for having longitudinal CSF samples (range 

2-7 LPs over 1-7 years of follow up [mean (SD) = 4.0 (1.62)] and a mean (SD) LP interval of 16 

(8.6) months), four were omitted from the dataset due to missing values for CSF Aβ42 (via 

AlzBio3) required to define baseline amyloid status (Aβ+ vs Aβ-). Participants in the final 

dataset of n=148 were 38% female, between 58 and 90 years of age at the time of initial LP 

(mean [SD] = 75 [7.13]), and 68% were APOE ε4-positive (Table 1). As expected, baseline HP 

volume and EC thickness were different among the groups (CN>MCI>AD) (p<0.0001). 

Performances on MMSE, ADAS11 and ADAS13 were also as expected, with the MCI and AD 

groups performing worse than the CN group (p<0.0001).  

When the clinical groups were dichotomized into amyloid-positive (Aβ+) and amyloid-

negative (Aβ-)208), neuronal injury/inflammation biomarker levels were higher (more AD-like) 

in the Aβ+ compared to the Aβ- groups, both among and within each clinical group (Table 2). 

Positive correlations were observed among the injury markers at baseline, strongest among tTau, 

VILIP-1 and Ng (Spearman r= 0.798-0.853) (Appendix Table 1). SNAP-25 was moderately 

correlated with the other injury markers (r= 0.619-0.720), and as expected, Tau and P-tau 

exhibited the highest positive correlation (r= 0.975). Elecsys Aβ42 was positively correlated with 
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AlzBio3 Aβ42 (r=0.869) and negatively correlated with Tau, P-tau and SNAP-25 (r=-0.214, -

0.324 and -0.240, respectively). YKL-40 was significantly, but weakly, correlated with the injury 

markers (r= 0.307-0.422) but not Aβ42. 

Table 3.1 Study Demographics 

A – Significantly different from CN Aβ- 
B – Significantly different from CN Aβ+ 
C – Significantly different from MCI Aβ- 
D – Significantly different from MCI Aβ+ 
E – Significantly different from AD Aβ+ 
 
Abbreviations: Aβ, amyloid-β status; AD, Alzheimer disease; ADAS 11; Alzheimer’s Disease Assessment 
Scale-cognitive test, version 11 (higher score is worse performance; ADAS 13, Alzheimer’s Disease 
Assessment Scale-cognitive test, version 13 (higher score is worse performance); APOE, apolipoprotein E; 
CDR, Clinical Dementia Rating score; CDR-SB, CDR sum of boxes; CN, cognitively normal; EC, entorhinal 
cortex; HP, hippocampus; LP, lumbar puncture; MCI, mild cognitive impairment; MMSE, Mini-Mental 
State Examination 
  

AD
Aβ- Aβ+ Aβ- Aβ+ Aβ+

N 35 21 18 58 16

Baseline age, mean (SD) 76 (5.7) 76 (3.7) 77 (7.3) 74 (6.5) 74 (6.7)

Gender, F/M (%F) 14/21 (40%) 10/11 (48%) 4/14 (22%) 18/40 (31%) 11/6 (65%)
Education, mean (SD), y 16 (3.1) 16 (3.4) 17 (1.8) 16 (2.8) 15 (3.0)
APOE  ε4 allele, +/- (%+) 3/32 (9%) 9/12 (43%) 0/18 (0%) 40/18 (69%) 13/4 (77%)

# CDR 0/0.5/1, n 35/0/0 21/0/0 0/18/0 0/57/1 0/10/6
CDR-SB, mean (SD) 0.029 (0.12)C-E 0.024 (0.11)C-E 1.25 (0.55)A,B,E 1.61 (0.85)A,B,E 4.24 (1.49)A-D

MMSE, mean (SD) 29.1 (1.1)C-E 29.4 (0.9)C-E 27.6 (1.8)A,B,E 26.8 (1.8)A,B,E 23.7 (1.7)A-D

ADAS 11, mean (SD) 5.3 (2.2)C-E 7.1 (3.3)D,E 9.9 (4.1)A,E 11.7 (5.1)A,B,E 18.7 (6.1)A-D

ADAS 13, mean (SD) 8.4 (3.5)C-E 10.5 (3.9)D,E 15.5 (5.9)A,E 19.5 (7.1)A,B,E 28.9 (7.4)A-D

# LP's  2/3/4/5/6/7, n 0/15/7/8/5/0 0/8/6/4/3/0 0/5/10/2/1/0 2/26/18/5/6/1 1/9/5/1/0/0
LP interval, mean (SD), 

mo 17.01 (9.44)E 17.55 (10.40)E 16.92 (8.98) 15.90 (7.92) 12.73 (2.86)A,B

LP follow-up, mean (SD, 
Range), mo 52.9 (19.7, 23-86)E 55.0 (17.0, 26-85)E 49.8 (17.9, 24-87)E 45.0 (18.9, 16-86)E 30.2 (10.2, 12-50)A-D

Total EC thickness, mean 
(SD), mm 6.88 (0.84)C-E 6.88 (0.95)C-E 6.32 (0.96)A,B,E 6.44 (0.87)A,B,E 5.26 (0.82)A-D

Total HP volume, mean 
(SD), mm3 6577 (815)C-E 6553 (886)C-E 5818 (978)A,B,E 5861 (880)A,B,E 5117 (848)A-D

CN MCI
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3.4.2 Patterns of Neuronal Injury and Neuroinflammatory Markers 
Participant-level CSF biomarker trajectories were plotted for each of the five amyloid-defined 

clinical groups (see Appendix Figure 1 for spaghetti plots). General linear mixed models (with 

random intercepts/slopes at the subject level) were then used to estimate and compare baseline 

biomarker levels and within-person rates of change in the five groups. Results adjusting for sex, 

APOE ε4 status, education, baseline age, and total ventricular volume are provided in the 

Appendix. 

Elecsys® tTau 
Baseline Tau levels were significantly elevated in the AD+ group compared to all other groups 

(all p≤0.01) and the MCI+ compared to the MCI- and CN- (p<0.0001) and  CN+ groups (p=0.02) 

(Table 2). Longitudinally, Tau levels significantly increased in both CN (both p<0.05) and the 

MCI+ groups (p<0.0001) (Figure 1, Table 2). Tau levels decreased longitudinally in the AD+ 

group, but this change did not reach statistical significance (p=0.095). 

Elecsys® pTau 
P-tau levels at baseline were significantly elevated in the AD+ compared to all other groups (all 

p<0.01), MCI+ compared to MCI- and CN- (both p<0.0001) and CN+ groups (p=0.02), and the 

CN+ compared to the MCI- and CN- groups (both p<0.03) (Table 2). Longitudinally, P-tau 

levels significantly increased in the CN+ (p=0.001) and trended toward increase in the MCI+ 

group (p=0.055). Strikingly, P-tau levels significantly declined in the AD+ group (p≤0.0001) 

(Figure 1, Table 2), with rate of change greater than the change in all other groups (p<0.001). 

VILIP-1 
Levels of baseline VILIP-1 were significantly higher in the MCI+ and AD+ compared to both 

the MCI- and CN- groups (all p≤0.01) (Table 2). The amyloid-positive groups did not differ 

from one another (all p>0.05). Longitudinally, as with P-tau, VILIP-1 levels strongly and 
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significantly decreased in the AD+ group (p=0.006), whereas no significant changes were 

observed in the other groups (Figure 1, Table 2).  

SNAP-25 
SNAP-25 values at baseline were significantly higher in the AD+ and MCI+ compared to the 

CN- (both p<0.0003), CN+ (p=0.001 and p=0.01, respectively), and MCI- groups (both 

p<0.0001) (Table 2). Longitudinally, SNAP-25 levels declined significantly in the AD+ group 

(p=0.05), whereas no significant changes were observed in the other groups (Figure 1, Table 2). 

Ng 
Baseline levels of Ng were significantly higher in the AD+ group than the CN- (p=0.003), CN+ 

(p=0.02), and MCI- (p=0.0006) groups, although not between the MCI+ and AD+ groups 

(p=0.10) (Table 2). Levels were also higher in the MCI+ compared to the CN- (p=0.004) and 

MCI- (p=0.02) groups. Longitudinally, Ng markedly and significantly decreased in the AD+ 

group (p<0.0001), whereas no significant changes were observed in the other groups (Figure 1, 

Table 2).  

YKL-40 
In contrast to the markers of neuronal injury, baseline levels and longitudinal patterns of change 

in the neuroinflammatory marker, YKL-40, exhibited a large degree of within-group variability. 

Baseline YKL-40 was significantly higher in the AD+ compared to the MCI- (p=0.04) but not 

the other groups (Table 2). Longitudinally, all groups showed an increase in mean levels over 

time, but this increase was statistically significant only in the MCI+ group (p=0.03) (Figure 1, 

Table 2), perhaps due to less variability (smaller SD) within that group. 

Elecsys® Aβ42 
Although CSF Aβ42 (as measured in ADNI by AlzBio3) was used a priori to define amyloid 

status in the clinical groups, we were also interested in evaluating the patterns of this biomarker 
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using the novel Elecsys® platform. As expected, baseline Aβ42 levels (via Elecsys®) were 

significantly lower in all Aβ+ compared to Aβ42- groups (all p<0.0001) (Table 2). 

Longitudinally, levels decreased in all groups (and at similar rates), although only the AD+ and 

CN- groups reached statistical significance (p=0.04 and p=0.0004, respectively) (Figure 1, 

Table 2). 

Table 3.2 Baseline CSF biomarker levels and estimated within-person annual change over time 

 
A – Significantly different from CN Aβ- 
B – Significantly different from CN Aβ+ 
C – Significantly different from MCI Aβ- 
D – Significantly different from MCI Aβ+ 
E – Significantly different from AD Aβ+ 
F – Statistically significant slope 

AD
Aβ- Aβ+ Aβ- Aβ+ Aβ+

N 35 21 18 58 16
Baseline CSF Biomarkers
Elecsys Aβ42, mean (SD), pg/ml 1413 (284)B,D,E 687 (274)A,C 1404 (318)B,D,E 590 (187)A,C 578 (214)A,C

Elecsys tTau, mean (SD), pg/ml 230 (70.8)D,E 272 (84.9)D,E 215 (68.2)D,E 331 (117.5)A-C,E 407 (167.5)A-D

Elecsys pTau, mean (SD), pg/ml 20.3 (6.30)B,D,E 27.4 (9.56)A,C-E 18.1 (5.83)B,D,E 33.7 (13.62)A-C,E 42.8 (19.90)A-D

VILIP-1, mean (SD), pg/ml 143.3 (44.9)D,E 152.6 (49.8) 140.5 (50.2)D,E 176.7 (61.0)A,C 185.6 (70.1)A,C

SNAP-25, mean (SD), pg/ml 4.45 (1.5)D,E 4.66 (1.4)D,E 3.72 (1.3)D,E 6.01 (2.2)A-C 6.84 (3.3)A-C

Ng, mean (SD), pg/ml 2302 (1066)D,E 2339 (953)E 1962 (945)D,E 2836 (1426)A,C 3383 (1576)A-C

YKL-40, mean (SD), ng/ml 384.1 (20.08) 399.6 (19.4) 361.6 (19.4)E 401.3 (17.87) 471.9 (41.86)C

CSF Biomarker Estimated Annual Slope
Elecsys Aβ42, pg/ml (SE) -20.91 (5.6) -7.96 (7.27) -2.38 (8.4) -7.82 (5.17) -29.48 (14.2)

p value 0.0004F 0.28 0.78 0.13 0.039F

Elecsys tTau, pg/ml (SE) 4.29 (2.1)E 6.75 (2.7)E 1.10 (3.1) 7.55 (1.8)E -7.11 (4.2)A,B,D

p value 0.048F 0.015F 0.72 <0.0001F 0.095
Elecsys pTau, pg/ml (SE) 0.39 (0.2)E 0.88 (0.3)C,E 0.028 (0.3)B,E 0.35 (0.2)E -1.65 (0.4)A-D

p value 0.069 0.0013F 0.93 0.055 <0.0001F

VILIP-1, pg/ml (SE) -0.23 (1.0)E 0.89 (1.2)E -0.21 (1.4)E -0.96 (0.9)E -6.31 (2.3)A-D

p value 0.81 0.48 0.88 0.27 0.006F

SNAP-25, pg/ml (SE) -0.0453 (0.042) 0.00279 (0.053) 0.00715 (0.060) -0.0387 (0.037) -0.172 (0.088)
p value 0.28 0.96 0.91 0.29 0.05F

Ng, pg/ml (SE) -2.74 (26.1)E 19.88 (33.6)E 15.5521 (38.2)E -38.6334 (23.6)E -232.43 (58.9)A-D

p value 0.92 0.56 0.68 0.10 <.0001F

YKL-40, ng/ml (SE) 4.51 (3.5) 6.29 (4.3) 5.54 (4.9) 6.37 (3.0) 1.68 (7.1)
p value 0.20 0.15 0.26 0.035F 0.81

CN MCI
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Bold – Slope that is statistically different from zero 
All significance at least p<0.05 
 
Abbreviations: Aβ, amyloid-β status; AD, Alzheimer disease; CN, cognitively normal; MCI, mild cognitive 
impairment; Ng, neurogranin; P-tau, phospho-tau181; SNAP-25, synaptosomal associated protein-25; 
Tau, total tau; VILIP-1, visinin-like protein 1 
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Figure 3.1 Baseline Biomarker Values and Estimated Within-person annual Change in CSF 
Biomarkers 
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Baseline biomarker values (top panel) and estimated group slopes for Aβ42 (A), tTau (B), pTau (C), 
VILIP-1 (D), SNAP-25 (E), Ng (F), and YKL-40 (G). Baseline is shown for each individual, estimated 
group slopes are shown as average annual change in 5 bins defined by diagnostic group and amyloid 
status, extrapolated to show 5 years of change.   

A Different from CN- group 

B
 Different from CN+ group 

C Different from MCI+ group 

D Different from AD+ group 

E Different from MCI group 

* Different from 0. 

3.4.3 Cognitive Measures 
Cognitive Measures 
As expected, cognitive performance differed with clinical diagnosis, particularly in the Aβ+ 

symptomatic groups. Furthermore, Aβ+ individuals exhibited longitudinal changes in MMSE 

and ADAS11/13 that are consistent with a worsening of cognitive performance and often at a 

faster rate than the Aβ- groups. See Appendix Figure 2 for spaghetti plots.   

MMSE   
Baseline MMSE was lower (indicative of worse performance) in the AD+ group than any other 

group (all p<0.0001), lower in the MCI+ compared to the MCI- (p=0.03) and both CN groups 

(both p<0.0001), and in the MCI- compared to both CN groups (both p<0.03) (Table 3). In the 

AD+ and MCI+ groups, MMSE was decreasing significantly (both p<0.0001) and at a faster rate 

in the AD+ compared to the MCI+ group (p<0.0001) (Table 3).  

ADAS11 and ADAS13 
At baseline, ADAS11 was significantly elevated (indicating worse performance) in the AD+ 

compared to both CN groups (both p<0.0001), both MCI groups compared to both CN groups 

(both p<0.02), and in the AD+ compared to both MCI groups (both p<0.0001) (Table 3). 
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Longitudinally, ADAS11 score significantly increased in the AD+ and MCI+ groups (both 

p<0.0001) and at a significantly faster rate in the AD+ versus the MCI+ group (p<0.0001) 

(Table 3).  

Baseline ADAS13 performance was similar to ADAS11 except that the MCI+ group was also 

significantly elevated (worse performance) compared to the MCI- group (p=0.05) (Table 3). 

Longitudinally, ADAS13 was significantly increasing in all three Aβ+ groups (all p<0.004), at a 

faster rate in the AD+ compared to the MCI+ (p=0.0005) and CN+ (p<0.0001) groups, and at a 

faster rate in the MCI+ than the CN+ group (p=0.02) (Table 3).  

3.4.4 Volumetric MRI Measures 
As expected, HP volume and EC thickness were smaller at baseline in the AD+ compared to the 

other groups. However, all but the CN- group exhibited significant atrophy over time, albeit at 

different rates. See Appendix Figure 3 for spaghetti plots.   

Hippocampal Volume 
HP volume at baseline was significantly smaller in the AD+ compared to all other groups 

(p<0.001 for both CN groups; p=0.03 for both MCI groups) and in both MCI groups compared 

to the CN groups (MCI- vs CN- [p=0.003] and CN+ [p=0.01]; MCI+ vs CN- and CN+ [both 

p≤0.0007]) (Table 3). Longitudinally, all groups exhibited significant HP shrinkage over time 

(all p≤0.0001) (Table 3). Volume in the AD+ and MCI+ groups decreased at a significantly 

faster rate than in both CN groups (p≤0.003 and p≤0.001, respectively) and the MCI- group 

(p=0.04 and p=0.003, respectively). The rate of atrophy in the MCI- group was faster than the 

CN- group (p=0.0009) and in the CN+ compared to the CN- group (p=0.03).  

Entorhinal Cortex Thickness 
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At baseline, EC thickness was significantly smaller in the AD+ compared to all other groups 

(p≤0.0003), in the MCI+ compared to the CN groups (p=0.0004 for CN- and p=0.01 for CN+) 

(Table 3). MCI-was also significantly thinner than the CN- group (p=0.03) and at the 

significance level compared to the CN+ group (p=0.05). Longitudinally, EC thickness was 

declining in all but the CN- group (all p≤0.0003) and at a faster rate in the AD+ compared to the 

CN+ (p=0.005) and MCI- (p=0.007) groups (Table 3). The EC in the MCI+ group was also 

shrinking more quickly than the CN+ and MCI- groups (both p≤0.0001).  

Table 3.3 Baseline cognitive performance and imaging measures and estimated within-person 
annual change over time 

 
A – Significantly different from CN Aβ- 
B – Significantly different from CN Aβ+ 
C – Significantly different from MCI Aβ- 
D – Significantly different from MCI Aβ+ 
E – Significantly different from AD Aβ+ 

AD
Aβ- Aβ+ Aβ- Aβ+ Aβ+

N 35 21 18 58 16
Baseline Cognitive and Imaging Biomarkers

MMSE, mean (SD) 29.1 (1.1)C-E 29.4 (0.9)C-E 27.6 (1.8)A,B,D,E 26.8 (1.8)A-C,E 23.7 (1.7)A-D

ADAS 11, mean (SD) 5.3 (2.2)C-E 7.1 (3.3)C-E 9.9 (4.1)A,B,E 11.7 (5.1)A,B,E 18.7 (6.1)A-D

ADAS 13, mean (SD) 8.4 (3.5)C-E 10.5 (3.9)C-E 15.5 (5.9)A,B,D,E 19.5 (7.1)A-C,E 28.9 (7.4)A-D

Total EC thickness, mean (SD), 
mm 6.88 (0.84)C-E 6.88 (0.95)C-E 6.32 (0.96)A,B,E 6.44 (0.87)A,B,E 5.26 (0.82)A-D

Total HP volume, mean (SD), 
mm3 6577 (815)C-E 6553 (886)C-E 5818 (978)A,B,E 5861 (880)A,B,E 5117 (848)A-D

Cognitive and Imaging Estimated Annual Slope

MMSE, points (SE) -0.051 (0.2)D,E -0.22 (0.2)D,E -0.039 (0.2)D,E -1.26 (0.1)A-C,E -2.49 (0.3)A-D

p value 0.76 0.30 0.87 <0.0001F <0.0001F

ADAS 11, points (SE) 0.20 (0.3)D,E 0.75 (0.4)D,E 0.30 (0.4)D,E 2.06 (0.3)A-C,E 4.74 (0.6)A-D

p value 0.52 0.06 0.50 <0.0001F <0.0001F

ADAS 13, points (SE) 0.37 (0.3)D,E 1.25 (0.4)D,E 0.53 (0.5)D,E 2.43 (0.3)A-C,E 4.98 (0.7)A-D

p value 0.27 0.0042F 0.27 <0.0001F <0.0001F

Total EC thickness, mm (SE) -0.0401 (0.022)B-E-0.118 (0.023)A,D,E-0.118 (0.031)A,D,E -0.261 (0.018)A-C -0.295 (0.057)A-C

p value 0.069 <0.0001F 0.0003F <0.0001F <0.0001F

Total HP volume, mm3 (SE) -59.4 (14.5)B-E -111.2 (18.2)A,D,E -145.9 (20.5)A,D,E -216.3 (11.9)A-C -230.8 (36.0)A-C

p value 0.0001F <0.0001F <0.0001F <0.0001F <0.0001F

CN MCI
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F – Statistically significant slope 
Bold – Slope that is statistically different from zero 
All significance at least p<0.05 
 
Abbreviations: Aβ, amyloid-β status; AD, Alzheimer disease; ADAS 11; Alzheimer’s Disease Assessment 
Scale-cognitive test, version 11 (higher score is worse performance); ADAS 13, Alzheimer’s Disease 
Assessment Scale-cognitive test, version 13 (higher score is worse performance); CN, cognitively normal;  
EC, entorhinal cortex; HP, hippocampal; MCI, mild cognitive impairment; MMSE, Mini-Mental State 
Examination (0-30, with 30 as perfect score) 

 

3.5 Discussion 
Our primary finding is the decrease over time in the concentration of several different CSF 

markers of neuronal injury (Tau, P-tau, VILIP-1, SNAP-25, Ng) in individuals once they have 

developed symptomatic AD. In contrast, elevations in Tau, but not the other injury markers, were 

observed at earlier stages (amyloid-positive MCI and CN groups). These findings replicate 

similar longitudinal patterns (for Tau, P-tau and VILIP-1) reported in a cohort of autosomal-

dominant AD64, thus supporting a commonality in neuropathologic processes in sporadic and 

genetic forms of the disease. Knowledge of such within-person patterns of change has important 

implications for clinical trials in MCI and early stage AD in terms of the use of biomarker 

concentrations as pathologic endpoints in determining treatment efficacy for neuronal integrity. 

While all the injury markers decreased over time in the AD+ group, the reduction in Ng was 

especially robust. Neurogranin is a calmodulin-binding postsynaptic neuronal protein213,214 

thought to be involved in activity-dependent synaptic plasticity and long-term potentiation215. 

Levels are reduced in AD brain216,217 and elevated in AD CSF73,106 , with high levels predictive 

of progression from mild cognitive impairment (MCI) to AD dementia68,69,72,218. Since elevations 

in CSF Ng are associated with brain atrophy69,218 and reduced brain glucose uptake218, it is 

considered a marker of synaptic dysfunction/loss. 
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Although less is known about SNAP-25 (a pre-synaptic t-SNARE molecule that plays a crucial 

role in calcium-dependent exocytosis of synaptic vesicles) in AD, like Ng, levels are reduced in 

brain219 and elevated in CSF80 compared to controls. Although both synaptic markers were 

decreasing longitudinally in the AD+ group, Ng was dropping at more than twice the rate as 

SNAP-25 (annual decreases of 6.9% vs 2.5%, respectively) and the other markers (1.8% Tau, 

3.9% P-tau, and 3.4% VILIP). Interestingly, Aβ42 was also significantly decreasing annually by 

5% in the early AD+ group but less so in the other groups. Although levels of Aβ42 are known 

to drop early in the disease and then plateau as amyloid continues to accumulate204, 63% (10/16) 

of individuals in the current AD group were at very early symptomatic stages (CDR 0.5). 

Baseline levels of YKL-40, an astrocyte-derived protein with presumed neuroinflammatory 

properties220, also increased with clinical severity as reported previously221, but we observed a 

high level of within-group variability in longitudinal patterns. It is likely that YKL-40 reflects 

neuroinflammatory components not specifically due to AD. Interestingly, levels appeared to 

increase with age in the AD+ group (Appendix Figure 1) as has also been observed in 

cognitively normal middle-aged individuals31. Further studies regarding the role of YKL-40 in 

neurodegenerative diseases are warranted222,223. 

Despite the fact that there were strong positive correlations among levels of the various injury 

markers, consistent with previous reports69,70, discordance in patterns of longitudinal change over 

time for tTau was observed in the amyloid-positive MCI group (robust increases in Tau but no 

statistical change in the other markers, including P-tau). CSF Tau levels are known increase in 

response to acute neuronal death as occurs in response to stroke, traumatic brain injury and 
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Creutzfeld-Jakob disease (CJD)224, thus suggesting a robust phase of neuronal death and/or 

alterations in the normal metabolism of tau at the very early (MCI) symptomatic stage of AD, the 

time during which the first signs of cognitive impairment are evident. The reason(s) for a lack of 

within-person increase in these other injury markers remains unclear but may have something to 

do with the relatively short follow-up time in the current cohort (mean 4.0 ± 1.61 years) and/or 

the lack of information regarding how long a given individual had been in their designated 

clinical group at the time of baseline LP (i.e., where in the natural progression of the disease). 

Alternatively, such discordance may indicate that these markers reflect different processes 

associated with synaptic dysfunction and/or neuronal injury70. A full understanding of biomarker 

trajectories will require serial samples being collected from a larger number of individuals over a 

long period of time as they progress from one clinical stage to the next. 

The biological reason(s) for reductions in CSF injury markers over time in early AD is unclear. 

In fact, very little is known about the normal metabolism of these markers that would lead to 

their appearance in the CSF in both normal and pathological settings. While it is conceivable that 

such reductions simply reflect a general dilution of CSF proteins that would come with 

increasing ventricular volume associated with overall brain atrophy, reductions were still 

observed after controlling for ventricular volume.  It is possible that longitudinal reductions from 

an elevated baseline during early AD reflect a slowing of acute neurodegenerative processes with 

symptomatic disease progression and/or neuronal death leading to a smaller number of neurons 

that remain and contribute to the pool in CSF. Unlike structural MRI and amyloid (and tau) PET 

imaging measures that reflect cumulative change over the course of the disease, CSF measures 

reflect a snapshot in time, thus measuring different things. Indeed, hippocampal and EC atrophy 

continued over the course of the disease even in the face of decreasing levels of injury markers in 
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the CSF. It is therefore not unexpected that there exists some discordance when defining 

biomarker positivity (and notably for neuronal injury), as a function of imaging versus CSF225. 

This issue is important to consider when selecting biomarker modalities (CSF and/or imaging) 

for use in screening and/or outcome measures in clinical trials. 

This study is not without limitations. The cohort with longitudinal CSF samples available for 

analysis was relatively small which, when divided into five groups, may limit statistical power to 

detect longitudinal changes, especially in the preclinical and early symptomatic AD groups. 

Although serial LP follow-up was longer than in previous longitudinal ADNI CSF studies226,227, 

it was still relatively short (3-5 years). Also, despite the groups being dichotomized as amyloid-

positive versus -negative in order to ascertain plaque status in the clinical groups, there was 

considerable overlap in clinical and biomarker patterns between individuals, especially in the 

MCI and AD groups. Finally, due to the small numbers of individuals in the clinical/biomarker 

groups, statistical models were not adjusted for multiple comparisons. 

3.5.1 Conclusions 
The present results underscore the importance of evaluation of true longitudinal, serial measures 

of CSF biomarkers from individuals as they progress through the normal course of the disease as 

opposed to the more traditional approach of inferring longitudinal change by comparing cross-

sectional data from groups of individuals at different disease stages. Indeed, concentrations of 

each of the markers have been reported to be elevated in AD compared to MCI and cognitively 

normal controls221. While we also observed such elevations in baseline levels of these injury 

markers among the different clinical/amyloid groups, the within-person patterns of change over 

time were different. For clinical trial purposes, given the stage-specific differences in the 

direction of true longitudinal change in these biomarkers, a “positive” biomarker outcome would 
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be different depending on the characteristics of the trial cohort. For example, a slowing of the 

course of neuronal injury may be indicated by a slowing of the rate of increase in CSF Tau in 

individuals who are early in the disease process (MCI), but perhaps a stabilization or even a 

slowing or reversal of the downward trajectory later in the disease (mild AD), potentially 

reflected as a longitudinal increase or as no decrease in this marker. Such possibilities warrant 

consideration in clinical trial design. 
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Chapter 4: ACS and ADNI Case Studies 
In the previous chapters, data was discussed that covered CSF and imaging biomarkers across 

two very different cohorts. Because biomarker investigation is not yet at the level of single-

person analysis, the data presented thus far has involved the grouping of individuals within each 

cohort by similar risk factors – APOE genotype and age for the ACS in Chapter 2 and CSF 

amyloid positivity and cognitive status for the ADNI study in Chapter 3 – and outlining baseline 

and longitudinal characteristics within each risk factor grouping. Elucidating biomarker patterns 

in this way is only one step forward; for a biomarker or panel of biomarkers to be useful, they 

must be able to identify disease within an individual. The current chapter is dedicated to 

exploring biomarker profiles in specific individuals chosen from both the ACS and ADNI 

Cohorts.  

4.1 Case Studies from the ACS Cohort 
The ACS was a particularly interesting cohort to study longitudinally because of the relatively 

young age at baseline (45-74 years) of study participants. It also represented a significant 

challenge in that few participants showed cognitive decline during their participation in the study 

(14 of 169, 8%), even as of the writing of this document in October 2017, forcing reliance on 

biomarker behavior as the primary indicator of AD.  

4.1.1 Methods 
To best visualize longitudinal change, the case study cohort was restricted from the ACS cohort 

defined in Chapter 2 to only individuals with 3 or 4 serial LP’s, then defined by amyloid status 

according to CSF Aβ42 levels, see Table 4.1 for details. Ten individuals were Aβ- at baseline 

but converted to Aβ+ at a future LP, defined as having levels above and below 1,041 pg/ml CSF 

Aβ42, respectively, according to the cutoff defined in Chapter 2; this group is identified as the 
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converter group (Aβ42 Converter). Thirteen individuals had baseline levels of CSF Aβ42 below 

the cutoff at baseline and all follow-up LP’s, hereafter identified as stable amyloid positive 

(Stable Aβ42+). Thirteen individuals had CSF Aβ42 levels >1,041 pg/ml at baseline and all 

follow up LP’s, identified as stable amyloid negative (Stable Aβ42-). 

Multiple graphing paradigms were considered for showing CSF Aβ42, Aβ40, Tau, P-tau181, 

YKL-40, VILIP-1, and the Aβ42/Aβ40 and Tau/Aβ42 ratios on a single graph. It was determined 

after finalizing each paradigm that the Aβ42/Aβ40 ratio, VILIP-1, and YKL-40 were too variable 

to be of use on an individual basis in this cohort. The only CSF biomarkers graphed in Figures 

4.1-4.6, therefore, were CSF Aβ42, Tau, P-tau181, and the Tau/Aβ42 ratio. Each figure shows 

graphs for individuals within 5-year age bins by baseline LP: 45-49 years old, 50-54 years old,  

55-59 years old, 60-64 years old, 65-69 years old, and 70-74 years old at baseline. 

In determining which graphing paradigm to best illustrate the longitudinal changes of multiple 

biomarkers, a number of options were considered. Transforming each biomarker to a z-score, 

while putting all biomarkers on the same scale, gave a skewed picture of the case study data 

because the ACS dataset biomarkers are quite homogenous and therefore z-scores largely 

centered close to the mean for each of the 36 individuals in the case study cohort. Percent change 

from BL was also considered, but this only gave an indication of whether biomarkers were 

changing within an individual and in what direction – a critical piece of data was lost because 

percent change does not take in to account the original biomarker level, which is particularly 

important when considering biomarker cutoffs or positivity. The last considered paradigm is 

common in AD CSF biomarker research and involves splitting a cohort in to tertiles for analysis. 

However, because the ACS case study cohort was small, increased granularity was required to 

see differences within and between individuals, so quintiles were calculated for each CSF 
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biomarker based on the overall ACS cohort. For each of the 36 individuals in the case study 

cohort, the baseline level of each biomarker was graphed as a quintile (1-5), allowing a 

straightforward visualization of the baseline biomarker levels within each individual in the 

context of the ACS cohort as a whole. 

Most individuals, though, remained within a given quintile for each followup LP which gave the 

impression of no longitudinal change when followup was also graphed as a quintile. As an 

example, the quintiles for Aβ42 are: Q1, 310-768 pg/ml; Q2, 769-1226 pg/ml; Q3, 1227-1683 

pg/ml; Q4, 1684-2141 pg/ml; and Q5 2142-2599 pg/ml. A given individual could have a baseline 

Aβ42 level of 1224 pg/ml and a follow up of 770 pg/ml, a substantial drop in concentration, and 

still be graphed within the second quintile for both time points, resulting in the visual of a 

straight line between the baseline and first followup LP. The final paradigm considered was 

unorthodox, but for visualization purposes allowed the comparison of all CSF biomarkers by 

graphing baseline in quintiles, while each followup LP was graphed as absolute percent change. 

Again, as an example, if an individual had a baseline CSF Aβ42 value of 1224 pg/ml, time 0 (T0) 

would be visualized at quintile 2. For a followup value of 770 pg/ml, the percent change from T0 

to T1 is -63%. In the following figures, this translated to T0 = “2” and T1 = “1.26”. The absolute 

percent change is the same, whether discussing the original biomarker level or the quintile proxy, 

and graphing in this manner allowed the visualization of baseline status and the magnitude and 

direction of change for each of the 5 biomarkers on a single, within-person graph.  

A second set of graphs was designed to show biomarker changes within the overall context of 

age because the non-core biomarkers VILIP-1, YKL-40, and the Aβ42/Aβ40 Ratio were difficult 

to interpret on a within-person level – potentially due to age-related influences on these CSF 

biomarker values. In this graphing paradigm all individuals in the stable Aβ42- (n=13), Aβ42 
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converters (n=10), and stable Aβ42+ (n=13) were graphed by group Aβ42 status. Instead of 

baseline biomarker being represented as a quintile at T0, baseline quintile is graphed at the age 

of each individual baseline LP; all follow up LP’s are graphed as absolute percent change at the 

corresponding age at LP. Each Aβ42 status group is represented by two graphs, for a total of six 

graphs in Figure 4.7: the core biomarkers and Aβ40 are contained in one graph and the non-core 

biomarkers VILIP-1, YKL-40, and Aβ42/Aβ40 Ratio are on a second graph. Baseline quintile 

and absolute percent change for the core biomarkers and Aβ40 are identical to the data graphed 

in Figures 4.1-4.6.  

4.1.2 Results 
The case study cohort was split in to six groups based on baseline age matching – Group 1, 45-

49 years; Group 2, 50-54 years; Group 3, 55-59 years; Group 4, 60-64 years; Group 5, 65-69 

years; Group 6, 70-74 years. Table 4.1 contains demographic information on each participant. 

Of the 36 individuals comprising the case study cohort: 23 were female (64%), 11 had at least 

one APOE ε4 allele (31%), 6 had one ε2 and one ε3 allele (17%), and 19 had two ε3 alleles 

(53%) (percentages add up to 101 due to rounding). After baseline LP, each of the 36 individuals 

had between 4 and 9 years of follow up LP data with LP’s performed approximately every 3 

years, and between 7 and 13 years of clinical follow up. Only 4 of 36 individuals were assigned a 

CDR >0 at any point during clinical follow up (11%), and these were exclusively in the stable 

Aβ42+ group. Statistical analyses were not performed on this cohort for two reasons: (1) 

individuals were selected from a volunteer population already considered to be different from the 

general population due to recruitment based on a family history of AD (as outlined in Chapter 2) 

and high levels of education and (2) only 36 individuals are represented in this cohort. 
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Table 4.1. Demographic Information on the 36 ACS Case Study Cohort Individuals. 
 

 

Stable Aβ42- Aβ42 Converter Stable Aβ42+ 

n 13 10 13 

45-49 Years at BL LP 

 

A 
 

B D E 
 

C 

 Avg. LP Interval (Yr) 

 

4.0 

 

3.0 2.9 3.2 

 

2.9 

 LP Followup (Yr)  8  6 6 6  6  

Clinical Followup 

(Yr) 

 

12 

 

12 9 9 

 

10 

 Aβ42 Conversion  --  Year 3 Year 3 Year 7  --  

Clinical Followup 

After Conversion (Yr) 

 

-- 

 

9 6 2 

 

-- 

 Clinical Status    CN  CN CN CN  CN 

 

PiB Status 

 

Stable 

Negative 

 

-- -- 
Stable 

Negative 

 

Stable 

Negative 

 Sex  M  M F F  F  

APOE ε Alleles  3/3  3/3 3/3 3/3  3/3  
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Table 4.1 Cont. 

50-54 Years at BL LP F I K G J 
  

H 

 Avg. LP Interval (Yr) 2.9 3.1 3.2 3.0 3.1 
  

3.2 

 LP Followup (Yr) 6 9 6 6 6   7  

Clinical Followup 

(Yr) 
9 12 12 12 9 

  
12 

 Aβ42 Conversion -- -- -- Year 3 Year 6   --  

Clinical Followup 

After Conversion (Yr) 
-- -- -- 9 3 

  
-- 

 Clinical Status  CN CN CN CN CN   CN  

PiB Status 

Stable 

Negative 
-- -- -- Year 6 

  
-- 

 Sex F M M F M   M  

APOE ε Alleles 3/4 3/3 2/3 4/4 3/4   2/3  
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Table 4.1 Cont. 

55-59 Years at BL LP L O 
 

M P 
 

N Q R 

Avg. LP Interval (Yr) 3.1 2.9 
 

3.4 3.1 
 

3.0 3.3 3.1 

LP Followup (Yr) 9 6  7 9  6 7 6 

Clinical Followup 

(Yr) 
12 13 

 
10 13 

 
11 9 9 

Aβ42 Conversion -- --  Year 7 Year 9  -- -- -- 

Clinical Followup 

After Conversion (Yr) 
-- -- 

 
3 4 

 
-- -- -- 

Clinical Status  
CN CN  CN CN  CN CN 

CDR 0.5 

at year 9 

PiB Status 
-- -- 

 
-- Year 9 

 

Stable 

Negative 

PiB+ at 

year 3 

Stable 

Positive 

Sex F F  F M  M F F 

APOE ε Alleles 3/3 2/3  3/3 3/3  3/3 3/3 4/4 
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Table 4.1 Cont. 

60-64 Years at BL LP S V X 
 

T 
 

U W 
 

Avg. LP Interval (Yr) 2.1 3.1 3.3  2.7  3.1 3.0  

LP Followup (Yr) 6 6 7  5  6 9  

Clinical Followup 

(Yr) 
10 10 9    8 12  

Aβ42 Conversion -- -- --  Year 3  -- --  

Clinical Followup 

After Conversion (Yr) 
-- -- --    -- --  

Clinical Status CN CN CN 
   

CN CN 
 

PiB Status 

Stable 

Negative 

Stable 

Negative 

Stable 

Negative 
 --  

Stable 

Positive 

Stable 

Positive 
 

Sex F M F  F  F F  

APOE ε Alleles 3/3 3/3 3/3  3/4  3/4 3/3  
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Table 4.1 Cont. 

65-69 Years at BL LP Y BB DD 
 

Z 
 

AA CC EE 

Avg. LP Interval (Yr) 2.1 2.5 2.6  3.0  3.0 3.1 3.1 

LP Followup 4 5 5  6  6 6 6 

Clinical Followup 

(Yr) 
8 9   10  9 9 10 

Aβ42 Conversion -- -- --  Year 6  -- -- -- 

Clinical Followup 

After Conversion (Yr) 
-- -- --  4  -- -- -- 

Clinical Status 

CN CN   CN  CN 

CDR 0.5, 

Yr 4; CDR 

1, Yr 9 

CN 

PiB Status 

Stable 

Negative 
-- 

Stable 

Negative 
 

Stable 

Negative 
 Year 6 

Stable 

Positive 

Stable 

Negative 

Sex F F M  M  F M M 

APOE ε Alleles 2/3 2/3 2/3 
 

3/4 
 

3/4 3/4 3/3 
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Table 4.1 Cont. 

70-75 Years at BL LP 
 

FF 

  

GG 

 

HH II JJ 

Avg. LP Interval (Yr)  3.0   3.1  2.8 2.5 3.0 

LP Followup (Yr)  6   6  6 5 6 

Clinical Followup 

(Yr) 
 10   7  10 9  

Aβ42 Conversion  --   Year 3  -- -- -- 

Clinical Followup 

After Conversion (Yr) 
 --   4  -- -- -- 

Clinical Status  
 

CN 
  

CN 
 

CN 

CDR 0.5, 

Yr 6; CDR 

1, Yr 9 
 

PiB Status 
 --   --  

Stable 

Positive 

Stable 

Positive 

Stable 

Positive 

Sex  F   F  F F F 

APOE ε Alleles 
 

3/3 
  

3/3 
 

3/4 3/3 3/4 

The cohort was split in to 6 bins by baseline age: 45-49 years, 50-54 years, 55-59 years, 60-64 years, 65-69 years, and 70-74 years. Within each 
age group, individuals were further separated by amyloid status:  stable Aβ42- (BL and Followup CSF Aβ42 values all above 1,041 pg/ml), Aβ42 
Converter (declining from CSF Aβ42 >1,041 pg/ml at BL to <1,041 pg/ml during Followup), and stable Aβ42+ (BL and Followup CSF Aβ42 
values all below 1,041 pg/ml).  
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Average LP interval and LP followup indicate the frequency and duration of LP followup from LP baseline.  

Clinical Followup in years accounts for years from LP baseline to the most recent clinical examination.   

Aβ42 Conversion indicates number of years after baseline LP conversion occurred, while Clinical Followup After Conversion indicates the 
number of years after exhibiting Aβ42 positivity converters had clinical followup information available.  

Clinical Status accounts for the latest clinical examination in the case of cognitively normal (CN) individuals while, for those who progress from 
CN to a CDR 0.5 or 1, the year of conversion is indicated.   

The letters A-JJ identify each individual allowing comparison between Table 4.1 and Figures 4.1-4.6. 
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Figure 4.1 Core CSF Biomarkers and CSF Aβ40 for Individuals from 45-49 Years Old at Baseline Lumbar Puncture 

Each graph represents a single individual from the ACS Case Study cohort, with each color representing a different biomarker (Red, Aβ42; 
Orange, Aβ40; Dark Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with 
T0 indicating baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change 
from the baseline biomarker level. Left column, stable Aβ42-; middle column, Aβ42 converter; right column, stable Aβ42+. Black arrows indicate 
the time of Aβ42 transition from negative to positive during study follow up. 
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Figures 4.1 through 4.6 illustrate core and Aβ40 biomarkers on a within-person basis. The 

alphabetical labels in Table 4.1 correspond to each individual graph in Figures 4.1-4.6. The core 

biomarkers (CSF Aβ42, Tau, and P-tau181) and CSF Aβ40 are graphed on a single graph for each 

individual. Each figure encompasses a five-year age bin at baseline LP (Figure 4.1, 45-49 years 

old; Figure 4.2, 50-54 years old; Figure 4.3, 55-59 years old; Figure 4.4, 60-64 years old; 

Figure 4.5, 65-69 years old; and Figure 4.6, 70-74 years old), and within each figure the left 

column are stable Aβ42- individuals, the middle column are Aβ42 converters, and the right 

column are stable Aβ42+ individuals. There is a distinctly different biomarker profile for each 

Aβ42 classification, with stable Aβ42- individuals having lower Tau(s) at baseline, Quintile 1 or 

2 with the exception of individual “O”, and Tau/Aβ42 Ratios in the first quintile at BL exhibiting 

little change throughout follow up. Similarly, Aβ42 converters had low Tau(s) in Quintile 1 or 2 

at baseline but were more likely to increase over time than stable Aβ42- individuals throughout 

follow up. In contrast, many of the stable Aβ42+ individuals exhibited levels of Tau(s) and 

Tau/Aβ42 in Quintile 1-3 at baseline, though over time levels of Tau(s) and, to a greater extent, 

Tau/Aβ42 increased more than in either the stable Aβ42- or Aβ42 converters. CSF Aβ40 in most 

individuals was in the same quintile as Aβ42 and followed similar longitudinal trajectories, but 

was less consistent than the core biomarkers.  

Individuals in the center, Aβ42 converter columns of Figures 4.1-4.6 were marked with a black 

arrow indicating the LP at which their CSF Aβ42 status changed from – to +. None of these 

individuals or the Aβ42- individuals exhibited a CDR >0.5 at any time from baseline LP through 

the most recent clinical assessment; for the stable Aβ42- group, clinical follow up lasted between 

8 and 13 years from baseline LP and for the Aβ42 converter group, clinical follow up lasted 
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Figure 4.2 Core CSF Biomarkers and CSF Aβ40 for Individuals from 50-54 Years Old at Baseline Lumbar Puncture  

Each graph represents a single individual from the ACS Case Study cohort, with each color representing a different biomarker (Red, Aβ42; 
Orange, Aβ40; Dark Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with 
T0 indicating baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change 
from the baseline biomarker level. Left column, stable Aβ42-; middle column, Aβ42 converter; right column, stable Aβ42+. Black arrows indicate 
time of Aβ42 transition from negative to positive. 
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between 7 and 13 years from baseline LP.  In contrast, 4 of 13 individuals in the Aβ42+ group 

(31%) were assigned a CDR of 0.5 or 1 at some point during clinical follow up from baseline LP, 

which lasted between 8 and 12 years.  Individual R (Figure 4.3) received a CDR 0.5 10 years 

after baseline LP; CSF Aβ42 was considered positive even at baseline and remained stable, while 

Tau and P-tau181 were in the second quintile but increasing over time. The Tau/Aβ42 Ratio began 

in the third quintile and increased substantially throughout follow up. Individual CC (Figure 4.5) 

received a CDR 0.5 at 4 years after baseline LP, which further progressed to a CDR 1 9 years 

after baseline LP. The CSF Aβ42 level was in the second quintile, and decreasing slightly while 

the Tau(s) and Tau/Aβ42 Ratio were increasing over time.  Individual HH (Figure 4.6) received 

a CDR 0.5 at 9 years after baseline LP, though this returned to a CDR 0 at 10 years.  The Tau(s) 

and Tau/Aβ42 Ratio patterns show an increase followed by a decrease between years 4 and 6 

after baseline LP while Aβ40 in individual HH is the only instance exhibiting a longitudinal 

increase in Aβ40 in the ACS Case Study cohort. Individual II (Figure 4.6) received a CDR 0.5 at 

7 years after baseline LP and a CDR 1 at 9 years after baseline. While the Tau(s) were only in 

the first Quintile at baseline and increasing slightly over time, the Tau/Aβ42 Ratio was in 

Quintile 2 at baseline and exhibited large increases longitudinally. 

Graphing individuals by baseline age bin, while informative, does not give a visual sense of how 

longitudinal biomarker changes may perform across a large age range within Aβ42-, Aβ42 

converter, and Aβ42+ groups. To better visualize this, Figure 4.7 was created to show biomarker 

changes across the entire middle-age range of the ACS cohort (45-74 years of age). While 

difficult to pinpoint biomarker behavior on a single-individual basis, this did better represent 

biomarker changes across nearly a 30-year span during middle-age. 
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Figure 4.3 Core CSF Biomarkers and CSF Aβ40 for Individuals from 55-59 Years Old at Baseline Lumbar Puncture 

Each graph represents a single individual from the ACS Case Study cohort, with each color representing a different biomarker (Red, Aβ42; 
Orange, Aβ40; Dark Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with 
T0 indicating baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change 
from the baseline biomarker level. Left column, stable Aβ42-; middle column, Aβ42 converter; right column, stable Aβ42+. Black arrows indicate 
time of Aβ42 transition from negative to positive, red arrows indicate a Clinical Dementia Rating Score of 0.5.  
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Figure 4.4 Core CSF Biomarkers and CSF Aβ40 for Individuals from 60-64 Years Old at Baseline Lumbar Puncture 

Each graph represents a single individual from the ACS Case Study cohort, with each color representing a different biomarker (Red, Aβ42; 
Orange, Aβ40; Dark Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with 
T0 indicating baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change 
from the baseline biomarker level. Left column, stable Aβ42-; middle column, Aβ42 converter; right column, stable Aβ42+. Black arrows indicate 
time of Aβ42 transition from negative to positive. 
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Figure 4.5 Core CSF Biomarkers and CSF Aβ40 for Individuals from 65-69 Years Old at Baseline Lumbar Puncture 

Each graph represents a single individual from the ACS Case Study cohort, with each color representing a different biomarker (Red, Aβ42; 
Orange, Aβ40; Dark Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with 
T0 indicating baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change 
from the baseline biomarker level. Left column, stable Aβ42-; middle column, Aβ42 converter; right column, stable Aβ42+. Black arrows indicate 
time of Aβ42 transition from negative to positive, red arrows indicate a Clinical Dementia Rating (CDR) Score of 0.5, dark red indicate a CDR>1. 
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Figure 4.6 Core CSF Biomarkers and CSF Aβ40 for Individuals from 70-74 Years Old at Baseline Lumbar Puncture 

Each graph represents a single individual from the ACS Case Study cohort, with each color representing a different biomarker (Red, Aβ42; 
Orange, Aβ40; Dark Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with 
T0 indicating baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change 
from the baseline biomarker level. Left column, stable Aβ42-; middle column, Aβ42 converter; right column, stable Aβ42+. Black arrows indicate 
time of Aβ42 transition from negative to positive, red arrows indicate a Clinical Dementia Rating (CDR) Score of 0.5, dark red indicate a CDR>1.
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Figure 4.7 Longitudinal Biomarker Change by Aβ42 classification, Core and Non-Core 
Biomarkers in the ACS Case Study Cohort 

A B 

C D 

E F 

5
0

6
0

7
0

8
0

0

2

4

6

S t a b l e  A β 4 2 -

A g e  a t  L P

A
b

s
o

lu
te

 %
 C

h
a

n
g

e
 f

r
o

m
 B

L
 Q

u
in

t
il

e

5
0

6
0

7
0

8
0

0

2

4

6

S t a b l e  A β 4 2 -

A g e  a t  L P

5
0

6
0

7
0

8
0

0

2

4

6

A β 4 2  C o n v e r t e r

A g e  a t  L P

A
b

s
o

lu
te

 %
 C

h
a

n
g

e
 f

r
o

m
 B

L
 Q

u
in

t
il

e

5
0

6
0

7
0

8
0

0

2

4

6

A β 4 2  C o n v e r t e r

A g e  a t  L P

5
0

6
0

7
0

8
0

0

2

4

6

S t a b l e  A β 4 2 +

A g e  a t  L P

A
b

s
o

lu
te

 %
 C

h
a

n
g

e
 f

r
o

m
 B

L
 Q

u
in

t
il

e

5
0

6
0

7
0

8
0

0

2

4

6

S t a b l e  A β 4 2 +

A g e  a t  L P



103 
 

Longitudinal biomarker changes starting at baseline age. Left column, core biomarkers and Aβ40 (Red, 
Aβ42; Orange, Aβ40; Blue, Tau; Light blue, P-Tau181; Purple dash, Tau/Aβ42 Ratio), right column, non-
core biomarkers (Green, VILIP-1; Teal, YKL-40; Gold dash, Aβ42/Aβ40 Ratio).  
  



104 
 

4.1.3 Discussion 
When visualizing the ACS case study cohort using the graphing paradigm shown, it becomes 

clear that there are indeed differences on a within-person level that indicate the very earliest 

stages of AD pathology. Figures 4.1-4.6 show that levels of Aβ42, as expected, are 

comparatively higher (Quintile 2-5 at BL) in the Stable Aβ42- individuals than the Stable Aβ42+ 

individuals (Quintile 1-3 at BL), with Converters at intermediate levels (Quintile 2-3 at BL). 

Across the full age range of 45-74 years, Tau and Ptau181 in Stable Aβ42- individuals remained 

low and unchanging (Quintile 1), except the oldest member of the cohort who had Tau(s) levels 

in Quintile 2 at BL which remained unchanged at followup for 9 years. In the Converter group, 

levels of Tau and Ptau181, as well as the Tau/Aβ42 ratio, were in Quintile 1-2 at baseline and all 

but the two youngest showed increases over time. All individuals whose Tau/Aβ42 Ratio reached 

the third quintile, with the exception of individual Q, exhibited signs of cognitive decline.  

Analysis on an individual level in the ACS cohort indicates that, at least for the core CSF 

biomarkers, there is a clear difference over time in individuals who exhibit eventual clinical 

decline compared to those who do not. The greatest strength and the greatest weakness of the 

ACS cohort, as a whole, is the preclinical nature of the cohort – middle-aged, cognitively normal 

individuals recruited to the study because of their family history of AD. On one hand, this 

relatively young cohort is unique because individuals with an AD CSF profile are in the 

preclinical stage until cognitive status begins to change which provides a perspective on very 

early CSF biomarker changes in AD; on the other hand, because this is such a young cohort very 

few individuals have exhibited cognitive decline even after 6 or more years of clinical follow up. 

Assessing longitudinal biomarker change in these individuals is interesting, but ultimately does 

not provide additional information on the relationship between CSF biomarkers and disease 
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status until an individual begins to show signs of dementia. However, this case study is an 

interesting and, ultimately, a net gain in the identification of AD on a within-person basis. The 

biggest barrier to clinical translation is that the quintile data would not be informative without 

longitudinal data – these case study analyses do not provide a single-timepoint identification 

with the available data. 

Despite this, it remains clear that AD can be pinpointed even in individuals who remain 

cognitively normal for a number of years post-amyloid-biomarker positivity. Future work should 

focus on the biomarker trajectories of individuals who begin studies in the preclinical phase of 

disease and eventually progress to show cognitive decline. The combination of clinical follow up 

and CSF biomarkers alone will likely not be sufficient to account for environmental factors such 

as cognitive reserve, but investigation on a within-person basis on a large scale may elucidate 

trends in biomarker behavior that correspond to these environmental factors, thus rendering them 

easier to account for in studies of preclinical AD. 

4.2 Case Studies from the ADNI Cohort 
The ADNI cohort provided a unique perspective on within-person changes in CSF biomarkers 

due to the heterogeneous nature of the cohort. Individuals in the ADNI study may be cognitively 

normal, exhibit MCI, or have a diagnosis of AD at study entry. The longitudinal ADNI cohort in 

Chapter 3 also covered an extensive older age range, from 58 to 90 years old at baseline, 

compared with the ACS cohort. 

4.2.1 Methods 
The majority of the ADNI cohort had data from 3 or more LP’s, therefore the case study cohort 

was defined by the number of Aβ42 converters. As with the original analyses in Chapter 3, Aβ42 

status was defined by xMAP values. In the ADNI cohort, the cutoff value for Aβ42 has been  
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reported widely as 192 pg/ml, therefore individuals who transitioned from CSF Aβ42 >192 

pg/ml to <192 pg/ml were classified as Aβ42 converters; 9 total individuals met these criteria. 

The availability of both xMAP and Elecsys data aided in selecting 9 stable Aβ42- and 9 stable 

Aβ42+ individuals. The Elecsys assay provided a much larger working range (1,472 pg/ml) 

compared with the xMAP assay (300 pg/ml) of Aβ42 values in the ADNI cohort. The 9 

individuals with the highest Elecsys Aβ42 and lowest Elecsys Aβ42 values were chosen to 

represent stable Aβ42- and +, respectively, and compared with xMAP values to ensure that Aβ42 

status was consistent between the two assays. 

The graphing paradigm used for the ADNI cohort was identical to that used for the ACS cohort. 

Age matching was not possible because 9 of 27 individuals were either 77 or 78 years old at 

baseline, therefore the ADNI case studies are grouped by Aβ42 status in 3 groups. Additionally, 

the ADNI cohort did not have Aβ40 data available, so Figures 4.7-4.9 represent only the core 

CSF biomarkers Aβ42, Tau, P-tau181 and the Tau/Aβ42 ratio. Figure 4.10 represents the core 

CSF biomarkers and the non-core biomarkers VILIP-1, SNAP-25, Ng, and YKL-40. 

4.2.2 Results 
The case study cohort visualized in 3 groups representing Aβ42 status as the age distribution was 

not even enough to bin by baseline age. Table 4.2 contains demographic information on each 

participant. Of the 27 individuals comprising the case study cohort: 13 were female (48%), 5 had 

one APOE ε4 allele (19%%), 2 had two ε4 alleles (7%). After baseline LP, each of the 27 

individuals had between 2 and 9 years of follow up LP data with LP’s performed approximately 

every year, and between 2 and 9 years of clinical follow up. Of 27 individuals, 9 were diagnosed 

as having MCI at baseline (33%), and 2 were diagnosed with AD at baseline (7%).  
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Across the Aβ42 status groups, the Aβ42 converter group had 8 of 9 individuals diagnosed as 

cognitively normal at baseline, but 5 of those 8 exhibited cognitive decline which justified a 

diagnosis of MCI at some point during clinical followup (6-9 years). The individual diagnosed as 

having MCI at baseline showed no change over 8 years. The stable Aβ42- group had 3 MCI 

individuals. Of those, one showed no cognitive change over 8 years, one was diagnosed at a 

CDR 1 but reverted to CDR 0.5, and one reverted from CDR 0.5 to CDR 0. One CN individual 

was diagnosed at CDR 0.5 at followup but then reverted to CDR 0. The stable Aβ42+ group had 

five individuals diagnosed with MCI at baseline and 2 diagnosed with AD, of which 6 converted 

to CDR 1 or 2 during followup (2-6 years), and one MCI individual showed no change over 3 

years. Two individuals were cognitively normal at baseline, one progressed to CDR 0.5 and 

CDR 2 during 8 years of followup and one converted to CDR 0.5 at year 3 but reverted to CDR 0 

at year 4. Statistical analyses were not performed on this cohort for similar reasons as the ACS 

case study cohort, except that the ADNI study does not recruit based on family history of AD 

and has a much more varied cohort in terms of demographic variables such as education. 
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Table 4.2 Demographic Information on the 27 ADNI Case Study Cohort Individuals. 
 
n 9 

  
Stable Aβ42- A B C D E F G H I 

Avg. LP Interval, Yr 

(SD) 
2.4 (1.2) 1.6 (1.0) 1.0 (0.1) 1.5 (0.5) 1.5 (0.6) 1.7 (0.6) 1.6 (0.6) 1.4 (0.6) 1.6 (0.6) 

LP Followup (Yr) 7 5 3 5 6 5 8 7 8 

Clinical Followup (Yr) 7 8 7 6 7 8 8 7 8 

Diagnosis at BL CN CN CN CN CN MCI MCI CN MCI 

Clinical Followup 

No 

Change 

No 

Change 

CDR 0.5 

Yr 6 

No 

Change 

No 

Change 

No 

Change 

CDR 1 

Yr 2, 

Revert 

Yr 4 

CDR 0.5 

Yr 3, 

Revert 

Yr 7 

Revert 

Yr 3 

Age at BL (Yr) 70 79 76 62 90 74 83 72 86 

Sex M M F F F F F F M 

APOE ε4 Alleles (#) 1 0 0 0 0 0 0 0 0 
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Table 4.2 Cont. 

n 9         

Aβ42 Converters J K L M N O P Q R 

Avg. LP Interval, Yr 

(SD) 
1.6 (0.8) 1.5 (0.5) 3.0 (3.1) 1.3 (0.5) 1.2 (0.5) 1.5 (0.7) 1.5 (0.7) 1.3 (0.5) 1.4 (0.8) 

LP Followup (Yr) 8 9 6 5 5 3 6 8 7 

Clinical Followup (Yr) 8 9 6 6 8 9 7 8 8 

Aβ42 Conversion Yr 5 Yr 1 Yr 6 Yr 3 Yr 4 Yr 3 Yr 6 Yr 3 Yr 3 

Diagnosis at BL CN CN CN CN MCI CN CN CN CN 

Clinical Followup 

No 

Change 

CDR 0.5 

Yr 6 

No 

Change 

CDR 0.5 

Yr 3 

No 

Change 

CDR 0.5 

Yr 9 

CDR 0.5 

Yr 7 

No 

Change 

CDR 0.5 

Yr 8 

Age at BL (Yr) 78 77 72 78 79 82 77 78 77 

Sex F F F M M F M F F 

APOE ε4 Alleles (#) 0 0 0 0 0 0 0 0 o 
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Table 4.2 Cont. 

n 9 
  

Stable Aβ42+ S T U V W X Y Z AA 

Avg. LP Interval, Yr 

(SD) 
1.2 (0.6) 1.3 (0.5) 1.0 (0.0) 1.3 (0.6) 1.0 (0.0) 1.0 (0.1) 1.3 (0.6) 1.0 (0.1) 1.0 (0.1) 

LP Followup (Yr) 5 4 2 4 2 3 4 3 3 

Clinical Followup (Yr) 6 4 2 4 2 3 8 5 6 

Diagnosis at BL MCI MCI AD CN AD MCI CN MCI MCI 

Clinical Followup 

CDR 1  

Yr 3, 

CDR 2 

Yr 4 

CDR 2  

Yr 4 

CDR 1 

Yr 1, 

CDR 2 

Yr 2 

CDR 0.5 

Yr 3, 

Revert 

Yr 4 

CDR 1 

Yr 1 

No 

Change 

CDR 0.5 

Yr 7, 

CDR 2 

Yr 8 

CDR 1 

Yr 1, 

CDR 2 

Yr 4 

CDR 2 

Yr 6 

Age at BL (Yr) 70 71 69 76 68 73 77 77 78 

Sex M M M M F M M M M 

APOE ε4 Alleles (#) 2 2 0 0 1 1 1 1 1 

The cohort was split in to 3 bins by baseline amyloid status:  stable Aβ42- (BL and Followup CSF Aβ42 values all above 192 pg/ml [xMAP] or 
1,200 pg/ml [Elecsys]), Aβ42 Converter (declining from CSF Aβ42 >192 pg/ml at BL to <192 pg/ml during Followup), and stable Aβ42+ (BL and 
Followup CSF Aβ42 values all below 192 pg/ml [xMAP] or 1,200 pg/ml [Elecsys]).   

Average LP interval and LP followup indicate the frequency and duration of LP followup from LP baseline.  
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Clinical Followup in years accounts for years from LP baseline to the most recent clinical examination.   

Aβ42 Conversion indicates number of years after baseline LP conversion occurred, while Diagnosis at BL and Clinical Followup indicate the 
cognitive status (CN, MCI, or AD) and change in cognitive status for each individual during followup. 

The letters A-AA identify each individual allowing comparison between Table 4.2 and Figures 4.7-4.9. 
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Figure 4.8 Core CSF Biomarkers for Stable Aβ42- ADNI Participants
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Each graph represents a single individual from the ADNI Case Study cohort, with each color representing a different biomarker (Red, Aβ42; Dark 
Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with T0 indicating 
baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change from the 
baseline biomarker level. A tan background indicates individuals diagnosed with MCI at baseline. Pink arrows indicate a Clinical Dementia Rating 
(CDR) Score of 0.5, red arrows indicate a CDR 1, dashed arrows indicate a CDR that reverted to a lower score at a later clinical followup.
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Figures 4.7 through 4.9 illustrate ADNI core CSF biomarkers on a within-person basis. The 

alphabetical labels in Table 4.2 correspond to each individual graph in Figures 4.7-4.9. The core 

biomarkers (CSF Aβ42, Tau, and P-tau181) and the Tau/Aβ42 ratio are graphed on a single graph 

for each individual. Each figure represents 9 individuals with differing Aβ42 statuses: Figure 

4.7, stable Aβ42-; Figure 4.8, Aβ42 Converters; Figure 4.9, stable Aβ42+. Biomarkers are more 

homogenous between Aβ42 classification groups than was seen in the ACS cohort. Stable Aβ42- 

individuals had lower Tau(s) at baseline, Quintile 1 or 2, and Tau/Aβ42 Ratios in the first 

quintile at BL, all exhibiting little change throughout follow up. Similarly, Aβ42 converters had 

low Tau(s) in Quintile 1 or 2 at baseline but were more likely to increase over time than stable 

Aβ42- individuals throughout follow up. Many of the stable Aβ42+ individuals exhibited levels 

of Tau(s) and Tau/Aβ42 in Quintile 1-2 at baseline and, unlike the ACS cohort, the levels of Tau, 

P-tau181 and the Tau/Aβ42 ratio changed less over time.  

The differential diagnoses of CN, MCI, and AD at baseline were coded by filling the 

corresponding graph background with tan (MCI) or pink (AD) to visually indicate individuals 

with evidence of cognitive decline at baseline. The stable Aβ42+ group had the largest number 

of impaired individuals at baseline. The stable Aβ42- group was next, but the majority of 

individuals that showed impairment or progression also reverted back to their baseline cognitive 

status over the course of the study. Interestingly, the Aβ42 converter group had the smallest 

number of both individuals with an MCI or AD diagnosis at BL, but did show a high rate of 

conversion from CN to a CDR 0.5. 

The Aβ42 converter group showed the most change in core biomarkers over time. Whereas the 

stable Aβ42- group remained stable throughout followup for all core biomarkers, the converter  
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Figure 4.9 Core CSF Biomarkers for Aβ42 Converter ADNI Participants 
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Each graph represents a single individual from the ADNI Case Study cohort, with each color representing a different biomarker (Red, Aβ42; Dark 
Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with T0 indicating 
baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change from the 
baseline biomarker level. A tan background indicates individuals diagnosed with MCI at baseline. Pink arrows indicate a Clinical Dementia Rating 
(CDR) Score of 0.5 clinical followup. 
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Figure 4.10 Core CSF Biomarkers for stable Aβ42+ ADNI Participants
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Each graph represents a single individual from the ADNI Case Study cohort, with each color representing a different biomarker (Red, Aβ42; Dark 
Blue, Tau; Light Blue, P-tau181; Purple Dash, Tau/Aβ42 Ratio). Time (Yr) indicates time between lumbar punctures (LP) with T0 indicating 
baseline LP. Each LP, represented by an open circle, is presented as baseline quintile at T0 followed by the absolute percent change from the 
baseline biomarker level. A tan background indicates individuals diagnosed with MCI at baseline, a pink background indicates individuals 
diagnosed with AD at baseline. Pink arrows indicate a Clinical Dementia Rating (CDR) Score of 0.5 clinical followup, red arrows indicate a CDR 
1 diagnosis, and dark red arrows indicate a CDR 2 diagnosis. Dashed pink arrows indicate a reversion from CDR 0.5 to CDR 0. 
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group showed concomitant longitudinal changes in Aβ42, Tau, P-tau181 and the Tau/Aβ42 ratio. 

The stable Aβ42+ group did not show elevated levels of Tau, P-tau181 or the Tau/Aβ42 ratio – in 

fact, in many individuals such as T, U, or W exhibited longitudinal decreases in these 

biomarkers.  

As with the ACS case study cohort, it is difficult to visualize biomarker changes in relation to 

age. Figure 4.10 shows biomarker levels by baseline quintile and followup percent change 

across the entire age range of the ADNI case study cohort. The age range for the stable Aβ42- 

group covered the full age range from approximately 60-90 years of age at baseline for included 

individuals. The Aβ42 converter group was more compact, approximately 70-90 years and the 

stable Aβ42+ group was approximately 65-85 years at baseline. The stable Aβ42- exhibits 

relatively stable levels of all core biomarkers; the Aβ42 converter group exhibits decreasing CSF 

Aβ42 levels and increasing Tau, P-Tau181, and Tau/Aβ42 levels. The stable Aβ42+ group 

exhibits low Aβ42 levels and a mix of behavior for the Tau(s) biomarkers, including increasing 

over time, remaining relatively stable, and decreasing.  

4.2.3 Discussion 
The ADNI case study cohort is particularly interesting because many individuals included 

exhibited some form of cognitive impairment either at baseline or during clinical followup. This 

clinical data makes it a more conducive dataset for following changes through all stages of 

disease whereas the ACS cohort has greatest strength in the preclinical stage. A particular 

within-person characteristic that fits well with the longitudinal data presented in Chapter 3 – 

where significant decreases in markers of neuronal injury/death were seen in the AD group – are 

the relatively low and, in some cases, decreasing concentrations of the Tau(s) and Tau/Aβ42 

ratio in the stable Aβ42+ group. Unfortunately, as the preclinical stage of AD lasts between 
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Figure 4.11 Longitudinal Biomarker Change by Aβ42 classification, Core and Non-Core 
Biomarkers in the ADNI Case Study Cohort 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Longitudinal biomarker changes starting at baseline age. Left column, core biomarkers (Red, 
Aβ42; Blue, Tau; Light blue, P-Tau181; Purple dash, Tau/Aβ42 Ratio), right column, non-core 
biomarkers (Green, VILIP-1; Teal, YKL-40; Gold, SNAP-25; Orange, Ng).   
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10-20 years, there is an important cross-section of disease that is under-represented in the ADNI 

case study cohort: Aβ42 converters that go on to show signs of cognitive decline. A particular 

confounding factor is the use of both xMAP and Elecsys Aβ42 data – Chapter 5 briefly explores 

the analyte differences between the two platforms, particularly with respect to when an 

individual would be considered a “converter”, and the two assays do not agree in most of the 9 

Aβ42 converter cases in the ADNI dataset. This detail complicates the identification of the Aβ42 

conversion time point and, therefore, the downstream biomarkers of Tau(s) and the Tau/Aβ42 

ratio. The ADNI longitudinal cohort dataset was defined and analyzed before the Elecsys data 

became available, thus necessitating the retention of xMAP Aβ42 data because the study had 

been defined with it, regardless of the fact that the data was not truly longitudinally assayed. On 

the other hand, the Elecsys is a new platform for measuring AD biomarkers and does not have 

the same wealth of legacy data. Both concerns have been recognized in research facilities around 

the world, so the most thorough option seemed to be using both xMAP and Elecsys Aβ42 data 

when looking at case studies.  

Despite analytical differences, individuals J, K, O, Q, and R all exhibit strikingly similar core 

biomarker profiles to the ACS case study Aβ42 converter group. Individuals L and P appear to 

be in even earlier stages of preclinical disease, but further longitudinal followup is necessary to 

confirm these observations. Individuals M and N are notable due to unstable Aβ42 values – 

decreasing, then increasing – despite “N” having a baseline diagnosis of MCI. More individuals 

like these, with longer longitudinal followup, are necessary to get a clearer picture of disease 

progress in unstable Aβ42 cases. 

Perhaps the most striking visualization in the ADNI case study cohort comes from the stable 

Aβ42- group who, across a period of nearly 40 collective years, exhibit remarkably stable and 
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consistent core biomarker profiles that indicate the absence of AD. The Aβ42 converter and 

stable Aβ42+ groups covered a much smaller age range (70-90 years old and 65-85 years old, 

respectively) and show much more change over time than the stable Aβ42- group. In general, the 

core biomarkers of neuronal death/injury are increasing in the converter group while the stable 

Aβ42+ group exhibits higher levels of these markers at baseline, but variable longitudinal 

behavior. The non-core biomarkers of neuronal injury and inflammation were inconclusive 

across all three groups, similar to the ACS cohort. There is potential that these non-core 

biomarkers of neuronal injury or inflammation may be more useful after better understanding the 

mechanistic or risk-factor-based causes that result in the longitudinal change seen in AD. 

As with the ACS case study cohort, the ADNI case study cohort is too small to perform rigorous 

statistical analyses. 

4.3 Conclusions 
Visualizing multiple markers on a single graph, while not statistically rigorous, again points to 

the consistency of core biomarker changes that have been seen in both longitudinal and cross-

sectional CSF biomarker studies – low Aβ42, high Tau(s) and high Tau/Aβ42 ratio are indicators 

of future cognitive decline.  However, longitudinal studies such as the DIAN27 and the ADNI 

longitudinal cohort tell a slightly different story in that markers of neuronal injury/death may 

begin to decline after a certain point in disease.  The ACS and ADNI case study cohorts are of 

great interest because they provide a window in to the behavior of AD biomarkers as they relate 

to one another on an individual basis. Noting the distinct similarities between the Aβ42 converter 

groups, if nothing else, shows that despite obstacles with analytical aspects of these assays 

(Aβ42 assays in particular), biomarkers behave similarly enough to eventually combine data 
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from diverse and varied cohorts with CSF data to better understand and track disease progress on 

a within-person level as well as a group level.  

A number of considerations also spring from the apparent lack of association - or weak 

association in the case of the ACS case study cohort - between non-core biomarkers of neuronal 

injury/death and inflammation. Though it is important to note that group-level changes in these 

biomarkers were seen in both the ACS and ADNI cohorts, associated with either disease risk and 

amyloid status or diagnosis and amyloid status.  As CSF biomarkers were the only biomarker 

modality considered in this chapter, the addition of imaging biomarkers (e.g. longitudinal 

hippocampal volume) may pinpoint other aspects of disease that are more closely related to, for 

instance, the synaptic markers SNAP-25 or Ng. The current longitudinal datasets available are 

not large enough to allow such intricate analyses across all stages of disease. As stated earlier, 

preclinical longitudinal datasets have the drawback of tracking little cognitive change and 

datasets such as ADNI typically have very small AD groups due to the difficulty of retaining 

impaired individuals as part of a volunteer study. However, future work in assay development, 

continued longitudinal followup in these and similar studies, and more data from group-wise 

analyses should result in the sensitive and specific tracking of AD across all disease states.
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Chapter 5: Assay Platform and Cohort 
Comparison 

Portions of this chapter were published in the July 2015 issue of JAMA Neurology31.  

Some important pitfalls in AD biomarker investigation became apparent during the timeframe of 

the work covered in the current document. Analytical variability, particularly with the Aβ42 

peptide, has become a focus of investigation as the field attempts to solve 3 major problems 

hindering the translation of CSF biomarkers from research use to widespread clinical use: (1) 

high inter- and intra-lab variability, (2), analytical challenges within and between assay platforms 

and (3) lack of a certified reference material. While not the main focus of the current work, a 

number of assay comparisons were performed to assess agreement between different assay 

platforms on samples treated in an identical manner from collection, through processing, storage, 

and finally, analysis. 

5.1 Reasoning for Assay Comparison 
Studies like those covered in Chapter 2 and Chapter 3 are of paramount importance because 

groups such as the Alzheimer’s Association Quality Control (AAQC) Program, along with 

independent research labs, have discovered consistent undesirable characteristics when assessing 

CSF biomarkers – particularly Aβ42 – that may hinder diagnosis or prognosis in a transition to 

consistent clinical application.  

In 2013, the AAQC program reported consistency between participating laboratories in AD 

diagnosis, using cutoffs established prior to the formation of the program, but noted this was in 

spite of high measurement variability228. Some of the variability is due to inter-lab differences in 

assay technique and sample handling, but another setback was in assay variability. An important  
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guidance issued in the AAQC program report was that assay kit manufacturers, in particular 

those of enzyme-linked immunosorbent assays (ELISASs) and Multi-Analyte Profiling (xMAP) 

should consider it “critically important” to improve product quality and minimize lot-to-lot 

variability228 which, in an additional study, was considered a hindrance to applying biomarkers 

in a clinical setting229. Performing assay comparisons can help identify when an assay is not 

performing well, and can also serve as trials for new but promising assays. 

A more recent study that stemmed from the longitudinal ACS cohort found that one of the most 

commonly used assays worldwide (INNOTEST ELISA) exhibited significant upward drift in 

CSF Aβ42 over more than a decade of production230, and such assay drift has multiple 

implications for past and future data analysis. For example, individuals in the ACS cohort 

covered in Chapter 2 and Chapter 4 return for LP’s once every 3 years, if assays are run shortly 

after each LP, the upward drift may obscure biologically important changes in CSF Aβ42 levels, 

particularly if protein levels are close to the cutoff for amyloid positivity. A second implication is 

a moving cutoff for amyloid positivity over time; Aβ42 cutoffs have risen in conjunction with 

both assay drift and an improved INNOTEST ELISA, which improved variability but raised the 

absolute average value of Aβ42 substantially230. In this case, performing a single-lot analysis on 

samples that had been collected and analyzed over a period of ten years on different lots was 

what led to the investigation on assay drift.  

5.2 ACS Assay Comparisons 

5.2.1 INNOTEST Versus EUROIMMUN ELISA in the ACS Cohort 
As part of the design of the ACS longitudinal study (Chapter 2), the analysis of Aβ42, Aβ40, and 

Tau were performed simultaneously on the same set of samples. An experienced scientist 

performed “Improved” INNOTEST ELISA’s for Aβ42, Aβ40, Tau and P-Tau181 and 
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immediately after, the author performed EUROIMMUN ELISA’s for Aβ42, Aβ40, and Tau, as 

described in Chapter 2. All analyses were performed on the same set of samples, in parallel, to 

reduce variability in sample handling. Assay performance characteristics are reported in Table 

5.1. Compared to the previous version of the INNOTEST assays, the improved assays each 

contain a set of ready-to-use calibrator series, run validation control samples (calibrator in 

buffer), and harmonized buffer reagents.  The EUROIMMUN assays are considered second 

generation assays because they do not have matrix interference problems (i.e., they exhibit good 

dilutional linearity). The amount of CSF required for testing is lower in the EUROIMMUN 

assays, thereby reducing the issues with matrix interference179,231. So, in principle, the 

EUROIMMUN assay measures another fraction of the free, non-protein bound analyte in a 

sample, unlike many other Aβ42 ELISA’s which show poor dilutional linearity.  All ELISA kits 

passed in-house quality control measures including: 1) standard curve values having a CV <25% 

and no more than two standards either oversaturating or undersaturating using a Synergy 2 

Multi-Mode Reader (Bio-Tek Instruments, Inc.), 2) no more than one provided kit control and 

one internal pooled CSF control failing due to reading outside the provided range or having a CV 

>25% with the exception of one assay in which both internal CSF controls failed due to high CV 

– in this case, both kit controls passed, and 3) individual samples failed if there was a CV >25%. 

The Singulex kits passed in-house quality control measures including: 1) standard curves were 

assessed according to software provided by Singulex, 2) no more than 2 of 3 internal pooled CSF 

controls falling outside the range determined by all previous runs using the same lot number of 

kits and 3) samples failed if there was a CV >25%.  

Comparisons of CSF Aβ40, Aβ42, and total tau obtained with the 2 assays were positively 

correlated (Aβ40, n=412, Pearson r = 0.772 [95% CI, 0.730-0.808], P < .001; Aβ42, n=394,   
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Pearson r = 0.879 [95% CI, 0.855-0.900], P < .001; total tau, n = 410, Pearson r = 0.958 [95% 

CI, 0.949-0.965], P < .001). Although the absolute values for Aβ40 and Aβ42 differed between 

the assays (roughly 2- to 3-fold higher with EUROIMMUN compared with INNOTEST), 

absolute values for total tau were similar. Patterns of within-person biomarker changes over time 

were virtually identical between the 2 assays for Aβ42, total tau, and the total tau to Aβ42 ratio. 

However, baseline comparisons and longitudinal patterns for Aβ40 were slightly different 

between the assays and thus are difficult to interpret. Clinical observations were confirmed in 

both immunoassays for Aβ42 and total tau.  

More recent work has highlighted the same disparity in absolute concentration for Aβ42, as well 

as good correlation between multiple assays, for the INNOTEST and EUROIMMUN assays232. 

Head-to-head comparisons such as these are of paramount importance for studying Aβ42 (and, to 

a lesser extent Tau(s)) and allow for a focus on assay performance as many of the pre-analytical 

and analytical variables are controlled for, e.g. limited or no changes in kit lots, uniformity in 

assay conditions, or uniformity in sample handling across a single study233.   
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Table 5.1 Assay Performance Specifications as Provided by the Vendors 

 

 

 

 

 

 

 

 

 

 

 

 

Samples were analyzed for Aβ1-40, Aβ1-42, Tau, and P-tau181 using the “Improved” INNOTESTTM ELISA (Fujirebio Europe [formerly 
Innogenetics], Gent, Belgium). For comparison purposes, concentrations of Aβ1-40, Aβ1-42 and total tau were also measured using 
EUROIMMUN ELISAs (EUROIMMUN, Luebeck, Germany). For Aβ species, both assays utilize the same monoclonal antibodies, but they are 
obtained from a different process of culture, production, and purification. YKL-40 (also known as chitinase-3 like 1), an astrocyte-derived marker 
of gliosis/neuroinflammation, was measured with the MicroVue ELISA (Quidel, San Diego, CA). Visinin-like protein 1 (VILIP-1), a marker of 
neuronal injury, was measured using a two-site immunoassay implemented via a microparticle-based Erenna immunoassay system (Singulex, 
Alameda, CA). 1 performance characteristics as provided by the vendor. 2 actual performance characteristics in the current study. 

Vendor QUIDEL SINGULEX
Analyte Aß1-40 Aß1-42 Total tau Ptau181 Aß1-40 Aß1-42 Total tau YKL-40 VILIP-1

Technology
ELISA

Colorimetric
ELISA

Colorimetric
ELISA

Colorimetric
ELISA

Colorimetric
ELISA

Colorimetric
ELISA

Colorimetric
ELISA

Colorimetric
ELISA

Colorimetric
Single Molecule 

Counting (SMCTM)

Fluid Sample CSF CSF CSF CSF CSF CSF CSF CSF CSF
Capture Antibody 2G3 21F12 AT120 HT7 2G3 21F12 ADx 201 Not Available 3A8.1
Capture Antibody Epitope 35-40 37-42 218-224 159-163 Aßx-40 Aßx-42 Proline-rich region Not Available Not Available
Detection Antibody 3D6 3D6 HT7/BT2 AT270 3D6 3D6 ADx 215 Not Available Sheep 22
Detection Antibody Epitope 1-5 1-5 159-163/193-198 176-182 Aβ1-x Aß1-x N-terminus Not Available Multiple

Calibrator Concentration Range, 
pg/mL   (lot specific, for this study)

7.8 - 1000                 
(n=8)

62.5 - 4000                   
(n=6)

50 - 2500                 
(n=6)

15.6 - 1000                
(n=6)

54 - 711
(n=6)

83 - 1236
(n=6)

30 - 1050
(n=6)

20 - 300
(n=6)

3.9 - 3000
(n=10)

Limit of Detection (LOD), pg/mL, 
(range), number of runs

3.3                            
(0.7 - 4.2)                           

4 runs

65
(52-87)
7 runs

34
(25-47)
8 runs

13.4                                  
(11.4 - 14.9)                                 

4 runs

70                                
(58 - 85)                         
6 runs

7.5                          
(6.3 - 9.0)                              

6 runs

44.2                         
(41.1 - 46.8)                           

4 runs

5.4
Not available
Not available

1.4
(0.077-6.9)

16 runs

Sample Specifications
Sample Pre-dilution 1:100 No No No 1:21 No No 1:03 No

Volume Sample Per Well (µL) 75 25 25 75 15 15 25 20 15
Total Well Volume 100 100 100 100 115 115 125 120 200

Number of Replicate Wells 2 2 2 2 2 2 2 2 2
Sample Incubation

Time, hrs 14-18 1 14-18 14-18 3 3 3 1 2
Temperature 2-8°C 23-27°C 23-27°C 2-8°C 23-27°C 23-27°C 23-27°C 23-27°C 23-27°C

Reported Intra-Assay Variability1,                       
% CV, (range),  number of runs

2.8
(0.3 - 7.8)                                           

5 runs

4.6
(0.8 - 11.0)                          

3 runs

3.2
(0.0 - 13.2)                          

2 runs

1.7
(0.0 - 8.9)                            

4 runs

2.7                             
(2.4 - 3.1)                                      

3 runs

3.9                              
(2.3 - 6.2)                            

3 runs

5.0                               
(3.9 - 6.5)                       

4 runs

6
 (5.6 - 6.6)

Not available

4.4                                
(3.1 - 7.0)                      

10 runs

Reported Inter-Assay Variability1,                             
%CV, (range), number of runs

4.4
(3.2 - 5.8)                              

4 runs

7.8
( 1.4 - 18.0)                         

3 runs

11.5
(3.8 - 42.8)                               

2 runs

11.4
(6.6 - 19.2)                         

4 runs

8.3                            
(7.3 - 9.3)                               

5 runs

5.6                              
(4.4 - 7.6)                    

7 runs

7.4                         
(6.1 - 9.3)                             

5 runs

6.7                                   
(6.0 - 7.0)                   

Not available

6.2                                  
(5.0 - 7.0)                         

1 run

Study Intra-Assay Variability2,                       
% CV, (range),  number of runs

2.7
(0.4 - 12.7)

12 runs

4.4
(0.2 - 13.7)

12 runs

2.0
(0.0 - 11.4)

12 runs

1.0
(0.1 - 4.6)

12 runs

2.3
(0.1 - 6.0)

12 runs

3.0
(0.1 - 9.7)

12 runs

5.42
(0.8 - 22.9)

12 runs

1.9
(0.1  -6.4)

12 runs

4.5
(0.0 - 20.8)

16 runs

Study Inter-Assay Variability2,                             
%CV, (range), number of runs

3.8
(0.0 - 24.6)

12 runs

4.3
(0.0 - 20.6)

12 runs

2.1
(0.0 - 14.8)

12 runs

2.2
(0.0 - 17.5)

12 runs

14
(0.1 - 13.7)

12 runs

4.1
(0.0 - 16.7)

12 runs

4.1
(0.0 - 24.2)

12 runs

3.7
(0.0 - 21.6)

12 runs

4.3
(0.0 - 24.8)

12 runs

Fujirebio (formerly Innogenetics) EUROIMMUN
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Figure 5.1 Group Longitudinal Change Over Spaghetti Plots of EUROIMMUN CSF Biomarkers During Middle-age. 
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Estimated slopes and within-person patterns for A) Aβ40, B) Aβ42, C) the Aβ42/Aβ40 ratio, D) tau, and E) tau/Aβ42 are shown in three age bins 
for APOE ε4-negative (top graph of each panel, n=108participants) and ε4-positive (bottom graph of each panel, n=61 participants) groups. 
Annual slopes have been extrapolated to 9 years, and each slope begins at the mean baseline biomarker value of each age bin. Blue, EARLY 
middle-age (45-54 years at baseline); Black, MID middle-age (55-64 years at baseline); Red, LATE middle-age (65-74 years at baseline). * slopes 
significantly different from 0 (p<0.05). +, slopes significantly different between APOE ε4 groups within a given age group (p<0.05). Trend, 
p=0.051-0.06. 
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While no judgements were made as to the quality of either the INNOTEST or EUROIMMUN 

ELISAs, this comparison was informative in that consistent results were found with both assays. 

The exception was Aβ40: the slopes in the APOE ε4 non carrier group were declining in the 

early- and mid-middle age groups. However, the EUROIMMUN data shows a significant decline 

in Aβ40 slope across all 6 groups. The INNOTEST data shows no change and perhaps even a 

slight increase in Aβ40 over time in the three APOE ε4 carrier groups, though not significant. 

Because assay comparison has largely focused on the problematic Aβ42 peptide, it is difficult to 

speculate the reasons behind this difference. However, recent data from Vanderstichele and 

colleagues may offer a potential explanation: despite both INNOTEST and EUROIMMUN using 

the same capture antibodies (21F12 for Aβ42 and 2G3 for Aβ40), and the same detection 

antibody (CD6) across all four assays, INNOTEST displays a dose-dependent difference in Aβ42 

levels that corresponds to Aβ40232. They speculate that this is due to Aβ40 interfering in the 

Aβ42 assay through CD6 binding, where higher levels of Aβ40 in the CSF result in a lower 

Aβ42 value. Because CD6 is a component of both the Aβ40 and Aβ42 assays there is some 

potential for interference in the Aβ40 assay, though Aβ40 is roughly ten times as abundant in 

CSF as Aβ42. It is additionally difficult to say how this interference is happening as the ELISA 

format goes through multiple washing steps before applying the detection antibody. Unless there 

is substantial binding of Aβ40 to the 21F12 antibody or oligomerization of Aβ40 on to Aβ42 that 

has bound to 21F12, there should be little to no interference as it is reported by Vanderstichele 

and colleagues. Interestingly, this interference is not seen with the EUROIMMUN assay. These 

questions are further support for the continued comparison of different assays and assay 

platforms as those used most frequently are not ready to transition in to clinical use at this time. 
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 5.2.2 xMAP Versus Elecsys Comparison in the ADNI Cohort 
Unlike the ACS cohort, assays for Aβ42, Tau, and P-Tau181 were not performed in-house in the 

ADNI cohort. Data for these analyses were downloaded from the ADNI, thus there is no way to 

compare specific performance characteristics of each assay. ADNI researchers analyze CSF 

samples on a rolling basis, though some longitudinal analyses have been completed. The ADNI 

study reported in Chapter 3 relied on two sets of xMAP data generated by re-analyzing 

longitudinal samples from an individual at the same time, rather than relying on data that was 

generated on the rolling basis. Unfortunately, not all samples were assayed in one longitudinal 

run and there is no way to determine which lot number of xMAP assay was used. Further, 

without access to the raw data, it is not possible to perform comparisons between the two sets of 

xMAP data to ensure continuity between assay lots. Fortunately, assay validation and assay 

comparisons are a major focus of numerous large studies, ADNI included, and data from the new 

Elecsys platform was released for Aβ42, Tau and P-Tau181 in early 2017. Correlations between 

xMAP and Elecsys data for Aβ42 and Tau were as expected – Tau was highly correlated 

(Pearson r = 0.948, p<0.001) and Aβ42 showed more variability but still correlated well between 

the two assay platforms (Pearson r = 0.884, p<0.001). Originally, P-tau181 was excluded from 

analysis due to clear variability between the two xMAP datasets. Typically, both Tau and P-

tau181 show very close correlation, as with the INNOTEST and EUROIMMUN comparisons 

above, but in this case xMAP and Elecsys P-tau181 did not correlate as well as would be expected 

(Pearson r = 0.743, p<0.001).  

Despite these close correlations, there were clear differences in diagnostic ability in individuals 

who converted from Aβ- at baseline LP to Aβ+ at a later LP. Figure 5.2 illustrates all nine 

individuals in the ADNI longitudinal cohort who converted from Aβ42- to Aβ42 positive as 
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defined by the cutoff of 192 pg/ml for the xMAP assay. This paradigm was used to classify 

individuals as amyloid + or – for the analyses in Chapter 3. A poster presentation in July 2017 

outlined potential cutoffs for amyloid positivity as defined by Elecsys values234. Three cutoffs 

were presented: 1,065 pg/ml when compared to xMAP Aβ42, 1,017 or 1,172 pg/ml when 

modeled by unweighted and weighted densities respectively, and 1,198 pg/ml when compared to 

amyloid imaging. The xMAP and Elecsys Aβ42 values showed good concordance, but better 

concordance was found when comparing to amyloid imaging. Mixture modeling identifies sub-

populations in a given sample and weighting takes in to account the distribution of each sub-

population in the overall population. The rich history of amyloid imaging and CSF biomarker 

analysis means that (1) concordance between amyloid imaging and CSF Aβ42 is high in most 

studies and (2) a general estimate for amyloid positivity in cognitively normal individuals can be 

established, therefore a cutoff of 1,200 pg/ml was chosen to indicate amyloid positivity using the 

Elecsys assay for the purposes of the current study.  
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Figure 5.2 ADNI Aβ42 Converter xMAP Versus Elecsys Positivity Comparison  
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Core CSF biomarkers, Tau/Aβ42 Ratio and MMSE score in the nine individuals in the ADNI longitudinal cohort that converted from Aβ42- to 
Aβ42+ at any LP after that baseline LP, as defined by xMAP Aβ42. Each graph represents a single individual, with T0 representing the baseline 
LP and representative baseline quintile for each biomarker. Follow up LP’s or MMSE tests are marked by open circles. Each colored line 
represents a different biomarker (Red, Elecsys Aβ42; Blue, Elecsys Tau; Light blue, Elecsys P-Tau181; Purple dash, Aβ42/Tau Ratio; Black, 
MMSE score). At the top of each graph, pink arrows indicate the time when an individuals’ CDR score changed from 0 to 0.5; black arrows 
indicate the time point that an individual would be considered Aβ42+ according to xMAP data; grey dashed arrows indicate the time point an 
individual would be considered Aβ42+ according to Elecsys data; grey dashed arrows with a star indicate an Elecsys value very close to the Aβ42 
cutoff of 1200 pg/ml. 
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Only one individual exhibited agreement between xMAP and Elecsys amyloid positivity – 

individual 61. Individual 210 was considered amyloid positive 6 years after baseline with the 

xMAP assay; with the Elecsys assay the CSF Aβ42 value was 1,271 pg/ml, very close to the 

1200 pg/ml cutoff. Individual 454, though showing decline in Aβ42 over time, did not exhibit 

amyloid positivity when using the Elecsys cutoff, even though xMAP Aβ42 values converted to 

positivity 3 years after baseline LP and a CDR score of 0.5 was given 9 years after baseline LP.  

The remaining 6 individuals would be classified as Aβ42+ one to five years earlier using Elecsys 

data than they would using xMAP data. Visually, the earlier positive classifications using 

Elecsys data fit better with the hypothesis of a long period of amyloid accumulation before 

cognitive symptoms appear and also match data from the ACS longitudinal cohort showing that 

amyloid changes are detected earlier than tau and cognitive changes. 

5.2.3 Conclusions 
Reductions in CSF Aβ42 over the time-course of AD are now a well-established phenomenon, 

but recent discoveries regarding the variability in measurement over time for this important 

biomarker have added an element in longitudinal analysis that is difficult to control for, much 

less anticipate. The increase in assay comparison studies, alongside the emergence of new assay 

platforms such as the Elecsys assays for Aβ42, Tau and P-tau181, is a barometer for the next 

important phase in AD research: the search for or development of reliable assays that can be used 

worldwide for the consistent measurement of Aβ42 from bodily fluids such as CSF. 

The ADNI dataset provides an interesting opportunity to compare a widely used assay – xMAP – 

and a new assay platform – Elecsys – in the same set of samples. The biggest caveat to the ADNI 

observations above is that they cannot, at this time, be statistically validated due to the very small 

group of only nine individuals. However, these data do again showcase the necessity for 
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biomarker comparison across multiple assays and assay platforms in the effort to find an assay 

(or assays) that perform most sensitively and most specifically in identifying AD on a within-

individual basis. 

There is a delicate balance between adequate assay testing and the depletion of precious stores of 

CSF from cohorts such as the ACS and ADNI, which necessitates careful consideration of 

appropriate assay platforms and study design. The development and adoption of stable 

measurement techniques for Aβ42 and other AD biomarkers will likely contribute greatly to 

defining the within-person changes that will allow biomarker-based diagnosis and prognosis on 

an individual basis. 
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Chapter 6: Conclusions and Discussion 
The development in CSF biomarkers of AD has progressed rapidly over the last decade. From 

the development of core biomarkers of disease through the identification and study of important 

non-core biomarkers, the field as a whole is learning important lessons about AD progression 

and about the difficulties involved in measuring biomarkers in a slow-developing disease where 

the organ of interest is not easily accessible. The current work is a step toward developing CSF 

biomarker profiles that may eventually provide, over the full course of the disease, diagnostic 

and prognostic applicability in conjunction with neuroimaging and psychometric analysis. The 

results reported in this document, alongside other work in the field, indicate that the diagnostic 

and prognostic paradigm for AD will likely require multi-factorial, longitudinal, assessment in 

order to pinpoint disease on a within-person basis. They also provide support for viewing AD as 

a continuum as outlined by Aisen et al3.  

The aim of the works presented here were primarily to define the behavior or CSF biomarkers in 

large, independent cohorts during the preclinical and early symptomatic stages of AD. In 

agreement with data from the DIAN cohort, changes in core CSF biomarkers of AD begin to 

differentiate individuals at higher risk of developing the disease than those at lower risk, as 

defined by APOE ε4 allele carriage in the ACS cohort, as early as 45 years of age. In many 

cases, these changes occurred earlier in ε4 carriers than non-carriers, though the rates of change 

did not differ between the two groups. In mid middle-age, core markers of neuronal injury and 

death, as well as non-core markers of neuronal injury and neuroinflammation in the ε4 carrier 

group increased at a faster rate than mid middle-age non-carriers, but this rate of change was not 

different between late or mid middle-aged carriers or late middle-aged non-carriers, indicating 
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that regardless of the age of disease onset, it progresses at roughly the same rate across 

individuals, when defined by biomarker status.  

Further investigation in the ACS cohort – though of an n too small to perform statistical analyses 

– indicated that PiB positivity developed only after CSF Aβ42 levels were reduced. This perhaps 

was most plainly indicated by two individuals with stable low CSF Aβ42 who were PiB 

negative. Interestingly, CSF Tau, VILIP-1, and YKL-40 were increasing slightly or at mid-to-

high concentrations compared to other individuals at similar ages, which suggests these 

individuals were in the beginning stages of amyloid deposition in the brain. Further follow-up 

with these individuals would be particularly interesting to confirm that indeed, this may be 

evidence of the very earliest stages of preclinical disease. 

These visual associations with PiB imaging, alongside an association with cognitive changes in 

late middle-age are an indication that the utilization of multiple modalities may lead to a more 

accurate representation of the full continuum of disease. The ACS cohort provides an incredibly 

important glimpse of CSF changes during preclinical AD, from very early longitudinal decreases 

in CSF Aβ42, followed by longitudinal increases in CSF markers of neuronal injury or death 

alongside the development of PiB positivity in mid middle-age, followed lastly by evidence of 

cognitive changes in the oldest age group studied. A larger n, paired with continued follow-up of 

this group of study participants has the potential to allow analysis of biomarker trajectories 

throughout the continuum of early disease. 

In contrast, the ADNI cohort provided the ability to study CSF biomarkers across the spectrum 

of cognitive impairment that physicians currently use to define AD in research and clinical 

settings. Only the core CSF biomarkers Aβ42, Tau, and P-tau showed longitudinal change in the 
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preclinical, cognitively normal amyloid negative and/or amyloid positive groups, mirroring 

changes seen in the ACS cohort. The non-core markers VILIP-1 and YKL-40 did not exhibit 

changes during this period, unlike the changes seen in the ACS cohort. However, the core 

biomarkers and non-core markers indicative of neuronal dysfunction (either neuronal injury, 

death, or synaptic injury) showed longitudinal decreases during the early symptomatic stages of 

disease with the exception of CSF Tau. Again based on data from the DIAN cohort, longitudinal 

decreases in CSF biomarkers of neuronal dysfunction were not unexpected64. However, the work 

published here supports these findings in a large, independent cohort of individuals with sporadic 

AD, providing further evidence that the pathologic disease processes of AD are indeed the same 

in both ADAD and sporadic AD, regardless of differing etiology.  

These data have important implications for clinical trials looking to enroll individuals during 

preclinical AD. For instance, a trial aiming to capture individuals across the spectrum of changes 

that occur during preclinical AD may enroll participants with only low CSF Aβ42, with low CSF 

Aβ42 and who are amyloid imaging positive, or who are CSF or amyloid imaging with evidence 

of high or increasing markers of neuronal dysfunction. Such separation may provide 

opportunities to test anti-amyloid therapeutics at varying states of disease prior to cognitive 

impairment to best pinpoint when during preclinical disease these agents are most efficacious. It 

may also provide a platform for testing alternative therapeutic agents such as anti-tau or secretase 

inhibiting drugs to determine if/when they are efficacious at preventing amyloid or tau 

accumulation or neuronal death. Further reasoning for determining in-depth biomarker 

trajectories over the full course of AD is apparent in the ADNI data. In many cases, reduction in 

a biomarker that is elevated during disease would be seen as an indicator of therapeutic efficacy 

in a clinical trial. However, if the core and non-core biomarkers are indeed decreasing 
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longitudinally during the early symptomatic stages of AD (individuals with a CDR score of 0.5 

to 1), a reduction in, for instance, Tau or VILIP-1 might be indicative of the natural course of 

disease rather than therapeutic target engagement or treatment efficacy. This is particularly 

important in clinical trials enrolling individuals with mild cognitive impairments, where a 

reduction in markers of neuronal injury might well be considered an indicator of treatment 

downstream treatment efficacy, even with anti-amyloid therapeutics.  

As mentioned in Chapter 1, the hypothetical models of biomarker change that have thus far been 

proposed were invariably represented as sigmoidal curves. Much work remains to allow cross-

study comparisons of biomarkers in a way that would render modeling changes in the ACS and 

ADNI groups together a possibility. However, the pictures of core AD CSF biomarkers 

developed in the ACS, ADNI, DIAN and other studies are largely in agreement in terms of 

direction of change (increasing or decreasing) over the course of the disease. If the non-core CSF 

biomarkers are considered similarly, the ACS and ADNI data may also indicate how these 

biomarkers change, as a whole, over the course of disease. Figure 6.1 outlines what the 

biomarker trajectories of CSF Aβ42, Tau, Ptau, VILIP-1, SNAP-25, Ng, and YKL-40 might look 

like as further data from longitudinal studies is added to our knowledge base. Current constraints 

do not allow for the ACS and ADNI data to be formally compared to one another, but for the 

purposes of visualizing biomarker change based on disease state, the ACS and ADNI data are 

considered on the same curve for each individual biomarker. The ACS data likely shows a more 

complete picture of preclinical AD as the CN Aβ- and Aβ+ groups were small. However, without 

enough longitudinal follow-up to show individuals progressing from cognitively normal and 

biomarker positive through clinically recognizable cognitive impairments, it is currently only 

possible to speculate which individuals might be in the very earliest stages of disease 
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(hypothesized to exhibit only CSF amyloid changes). Therefore the hypothetical curves do not 

extend through the full range of “preclinical AD” as labeled in Figure 6.1. Further, as SNAP-25 

and Ng were only assessed in the ADNI cohort, the hypothetical curve (shown in lavender) 

begins later in the “preclinical AD” range than the other CSF biomarkers. The inflection points 

where markers of neuronal dysfunction hit a peak and then fall between the “MCI” and “AD” 

labels are hypothesized to occur in the ADNI group designated as MCI Aβ+, individuals who 

most likely are exhibiting impairment due to AD. Data from Chapter 3 indicates that these 

markers do not significantly change during MCI, potentially due to either a plateau once 

biomarker concentrations are at their maximum, followed by the decline seen in the AD group, 

or due to the slope of biomarker change being in effect washed out by individuals on one side of 

the inflection increasing longitudinal and individuals on the other side decreasing. Further 

research will be needed to develop these curves more fully. 
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Figure 6.1 Hypothetical Model of Combined ACS and ADNI CSF Biomarker Trajectories 

Hypothetical trajectories of CSF biomarkers based on data from both the ACS and ADNI datasets 
combined. The x-axis indicates disease state as it progresses from Preclinical AD, through MCI, through 
AD; vertical dashed lines indicate, roughly, the transition from one disease state to the next. The y-axis 
indicates direction of longitudinal change, which can be interpreted as upward change corresponding to 
significant increases in biomarkers over time, downward change corresponding to significant decreases 
over time, and plateaus or inflection points corresponding to no significant change over time in the 
respective diagnostic groups. Each line indicates a single CSF biomarker trajectory: Red, Aβ42; Dark 
Blue, Tau; Light Blue, Ptau; Purple, VILIP-1; and Orange, YKL-40; Lavender represents both SNAP-25 
and Ng as both biomarkers performed similarly in the ADNI cohort.  
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Biomarker research in AD is still only just beginning. The data generated by this project will be 

used moving forward for a number of projects: 1) analyzing VILIP-1 and YKL-40 across both 

the ACS and ADNI datasets to assess whether the two cohorts might be viably combined, thus 

increasing the n for at least two non-core biomarkers to 317 individuals; 2) assessing further 

promising non-core biomarkers in these populations such as NfL; 3) exploring further statistical 

analyses based on the addition of neuroimaging biomarkers or different classification schemes. 

The wealth of data offered by these studies allows for a multitude of avenues of investigation. In 

particular, the data presented lends itself well to investigation using groups defined by the 

proposed A/T/N classification from the NIA-AA. Grouping by APOE allele risk factor or by 

amyloid positivity only as defined by CSF Aβ42 may obscure longitudinal changes occurring in 

the later preclinical or MCI stages of AD. For instance, grouping individuals by CSF Aβ42 status 

only may not accurately capture differences in the rates of longitudinal change in biomarkers of 

neuronal dysfunction that could occur in an individual who is amyloid positive only, compared 

with an individual who is amyloid positive and tau positive. There is much left to learn from 

these studies. 

By far, one of the biggest limitations of the current studies is the low n; despite both the ACS and 

ADNI being the largest longitudinal studies of AD reported to date, they are still quite small in 

terms of statistical power. However, these studies may be used to perform power calculations in 

further cohorts, allowing judicial allocation of precious CSF for testing at a time when enough 

samples have been collected. Another limitation was brought to the forefront in Chapter 5: assay 

variability. Particularly with CSF Aβ42, the reproducibility and comparability of Aβ42 when 

measured in labs around the world is not at a level that receives confidence from regulatory 

agencies as a validated diagnostic, prognostic, or theragnostic tool – though in Europe the 
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measurement of core CSF biomarkers is more widely approved and more common than in the 

United States. Additionally, non-core biomarkers may be especially valuable in tracking 

downstream indicators of therapeutic efficacy in clinical trials. However, further longitudinal 

validation is needed on each of the biomarkers reported here, as well as development of other 

promising biomarkers, to bring the level of confidence in such markers on par with the core 

biomarkers.  

Large longitudinal studies such as the ACS and ADNI require rigorous planning, protocol 

adherence, abundant funding, and, most importantly, dedicated populations of volunteers willing 

to undergo a gamut of testing modalities on a regular basis. Despite being active for nearly two 

decades, the ACS is only now at a point to assess longitudinal CSF data from enough 

participants to allow rigorous statistical analysis. The ADNI study is just over a decade old 

though, as a study designed with the validation of AD biomarkers in mind, much more data has 

been collected and on a shorter time-scale than the ACS. Data gained through both cross-

sectional and longitudinal data on these and other large, diverse cohorts is essential to the 

forward movement in understanding the full course of AD. Hopefully, these data will allow 

development of statistically validated trajectories of biomarkers throughout the course of disease, 

allowing clinical trials to accurately assess biomarker changes in relation to therapeutic agents 

and eventually allowing physicians to reliably diagnose individuals with AD at any stage and 

offer a prognosis or, someday, the appropriate treatment at the best possible junction. 
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Appendix 
A.1 Appendix Data and Figures for Chapter 3 

A.1.1 Assay Details 

VILIP-1  

Mouse anti-human VILIP-1 and sheep anti-human VILIP-1 were used to develop a sandwich 

ELISA using an Erenna instrument (Singulex). Assay reagents include biotinylated mouse anti-

human VILIP-1, clone 3A8.1 “capture” antibody, bound to streptavidin-coated magnetic micro 

particles and Invitrogen Alexa Fluor 647 dye labeling of sheep anti-human VILIP1. Additional 

materials purchased from Singulex include 10X Wash Buffer (02-0001-01), Elution Buffer (02-

0297-xx) and elution step neutralization Buffer C (02-0298-00). 

Prior to the assay all samples were centrifuged (11,000 g x 3 minutes) to remove particulates. All 

assay steps were performed at room temperature unless otherwise indicated. A calibration curve 

was prepared using dilutions of recombinant human VILIP-1 ranging from 3.9 to 3000pg/mL in 

assay buffer (prepared daily for the assay and filtered before use contained per liter) containing 

10 mm TRIS, 150 mm NaCl, pH = 8.1, supplemented with 0.1% each of  Triton X (Sigma T-

9284), and Sodium Azide, also with 1 gram BSA (Sigma A-7030), as well as 2 gram Equitech-

Bio mouse IgG (SLM66) (2 mg/mL) and 2 mM CaCl2 (Sigma 21115), with each concentration 

assayed in triplicate. 15 μL standards or CSF sample were combined with 135ul assay buffer and 

50μL antibody coated micro particles. The assay plate was incubated for two hours on a plate 

shaker set to 525 revolutions per minute. Micro particles were then magnetically separated and 

washed one time using an Agilent (Santa Clara, CA) Bravo Automated Liquid Handling 

Platform using Singulex Wash Buffer. Fluorescent dye labeled detection antibody (20μL per 
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well) was added and incubated for one hour. After washing the magnetic micro-particles five 

times, 20μL per well of Singulex Elution Buffer was added for 10 minutes to separate detection 

antibody from the micro-particles. Eluted antibodies were then transferred with the Bravo 

instrument to a clean 384 well plate for reading in the Erenna® immunoassay system. 

SNAP-25 
Mouse anti-human SNAP-25 antibodies were used for development of a sandwich ELISA using 

an Erenna instrument (Singulex). Assay reagents included a preparation of the monoclonal 

capture antibody 6H07-2C12 for binding to Invitrogen (Carlsbad, CA) MyOne magnetic micro-

particles and Invitrogen Alexa fluor dye labeling of monoclonal antibody 9E11, using Singulex 

labeling kits (capture antibody labeling kit 03-0077-xx and detection antibody labeling kit 03-

0076-02). Additional materials purchased from Singulex include 10X Wash Buffer (02-0001-

01), Elution Buffer (02-0297-xx) and elution step neutralization Buffer C (02-0298-00). 

Prior to the assay all samples were centrifuged (11,000 g x 3 minutes) to remove particulates. All 

assay steps were performed at room temperature unless otherwise indicated. A calibration curve 

was prepared using dilutions of recombinant human SNAP25 (CSI15602) from Cell Science, Inc 

(Seattle, WA) ranging from 0.078 to 90pg/mL in Thermo Scientific, Inc (Rockford IL) Blocker 

Casein in TBS plus 0.1% Tween-20 from Sigma-Aldrich, Inc (St Louis MO) and with each 

concentration assayed in triplicate. 100μL standards or CSF diluted 4-fold were combined with 

100μL antibody coated micro particles diluted in Blocker Casein in TBS plus 1% Tween-20. The 

assay plate was incubated for two hours on a plate shaker set to 525 revolutions per minute. 

Micro-particles were then magnetically separated and washed one time using an Agilent (Santa 

Clara, CA) Bravo Automated Liquid Handling Platform using Singulex wash buffer. Fluorescent 

dye labeled detection antibody diluted in Blocker Casein in TBS plus 1% Tween-20 (20μL per 
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well) was added and incubated for one hour. After washing the magnetic micro-particles five 

times, 20μL per well of Singulex Elution Buffer was added for 10 minutes to separate detection 

antibody from the micro particles. Eluted antibodies were then transferred with the Bravo 

instrument to a clean 384 well plate for reading in the Erenna® immunoassay system. 

Ng 
Two epitope-specific rabbit anti-human NGRN antibodies were used for development of an 

ELISA using an Erenna instrument (Singulex). Assay reagents included a preparation of a C-

terminal specific antibody (P-4793) for binding to Invitrogen (Carlsbad, CA) MyOne magnetic 

micro-particles and Invitrogen Alexa fluor dye labeling of N-terminal specific antibody (P-4794) 

using Singulex labeling kits (capture antibody labeling kit 03-0077-xx and detection antibody 

labeling kit 03-0076-02). Additional materials purchased from Singulex include 10X Wash 

Buffer (02-0001-01), and custom Elution Buffer (02-0002-01). 

Prior to the assay all samples were centrifuged (11,000 g x 3 minutes) to remove particulates. All 

assay steps were performed at room temperature unless otherwise indicated. A calibration curve 

was prepared using dilutions of synthetic full-length NGRN purchased from AAPPTec, (Louisville 

KY), ranging from 1.75 to 3000pg/mL in standard diluent (TBS, 2 mg/ml rabbit IgG from 

Equitech-Bio [Kerrville, TX] plus 0.1% Tween-20), with each concentration assayed in 

triplicate. 50μL standards or CSF diluted 10-fold were combined with 100μL antibody coated 

micro-particles diluted in assay buffer (TBS, rabbit IgG plus 1% Tween-20). The assay plate was 

incubated for two hours on a plate shaker set to 525 revolutions per minute. Micro-particles were 

then magnetically separated and washed one time using an Agilent (Santa Clara, CA) Bravo 

Automated Liquid Handling Platform using Singulex Wash Buffer.  Fluorescent dye labeled 

detection antibody diluted in assay buffer (20μL per well) was added and incubated for one hour. 
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After washing the magnetic micro-particles 5 times, 20μL per well of Singulex custom Elution 

Buffer (PN 02-0002-03) was added for 30 minutes to separate detection antibody from the 

micro-particles. Eluted antibodies were then transferred with the Bravo instrument to a clean 384 

well plate for reading in the Erenna® immunoassay system. 

YKL-40 
YKL-40 was measured using the MicroVue YKL-40 ELISA assay (Quidel, San Diego, CA). 

Prior to the assay, all samples were lightly vortexed for 5 seconds. All assay steps were 

performed at room temperature unless otherwise noted. The complete standard curve of YKL-40 

purified from osteosarcoma MG-63 cells is provided with the assay kit, and each standard and 

sample was assayed in duplicate. All CSF samples were diluted 1:2 in Standard A (0 ng/ml) on 

an ice cold pre-plate before transferring 20μl to the coated ELISA plate. After adding 100μl 

capture solution, the plate was incubated for 60 minutes followed by washing 4 times with 250μl 

wash buffer. Enzyme conjugate (100μl) was prepared prior to beginning the assay and added to 

the assay plate, followed by a 60 minute incubation. The substrate solution was prepared during 

this step to ensure dissolution of the substrate tablet. After another wash (four times with 250μl 

wash buffer), 100μl substrate was added to the assay plate followed by a 60 minute incubation. 

Finally, 100μl stop solution was added to the assay plate, and samples were read at an optical 

density of 405nm and analyzed with a linear regression curve-fit. 

A.1.2 Assay Quality Control 
All samples (each from the same freeze/thaw cycle) were run in triplicate for VILIP-1, SNAP-25 

and Ng and in duplicate for YKL-40, all using a single assay lot number. Importantly, within-

person longitudinal samples were run on the same assay plate to reduce inter- and intra-plate 

variability. Quality control (QC) for VILIP-1, SNAP-25 and Ng included analysis of three 

internal standard CSF pools run on each assay plate. For YKL-40, two internal standard CSF 
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pools were run on each plate. QC mean and tolerance limits for VILIP-1, SNAP-25 and Ng were 

established by computing the average of at least 15 values collected over at least four runs prior 

to running ADNI samples. Tolerance limits were defined at ± two standard deviations (2SD) and 

± three standard deviations (3SD) from the mean. QC mean and tolerance limits for YKL-40 

were determined by the kit manufacturer. For VILIP-1, SNAP-25 and Ng plates with two or 

more QC sample values greater than 2SD from the mean were reanalyzed. For YKL-40, plates 

with two or more internal pooled controls and/or kit-provided controls falling outside the 2SD 

limit were reanalyzed. In addition, any individual sample with a coefficient of variation (% CV) 

greater than 25% was reanalyzed. Samples that failed QC were refrozen and stored at -80°C for 

at least 48 hours before being reanalyzed. When samples were reanalyzed due to QC failure, all 

within-person longitudinal samples were reanalyzed as well, on the same freeze/thaw cycle. Due 

to the availability of only a single 500uL aliquot of ADNI CSF, workflows defined that VILIP-1, 

SNAP-25 and Ng were to be run on the first freeze/thaw cycle, while YKL-40 (and any required 

reruns for VILIP-1) was run on the second freeze/thaw cycle. Internal QC experiments 

previously revealed <10% loss of YKL-40 over four freeze/thaw cycles (unpublished 

observations). Any samples that required repeat SNAP-25 or Ng measurements were performed 

on the third freeze/thaw cycle samples. Due to protein loss from multiple freeze/thaw cycles, 

SNAP-25 reruns did not pass QC; therefore, any samples that failed QC from the first 

freeze/thaw were removed from the SNAP-25 dataset. In total, 21 of 587 (3.4%) samples failed 

initial QC for VILIP-1, 1 of 587 (0.2%) for SNAP-25, 126 of 587 (21.5%) for Ng, and 73 of 587 

(12.4%) for YKL-40. 

A.1.3 Statistical results adjusting for sex, APOE ε4 status, education and 
baseline age 
Elecsys® tTau 
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When adjusting for sex, females had significantly higher levels of tTau at baseline (p=0.008), but 

such adjustment had no effect on longitudinal change. Adjusting for sex resulted in the loss of 

significant increase in the CN groups and a gain of significance of a longitudinal decrease in the 

AD+ group (p=0.02). Between-group comparisons were identical to the unadjusted model at 

baseline and longitudinally. Adjusting for education had no significant effects on baseline or 

longitudinal tTau or between-group comparisons, but the between group differences no longer 

reached statistical significance, likely due to inadequate statistical power. Adjusting for baseline 

age significantly affected the MCI+ group at baseline, lower in older individuals (p=0.04), but 

had no effect on longitudinal or between-group comparisons. The MCI+ group remained 

significantly higher at baseline than the CN- group (p=0.04). Adjusting for total ventricular 

volume significantly affected tTau in the MCI+ group at baseline (p=0.007), but did not 

influence longitudinal change or between-group comparisons. Adjusting for APOE ε4 status had 

no effect on baseline or longitudinal tTau patterns. 

Elecsys® pTau 
Adjusting for education and baseline age had no significant effect on baseline or longitudinal 

pTau values or between-group comparisons. However, the between-group differences seen in the 

unadjusted model no longer achieved statistical significance, nor did the longitudinal changes in 

the CN+ and AD+ groups, likely due to inadequate statistical power. Adjusting for sex showed 

that females had significantly elevated baseline pTau (p=0.01), but it did not change any 

longitudinal or between-group comparison findings compared to the unadjusted model. 

Adjusting for APOE ε4 status negated the significantly elevated baseline in the CN+ compared to 

the CN- group (p=0.07), but otherwise the results were the same as in the unadjusted model. 

Adjusting for total ventricular volume significantly affected pTau in the MCI+ group at baseline 

(p<0.001), but did not influence longitudinal change or between-group comparisons. 
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VILIP-1 
Adjusting for education had no significant effect on baseline or longitudinal VILIP-1 or 

between-group differences, but the between-group differences observed in the unadjusted model 

no longer achieved statistical significance, likely due to inadequate statistical power. Adjusting 

for baseline age had a significant effect in the MCI+ group at baseline (higher levels with older 

age, p<0.01) but did not change the group differences between MCI+ and the MCI- and CN- 

groups. Adjusting for APOE ε4 status or sex had a significant effect on baseline VILIP-1 (ε4+ 

and female individuals were higher at baseline (both p<0.03)). The significant between-group 

comparisons at baseline were lost in the ε4 model. In the sex model, all aspects remained 

identical to the unadjusted model except that the MCI+ was now significantly higher than the 

CN+ group at baseline (p=0.03). Adjusting for total ventricular volume had a significant effect 

on baseline in the MCI+ group (p<0.0001), but not longitudinally. Between-group comparisons 

at baseline were lost in the AD+ compared with both CN- and MCI- groups as well as 

longitudinal comparisons in the AD+ compared with the CN-, CN+, and MCI- groups. 

SNAP-25 
Adjusting for APOE ε4 status had a significant effect on baseline SNAP-25 (higher in ε4+ 

individuals, p<0.0001) In addition, baseline differences between the MCI+ and the CN groups is 

lost, as is the significant longitudinal decrease in the AD+ group. Adjusting for baseline age and 

education had no significant effect on baseline or longitudinal SNAP-25 or between-group 

comparisons, but the between-group differences seen in the unadjusted model no longer reached 

significance, likely due to inadequate statistical power. Adjusting for sex had no effect on 

baseline or longitudinal SNAP-25 patterns. Adjusting for total ventricular volume significantly 

affected baseline SNAP-25 (p=0.02), but not longitudinal patterns. The baseline difference 

between the AD+ and CN+ groups was lost. 



173 
 

Ng 
Adjusting for APOE ε4 status had no effect on baseline or longitudinal Ng; however, the MCI+ 

group at baseline was no longer higher than the MCI- and CN- groups (p=0.1 and p=0.057). 

Adjusting for sex had a significant effect on baseline Ng (higher in females, p=0.03), but did not 

have a significant effect on longitudinal Ng. Between group comparisons were identical to the 

unadjusted model except the MCI+ group now also showed significant decreases over time 

(p=0.04). Adjusting for baseline age and education had no significant effect on baseline or 

longitudinal Ng or between-group comparisons, but the between-group differences observed in 

the unadjusted model no longer reached significance, likely due to inadequate statistical power. 

Adjusting for total ventricular volume significantly affected baseline Ng (<0.0001), but not 

longitudinal patterns. The baseline difference between the AD+ and CN+ groups was lost as 

were longitudinal differences between the AD+ and CN-, CN+, and MCI- groups. 

YKL-40 
Adjusting for sex impacted many of the baseline and longitudinal patterns of YKL-40 among the 

groups. In general females showed higher levels of baseline YKL-40 compared to males 

(p=0.003). Baseline levels of YKL-40 were still significantly higher in the AD+ compared to the 

MCI- group (p=0.04), but was now also higher in the AD+ compared to the CN- group (p=0.03), 

as well as the MCI+ compared to the MCI- (p=0.005) and both CN groups (p=0.03 for CN+, 

p=0.001 for CN-). Longitudinally, YKL-40 levels no longer increased significantly in the MCI+ 

group, but instead now decreased in the AD+ group (p=0.003). Adjusting for baseline age and 

education had minimal effect on baseline or longitudinal patterns of YKL-40, but the between-

group differences seen in the unadjusted model no longer reached significance, potentially due to 

high variability and inadequate statistical power. Adjusting for APOE ε4 status had no significant 

effect on baseline or longitudinal YKL-40, but the difference at baseline between the AD+ and 



174 
 

MCI- groups was no longer significant (p=0.08). Adjusting for total ventricular volume had a 

significant effect on longitudinal YKL-40 (p<0.001), but not on baseline levels, and the 

difference at baseline between the AD+ and MCI- groups was no longer significant (p=0.22). 

Elecsys® Aβ42 
Adjusting for APOE ε4 status affected baseline Aβ42 levels right at the statistical significance 

level (i.e., ε4+ had lower Aβ42, p=0.05), but did not influence longitudinal change or between-

group comparisons. Adjusting for sex only impacted the longitudinal decline in the AD+ group 

(i.e., losing significance, now p=0.08). Adjusting for baseline age eliminated the statistical 

significance of decline in both the AD+ and CN- groups. In addition, most between-group 

comparisons at baseline lost significance, except that the AD+ group was still lower than the CN- 

group at the statistical significance level (p=0.05). Adjusting for total ventricular volume affected 

baseline levels and longitudinal change in the MCI- group (p=0.05 and p=0.01, respectively) but 

not between-group comparisons. 

Adjusting for education had a significant effect on baseline Aβ42 in the CN+ group (p=0.006), 

with more education associated with a higher baseline Aβ42. Longitudinally, more education had 

a significant impact in the MCI- group which showed significant yearly increases in Aβ42. The 

significant longitudinal decline in the AD+ and CN- groups seen in the unadjusted model was 

lost. The significant difference at baseline between the MCI+ and MCI- groups was also lost, but 

the MCI+ group now had significantly lower Aβ42 than the CN+ group (p=0.03), possibly 

driven by the significant effect of education on the CN+ group. 

MMSE  
Adjusting for education had no effect on baseline or longitudinal MMSE, though all between-

group comparisons at baseline lost significance. In this model, longitudinal MMSE in the AD+ 
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and MCI+ groups still decreased at a significant rate (both p<0.04), but were not significantly 

different from each other.  

Adjusting for baseline age had no effect on baseline MMSE, but did significantly affect 

longitudinal change in the AD+ group (slowed the decline) (p=0.05); however, the AD+ and 

MCI+ groups still decreased at a significant rate (both p<0.03). Adjusting for APOE ε4 status 

and sex had no effect on baseline or longitudinal MMSE or between-group comparisons, and the 

significant results were identical to those in the unadjusted model. 

ADAS11 and ADAS13 
Adjusting for education had no effect on baseline or longitudinal ADAS11; however, it did affect 

the between-group comparisons, with only the difference between the MCI+ and CN+ groups 

remaining significant (p=0.05). In this model, the AD+ group was still significantly increasing 

longitudinally (p=0.0035). Adjusting for baseline age had a significant effect on the slope in the 

AD+ and MCI+ groups (slowed the rate of increase) (both p<.02), but both groups retained the 

significant longitudinal increases observed in the unadjusted model (both p<0.003). The between 

group effects seen at baseline in the unadjusted model were absent, though the AD+ group still 

increased longitudinally at a faster rate than the MCI+ group (p=0.05). Adjusting for APOE ε4 

status and sex had no effect on baseline or longitudinal ADAS11 and yielded results identical to 

the unadjusted model. 

Adjusting for education had no effect on baseline or longitudinal ADAS13, but affected 

between-group comparisons similarly to ADAS11, with the MCI+ group being elevated 

compared to both CN groups (both p<0.04). In this model, the AD+ group was not significantly 

increasing longitudinally (p=0.07). Adjusting for baseline age showed similar results to those 

seen in ADAS11; however, the AD+ group was no longer increasing at a faster rate than the 
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MCI+ group (now p=0.13). Adjusting for APOE ε4 status did not affect baseline or longitudinal 

ADAS13, except that no significant difference was observed between the MCI+ and MCI- 

groups (p=0.09). Adjusting for sex significantly affected the longitudinal change in ADAS13, 

with females showing a faster increase (decline in performance)(p=0.03). Between-group 

comparisons at baseline remained identical to the unadjusted model. The longitudinal increase in 

the CN+ group was no longer significant (p=0.06), but between-group differences remained 

identical to the unadjusted model.  

HP Volume 
Adjusting for baseline age had no significant effect on baseline or longitudinal HP volume or 

between-group comparisons, but the slopes and between-group differences observed in the 

unadjusted model no longer reached significance, likely due to inadequate statistical power. The 

model adjusted for sex showed a significant effect on baseline HP volume, with females having a 

smaller volume (p=0.006). The significant differences at baseline between the AD+ and both 

MCI groups were lost (p=0.08 for MCI-, p=0.06 for MCI+), and longitudinally the AD+ group 

was no longer decreasing at a faster rate than the MCI- group (p=0.06). Adjusting for APOE ε4 

status had no effect on baseline or longitudinal HP volume, but the longitudinal between-group 

differences were lost for the AD+ and MCI- groups, the CN+ and CN- groups, and the MCI+ and 

MCI- groups (all p=0.2). 

EC Thickness 
Adjusting for baseline age affected EC thickness the same way it did HP volume. Adjusting for 

sex had no effect on baseline or longitudinal EC thickness, and between-group comparisons 

remained identical to the unadjusted model. Adjusting for APOE ε4 status had a significant effect 

on longitudinal change, with ε4+ individuals thinning more rapidly (p=0.03), and the CN- group 

now also significantly declining (p=0.005). Longitudinally the AD+ group was thinning 
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significantly faster than the CN- group (p=0.0007), but the MCI- versus CN+ between-group 

difference was no longer significant when adjusting for APOE ε4 status, nor were the 

longitudinal between-group differences for the AD+ and MCI- groups or the MCI+ and MCI- 

groups.  

Figure A.1 Spaghetti plots of longitudinal change in CSF biomarkers. 
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Supplemental Figure 1 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within-person longitudinal changes for tTau (A), pTau (B), VILIP-1 (C), SNAP-25 (D), Ng (E), YKL-40 
(F), and Aβ42 (G). Dashed lines indicate Aβ42-negative (Aβ-) individuals. Solid lines indicate Aβ42-
positive (Aβ+) individuals. Each biomarker is shown according to diagnostic group: left column, 
cognitively normal at baseline (n=56); middle column, MCI at baseline (n=79); right column, AD at 
baseline (n=17). 
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Figure A.2 Spaghetti plots of longitudinal change in cognition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within-person longitudinal changes in performance on ADAS-Cog 11 (A), ADAS-Cog 13 (B), and 
MMSE (C). Dashed lines indicate Aβ42-negative (Aβ-) individuals. Solid lines indicate Aβ42-positive 
(Aβ+) individuals. Each biomarker is shown according to diagnostic group: left column, cognitively 
normal at baseline (n=56); middle column, MCI at baseline (n=79); right column, AD at baseline (n=17). 
MMSE, 30 is the best possible score. ADAS-Cog 11/13, lower score is better performance, with 70 as the 
worst possible score. 
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Figure A.3 Spaghetti plots of longitudinal change in MRI measures.  
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Within-person longitudinal changes for total Entorhinal Cortical Thickness (A) and total Hippocampal 
Volume (B). Dashed lines indicate Aβ42-negative (Aβ-) individuals. Solid lines indicate Aβ42-positive 
(Aβ+) individuals. Each biomarker is shown according to diagnostic group: left column, cognitively 
normal at baseline (n=56); middle column, MCI at baseline (n=79); right column, AD at baseline (n=17). 
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Table A.1 Spearman R Correlation Matrix for CSF Biomarkers 

 

Bold, significant correlations (at least p<0.008) 
anot significantly correlated 
 
Abbreviations: Aβ42, AlzBio3 Aβ42; VILIP-1, visinin-like protein 1; SNAP-25, synaptosomal associated 
protein-25;Ng, neurogranin;  E-Aβ42, Elecsys Aβ42; E-tTau, Elecsys tTau; E-pTau, Elecsys pTau181 
 
 

A.2 Disclosures 

A.2.1 ACS Data 
This work was supported by grants P01AG026276, 5P30 NS048056, and 5P30 NS048056 from 

the National Institutes of Health, the Barnes-Jewish Hospital Foundation, the Fred Simmons and 

Olga Mohan fund, and a grant from Eli Lilly and Co. 

A.2.2 ADNI Data 
Data used in preparation of Chapters 3-6 this work were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 

the ADNI contributed to the design and implementation of ADNI and/or provided data but did 

not participate in analysis or writing of this report. A complete listing of ADNI investigators can 

be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

Aβ42 VILIP-1 SNAP-25 Ng YKL-40 E-Aβ42 E-tTau
Aβ42

VILIP-1 -0.235
SNAP-25 -0.413 0.72

Ng -0.22 0.849 0.619
YKL-40 -0.121a 0.311 0.307 0.422
E-Aβ42 0.868 -0.131a -0.240 -0.154a 0.007a

E-tTau -0.416 0.798 0.688 0.853 0.389 -0.214
E-pTau -0.512 0.744 0.668 0.803 0.346 -0.324 0.975
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