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ABSTRACT OF THE THESIS 

Preschool Executive Function Predicts Childhood Resting State Functional Connectivity and 

ADHD and Depression 

by 

Elizabeth Hawkey 

Master of Arts in Psychological and Brian Sciences 

Washington University in St. Louis, 2017 

Professor Deanna Barch, Chair 

Background: Measures of executive function (EF), such as the Behavior Rating Inventory of 

Executive Function, distinguish children with Attention-Deficit/Hyperactivity Disorder (ADHD) 

from control children, but less work has examined relationships to depression or brain network 

organization. This study examined whether early childhood EF predicted a new onset or 

worsening of ADHD and/or depression, and examined how early childhood EF related to 

functional connectivity of brain networks at school age. Methods: Participants were 247 children, 

enrolled at ages 3-6, from a prospective study of emotion development. The BRIEF Global 

Executive Composite (BRIEF-GEC) was used as the measure of EF in early childhood to predict 

subsequent ADHD and depression diagnoses and symptoms across school age. Resting state 

fMRI network analyses examined global efficiency in the frontal-parietal, cingulo-opercular, 

salience, and default mode networks and six ‘hub’ seed regions selected to examine seed-based 

connectivity. Results: Early childhood BRIEF-GEC predicted worsening and new onsets of 

ADHD and depression across school age. Increasing EF deficits predicted increased global 

efficiency in the salience network and altered connectivity with four regions for the dorsal 

anterior cingulate hub and one region with the insula hub. This altered connectivity was related 
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to increasing ADHD and depression symptoms.  Conclusions: Early executive deficits may be an 

early common liability for risk of developing ADHD and/or depression and were associated with 

altered functional connectivity in networks and hub regions relevant to executive processes. 

Future work could help clarify whether the same subtypes of EF deficits are implicated in the 

development of both disorders. 

 

Key Words:  

Executive Function; Attention-Deficit/Hyperactivity Disorder (ADHD); Depression; Behavior 

Rating Inventory of Executive Function (BRIEF); Resting State Functional Connectivity, fMRI 
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Introduction 

Executive function (EF) deficits in young children may be an important marker for later 

development of mental disorders such as Attention-deficit/hyperactivity disorder (ADHD) or 

Major Depressive Disorder (MDD). EF involves the ability to regulate cognitive resources in 

order to engage in goal-directed behavior, especially in novel situations where more automatized 

responses are not feasible (1). Previous research provides mixed evidence on whether 

performance-based neuropsychological tasks that measure the cognitive processes of EF predict 

ADHD or depression (2). Despite the known limitations of parent report of child behavior, strong 

relationships between parent rating scales of EF and clinical outcomes have been shown with 

measures such as the Behavior Rating Inventory of Executive Function (BRIEF) (3). In children, 

the type of self-regulatory deficits assessed by the BRIEF may be related to disorders such as 

ADHD and depression as early as preschool. The BRIEF has been identified as a useful tool for 

assessing EF deficits in ADHD (4, 5) and has been shown to differentiate ADHD sub-types (6). 

However, less work has focused on the relationship between EF and mood disorders in young 

children, despite evidence of cognitive deficits in depression, which involve aspects of EF, and 

high rates of co-morbidity of ADHD and MDD (7–9). Research has frequently focused on 

commonalities between ADHD, other externalizing disorders, and anxiety, while less work has 

examined cognitive and neuroimaging correlates across ADHD and MDD. Thus, the goal of the 

current study was to examine whether parent-rated EF deficits in early childhood predicted new 

onsets or worsening of either ADHD and/or MDD at later developmental time points and to 

examine functional brain connectivity correlates of early childhood EF deficits.  
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EF begins to develop in early toddlerhood with important advances in the preschool 

period (10) and continued skill building through early adulthood. EF is theorized to consist of 

both common factors that contribute to performance on a range of tasks, as well as dissociable 

components. In individuals diagnosed with ADHD, EF has been shown to be developmentally 

delayed (11–13), with impairments consistently found in the inhibition, working memory, and 

set-shifting cognitive domains. Such EF impairments may contribute to a number of symptoms 

of ADHD, including difficulty with attention, distraction and the ability to complete goal-

directed tasks. The presence of EF deficits across a range of domains suggests that clinically it 

may be useful to focus on EF deficits as a meta-construct, or an aggregate across specific EF 

domains. Further, while EF deficits occur during the early developmental stages of ADHD for 

many individuals, to our knowledge there have been no studies that have examined the 

prospective predictive utility of early childhood EF measured by the BRIEF and ADHD 

outcomes. Therefore, it remains unclear if EF deficits precede the development of ADHD and 

other disorders, and whether they might be an early risk for the development of a later diagnosis 

(13). 

EF deficits are not unique to ADHD, and have been observed in depression (14, 15). 

Impairments in attention and concentration are common in depression, and may relate to 

underlying EF deficits. These deficits likely contribute to challenges disengaging attention to 

negative emotional salient information and subsequent emotion regulation (16). While some 

associations between EF and depression have been shown in adults (17–19), fewer studies have 

focused on early childhood. EF deficits in preschool-aged children, as measured by the BRIEF, 

have been previously associated with depression and anxiety in later childhood (20). Children 

experiencing depression often have symptoms of inattention and increased irritability (21), 
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suggesting that ADHD and depression may share some overlapping diagnostic features in early 

childhood. Comorbidity is also common, occurring in approximately 20-30% of child and 

adolescent cases (8, 9, 22). As such, EF deficits that may be shared across ADHD and depression 

deserve further exploration, as they may be a common liability for assessing risk of later 

development of both disorders (13, 19). 

Understanding how early EF deficits relate to neural network organization in childhood 

could help clarify the pathway by which EF deficits may be related to ADHD and/or depression, 

particularly if common alterations in connectivity are found. To examine network organization, 

we assessed established functional brain networks (23–25), which are considered to be relatively 

adult-like by age two (26). Of particular interest were the cingulo-opercular (CON) and fronto-

parietal (FPN) networks, thought to be involved in top-down control processes that support goal 

directed behavior (27). We were also interested in the default mode network (DMN), which 

shows suppression in activation during novel and demanding tasks (28, 29). Lastly, we were 

interested in the salience network (SAL), thought to be important for mediating responses to 

important internal or external signals, and switching between DMN and FPN networks (30).   

We used a graph theory approach to understand network organization in relation to EF 

deficits assessed by the BRIEF. Graph theory quantifies complex networks of information and 

generates metrics that can be used to describe the functional connections between brain regions 

(31). To examine the strength of the connections among regions within our networks of interest, 

we examined global efficiency, thought to represent the functional integration of a given 

network. In addition, we examined specific “hub” regions within these networks to assess 

connectivity between networks. Hub regions are highly-connected brain regions thought to 

integrate information across multiple distinct networks that are thought to be particularly 
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vulnerable to disease states (34, 35). Previous work has illustrated the importance of flexible 

hubs for EF and adaptive task control (32, 33), and disruptions of hub connectivity have been 

associated with cognitive dysfunction, including EF deficits (36).  

Normative developmental maturation of brain networks has been shown to be disrupted 

in disorders such as ADHD, particularly in the organization of the frontal-parietal and cingulo-

opercular networks (37, 38). There has also been some work on the relationship between 

neuropsychological tasks that assess EF and resting-state functional connectivity in children.  For 

example, Marek et al. (2015) (25), found that integration of a cingulo-opercular/salience network 

predicted performance on a task thought to measure aspects of EF. Additionally, previous work 

has shown atypical connectivity of the DMN in children with preschool onset depression (39). 

However, to our knowledge, no studies have examined the relationship between parent reported 

EF in early childhood, connectivity profiles, and later ADHD and/or MDD at school age.  

Given the research reviewed above, we predicted that preschool-aged children with EF 

deficits who had never been diagnosed with ADHD or MDD would exhibit increasing MDD and 

ADHD symptoms across development and would be more likely to meet diagnostic criteria at 

school age. We expected early childhood EF deficits would show some specificity to later 

ADHD and MDD, and would not predict the development of any future disorder. In addition, we 

hypothesized that children with EF deficits would exhibit altered functional connectivity in 

specific networks and hubs associated with executive control at school age. A limited number of 

networks and hubs involved in aspects of EF were selected a priori to maintain a hypothesis-

driven approach and limit corrections for multiple comparisons. Specifically, we expected early 

childhood EF to be associated with reduced global network efficiency in the FPN, CON, and 

SAL networks, increased global efficiency in the DMN, and altered functional connectivity 
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patterns with hub regions selected a priori in the SAL/CON and FPN networks.  Lastly, we 

predicted that the altered connectivity associated with early childhood EF would also be 

associated with ADHD and/or MDD symptoms across school age. 

Methods and Materials 

Study Sample: The full sample included 247 children, ages 3-6 at time of recruitment, 

from a longitudinal study of emotion development that oversampled for preschool depression. 

Families were recruited through community child care sites and primary care clinics using a 

caregiver completed screening checklist, The Preschool Feelings Checklist (PFC) (40). Detailed 

recruitment methods, exclusion criteria, and participant details have been described previously 

(21). Children and primary caregivers participated in 1-7 waves of behavioral assessments. A 

subset of these children participated in a longitudinal imaging component, completing up to three 

waves of resting state scans. Only the first scan was included in this study, as this was the most 

proximal scan to the early childhood BRIEF. This imaging sample included 83 children who 

were 6-12 years old at the time of their first scan (see Table 1). 

Measures: The BRIEF, an 86 item, well-validated rating scale, was completed by the 

primary caregiver as a measure of childhood EF (3). The BRIEF includes eight clinical scales 

designed to assess subdomains of EF which form an overall score, the Global Executive 

Composite (GEC) t-score, where higher scores are more clinically significant EF impairments. 

The BRIEF-GEC was used as an overall marker of early EF in this study. The BRIEF was first 

collected at the second wave of behavioral assessments, when the children were between ages 4 

and 7, and a combination of the BRIEF and the preschool version (BRIEF-P) (41), was used 

based on the child’s age (cut-off is age 5 for BRIEF-P), herein referred to as the early childhood 



 
 

6 

BRIEF. Diagnoses of psychopathology were generated at each annual visit using age appropriate 

psychiatric interviews (Preschool Age Psychiatric Assessment (PAPA): age 3-7 (42), Child and 

Adolescent Psychiatric Assessment (CAPA): age 8 and up (43). Symptom counts for ADHD and 

MDD at each annual visit were averaged after the early childhood BRIEF visit and used as the 

outcome variable in dimensional analyses. Diagnostic status across all annual visits after the 

early childhood BRIEF visit was generated as the outcome variable in categorical analyses. 

Data Analysis for Clinical Variables:  We conducted a series of regressions in R Studio 

v0.99.465 to address our hypotheses. Multivariate linear regression was used to examine whether 

early EF deficits predicted increased MDD and ADHD symptoms measured dimensionally 

across time, over and above symptom levels assessed in preschool. Binomial logistic regression 

was used to examine whether early EF deficits predicted a diagnosis of MDD or ADHD over 

time to assess new onsets in undiagnosed preschoolers. Age, sex, and socioeconomic status were 

used as control variables. Specificity analyses were completed using the same methods for 

anxiety, conduct disorder (CD), and oppositional defiant disorder (ODD) to determine whether 

the BRIEF was a non-specific predictor of broader psychopathology. Further, since ADHD and 

MDD symptoms are known to be correlated, we were interested in whether the BRIEF predicted 

either ADHD or MDD because of their association with each other. To test this, cumulative 

average symptom scores for ADHD and MDD were added to the regression model of the other 

disorder to test whether comorbidity accounted for the variance explained. 

Imaging Methods: A subset of children were scanned on a Siemens 3.0-T Tim Trio and 

completed up to three annual waves. The scanning protocol included two T1 structural scans and 

two resting state fmri (rsfMRI) scans (~6.8 mins, TR=2.5, 4mm3 voxels, 164 frames).  Standard 

preprocessing methods, including global signal regression, were used to reduce motion artifact 
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and other confounds (see supplement for details). Children who completed scan 1 were included 

in this study if there were at least 110 frames remaining after motion scrubbing (FD 0.2mm). To 

further control for potential individual differences in movement, each subject’s average pre-scrub 

FD was included as a covariate in imaging analyses. 

Network Analyses: To examine the strength of the connections among regions in 

particular networks we used the graph theory metric global efficiency, which represents the 

average inverse shortest path length of all node pairs in a network, and is thought to represent a 

network’s functional integration. Efficiency metrics were calculated at 1-10% tie-density 

thresholds, preserving the strongest 1-10% of correlations, in 1% increments. Although there is 

no “correct” threshold (23), we tested an average of the top 1-5% and 6-10% of the strongest 

correlations. Global efficiency in our four a priori networks in relation to EF was examined using 

multivariate linear regression in R Studio v0.99.465 and Bonferroni multiple comparison 

corrections were performed. 

Seed Based Analyses: Six ‘hub’ like seeds were selected based on high participation 

coefficients and previous association with executive function from the list of nodes in the Power 

264 set (23). Three seeds were selected in the CON/SAL network in the right and left insula, and 

the dorsal anterior cingulate. Two seeds were selected in the Dorsal Attention network in the 

middle frontal gyrus and precuneus. The final seed was in the middle frontal gyrus of the FPN 

(see supplement Table S1 for coordinates). These seeds were used to create functional 

connectivity seed maps for each child of the correlations between each of these seeds and all the 

other voxels in the CON/SAL and FPN networks. Linear regression using an in-house software 

(FIDL analysis package, http://www.nil.wustl.edu/labs/fidl/index.html) was used to examine 

whether early childhood EF impairments were related to variation in connectivity between the 
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hub regions and any voxels in the CON or FPN networks. To reduce the search space, a mask 

was applied for only these two networks, both thought to be involved in top-down control (27). 

Spherical ROIs were drawn around coordinates published by Power et al. (23), for the CON and 

FPN networks to create this mask. Significance thresholds were set using AFNIs 3dclustsim 

(Version AFNI_16.2.09) at p=.005, z=2.83, and 27 contiguous voxels for a whole-brain false 

positive rate of 0.05.  

To further explore the interrelationships between early childhood EF, functional 

connectivity, and ADHD/MDD symptoms, we conducted Pearson product-moment correlations 

between ADHD/MDD symptoms and the global efficiency and hub connectivity metrics 

predicted by BRIEF-GEC.  

Results 

ADHD and EF: Dimensional: Multivariate linear regression showed that early childhood 

BRIEF-GEC predicted increased cumulative ADHD symptoms across the study over and above 

current ADHD symptoms (Figure 1a), controlling for age, gender, IQ, and SES at the early 

childhood BRIEF visit [β=0.18, 95% CI (0.06, 0.07), p=.003]. Since ADHD and MDD 

symptoms are known to be correlated, and were strongly correlated in this sample (r=.65, n=260, 

p<.001), cumulative MDD symptoms were added to the final model, and the results remained 

significant (p=.006). Categorical: Utilizing logistic regression to examine diagnostic outcomes in 

children who did not have a diagnosis of ADHD, early childhood BRIEF-GEC predicted new 

onsets of categorical ADHD diagnoses at school age [Odds ratio=1.05, 95% CI (1.020, 1.086), 

p=.001], when controlling for current ADHD symptoms, the aforementioned control variables 

(p=.02), and MDD symptoms (p=.04).  
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MDD and EF: Dimensional: Multivariate linear regression showed that early childhood 

BRIEF-GEC predicted increased cumulative MDD symptoms across the study over and above 

current MDD symptoms (see Table 1b), controlling for age, gender, IQ, and SES at the early 

childhood BRIEF visit [β=0.02, 95% CI (0.01, 0.03), p<.001]. These results remained significant 

(p=.03), when including cumulative ADHD symptoms. Categorical: Logistic regression showed 

that the early childhood BRIEF-GEC also predicted a new onset of a categorical MDD diagnosis 

at school age in children who did not meet criteria for MDD, [Odds ratio=1.05, 95% CI (1.03, 

1.08), p<.001], when controlling for current MDD symptoms and the aforementioned control 

variables (p=.037), but did not remain significant when controlling for ADHD symptoms 

(p=.60).  

To further examine diagnostic specificity, binomial logistic regression analyses were 

conducted examining ODD, CD, and anxiety as outcomes. Although some basic models were 

significant, none remained significant when control variables were added (see supplemental 

Table S2). In addition, since a few children included in the sample had estimated IQ scores 

below 80 (11 subjects) or were taking psychotropic medications during testing visits (8 subjects), 

all behavioral analyses were run again with those subjects removed as a follow-up analysis and 

all results remained significant. 

Network Analyses: Higher early childhood BRIEF scores, indicating worse EF, 

predicted increased global efficiency in the salience network at an average threshold of 1-5% 

[β=0.003, t(81)=3.36, p=.001, η2=.003]. This result remained significant when controlling for 

age, gender, and average FD at the time of scan 1 (p=.002), and when correcting for multiple 

comparisons using the Bonferroni adjusted alpha level of .0125 (.05/4). However, global 
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efficiency was not significantly associated with early childhood BRIEF in any other a priori 

networks. 

Hub Based Analyses: As shown in Figure 2, early childhood BRIEF-GEC significantly 

predicted connectivity with four regions for the left dACC hub seed region. Worse (higher) early 

childhood BRIEF-GEC scores predicted stronger positive connectivity between the dACC and 

bilateral anterior insula. Higher BRIEF-GEC scores also predicted stronger negative connectivity 

between the dACC and DLPFC, as well as the posterior precuneus. In addition, higher early 

childhood BRIEF-GEC scores predicted stronger negative connectivity between the insula hub 

seed region and a superior parietal region (Figure 3).  

Seed region distributions were graphed as density and scatter plots to visualize the patterns of the 

results. All children showed positive connectivity between the dACC seed and the bilateral 

anterior insula regions (Figure 2). When these distributions were binned by quartiles, children in 

each quartile exhibited connectivity between these regions that was significantly greater than 

zero (see Figure S1, A and B), regardless of their level of EF deficits on the BRIEF, though the 

magnitude of this positive connectivity was higher in children with greater EF deficits. However, 

for the dACC seed and regions in the DLPFC, and posterior precuneus (Figure S1, C and D), 

some children showed positive connectivity and some showed negative connectivity. All 

quartiles were significantly different from zero except for the 3rd quartile of the dACC to the 

posterior precuneus (p=.78).  Thus, children with greater EF deficits showed significant negative 

connectivity between the dACC and both DLPFC and posterior precuneus, while children with 

minimal EF deficits showed significant positive connectivity. 
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Next, we asked whether global efficiency and hub connectivity metrics predicted by early 

childhood BRIEF scores were also correlated with ADHD and/or MDD symptoms through 

school age.  As shown in Table 2, both ADHD and MDD symptoms were significantly 

correlated with almost all hub metrics predicted by the early childhood BRIEF, but not SAL GE. 

Interestingly, all metrics correlated with ADHD remained significant when controlling for MDD 

symptoms (ps<.05), except for the dACC to right insula. However, none of the correlations with 

MDD remained significant when controlling for ADHD symptoms.  

Discussion  

In this study, early childhood EF deficits predicted increased cumulative ADHD and 

depressive symptoms across childhood, over and above symptoms at baseline, age, gender, IQ, 

and SES. The robustness of this correlation suggests that EF is predicting some unique variance 

of later symptoms of ADHD and MDD independently. Examining categorical diagnoses, we 

found that children with EF deficits who did not meet baseline diagnostic criteria for ADHD in 

early childhood were more likely to be diagnosed with ADHD in later childhood, even when 

controlling for cumulative MDD symptoms. We found a similar result for MDD, though this 

result did not remain significant when controlling for cumulative ADHD symptoms. Thus, 

dimensional symptoms of depression showed greater evidence of prediction by early childhood 

BRIEF independent of ADHD than did categorical diagnoses of MDD. These results suggest that 

early EF deficits may be a common liability for the later development of ADHD and/or MDD 

symptoms. Further, these robust relationships were not found for ODD, CD, or anxiety in this 

sample, indicating that early EF deficits did not just indiscriminately predict later 

psychopathology.  
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This work complements and extends previous research with children and adolescents 

implicating the predictive power of EF deficits in early childhood for two later childhood 

disorders. Previous research on EF deficits in adult ADHD suggests that cognitive processing 

deficits may be a risk factor for depression (14), and it is plausible that the distress caused by 

difficulty implementing goal-directed behavior may represent a risk factor as well. Research has 

also shown that difficulty shifting attention away from negative emotional stimuli, which may  

partially reflect EF deficits, might contribute to the risk of developing depression (17, 44). 

Therefore, early childhood EF deficits could be an important precursor in the development of 

ADHD and/or MDD. As such, it is important to understand how these behavioral measures of EF 

relate to alterations in functional connectivity and whether these factors are linked in this risk 

trajectory between early EF and later ADHD and depression. 

In this sample, EF deficits predicted increased global efficiency in the salience network. 

The direction of this finding was somewhat unexpected, as we had predicted better EF to be 

associated with increased global efficiency, since the salience network is thought to be involved 

in guiding the ability to switch between tasks and regulate attentional fluctuations. The lack of 

association between EF and global efficiency in the FPN, CON, and DMN may reflect the need 

to examine more specific aspects of EF in relation to these networks because the BRIEF-GEC 

provides more a global index from a parent perspective. Alternatively, examination of these 

networks across later developmental time points may reveal increased evidence for relationships. 

Analyses of seed regions shown to be “hubs” in previous work were conducted to 

examine connectivity across networks. We found that EF deficits predicted stronger positive 

connectivity between the dACC and bilateral anterior insula, and stronger negative connectivity 

between the dACC and DLPFC, and the posterior precuneus. The dACC is thought to be 
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important for both the CON and SAL networks. The stronger connectivity of the dACC with the 

insula may be related to increased activity in these regions when people experience conflict and 

errors, which is thought to help signal the need for increased cognitive control (45, 46). If 

children with greater EF deficits are more likely to make errors and experience conflict in 

cognitive processing, it is possible that this could lead to greater activation and integration of 

these regions over time. Additionally, we found reduced connectivity between the dACC and 

both the DLPFC and the precuneus in children with greater EF deficits.  As noted above, one 

hypothesis is that greater activity in the dACC is thought to signal the need for greater cognitive 

control, which is thought to be supported by the DLPFC and the FPN network.  As such, the 

reduced connectivity between the dACC and DLPFC in children with greater EF deficits may 

indicate a disruption in the ability to communicate between networks in a way that can 

effectively enhance EF. Further, the reduced connectivity of the dACC to the precuneus, a part of 

the DMN, might be related to difficulty balancing between task positive and task negative 

networks, a role that has been attributed to the description of the dACC in the context of the SAL 

network (47).  

ADHD and MDD symptoms were also significantly correlated with most hub metrics 

predicted by the early childhood BRIEF, although ADHD symptoms were more robustly 

correlated and remained significant when controlling for depression. This supported previous 

research which showed that altered connectivity within highly connected hub regions is 

associated with psychopathology (48). Additional work has shown that hubs are integration 

zones of the human brain that are metabolically costly and particularly vulnerable to disease (34, 

36), potentially making altered connectivity in these regions particularly important in individuals 

at greater risk for developing psychopathology.  
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  Several limitations should be noted when considering the results of the current study. 

Children were oversampled for symptoms of depression during initial recruitment, which may 

make this sample less generalizable. Despite this, it is notable that findings remained significant 

when controlling for depressive symptoms in analyses. In addition, we did not have scan data at 

the time of early childhood BRIEF, nor did we have BRIEF scores at the time of the first two 

scans. This raises a temporal limitation of our imaging analyses. Future work should examine the 

links between EF, hub connectivity and network efficiency utilizing longitudinal designs to help 

clarify the temporal evolution of EF and brain network integration. Finally, since we did not 

have direct performance based measures of EF, future studies should examine the relationship 

between performance-based measures and parent-rated EF to help clarify the role specific 

cognitive processes play in the onset of ADHD and/or MDD symptoms. 

The current findings highlight the importance of early EF in the developmental trajectory 

of both ADHD and MDD. Early childhood EF deficits, as indexed by the BRIEF-GEC, predicted 

the emergence and worsening of both ADHD and depression symptoms, and were associated 

with altered functional connectivity in key regions known to be associated with cognitive 

control. These results suggest that the BRIEF could serve as a behaviorally relevant index of EF 

that is relatively easy to collect in clinical settings. Critically, research has shown that EF 

interventions are effective (49), making the early identification of EF deficits essential for the 

development and course of these disorders throughout childhood. 
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Tables and Figures  

Table 1. Participant Characteristics 

Participants Time of BRIEF Scan 1 

N 247 83 

Age (mean/SD) 5.42 (0.8) 10.08 (1.3) 

Gender (female/male) 119/128 40/43 

Ethnicity (%Caucasian/African American) 59%/28% 59%/29% 

IQ estimate (mean/SD) 105 (14.8) 106 (14.9) 
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Table 2. Correlations of Connectivity Metrics and ADHD and MDD Symptoms  

  
BRIEF- 
GECa 

Average 
ADHD 
Symptoms 

Average 
MDD 
Symptoms 

dacc seed to insula (R) Correlation .46** .24* .26** 

(+39, +14, -1) Sig. 0.000 0.015 0.009 

dacc seed to dlpfc Correlation -.43** -.22* -.30** 

(-39, +0, +29) Sig. 0.000 0.026 0.004 

dacc seed to insula (L) Correlation .42** 0.17 .27** 

(-41, +15, +3) Sig.  0.000 0.064 0.008 

dacc seed to precuneus Correlation -.44** -.27** -.32** 

(-28, -64, +40) Sig.  0.000 0.007 0.002 

insula seed to sup. parietal Correlation -.53** -.35** -.41** 

(-28, -63, +44) Sig.  0.000 0.001 0.000 

Salience Network Correlation .35** 0.05 0.13 

Global Efficiency: K1to5 Sig.  0.001 0.334 0.124 

BRIEF-GEC Correlation 1.000** .48** .56** 

 Sig.  0.000 0.000 0.000 

**. Correlation is significant at the 0.01 level (1-tailed). 
*. Correlation is significant at the 0.05 level (1-tailed). 
a. All N=81 
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Figure 1. Dimensional Symptom Regressions 
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Figure 2. Resting State Functional Connectivity of the dACC Seed Region and Its Relationship to Executive Function 
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Figure 3. Resting State Functional Connectivity of the Insula Seed Region and Its Relationship to Executive Function 
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Figure Captions 

Figure 1. Dimensional Symptom Regressions 

A) Linear regression showing early childhood BRIEF-GEC predicted average school age ADHD symptoms (model 1 and scatter plot). 

Results remained significant when control variables were included. B) Similar results were found with average school age MDD 

symptoms.  

 

Figure 2. Resting State Functional Connectivity dACC Seed Region and Its Relationship to Executive Function 

A) Region in green is the dACC seed region (-1, 25, 30) showing increased positive connectivity between the dACC and bilateral 

anterior insula regions (orange) and increased negative connectivity between the dACC and DLPFC and posterior precuneus regions 

(blue). Seed region distributions were graphed as density (B) and scatter (C) plots to visualize the results. 

 

Figure 3. Resting State Functional Connectivity of Insula Seed Region and Its Relationship to Executive Function 

A) Region in green is the insula seed region (-34, 16, 3) showing increased negative connectivity between the insula and a superior 

parietal region (blue). Seed region distributions were graphed as density (B) and scatter (C) plots to visualize the results
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Supplemental Information  

Additional Behavioral Analyses 

To further examine diagnostic specificity, binomial logistic regression analyses were conducted 

on the full sample using generalized anxiety disorder, conduct disorder and oppositional defiant 

disorder as outcomes. Although basic models without the covariates were significant, none 

remained significant when controlling for current symptom counts of each disorder, age, gender, 

IQ, and SES at the time of the early childhood BRIEF (see Table S2), indicating that early 

childhood EF deficits showed some diagnostic specificity to ADHD and MDD and was not just a 

broad predictor of any later psychopathology. 

Imaging Acquisition 

Scans were performed using a 3.0 Tesla TIM TRIO Siemens whole-body scanner with a 

12-channel head coil. Quality assurance measures included having subjects practice in an MRI 

simulator, giving real-time feedback on subject head motion during structural scans, and 

recollection of data if necessary. Structural data were obtained using two 3D T1-weighted scans 

(TR 2,300 ms, TE 3.16 ms, TI 1,200 ms, flip angle 8°, 160 slices, 256 x 256 matrix, field of view 

256 mm, 1.0 mm3 voxels, 6.18 min per scan) in the sagittal plane using magnetization-prepared 

rapid gradient echo (MPRAGE) sequence. The two MPRAGE scans were assessed visually, and 

the best one selected for further processing by blind raters. The selected MPRAGE for each scan 

wave was processed using the longitudinal stream in FreeSurfer v5.3.1  Two rsfMRI scans were 

obtained during the same session using the TRIO scanner with T2*-weighted spin-echo echo-

planar sequence (TR 2,500 ms, TE 27 ms, flip angle 90°, 36 slices, field of view 256 mm, 4 mm 

X 4 mm X 4 mm voxels, approx. 6.8 min per scan, 164 frames) in the axial plane. Subjects were 

instructed to remain awake and rest with their eyes closed during the resting state scan. To 
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facilitate registration between structural T1 and functional scans, a T2 image was acquired in the 

same space as the functional scans (TR 2,500 ms, TE 96 ms, flip angle, 36 slices, field of view 

256 mm, 1 x 1 x 3 mm voxels). 

Functional Connectivity Processing 

Processing of the rsfMRI scans involved (1) correcting for slice-dependent time shifts, 

(2) removing the first five images from each run, allowing for the BOLD signal to reach steady 

state, (3) eliminating odd/even slice intensity differences due to interpolated acquisition, (4) 

realignment of data acquired from each subject within and across runs to compensate for rigid 

body motion, (5) intensity normalization to a whole-brain mode value of 1,000, (6) Registration 

of the 3D structural volume (T1) to the atlas representative template in the Talairach coordinate 

system 5 using a 12-parameter affine transform and resampling to a 1mm cubic representation,6 

(7) co-registration of the 3D fMRI volume to the participant’s T2 image, and the T2 image to the 

participant’s T1 structural image and (8) transformation of the fMRI image to a 3 mm x 3 mm x 

3 mm voxel atlas space using a single affine 12-parameter transform. 

Further preprocessing steps were performed using in-house software written in Matlab 

(Mathworks, Natick, MA). Nuisance variables, including ventricle, whole-brain, and deep white 

matter signal (defined using FreeSurfer segmentation), as well as six head realignment 

parameters and their first derivatives, were regressed from the BOLD data. A temporal bandpass 

filter was applied (0.009 Hz < f < 0.08 Hz), and spatial smoothing was applied using a 6-mm 

full-width half-maximum Gaussian filter. Average global signal and its derivate were regressed 

out, based upon evidence that this reduces motion and signal artifacts.7-10 Frames with excess 

head motion artifact were censored based on frame-wise displacement (FD),9 calculated by the 

sum of the absolute values of the six linear and rotational head displacement values from 
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realignment parameters. Volumes with frame-wise displacement greater than 0.2 were censored 

and scan runs with less than 40 frames after censoring and participants with less than 110 frames 

after censoring were excluded from analyses. Lastly, the initial rs-fcMRI processing was 

reapplied to the raw data interpolating over the censored frames.9 Application of these quality 

assurance approaches results in usable rsfMRI data available for N = 123, 143, and 130 

respectively across the three scan waves. 
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Supplemental Tables and Figures 

 
Table S1. Details of Selected Hub Regions Used as Seeds in Connectivity Analyses. 
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Table S2. Diagnostic Specificity Analyses. 

N B SE p
BRIEF-GEC 247 0.040 0.010 <0.001
BRIEF-GEC (T3_INT_SX) 240 0.015 0.011 0.184
BRIEF-GEC (T3_INT_SX, sex, age, IQ, SES) 223 0.013 0.012 0.294

N B SE p
BRIEF-GEC 247 0.051 0.011 <0.001
BRIEF-GEC (T3_EXT_SX) 240 0.000 0.016 0.998
BRIEF-GEC (T3_EXT_SX, sex, age, IQ, SES) 223 -0.008 0.017 0.624

N B SE p
BRIEF-GEC 247 0.065 0.011 <0.001
BRIEF-GEC (T3_EXT_SX) 240 0.027 0.014 0.045
BRIEF-GEC (T3_EXT_SX, sex, age, IQ, SES) 223 0.034 0.014 0.02

ODD Diagnosis (Categorical at any time point)

ANXIETY Diagnosis (Categorical at any time point)

CONDUCT Diagnosis (Categorical at any time point)
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Figure Captions 

Figure S1. dACC Seed Region Density Plots 

Dorsal anterior cingulate (dACC) seed region denisty plots binned by quartiles. A) dACC seed to 

left anterior insula. B) dACC seed to left anterior insula. C) dACC seed to posterior precuneus. 

D) dACC to dorsolateral prefrontal cortex. 
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Figure S1. dACC Seed Region Density Plots 
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