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In this thesis, we present an algorithm for obtaining a triangulation of multiple, non-planar

3D polygons. The output minimizes additive weights, such as the total triangle areas or

the total dihedral angles between adjacent triangles. Our algorithm generalizes a classical

method for optimally triangulating a single polygon. The key novelty is a mechanism for

avoiding non-manifold outputs for two and more input polygons without compromising opti-

mality. For better performance on real-world data, we also propose an approximate solution

by feeding the algorithm with a reduced set of triangles. In particular, we demonstrate

experimentally that the triangles in the Delaunay tetrahedralization of the polygon vertices

offer a reasonable trade off between performance and optimality.

ix



Chapter 1

Introduction

1.1 Background

In many computer graphics applications, one needs to find a surface that connects one or
multiple (closed) boundary polygons. For example, such a surface is needed to fill in a hole
on an incomplete mesh, and complex holes may have multiple identified boundaries (e.g.,
an outer boundary and several interior islands) [4]. In contour interpolation [20], 2D curves
from adjacent planar sections need to be connected by one or multiple surfaces. Last but not
least, with the availability of sketch-based modeling tools [5], there is an increasing demand
in producing fair-looking surfaces from user-drawn curve sketches. Figure 1.1 shows some
examples.

For a single boundary polygon, a common practice for surfacing is to first generate an initial
mesh, usually a triangulation involving only the vertices on the polygon, and then to refine
this initial surface to achieve better smoothness or mesh quality. The initial triangulation,
given a single polygon, can be computed using a simple dynamic programming algorithm
[7, 9]. A nice property of this algorithm is that it is guaranteed to produce an optimal
triangulation that minimizes the sum of certain “weight”, being either a quantity that can
be measured for each individual triangle (e.g., area) or for each pair of adjacent triangles
(e.g., dihedral angle). The optimality of triangulation is important, since the success of mesh
refinement often depends on the quality of the initial mesh.
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Figure 1.1: Triangulations computed by our algorithm on sketched curves (left and middle)
and hole boundaries with islands (right).

In this paper, we propose an algorithm for triangulating multiple boundary polygons. The
algorithm follows the divide-and-conquer strategy of [7,9], composing the optimal triangula-
tion of a larger domain from triangulations of smaller sub-domains. A unique challenge that
arises in the multi-polygon case is that simple divide-and-conquer can produce non-manifold
output (i.e., edges used by more than 2 triangles). We propose a solution that avoids non-
manifold edges without compromising the optimality of the result. More precisely, given
k boundary polygons and a definition of weight, our algorithm finds the triangulation that
minimizes the sum of weights among all triangulations whose topology is equivalent to a
sphere with k holes.

A practical limitation of optimal algorithms (both [7,9] and ours) is their high computational
cost. Without changing the algorithms, we explore a solution by feeding the algorithms with
a reduced set of triangles. The choice of this reduced set has to be carefully made; the set
should have significantly fewer triangles than the complete space of triangles, but still big
enough to contain a near-optimal triangulation. A natural choice is the set of triangle faces
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of a Delaunay tetrahedralization of the input polygons. We devised experiments to analyze
the trade-off between efficiency and quality for triangulating in the Delaunay space.

1.2 Contributions

To our knowledge we are the first to develop a practical algorithm for triangulating multiple
non-planar 3D space curves. We make the following two main technical contributions:

• We generalize the dynamic programming algorithm [7,9] from a single polygon to mul-
tiple polygons with the guarantee of producing optimal, manifold triangulations. The
time and space complexity of the algorithm is analyzed and validated by experiments.

• We explore the use of Delaunay triangles as a reduced input to our algorithm, and
we perform experiments to demonstrate that this choice makes a good compromise
between computational cost and quality of results.

1.3 Related Work

1.3.1 Triangulating a single polygon

Triangulating a simple 2D polygon is a well-studied problem in computational geometry.
Many efficient algorithms have been proposed to find a triangulation [12, 23], although the
optimality of such triangulation is not guaranteed.

Gilbert [15] and Klincsek [18] independently developed an O(n3) time and O(n2) space
algorithm for computing the triangulation of a 2D polygon that minimizes the sum of total
edge lengths (also known as the minimum weight triangulation). The algorithm, based on
dynamic programming, constructs the optimal triangulation of a larger domain from the
optimal triangulations of smaller sub-domains. The algorithm was extended by Barequet
and Sharir [9] to find an optimal triangulation of a 3D polygon that minimizes the sum of
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per-triangle weights (e.g., area), with the same complexity. A further extension [7] minimizes
the sum of bi-triangle weights (e.g., dihedral angle) and uses O(n4) time and O(n3) space.

There are other approaches for triangulating a single 3D polygon but they do not possess any
guarantee of optimality and are often restricted to special classes of inputs. Liepa modified
the algorithm of [9] to simultaneously, but greedily minimize both the total surface area
and the worst dihedral angle [19]. When the polygon is sufficiently planar, one can first
project the polygon to a best-fitting plane, triangulate the planar projection, and finally lift
the triangles to 3D [22]. However, the method is not applicable for curly polygons with no
intersection-free planar projections. For smooth curve sketches provided by designers, the
method of Rose et al. [21] extracts near-developable surfaces using convex hulls while the
method of Bessmeltsev et al. [10] builds quadrangulations by interpolating the sketches with
flow lines. However, it is unclear how these methods would perform on more general inputs
such as jagged hole boundaries on incomplete meshes.

Note that all above methods produce outputs that may contain intersecting triangles. De-
termining whether a 3D polygon has a non-intersecting triangulation is in itself an NP-hard
problem [7].

1.3.2 Triangulating multiple polygons

To the best of our knowledge, there is no algorithm capable of computing the optimal
triangulation of multiple, general 3D polygons. However, algorithms exist for special classes
of polygons.

The algorithm of Gilbert and Klincsek for a single 2D polygon can be generalized to handle
a given set of interior vertices in the plane (i.e., degenerate holes each consisting of a single
vertex) [16]. The algorithm relies on the 2D locations of the interior vertices to determine
whether they lie inside a particular sub-domain.

Given two 2D polygons on parallel planes, the dynamic programming algorithm of Fuchs
et al. [14] computes an optimal ribbon-like triangulation consisting of only triangles that
span both polygons. Although the algorithm can be applied to triangulate two non-planar
polygons, it does not explore those triangles whose vertices belong solely to one of the

4



polygons, yet such triangles are often important to produce a fair surface for non-planar
inputs (e.g, the car bumper in Figure 1.1). Also, the algorithm does not generalize to multiple
polygons. While many other methods can interpolate multiple planar polygons [8, 11, 20],
they all rely upon the planarity of the polygons.
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Chapter 2

Algorithm

We start by a brief review of the classical algorithm [7,9] for optimally triangulating a single
3D polygon. We then describe our extension to multiple polygons.

2.1 Single polygon

We consider a closed 3D polygon P and a pool of “candidate” triangles T connecting vertices
of P . T can be the set of all triples of vertices of P , or some subset (see more discussions in the
next section). The goal is to find a subset of T that forms a topological triangulation (which
will be shortened as triangulation thereafter), which is a manifold, disk-like, but possibly
self-intersecting surface with P as its boundary. Furthermore, among all triangulations, we
seek an optimal one that minimizes the sum of some user-defined weights on each triangle
(e.g., area) or between two adjacent triangles (e.g., dihedral angle).

The key idea of the algorithm is divide-and-conquer: the optimal triangulation of P is found
by merging optimal triangulations of two segments of P , which are in turn constructed
from optimal triangulations of smaller segments. Note that this top-down scheme is slightly
different from the original bottom-up dynamic programming scheme in [7, 9]. While both
schemes have the same complexity, the top-down scheme is better suited for generalization
to more complex settings [16].

For the ease of explanation, let us first consider optimizing the sum of per-triangle weights
(e.g., area). We define a domain D as a segment of P , whose end points share an edge in
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the input triangle set T . We call this edge the access edge of D, denoted by eD (see Fig. 2.1
(a)). Now consider a triangle t incident to eD, whose third vertex lands on the polygon
segment of D. The domain D is thus split by t into two sub-domains, D1 and D2, whose
access edges are the two other edges of t (Figure 2.1 (b)). We can relate the weight of the
optimal triangulation of a domain D, denoted as W (D), to those of D1, D2 as:

W (D) = min
t∈TD

(w(t) +W (D1) +W (D2)) (2.1)

where TD denotes the set of input triangles incident to eD and whose third vertex lies on D,
and w(·) is the user-defined weight of a triangle. As the base case, W (D) = 0 if D consists
of only two vertices (called an empty domain).

(c)

(d)

(a)

(b)

Figure 2.1: Domain splitting in a single polygon for minimizing per-triangle (a,b) and bi-
triangle (c,d) weights.

If the optimization goal includes bi-triangle weights (e.g., dihedral angle), the optimal trian-
gulation within a domain D also depends on triangles outside D. To this end, we augment
our domain definition so that it is represented by both a segment of the polygon P and an
access triangle, denoted by tD, which is any triangle in T incident to the access edge eD
and whose third vertex lies outside D (Figure 2.1 (c)). As before, D can be split into two
sub-domains D1, D2 by any triangle t inside D and incident to e, where t serves as the access
triangle for both sub-domains (Figure 2.1 (d)). A similar relation holds between the weight
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of the optimal triangulation of D, in the context of tD, and those of sub-domains D1, D2:

W (D) = min
t∈TD

(w(t) + w(t, tD) +W (D1) +W (D2)) (2.2)

where w(·, ·) (with a slight abuse of notation) is the user-defined weight between two triangles.

The relations in Equations 2.1 and 2.2 naturally lead to a recursive implementation. To
avoid redundant computations, the minimal weight W (D), as well as the triangle t that
leads to the optimal splitting, are computed only once for each domain D and stored for
subsequent look-up (a technique known as "memoization"). The recursion starts from an
initial domain D that encompasses the entire polygon P except for one arbitrarily chosen
access edge eD (with an empty access triangle tD). After the completion of the recursion, the
optimal triangulation can be recovered from the splitting triangles stored at the domains.

The result of the algorithm is guaranteed to be a manifold surface with a disk-like topology.
The key to this guarantee is the fact the polygon segments of D1 and D2 share only one
common vertex. This implies that the triangulations of D1, D2 cannot share common edges
or triangles, and neither can contain the splitting triangle t. Hence if the two triangulations
are both manifold and disk-like, so is their union with t (which is a triangulation of D).

2.2 Multiple polygons

We now consider a set of polygons Pi for i = 1, . . . , k. While we looked for a manifold,
disk-like surface in the case of k = 1, here we ask the triangulation to be manifold and
topologically equivalent to a sphere with k holes.

To compute the optimal triangulation, we follow the same divide-and-conquer strategy that
we used before. While it is not too difficult to generalize the definition of domains to k ≥ 1,
a greater challenge is making sure that merging triangulations in these generalized domains
does not introduce non-manifold edges.

We start by introducing our generalization of domains. We then present our solution to
ensure topological correctness when merging triangulations, followed by a more efficient

8



computational approach. We end with analysis of the complexity bounds. For the ease
of explanation, except for complexity analysis, we will use the sum of per-triangle weights
(e.g., area) as the optimization function. Bi-triangle weights can be easily incorporated by
augmenting the domains with access triangles and including the bi-triangle weight in the
recursive formula (see Section 3.1).

2.2.1 Domains

A generalized domain is defined by its boundary and holes (see Figure 2.2 top-left). The
boundary is a closed loop made up of one or more segments from input polygons (called input
segments, solid edges in Figure 2.2), connected at their ends by edges in T (called spanning
edges, dashed edges in Figure 2.2). To be able to bound the number of domains, we ask
that no two input segments on the boundary of a domain come from the same polygon (so
the boundary can have at most k input segments). Note that each input segment can be
as small as a single vertex or as big as the entire curve. A domain may also contain input
polygons (that do not appear on the boundary) as its holes. A domain is empty if it has no
holes and if the boundary consists of only two polygon vertices, either on the same polygon
or on different polygons.

OR

OROR

Case I Split

Case II Split

Figure 2.2: Domain splitting in multiple polygons for optimizing per-triangle weights.
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To split a domain D into smaller domains, we arbitrarily assign one of the spanning edges
on D’s boundary as the access edge, noted as eD, and examine all triangles t incident to
eD whose third vertex v lands on D’s boundary or holes. Different from the single polygon
scenario, splitting with one triangle may yield multiple combinations of sub-domains. We
will separately examine two cases:

Case I: (v is on one of D’s holes, Pj) Splitting results in a single sub-domain D1 which
keeps all the remaining holes of D and adds the entire Pj as an input segment to the
boundary. Since there are two ways to order the edges of Pj, there are two possible D1

(Figure 2.2 top-right).

Case II: (v is onD’s boundary) Splitting results in two sub-domainsD1, D2, each occupying
a portion of D’s boundary and keeping a subset of D’s holes. If D has holes, there are
multiple ways of distributing the holes to the two sub-domains, resulting in multiple
possible pairs of D1, D2 (Figure 2.2 bottom).

Note that splitting always produces well-defined sub-domains where no two boundary seg-
ments come from the same input polygon. Also, a sub-domain is always “smaller” than the
original domain: it either contains fewer holes (Case I) or fewer boundary vertices with no
additional holes (Case II). Hence repeated splitting is guaranteed to terminate with empty
sub-domains.

2.2.2 Topologically correct triangulation

With divide-and-conquer, we merge optimal triangulations of sub-domains to form the op-
timal triangulation of the original domain. We need to make sure that the merging does
not introduce bad topology, such as non-manifold edges (used by more than 2 triangles) or
tunnels.

When the input is a single polygon, we get topological correctness for free. As we explained
earlier, this is because the sub-domains D1, D2 are disjoint except at one vertex. However, in
the multiple polygon case, D1, D2 may share more than one common vertex, which may lead
to possibly non-manifold edges after merging. To see why, observe that after a Case I split,
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the third vertex v of the splitting triangle will appear twice on the boundary of the resulting
sub-domain. Figure 2.3 left shows one such sub-domain (which we will refer to as D). A
further Case II split of D may result in two smaller sub-domains (referred to as D1, D2) that
both contain a copy of v, in addition to the common vertex v′ of the splitting triangle in this
second split (see Figure 2.3 right). If the edge {v, v′} appears in the optimal triangulation of
both D1 and D2, this edge would become non-manifold in the union of these triangulations.
Figure 2.4 (b) shows an example of a triangulation containing a non-manifold edge.

Figure 2.3: Domain splitting that results in sub-domains sharing two common vertices (v, v′).
Weak edges are indicated by dashed gray lines.

A naive way to prevent such non-manifold edges is to keep track of those edges used by the
optimal triangulation of one sub-domain (e.g., D1) while computing the triangulation of the
other sub-domain (e.g., D2). However, this would break the fundamental assumption of the
algorithm (that one domain can be solved independently from others).

Our key observation is that we can tell, just from the definition of a domain D, what edges
in the triangulation of D may become non-manifold after merging. This is because the
additional common vertices between sub-domains (e.g., v in Figure 2.3) are generated only
by Case I splits, and these vertices only lie at the ends of input segments on the domain
boundary. So the only edges in a triangulation of D that can possibly become non-manifold
are those that connect the ends of input segments of D. These edges include all the spanning
edges, which connect ends of successive input segments, as well as others that we call weak
edges (marked in gray in Figure 2.3). For a domain with m ≤ k input segments on the
boundary, there are at most 2m(m− 1) weak edges. Note that a domain with a single input
segment has no weak edges.
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Figure 2.4: Triangulations of two polygons (a) with a non-manifold edge (which connects
the disks that fill the two polygons) (b) and with only manifold edges (c).

Our strategy is to compute one optimal triangulation that uses each combination of weak
edges in a domain. This is done in turn by optimally triangulating the sub-domains (per
combination of their weak edges) and merging triangulations that don’t use common weak
edges. Let Eweak(D) and Espan(D) denote the set of all weak edges and spanning edges of a
domain D, and D1, D2 be the sub-domains as the result of splitting with a triangle t on the
access edge eD (D2 is empty for a Case I split).

Definition 2.2.1 Two sets of weak edges E1 ⊆ Eweak(D1) and E2 ⊆ Eweak(D2) are said to
be disjoint if sets E1∪Espan(D1) and E2∪Espan(D2) have no common elements and neither
contains eD. Furthermore, weak edges E ⊆ Eweak(D) are said to be the joint set of E1, E2

if
E = Eweak(D) ∩ (E1 ∪ Espan(D1) ∪ E2 ∪ Espan(D2) ∪ {eD}).

To compute the optimal triangulation that contains only those weak edges in E (and no other
weak edges in Eweak(D)), we consider all optimal triangulations of sub-domains D1, D2 that
contain disjoint weak edges whose joint set is E. That is,

W (D,E) =

min
t∈TD

w(t) + min
{D1, D2} ∈ Φ(D, t)

{E1, E2} ∈ Ψ(D1, D2, E)

(W (D1, E1) +W (D2, E2))

 (2.3)
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Here, W (D,E) is the weight of the optimal triangulation in D containing only weak edges
E, Φ(D, t) is the set of all possible combinations of sub-domains as the result of splitting by
triangle t, and Ψ(D1, D2, E) is the set of all pairs of disjoint weak edge sets in D1, D2 whose
joint set is E.

Next we show that W (D,E), as defined above, is indeed minimal among all topologically
valid triangulations of D containing only weak edges E. We first define what it means for a
triangulation to be “valid”:

Definition 2.2.2 A triangulation S of a domain D is said to be valid if it meets the fol-
lowing two criteria:

1. (Manifoldness) All edges on D’s boundary and holes have valence 1 in S, while the
remaining edges in S have valence 2.

2. (Simple topology) Let h be the number of holes of D. S is homeomorphic to a sphere
with h+ 1 holes, where the boundary curve of one of the holes is homeomorphic to the
boundary of D.

Note that the second criteria is slightly different from what we desire for the complete
triangulation of the input, since the boundary of a domain may have a non-trivial topology
itself. For the initial domain (whose boundary is all edges on one of the polygons except for
the access edge and whose holes are the remaining polygons), the second criteria is equivalent
to having the topology of a sphere with k holes.

Our argument is based on the following two claims (which we prove in the Appendix).
The first states that merging valid triangulations of sub-domains always results in a valid
triangulation of the larger domain. The second states the inverse, which is that a valid
triangulation of the larger domain can always be decomposed into valid triangulations of the
sub-domains. Putting this all together, and by induction, they support that W (D,E) as
defined in Equation 2.3 is minimal in the space of all valid triangulations.

Lemma 2.2.1 Let D1, D2 be sub-domains of D after splitting with triangle t. Let S1, S2 be
some valid triangulations of D1, D2, respectively, that contain only weak edges E1, E2, and
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suppose E1, E2 are disjoint and have joint set E. Then the union S1 ∪ S2 ∪ {t} is a valid
triangulation of D containing only weak edges E.

Lemma 2.2.2 Let S be a valid triangulation of D containing only weak edges E, and t

be the triangle in S incident to the access edge eD. Then there exist some sub-domains
{D1, D2} ∈ Φ(D, t) and sets {E1, E2} ∈ Ψ(D1, D2, E), such that S \ {t} is made up of two
valid triangulations in D1, D2, respectively, containing only weak edges E1, E2.

2.2.3 Minimal sets

A practical problem with implementing Equation 2.3 in a recursive program is the potentially
high computational cost. Even though the number of weak edges is small within a domain,
the number of possible combinations of them (E) can be prohibitively large. Since a domain
may contain up to 2k(k− 1) weak edges, it may have up to 22k(k−1) subsets. For k = 3, this
number is already 4096. Although some of these subsets do not give rise to any triangulation
(e.g., those that involve “crossing” weak edges in Figure 2.3), most of these subsets do. The
number of weak edge combinations affects both the time and space usage of the program, as
the weight W (D,E) needs to be computed and stored in memory for each combination E.

The following observation helps reducing the number of weak edge combinations that need
to be explored. Consider two triangulations S, S ′ of a same domain D that use weak edges
E,E ′ respectively. If the weight of S is less than that of S ′, and if E is a subset of E ′, then
any triangulation of the input polygons that uses S ′ can instead use S in place of S ′ to have
a lower total weight without violating the topological validity. This is because S has less
chance of causing “conflicts” with the rest of the triangulation than S ′.

With this observation, the program only needs to explore (and store) a weak edge set if none
of its subsets gives rise to a lower-weight triangulation. We call such set minimal weak edge
set, or simply minimal set. We further denote the set of all minimal sets for a domain D,
under a certain weight definition W , as Π(D,W ). Formally,

Π(D,W ) = {E ⊆ Eweak(D)|∀E ′ ⊂ E,W (D,E ′) > W (D,E)}
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Now we can modify Equation 2.3 to restrict the enumeration of weak edges sets to only
minimal sets,

Ŵ (D,E) =

min
t∈TD

w(t) + min
{D1, D2} ∈ Φ(D, t)

{E1, E2} ∈ Ψ(D1, D2, E)

E1 ∈ Π(D1, Ŵ )

E2 ∈ Π(D2, Ŵ )

(Ŵ (D1, E1) + Ŵ (D2, E2))

 .
(2.4)

We need to show that the restriction to minimal sets in Equation 2.4 does not compromise
optimality. This is stated in the next lemma (see proof in Appendix):

Lemma 2.2.3 Let W and W ′ be defined recursively using Equations 2.3 and 2.4, respec-
tively. Then, for any domain D,

1. Π(D,W ) = Π(D, Ŵ )

2. For all E ∈ Π(D,W ), W (D,E) = Ŵ (D,E).

The pseudo-code for the recursive program that computes minimal weights Ŵ and minimal
sets Π within a domain is given in Algorithm 1.

2.2.4 Complexity analysis

We give an upper bound of time and space used by the algorithm. Let n be the total number
of vertices in the input polygons, nE, nF be the total number of edges and triangles in the
input triangle set T .

We first bound the number of domains, denoted as nD. When minimizing per-triangle
weights, each domain contains at most k spanning edges that appear in T . So nD is upper
bounded by O(nk

E). To minimize bi-triangle weights, each domain needs to be augmented
by adding a triangle in T for each spanning edge, which brings the bound to O(nk

F ).
15



Algorithm 1 procesDomain(D)
Input: Domain D
Output: Π[D] // minimal weak edge sets of domain D
Output: W [D,E] // minimal weight of triangulating D using weak edges E
1: if Π[D] already exists then
2: return
3: end if
4: Ŵ []←∞ //temporary weights for each weak edge set
5: S ← ∅ //temporary list of weak edge sets
6: for each t ∈ T (D) incident to eD do
7: for each {D1, D2} ∈ Φ(D, t) do
8: processDomain(D1)
9: processDomain(D2)

10: for each disjoint pair E1 ∈ Π[D1], E2 ∈ Π[D2] do
11: E ← joint set of E1, E2

12: Ŵ [E]←Min(Ŵ [E], w(t) +W [D1, E1] +W [D2, E2])
13: S ← S ∪ {E}
14: end for
15: end for
16: end for
17: Π[D]←∞
18: for each E ∈ S do
19: if there is no E ′ ∈ S s.t. E ′ ⊂ E and Ŵ [E ′] < Ŵ [E] then
20: Π[D]← Π[D] ∪ {E}
21: W [D,E]← Ŵ [E]
22: end if
23: end for
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Each recursive call to processDomain() in the pseudo-code of Algorithm 1 is dominated in
time by the three nested “for” loops, whose complexity have bounds O(n) (choosing t) ,O(2k)

(choosing {D1, D2}), and 2O(k2) (choosing pair {E1, E2}). Hence the time complexity is
bounded by O(nDn2O(k2)). The space usage is dominated by the storage for minimal weights
for each minimal weak edge set at each domain, and hence it is bounded by O(nD2O(k2)).

If we treat k as a constant, the time and space bounds become O(nDn) and O(nD) re-
spectively. When using all possible triangles as the input set T , the {time,space} bounds
are {O(n2k+1), O(n2k} when minimizing per-triangle weights, and {O(n3k+1), O(n3k)} when
minimizing bi-triangle weights. Note that these bounds agree with those of the classical
dynamic programming algorithms for k = 1.
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Chapter 3

Delaunay-Restricted Search

Our optimal algorithm guarantees that the result surface has the minimum sum of metrics
over all the surface triangles. However, an important practical limitation of the optimal
algorithm is its high computational cost, particularly for multiple curves. In our implemen-
tation, we found that the algorithm would take minutes and gigabytes of memories for just
a few hundred vertices.

One way to avoid this prohibitive cost of optimal triangulation, is to feed the algorithm
with fewer triangles T . The choice of this reduced set has to be carefully made. It should
be considerably smaller than the space of all possible triangles, so that we get a notable
boost in performance. On the other hand, the set should still be big enough to contain some
close-to-optimal triangulation.

We consider the set of triangle facets in the Delaunay tetrahedralization of the polygon
vertices (which we abbreviate as Delaunay triangles), for three reasons. First, there are much
fewer triangles in Delaunay search space. For n points, the number of Delaunay triangles
is bounded by O(n2), comparing to O(n3) in un-reduced space, as shown in Figure 3.1.
Second, since Delaunay triangles tend to connect nearby vertices, T is likely to contain low-
weight triangulations if the optimal triangulation also connects nearby parts of the polygons.
Finally, as an added benefit, any triangulation computed in T is free of self-intersections,
since no two Delaunay triangles are intersecting.
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Figure 3.1: Complete triangle set (left) and restricted Delaunay triangle set (right) of a space
curve.

3.1 Complexity

There are only O(n2) Delaunay triangles for n points in R3, in contrast to O(n3) triangles in
the un-reduced space. This reduces the worst-case bounds on time and space by a factor of
n, as shown in Table 3.1 (assuming k is a constant). The only exception is, when k = 1, the
space complexity for minimizing per-triangle metrics is still O(n2) on Delaunay-restricted
triangle set.

Since the Delaunay tetrahedralization can be computed in expected O(n2) time [13], the end-
to-end running time of triangulation using Delaunay triangles are still bounded by O(n2k+1)

and O(n3k+1) respectively for minimizing per-triangle and bi-triangle metrics.

Per-triangle metrics
(unres./Delaunay-res.)

Bi-triangle metrics
(unres./Delaunay-res.)

Time O(n2k+1) / O(nk+1) O(n3k+1) / O(n2k+1)
Space O(n2k) / O(nk) O(n3k) / O(n2k)

Table 3.1: Worse-case time and space complexity of the algorithm in the unrestricted and
Delaunay-restricted search space respectively.
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3.2 Existence of solutions

Since not all 3D polygons are triangulable, a polygon may not have any triangulation that
is restricted to the Delaunay triangles. We say that such polygons are not Delaunay-
triangulable. For these polygons our algorithm will fail to return any solution. Figure 3.2
show two such examples. The hexagon in (a) was found by Barequet et. al. [7] and is a 3D
polygon with the fewest vertices that cannot be triangulated (the authors proved that any
polygon with vertices fewer than 6 is triangulable). The polygon in (b) is a spiral square coil
where the square turns have non-equal diameters. The polygon is triangulable, according to
the sufficient conditions proven in [7], because it has a non-intersecting projection the view
plane in (c). However, our algorithms return no solution for this input.

Figure 3.2: A hexagon that is not triangulable (a), and two views of a triangulable 24-vertex
polygon that is not Delaunay-triangulable (b,c).

To evaluate whether our algorithms are suited for a particular application, it would be
useful to have some geometrically characterizations of the kind of inputs that are Delaunay-
triangulable. We next offer some preliminary results in this direction by giving a few neces-
sary and sufficient conditions. Unfortunately, just like the general triangulability problem [7],
we do not have conditions that are both necessary and sufficient. In the next section, we
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will resort to extensive experimental results to demonstrate that most practical polygons are
indeed Delaunay-triangulable.

Lemma 3.2.1 A polygon is not Delaunay-triangulable if

1. it is knotted, or

2. some polygon edges are not Delaunay (i.e., not incident to any Delaunay triangles).

Proof: It is obvious that each edge of the input polygon needs to be incident to some
Delaunay triangles for a triangulation to exist. Also, it was shown that any knotted polygon
is not triangulatable [7], which also implies that it is not Delaunay-triangulable. �

It is worth pointing out that the two necessary conditions are fairly mild in practice. If
the input polygon is intended to bound some disk-like surface, then the polygon cannot be
knotted. If it is the second case, that edges in the input polygons are not always Delaunay,
meaning that some edges may not be incident to any Delaunay triangles, there are also tech-
niques to turn those edges to be all Delaunay. A remedy is introducing additional vertices
to subdivide such edges, so that the subdivided segments are Delaunay. Shewchuk gave a
provably good algorithm for doing so [24] (called edge protection), which is guaranteed to
terminate without producing excessively short segments. Actually, any 3D polygon can be
turned into one whose edges are all Delaunay by subdividing the polygon edges. Alterna-
tively, if the polygon is sampled from some smooth space curve (which is typical for sketch
inputs), the polygon edges are always Delaunay as long as the samples are placed denser
than the local feature size of the curve (Theorem 12 in [2]–although the theorem was stated
in 2D, the statement and the proof can be easily extended to higher dimensions).

We found that edges in all our test inputs made up of polygons sampled from smooth curves
are already Delaunay. Only a small fraction (less than 1%) of randomly generated polygons
(see discussion next) require edge protection. For these inputs, we see an increase of number
of vertices by at most a factor of 2 after edge protection. While subdividing input edges is
not ideal, this usually would not cause a significant issue for downstream applications. For
example, if the triangulation serves as a hole filler on a mesh, one only needs to subdivide
the mesh triangles incident to the protected edges to maintain a watertight surface.
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Chapter 4

Experiments

The algorithm is implemented in C++. For generality, the implementation optimizes for
both per-triangle and bi-triangle weights (hence the complexity bounds follow those of the
bi-triangle weights). We experimented with different choices of the input triangle set T . All
experiments were done on a 6-core 3.0GHz workstation with 12GB memory.

4.1 T : all triangles

We first let T be all triples of vertices in the input polygons. In the first test, we consider a
single polygon whose vertices are uniformly sampled on a “monkey saddle” curve (Figure 4.1
top). Since the time and space usage of the optimal algorithm depend only on the number
of vertices in the polygon and not on the actual geometry, it suffices to test on one data
set for a fixed number of polygons. The running time and space usage of the algorithm are
plotted in Figure 4.1 middle. The exponents in the best-fitting polynomial of n are 4.11 and
2.27 respectively for the time and space graphs, which agree with their theoretical bounds
(O(n4) and O(n3)). As projected by the plots, it would take gigabytes of memory and tens
of minutes to triangulate several hundred points.

In the second test, we consider multiple (up to six) polygons generated as follows. Each
polygon has the same number of vertices which are sampled uniformly from a regular saddle
curve. We first place the polygons at the six corners of a regular octahedron and then apply
a slight random rotation and translation to each polygon. We consider a subset of k = 2 to
6 of these polygons as the input. The inputs for various k are shown in Figure 4.2 top.
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Figure 4.1: Top: triangulation of a monkey saddle with minimal sum of dihedral angles.
Middle and bottom: running time (left) and space usage (right) using all triangles (middle)
or Delaunay triangles (bottom).

The scalability of the algorithm drops significantly with k (Figure 4.2 middle). Triangulating
2 polygons with a total of only 40 vertices, or 3 polygons with a total of only 20 vertices, takes
roughly the same time with triangulating a single polygon with 200 vertices and consumes
more than 1 gigabyte of memory (results for k > 3 are not shown). The estimated exponent
of n in {time, space} are {6.97, 4.99} for k = 2 and {10.53, 7.71} for k = 3, which again
agree with the theoretical worst-case bounds ({O(n3k+1), O(n3k)}).

Note that the use of minimal sets has a significant effect on reducing the number of weak
edge combinations that have to be computed and stored at a domain. As plotted in Figure
4.2 middle-right, average number of weak edge sets for each domain drops by nearly a factor
of k for k = 2, 3 after using the minimal sets. All experiments in this paper (except for this
comparison plot) were conducted using the minimal sets.

23



Figure 4.2: Top: examples of triangulations of multiple (minimizing total dihedral angles)
curves used in our tests. Middle and bottom: running time (left), space usage (middle), and
average number of weak edge sets in each domain (right) for these curves with increasing
number of points n when using all triangles (middle) and Delaunay triangles (bottom).

4.2 T : Delaunay triangles

The optimal triangulation algorithm can be computational expensive in practise, particu-
larly for multiple curves. There are many possible ways to reduce the computation. The
method we adopt in this thesis is to feed the algorithm with fewer triangles T . We consider
the Delaunay triangles : the set of triangle facets in the Delaunay tetrahedralization of the
polygon vertices.

The running time and space consumption, using Delaunay triangles as T , for single and
multiple polygons are plotted respectively in Figure 4.1 (bottom) and 4.2 (bottom). We use
Tetgen [25] to compute the Delaunay triangles, whose running time is always less than a
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second for all our inputs. For a single polygon, our algorithm can now process 2000 vertices
under a fraction of a second and use less than 100 MB memory. The growth of time and
space tend to be linear, in contrast to the worst-case bounds (cubic in time and quadratic in
space). The performance for multiple polygons is also significantly better than before. Two
curves with 250 vertices each can be triangulated in half a minute, while 6 curves with 10
vertices each can be triangulated in one minute.

Using Delaunay triangles as the input T , the time and space usage of the algorithm no
longer depend only on the number of vertices in the polygon, but also depend on the actual
geometry. This is because the number of Delaunay triangles varies with the shape of the
polygon. To explore the impact of the polygon shape on the performance of our algorithm,
we tested the algorithm on additional polygon datasets, as described bellow.

For a single polygon, we consider approximations of both smooth and piece-wise smooth
algebraic curves as follows (see Figure 4.3 top):

• Mobius : Uniform samples on the boundary of a Mobius strip.

• Spiral : Uniform samples on two spirals, one shifted upwards from another, and on the
straight line segments that connect the ends of the spirals.

• Moment : The “moment curve” whose ith vertex has coordinates {i, i2, i3}.

• Twist : A variation of the “moment curve”.

We include the “moment curve” here because it was originally used to demonstrate the O(n2)

upper bound of the number of simplicies in a Delaunay tetrahedralization (note that there is
a tetrahedron connecting every four vertices of the form {i, i+ 1, j, j + 1} for any i, j). The
number of samples in each example ranges from 50 to 5000.

To demonstrate the upper bound of time complexity, we prepared an additional and rather
extreme example called Twist (Figure 4.3 top-right), which connects vertices of Moment in
a crisscross manner. Assuming there are an odd number n of vertices on Moment, they are
connected in Twist with the new order 1, n− 1, 3, n− 3, . . . , 4, n− 2, 2, n. That is, take the
list of vertices on Moment with odd, ascending indices and interleave with the list of vertices
with even, descending indices.
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Figure 4.3: The performance of our algorithms on polygons sampled from algebraic curves.
We use area as the per-triangle metric, and dihedral angle as the bi-triangle metric. The De-
launay triangles in Moment and Twist were not generated by Tetgen, which gave numerical
errors (possibly due to the large difference in the scale of coordinates)

The performance of our algorithm on the polygons sampled from algebraic curves is plotted
in Figure 4.3 (3rd to 4th rows). We used area metric and dihedral metric. Observe that, as
the number of samples increases, the time and space, as well as the time taken by Tetgen to
generate Delaunay triangles, grow at a rate no more than quadratic in all examples (except
for Twist, which is explained below). The actual amount of time and space consumed for
each example is highly correlated with the number of Delaunay triangles (2nd row).

The only outlier to the observed quadratic complexity is Twist, on which our algorithm uses
O(n3) time, the theoretical upper bound derived in Section 3.3. To see why, recall that
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Figure 4.4: Examples of randomized loops on meshes (left), and plots of performance of our
algorithms (right).

the running time of the algorithm is correlated with the number of proceeding triangles for
each triangle. One can find O(n2) triangles on Twist, each formed by vertices {i, i+ 1, j}
on Moment for some i, j and having O(n) proceeding triangles at the oriented edge {i, i +

1}. Obviously, Twist is an extremely pathological case that rarely arises in practice. The
performance data on other, more typical examples suggests the complexity of the algorithm
is at most quadratic in practical inputs.

Additionally, to test the capability of algorithm on random polygons, we use the following
patch-growing algorithm to produce a random set of loops with controllable size. We start
with a randomly selected triangle on the mesh and grow it to a patch with a specified number
of triangles. At each step of growth, we randomly select a non-patch triangle incident to the
patch boundary whose inclusion in the patch does not alter the topology of the patch (in
this way the patch boundary remains a single loop). The boundary loop of the final patch is
used as the input to our algorithms. To produce curves with varying shapes and complexity,
we used the Happy Buddha and the head portion of David from the Stanford Scanning
Repository. Both meshes have non-trivial shapes and Buddha has a complex topology. For
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each mesh, we generated 1000 patches each containing 100 to 10K triangles, which cover
up to 20% of the surface area. Examples of loops bounding patches of various sizes are
shown in Figure 4.4 (left). In comparison to typical hole boundaries in real-world data,
these randomly generated loops have much more contorted shapes. However, we believe
such data is useful for exploring the capability and limitation of the triangulation algorithms
in restricted Delaunay search space.

Similar observations can be made for the randomized loop data set shown in Figure 4.4
(right). Each dot in the plots represents an individual loop in our data set. Observe that
the growth rates of time and space are now close to being linear. Triangulation is highly
efficient for this data set, taking only a fraction of a second and hardly any memory for hole
boundaries containing thousands of points.

For multiple polygons, besides the test examples in Figure 4.2, we consider two more types
of input that often arise in practical applications. The first type of input has a large polygon
on the outside and several small island-like polygons inside the large one (Figure 4.5 1st
row). This type of input is designed to mimic complex holes on incomplete meshes, which
may contain small pieces of geometry inside that need to be connected to the hole boundary
(an example is shown in Figure 1.1 right). We use the regular saddle curve for each of
the polygons and apply a slight random rotation and translation to each polygon. We
additionally stretch the boundary polygon in one direction, as holes on meshes are often
elongated. To achieve a consistent sampling rate, we make the larger polygon 10 times
denser than each smaller polygon. The second type of input is made up of multiple planar
polygons that lie on two parallel planes (Figure 4.5 3rd row). This input is designed to mimic
the scenario of interpolating contours on two cross-section planes. The triangulation can be
used for reconstructing surfaces from planar contours, which is a classical problem that has
been studied for decades [8, 11, 14, 20]. To test how our algorithm performs on this kind of
data, we first place 3 cycles in each of the two parallel planes and add some randomness by
perturbing the position of each input vertex as well as the centroid of each cycle within the
plain. We then consider a subset of k = 2 to 6 of these polygons as the input.

The time and space usage of our algorithm, using Delaunay triangles as T , for boundary-
island polygons and parallel planar polygons are plotted respectively in Figure 4.5 2nd row
and 4th row. The growth of time and space appear to be significantly slower on these two
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Figure 4.5: 1st and 3rd row: examples of triangulations of boundary-island polygons and
parallel polygons (minimizing total dihedral angles). 2nd and 4th row: running time (left),
space usage (middle), and average number of weak edge sets in each domain (right) for these
polygons with increasing number of points n.

special inputs than on the uniformly distributed polygons (Figure 4.2). It also takes less
absolute time for the algorithm to triangulate polygons with the same number of vertices.
These results suggest that our algorithm likely perform better for practical data (e.g., mesh
holes and parallel contours) than for uniformly distributed loops.

4.2.1 Optimality

A question that remains is how good are the triangulations computed in this reduced space.
To answer this, we created a different, randomized test suite. We took a triangulated surface
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Figure 4.6: Histograms of area (top) and dihedral (bottom) optimality on randomly gener-
ated single loops (left) and loop pairs (right).

(e.g., the Bunny) and randomly generated closed, non-intersecting edge loops. We created
100 single loops each containing between 100 to 200 vertices, and 100 pairs of loops where
each loop contains between 10 to 20 vertices. We then compare the weight of the triangulation
computed by the algorithm using only Delaunay triangles (denoted as wDT ) to the weight of
the triangulation computed using all triangles (denoted as wAll). We consider two kinds of
weights, sum of triangle areas and sum of dihedral angles. For area, optimality is measured
as the ratio wAll/wDT (the closer to 1 the better). For dihedral, we measure optimality by
the difference (in degrees) (wDT − wAll) normalized by the number of interior edges (the
closer to 0 the better).

Observe from Figure 4.6 that triangulations found using Delaunay triangles are near optimal
for a single polygon using either area or dihedral weights. For two polygons, optimality
of dihedral angles drops slightly (increases from 5 to 10 degrees), but optimality of total
area drops sharply. To explain the latter, we note that, when using all triangles, an area-
minimizing triangulation of two (or more) polygons that are far from being co-planar (such
as the ones in our tests) often consist of “disks” that fill each polygon plus narrow “tunnels”
connecting the disks; see an example in Figure 4.7 (b). These tunnels usually consist of self-
intersecting triangles that are not Delaunay. See the area-minimizing triangulation in the
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Figure 4.7: Two polygons (a) whose area-minimizing triangulation in the space of all triangles
(b) has much smaller area than that in the space of Delaunay triangles (c), although the
former contains intersecting triangles.

Delaunay space in Figure 4.7 (c). In contrast, dihedral-minimizing triangulations for such
inputs tend to form “thicker” tunnels whose triangles are more spaced out (see examples in
Figure 4.2 top) and hence more likely to be Delaunay.

In summary, our experiments show that choosing Delaunay triangles as T offers a good
balance between efficiency and the optimality of results.

4.2.2 Delaunay triangulability

Our algorithms, running with Delaunay triangles, returned solutions on all of our test data
except for 32 hole boundaries on the Happy Buddha. The hole in the vast majority of
these failure cases (28 out of 32) covers over 10% of the surface area of the model, and the
smallest hole covers 5% of the surface area. The hole boundaries all have very convoluted
shapes (see Figure 4.8). Given that polygons like these typically do not arise in practice, we
believe the algorithms will return solutions for the majority of the practical data, whether
they are piecewise smooth curve sketches or hole boundaries on real-world meshes. However,
the chance of success may decrease with increasing complexity of the polygon shape. Since
Delaunay triangulability implies triangulability, our results also suggest that most practical
3D polygons are triangulable.
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Figure 4.8: Hole boundaries covering various ratios of the surface area that are not Delaunay
triangulable.
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Chapter 5

Applications

The flexibility of handling different metrics and their combinations allows our algorithm to
be able to generate a wide range of triangulations. In Figure 5.1 we show several variations
of triangulations created for two input polygons, using objective functions such as mini-
mal triangle areas, minimal squared dihedrals, maximal squared dihedrals (which maximize
twisting), minimal deviation with boundary normals, and their combinations.

Our algorithm can be useful in a variety of applications, ranging from sketch-based modeling
to hole filling on surfaces. Figure 5.2 shows the triangulation results of our algorithm on
two real-world sketch inputs. Given a network of sketched spatial curves, we first apply
the method of [26] to extract individual loops of curves that form the patch boundaries.
Then each patch was triangulated individually by minimizing the sum of squared dihedral
metric using our algorithm. Starting from the initial triangulation, we can obtain a final
surface using refinement [19] and smoothing [3] operators. The results for two sketch inputs,
Roadster and Spider, are shown in Figure 5.2.

While there are numerous methods available for creating surfaces bounded by a single loop
in a curve sketch or filling a simple hole boundary on a mesh, creating provably good surfaces
bounded by multiple curves is a well-known open problem, particular in hole-filling [4, 17].
Our algorithm makes a first step towards filling this gap. Figure 1.1 shows two examples of
triangulating multiple sketch curves to form patches with holes. These are computed using
Delaunay triangles while minimizing the sum of dihedral angles. Figure 5.3 shows an example
of filling complex mesh holes. The original model has numerous holes, many of which have
interior “islands” (see close-up and the right-most example in Figure 1.1). Filling such holes
while interpolating the islands is a challenging task that so far defies local methods [4, 17].
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Figure 5.1: Variations of triangulations generated by our algorithm for Spiral (top) and
Monkey (middle). Prescribed boundary normals, if present, are shown as arrows.

Given the association between the islands and their surrounding hole (which we did manually
for this example), we triangulated each hole using Delaunay triangles. To produce hole fillers
that connect naturally with the surrounding geometry, the triangulation minimizes the sum
of dihedral angles both at interior edges and with existing triangles surrounding the hole
(the latter can be incorporated as a bi-triangle weight on boundary edges). Triangulating
all 455 holes (61 holes of which have interior islands) in this model took 40 seconds.
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Figure 5.2: ILove Sketch curve data [5] with resolved patches [1] (top) is first triangulated
minimizing the dihedral angle bending using our method. The surface is then refined us-
ing the method of [19], and a final boundary normal conforming bi-Laplacian surface is
produced(shown bottom) using the method of Andrews et. al [3].
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Figure 5.3: Filling a model with numerous holes. Close-ups on a portion of the model are
shown at the bottom.
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Chapter 6

Conclusion

In this thesis, we presented an algorithm for optimally triangulating single or multiple 3D
polygons while guaranteeing the manifold topology of the output. We have also explored an
efficient approximation by restricting the search space to Delaunay triangles.

6.1 Limitations

While our algorithm guarantees to return an optimal solution when given all triangles as
the input, the complexity of the algorithm grows quickly with the number of input polygons.
Restricting the search to Delaunay triangles offers a good balance between efficiency and
the optimality of results, but it could risk the failure of finding a solution for some extreme
cases, when the input is not Delaunay triangulable.

We use Tetgen [25] to compute the Delaunay triangules, but Tetgen only supports input
that can cast a 3D volume. To triangulate polygons in one single plane, our algorithm needs
to take all triangles as the input.

6.2 Future work

There are several interesting extensions that we would like to explore. Firstly, while tri-
angulating with Delaunay triangles returned solutions for almost all of our test data, there
exists input polygons that cannot be triangulated by Delaunay triangles. However, we have
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observed and proved that these polygons are usually highly contorted and not likely to ap-
pear in practice. Nevertheless, it would be interesting to discover other input triangle spaces
(such as regular triangulations or almost-Delaunay triangulations [6]) that may lead to bet-
ter triangulability and optimality while maintaining the computational efficiency. Secondly,
what choice of weights would deliver the “best-looking” triangulation? For a single polygon,
the literature suggests to minimize a combination of triangle areas and dihedral angles [19].
However, we observed that such weighting often does not give a fair triangulation for mul-
tiple polygons. It would be interesting to see if more sophisticated weighting schemes can
improve the results, and if so, how the triangulation algorithm should be adapted. Thirdly,
for the hole-filling application, it would be ideal to automatically group the island bound-
aries as input to the triangulation algorithm. One promising idea might be to use the cost
of triangulation as a means to evaluate a grouping of curves. Moreover, in this thesis, we
mainly focus on closed polygons, it would be useful to generalize the algorithm to work on
open polylines as well, which are also widely used in 3D sketchings.

38



Appendix A

Proof of Lemma 2.2.1

Proof: Let S = S1 ∪ S2 ∪ {t}. We need to show S is manifold, has a simple topology, and
uses no other weak edges than E.

Manifoldness: Since E1, E2 are disjoint, sets S1, S2, {t} share no other edges than the two
edges of t other than eD, which we denote as e1, e2. So the valence of edges in S are the
same as those in S1, S2 except for eD (valence 1) and e1, e2 (valence increments by 1). If ei
(i = 1, 2) is a boundary edge of D, then t must be a Case II split and the corresponding
sub-domain Di must be empty, in which case the valence of ei in S will be 1. Otherwise, if
ei is a not a boundary edge, Di must be non-empty (or it will have duplicated edges on its
boundary and hence possess no valid triangulations) and ei must have valence 1 in Si, hence
its valence in S will be 2.

Simple topology: Clearly S is a single connected component (because S1, S2 are) and has
h+1 boundaries (due to manifoldness). We need to show that there is no high-genus features
(e.g., tunnels) in S. We will validate using the Euler number. A simple calculation reveals
that, if S is a valid triangulation of D, the Euler number χ(S) satisfies:

χ(S) = χ(∂D)− h+ 1 (A.1)

where χ(∂D) is the Euler number of the boundary loop of D and h is the number of holes in
D. Suppose S1, S2 satisfy Equation A.1 (and let their hole counts be h1, h2), we will show it
holds for S too. We consider the two splitting cases separately. For Case I, since S adds one
edge and triangle to S1, we have χ(S) = χ(S1). We arrive at Equation A.1 by the fact that
χ(∂D) = χ(∂D1)+1 and h = h1 +1. For Case II, we similarly have χ(S) = χ(S1)+χ(S2)−c
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where c is the number of common vertices shared by the boundaries of D1 and D2. Equation
A.1 holds due to the relations χ(∂D) = χ(∂D1) + χ(∂D2)− c+ 1 and h = h1 + h2.

Weak edges: The claim holds if we can show that any weak edge e of D is either a weak
edge of D1 or D2, or it is not used by S1 or S2. This is true because a weak edge connects
two ends of boundary segments, and an end of a boundary segment in D remains and end
in D1 or D2. So e either connects two ends that appear in the same sub-domain (in which
case it is a weak edge of that sub-domain), or two ends appearing in different sub-domains
(in which case it cannot appear in the triangulation of either sub-domain). �
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Appendix B

Proof of Lemma 2.2.2

Proof: Since S is manifold and has simple topology, the remainder S \ {t} is either a single
edge-connected component (when v is on a hole of D) or two connected components (when
v is on the boundary of D). In either case, it is easy to see that each component is manifold
and has simply topology. By the same argument about weak edges in the proof of Lemma
2.2.1, E is the joint set of weak edges in each of the component triangulations, which are
also disjoint due to manifoldness of S.�
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Appendix C

Proof of Lemma 2.2.3

Proof: We prove by induction. Suppose both clauses hold for any sub-domain of D. We
show they hold for D as well.

We start with the second clause. Suppose there is some minimal set E ∈ Π(D,W ) where the
two weights W (D,E), Ŵ (D,E) are different. Since Ŵ takes the minimum over a smaller
space than W , we have W (D,E) < Ŵ (D,E). Let W (D,E) be achieved by some splitting
triangle t, sub-domains {D1, D2} ∈ Φ(D, t), and weak edge sets {E1, E2} ∈ Ψ(D1, D2, E).
Then at least one of E1, E2 is not a minimal set for the corresponding sub-domain. Without
loss of generality, suppose E1 /∈ Π(D1,W ). By definition of minimal sets, there is some weak
edge set E ′1 of D1 such that E ′1 ⊂ E1 and W (D1, E

′
1) < W (D1, E1). Let the joint set of

E ′1 and E2 be E ′, hence W (D,E ′) < W (D,E). However, since E ′ ⊆ E, this means that
either W (D,E) is not minimal (if E ′ = E) or set E is not a minimal set of D, both causing
contradictions.

For the first clause, we first show that if E ∈ Π(D,W ), then E ∈ Π(D, Ŵ ). Suppose
otherwise, then there is a subset E ′ ⊂ E such that Ŵ (D,E ′) < Ŵ (D,E). SinceW (D,E ′) ≤
Ŵ (D,E ′), and by the second clause, we have W (D,E ′) < Ŵ (D,E) = W (D,E), which
contradicts to E ∈ Π(D,W ). We next prove the other direction, also by contradiction.
Suppose there is some E ∈ Π(D, Ŵ ) but E /∈ Π(D,W ). One can show that there exists
some subset E ′ ⊂ E such that E ′ ∈ Π(D,W ) and W (D,E ′) < W (D,E). By the second
clause, we have Ŵ (D,E ′) = W (D,E ′) < W (D,E) ≤ Ŵ (D,E), contradicting E ∈ Π(D, Ŵ ).
�
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