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ABSTRACT OF THE DISSERTATION 
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The interaction between transcription factors (TFs) and DNA plays an important role in gene 

expression regulation. In the past, experiments on protein–DNA interactions could only identify 

a handful of sequences that a TF binds with high affinities. In recent years, several high-

throughput experimental techniques, such as high-throughput SELEX (HT-SELEX), protein-

binding microarrays (PBMs) and ChIP-seq, have been developed to estimate the relative binding 

affinities of large numbers of DNA sequences both in vitro and in vivo. The large volume of data 

generated by these techniques proved to be a challenge and prompted the development of novel 

motif discovery algorithms. These algorithms are based on a range of TF binding models, 

including the widely used probabilistic model that represents binding motifs as position 

frequency matrices (PFMs). However, the probabilistic model has limitations and the PFMs 

extracted from some of the high-throughput experiments are known to be suboptimal. In this 

dissertation, we attempt to address these important questions and develop a generalized 

biophysical model and an expectation maximization (EM) algorithm for estimating position 

weight matrices (PWMs) and other parameters using HT-SELEX data. First, we discuss the 
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inherent limitations of the popular probabilistic model and compare it with a biophysical model 

that assumes the nucleotides in a binding site contribute independently to its binding energy 

instead of binding probability. We use simulations to demonstrate that the biophysical model 

almost always provides better fits to the data and conclude that it should take the place of the 

probabilistic model in charactering TF binding specificity. Then we describe a generalized 

biophysical model, which removes the assumption of known binding locations and is particularly 

suitable for modeling protein–DNA interactions in HT-SELEX experiments, and BEESEM, an 

EM algorithm capable of estimating the binding model and binding locations simultaneously. 

BEESEM can also calculate the confidence intervals of the estimated parameters in the binding 

model, a rare but useful feature among motif discovery algorithms. By comparing BEESEM with 

5 other algorithms on HT-SELEX, PBM and ChIP-seq data, we demonstrate that BEESEM 

provides significantly better fits to in vitro data and is similar to the other methods (with one 

exception) on in vivo data under the criterion of the area under the receiver operating 

characteristic curve (AUROC). We also discuss the limitations of the AUROC criterion, which is 

purely rank-based and thus misses quantitative binding information. Finally, we investigate 

whether adding DNA shape features can significantly improve the accuracy of binding models. 

We evaluate the ability of the gradient boosting classifiers generated by DNAshapedTFBS, an 

algorithm that takes account of DNA shape features, to differentiate ChIP-seq peaks from 

random background sequences, and compare them with various matrix-based binding models. 

The results indicate that, compared with optimized PWMs, adding DNA shape features does not 

produce significantly better binding models and may increase the risk of overfitting on training 

datasets. 
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Chapter 1: Introduction 
The interaction between proteins and genomic DNA plays a crucial role in many important 

cellular processes. For instance, the RNA polymerase interacts with DNA during transcription 

and uses it as a template for RNA synthesis [1, 2]. Another example is the formation of 

nucleosomes in which histones and DNA bind together to form a well-defined three-dimensional 

structure [3]. Finally, some epigenetic modifications such as DNA methylation, which alter DNA 

accessibility and chromatin structures, are carried out by the DNA methyltransferase and other 

proteins that mainly target CpG dinucleotides [4]. The transcription factors (TFs), the focus of 

this dissertation, are a special class of DNA-binding proteins that recognize specific DNA 

sequences and primarily regulate gene expression [5, 6]. In most species they constitute between 

5% and 10% of all genes [7-9]. Most TFs have DNA-binding domains (DBDs), such as zinc 

fingers or homeodomains, that fold into well-defined three-dimensional structures and interact 

with DNA mainly through hydrogen bonds [10-12]. Unlike restriction enzymes, which only 

recognize well-defined restriction sites, a TF may bind a range of similar sequences with varying 

affinities, a feature crucial to the function of the TF [13, 14]. When occupying a binding site, the 

TF may recruit other proteins to facilitate the transcription of a nearby gene if it acts as an 

activator [15], or may simply block the transcription if it is a repressor [16]. Variations in either 

the TFs or their binding sites are associated with changes in gene expression, often with 

deleterious phenotypes, but are also associated with evolutionary divergence between species 

[17, 18]. Although some prominent TFs, including Sox [19], AP-1 [20, 21] and Sp1 [22], have 

been studied extensively due to their involvement in cell growth, sex determination, apoptosis or 

cancer development, the binding specificities of a large number of TFs are poorly documented 



2 

 

even in many well-studied species [23]. In recent years, several high-throughput experimental 

techniques, such as high-throughput SELEX (HT-SELEX), protein-binding microarrays (PBMs) 

and ChIP-seq, have been developed to estimate the relative binding affinities of large numbers of 

DNA sequences both in vitro and in vivo [24-26]. These techniques have greatly accelerated the 

study of TF binding specificity [5], but the analysis of their results proves to be a challenge and 

requires the development of novel TF binding models and motif discovery algorithms. 

The mathematical models of TF binding specificity are constantly evolving with the 

experimental methods for measuring the binding affinities of DNA sequences [27]. At the time 

when the first few TFs such as the lac repressor were discovered, only a handful of high-affinity 

binding sites could be determined for each TF, and their binding specificities were simply 

represented by consensus sequences, which might include mixed or degenerate base notations 

[28]. As the number of identified binding sites grew, the consensus sequence was no longer a 

suitable representation, because all the mismatches to the consensus are treated equally [29]. 

This prompted the development of perceptron-based scoring matrices for discriminating positive 

sequences from negative sequences and then position frequency matrices (PFMs) [27]. The PFM 

assumes that the probability of observing a specific base at a specific position of a binding site is 

independent of the other positions [27], and is often associated with the information logo of a 

binding motif, which displays not only the base preference but also the information content at 

each position [30]. With the development of next-generation sequencing (NGS) and high-

throughput methods based on NGS, including bacterial one-hybrid (B1H), HT-SELEX and 

ChIP-seq, it is possible to estimate the affinities of a TF to large numbers of sequences in one 

experiment [5]. Other methods, such as the mechanically induced trapping of molecular 

interactions (MITOMI) [31] and Spec-seq [32], can even directly measure the absolute or 
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relative association constants between a TF and different DNA sequences in a relatively high-

throughput fashion. The large volume of data generated by these methods proved to be a 

challenge and prompted the development of novel binding models and motif discovery 

algorithms. A notable example is a biophysical model that is built on the thermodynamic 

equilibrium of protein–DNA association and contains parameters such as the binding energy and 

the chemical potential of the TF [33, 34]. It assumes that each base in a binding site contributes 

independently to the total binding energy of the sequence and thus any binding motif can be 

represented as a position weight matrix (PWM) of energy contributions [27]. It should be noted 

that we use the term ‘PWM’ to denote only the energy matrix in this dissertation, though it may 

refer to a general matrix-based scoring model in other publications. Other types of TF binding 

models have also been formulated, including k-mer models, hidden Markov models (HMMs), 

transcription factor flexible models (TFFMs), and deep neural networks [35-38]. Some of these 

models were compared with the biophysical model on PBM data, and the results indicated that 

the biophysical model generally provides the best trade-off between prediction accuracy and 

model complexity [39]. Finally, some studies have examined whether incorporating factors such 

as flanking sequences and DNA shape features can increase the accuracy of TF binding models 

[40]. These factors have been shown to have varying impacts on TF binding specificity [41], and 

their contributions are generally secondary to the DNA sequence of the binding site. 
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1.1 Matrix-Based Models of Transcription Factor Binding 

Specificity1 
Probabilistic models (PMs) for DNA binding proteins were initially introduced by Harr et al. for 

E. coli promoters that even treated variable length binding sites [42]. Soon after, Staden 

converted to the use of log-probability to put the model into a weight matrix (additive) model, 

also including parameters for variable spacing [43]. Schneider et al. drew connections between 

the probabilistic models and information theory and introduced the log-odds model that accounts 

for the background distribution of bases [44] and later introduced the popular logo graphical 

representation of specificity [30]. The probabilistic model was also the basis of the earliest motif 

discovery algorithms [45-47]. Since then there have been many different algorithms for motif 

modeling and discovery using probabilistic models (reviewed in [27, 48-51]).  

Even earlier von Hippel introduced an energy-based model of protein–DNA interactions [52]. At 

the time, there were almost no data on actual binding sites so the paper used first principles to 

describe the informational specificity required for functional regulatory sites. The paper made 

simplifying assumptions such as the independence between positions and that every mismatch 

from the preferred sequence had the same energy difference. The first assumption, of 

independent contributions, has proven to be a reasonably good approximation for most 

transcription factors, whereas differences in contributions of alternative bases at each position 

are now well known and form the basis of most specificity modeling approaches. Berg and von 

Hippel derived an energy model that was identical to the probabilistic one under some 

simplifying assumptions and connections between the energy approach and the information 

                                                 
1 Parts of this section are taken from Ruan, S. & Stormo, G. D. Intrinsic limitations of probabilistic models for 

protein-DNA interactions. PLOS Computational Biology (2017). 
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theory models of specificity became clear [53-55]. Hwa and colleagues put the energy modeling 

approach into a more general biophysical model that accounts for the effects of protein 

concentration on binding probabilities [56, 57]. Djordjevic et al. pointed out the importance of 

the biophysical approach in modeling specificity [33]. They further provided an algorithm that is 

guaranteed, for any collection of known binding sites, to predict the minimum number of 

additional sites in a genome, thereby minimizing the number of false positive predictions, 

although the method is not guaranteed to provide a more accurate model of the true specificity 

[33, 58]. Regression methods have been used to find optimal energy parameters and Foat et al. 

provided the first regression algorithm for motif discovery of optimal energy models [59, 60]. 

Since then several related methods have been developed to determine biophysical (energy) 

models of protein specificity from various types of high-throughput experimental data [34, 39, 

61-70].  

Despite the development of several high-throughput experimental methods for measuring the 

specificity of protein–DNA interactions [5, 71] and the algorithms described above for modeling 

them with the biophysical approach, probabilistic models remain the most popular. The purpose 

of Chapter 2 is to point out that when good energy models are available there is no advantage to 

using the probabilistic models. In fact, due to inherent limitations the probabilistic models can be 

misleading and are highly sensitive to the samples used for inference of the parameters. Energy 

models can be readily obtained and can easily accommodate non-independent contributions 

between positions [27, 60, 72]. We conclude that energy modeling should become the approach 

generally used for modeling specificity and predicting protein–DNA interactions. 
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1.2 High-Throughput Methods for Measuring Binding 

Specificity2 
Several high-throughput experimental methods have been developed for determining the 

specificity of TFs (reviewed in [5]). Some methods measure the fluorescence from TFs over 

thousands of DNA probes that contain millions of different possible DNA binding sites. Others 

take advantage of high-throughput sequencing technologies to determine selective enrichments 

of binding sites from millions of short sequence reads. Regardless of the technology used, 

computational analysis of the data is required to extract the desired specificity information for 

the TF and different programs vary widely in their ability to make accurate predictions of 

binding sites over a wide range of affinities [39]. 

Protein binding microarrays (PBMs), and related methods [25, 73, 74], utilize arrays of double-

stranded DNA to which TF binding can be assayed with fluorescent antibodies to the proteins. 

Several large-scale PBM experiments have been published in which the specificities of several 

hundred [75-80], and even over 1000 [23], TFs have been determined. It was shown that the 

quality of the motif, the fit to the data and the ability to predict TF binding in an independent 

experiment varied considerably depending on the algorithm used [67]. In a detailed comparison 

of 26 different algorithms for analyzing PBM data a wide range of accuracies were found [39]. 

For the vast majority of TFs (~90%), simple PWMs fit the data as well as more complex models 

when the best algorithms were used. The best methods employed a biophysical model of 

protein–DNA interactions [33, 34, 59]. Recent enhancements to the FeatureREDUCE algorithm 

provide further improvements to the accuracy of motif inference from PBM data [65]. The 

                                                 
2 Parts of this section are taken from Ruan, S., Swamidass, S. J. & Stormo, G. D. BEESEM: estimation of binding 

energy models using HT-SELEX data. Bioinformatics (2017). 
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BindSter algorithm [63] also provides improved motif inference for both PBM and MITOMI 

[31] data. 

Systematic evolution of ligands by exponential enrichment (SELEX) [81] has also been adapted 

to utilize high-throughput sequencing [24, 34, 66, 82-85], most commonly called high-

throughput SELEX (HT-SELEX) or alternatively SELEX-seq. After one or more rounds of 

selection, the bound fraction, as well as the input DNA, are sequenced to high depth (see Figure 

1.1). Those sequences are used to infer a model of specificity, typically a PWM, for the TF. 

Some methods using biophysical models have been developed for the HT-SELEX problem [61, 

64, 66] but only HTS-IBIS has been widely tested. In addition, the recent DeepBind algorithm 

[38], which is based on deep convolutional neural networks, reports improved predictions of in 

 

 

Figure 1.1 The workflow of high-throughput SELEX. Initial random DNA probes or sequences 

from the previous SELEX cycle are mixed with immobilized TF molecules, allowing for DNA 

binding by the protein. The unbound DNA sequences are washed away, and then the bound 

probes are separated from the protein. These bound sequences, which serve as the input of the 

next SELEX cycle, are amplified and then sequenced using high-throughput sequencing 

technologies. In this figure, red segments represent flanking regions. Other colored segments 

represent randomized regions. Orange ovals represent TF molecules. 
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vivo data, even when it is trained on in vitro HT-SELEX data. The most commonly used method 

for inferring motifs from HT-SELEX data uses the most highly selected sites from later rounds 

and builds a PFM by comparing the frequency of the preferred site with single-nucleotide 

variants [24, 86, 87]. This approach does not take advantage of the entire range of binding 

affinities and has the risk of producing ‘over-specified’ motifs, with higher information content 

than the true binding specificity. In a comparison of methods for the zinc finger protein Bcl6 we 

found that motifs inferred from PBM and bacterial one-hybrid data were very similar to each 

other and also to a motif inferred using MEME on ChIP-seq data [88]. The HT-SELEX motif for 

Bcl6 had much higher information content and was less effective in identifying binding sites in 

the ChIP-seq dataset (at equivalent p-value cutoffs), suggesting the over-specification 

phenomenon. In another comparison between PBM and HT-SELEX motifs for the same TFs, 

Orenstein et al. also found that the PBM motifs fit the quantitative binding data better, but they 

found that the HT-SELEX motifs performed better on ChIP-seq data, using the criterion of the 

area under the receiver operating characteristic curve (AUROC) [89]. 

Zhao et al. introduced the BEEML (short for Binding Energy Estimates using Maximum 

Likelihood) method that finds the best fit to the data over the parameters of the PWM and the TF 

concentration [34]. The biophysical model underlying BEEML is suitable for the analysis of HT-

SELEX data, but BEEML assumes the location of the binding site on each sequence is known 

(only the orientation has to be inferred). In a general HT-SELEX experiment, however, the 

randomized region is much longer than the binding site; typical randomized regions are 20 bp or 

more while most binding motifs are 10 bp or less. Thus BEEML is limited to HT-SELEX 

experiments with short randomized regions. Another challenge of HT-SELEX data is that a 

library of random 20-mers contains over 
1210  different sequences, well beyond the capacity of 
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current sequencing approaches. In fact, essentially all of the sequences in the initial pool are 

unique and the vast majority of possible sequences are missing from the pool. Since BEEML 

assumes that the read count of a sequence increases with its affinity, we need a new algorithm to 

tackle the challenge of very small read counts for each sequence. 

Chapter 3 has two main purposes. First, we introduce BEESEM (short for Binding Energy 

Estimation on SELEX with Expectation Maximization), which extends BEEML to work on HT-

SELEX data with long randomized regions. We extend the biophysical model used in BEEML to 

the case with long sequences containing shorter binding sites so that the sites must be inferred in 

addition to the motif. We do this using an expectation maximization (EM) approach similar to a 

previously introduced method for motif discovery on unaligned co-regulated gene sets [46], but 

including non-linear regression to fit the quantitative enrichment data as part of the maximization 

step. The method also allows us to calculate confidence intervals on the estimated parameters. 

Second, we assess BEESEM against other modeling approaches using HT-SELEX data, as well 

as PBM and ChIP-seq data from independent experiments. The results demonstrate that the 

BEESEM motifs achieve significantly better fits to the quantitative HT-SELEX data and we also 

show that they perform much better than other HT-SELEX binding models on PBM data and 

equally well or better on ChIP-seq data. 

1.3 Contribution of DNA Shape Features to Binding 

Specificity 
With the rapid advancements in X-ray crystallography [90], Cryo-electron microscopy [91] and 

nuclear magnetic resonance (NMR) spectroscopy [92], an increasing number of three-

dimensional structures of protein–DNA complexes and DNA fragments have been solved. These 

discoveries not only advanced our understanding of protein–DNA interactions [93] but also 
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facilitated the design of customizable protein molecules that recognize specific DNA sequences. 

A notable example is the structure of the zinc finger DBD from Zif268, which was first solved in 

1991 [10] and catalyzed the development of zinc-finger nucleases (ZFNs) [94]. As of 2017, the 

Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), one of 

the largest repositories for three-dimensional structures of large biological molecules, contains 

more than 130,000 entries, including thousands of protein–DNA complexes [95]. The wealth of 

structural information enabled the development of computational methods for predicting DNA 

shape features, such as the helix twist (HelT), the minor groove width (MGW), the propeller 

twist (ProT), the roll (Roll), and their corresponding second-order shape features. One of these 

methods, DNAshape, predicts DNA structural features in a high-throughput manner based on 

Monte Carlo simulations of DNA fragments [96]. In addition, the Genome Browser for DNA 

shape annotations (GBshape), a database based on DNAshape and related computational tools, 

provides DNA shape feature predictions for a range of organisms [97]. These computational 

tools and databases made it possible to study the influence of DNA shape features on TF binding 

specificity. According to one study, the combination of chromatin endogenous cleavage (ChEC) 

and high-throughput sequencing reveals two classes (strong and weak) of binding sites for yeast 

TFs, and similar DNA shape patterns are observed in both classes regardless of binding strength 

[98]. However, there are doubts about some aspects of these findings [41]. In another study, 

researchers trained gradient boosting classifiers to differentiate ChIP-seq peaks from random 

background sequences and claimed that adding DNA shape features can significantly improve 

the accuracy of the classifiers [40].  

In Chapter 4 of this dissertation, we seek to replicate the results of the second study mentioned 

above. In addition, we will compare the performance of the gradient boosting classifiers with 
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both the probabilistic models and the PWMs generated by DiMO_PWM, a perceptron-based 

optimization method that finds the optimal PWM with the highest AUROC [99]. Our preliminary 

results indicate that adding DNA shape features does not significantly improve the performance 

of the gradient boosting classifiers, and the optimal PWMs generated by DiMO_PWM can 

achieve similar or even better classification accuracy. More importantly, the matrix-based 

binding models are less likely to overfit, thus giving them an advantage over the complex 

gradient boosting classifiers. 
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Chapter 2: Inherent Limitations of 

Probabilistic Models1 
The specificities of transcription factors are most commonly represented with probabilistic 

models. These models provide a probability for each base occurring at each position within the 

binding site and the positions are assumed to contribute independently. The model is simple and 

intuitive and is the basis for many motif discovery algorithms. However, the model also has 

inherent limitations that prevent it from accurately representing true binding probabilities, 

especially for the highest affinity sites under conditions of high protein concentration. The 

limitations are not due to the assumption of independence between positions but rather are 

caused by the non-linear relationship between binding affinity and binding probability and the 

fact that independent normalization at each position skews the site probabilities. Generally 

probabilistic models are reasonably good approximations, but new high-throughput methods 

allow for biophysical models with increased accuracy that should be used whenever possible. 

2.1 Models for Transcription Factor Binding Specificity 

2.1.1 Probabilistic Model 

The probabilistic model is based on a probability matrix ( , )PM b j  for each base { , , , }b A C G T  

at each position 1,2, ,j m  for an m bp binding site. Any m bp DNA sequence iS  can be 

encoded as a similar matrix ( , )iS b j , of 1s and 0s, where a 1 represents the base that occurs at 

position j and all the other elements are 0 [27]. The model assumes that the probability of 

sequence iS  being among the bound sites is 

                                                 
1 Parts of this chapter are taken from Ruan, S. & Stormo, G. D. Intrinsic limitations of probabilistic models for 

protein-DNA interactions. PLOS Computational Biology (2017). 



13 

 

 
( , )

1

( | ) ( , ) iS
m T

b j

i

j b A

P S B PM b j
 

 , (2.1) 

where B represents the collection of bound DNA molecules. Often ( , )PM b j  is converted to a 

log-odds weight matrix ( , ) log[ ( , ) / ( )]WM b j PM b j P b , where ( )P b  is the background, or 

prior, probability of base b [27, 44]. For simplicity, we assume the prior probability is a constant, 

0.25 for each base, and therefore the two matrix forms give equivalent results. 

2.1.2 Biophysical Model 

The biophysical model is based on the thermodynamics of the interaction between two 

molecules, the protein T and a binding site iS . The association constant, which we refer to as the 

affinity, can be determined by measuring the concentrations of free reactants (protein and DNA) 

and the complex iT S : 
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T S


 . (2.2) 

It is common to assume that the positions contribute independently to the binding affinity, just as 

the probabilistic model assumes the positions contribute independently to the site probability. 

This is represented as a matrix of affinity contributions ( , )K b j  such that 
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 , (2.3) 

where ( , )iS b j  is the encoding matrix of iS . From that one can determine the probability of a 

sequence iS  being bound based on the protein concentration and the association constant: 
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, (2.4) 
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where lni iE K   is the free energy of binding to sequence 
iS  and ln[ ]T   is the chemical 

potential of the protein. Based on the definition of the binding energy, Equation (2.3) can be 

rewritten as 

 
1

( , ) , )(
m T

i i

j b A

E E b j S b j
 

 , (2.5) 

where ( , ) ln ( , )E b j K b j  . Equation (2.5) means that the total binding energy can be 

represented by the inner product of the energy matrix ( , )E b j  and the encoding of a DNA 

sequence. The probability of sequence 
iS  in the bound sequences can be obtained by Bayes’ 

rule: 

 
( [ ] 1

( ) ( | )
( )

)
|

[ ] 1 1 i

i i
i i E

i

P S K T
P S B P B S

P B K T e


  
 

, (2.6) 

if the background probability )( iP S  is the same for all iS . In the biophysical model, |( )iP S B  is 

dependent on the chemical potential, which differs from the probabilistic model, where ( | )iP S B  

is entirely determined by the sequence. More importantly |( )iP S B  has a non-linear relationship 

with the binding affinity iK . This becomes pronounced at high protein concentrations where the 

energy can be additive across the positions of the binding site and yet the probabilities of the 

bases at each position are not independent. 

2.2 Methods 

2.2.1 Simulation Procedure 

We developed a program, BEnDS (Binding Energy Distribution Simulations), for generating a 

probability distribution of bound sequences |( )iP S B  based on user-specified values of the motif 

length m and chemical potential µ. It first generates a random energy matrix ( , )E b j  of length m. 
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One base is randomly chosen as the preferred base at each position and assigned an energy of 0. 

Energies for the other bases are drawn randomly from a normal distribution with a user-specified 

mean and standard deviation ( 2(2.5,1.0 )N  by default). The generated energy matrix ( , )E b j  and 

the chemical potential µ will serve as the true parameters of the underlying biophysical model. 

Given the true parameters, probabilities of binding to all possible sites, )( | iP B S , are obtained 

using Equation (2.4) and (2.5). Finally according to Equation (2.6), if we assume an 

equiprobable prior distribution for all the sequences, we can compute |( )iP S B , the probability 

of sequence iS  among the bound sequences, by simply normalizing )( | iP B S . The clean 

probability |( )iP S B , free from measurement errors, will be used to evaluate the predictions of 

the estimated probabilistic models and the fitted biophysical models (described in following 

subsections). 

As an option, BEnDS can simulate errors on binding energy measurement. It first randomly 

generates an error i  from a normal distribution with a user-specified standard deviation (

2(0, 0.5 )N  by default). The error is then added to the true binding energy of sequence iS  to 

produce the perturbed energy *

i i iE E   . Then we use *

iE  to compute the probability of a 

sequence iS  being bound under noise, *( )| iP B S , based on Equation (2.4). Finally, we normalize 

*( )| iP B S  to obtain the noisy probability distribution *( | )iP S B . When there are measurement 

errors, only *( | )iP S B  can be observed from experiments. Thus, we use *( | )iP S B  instead of the 

clean probability |( )iP S B  to estimate the parameters in the probabilistic models and the fitted 

biophysical models. 



16 

 

2.2.2 The Estimated Probabilistic Models 

From the observed probability distribution *( | )iP S B , probabilistic models (PMs) were 

determined by counting the frequencies of the bases at each position. This was done both for the 

entire distribution and from a subset of high affinity sites (ranked by the observed probability 

*( | )iP S B ), such as the top 1% (as might be expected to be functional sites). When only the top 

1% sites are used, the PMs could be obtained either weighted by the site probabilities, or just 

from the list of sites unweighted, as one might expect from a collection of known regulatory sites 

or from ChIP-seq type of experiment with a limited sample of observed binding sites. With the 

estimated PM, we can compute its predicted ˆ |( )iP S B  and compare it with the clean probability 

|( )iP S B  generated by the underlying biophysical model. 

2.2.3 The Fitted Biophysical Model 

To fit a biophysical model to the noisy observation *( | )iP S B , we solve the following 

optimization problem: 

 

2

*( | )min ln ln
1 i

iE
i

A
P S B

e
 

 
  

 , (2.7) 

where θ is the vector of unknown parameters, including the scale factor A, the chemical potential 

µ, and the energy matrix ( , )E b j , which is used to compute iE  based on Equation (2.5). The 

optimization problem is solved using the L-BFGS (Limited-memory Broyden–Fletcher–

Goldfarb–Shanno) algorithm [100]. The fitted biophysical models will be estimated using either 

all the sequences or only the top 1% sequences ranked by the observed probability *( | )iP S B . 

With the estimated parameters, we can compute the ˆ |( )iP S B  predicted by the fitted biophysical 

model and compare it with the clean probability |( )iP S B  generated from the true parameters. 
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2.3 Results 

We compared the predicted probability distribution ˆ |( )iP S B  of the estimated PMs and the fitted 

biophysical models with the true probability distribution |( )iP S B . Of particular interest is how 

well the rank order of binding site probabilities is preserved. 

2.3.1 Results in the Absence of Measurement Noise 

In the absence of measurement noise, we mainly focus on the estimated PMs as the fitted 

biophysical model is the same as the underlying biophysical model. 

At different protein concentrations, the PMs derived from binding probabilities are usually 

different. As shown in Equation (2.4), the binding probability of a sequence  iS depends on both 

its binding affinity iK  (or energy 
iE ) and the protein concentration (or chemical potential μ). If 

[ ] 1iK T , there is a linear relationship between affinity and probability, but that occurs only 

when ( | ) 0.5iP B S , which is unlikely to be the case in vivo for true regulatory sites. At high 

protein concentrations, where ] 1[iK T   and the preferred binding site is highly occupied, the 

non-linear relationship between binding probability and affinity has several consequences. One is 

that the PM itself depends on the protein concentration, whereas the binding energy does not. 

Figure 2.1a and 2.1b show one example of a simulated energy matrix and its associated energy 

logo [27, 59]. In the matrix the lowest energy base (preferred base) at each position is assigned 

energy 0 (using the convention of Berg and von Hippel [53]), while in the logo the average 

energy for each position is set to 0, with the lower energy (higher affinity) bases on top. Figure 

2.1c and 2.1d show the information logo [30] and the PM obtained at very low protein 

concentration, 3   . At low protein concentration the PM corresponds very closely to the 

independent contributions of each base to the binding affinity (equation (2.6) converges to 
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equation (2.1)). But at high protein concentration, such as 3  , the logo and PM are different 

(Figure 2.1e and 2.1f). The second logo shows that the information is ‘compressed’ at 3  , 

with the mean column information content (MCIC) decreasing from 0.9 bit to 0.7 bit. The MCIC 

is defined as the average information content of all the columns in a matrix. Comparing the two 

 

Figure 2.1 The energy matrix, derived probabilistic models and corresponding logos of a typical 

simulation. (a) The energy logo, with the average energy for each position set to 0. (b) The 

energy matrix generated from simulation. (c) The information logo when 3   . (d) The 

probabilistic model derived from all binding sites when 3   . Matrix elements are base 

frequencies. Each column sums up to 100. (e) The information logo when 3  . (f) The 

probabilistic model derived from all binding sites when 3  . Each column sums up to 100. 
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PMs (Figure 2.1d and 2.1f), at high protein concentration the base probabilities tend to move 

toward 0.25; the high probability bases decrease in probability and the low probability bases 

increase. More importantly the magnitude of the change in probability varies from position to 

position because each column is normalized independently. As a result, the rank order of the 

 

Figure 2.2 The non-linear relationship between binding energy and probability. The C to A 

mutation that occurs at the same position but in two different sequence contexts causes 

dramatically different changes in the binding probability of the whole sequence. 
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probabilities of different binding sites may change, even though the rank order of the 

probabilities for the four bases remains unchanged at each position. Another consequence of the 

non-linear relationship between binding affinity and probability is that pairs (and higher order 

combinations) of positions have non-independent effects on binding probability, even though 

their contributions to affinity are completely independent. We show this with one example in 

Figure 2.2 based on the protein with energy matrix shown in Figure 2.1 at 3  . When the 

preferred binding site, TGGTAACG with a true binding probability of 0.95, is mutated to 

TGGTAAAG, the true binding probability decreases to 0.79, about a 17% decrease in binding 

probability. If the same C to A mutation occurs in another sequence, TGGCAACG to 

TGGCAAAG, the true binding probability decreases from 0.62 to 0.23, a 63% decrease. This 

apparent non-independence, where the effect of the mutation on site probability varies depending 

its context, cannot be captured by the PMs, even though the change in binding affinity (1.69 kT, 

Figure 2.1b) is completely independent of context. 

The rank correlation (the square of the Spearman’s rank correlation coefficient) between the 

predicted and true all sequence distributions depends on the protein concentration and how the 

PM is computed. Table 2.1 shows the mean values and standard deviations of 2r  for 100 

simulations of 8 bp binding sites with μ of −3, 0 and 3 (which correspond to the preferred 

sequence being bound at 0.05, 0.5 and 0.95 probability, respectively). The rank correlation is 

based on PMs generated from the full distribution of binding data and from just the top 1% of 

sites, either weighted or unweighted. At 3    there is a nearly perfect fit to the true ranking 

when the PM is derived from the entire distribution. However, when it is derived from the 

weighted top 1% of sites, the ranking is slightly less accurate (0.994). In both of those cases the 

PM provides a very good approximation to the true ranking of binding sites. If the unweighted   
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Figure 2.3 The correlation between the predicted and true all sequence distributions. (a) The 

correlation between the true distribution (in logarithm with highest affinity site set to 0) and that 

predicted by the PM generated from the weighted all binding sites. (b) The correlation between 

the true distribution (in logarithm) and that predicted by the PM generated from the weighted top 

1% binding sites. (c) The correlation between the true distribution (in logarithm) and that 

predicted by the PM generated from the unweighted top 1% binding sites.  
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top 1% sites are used to make the PM, the fit to the true ranking is 0.984 and that is true 

regardless of the value of μ because the top 1% of sites is the same for different μ and their 

probabilities are ignored. When 0  , the results are very similar. When 3  , the rank 

correlation drops to 0.988 when the weighted top 1% of sites are used to obtain the PM. Figure 

2.3 plots the logarithms of the predicted and true relative binding probabilities for the simulated 

protein in Figure 2.1 and 3  . In each case the overall fit is quite good but the width of the 

plots indicates some degree of mis-ranking of the binding sites. 

 

Table 2.1 The rank correlation between the predicted and true all sequence distributions for 

probabilistic models in the absence of noise. 

 Mean correlations and standard deviations 

Probabilistic model generation method 3    0   3   

All binding sites, weighted 1.000 (0.000) 1.000 (0.000) 0.998 (0.001) 

Top 1% binding sites, weighted 0.994 (0.010) 0.993 (0.011) 0.988 (0.012) 

Top 1% binding sites, unweighted 0.984 (0.014) 0.984 (0.014) 0.984 (0.014) 

 

While the overall rankings are quite good for the estimated PMs, it is the highest affinity sites 

that are of primary interest. In fact, all DNA-binding proteins exhibit a non-specific binding 

affinity [57] such that there is a minimum binding affinity below which the sequence no longer 

matters. In addition, functional regulatory sites must have sufficient occupancy to fulfill their 

roles, so only sites within some range of the optimum are likely to be functional. Figure 2.4 

shows a subset of the data points in Figure 2.3, including only the top 1% of sites. The plots all 

show substantial mis-ranking of sites. Table 2.2 shows the rank correlations based on the same 

PMs in Table 2.1, but now focusing on the probabilities of the top 1% binding sites. The values   
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Figure 2.4 The correlation between the predicted and true top 1% sequence distributions. (a) The 

correlation between the true distribution (in logarithm with highest affinity site set to 0) and that 

predicted by the PM generated from the weighted all binding sites. (b) The correlation between 

the true distribution (in logarithm) and that predicted by the PM generated from the weighted top 

1% binding sites. (c) The correlation between the true distribution (in logarithm) and that 

predicted by the PM generated from the unweighted top 1% binding sites.  
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in Table 2.2 are all lower than those in Table 2.1, indicating that the accuracy decreases when the 

PM is used to predict the highest affinity sites. In fact, the true top 1% does not contain precisely 

the same set of sequences as the predicted top 1% of sites. For 3   the rank correlation drops 

to 0.970 even when the entire distribution is used to generate the PM. When the top 1% of sites 

are used to generate the PM, weighted by their probabilities, the rank correlations drop 

substantially for all values of μ, but especially for 3   where it is only 0.876. If the unweighted 

top 1% are used, the rank correlation drops to 0.840 for all values of μ. The results in Tables 2.1 

and 2.2 show that the quality of PMs, their ability to correctly rank binding sites, varies widely 

depending on both the protein concentration and the set of binding sites used to derive the PM. 

The effect of the protein concentration is most evident at high values of μ where the non-linearity 

of equation (2.6) is largest and non-independence of the position probabilities is most 

pronounced. The effect of site sampling is due to the sensitivity of the PM to the exact set of 

example sites used. 

 

Table 2.2 The rank correlation between the predicted and true top 1% sequence distributions for 

probabilistic models in the absence of noise. 

 Mean correlations and standard deviations 

Probabilistic model generation method 3    0   3   

All binding sites, weighted 1.000 (0.000) 0.995 (0.002) 0.970 (0.010) 

Top 1% binding sites, weighted 0.956 (0.032) 0.930 (0.092) 0.876 (0.063) 

Top 1% binding sites, unweighted 0.840 (0.075) 0.840 (0.075) 0.840 (0.075) 

 

2.3.2 Results in the Presence of Measurement Noise 

When we add measurement noise ( 0.5  ) to the simulation, the fitted biophysical model 

derived from the noisy observation *( | )iP S B  may not reproduce the underlying true biophysical 
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model, thus requiring evaluation of their predictions in addition to the estimated PMs. That 

amount of noise is larger than what can be obtained with methods such as Spec-seq, where we 

typically get standard deviations of about 0.2 kT, at least for the high affinity sequences [68, 

101]. We used the same criterion described in the previous subsection to evaluate the estimated 

models under noise, which is the rank correlation between the predicted distribution ˆ( | )iP S B  

and the true distribution (clean probability) ( | )iP S B , focusing on either all the sequences or 

only the top 1%. The results are summarized in the tables below, from which three main 

conclusions can be drawn. First, the fitted biophysical models almost always achieve higher 

scores than the corresponding PMs, especially when the predicted top 1% sequence distributions 

are checked against the true distributions. Also, they can generally recover the true parameters of 

the underlying model, as indicated by the nearly perfect scores in Table 2.5 and 2.6, especially 

when they were trained on all the sequences. Second, comparison of Table 2.1 and 2.3 shows 

that when the all sequence distributions are compared, the accuracy of the PMs derived from the 

noisy observation *( | )iP S B  is only slightly lower than those derived from the clean observation 

( | )iP S B , regardless of how the PMs are generated. Third, comparison of Table 2.2 and 2.4 

shows that when the top 1% sequence distributions are compared, the accuracy of the PMs 

derived from the noisy observation *( | )iP S B  is lower than those derived from the clean 

observation ( | )iP S B . This is especially true for the case 3    or 0  , when the PM should 

be a good approximation to the underlying biophysical model. This may be because when noise 

level 0.5  , the measurement error on binding energy, rather than the protein concentration, 

becomes the dominant factor in determining the accuracy of the models. 
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Table 2.3 The rank correlation between the predicted and true all sequence distributions for 

probabilistic models in the presence of noise. 

 Mean correlations and standard deviations 

Probabilistic model generation method 3    0   3   

All binding sites, weighted 0.997 (0.002) 0.997 (0.001) 0.997 (0.001) 

Top 1% binding sites, weighted 0.987 (0.030) 0.988 (0.019) 0.987 (0.022) 

Top 1% binding sites, unweighted 0.983 (0.014) 0.984 (0.015) 0.986 (0.008) 

 

Table 2.4 The rank correlation between the predicted and true top 1% sequence distributions for 

probabilistic models in the presence of noise. 

 Mean correlations and standard deviations 

Probabilistic model generation method 3    0   3   

All binding sites, weighted 0.952 (0.022) 0.959 (0.016) 0.959 (0.013) 

Top 1% binding sites, weighted 0.886 (0.090) 0.883 (0.035) 0.872 (0.043) 

Top 1% binding sites, unweighted 0.839 (0.069) 0.842 (0.066) 0.846 (0.052) 

 

Table 2.5 The rank correlation between the predicted and true all sequence distributions for 

biophysical models in the presence of noise. 

 Mean correlations and standard deviations 

Biophysical model generation method 3    0   3   

All binding sites, weighted 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 

Top 1% binding sites, weighted 0.992 (0.034) 0.995 (0.022) 0.995 (0.023) 

 

Table 2.6 The rank correlation between the predicted and true top 1% sequence distributions for 

biophysical models in the presence of noise. 

 Mean correlations and standard deviations 

Biophysical model generation method 3    0   3   

All binding sites, weighted 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 

Top 1% binding sites, weighted 0.964 (0.092) 0.972 (0.009) 0.968 (0.012) 
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2.4 Discussion 
Probabilistic models of protein–DNA interactions are commonly used because they are easy to 

obtain and they provide an intuitive representation of specificity. However, they do not provide 

the information usually desired, the probability that a specific sequence is bound, ( | )iP B S , but 

rather an approximation to the probability of observing a specific sequence given a binding site, 

( | )iP S B . From that one can obtain a predicted rank order of all possible binding sites and, if 

one assumes a specific probability, or occupancy, for the preferred sequence, the predicted 

probabilities for all other sequences. To obtain binding probabilities from the biophysical model 

one needs to know the chemical potential, but just as with the probabilistic model if one assumes 

the probability, or occupancy, of the preferred sequence, then the probabilities of all other 

sequences can be obtained from the model. Since both models really return the same 

information, a predicted ranked list of binding sites and relative binding probabilities, they 

should be judged on the accuracy of those predictions and the ease of obtaining the model 

parameters.  

The accuracy of PMs is limited by availability of binding site affinity data. When a PM is based 

on the entire probability distribution of binding sites it is a good approximation overall, even at 

high μ. However, it does have discrepancies that include mis-ordering of the ranks of binding 

sites as well as the appearance of non-independence between positions that are in fact 

independent. These effects are due to the intrinsic lack of proportionality between binding 

probability and binding affinity that is most problematic at high protein concentrations. More 

severe defects occur due to incomplete information about the binding probability distribution. 

Obtaining the full distribution of binding probabilities requires in vitro experiments, such as 

protein binding microarrays, HT-SELEX or other high-throughput methods [5, 24, 25, 34, 62, 
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66, 73, 82, 89, 102, 103], but many algorithms utilize only the highest affinity binding sites. PMs 

can be derived from in vivo data of binding site locations, and have the advantage of being easily 

derived from such data using many motif discovery algorithms [27, 45-47, 49, 104, 105]. But in 

those cases, the PM is derived from only a fraction of the binding sites. Functional regulatory 

sites will be among the high affinity sequences and in ChIP-seq experiments the peaks will also 

tend to contain the highest affinity sites. And if the sample size is small, those sites are not even 

weighted by their binding probabilities. In addition, confounding factors occurring in vivo, such 

as competition and cooperativity with other proteins, lead to incomplete information about the 

probability distribution and that causes further inaccuracies in the PMs. 

Good binding models are still important after the advent of high-throughput methods and their 

parameters can be readily determined by using appropriate algorithms. Binding affinities to small 

numbers of sequences can be obtained with arbitrarily high accuracy using a variety of 

experimental techniques. If the additivity (positional independence) assumption is valid, the 

relative affinities, compared to the preferred sequence, of only the 3m single nucleotide variants 

are needed for the full energy model. Of course, additivity is unlikely to be completely accurate, 

but there are still only 3 9( 1)m m   single variants plus double variants at adjacent positions, 

where the non-additivity is likely to be most prevalent. But multiple high-throughput methods 

are now available that provide quantitative binding data from which accurate energy models can 

be obtained by using appropriate algorithms [34, 39, 59, 61-69, 102]. From sufficiently abundant 

and accurate quantitative binding data one can even skip the modeling and just use the list of 

relative binding energies to all possible sites (or at least the highest affinity sites that are likely to 

function as regulatory sites), avoiding approximations entirely (to the degree allowed by the 

measurement accuracy). However, models are still useful because they provide a compact 
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representation of specificity, usefully visualized with logos [27, 30, 59]. It is also important to 

have good specificity models obtained from in vitro binding experiments to compare to data 

obtained in vivo. This allows one to identify cases where interacting TFs alter the specificity of 

individual TFs, which one can only infer by having good models for each TF alone [85, 106, 

107]. 

We conclude by pointing out that when accurate energy models are available for DNA binding 

specificity there is no advantage to using probabilistic models, and in fact they can be misleading 

and provide inaccurate predictions. There are now good high-throughput methods for measuring 

relative binding affinities to very large collections of sites and good algorithms for determining 

accurate energy models. We propose that such models become the standard approach for 

representing specificity and predicting binding sites in vivo. 
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Chapter 3: Estimation of Binding Motifs 

Using HT-SELEX Data1 
Characterizing the binding specificities of transcription factors (TFs) is crucial to the study of 

gene expression regulation. Recently developed high-throughput experimental methods, 

including protein binding microarrays (PBM) and high-throughput SELEX (HT-SELEX), have 

enabled rapid measurements of the specificities for hundreds of TFs. However, few studies have 

developed efficient algorithms for estimating binding motifs based on HT-SELEX data. Also the 

simple method of constructing a position frequency matrix (PFM) by comparing the frequency of 

the preferred sequence with single-nucleotide variants has the risk of generating motifs with 

higher information content than the true binding specificity. We developed an algorithm called 

BEESEM that builds on a comprehensive biophysical model of protein–DNA interactions, which 

is trained using the expectation maximization method. BEESEM is capable of selecting the 

optimal motif length and calculating the confidence intervals of estimated parameters. By 

comparing BEESEM with the published motifs estimated using the same HT-SELEX data, we 

demonstrate that BEESEM provides significant improvements. We also evaluate several motif 

discovery algorithms on independent PBM and ChIP-seq data. BEESEM provides significantly 

better fits to in vitro data, but its performance is similar to some other methods on in vivo data 

under the criterion of the area under the receiver operating characteristic curve (AUROC). This 

highlights the limitations of the purely rank-based AUROC criterion. Using quantitative binding 

data to assess models, however, demonstrates that BEESEM improves on prior models. 

                                                 
1 Parts of this chapter are taken from Ruan, S., Swamidass, S. J. & Stormo, G. D. BEESEM: estimation of binding 

energy models using HT-SELEX data. Bioinformatics (2017). 
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3.1 Materials 
The 2726 HT-SELEX sequencing datasets used in this study were generated by Jolma et al. and 

retrieved from the European Nucleotide Archive (www.ebi.ac.uk/ena) [87]. These datasets were 

grouped into 547 HT-SELEX experiments, each of which is composed of 4 to 7 SELEX cycles 

 

Figure 3.1 The HT-SELEX experiments and the J2013 PFMs. (a) Most of the HT-SELEX 

experiments have 4 cycles. By convention, the 0th SELEX cycle denotes the initial library of 

randomly generated DNA probes. Multiple HT-SELEX experiments share the same initial 

library. 27 sequencing datasets corresponding to the 1st cycle are missing from the database. (b) 

In 80% of the datasets, the randomized region is 20 bp long. (c) The length of the J2013 PFMs 

ranges from 7 to 23; the mean length is 12.7 bp. (d) The average mean column information 

content of the J2013 PFMs is 1.20 bit. The information content is computed based on a uniform 

background distribution of the four nucleotides. 

http://www.ebi.ac.uk/ena
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(Figure 3.1a). A total of 463 distinct TFs were surveyed in these experiments. In a typical 

experiment, the TF of interest binds to DNA probes that consist of a randomized region and two 

constant flanking regions. The length of the randomized region varies between experiments 

(Figure 3.1b). We focus on the experiments in which the randomized region is 20 bp because 

they form the largest group. A total of 843 PFMs were also published by Jolma et al. [87], which 

we refer to as the J2013 PFMs. To assess their specificity, we calculated the mean column 

information content (MCIC), which is defined as the average information content of all the 

columns in a matrix. Figure 3.1d shows that the average MCIC of the J2013 PFMs is 1.20 bit. 

3.2 Generalized Biophysical Model 
The biophysical model underlying BEESEM generalizes the biophysical model described in the 

preceding chapter and allows simultaneous estimation of the binding motif and the locations of 

binding sites. In the original biophysical model, Equation (2.6) states that the probability of 

finding a sequence iS  among all the DNA molecules bound by the TF is 

 
( ) 1

( | )
( ) 1 i

i
i E

P S
P S B

P B e





.  (3.1) 

( )iP S  is the proportion of sequence iS  before TF binding and ( )P B  is the overall probability of 

a DNA molecule being bound by the TF. Equation (3.1) assumes that the DNA sequence length l 

is the same as the motif length m. However, l is generally larger than m and the binding site may 

be located anywhere on the sequence. As a result, each protein–DNA complex has 2( 1)l m   

possible configurations, if we account for both orientations. To keep track of the different 

complexes and their configurations, we use k

iT S  to denote the kth configuration of the protein–

DNA complex of iS , where T represents the TF, 1,2, ,2( 1)k l m   . Under this notation, k

iS  
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can also be interpreted as the binding sequence in k

iT S  and is therefore associated with a 

binding energy (denoted by ( )k

iE S ). ( )k

iE S  is entirely determined by the DNA sequence of k

iS , 

regardless of its location on sequence 
iS . Thus ( )k

iE S  can also be written as ( )jE s , if 
k

i jS s , 

where 
js  represents the DNA sequence of a specific m-mer. To generalize Equation (3.1), we 

rearrange it and replace the symbol 
iS  with 

js , namely 
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( | ) 1 1

( ) ( ) 1 j

j

E s

j

P s B

P s P B e





.  (3.2) 

( )jP s  represents the effective proportion of 
js  prior to TF binding, where ‘effective’ means the 

sequence count of 
js  is discounted because we assume that two or more proteins cannot bind to 

the same sequence at the same time. For example, let us consider the scenario that the same m-

mer 1s  occurs twice on a DNA sequence. Since at most one of them can be bound by the TF due 

to physical hindrance, the effective count of 1s  on this DNA sequence is only one. To simplify 

the LHS of Equation (3.2), we use 
jR  to denote the ratio ( | ) / ( )j jP s B P s . In the following 

section, we will show how to use the EM algorithm to compute 
jR  from data. By fitting 

Equation (3.2) to the computed 
jR , we can estimate the unknown parameters in our model 

(collectively represented by a vector θ), which include the PWM (which contains the energy of 

each base relative to the preferred base in units of kT), the chemical potential and some auxiliary 

parameters (see Appendix A for a detailed description of the model and its parameters). 
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3.3 BEESEM Algorithm 

3.3.1 Parameter Estimation 

BEESEM uses the EM algorithm to iteratively find both the optimal PWM and the most likely 

binding position on each sequence read. The EM algorithm consists of multiple rounds and each 

round has two steps: an expectation step (E step) and a maximization step (M step) [46]. In the E 

step, we use the current estimate of the PWM (or an initial guess) to calculate the probability 

distribution of binding sites on each sequence. Specifically, we assume the probability of an m-

mer subsequence being the binding site is proportional to its affinity score predicted by the 

current PWM. Also we require that the probabilities of all the m-mers on sequence iS  sum to 

(1| )iP S . (1| )iP S  represents the probability that iS  is bound by the TF and therefore contains a 

binding site. By computing the (1| )iP S  for each sequence in the after-binding library we can 

exclude those free-rider sequences which are carried to the next cycle through non-specific 

binding [89], and it can be computed using the Bayes’ theorem: 

 
( |1) (1)

(1| )
( |1) (1) ( | 0) (0)

i
i

i i

P S P
P S

P S P P S P



.  (3.3) 

In the above equation, ( |1)iP S  is the proportion of iS  among bound sequence reads, ( | 0)iP S  is 

the proportion of iS  among unbound sequence reads, (1)P  is the ex ante probability that a 

sequence read is bound by the TF, and (0)P  is the probability of the complementary event, thus 

(0) 1 (1)P P  . (1)P  can be approximated by the mean of the (1| )iP S  values from the previous 

round. After computing the probability distribution of binding sites on each sequence, we can 

easily calculate the probability ( | )jP s B  in Equation (3.2) and finally the ratio 
jR . In the M 

step, we search for a parameter vector θ that maximizes the probability of observing the 
jR  
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values computed in the E step. 
jR  is a ratio of two positive numbers, so it likely follows a log-

normal distribution. However, for convenience, we assume it can be approximated by a normal 

distribution in the regime of the data, and define the maximum likelihood estimate of θ by fitting 

Equation (3.2) with least squares minimization. In other words, the objective function of the nth 

round is 

 
2

( )ˆ arg min ( )n

n j j

j

R R


     ,  (3.4) 

where 
( )n

jR  denotes the computed 
jR  value in the nth round and ( )jR   represents the RHS of 

Equation (3.2). Appendix B contains a proof that Equation (3.4) is the correct objective function 

and therefore the procedure described above is indeed an EM algorithm. The minimization is 

performed using the L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) algorithm 

[100], which is a quasi-Newton hill-climbing method for solving non-linear optimization 

problems. A major challenge for any hill-climbing method is that the search for a global 

minimum of the objective function may be attracted to a local minimum. Thus it is important to 

select a proper starting point (denoted by 0 ), since it largely determines the endpoint of a 

search. Conventionally 0  is randomly generated and multiple searches are attempted. However, 

our preliminary results indicate that ̂  may change significantly between successive rounds, if 

random starting points are used in each round. In order to facilitate the convergence of ̂ , we 

always use 1
ˆ
n   to initialize a search in the nth round. This modification greatly improves the 

stability of the ̂  series. The iterative EM algorithm keeps refining ̂  until the maximum 

number of rounds (10 by default) is reached. 
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3.3.2 Confidence Intervals 

BEESEM can calculate the confidence interval for each parameter in the ̂ . It can be proved that 

̂  is both asymptotically unbiased and asymptotically normal [108]. Thus we can assume that ̂  

obeys a multivariate normal distribution ( , )N  Σ , where λ is the mean vector and Σ represents 

the covariance matrix. Since Equation (3.4) gives an (asymptotically) unbiased estimate of λ, the 

only unknown parameter of the multivariate normal distribution is Σ. The covariance matrix is 

related to the Hessian matrix of the objective function in Equation (3.4). To proceed, we assume 

that the measurement errors of 
jR  are independent and obey the same normal distribution 

2(0, )N  . 
2  can be estimated using the sum of squared residuals, which equals to the value of 

the objective function at ̂ . If ( )jR  , namely the RHS of Equation (3.4), is linear with respect to 

θ, it can be shown that [108] 

 
2 1 Σ H . (3.5) 

In this equation, H represents the Hessian matrix of the objective function. Although ( )jR   is 

actually a non-linear function with respect to θ, we can assume that the objective function is well 

approximated by a parabola in the vicinity of a minimum (namely the Laplacian approximation). 

This approximation enables us to compute the confidence intervals using second order 

derivatives, which means Equation (3.5) still holds. 

3.3.3 Motif Length Selection 

BEESEM can infer the optimal motif length if a user-defined value is not supplied. To optimize 

the motif length, BEESEM first generates a series of energy PWMs, ranging from 7 to 10 bp. 

Then the candidate PWM that contains the k-mer submatrix (k defaults to 5) with the highest 

MCIC is identified and it is called the core PWM. Next, BEESEM collects any candidate PWM 
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that meets the following three criteria: 1) it is longer than the core PWM, 2) one of its k-mer 

submatrices is highly correlated with any submatrix in the core PWM, and 3) it does not contain 

a non-informative position at either end. A non-informative position is a PWM column with low 

information content (less than 0.25 bit by default). Finally, BEESEM chooses the longest one 

from the collected PWMs (including the core PWM). 

3.3.4 Initialization of BEESEM with Seed Sequences 

We generated a total of 660 PWMs by applying BEESEM to the aforementioned HT-SELEX 

datasets. Each BEESEM PWM comes in two types: seeded and unseeded. BEESEM takes an 

optional seed sequence of length m as input. The seed sequence is used to generate a seed matrix, 

which serves as the initial guess of the PWM in the first BEESEM round. To generate the seed 

matrix, BEESEM counts the number of occurrences of the seed sequence, as well as all the 

sequences with one mismatch, in the sequencing dataset of the highest SELEX cycle. The 

highest SELEX cycle is used because we expect high-affinity sequences to be enriched after 

multiple SELEX cycles. Next, BEESEM uses the computed sequence counts to build a position 

frequency matrix (PFM), with a default pseudocount of 1. Finally, the PFM is rescaled so that its 

mean column information content equals 0.5 bit. The rescaling generally reduces the information 

content of the seed matrix, making it a starting point of weak bias. Ideally the seed sequence 

should be close to the true consensus sequence, in which case the convergence of BEESEM will 

be greatly accelerated. For example, when generating the seeded BEESEM PWMs, we truncated 

the consensus sequences of the J2013 PFMs and used them as seed sequences. If a seed sequence 

is not specified by the user, however, BEESEM will automatically generate one using the input 

HT-SELEX sequencing datasets. For example, the seed sequences of the unseeded BEESEM 

PWMs were all automatically generated, in contrast to the seeded PWMs. Specifically, BEESEM 
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chooses the most abundant m-mer in the highest SELEX cycle that contains all 4 nucleotides. We 

require the seed sequence to contain all 4 bases in order to filter out low-complexity sequences 

that may have large sequence counts. 

3.3.5 Evaluation of Binding Models 

We evaluated the BEESEM PWMs on HT-SELEX data, as well as PBM and ChIP-seq data from 

independent experiments. In addition, we compared their performance in the evaluation tests 

with 5 other binding models, including the J2013 PFMs, HTS-IBIS, DiMO, BEEML and 

DeepBind. HTS-IBIS is derived from the RAP algorithm [109] and optimized for HT-SELEX 

data. The HTS-IBIS PWMs were generated by applying the HTS-IBIS program to the HT-

SELEX datasets used in this study. DiMO is based on perceptron learning [99] and aims to 

maximize the AUROC score of a PFM based on ChIP-seq data. To generate a DiMO PFM, we 

initialize DiMO with a J2013 PFM and then train it on the ChIP-seq data of the corresponding 

TF. BEEML is a motif finding algorithm built on a biophysical model of protein–DNA 

interactions, and the corresponding PWMs were trained on PBM data [67], using a specialized 

version of BEEML for PBM data (BEEML-PBM). DeepBind uses deep learning to train binding 

models on in vitro and in vivo data, including HT-SELEX data [38]. The DeepBind binding 

models were trained on HT-SELEX data. The BEEML PWMs are not evaluated on ChIP-seq 

data, because few TFs have both BEEML PWMs and ChIP-seq data. For similar reasons, the 

DiMO PFMs are not evaluated on PBM data. 

In the HT-SELEX evaluation tests, we tested the internal consistency of the HT-SELEX based 

methods and their abilities to accurately model the results of the HT-SELEX experiments. We 

developed two methods for evaluating binding models on HT-SELEX data, which are called the 

‘consistency’ test and the ‘goodness-of-fit’ test respectively. In both methods, the assessment is 
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based on the difference between two computed sequence distributions, which should be the same 

under an accurate specificity model. The difference can be measured in two ways: the square of 

the Pearson’s r (denoted by 2r ) and the symmetric divergence (denoted by 
symD ). The 

symmetric divergence, with a minimum value of 0 that indicates a perfect fit, is a symmetrized 

version of the Kullback–Leibler divergence [110]. In the consistency test, we assess the 

difference between two predicted binding site distributions, namely two predictions of the 

( | )jP s B  in Equation (3.2). The two distributions are computed with different approaches: one 

is calculated using the PWM and the sequencing dataset before TF binding, and the other is 

calculated using the PWM and the dataset after TF binding. Since both approaches require a 

presumptive PWM, the resulting distributions are both theoretical predictions. Notwithstanding, 

we expect the two distributions to be similar, if the binding model is consistent. In the goodness-

of-fit test, we assess the difference between two after-binding (overall) m-mer distributions. One 

distribution is calculated directly using the sequencing dataset after TF binding, thus representing 

the empirical distribution. The other is theoretical and can be calculated using the PWM and the 

dataset before TF binding. If the binding model is accurate, the predicted distribution should 

agree with the empirical one. 

In the PBM evaluation tests, we tested the ability of the HT-SELEX based methods to predict 

PBM data. PBMs are an independent in vitro experiment, so this is an important external 

validation. In the PBM test, we evaluate the ability of a binding model to predict the in vitro 

affinities of PBM probes, as measured by their fluorescence intensities. The PBM datasets 

generated by multiple studies were retrieved from the CIS-BP database (cisbp.ccbr.utoronto.ca) 

[23]. These datasets include both mouse and human TFs. To evaluate a binding model, we use it 

to calculate the average affinity score of all the m-mers on each PBM probe (including the 
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reverse complement), where m represents the motif length and depends on the binding model. 

The correlation between the predicted scores and the probe intensities, as measured by the square 

of the Pearson’s r, is used for evaluating the binding models. 

In the ChIP-seq evaluation tests, we assessed how well the BEESEM PWMs, which are trained 

on HT-SELEX data, could identify in vivo TF binding sites. Here, we use the ChIP-seq data from 

the ENCODE project database (www.encodeproject.org) [111] and the ROC curve to quantify 

the ability of binding models to identify ChIP-seq peaks among random DNA sequences [89]. To 

perform the evaluation test, we first rank all the peaks in a ChIP-seq dataset based on their 

enrichment scores. Then we retrieve the center sequences of the top 500 peaks, which are all 250 

bp long, and treat them as the positive sequence set (as in [89]). To generate the negative set, we 

collect the DNA sequence 200 bp downstream from each positive sequence. Next, we assign an 

affinity score to each sequence. The affinity score of a sequence is defined as the highest affinity 

of its constituent m-mers (including the reverse complement), where m is the motif length and 

depends on the binding model. Finally, we rank all the sequences based on their affinity scores, 

plot the ROC curve, and compute the AUROC score. 

3.4 Results 

3.4.1 Characterization of BEESEM PWMs 

Reproducibility 

The reproducibility of an BEESEM PWM can be measured by its standard deviation or the 

confidence intervals of its elements. In this study, the standard deviation of a PWM is defined as 

the mean of the standard deviations of its elements, which can be individually estimated using 

the covariance matrix of ̂ . Although the confidence interval is a more natural way to quantify 

http://www.encodeproject.org/
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the uncertainty in an estimate, we focus on the standard deviation for two reasons. First, the two 

measures are equivalent if the estimate obeys a normal distribution, as in our case. Second, it is 

difficult to summarize the confidence intervals of multiple estimates, while it is straightforward 

to average their standard deviations. The average standard deviations of seeded and unseeded 

BEESEM PWMs are 0.014 and 0.015 respectively. The standard deviations are very small 

compared with the absolute values of PWM elements, averaging 1.73 for seeded and 1.76 for 

unseeded PWMs. Thus we consider the estimated binding energies to be highly reproducible. 

Information Content 

The average MCIC of seeded and unseeded BEESEM PWMs is 0.58 bit and 0.60 bit 

respectively. They are both smaller than the average MCIC of the corresponding J2013 PFMs, 

which is 1.19 bit. Thus the BEESEM PWMs are generally less specified than the J2013 PFMs. It 

was reported that motifs with lower MCIC often fit quantitative binding data better [39] 

3.4.2 Evaluation Results 

Evaluation on HT-SELEX Data 

Table 3.1 shows the evaluation results for BEESEM, BEEML, HTS-IBIS, the J2013 PFMs and 

DiMO on HT-SELEX data. The BEESEM PWMs on average achieve better scores than the 

other algorithms in both the consistency and the goodness-of-fit tests, by either the 2r  or the 

symD  criterion. Based on the two-sided T-test, the difference in the consistency 2r  between the 

unseeded BEESEM PWMs and BEEML ( 5p-value 1.8 10  ), HTS-IBIS ( 47p-value 1.7 10  ), 

J2013 ( 48p-value 6.6 10  ), DiMO ( 29p-value 3.0 10  ) is significant. The difference in the 

goodness-of-fit 2r  between the unseeded BEESEM PWMs and HTS-IBIS ( 15p-value 1.3 10 
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), J2013 ( 19p-value 2.0 10  ), DiMO ( 12p-value 4.7 10  ) is significant, but not for BEEML (

p-value 0.089 ). It is noteworthy that there is only a small difference in performance between 

the two BEESEM PWM types (the p-value for the consistency and goodness-of-fit 2r  is 0.88 

and 0.77 respectively). The DiMO PFMs significantly lag behind the other algorithms 

presumably because DiMO overfits the characteristics of the ChIP-seq data that it was trained 

on. Column-wise comparisons show that the 2r  of a goodness-of-fit test is generally lower than 

the corresponding consistency test, which is consistent with the goodness-of-fit test being more 

stringent, although the 
symD  is better on the goodness-of-fit test. 
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Table 3.1 The results of the HT-SELEX evaluation tests. There are fewer DiMO or BEEML PWMs because only a subset of the TFs 

have ChIP-seq or PBM data. All the tests are performed using the 2nd SELEX cycle as the prior and the 3rd cycle as the posterior. All 

the PWMs are trimmed to 8 bp in order for direct comparison. The best score in each column is boldfaced. Scores that are not 

significantly different from the best scores are italicized ( p-value 0.05 ). DeepBind is excluded from the HT-SELEX test because the 

output of its models cannot be interpreted as simple binding probabilities. 

Algorithm Sample size Consistency r2 (s.d.) Consistency Dsym (s.d.) Goodness-of-fit r2 (s.d.) Goodness-of-fit Dsym (s.d.) 

BEESEM 

seeded 
660 0.79 (0.26) 0.46 (0.48) 0.47 (0.26) 0.40 (0.31) 

BEESEM 

unseeded 
660 0.79 (0.27) 0.49 (0.50) 0.46 (0.26) 0.43 (0.35) 

BEEML 76 0.65 (0.28) 0.90 (0.80) 0.41 (0.29) 0.50 (0.32) 

HTS-IBIS 660 0.55 (0.30) 2.60 (1.26) 0.35 (0.22) 1.23 (0.52) 

J2013 660 0.53 (0.35) 3.86 (2.49) 0.33 (0.26) 1.63 (0.93) 

DiMO 73 0.39 (0.33) 28.3 (23.1) 0.24 (0.22) 5.52 (3.14) 
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Evaluation on PBM Data 

The mean 2r  achieved by each motif finding algorithm in the PBM evaluation tests is shown in 

Figure 3.2a. In this comparison, the BEEML PWMs are a positive control because they were 

trained on PBM data. The real assessment is how the HT-SELEX based methods (BEESEM, 

J2013, DeepBind and HTS-IBIS) can predict the PBM data. Because the PBM test is an 

independent validation for the HT-SELEX based methods, their 2r  scores in Figure 3.2a are 

generally lower than the corresponding goodness-of-fit 2r  in Table 3.1. Compared with the other 

methods, the seeded and unseeded BEESEM PWMs are ranked first and second respectively, 

with a mean 2r  of 0.27 and 0.24, and approach the performance of the positive control (

2 0.44r  ). Based on the two-sided T-test, the difference between the seeded and unseeded 

BEESEM PWMs is not significant ( p-value 0.42 ). The remaining three algorithms (J2013: 

0.14, HTS-IBIS: 0.08 and DeepBind: 0.08) achieve much lower 2r , compared with BEEML and 

BEESEM. The difference between the unseeded BEESEM PWMs and J2013 ( p-value 0.0014

), DeepBind ( 8p-value 1.5 10  ), HTS-IBIS ( 8p-value 1.3 10  ) is significant. 

Evaluation on ChIP-seq Data 

The performance of each motif finding algorithm in the ChIP-seq evaluation tests, as measured 

by the mean AUROC score, is shown in Figure 3.2b. The results show that the DiMO PFMs 

achieve the highest average AUROC score (0.84). This is mainly because these PFMs were 

trained on the same ChIP-seq data used for evaluation, while all the other motifs were trained on 

HT-SELEX data. In addition DiMO is designed to maximize the AUROC score of a PFM, the 

same as our evaluation criterion. The seeded BEESEM PWMs, the J2013 PFMs and the   
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Figure 3.2 The results of the PBM and ChIP-seq evaluation tests. (a) In the PBM tests, the 

number of binding models tested is 67 for each algorithm. The error bars mark the standard 

deviation of the scores. The BEEML bar is singled out because the corresponding PWMs were 

trained on PBM data. For the other binding models trained on HT-SELEX data, the PBM test is 

an external validation on in vitro data. (b) In the ChIP-seq tests, the number of binding models 

tested is 72 for each algorithm. The error bars mark the standard deviation of the scores. The y 

axis starts from 0.5, the expected score of a random classifier. The DiMO bar is singled out 

because the corresponding PWMs were trained on ChIP-seq data. For the other binding models 

trained on HT-SELEX data, the ChIP-seq test is an external validation on in vivo data. 
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DeepBind models all achieve a mean AUROC score of 0.74, whereas the unseeded BEESEM 

achieves 0.73 and HTS-IBIS achieves 0.72 (similar to the result reported in [64]). Based on the 

two-sided T-test, there is no significant difference among the algorithms trained on HT-SELEX 

data. 

3.5 Discussion 
BEESEM infers the specificity of TFs based on HT-SELEX data by extending our previous 

development of BEEML [5]. BEESEM allows the sequences to be much longer than the binding 

sites, which requires the simultaneous estimation of the binding site locations and the specificity 

model. This general problem was addressed using the EM algorithm [46], but in that case the 

data consisted simply of a collection of sequences containing sites without quantitative binding 

information. Now we include the enrichment of sites by comparing the posterior distribution to 

the prior (the distribution before the binding site selection). This requires non-linear parameter 

estimation as part of the EM maximization step. We previously showed that standard motif 

finding algorithms, that don’t account for the ratios of the posterior to the prior distributions and 

that don’t apply non-linear parameter estimation, perform much less well even on relatively 

simple datasets [5]. We also use the EM algorithm to filter out low-affinity sequence reads that 

are carried over from the previous SELEX cycle and thus do not contain any high-affinity 

binding site. In fact, both the seeded and unseeded BEESEM PWMs predict that on average only 

60% of the sequence reads actually contain a binding site. We are still employing some 

approximations, such as the PWM model of specificity [39, 67] and assuming each sequence is 

bound by at most one protein, but we expect these do not have large effects on the models. 

The estimation of the binding site location is important because of the very large libraries from 

which the selections are made. A library of random 20-mers contains over 
1210  different 
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sequences, well beyond the capacity of current sequencing approaches. In fact essentially all of 

the sequences in the initial pool are unique. Even after four rounds of selection the most 

abundant 20-mer usually occurs between 10–100 times. In a 20-mer library, every 10-mer occurs 

in more than 
710  different contexts so that even if selection was very stringent, most selected and 

sequenced sites would be unique. By focusing on typical motif lengths, 7–10 bp, and summing 

over their occurrences in both the prior and posterior distributions, we can obtain models with 

good fits to the selection data. 

Despite the clear improvements in modeling the in vitro quantitative binding data (both HT-

SELEX and PBM), the BEESEM motifs achieve essentially equal AUROC scores in the ChIP-

seq test, which is a valuable independent assessment but also has limitations. Certainly an 

important use of motifs is in predicting binding events in vivo, and also in accounting for 

changes in expression that are correlated with genetic variants [17]. The AUROC criterion has 

been cited previously as a method for evaluating the quality of motifs determined from in vitro 

binding data [39, 89]. But ROC curves, and the AUROC measures based on them, have 

important limitations. First, there are biological considerations. Binding of TFs in vivo is 

confounded by a myriad of other proteins, including nucleosomes, that compete or cooperate in 

binding. In addition, defining an appropriate negative sequence set is challenging. Ideally these 

would be genomic regions that are accessible for the TF to bind, but to which it does not under 

conditions in which it does bind to the positive dataset, but that criterion is seldom used. Second, 

ROC curves are intrinsically rank-based. The scores assigned to each peak, predicted binding 

energies in our case or log-probabilities when using probabilistic models, can be multiplied by 

any constant without altering the ROC curve, and the AUROC measurement. In fact, the J2013 

motifs, which perform well in the ChIP-seq test, have very high information content. We had 
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previously suggested, based on comparisons with different high-throughput methods, that the 

J2013 algorithm for HT-SELEX was producing over-specified motifs [88]. It was observed for 

PBM data that algorithms that generated higher information content motifs tended to fit the 

quantitative binding data less well [39]. Finally, our results using the DiMO method of motif 

optimization are enlightening. We reasoned that if the AUROC is a good criterion for evaluating 

a motif on ChIP-seq data, one could use it as the objective function for motif optimization. Using 

a simple perceptron algorithm we showed that nearly any motif, obtained by a variety of motif 

discovery algorithms on ChIP-seq data, could be modified to increase its AUROC score [99]. 

When applying DiMO to the ChIP-seq datasets analyzed in this work, and using the J2013 motifs 

as starting points, we could in every case obtain a new motif with a higher AUROC score. This 

was accompanied by an increase in MCIC. However, those DiMO motifs perform significantly 

worse on the quantitative HT-SELEX data and are further over-specified, highlighting the 

limitation of using the AUROC as the sole criterion for evaluating motif quality. To gain more 

insights into the ChIP-seq test, we assess each binding model using the median relative affinity 

(MRA) of each ChIP-seq dataset, which is defined as the median affinity score of the top 500 

peaks divided by their highest affinity score. Figure 3.3 shows that the median MRA for the 

BEESEM PWMs is about 0.2 while the other binding models predict very low MRAs (their 

median MRAs are all less than 0.005). It means J2013, DiMO and HTS-IBIS generally predict a 

>200-fold affinity difference between the peak of the highest affinity and the median peak. 

Although the true differences in the relative affinity for the different peaks are unknown, it seems 

unlikely that half of the binding sites in these top scoring peaks would have such low binding 

affinities. In fact changes in binding affinity of 10-fold are often considered deleterious when 

inferring causal variants responsible for changes in gene expression [112, 113]. 
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We consider the fit to in vitro binding data to be the best criterion for judging the quality of TF 

binding motifs. The in vitro data measure intrinsic binding specificity without the confounding 

effects that occur in vivo. When obtained over a wide range of affinities, either HT-SELEX or 

PBM data can provide good quantitative models of specificity. The ROC curves are still of 

value, but should not be the primary means of evaluation. Low AUROC values can point to 

important information that is missing from the models of intrinsic specificity alone. For example, 

a highly enriched ChIP-seq peak without a high-affinity binding site may indicate indirect 

binding, although a low-affinity site that is bound cooperatively with another factor seems more 

likely. In general, reliable specificity models, which are most easily obtained in vitro, are the 

most useful information for understanding regulatory sites in vivo and the alterations in gene 

regulation that occur in genetic variants. In particular, accurate relative affinity estimates for 

genetic variants are useful for distinguishing likely deleterious variants from fairly benign ones.  

 

Figure 3.3 The median relative affinities (MRAs) predicted by different binding models. The 

number of PWMs tested is 73 for each algorithm. The rectangular bars mark the 50th percentile 

(the median) of the 73 MRAs for each algorithm, and the error bars mark the 5th and 95th 

percentiles. DeepBind is excluded from the HT-SELEX test because the output of its models 

cannot be interpreted as simple binding probabilities. 
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Chapter 4: Contribution of DNA Shape 

Features to Binding Specificity1 
With the improvements in X-ray crystallography [90], Cryo-electron microscopy [91] and 

nuclear magnetic resonance (NMR) spectroscopy [92], an increasing number of three-

dimensional structures of protein–DNA complexes and DNA fragments become available. These 

structural data catalyzed the development of computational methods for predicting DNA shape 

features [96] and algorithms that use them for motif discovery. In a recent study, Mathelier et al. 

described a motif finding algorithm called DNAshapedTFBS, which trains gradient boosting 

classifiers to differentiate ChIP-seq peaks from random background sequences, and claimed that 

taking account of DNA shape features improves TF binding site predictions [40]. In this chapter, 

we attempt to replicate the results of the study and compare the gradient boosting classifiers with 

both the probabilistic models [27] and the PWMs generated by the DiMO_PWM program [99]. 

Our preliminary results indicate that the gradient boosting classifiers, even when they 

incorporate DNA shape features, are not significantly better than the optimal PWMs generated 

by DiMO_PWM. 

4.1 Materials 

4.1.1 JASPAR PFMs 

Mathelier et al. identified 76 JASPAR PFMs [114] that can be associated with ChIP-seq datasets 

generated by the ENCODE project [115]. These PFMs were used to locate the best binding site 

within each positive and negative sequence for training and testing classifiers. In this study, we 

used the same set of JASPAR PFMs, except for one PFM profile (ID: MA0133.1) that is no 

                                                 
1 This work is being prepared for publication and will be submitted once the final results are completed. 
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longer available in the March 2017 JASPAR CORE collection 

(jaspar.genereg.net/html/DOWNLOAD/JASPAR_CORE/). 

4.1.2 ChIP-seq Datasets 

We used the same ChIP-seq datasets analyzed by Mathelier et al. [40]. 396 uniformly processed 

human ENCODE ChIP-seq datasets associated with the aforementioned 75 JASPAR PFMs were 

downloaded from the UCSC Genome Browser 

(hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/). For 

each ChIP-seq peak, we retrieved the 100 bp sequence centered on the point-source of the peak 

from the human genome assembly hg19, which serves as a positive sequence for training and 

testing TF binding models. For each positive sequence, we also constructed a negative sequence, 

which is the 100 bp sequence 100 bp downstream from the positive sequence in the human 

genome. For each ChIP-seq dataset, we constructed 10 training and 10 testing sets, where each 

training set is 9 times the size of a testing set. 

4.1.3 DNA Shape Features 

We retrieved the same DNA shape features used by Mathelier et al. from GBshape 

(ftp://rohslab.usc.edu/hg19/) [97]. The features include the helix twist (HelT), the minor groove 

width (MGW), the propeller twist (ProT), the roll (Roll), and the corresponding second-order 

shape features. These features were only used for training and testing DNAshapedTFBS models. 

4.2 Methods 

4.2.1 Motif Discovery Algorithms Evaluated 

Table 4.1 lists the motif discovery algorithms evaluated in this study. Out of the 9 algorithms, 7 

are based on the DNAshapedTFBS program, which trains a binary classifier using the gradient 

boosting algorithm [40]. These 7 algorithms differ in two aspects: 1) how the feature vector is 



52 

 

encoded, and 2) whether the feature vector includes DNA shape features. All the 

DNAshapedTFBS-based algorithms incorporate sequence encodings in feature vectors except for 

JASPAR + shape. We tested three ways of encoding DNA sequences: 4-bit, 3-bit, and 3-bit plus 

adjacent dinucleotide (3-bit dinuc) encoding. In the 4-bit encoding, which was used by Mathelier 

et al., A is encoded as 1000, T as 0100, G as 0010, and C as 0001. In the more compact 3-bit 

encoding, A is encoded as 100, C as 010, G as 001, and T as 000. In the 3-bit dinuc encoding, the 

feature vector contains the 3-bit encoding plus 9 additional bits that represent each adjacent 

dinucleotide in a sequence [116]. The remaining two algorithms are the probabilistic model and 

the DiMO_PWM program, detailed in Chapter 2 and Chapter 3 respectively. DiMO is based on 

perceptron learning and finds the optimal PWM by maximizing its AUROC score [99]. The 

original DiMO program outputs a normalized PFM derived from the optimal PWM, even though 

it uses a PWM internally for optimization. Because energy PWMs do not have the limitations of 

probabilistic PFMs (see Chapter 2), we used a modified DiMO program (DiMO_PWM) in this 

study that outputs the optimal PWM directly. 
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Table 4.1 Descriptions of the motif discovery algorithms evaluated 

Algorithm Output Description 

DiMO_PWM Position weight matrix Modified DiMO program that outputs PWMs instead of PFMs 

JASPAR Position frequency matrix PFMs from the JASPAR database 

DNAshapedTFBS_4bit Gradient boosting classifier DNAshapedTFBS with 4-bit encoding 

DNAshapedTFBS_3bit Gradient boosting classifier DNAshapedTFBS with 3-bit encoding 

DNAshapedTFBS_3bit_dinuc Gradient boosting classifier DNAshapedTFBS with 3-bit dinuc encoding 

JASPAR + shape Gradient boosting classifier JASPAR PFM score plus DNA shape features 

DNAshapedTFBS_4bit + shape Gradient boosting classifier DNAshapedTFBS_4bit plus DNA shape features 

DNAshapedTFBS_3bit + shape Gradient boosting classifier DNAshapedTFBS_3bit plus DNA shape features 

DNAshapedTFBS_3bit_dinuc 

+ shape 
Gradient boosting classifier DNAshapedTFBS_3bit_dinuc plus DNA shape features 
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4.2.2 Training and Testing Binding Models 

The training and testing procedures are based on the methods described by Mathelier et al. [40]. 

Preprocessing 

We first use the JASPAR PFM to scan all the positive and negative sequences in both the 

training and testing set, and identify the best binding site, which has the same length as the PFM, 

within each sequence. Then we use the DNAshapedTFBS program to extract the DNA sequence 

of each best site and the corresponding DNA shape features. The sequences of the best sites, 

instead of the full-length positive and negative sequences, are used in the following steps for 

training and testing TF binding models. 

Training 

The training procedure depends on the motif discovery algorithm. For the DNAshapedTFBS-

based methods, we first construct, for each best site in the training set, a feature vector 

containing its JASPAR PFM score or encoded DNA sequence. If the method takes account of the 

DNA shape features, the feature vector also contains the normalized values of the 8 DNA shape 

features at each position. Then a gradient boosting classifier is trained on the positive and 

negative feature vectors. For DiMO_PWM, the sequences of the positive and negative sites are 

directly fed into the program along with the JASPAR PFM, which serves as a seed matrix. 

DiMO_PWM then finds the optimal PWM that maximizes the AUROC on the training set and 

outputs it without any transformation or normalization. 

Testing 
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The testing procedure is the same for all the algorithms. We first use the trained gradient 

boosting classifiers, the JASPAR PFMs, and the DiMO PWMs to score all the positive and 

negative sites in the testing set. We then use the scores predicted by each model to rank the sites 

and compute the area under the precision recall curve (AUPRC) and the area under the receiver 

operating characteristic curve (AUROC) based on the true labels of the ranked sites. 

4.3 Results 
For each algorithm, the mean and standard deviation of the AUPRC and AUROC scores for the 

396 samples are summarized in Table 4.2. The table shows that the average scores on the testing 

sets are similar for all the algorithms except for the JASPAR PFMs, while the average scores on 

the training sets vary greatly. The gap between the training and testing scores is a measure of 

overfitting for a model, which is generally in line with the complexity of the model according to 

our results. Specifically, the highly non-linear DNAshapedTFBS-based models, which use an 

ensemble of decision trees for classification, have larger gaps than the JASPAR PFMs and the 

DiMO PWMs, which are both linear models. In fact, the training and testing scores of the two 

types of linear models are generally comparable. The largest gaps (0.125 for AUPRC and 0.142 

for AUROC) are associated with the DNAshapedTFBS-based models with DNA shape features, 

presumably because their feature vectors are most complex. If we focus on the scores on the 

testing sets, several conclusions can be drawn from Table 4.2. First, the algorithms with the 

highest AUPRC are DiMO_PWM, DNAshapedTFBS_4bit and JASPAR + shape, while the 

JASPAR PFMs have the lowest scores, due in part to the inherent limitations of probabilistic 

models described in Chapter 2. Second, taking account of adjacent dinucleotides or DNA shape 

features does not improve the performance of the DNAshapedTFBS-based models. It should be 

noted that JASPAR is not a DNAshapedTFBS-based model even though JASPAR + shape 
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outperforms JASPAR. In Figure 4.1, we compare the AUPRC scores generated by the 

DNAshapedTFBS-based methods with and without DNA shape features. In all the subplots 

except for Figure 4.1a, the data points cluster evenly around the diagonal, indicating that the 

difference between the two scores of the same sample is likely due to random noise in model 

training. Figure 4.1a shows that JASPAR + shape largely outperforms JASPAR, a result also 

reported by Mathelier et al. Finally, the 3-bit sequence encoding is on a par with the 4-bit 

encoding, indicating that the latter is redundant and unnecessary. Figure 4.2 compares the 

AUPRC scores generated by DNAshapedTFBS_4bit + shape, one of the best algorithms reported 

by Mathelier et al., with several other methods. It shows that DiMO_PWM slightly outperforms 

DNAshapedTFBS_4bit + shape, while the JASPAR PFMs generally underperform. 
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Table 4.2 Evaluation scores for the motif discovery algorithms on ChIP-seq data 

Algorithm Training AUPRC Training AUROC Testing AUPRC Testing AUROC 

DiMO_PWM 0.842 (0.112) 0.828 (0.112) 0.829 (0.123) 0.812 (0.126) 

JASPAR 0.812 (0.132) 0.788 (0.139) 0.813 (0.131) 0.788 (0.140) 

DNAshapedTFBS_4bit 0.896 (0.083) 0.892 (0.083) 0.829 (0.126) 0.813 (0.128) 

DNAshapedTFBS_3bit 0.891 (0.084) 0.887 (0.084) 0.826 (0.127) 0.811 (0.128) 

DNAshapedTFBS_3bit_dinuc 0.903 (0.079) 0.898 (0.080) 0.826 (0.127) 0.810 (0.128) 

JASPAR + shape 0.951 (0.051) 0.951 (0.050) 0.829 (0.124) 0.811 (0.128) 

DNAshapedTFBS_4bit + shape 0.948 (0.051) 0.949 (0.050) 0.824 (0.128) 0.807 (0.130) 

DNAshapedTFBS_3bit + shape 0.948 (0.051) 0.949 (0.050) 0.823 (0.128) 0.807 (0.130) 

DNAshapedTFBS_3bit_dinuc + shape 0.948 (0.051) 0.949 (0.050) 0.825 (0.127) 0.808 (0.129) 
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Figure 4.1 Comparison of the AUPRC scores generated by the DNAshapedTFBS-based methods 

with and without DNA shape features. 
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Figure 4.2 Comparison of the AUPRC scores generated by DNAshapedTFBS_4bit + shape with 

other methods. 
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4.4 Discussion 
Our preliminary results indicate that adding DNA shape features does not significantly improve 

the performance of the DNAshapedTFBS-based models, which seems to be different from the 

results in the Mathelier study. However, after analyzing the raw evaluation scores reported by 

Mathelier et al. (github.com/amathelier/DNAshapedTFBS_notebooks), we found that the mean 

AUPRC scores for DNAshapedTFBS_4bit and DNAshapedTFBS_4bit + shape are 0.861 and 

0.867 respectively, with a difference of only 0.006. In addition to the small improvements, the 

incorporation of DNA shape features into motif discovery algorithms may be challenging. First, 

the GBshape database only provides predictions instead of measurements of DNA shape features 

[97]. These predictions are based on Monte Carlo simulations of DNA pentamers and may 

deviate from actual DNA structures [96], which can only be measured using X-ray 

crystallography. Moreover, X-rays can only shed light on the structures of protein–DNA 

complexes and DNA fragments in crystals, but these macromolecules may constantly transition 

from one configuration to another under normal conditions. The flexibility of protein domains 

and DNA may play a role in binding site recognition [117], and it cannot be captured by static 

shape parameters. Second, taking account of DNA shape features significantly increases the 

number of parameters in a binding model, which will increase the cost of training and may result 

in overfitting. For example, it only takes 3k parameters to encode a k bp sequence using 3-bit 

encoding. However, k additional parameters are needed for incorporating each type of DNA 

shape feature. In the Mathelier study, 8 types of DNA shape features were added, thus tripling 

the number of total features in some models. This further increases the complexity of the 

intrinsically non-linear gradient boosting classifiers, which use an ensemble of decision trees for 

classification. 
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The fact that the performance of DiMO_PWM is better than or equal to the non-linear gradient 

boosting classifiers underscores the validity of the assumption that each position in a binding site 

contributes independently to its total binding energy. However, the success of the PWMs does 

not mean that the structure of DNA plays no role in binding site recognition. In fact, there are 

good examples showing that it does [118]. The JASPAR PFMs, DiMO PWMs and 

DNAshapedTFBS_4bit models are all agnostic with respect to the mechanisms of specificity. 

They only describe mathematically how much each base at each position contributes to binding 

affinity (or preference) and cannot infer these parameters from more basic principles of 

chemistry or quantum mechanics. But for the purpose of predicting binding sites, the actual 

mechanism is irrelevant. In this case, it may be advantageous to choose the most efficient model, 

one that optimizes the fit to the data and has minimum complexity, since it is easier to interpret, 

takes less time to train, and is less susceptible to overfitting. 
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Future Plans 
A number of improvements can be made to the BEESEM program. For example, BEESEM 

currently uses all the m bp sequences (m is the motif length) to construct the objective function 

and then searches for the optimal parameters. This is very time-consuming and can be replaced 

with mini-batch gradient descent, in which the true gradient of the overall objective function is 

approximated by the gradient of a series of partial objective functions constructed from mini-

batches of random m bp sequences [119]. The mini-batch method has been shown to improve the 

optimization of deep neural networks. Since the structure of the BEESEM objective function is 

very similar to a neural network, the mini-batch method may also make its optimization 

procedure more efficient. In addition to gains in efficiency, new features can extend the 

applicability of BEESEM. For example, BEESEM currently cannot model gaps within binding 

motifs, although its PWMs may happen to contain a string of low-information positions. If 

BEESEM could model gaps, the user can explicitly specify the location and length of the gap 

based on prior knowledge and BEESEM can use this information to generate more accurate 

motifs in a more efficient fashion. Another feature that can be added to BEESEM is the support 

for ambiguous bases within input sequence reads. Currently any sequence with ambiguous bases 

is filtered out before the sequence reads are fed into BEESEM. Finally, although BEESEM is 

designed to extract motifs from HT-SELEX data, its underlying biophysical model can be 

extended to other types of high-throughput experiments such as PBMs [67]. A generalized 

BEESEM model may also be used to infer the cooperativity between two TFs from CAP-SELEX 

experiments [106], which are similar to HT-SELEX but use two types of TFs in each 

experiment. 
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Appendix A: Biophysical Model of BEESEM 
In this appendix, we give a detailed description of the biophysical model of BEESEM in four 

steps. 

In the first step, we consider the interaction between the TF (denoted by T) and one DNA species 

(denoted by its sequence S). We use S  to represent the reverse complement of S. We assume 

that the DNA binding site of the TF is asymmetrical and the DNA sequence is non-palindromic. 

In this case, the protein–DNA complex may have two configurations, which we refer to as the 

top configuration T S  and the bottom configuration T S  respectively. These two 

configurations need not have the same binding energy, and they correspond to the two possible 

orientations of a non-palindromic DNA molecule in an asymmetrical binding site. We also 

assume the system has reached equilibrium, namely 

 U U ,T S T S T S    (A.1) 

where UX  denotes unbound molecules of X. In equilibrium, binding and unbinding should 

proceed at the same rate. As a result, we can calculate the binding (or association) constants of 

the two configurations [34]: 

 
U U U U

[ ] [ ]
, ,

[ ][ ] [ ][ ]

T S T S
K K

T S T S

 
   (A.2) 

where [X] denotes the concentration of X. We are interested in the proportion of DNA molecules 

that are ‘trapped’ in the top configuration, denoted by ( | )P T S S . In this notation, the second S 

represents any DNA molecule, either bound or unbound. We can prove that 

 
U

( | ) .
1/ [ ]

K
P T S S

K K T
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 
 (A.3) 
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Proof of Equation (A.3): 
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In order to proceed, we need to introduce some definitions [34]: 

 Uln , ln , ln[ ].E K E K T       (A.4) 

E and E  are called the binding energies of the top and bottom configuration, respectively. And μ 

is called the chemical potential of the TF. According to these definitions, we have 

 ( | ) .
E

E E

e
P T S S

e e e 



  
 

 
  (A.5) 

Obviously, there is a similar equation for ( | )P T S S . 

In the second step, we consider a more complex system. In this system, instead of just one DNA 

species, there are n distinct DNA species, denoted by iS , 1,2, ,i n . After the system reaches 

equilibrium, some DNA molecules be bound by the TF. We use B to represent any bound DNA 

molecule, regardless of its actual sequence. It follows from this notation that ( | )iP S B  

represents the proportion of bound DNA molecules that have sequence iS . If iS  is non-

palindromic, we can prove that 

 ( | ) ( | ) ( | ).i i iP S B P T S B P T S B      (A.6) 
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In practice, only ( | )iP S B  can be measured directly, because we cannot distinguish 
iT S  from 

iT S  in a typical experiment. But in terms of developing the model, it is more convenient to 

work with ( | )iP T S B  or ( | )iP T S B  alone. It can be computed in the following way: 

 
( )

( | ) ( | ) .
( )

i
i i i

P S
P T S B P T S S

P B
     (A.7) 

In the above discussions, we implicitly assume that the DNA molecules all have the same length, 

denoted by l. In addition, we assume l m , where m represents the length of actual binding 

sites. In the third step, we still assume that the DNA molecules all have the same length. But we 

relax the second assumption and only assume l m . Also we assume that the DNA binding site 

of the TF is asymmetrical and that the DNA molecules are all non-palindromic. Even if some 

DNA molecules are palindromic, we expect our conclusions to be largely valid. As a result, each 

protein–DNA complex may have 2( 1)l m  , instead of only two, configurations. The factor ‘2’ 

reflects the two possible orientations of a non-palindromic DNA molecule in an asymmetrical 

binding site. To keep track of the different configurations and complexes, we use k

iT S  to 

denote the kth configuration of the ith protein–DNA complex, 1,2, ,2( 1)k l m    and 

1,2, ,i n . In other words, the superscript k indicates where the actual binding site is located 

within sequence iS . Thus k

iS  can also represent the sequence of the binding site, which is an m-

mer. If the system has reached equilibrium, we can prove that 

 
2( 1)
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k
i

q
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E
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q

e
P T S S

e e 


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  (A.8) 

It is a natural generalization of Equation (A.5). In this equation, k

iE  is simply a shorthand for 

( )k

iE T S , the binding energy of configuration k

iT S . In theory, k

iE  is entirely determined by the 
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DNA sequence of k

iS , regardless of its location. Specifically, it is usually assumed that the 

binding energy can be represented by the inner product of a PWM and the encoding vector of a 

DNA sequence. Thus k

iE  can also be written as ( )jE T s , if 
k

i jS s , where 
js  represents the 

DNA sequence of a particular m-mer. The subscript j distinguishes one m-mer from another, and 

it ranges from 1 to 4m  (the total number of single-stranded m-mers). It should be noted that 
iS  

has a length of l, while k

iS  and 
js  both have a length of m. In addition, we can prove a result 

similar to Equation (A.7): 
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( | ) ( | ) .
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k k i
i i i
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P B
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To proceed, we need to introduce an indicator function 
k

ijI , which satisfies the following 

definition: 

 
1, if ,

0, if .

k
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ij k

i j
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  (A.10) 

We use ( | )jP T s B  to represent the proportion of actual binding sites that have sequence 
js , 

namely 

 
2( 1)

1 1
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l mn

k k

j ij i

i k
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In addition, we define a weighting factor 
ijw : 
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  (A.12) 

Then we can prove that 
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Proof of Equation (A.13): 
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Then we introduce a second approach to calculate ( | )jP T s B , which is based on ( | )iP S B  

instead of ( )iP S . ( | )iP S B  again represents the proportion of bound DNA molecules that have 

sequence iS , and it can be measured directly in an experiment. To achieve that goal, we first 

need to reveal the relationship between ( | )k

iP T S B  and ( | )iP S B . According to the definition 

of the conditional probability, it can be proved that 
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Proof of Equation (A.14): 

 

2( 1)

1

2( 1)

1

( | ) ( ) ( )

( | ) ( ) ( )

( )

( )

[ ]

[ ]

[ ]

[ ]

.

k
i

q
i

k k

i i

i i

k

i

i

k

i

i

k

i

l m q

iq

E

l m E

q

P T S B P T S B P B

P S B P B P S B

P T S B

P S B

T S

T S

T S

T S

e

e

 





  



 


 
























  

This equation states the relationship between ( | )k

iP T S B  and ( | )iP S B . And it enables us to 

derive ( | )jP T s B  from ( | )iP S B : 
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  (A.15) 

Proof of Equation (A.15): 
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In the last step, we derive the objective function for estimating the unknown parameters. 

Rearranging Equation (A.13) shows that 
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For simplicity, we use 
jR  to denote the LHS of Equation (A.16), namely 
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Then based on Equation (A.16) it can be proved that 
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Obviously, Equation (A.18) can be rewritten as 
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1 j

j E T s
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R

e
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  (A.19) 

In the equation, A is a scaling factor. Equation (A.19) is at the core of estimating unknown 

parameters, which include the PWM, the chemical potential μ and the scaling factor A. 
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Collectively, they are denoted by θ, the vector of unknown parameters. To estimate the unknown 

parameters, we seek to minimize the sum of squared differences between (data)jR , computed 

using its definition Equation (A.17), and ( )jR  , derived from Equation(A.19). In other words, 

we assume that 

 (data) ( ) ,j j jR R      (A.20) 

where 
j  is i.i.d. Gaussian noise, and the objective function is defined as 

 
2ˆ arg min (data) ( ) .j j

j

R R


       (A.21) 

We choose this objective equation because it can be efficiently evaluated and existing 

optimization tools can be readily applied to it. 
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Appendix B: Proof of BEESEM Being an 

Expectation Maximization Algorithm 
In this section, we show that BEESEM is indeed an EM algorithm. We first introduce some 

notations. 

• x is a vector and ( | )i ix P S B , 1,2, ,i n . x represents the observed data in an 

experiment. 

• Z is a matrix with n rows and 2( 1)l m   columns, where l is the randomized region 

length and m is the motif length. 1ikZ   if k

iS  is a binding site, and 0ikZ   otherwise. Z 

represents the collection of hidden parameters, namely the location of each actual binding 

site. 

• θ denotes the vector of unknown parameters. 

• 
( )ˆ n  and 

( 1)ˆ n 
 represent the vector of estimated parameters in the nth and the ( 1)n th 

round, respectively. 

• ( , | )P x Z  denotes the (joint) conditional probability of x and Z given θ. When viewing it 

as a function of θ, we use ( ; , )L  x Z  instead and call it the likelihood function. 

• ( ; , )l  x Z  represents the natural logarithm of the likelihood function ln ( ; , )L  x Z . 

• ( )ˆ| ,
E nZ x

 is an operator that calculates the expected value of its operand with respect to 

( )ˆ( | , )nP Z x , the conditional probability of Z given x and 
( )ˆ n . 
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The maximum likelihood estimate (MLE) of the unknown parameters can be found by 

maximizing the (marginal) conditional probability of x given θ, namely 

 ˆ arg max ( | ) arg max ( , | ).P P
 

    
Z

x x Z   (B.1) 

However, this optimization is usually very time-consuming, because the number of possible 

values of Z is very large. Instead of solving the optimization directly, the EM algorithm 

maximizes ( | )P x  using an iterative two-step approach [120]. First, it calculates the expected 

value of the log-likelihood with respect to ( )ˆ( | , )nP Z x . This expected value is a function of   

and we denote it by ( )ˆ( ; )nQ   , namely 

 ( )

( ) ( )

ˆ| ,

ˆ ˆ( ; ) E ( ; , ) ( ; , ) ( | , ).n

n nQ l l P


     Z x
Z

x Z x Z Z x   (B.2) 

Second, it updates the MLE by maximizing ( )ˆ( ; )nQ   , namely 

 ( 1) ( )ˆ ˆarg max ( ; ).n nQ


      (B.3) 

This iterative process keeps refining the MLE until it converges. 

To prove BEESEM is an EM algorithm, we only need to prove that 

 ( ) ( )ˆ( ; ) ( ),n nQ f      (B.4) 

where 
( ) ( )nf   is the objective function of BEESEM (see Equation (A.21)). For simplicity, we 

assume    in the following discussions, although similar arguments can be made in more 

general cases. The assumption implies that 1ijw  , for any i or j. Thus according to Equation 

(A.15) and Equation (A.17), we have 
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To proceed, we define a new variable 
jK  that is a function of x and Z: 
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In the definition, the denominator represents the prior sequence count of 
js , and the numerator 

represents the number of actual binding sites that have sequence 
js . Then we assume that the 

conditional probability of x and Z given θ has the following form: 

 

2

2

[ ( )]
( , | ) exp ,

2

j j

j

K R
P






  
  

  
x Z   (B.7) 

where ( )jR   is defined in Equation (A.19) and σ is a constant. Or equivalently, we have 

 
2( ; , ) [ ( )] .j j

j

l K R   x Z   (B.8) 

The above equation implies that 

 ( ) ( )

2

ˆ ˆ| , | ,
E ( ; , ) E [ ( )] .n n j j

j

l K R
 

   Z x Z x
x Z   (B.9) 

To proceed, we make the following assumption: 

 ( ) ( )

2 2
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E [ ( )] [E ( )] .n nj j j j

j j
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 
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  (B.10) 

To compute ( )ˆ| ,
E n jK

Z x
, we need to make use of the fact that 
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Thus according to the definition of 
jK , we have 
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The above equation implies that 

 ( )

2 2

ˆ| ,
[E ( )] [ ( )] .n j j j j

j j

K R R R


    Z x
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As a result, we can finally prove that our objective function is essentially the same as ( )ˆ( ; )nQ   . 

In fact, their difference is only a negative scaling factor. Thus BEESEM is indeed an EM 

algorithm. 
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