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The immune system plays an essential role in protecting the host organisms against both 

foreign invaders and self-attacks arisen within the host, such as tumors. Instead of promoting the 

long-term fitness of the organism, the immune system is often suppressed or hijacked by tumor 

cells to accelerate the progression of malignancies. Among the key drivers of immune 

suppression, macrophages are one of the most abundant immune cells present in tumor tissues. 

High levels of macrophage infiltration in the malignant tissues correlate with negative patient 

outcome in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), one of 

the most lethal malignancies in human beings. Therefore, attempts have been directed towards 

targeting tumor-associated macrophages (TAMs) to improve the efficacy of cancer treatment.   

We attempted to target TAM responses in murine PDAC models through inhibiting the 

colony stimulating factor-1 receptor (CSF1R) signaling pathway. CSF1R signal blockade not 

only depleted half of the TAMs within the tumor microenvironment, but also functionally 

reprogrammed the remaining TAM compartment to support anti-tumor T cell responses. More 
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importantly, CSF1R signal blockade sensitized the tumors to T cell checkpoint-based 

immunotherapies, which failed to achieve clinical efficacy as monotherapies. These findings 

revealed the potential benefits of targeting TAMs to improve treatment of PDAC patients.   

However, TAM-targeting strategies have limitations. Optimal TAM-based therapeutic 

intervention requires in-depth understanding of the sources that supply macrophages to 

malignant tissues. Towards that end, we investigated the ontogeny of TAMs in murine PDAC 

models, and identified both inflammatory monocytes and tissue-resident macrophages as sources 

of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originate during 

embryonic development at the yolk sac stage. These cells undergo significant local expansion 

through in situ proliferation during tumor progression. While monocyte-derived TAMs play 

more potent roles in tumor antigen presentation, embryonically derived TAMs exhibit pro-

fibrotic transcriptional profiles and ex vivo fibrotic activities, indicative of their role in producing 

and remodeling extracellular matrix molecules. Collectively, these findings uncovered the 

heterogeneity of TAM origin and functions, and could provide insights into therapeutically 

targeting different TAM subsets based on the different pathological features of the PDAC 

microenvironment.  
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Chapter 1: Introduction 

1.1 Overview of Pancreatic Cancer 

1.1.1 Pancreas and Pancreatic Cancer 

Pancreas, named after the Greek words pan (all) and kreas (flesh), is a multi-modular 

glandular organ that lies in the retroperitoneal position of the abdomen behind the stomach. It is 

composed of exocrine glands and endocrine glands tightly organized together. Through these 

glands, pancreas functions as a critical component of both the digestive system and the endocrine 

system.  

The pancreas predominantly consists of exocrine glands that play a central role in the 

conversion of consumed foodstuff into “usable fuels” for cells in the body. These exocrine 

glands accomplish their functions through the secretion of digestive enzymes and bicarbonate 

ions into the duodenum of the gastrointestinal tract. The key components of the exocrine 

pancreas are acinar cells and duct cells. The acinus, named after the Latin term meaning “berry 

in a cluster”, are specialized in synthesizing, storing, and secreting digestive enzymes. The major 

types of pancreatic enzymes are proteolytic enzymes (involved in protein digestion), pancreatic 

amylase and chitinase (involved in carbohydarate digestion), and pancreatic lipase (involved in 

fat digestion). The three principal types of proteolytic enzymes are trypsinogen, 

chymotrypsinogen, and procarboxypeptide. These enzymes are stored in granules in inactive 

forms, known as zymogens, in the apical region of acinar cells. The apical surface of the cells 

also line up as microvilli, within which a filamentous actin network is organized to mediate the 

exocytosis of zymogen granules. Hormones and neurotransmitters that mediate the stimulation of 

enzyme secretion are mediated through receptors located in the basolateral membranes of these 
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cells. As the zymogens get secreted into the duodenum under hormonal regulation, they are 

cleaved into active forms through a cascade of proteolytic events initiated by enzymes secreted 

by cells lining the luminal border of the duodenum mucosa. Duct cells, on the other hand, are the 

main producers of bicarbonate ions. These ions are secreted to the duodenum to neutralize the 

acidity of chyme. This process creates a neutral or alkaline environment that is not only optimal 

for pancreatic enzymatic functions, but also minimizes acidic damages to duodenum mucosa.    

On the other hand, the endocrine gland of the pancreas tightly regulates the digestive 

procedures by secreting hormones to control blood sugar levels. The major components are 

clusters of endocrine cells known as the islets of Langerhans, which are dispersed throughout the 

pancreas between the exocrine cells. Beta cells are the most abundant components of the islets of 

Langerhans, whose function is to produce and secrete insulin that regulates the blood glucose 

level. In addition, alpha cells, delta cells, PP cells are also integral part of the endocrine pancreas; 

these cells produce glucagon, somastatin, and pancreatic polypeptide respectively.  

Given the importance of the pancreas in both the exocrine and the endocrine system, 

disorders in this organ can have significant impacts on the fitness of an entire organism. 

Common diseases in the pancreas include pancreatitis, type 1 diabetes mellitus, and pancreatic 

cancer. Pancreatitis is inflammation of the pancreas, which comes in acute or chronic forms. 

Type 1 diabetes mellitus results from the destruction of beta cells in the pancreas islets of 

Langerhans that leads to compromised abilities to produce insulin in response to high blood 

sugar levels. Pancreatic cancers are malignant tumors that arise within the organ. A small subset 

of pancreatic cancer arises from the pancreatic islet cells. These cancers are called pancreatic 

neuroendocrine tumors (PNETs) and account for 5% of pancreatic cancer cases. PNETs produce 

excessive amount of hormones, such as insulin, glucogan, and gastrin, which disrupt systemic 
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homeostasis. The vast majority of pancreatic cancers arise within the exocrine portion of the 

organ. These tumors are called pancreatic ductal adenocarcinoma (PDAC). 

PDAC leads to a series of disruptions to organismal homeostasis. As a consequence of 

the destruction of acinar cells, the normal release of digestive enzymes is compromised. This 

leads to incomplete digestion of consumed molecules, malabsorption, diarrhea, and increased 

intestinal infections, among other consequences. Subgroups of patients develop uneven textures 

of fatty issue under the skin, due to the release of pancreatic enzymes that digest fat. Tumors in 

exocrine pancreas can also cause destruction or dysfunction of beta cells, leading to abnormal 

insulin secretion. Patients could experience irregular changes in blood sugar levels, or diabetes in 

some cases. Among all the abnormalities, liver dysfunction is most frequently observed. This 

often results from the obstruction of the bile duct by the tumor, which frequently localizes to the 

head of the pancreas close to the bile duct. Normally, the liver secretes bilirubin as part of the 

bile liquid, and bile goes through the bile duct into the intestine. As tumors block the bile duct, 

excessive amount of bilirubin builds up in the liver, causing liver dysfunction. In addition, liver 

is the most common site of metastasis. Presence of tumor cells in the liver will alter the tissue 

function. Moreover, increasing amount of evidence in mouse models suggests that before the 

dissemination of tumor cells, pre-metastatic livers undergo tissue remodeling and inflammation, 

which may well likely disrupt their functions.    

PDAC is one the most lethal forms of solid cancers. Five-year survival rate of PDAC 

patients between 2006 and 2012 is 7.7% (https://seer.cancer.gov/). As a point of reference, the 5-

year survival rate for breast cancer, prostate cancer, colorectal cancer, and skin melanoma 

patients are 89.7%, 98.9%, 65.1%, and 91.5% respectively. The median survival of pancreatic 

cancer patients is less than 6 months. Pancreatic cancer is the 4th most common cause of cancer-
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related death, despite being the 12th most type of cancer in the United States. The dismal 

prognosis of pancreatic cancers is partially due to its late diagnosis, as the majority of pancreatic 

cancer patients have already developed metastasis at the time of diagnosis. Only 9% of patients 

demonstrate a confinement of the tumor at the primary site. An additional 29% of patients have 

cancers spread to regional lymph nodes. Even for the 9% patients with local diseases, the 5-year 

survival rate is only 29.3%, which contrasts with 98.8% in localized breast cancer patients.  

Currently established treatment protocols do not confer significant clinical benefits in 

PDAC treatment. Treatment options are very limited. Surgical resection is applicable only in 

patients with local diseases. Traditional chemotherapies and radiation therapies are not effective 

in restraining tumor progression. Importantly, development of new treatment regimens has been 

very slow and relatively ineffective in comparison to other tumors. For example, the death rate 

for colorectal cancer patients was dropping by 2.7% annually between the years of 2004 and 

2013, which is reflective of improved efficacies in targeted therapeutics; the rates for new 

colorectal cases have been dropping by 3.2% annually in the past decade as well. In comparison, 

the rates for new pancreatic cancer cases have been rising by 0.6% each year; five-year survival 

rate has been fluctuating between 3% and 7% since 1975 without significant improvement, all of 

which reflect a lack of improvement in treatment strategies. Newer treatment options, such as 

immune checkpoint-based therapies in particular, do not improve patient outcomes as 

monotherapies. In comparison, checkpoint immunotherapies demonstrated impressive response 

rates in many types of cancer, including metastatic diseases. Development of treatment strategies 

is desperately needed for PDAC patients, which requires in-depth understanding of pancreatic 

cancer biology.  
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PDAC is driven by mutations altering genetic programs that govern cellular activities. 

Oncogenic mutation in Kras is a signature of PDAC genetics, and is present in 90-95% of the 

patients. Kras is also the earliest detected mutations found in preneoplastic lesions, such as 

pancreatic intraepithelial neoplasia (PanINs). Tumor suppressor genes are also very frequently 

mutated, including p16/CDKN2A, p53, and SMAD4, whose functions are lost in approximately 

90%, 75%, and 55% of cancers, respectively. Initial genetic abnormalities include not only 

oncogenic mutations, but also shortening of chromosomal ends, i.e. telomeres. Epigenetic 

regulation is also severely disrupted. Collectively, these cell autonomous aberrations lead to the 

transformation of PDAC cell of origin, causing disease to initiate and progress.  

PDAC is believed to arise from a series of non-invasive precursor lesions. These include 

pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), 

and mucinous cyctic neoplasm (MCN). The risk of patients with these lesions to develop 

pancreatic cancer is increased by more than 20-fold (Hruban et al., 2007). PanINs are the most 

common among these lesions. They harbor many of the same genetic mutations found in PDAC, 

even within the same patients. This adds strengths to the hypothesis that PDAC arises within 

these pre-neoplastic lesions.  

The precise nature of cellular origin of PDAC is still under debate. PDAC obtained its 

name due to the ductal-like morphological features of the neoplastic cells. However, induction of 

oncogenic mutations in mature pancreatic ductal epithelial cells does not efficiently induce 

tumorigenesis. Instead, acinar cells are dramatically more prone to Kras-induced transformation 

(Kopp et al., 2012), suggesting the possibility that the cell of origin for PDAC may be acinar 

cells instead. Indeed, one of the early events during tumorigenesis in genetic mouse models is 

acinar-to-ductal metaplasia (ADM), an event where acinar cells change their identity to ductal 
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epithelial cells (Schmid, 2002). ADM is commonly observed in PanIN lesions, further 

suggesting the possibility that acinar cells may be the tumor-initiating cells. In addition to acinar 

cells and ductal epithelial cells, it also remains to be seen if there are pancreatic stem or 

progenitor cells in adults that could be the “tumor-initiating cells” for PDAC. Understanding the 

properties of cell of origin could help addressing sell-autonomous mechanisms by which PDAC 

evades cancer surveillance and therapeutic targeting. 

Genetic mutations not only drive a series of cellular activities that govern proliferation, 

metabolism, and invasiveness, but also alter the way the cells shape their tissue 

microenvironment to promote tumor progression through non-sell-autonomous mechanisms. 

This will be discussed in the following sections. 

 

1.1.2 Cancer and Cancer Microenvironment 

Cancers are characterized by uncontrolled growth of transformed cells with genetic 

mutations. While encompassing a wide range of diseases covering almost all mammalian organs, 

cancers share some common features that help us understand the biology of these diseases. They 

acquire several biological traits that confer advantages of tumor cells at the expense of host 

fitness; these traits include self-sufficiency in growth signals, insensitivity to growth inhibition, 

resistance to programmed cell death, and unlimited replication potential.  

First, cancer cells are self sufficient in growth signals. Normal cells require exogenous 

growth factors in order to exit a quiescent state and enter active proliferation. Such signals are 

transduced usually through transmembrane receptors, which trigger downstream signaling 

pathways that promote cell division. This way, cell division is orchestrated within a larger tissue 

context that enables optimal organ functions by meeting various cellular needs within different 
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tissue components. However, cancers generate their own growth signals independently of the 

extracellular milieu. Their altered oncogenic program takes over the proliferative system, usually 

making cells constitutively cycling, thereby reducing their dependence of stimulation from the 

external microenvironment. 

On the other hand, multiple inhibitory signals are usually able to maintain tissue 

homeostasis by inhibiting cell proliferation within normal tissues. These signals could block the 

potential of the cells to proliferate, or force cells out of active division cycles back into quiescent 

states. Cancer cells can often disrupt the elements that mediate these negative regulatory 

pathways. This mechanism, coupled with growth signal autonomy, contributes to the hyper-

proliferative features of neoplastic cells.  

Fundamentally, tumor growth is the net result of cell production and cell loss. Abilities to 

proliferate autonomously and to evade growth inhibition are not sufficient to drive tumor growth, 

because higher rates of cell death can also compromise the ability of the cancer cell population to 

expand. Programmed cell death, or apoptosis, is essential to the homeostasis of most 

multicellular organisms due to its importance in eliminating unnecessary or harmful cells and 

cellular debris. Normal cells have sensors to detect apoptosis-inducing signals, either from 

intracellular molecules that indicate irreversible cellular damages, or from extracellular sources. 

However, cancer cells often develop strategies that render them resistant to programmed cell 

death, which is a hallmark of most types of tumors. They become resistant to apoptosis through 

several mechanisms, such as upregulating pro-survival effector molecules, downregulating 

“death receptors” that can engage apoptosis signals, and inhibiting the production or activities of 

pro-apoptotic effector molecules, such as caspases.  
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Moreover, cancer cells have limitless replication potential. Normal cells have limited life 

span, i.e. they could undergo a finite number of cell division cycles before entering a crisis state 

and undergo senescence. This phenomenon is termed “Hayflick limit”. Genetic mutations within 

cancer cells often allow them to evade the Hayflick limit. Under homeostatic conditions, normal 

cells undergo senescence often due to the shortening of telomeres, regions of repetitive 

nucleotides at the end of a chromosome. Cancer cells often utilize alternative programs to 

replicate their chromosome ends, such as upregulating telomerase that promotes telomere 

lengthening, which could dramatically or indefinitely delay the occurrence of senescence.  

While a lot of initial attention in cancer research was directed towards the transformed 

cells themselves, in the past decade or so it has become well appreciated that tumors are not 

malignant cells growing in isolation. Instead, cancer cells are embedded within a very complex 

organ system that is composed of a wide range of cellular and non-cellular components. 

Fibroblasts, blood vessels, neurons, and immune cells are examples of key cellular components 

of the tumor microenvironment.  

Fibroblasts are essential stromal components of the tumor microenvironment. One of the 

major functions of fibroblasts is to produce, deposit, and remodel the extracellular matrix (ECM), 

which in normal tissues ensures the integrity of the organ system. While cancer-associated 

fibroblasts (CAFs) carry out the same functions as their normal fibroblast counterparts, their 

activities are severely disrupted. Tumor cells recruit fibroblasts, promote fibroblast proliferation, 

and induce an activated myofibroblast phenotype. Activated fibroblasts in tumors could produce 

ECM molecules in an unrestrained fashion, therefore laying out excessive amount of ECM that 

leads to tissue fibrosis. The growth of fibrous part of the tissue, or desmoplasia, was originally 

considered to a protective mechanism by encapsulating, constraining, or even rejecting the tumor. 
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However, accumulating amount of evidence suggests a strong correlation between desmoplasia, 

tumor progression, and poor patient outcome. Excessive amount of ECM in the tissue activates 

cancer cell proliferation, suppresses apoptosis, and promotes the invasion and metastasis of 

tumor cells. Fibrosis also increases interstitial pressure and leads to poor tumor vascularization. 

These altogether lead to hypoxia and pose a barrier to effective therapy delivery. In parallel to 

ECM remodeling, CAFs can secrete a large amount of inflammatory cytokines that can further 

modulate the local environment through the recruitment of immune cells and modulation of 

tumor vasculature. 

Blood vessels are also abundant in many kinds of tumor tissues. Despite their self-

sufficiency in growth signals, tumor cells still require oxygen and nutrients to sustain their 

metabolic activities. As tumors reach the size of a few millimeters in diameter, tumors would 

experience low oxygen tension, known as hypoxia, and nutrient deprivation. To meet their 

metabolic needs, tumor cells would trigger vasculature generation and remodeling, a series of 

events collectively called “angiogenesis”. In addition to hypoxia, other events during tumor 

expansion, such as the buildup of extracellular matrix and inflammation, are also able to trigger 

angiogenesis. These players in the tumor stroma could trigger sprouting/branching of pre-

existing blood vessels by promoting the protrusion of a selected endothelial cell. Alternatively, 

endothelial progenitor cells could be recruited from the circulation system to the tumor site, 

differentiate to new endothelial cells that line up blood vessels; this process is called 

“vasculogenesis”. Moreover, a subset of cancer cells could differentiate and adopt an endothelial 

cell-like phenotype and form bona fide blood vessels. Tumor cells can also line up blood vessels 

by mimicking, rather than differentiating into, endothelial cells. Tumor neo-vasculature is often 

morphologically and functionally distinct from normal vasculature. They appear disorganized 
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and tortuous. They are more leaky than normal blood vessels. Endothelial cells can demonstrate 

abnormal cell morphologies, such as aneuploidy, multiple chromosomes, and multi-centrosomes. 

The generation and remodeling of vasculature in the tumor not only allows the transport of 

oxygen and nutrients, but also produces or allows the supply of growth factors that further 

enhance tumor cell proliferation. 

Nerves are also important components of the tumor stroma. Cancer cells can attract 

nearby nerves through the secretion of axon guiding molecules, thereby increasing the number 

and extensions of axons. Such process is called “axonogenesis”, which is very similar to 

angiogenesis. Adrenergic signals from sympathetic nerve cells can directly stimulate cancer cells, 

rendering resistance to apoptosis, promoting invasive potential and migratory capacity. Neural 

activation of tumor cells can also lead to increased secretion of angiogenesis promoting 

cytokines. Cholinergic signals from parasympathetic nerve cells have also been shown to 

promote “cancer stem cell” properties. In addition, the nervous system can also act on other 

stromal components in the tumor, including vasculature and immune cells.  

It is important to note that reorganization or disruption of the tissue microenvironment 

not only is a consequence of tumor development, but also occurs prior to malignant 

transformation and contributes to tumorigenesis. For example, while tumor cells secrete a wide 

range of inflammatory cytokines to recruit immune infiltration, chronic inflammation during 

premalignant stages can cause cell damages and facilitates tumorigenesis. Similarly, while tumor 

cells activate fibroblasts to promote fibrosis and inflammation, aberrant fibroblast activation can 

secrete factors that promote inflammation and facilitate cancer cell transformation. In addition, 

human beings that have chronic depression or have suffered traumatic life events are more likely 

to develop cancers, which suggests the possibility that neural deregulation may promote cancer 
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transformation. Indeed, adrenergic signaling in tumor stroma was shown to be essential for 

tumor initiation in murine transplantation models.  

Taken together, tumors are malignant cells with aberrantly regulated proliferative 

programs that reside within a complex tissue microenvironment. Cancer cells remodel various 

aspects of the tissue environment, which in turn facilitate tumor progression. This dissertation is 

focused on understanding how tumors, in particular pancreatic ductal adenocarcinoma (PDAC), 

interact with the immune components of the stroma.  

 

1.2 Overview of the Immune System 

1.2.1 Overview of the Innate Immune System 

The immune system plays an essential role in both defending organisms against pathogen 

invasion and protecting against abnormalities that rise within the host. It is a tightly regulated 

system composed of several lines of defense.  

Anatomical barriers form the first line of defense that includes the skin, tears, and mucus. 

These are the initial sites of encounter as pathogens attempt to enter the body. Physical, 

biological, and chemical components exist in these sites to maintain barrier integrative in order 

to minimize the penetrance of pathogens into host organisms. For example, epidermal cells in the 

skin form a waterproof and airtight keratinized layer that is impermeable to most foreign 

organisms. Sweat glands in the skin also secrete bactericidal peptides such as dermicin to kill 

microbes. Cells in sebaceous glands also produce oily substances such as sebum to cover hair 

and the keratinized layer, preventing the cracking and drying of the barrier. Similarly, in other 

barriers, such as the digestive tract and the respiratory system, different components also 

function to deter ingested or inhaled pathogens. 
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External barriers are not perfect. As pathogens pass through and penetrate into the host 

organisms, innate immune system constitutes the second line of defense. The major functions of 

the innate immune cells are to (1) quickly recognize, contain, inactivate, and eliminate invaders, 

(2) remove debris, and (3) prepare the body for subsequent events that bring the organisms back 

to homeostatic conditions. Innate immunity can be further classified into cellular immune 

responses and humoral immunity, which are immune responses mediated by macromolecules 

present in the humors, or body fluid.  

The major cellular components of the innate immunity are phagocytic cells, including 

macrophages, neutrophils, and dendritic cells. They recognize foreign materials by binding to 

pattern-associated molecular patterns (PAMP), which are molecules associated with pathogens 

but not host cells. Examples of PAMPs include lipopolysaccharides, double-stranded RNA, and 

unmethylated CpG motifs, all of which signal to the phagocytes the presence of “non-self”. In 

addition, phagocytes can detect pathogens by sensing damage-associated molecular patterns 

(DAMP), which are host molecules expressed or released during inflammatory responses. 

Examples of DAMPs include heat shock proteins, extracellular matrix (ECM) proteins, DNA, 

and ATP, which signal cellular damages or cell death caused by infectious or non-infectious 

inflammation. PAMPs and DAMPs are recognized by pattern recognition receptors (PRRs), 

whose engagement on phagocytes lead to the activation of these cells. Upon activation, 

phagocytes could engulf pathogens or pathogen-infected cells, and subsequently eliminate 

pathogens through several mechanisms. For example, phagocytes would increase oxygen 

consumption upon phagocytosis, causing a respiratory burst, which produces reactive oxygen 

species that could effectively kill the microbes. Alternatively, phagocytes could eliminate 

pathogens through lysozymes, proteases, lactoferrins, among others, to destroy the key 
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components of the microbes. In addition, phagocytes could release chemicals such as nitric oxide 

to eliminate microbes in adjacent locations. Moreover, certain types of phagocytes, such as 

macrophages and dendritic cells, could transport specific fragments of the engulfed antigens to 

their cell surface, and present these molecules to lymphocytes, a key component of the adaptive 

immune system that could initiate specific defense reactions against pathogens of interest.   

In addition to phagocytosis, certain innate immune cells could kill pathogens through 

other mechanisms. A class of innate immune cells called granulocytes (such as neutrophils, 

eosinophils, and basophils) and mast cells could undergo a process called degranulation, during 

which antimicrobial and cytotoxic molecules, such as myeloperoxidase, cathepsins, and 

histamines, are released to the extracellular space to combat infection. Neutrophils are also 

known for their abilities to secrete neutrophil extracellular traps (NETs), fibers composed of 

chromatin and proteases, that participate in the trapping and killing pathogens.  

A third kind of innate immune cells are natural killer (NK) cells. Instead of directly 

killing the invading pathogens, NK cells target a type of infected cells that lack major 

histocompatibility complex (MHC) I, whose expression on the cell surface labels the cell as 

“self”. NK cells kill by (1) natural killing, (2) antibody-dependent cellular cytotoxicity, (3) 

redirected lysis, and (4) lectin facilitated killing. They can also produce cytokines to amplify the 

immune responses by recruiting and/or activating other leukocytes. 

In addition, a recently discovered class of immune cells, called innate lymphoid cells 

(ILCs), also constitute another key cellular component of the innate immune system (Klose and 

Artis, 2016). Unlike many other innate immune cells, ILCs lack pattern recognition receptors 

(Robinette et al., 2015). Instead, they sense cytokines and inflammatory mediators secreted by 

parenchymal cells or myeloid cells. Upon engagement, ILCs promote immune responses by 
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secreting soluble factors, such as classic T helper cytokines including IFNγ and TNF for type 1 

ILCs (ILC1s), IL-5, IL-9, and IL-13 for ILC2s, and IL-17, IL-22, and GM-CSF for ILC3s. In 

addition, some previously unknown “ILC-specific” effector molecules are also secreted, such as 

amphiregulin (Monticelli et al., 2011; Robinette et al., 2015) and methionine-enkaphalin 

(Brestoff et al., 2015), which mediate epithelial cell repair and adipocyte beiging respectively. 

In addition to the cellular components discussed above, the complement system is also a 

key component of innate immunity that, together with B lymphocytes of the adaptive immunity, 

forms the humoral immune system (Dunkelberger and Song, 2010). It is composed of more than 

30 proteins circulating in the plasma that initiate a sequence of events on the surface of the 

pathogen to help eliminate the infection. The complement system can be engaged either upon 

identification of pathogen surface molecules, such as certain polysaccharides, or upon 

recognition of antibodies that bind to the pathogen surface. Upon activation, protein components 

will initiate a cascade of proteolytic cascades that eventually lead to the production of active 

opsonin and assembly of membrane attack complexes (MACs). Opsonins coat the pathogen 

surface, allowing either the phagocytosis of pathogens or membrane permeabilization by MACs 

that kill the invading bacteria. During the proteolytic events, a series of proinflammatory 

mediators are produced, leading to the amplification of immune responses by recruiting other 

effector cells.   

Collectively, phagocytes, granulocytes, natural killer cells, and innate lymphoid cells 

altogether build up the cellular arm of the innate immune system. These innate immune cells, 

along with humoral components such as the complement system, initiate immediate responses 

against invading pathogens in order to maintain the fitness of host organisms.  
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The innate immune system is evolutionarily conserved from vertebrate animals to plants. 

It relies on germline-encoded receptors to recognize microbes bearing conserved surface 

molecules that are shared by many organisms. Therefore, the innate immune system does not 

require an extended phase to initiate responses and could elicit rapid responses to combat 

pathogens. However, the range of pathogens that can be recognized by the innate immune system 

is limited, due to the restricted diversity of recognition machinery. Moreover, the efficiency of 

the innate immune system to eliminate recognized pathogens is constrained because microbial 

organisms could evolve more rapidly than the infected hosts and develop strategies to evade 

these defense mechanisms. For example, many bacteria adopted strategies that allow them to 

hide pattern recognition molecules from being recognized by the immune system. To address the 

limitations of the innate immune system, vertebrates developed the adaptive immunity with 

higher levels of specificity and diversity.  

 

1.2.2 Overview of the Adaptive Immune Responses 

Similar to the innate immune system, the adaptive immune system is also composed of 

both cellular and humoral immunity. The major components of the cellular arm of adaptive 

immunity are T lymphocytes, whereas B lymphocytes are the central players of the humoral 

immune system. “T” designates “thymus”, named so based on the observation that T cells 

undergo the maturation process in the thymus. “B” stands for “bursa of Fabricius”, the site of B 

cells production in birds. Mammals do not have the organs equivalent of bursa of Fabricius; 

instead, B cells in mammals are produced in the bone marrow.  

Unlike innate immune cells that can recognize a wide range of molecules commonly 

expressed by multiple pathogens, T and B lymphocytes recognize epitopes that are usually 
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unique to specific antigens. Both types of lymphocytes rely on their unique membrane receptors, 

termed T cell receptors (TCRs) and B cell receptors (BCRs) in the respective cell types, for this 

recognition. T cell receptors in most T cells are heterodimers of two chains designated alpha (α) 

and beta (β). Though a small fraction of T cells express TCR composed of gamma (γ) and delta 

(δ) chains. B cells express BCRs that are composed of cell surface-bound antibodies and signal 

transduction moieties. Each antibody is a Y-shaped molecule consisting of two identical 

polypeptide heavy chains and two identical light chains. Each heavy chain or light chain contains 

constant regions and variable regions. To generate TCRs and BCRs, a series of genetic 

recombination, known as V(D)J recombination, occurs in developing T cells and B cells 

respectively. The process involves somatic recombination events that occur at the locus of TCR 

genes and immunoglobulin genes, generating highly diverse products of TCRs and 

immunoglobulins that specifically recognize certain unique amino acid sequences. Therefore, 

both T and B cell responses are highly antigen-specific, which is one of the hallmarks of the 

adaptive immune system.  

T cells are present in several categories and accomplish their defense responses through 

different mechanisms. Broadly speaking, T cells can be classified into effector T cells, regulatory 

T cells, and memory T cells. Effector T cells are activated cells that are relatively short-lived. 

These cells are responsible for eliminating pathogens upon activation by the innate immune 

responses. Memory T cells do not immediately become active, even though they are usually 

produced at the same time as effector T cells. Instead, they are long-lived, persist after the 

resolution of inflammation, and could mount quicker immune responses upon secondary 

exposure to the same antigen. On the other hand, the role of regulatory T cells (Tregs) is to 

modulate and prevent excessive immune responses. Tregs ensure the balance between effective 
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immunity that damages the invaders and immunopathology that damages the host, keeping other 

immune cells at bay so that effectors do not cause unnecessary tissue damages as they control or 

eliminate infections.  

T cells activation is a tightly regulated process that requires multiple signals integrated 

together. First signal is initiated when TCRs recognize pathogen-specific peptides that are 

presented by MHC molecules on antigen presenting cells. It is important to note that T cells do 

not recognize free-floating antigens, but can only recognize peptide-MHC (pMHC) complex. 

This TCR-pMHC binding requires co-receptors that include at least CD3 along with either CD4 

or CD8. In addition, T cell activation requires a second “co-stimulatory” signal, without which T 

cells would be rendered “anergic”, or non-functional, by TCR-pMHC engagement alone. One of 

the best-characterized co-stimulatory molecules on T cells is CD28, which binds to CD80 or 

CD86 on antigen presenting cells and then triggers downstream signaling pathways to enable T 

cell expansion and differentiation. To ensure a proper T cell differentiation program that caters to 

the need of the pathogenic challenge, a third signal is triggered by inflammatory cytokines within 

the local environment. The cytokine milieu not only has a key influence on the kind of T cells 

being produced, but also determines if the first two signals lead to tolerance, effector T cell 

activities, or immune memory. The three signals are highly integrated to ensure proper T cell 

activation. 

Effector T cells are predominantly composed of cytotoxic T cells and helper T cells. 

While other less abundant populations, including natural killer T cells, gamma delta T cells, and 

mucosal associated invariant T cells, are also subclasses of effector T cells. Cytotoxic T cells 

express CD8 molecules on their cell surface; they are activated by antigen presenting cells that 
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present antigens on surface MHC class I molecules (MHCI). Helper T cells express CD4 on their 

surface and are activated by peptides on MHC class II molecules (MHCII).  

Cytotoxic T cells, or CD8+ T cells, kill pathogen-infected cells mainly through two 

mechanisms. When confronting infected cells, CD8+ T cells can release a series of cytotoxic 

granules including perforin, granzymes, and granulysin. Perforin and granulysin could form 

pores on the target cells, allowing granzymes, a family of serine proteases, to enter and initiate a 

cascade of apoptotic events.  CD8+ T cells can also upregulate Fas ligand upon encounter with 

and recognition of infected cells. Fas ligand can bind to Fas molecule of the target cells and 

initiate receptor-mediated extrinsic apoptosis pathways.  

T helper cells, or CD4+ T cells, do not directly kill pathogen-infected cells. Instead, their 

functions are mainly carried out through the release of cytokines that help the activities of other 

immune cells. These include mediating class switching in B cells, activating cytotoxic T cells, 

and modulating phagocytosis in macrophages. The type of cytokine milieu has a direct influence 

on what type of T helper cells are generated during CD4 activation, and different types of CD4+ 

T cells are able to produce different kinds of cytokines to respond to the challenges brought forth 

by various pathogens. The major classes of T helper cells are Th1 and Th2 cells. Th1 cells are 

mainly responsible for combatting against intracellular bacteria and protozoa. They are activated 

by IL-12 and IL-2 that trigger downstream signaling that converge to transcription factors 

STAT4 and T-bet. Th1 cells predominantly produce IFN-γ, which triggers macrophage 

phagocytosis and activates iNOS to produce bactericidal radicals. Th1 cells are also potent at 

activating CD8+ T cells to produce cytotoxic molecules to kill compromised cells. Th2 cells are 

responsible for defending against extracellular parasites, including helminthes. They are 

activated by IL-4, through STAT6 and GATA3, and produce IL-4, IL-5, IL-9, and IL-13 as 
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effector cytokines. These effectors activate eosinophils, basophils, and mast cells to attack 

parasites. IL-4 also stimulates B cell to produce immunoglobulin E (IgE) that further stimulates 

mast cells to produce inflammatory mediators. IL-4 also acts in an autocrine fashion to enhance 

Th2 responses. Th2 cells can also produce IL-10 that suppresses Th1 differentiation. In addition 

to Th1 and Th2 cells that make up the majority of the CD4+ effector T cell populations, there are 

also other T helper cell types. Th17 cells play a role in clearing extracellular bacteria and fungi 

mostly at the skin and mucosal surfaces. Th22 cells are involved in wound healing responses in 

the skin by acting on keratinocytes, myofibroblasts, and epithelial cells. Folicular helper T cells 

(TFH) regulate the development of antigen-specific B cells in secondary lymphoid organs. There 

are also other less well-established helper T cells, such as Th9 cells, which may constitute their 

own distinct lineages. 

Responses by effector T cells are tightly regulated to ensure that the system could 

discriminate between self and non-self and that the adaptive immune responses do not overshoot 

to cause autoimmunity. Regulatory T cells, or Tregs, play a critical role in regulating effector T 

cell activities. These cells are characterized by high level of IL-2 receptor and glucocorticoid-

induced TNFR family related gene (GITR) on their surface, and unique expression of the 

transcription factor FoxP3. Tregs regulate or suppress effector T cells (and potentially other 

immune cells) through several possible mechanisms. First, Tregs have high levels of IL-2 receptor 

expression on their cell surface, which could serve as a reservoir that deprives the other T cells of 

this activating cytokine. In addition, Tregs are potent producers of transforming growth factor 

beta (TGFβ) and IL-10, which could either suppress the abilities of antigen presenting cells to 

activate effector T cells or downregulate T cell effector activities. Cell-cell contact-based 

mechanisms could also mediate Treg-based immune suppression.  
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In addition to effector T cells and regulatory T cells, a third class of T cells constitute 

memory T cells, which are long lived T cells generated during primary immune responses and 

respond to cognate antigens during secondary encounters. Memory is the second hallmark of the 

adaptive immune system.  

The principal function of B cells is to generate antibodies against soluble antigens. Unlike 

T cells that can only recognize peptides presented on MHC molecule, antibodies can recognize 

free-floating antigens. Antibody functions are several fold: first, antibodies can block and 

neutralize parts of the pathogen surface, rending the pathogen incapable of effective attacks. 

Second, antibodies can perform agglutination, a process in which invading cells are glued into 

clumps that are processed for phagocytosis. Similarly, antibodies can precipitate serum-soluble 

antigens out of solution, rendering them recognizable by phagocyte. In addition, antibodies that 

bind to foreign microbes can activate the complement system, allowing the formation of 

membrane attack complexes that lead to the lysis of the invaders. In a similar process, antibody-

bound pathogen can also be recognized by cellular immune components, such as NK cells.  

Like T cells, B cells are activated by several signals. First signal comes when BCRs bind 

to antigens. B cells then endocytose the antigen along with BCR, process the antigen that is then 

presented onto surface MHCII molecules, which subsequently act as antigen presenting cells and 

interact with cognate CD4+ T cells. These T cells would then provide the second signal to B 

cells for further activation. Upon activation, B cells would proliferate and form germinal centers 

in secondary lymphoid organs. In the germinal centers, activated B cells would differentiate into 

antibody-secreting plasma cells and memory B cells. Similar to the T cell counterpart, plasma 

cells would serve as immune effectors and carry out their functions by secreting antibodies, 

while memory B cells would persist for future infections.  
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In conclusion, T and B lymphocytes constitute the cellular and humoral aspects of the 

adaptive immune system. With unique features of antigen specificity and memory, adaptive 

immunity cooperates with innate immune players to form a tightly regulated defense system. 

This system not only plays a key role in defending the host organisms against foreign pathogens, 

but also protects the organisms against attacks arisen within the “self”. Cancer is a classical 

example of such self-attacks. 

 

1.2.3 Immune Responses in Cancer 

The presence of immune cells in cancer was observed a long time ago, with the earliest 

known report by Rudolf Virchow in the 19th century. Ever since, the immune system was 

postulated to play a role in protecting organisms against malignant diseases. In the last two 

decades, these postulations were corroborated by experimental evidence in mouse models, as 

mice deficient in various aspects of the immune system are more prone to develop carcinogen- or 

oncogene-induced tumors or even spontaneous tumors. These pieces of evidence led to the 

generation of the “immune surveillance” theory, which proposes the protective role of the 

immune system. Indeed, mice deficient in the generation of functional T and B lymphocytes 

have higher chances of developing tumors upon induction (Shankaran et al., 2001). This is 

exacerbated when natural killer cells are also depleted, suggesting the involvement of innate 

immunity in cancer surveillance (O'Sullivan et al., 2012). Deficiencies of certain molecules in 

myeloid cells, as exemplified in CD80 and CD86 double knockout mice that lack co-stimulatory 

signals, are also more susceptible to carcinogen-induced sarcoma development (Loser et al., 

2005), which further illustrates an integrated defense mechanism that involves interactions 

between innate and adaptive immune components. Cytokines likely play an important role 
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during this coordination, especially type I cytokines. Mice lack interferons (Dunn et al., 2005; 

Kaplan et al., 1998), interferon receptors (Kaplan et al., 1998), and certain type 1 interleukins, 

such as interleukin (IL)-12 and IL-23 (Langowski et al., 2006; Liu et al., 2004), are all prone to 

tumorigenesis. While being supported by a large number of mouse studies, the surveillance 

theory adopts a one-dimensional and static view of the role of the immune system. Later 

evidence suggested that the interactions between cancer and the immune system are rather 

dynamic. Therefore, a newer “immune editing” theory was developed, which adds the dimension 

that the immune system also sculpts the tumors. The immunoediting process is composed of 

three distinct phases: elimination, equilibrium, and escape. The elimination phase is evidenced 

by the experimental approaches that corroborate the “surveillance” mechanisms. Equilibrium 

phase occurs when the immune system fails to eliminate cancer cells but is able to suppress their 

outgrowth. This phase was mostly inferred from clinical observations, but later supported by a 

number of experimental animal models. The first piece of evidence came from a lose dose 

carcinogen treatment, where the majority of the mice do not develop tumors. However, if T cells 

were depleted after a prolonged tumor-free period after carcinogen treatment, mice would 

develop malignant diseases (Koebel et al., 2007). This suggests the capabilities of the immune 

system to suppress the outgrowth of tumor cells for an extended period of time. This equilibrium 

regulates both the primary tumor development and the occurrence of metastasis (Eyles et al., 

2010). Unlike the elimination phase, in which both the innate and adaptive immune systems are 

important, equilibrium seems to rely mostly on adaptive immunity, which likely contains tumor 

cells in an antigen-specific manner. As tumors exit the equilibrium phase, they would escape 

immune regulation. Cancer patients present diseases that are in the “escape” phase.  
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Tumors escape immune attacks through both the suppression of anti-tumor immunity and 

the augmentation of pro-tumor immune responses. To negatively suppress inhibition by the 

immune system, tumor cells can suppress dendritic cell activities through the secretion of a series 

of cytokines and factors, such as adenosine (Novitskiy et al., 2008) and prostaglandin E2 (Lee et 

al., 2002). They can also evolve strategies that evade the recognition or phagocytosis by 

dendritic cells or macrophages. For example, multiple types of tumors have upregulated level of 

CD47, a molecule that delivers “do-not-eat-me” signals to phagocytes. These disruptions in 

myeloid cell activities lead to the prevention of antigen processing. As a consequence, antigen 

presentation becomes compromised in secondary lymphoid tissues. Therefore, anti-tumor T cells 

do not become activated or traffic to the tumor site. Even when confronting the activated and 

infiltrated T cells, tumor cells also have strategies to avoid attacks. They could downregulate 

MHCI molecules on their cell surface or alter their own antigen presentation machinery, both of 

which help hiding tumor antigens from T cell recognition. They can suppress lymphocyte 

activities through paracrine mechanisms, such as the upregulation of PD-L1 or shedding of 

NKG2D ligands, which renders anergy and suppress T cell/NK cell effector functions (Nausch 

and Cerwenka, 2008).  

On the other hand, tumors often augment the myeloid compartment and the inhibitory 

arm of the adaptive immune system to allow immune escape. One of the hallmarks of many 

types of cancers is the extensive infiltration of immune cells. These include cells from both the 

myeloid lineage (such as macrophages, neutrophils, immature dendritic cells (DCs)) and the 

lymphoid lineages (such as regulatory T cells). Myeloid cells, including macrophages and 

neutrophils, have plastic phenotypes. Even though they could be equipped with cytotoxicity and 

anti-tumor activities, they are polarized in the tumor microenvironment to promote cancer 



	   24	  

progression through various mechanisms. They do so by secreting growth factors that sustain the 

proliferation and survival of cancer cells, promoting angiogenesis, and metabolically inhibiting 

anti-tumor adaptive immune responses. Similarly, the dendritic cell compartment is 

reprogrammed. Conventional dendritic cells that are able to functionally activate CD8+ T cells 

are scarce in many tumors, due to a combination of defects in DC recruitment and tumor-induced 

DC apoptosis (Ma et al., 2013). Instead, tumors could recruit DCs with immature phenotype 

characterized by low MHC molecules and co-stimulatory molecules, such as CD80 and CD86, 

and inefficient motility (Kim et al., 2006; Mahnke et al., 2002; Palucka and Banchereau, 2012). 

Activation by these DCs lead to tolerogenic T cell activation, as evidenced by the induction of 

regulatory T cell responses (Jonuleit et al., 2000) instead of antigenic activation. Cancers often 

upregulate the infiltration of regulatory T cells to suppress the functions of CD8+ cytotoxic and 

Th1 T cells, thereby rendering the tumor cells tolerated by the immune system. 

One of the corollaries of the immunoediting theory is that the immune system only 

attempts to sequester tumor initiation. While this may truly be the function of effector CD4+ and 

CD8+ T cells, other components of the immune system could promote the growth of nascent 

tumor cells instead. This is evidenced the demonstration of chronic inflammation as a significant 

risk factor for cancer (Hussain and Harris, 2007). During inflammation, tissue-infiltrating 

leukocytes could produce a large number of inflammatory mediators, such as reactive oxygen 

species, reactive nitrogen species, and cytokines, which could disrupt the environment that is 

suitable for the homeostasis of parenchymal cells. Possible disruptions include tissue damage, 

fibrosis, angiogenesis, and hypoxia (Mantovani et al., 2008; Multhoff et al., 2011). Inflammatory 

mediators, along with tissue disruptions caused by these factors, could promote genome 

instabilities and genetic alterations that lead to the initiation of tumorigenesis (Grivennikov and 
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Karin, 2010). In addition, epigenetic changes could be induced in premalignant cells. Stress 

could also disrupt proteostasis, by stimulating the over-production of heat shock proteins for 

example, that overwhelms the healthy cellular activities. While surveillance mechanisms exist to 

eliminate transforming cells, inflammation could supply pro-survival factors and nutrients that 

even overcome transformation-induced stress, such as oncogene-induced senescence. Moreover, 

a number of inflammatory cytokines could promote epithelial-to-mesenchymal transition, which 

upregulates the invasiveness and mobility of transformed or transforming cells.  

In conclusion, the interactions between the tumor and the immune system are dynamic 

and complex. The immune system could restrain and eliminate nascent tumor cells, while 

chronic inflammation could participate in the promotion of tumorigenesis. Established tumors 

could evade immune recognition, while the immune system could also be utilized to target tumor 

cells. In order to better target the immune system to treat cancer, it is imperative to have a better 

understanding of how the immune system could function and how these processes could go awry 

in cancer-bearing organisms. This dissertation focuses on one of the most abundant innate 

immune cells in many types of tumors, macrophages.  

 

1.3 Overview of Macrophage Biology 

1.3.1 Macrophages in Pathogen Infection  

Macrophages were originally discovered by Ellie Metchnikoff. Named after Greek words 

“makro” (large) and “phagein” (eat), these cells are known for their abilities to engulf and digest 

pathogens, cellular debris, and infected or transformed host cells. As a key component of the 

innate immune system, macrophages play important roles in the clearance of pathogen during 

infections by bacteria, viruses, fungi, and parasites. 
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Macrophages are present in almost all mammalian organs, including the sites that are 

susceptible to the initial attacks of invading pathogen. Because of their locations, tissue resident 

macrophages are often a key player in the initial phase of the combat against pathogens. 

However, tissue resident macrophages alone may not be sufficient to mount a sufficient defense. 

To ensure a sufficient number of defense effector cells, affected tissues would also send signals 

to recruit more inflammatory monocytes from circulation that differentiate into macrophages 

upon infiltration into affected tissues. In most infectious diseases, recruitment provides the major 

source of macrophages. The C-C motif chemokine ligand 2 (CCL2) and CCL2 receptor 2 

(CCR2) signaling pathway is essential for monocyte recruitment (Pierce et al., 1990). Other 

cytokines and chemokines also demonstrated monocyte-attracting activities. These include 

macrophage colony-stimulating factor (M-CSF, also known as CSF-1), granulocyte-macrophage 

colony-stimulating factor (GM-CSF, or CSF-2), CCL3, CCL5, CCL8, vascular endothelial 

growth factor (VEGF), placental growth factor (PlGF), and CXC-motif ligand-12 (CXCL12) 

(Coffelt et al., 2009), although their relevance in vivo is less well established. Deficiency in 

monocyte recruitment compromises immune responses against bacteria including Listeria 

monocytogenes, Toxoplasma gondii, and Mycobacterium tuberculosis, viruses including 

influenza, and fungi infections (Serbina et al., 2008; Shi and Pamer, 2011; Zhang and Wang, 

2014). On the contrary, during helminth infections, macrophages undergo proliferation at the site 

of infection independently of blood recruitment (Jenkins et al., 2011). However, in certain 

helminth infection models, such as Schistosoma mansoni infection, in situ proliferation occurs in 

monocyte-derived macrophages instead of tissue resident macrophages (Nascimento et al., 2014). 

These data suggest that recruitment and local proliferation may occur sequentially or 
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simultaneously to supply sufficient quantities of macrophages for defense against foreign 

pathogens. 

At the infection site, macrophages become activated and contribute to the clearance of 

pathogens by a range of effector mechanisms. To recognize pathogens or pathogen-affected cells, 

macrophages are equipped with pattern recognition receptors (PRRs) to recognize pathogen-

associated molecular patterns and damage-associated molecular patterns. These PRRs include 

membrane-bound toll-like receptors (TLRs) and C-type lectin receptors (CLR2), and 

cytoplasmic NOD (nucleotide-binding oligomerization domain)-like receptors (NLRs) and RIG 

(retinoid acid-inducible gene)-I-like receptors (RLRs) (Takeuchi and Akira, 2010). Altogether, 

these pattern recognition receptors recognize molecules associated with microbes (such as 

lipopolysaccharides, flagellin, and single-stranded or double-stranded RNA), and molecules 

associated with cellular damages that represent the “danger” signal (such as extracellular 

adenosine triphosphate (ATP) and high motility group box 1 protein, both of which are released 

by injured cells). Upon the engagement of PPRs, the intracellular signaling pathways triggered 

downstream will lead to transcriptional activation of inflammatory mediator genes followed by 

the production and secretion of these factors. In addition to PRRs, macrophages are also armed 

with a wide range of receptors for immunomodulatory cytokines. Engagement of different 

cytokine receptors could lead to differential activation of macrophages (Mosser and Edwards, 

2008). An over-simplistic classification categorizes macrophage activation status into M1 and 

M2, corresponding to classically activated macrophages and alternatively activated macrophages. 

This nomenclature was proposed to parallel the classification of T cell differentiation into Th1 

and Th2 cells. Cytokines such as interferon gamma (IFNγ) and tumor-necrosis factor (TNF) 

activate M1 macrophages, which then produce pro-inflammatory cytokines, promote Th1 
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responses, and cause extracellular matrix (ECM) destruction and apoptosis. Exposure to 

cytokines such as interleukin (IL)-4 leads to the activation of M2 macrophages, which promote 

Th2 responses, ECM construction, and wound healing. However, this simplistic scheme 

underestimates the variety of cytokines available in the tissue environment; macrophages are 

usually exposed to a large number of factors of different flavors at the infection sites. Indeed, 

increasing amount of data demonstrate a large spectrum of activation status that fits between and 

beyond the M1 and M2 dichotomy (Murray et al., 2014; Xue et al., 2014), which allows 

macrophages to carry out different functions tailored to the needs of specific pathogenic 

challenges.  

To clear pathogens, activated macrophages perform phagocytosis, engulfing not only 

microbes but also microbe-infected cells. As discussed earlier, macrophages could initiate a 

series of microbicidal activities following phagocytosis, such as producing ROS during 

respiratory burst and synthesizing proteolytic enzymes to digest microbial components. Other 

than killing engulfed microbes, macrophages could kill extracellular pathogens or infected cells 

in proximity through the secretion of metabolites that have microbicidal activities. These 

metabolites include indoleamine-pyrrole 2,3 dioxygenase (IDO) and nitric oxide. Macrophages 

could also upregulate apoptosis-inducing molecules, such as Fas ligand, which gets rid of 

infected cells in a paracrine manner. In addition to direct microbicidal mechanisms, macrophages 

also secrete various proinflammatory cytokines and chemokines that recruit other effector 

leukocytes to the infection sites to clear pathogens. For example, CXC-motif ligand-10 (CXCL-

10) and CXCL-11 secretion induces the infiltration of CD8+ T cells and Th1 cells to control 

virus and intracellular bacteria infections. Secretion of IL-17 could attract Th17 cells to fight 
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fungus infections at certain sites. IL-4 and IL-13 could attract granulocytes such as eosinophils to 

combat parasites. 

During the clearance of infection, immune responses cause tissue damages due to the 

release of cytotoxic molecules and metabolites. A functional immune response dictates the 

inevitable consequence of immunopathology, compromising the short-term health of the host in 

exchange for long-term fitness of a pathogen-free organism. However, upon elimination of 

invading pathogens, uncontrolled inflammation needs to be avoided. Macrophages play a critical 

role in the resolution of immune responses against infections. They engulf effector immune cells 

that have accomplished their microbicidal functions. They adopt the “M2” activation state and 

secrete immunosuppressive cytokines that inhibit potentially excessive cytotoxic activities. They 

can also initiate the wound-healing process through actions on non-hematopoietic cells. For 

example, macrophages secrete factors such as transforming growth factor-beta (TGFβ) and 

metalloproteinases to activate fibroblast cells, which in turn lay out ECM molecules to serve as a 

scaffold for tissue repair (Ortega-Gomez et al., 2013).   

 

1.3.2 Macrophages in Development and Homeostasis 

In addition to defending the host against pathogen infections, another important function 

of macrophages is to maintain tissue integrity of an organism. First, they are necessary in 

embryonic and neonatal development, during which organs develop into functional units that 

perform designated activities of an organism. In adult organisms, macrophages are also involved 

in the maintenance of homeostasis.  

The necessity of macrophages during development was manifested by a series of tissue 

abnormalities in mice that have a deficiency in macrophage colony-stimulating factor (MCSF, 
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also known as CSF1). Abnormalities cover a wide range of tissues, including the bone, 

mammary gland, kidney, and pancreas (Pollard, 2009). More dramatically, PU.1 deficient mice 

that lack macrophages are embryonically/neonatally lethal, which further suggests the 

importance of macrophages during development.  

Macrophages regulate proper tissue development through several mechanisms. First, they 

provide factors that sustain the survival and proliferation of tissue parenchymal cells during 

development. This is best studied in brain development, where neuron viability relies on the 

presence of macrophages. In addition to supplying pro-survival factors, macrophages are also 

involved in fine-tuning and promoting the functions of parenchymal cells. Brain resident 

macrophages, called microglia, have also been indicated to modulate neuron activities, prune 

synapses during development, and maintain neural circuits and brain structure (Erblich et al., 

2011). In addition to the regulation of terminally differentiated cells, microglia may also regulate 

neural stem cells during development (Nandi et al., 2012). Similarly, macrophages are also 

important in maintaining the viability and functions of mammary gland stem cells (Gyorki et al., 

2009) during development. 

In addition to its actions on parenchymal cells and/or tissue stem cells, macrophages are 

also important for remodeling the tissue structure. They do so through modifications of the 

extracellular matrix and vasculature. Moreover, processing cell death and cellular debris is 

another key mechanism by which macrophages oversees proper development. Development is 

accompanied by constant tissue remodeling, during which a lot of cells and structures that form 

temporarily will need to be recycled. These cells would receive signals to undergo apoptosis. 

Macrophages play a critical role at clearing apoptotic cells, both to avoid unnecessary or 

detrimental inflammation, and to clear space for further construction/reconstruction. A best-
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known example is the disappearance of interdigital webs that formed during limb development, 

in which macrophages have been shown to actively scavenge the apoptotic cells (Gregory and 

Devitt, 2004). Not only are macrophages necessary for the recycling of apoptotic cellular debris, 

they are also active inducers of apoptosis. For example, during eye development, macrophages 

induce apoptosis through Wnt-dependent pathways in order to optimize the patterning of 

vasculature in the developing eye (Lobov et al., 2005).  

Even though the vast majority of data defining the functions of macrophages were 

obtained from development and pathological conditions, these cells are also essential for the 

maintenance of organismal homeostasis. Homeostasis is not a static condition, but instead 

involves various events occurring in a very dynamic manner. Maintenance of hair is a great 

example, in which hair follicles undergo various phases to allow hair to grow. Hair follicle 

cycling not only happens in response to hair loss but is also involved during the homeostatic hair 

turnover. Macrophages can be activated to secrete factors that stimulate the active cycling of hair 

follicle stem cells to promote hair growth (Castellana et al., 2014). In the hematopoietic system, 

depletion of macrophages led to impaired generation of erythroblasts and caused peripheral 

blood anemia (Chow et al., 2013). This suggests that macrophages are important for the 

maintenance of the blood system that provides oxygenation to all organs, potentially through 

interactions between bone marrow resident macrophages and hematopoietic progenitor cells. In 

extramedullary hematopoietic sites, macrophages were shown to retain hematopoietic stem cells 

(HSCs) in the splenic niche, which is essential for maintaining HSC functions (Dutta et al., 2015). 

Macrophages have also been reported to interact with tissue stem cells in various organs, 

including the liver (Boulter et al., 2012), heart (Ben-Mordechai et al., 2013), mammary gland 

(Gyorki et al., 2009), colon (Pull et al., 2005), and intestine (Saha et al., 2016). More 
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experimental evidence is needed to define to what extent are these interactions involved in the 

regulation of tissue homeostasis needs.  

In addition to activating cellular activities, macrophages can also participate in 

homeostasis by maintaining immune quiescence, i.e. inhibiting the activation of immune cells. A 

classic textbook example is the participation of macrophages in clearing out apoptotic cell 

products in a process called “efferocytosis”. Apoptotic cells undergo membrane flipping, where 

the inner leaflet of the cell membrane becomes exposed to the outside. Inner membrane 

phosphatidylserine was also translocated to the outer membrane, which is recognized by 

macrophages. Upon the receipt of this “eat me” signal, macrophages engulf apoptotic cells, 

which limits the non-discriminatory release of cellular materials that could trigger unnecessary 

inflammation (Arandjelovic and Ravichandran, 2015). Efferocytosis is essential for maintaining 

the non-phlogistic (not causing inflammation) nature of apoptosis, which is distinguished from 

necrosis. In a similar fashion, macrophages also get rid of senescent cells, as exemplified by the 

clearance of senescent red blood cells by splenic macrophages (Kohyama et al., 2009). In 

addition, macrophages can secrete other immune dampening factors, such as complement 

component 1q, resolven E1, protectin D1, and galectin, among others, to alleviate unnecessary 

immune responses (Pinto et al., 2014).  

Moreover, macrophages are important for maintaining metabolic homeostasis in response 

to environmental changes, such as temperature decrease and caloric intake. Brown adipose tissue 

(BAT) is the primary thermogenic organ upon exposure to low temperature. BAT resident 

macrophages are required for metabolic adaptation to cold. Upon alternative “M2” activation, 

these macrophages secrete norepinephrine that stimulates sympathetic nerve cells to activate the 

thermogenic programs within the BAT (Nguyen et al., 2011). White adipose tissue is responsible 
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for long-term storage of nutrients and regulates systemic metabolic activities through hormone 

release. In lean animals, alternatively activated macrophages maintain insulin sensitivity in 

adipocytes, partially through the secretion of IL-10 (Odegaard and Chawla, 2013). As mice 

develop from lean into fat physique under the influence of high fat diet, classically activated 

macrophages infiltrate WATs and remodel these tissues during their enlargement (Lumeng et al., 

2007). High fat diet also causes increased lipid storage in hepatocytes; liver resident 

macrophages, or Kupffer cells, participate in this process by regulating fatty acid oxidation in 

hepatocytes. Disruption in the alternative activation of Kupffer cells led to insulin resistance and 

steotosis (Kang et al., 2008).  During the increased uptake of fatty acid mentioned above, 

macrophages act as lipid sensors and trigger the corresponding responses through the activation 

of peroxisome proliferator activator receptors (PPAR) (Jantsch et al., 2014). Similarly, 

macrophage activation is also altered to respond to changes glucose levels (de Souza et al., 2008). 

Another critical aspect of homeostasis is the balance in body fluids. While kidney is the 

principal organ that regulates salt and water in an organism, the skin does not equilibrate readily 

with the plasma, and therefore is less susceptible to renal homeostatic control (Titze, 2014). 

Interestingly, macrophages infiltrate to hypertonic sites of the skin where sodium and chloride 

levels are above the normal threshold. These macrophages sense interstitial electrolytes, possibly 

through the engagement of pattern recognition receptors, which trigger inflammasome activation 

(Ip and Medzhitov, 2015). Consequently, nuclear factor of activated T-cells 5 (NFAT5) is 

activated to initiate essential transcription programs in response to the osmotic stress (Muller et 

al., 2013).  

In conditions where homeostasis is disrupted, macrophages are important for restoring 

the normal functions of a tissue, in processes such as tissue regeneration. This is evidenced by 
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delayed tissue repair upon macrophage depletion. A key mechanism relies on the ability of 

macrophages to clear senescent cells and cellular debris through phagocytosis, which is believed 

to create an environment that is permissive to regeneration (Yun et al., 2015). For example, in a 

non-inflammatory lung injury model that mimics damages caused by respiratory stress, 

macrophages selectively deplete the dysfunctional type II lung epithelial cells, therefore 

alleviating the consequences of injury (Miyake et al., 2007). In addition, angiogenesis can also 

compensate for the lack of oxygenation at the injury site and facilitate tissue repair; macrophages 

have been shown to provide critical signals for angiogenesis. This has been shown in multiple 

pathophysiological processes, such as the repair during myocardial infarction (Aurora et al., 

2014) and peripheral nerve damage (Cattin et al., 2015).  

	  

1.3.3 Macrophages in Malignant Diseases 

Macrophages can promote the initiation of tumorigenesis by promoting chronic 

inflammation as discussed in Section 1.2.3. Chronic inflammation may cause DNA damages, 

lead to genome instabilities, and generate a hostile tissue environment. In addition, depletion of 

macrophages in pancreatic ductal adenocarcinoma correlated with significantly reduced number 

of cells with tumor-initiating properties, suggesting that macrophages could also promote tumor 

development through actions on “cancer stem cells” (Yang et al., 2013). Such activities could be 

executed through the activation of the signal transducer and activator of transcription 3 (STAT3) 

signaling pathway within the neoplastic compartment (Mitchem et al., 2013). 

Beyond the inception of tumorigenesis, macrophages can also promote the progression of 

established tumors. They are highly abundant in tumor tissues in many types of cancers. High 

levels of macrophage infiltration in the tumor tissue, also called “tumor-associated macrophages” 
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(TAMs), correlate with worse patient outcome in most types of cancers. One exception is 

colorectal cancers, where contradictory roles of macrophages have been reported (Khorana et al., 

2003; Lackner et al., 2004; van Netten et al., 1993). These inconsistencies could be due to 

variations in the timing of the disease progression and the location of macrophages that were 

examined in different studies. Other than colorectal cancer, TAMs tends to play pro-tumorigenic 

roles through various mechanisms that facilitate tumor progression. 

First, TAMs can produce growth or survival factors that enhance the proliferation and 

viability of tumor cells. A classic example came from studies looking at the MMTV-PyMT 

breast cancer mouse model, in which macrophages recruited in a CSF1-dependent manner 

secrete epidermal growth factor (EGF) that stimulates the division of neoplastic cells. In this 

model, EGF also enhances the invasiveness of the cancer cell (Goswami et al., 2005; Patsialou et 

al., 2009).  

Second, macrophages can remodel the stromal components that are normally present in 

the tissue to support organ functions, and skew their activities to facilitate tumor development. 

Two examples are blood vessels and fibroblast cells, whose activations by TAMs lead to 

angiogenesis and fibrosis respectively. The involvement of TAMs in promoting angiogenesis has 

been demonstrated in mice deficient in macrophage recruitment, which have reduced vasculature, 

increased hypoxia and reduced tumor growth and metastasis (De Palma et al., 2005; Pucci et al., 

2009). TAMs secrete an extended list of cytokines, such as VEGF, CXCL12, which promote 

angiogenesis and vascularization through several mechanisms: they could trigger 

sprouting/branching of pre-existing blood vessels by promoting the protrusion of a selected 

endothelial cell. Alternatively, endothelial progenitor cells could be recruited from the 

circulation system to the tumor site and differentiate to new endothelial cells that line up blood 
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vessels; this process is called “vasculogenesis”. In a fashion similar to angiogenesis, TAMs can 

also remodel the lymphatic vessels through lymphangiogenesis, which will not be discussed here. 

As tumor vasculature is remodeled, basement membranes underlining the endothelial cells also 

need to be remodeled. TAMs can accomplish this remodeling function through the secretion of 

metalloproteinases (MMPs), such as MMP-9 (Coussens et al., 2002).   

TAMs, especially the “M2” polarized macrophages, are well known for their abilities to 

promote fibrosis through the secretion of profibrotic cytokines that activate fibroblast cells. 

Quiescent fibroblasts would then become myofibroblasts and lay down extracellular matrix 

molecules. The best-studied cytokine involved in this process is TGFβ, which induces fibroblast 

proliferation and upregulates the transcription of profibrotic genes, including collagens and 

fibronectin (Border et al., 1990; Haberstroh et al., 1993), through the phosphorylation of Smad 

molecules (Meng et al., 2016). In addition to inducing the differentiation of fibroblasts into 

myofibroblasts, macrophages also play a role in sustaining myofibroblast survival through the 

stimulation of nuclear factor kappa B (NF-κB) activities (Pradere et al., 2013). In a similar 

mechanism, macrophages can produce factors that promote epithelial-to-mesenchymal transition, 

during which epithelial cells lose their identity and adopt a fibroblast phenotype and lay down 

ECMs (Usunier et al., 2014). Surprisingly, TAMs could also promote fibrosis by directly 

producing ECM molecules without involving the activation of fibroblasts. A recent proteomic 

study in colorectal cancer models demonstrated that TAMs produced a wide range of collagens, 

peoteoglycans, glycoproteins, and ECM modulators (Afik et al., 2016). It remains to be seen if 

TAMs in other cancers can also directly lay down ECM molecules. As a side note, though the 

angiogenic and pro-fibrotic functions of macrophages have been shown in multiple tissue 

contexts, it is not clear if all macrophages have the same potential to execute these activities, or 
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if only a subset of macrophages are capable of doing so. Characterization of angiogenic TAMs 

led to the identification that these cells represent a TIE2-expressing subset of macrophages (De 

Palma et al., 2005; Lewis et al., 2007). More recently, an atypical progenitor-like 

monocyte/macrophage population was identified to be necessary for fibrosis (Satoh et al., 2017). 

It remains to be seen to what extent in vivo are different macrophage subsets involved in these 

processes.  

The third tumor-promoting mechanism involves the suppression of anti-tumor immune 

responses. Macrophages can secrete anti-inflammatory cytokines to inhibit the recruitment of 

CD8+ and Th1-biased CD4+ T cells. They can metabolically suppress the activities of anti-

tumor T cells, by depleting the L-arginine in the environment that is necessary for T cell 

functions, through the secretion of L-arginine processing enzymes, nitric-oxide synthase and 

arginase I. TAMs could also chemically modify T cell receptors to inhibit their recognition of 

tumor antigens through molecules such as peroxynitrite. TAMs can also engage with T cells in a 

paracrine manner through surface markers such as co-stimulatory molecules. Upon engagement 

with macrophages, T cells could activate signaling pathways downstream of cytotoxic T 

lymphocyte antigen-4 (CTLA4) and programmed death-1 (PD1), which drive the cells towards 

an anergic or exhausted phenotype, rendering T cells non-functional. Macrophages also produce 

chemokines to recruit immunosuppressive regulatory T cells, through the secretion of CCL-17 

and CCL-22 for example.  

Through these integrated actions on tumor cells, fibroblasts, endothelial cells, and 

adaptive immune cells, macrophages create an environment that facilitates tumor growth and 

invasion but deters effective immune responses, thereby facilitating tumor progression.  
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Macrophages not only promote primary tumor growth but also accelerate metastasis. This 

could occur during both the intravasation process at the primary tumor site and the extravasation 

process at the metastatic/pre-metastatic site. TAMs at the primary tumor site promote the 

invasion of tumor cells through the secretion of factors such as EGF and vascular endothelial 

growth factor (VEGF) (Qian et al., 2011), thereby allowing tumor cells to enter circulation and 

home to distant organs. Metastasis-associated macrophages (MAMs) can capture circulating 

tumor cells and retain them at the pre-metastasis site, which extends the duration at which newly 

arrived tumor cells could interact with the pre-metastatic niche. This extended duration could 

allow further modifications to the tissue, and increases the possibilities of neoplastic cell 

extravasation to form a metastatic site (Kitamura et al., 2015). Similar to TAMs, MAMs can also 

produce growth factors to accelerate the expansion of tumor cells (DeNardo et al., 2009). In 

addition, even before the arrival or disseminated cells, macrophages can already contribute to the 

creation of a pre-metastatic niche, in part through the downregulation of dendritic cells and anti-

tumor T cell infiltration (Sharma et al., 2015) and the induction of fibrosis at the pre-metastatic 

site (Nielsen et al., 2016). 

Macrophages not only participate in the natural courses of tumor initiation and 

progression, but also affect how tumors respond to therapeutic interferences. This is usually 

accomplished through (1) secretion of pro-survival factors that blocks the apoptosis pathways 

induced by chemotherapies, (2) production of molecules involved in the metabolism of 

chemotherapeutic drugs, which are converted to a form that is less toxic to tumor cells, and (3) 

modulation of other stromal cells, such as dendritic cells (Ruffell et al., 2014), to suppress 

chemotherapy-induced activation of anti-tumor immune responses. 
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Taken together, macrophages infiltrating primary tumors and metastatic or pre-metastatic 

tissues promote tumor progression, metastasis, and therapy resistance through various 

mechanisms, therefore posing a significant barrier to effective anti-cancer treatments. 

Understanding the biology of TAMs and MAMs is essential for the development of trials that 

target these myeloid cells. While a lot of research has been done to elucidate the mechanisms by 

which macrophages regulate tumor growth, available strategies to target these cells are very 

limited, with the majority of the approaches focused on depleting these cells. Improving the 

clinical efficacy in these strategies requires in-depth understanding of the sources that supply 

macrophages to the tumor tissue. However, ontogeny of tumor-associated macrophages is not 

well defined. 

 

1.3.4 New Paradigm of Macrophage Ontogeny 

As part of the mononuclear phagocytes system (MPS), macrophages in tissues were 

considered to originate from the adult hematopoietic system. A four-decade-old dogma of 

macrophage ontogeny held that hematopoietic stem cells in the bone marrow give rise to 

monocytes through stepwise lineage specification; monocytes then enter circulation and further 

differentiate into macrophages upon extravasation into tissues. In other words, this paradigm 

proposed that monocytes in circulation constitute a mobile pool of intermediately differentiated 

progenitors that are on their way between their origin (bone marrow) and their destination 

(tissue). This dogma was proposed based on the initial observation that adoptively transferred 

monocytes differentiate into macrophages as they circulate into the inflamed peritoneum. It was 

later supported by a large number of similar observations in various tissues under different 

pathological conditions (Ginhoux and Guilliams, 2016).  
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This paradigm has been challenged in the past decade. As this model was based solely on 

observations under inflammatory conditions, several lines of evidence looking at the homeostasis 

of macrophages in non-pathological conditions raised discrepancies with the concept that the 

adult hematopoietic system provides the only source of tissue macrophages. For example, 

irradiation causes the ablation of the hematopoietic stem cells but does not wipe out tissue 

resident macrophages, which can be minimally affected, as is the case with skin Langerhans cells 

(Merad et al., 2002) and brain microglia (Ginhoux et al., 2010). Furthermore, patients who have 

severe monocytopenia could have normal numbers of macrophages in many tissues (Collin et al., 

2006), a phenotype also recapitulated in mouse models. In addition, monocyte-derived cells tend 

to have a shorter life span and high turnover rate, which does not explain the long half-life of 

tissue resident macrophages. Moreover, the original MPS ontogeny paradigm views monocytes 

as a cell type with transition roles but little other functionality; differentiation in macrophages is 

their fate by default. This view has also been challenged. Monocytes were shown to be able to 

traffic out of the blood into multiple tissues constitutively without contributing to the 

macrophage pool. Instead these monocytes can sample antigens in a similar fashion as dendritic 

cells (Jakubzick et al., 2013). These observations led to the rewriting of the paradigm of MPS 

ontogeny. 

An extensive list of parabiosis studies investigated the contribution of circulating Ly6CHi 

monocytes to the turnover of tissue resident macrophages. Some tissues, including the colon and 

intestine (Bain et al., 2014), dermis (Tamoutounour et al., 2013), and pancreatic islets (Calderon 

et al., 2015) rely on monocyte infiltration for macrophage maintenance. On the other hand, 

macrophages in a wide range of organs, including the lung, red pulp, pancreatic stroma, and 

brain, do not show significant exchange with the blood for even after up to 5 months of 
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parabiosis (Hashimoto et al., 2013). These data uncoupled the adult hematopoietic system with 

the maintenance of tissue resident macrophages in many organs, suggesting the existence of an 

alternative source that sustains these cells.  

In addition to maintenance, the development of macrophages could also be independent 

of HSCs. One of the first pieces of evidence to uncouple the ontogeny of tissue resident 

macrophages with HSCs was based on the observation that macrophage development and 

hematopoiesis had differential transcriptional requirements. Hematopoietic stem cell 

differentiation requires the transcription factor c-Myb for proliferation and differentiation 

(Sandberg et al., 2005). However, subsets of tissue resident macrophages in a wide range of 

organs still develop in mice that lack this transcription factor (Schulz et al., 2012). This suggests 

that HSCs are not the only developmental source of macrophages. Moreover, Flt3-based lineage 

tracing experiments added further confirmation. Flt3 is a receptor tyrosine kinase that is 

expressed in multipotent hematopoietic progenitors. Its expression is activated during early 

stages of HSC differentiation (Boyer et al., 2011). Therefore, all hematopoietic cells in 

circulation are labeled by Cre recombinase. However, macrophages in a number of tissues, 

including epidermis Langerhans cells, liver Kupffer cells, spleen and kidney resident 

macrophages, and brain microglia, demonstrated low levels of recombination. These data 

suggested that an alternative hematopoietic source is responsible for the development of tissue 

resident macrophages.  

A series of tamoxifen-inducible lineage tracing models provided crucial data that helped 

defining the origin of tissue resident macrophage: transgenic or knock-in mouse models that 

have the Cre recombinase genes driven by various promoters took advantage of the early 

expression of these promoter genes that precedes the emergence of HSC-initiated hematopoiesis, 
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also called “definitely hematopoiesis”. Before the appearance of HSCs and the occurrence of 

definitive hematopoiesis, the embryo undergoes several waves of blood production (Franklin and 

Li, 2016; Ginhoux and Guilliams, 2016). First wave is called “primitive hematopoiesis”, in 

which blood cells arise from the blood islands of extra-embryonic yolk sac. In mice this occurs 

around embryonic day 7.0. During primitive hematopoiesis, a progenitor population called 

“erythro-myeloid progenitors” (EMPs) arises around E7.25 and produces nucleated erythrocytes 

and macrophages, which respectively provide oxygenation and participate in tissue structuring. 

Following primitive hematopoiesis, a second wave of hematopoiesis occurs. During this period, 

a slightly larger variety of leukocytes could be produced. In addition to EMPs, a population of 

progenitors with lympho-myeloid potential is also produced. This wave of blood production 

occurs in the hemogenic endothelium of the yolk sac; therefore the EMPs produced during this 

wave are named “late EMPs” which distinguishes them from the EMPs that arise within the yolk 

sac blood islands. “Early” EMPs express CSF1R but is c-Myb independent, while the “late” 

EMPs appear to express c-Myb. Before the formation of the circulatory system, yolk sac serves 

as the primary site of blood production for the embryo. Concomitant with the emergence of late 

EMPs, a third wave starts within the hemogenic endothelium of the embryo proper around E8.25. 

Coinciding with this, the embryo develops a functioning circulation system by E8.5. During this 

wave of hematopoiesis, immature hematopoietic stem cells are generated within the para-aortic 

splanchnopleura (P-Sp) region. Subsequently, HSCs were observed in the aorta gonads and 

mesonephris (AGM) region at E10.5, and then in the fetal liver. Though still controversial, the 

immature HSCs observed in the P-Sp region were considered to be the progenitors of HSCs that 

later migrate to the AGM region and then ultimately settle in the fetal liver (Cumano and Godin, 

2007). Fetal liver becomes the major site of hematopoiesis starting at E12.5 and peaks at E16.5 
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in mice, before bone marrow takes over the hematopoietic function at perinatal stages (Orkin and 

Zon, 2008).  

Despite the agreement on the embryonic contribution to tissue resident macrophages, 

controversies still exist regarding the precise nature of the embryonic progenitors that give rise to 

these cells. This is partially due to differences in the mouse models used for lineage tracing and 

the labeling variations by promoters driven by different genes. Runx1-CreER took advantage of 

the early expression of Runx1 starting at E6.5. Tamoxifen pulse at E7.0 specifically labeled up to 

30% of brain microglia while sparing hematopoietic stem cells (Ginhoux et al., 2010). CSF1R-

CreER has also been used, whose expression comes later than Runx1, therefore allowing a 

longer time window for labeling. E8.5 tamoxifen treatment leads to the labeling of various tissue 

macrophages, including those in brain, epidermis, liver, and spleen (Schulz et al., 2012), and 

subsets of macrophages in the pancreas and heart (Calderon et al., 2015; Epelman et al., 2014; 

Gomez Perdiguero et al., 2015). These findings, along with the presence of these cells in Myb 

knockout mice, led to the model in which yolk sac EMPs differentiate into macrophages that 

persist into adulthood.  

However, whether these data above supports this “yolk sac exclusive” ontogeny model is 

questionable. Persistence of macrophage populations in Myb knockout mice only suggests the 

ability of progenitors to contribute to these cells when HSC differentiation is deficient, but does 

not suggest that this is what actually happens in unperturbed situations. These observations could 

be the mechanisms by which “early” EMP differentiation compensates for the deficiencies of 

hematopoiesis induced by Myb-dependent “late” EMPs or HSCs. Along the same lines, 

depletion of yolk sac-derived macrophages, through the treatment of CSF1 receptor depleting 

antibodies on E6.5, did not lead to irreversible reductions in fetal macrophages in most organs. 



	   44	  

The only tissue resident macrophages that were irreversibly depleted were macrophages. Indeed, 

kinetics studies using CSF1R- and Runx1-CreER fate mapping models demonstrated the 

replacement of yolk sac derived macrophages as hematopoiesis progresses to the fetal liver stage. 

In a novel S100A4-Cre model that specifically traces fetal monocytes, Cre labeling started to be 

observed at E12.5 in macrophages in lung, liver, spleen, and skin, and the labeling efficiency 

progressively increased to an average of 60% in neonates, which was maintained into adulthood. 

Going back to the Runx1-CreER model, tamoxifen treatment at a later time point (E8.5) led to 

the labeling of a myb-expressing EMP population that entered circulation and colonized the fetal 

liver. These “late” EMPs were distinct from the “early” EMPs, which lack Myb expression and 

differentiate into macrophages without going through the monocyte stage (Hoeffel et al., 2015). 

These data suggest that fetal liver progressively replace yolk sac derived cells, and led to the 

proposal of a new model in which late EMP-derived fetal liver monocytes are the major sources 

of most tissue resident macrophages, while early EMPs in the yolk sac provide the source for 

microglia. 

In addition to early EMPs in the yolk sac and late EMPs in the fetal liver, fetal HSCs 

were also proposed to contribute to the generation of resident macrophages. This was based on 

the c-Kit-CreER model. In this model, E7.5 tamoxifen treatment led to significant amount of 

labeling in brain microglia but not in the resident macrophage populations from other major 

organs (Sheng et al., 2015). On the other hand, pulsing at later time points (E8.5 and E9.5) 

labeled macrophages that are resident in the liver, lung, spleen, kidney, dermis, and peritoneum. 

Because the kinetics of the labeling coincides with the occurrence of HSCs, these data led to the 

proposal of fetal HSCs as sources of resident macrophages other than microglia. Moreover, the 

labeling of other hematopoietic cells, including neutrophils and lymphocytes, led to the 
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hypothesis that c-Kit+ cells pulsed at E8.5 or E9.5 are HSCs. However, further confirmations of 

the identity of these cells are still needed to validate this model. Moreover, these data are still 

consistent with the EMP model.  

In addition to embryonically derived populations, regardless of the precise nature of the 

progenitors, HSCs are also shown to be a significant contributor to many tissue resident 

macrophages shortly after birth. For example, infiltration of monocytes replenished macrophages 

in the colon during weaning. This was shown by the decrease of macrophages labeled on E8.5 by 

CSF1R-CreER concomitant with an increase in Flt3-Cre labeled cells (Bain et al., 2014). This 

replenishment was stimulated by microbiota in the neonates, suggesting that environmental 

stimuli could interact with the tissue to shape the ontogeny of local macrophages. While the 

contribution of perinatal hematopoiesis is best studied in organs that are exposed to the 

environment, such as the lung and colon, it can also happen in internal tissues, such as the 

arteries. Unlike the mouse models mentioned above, CX3CR1-CreER does not label significant 

amount of inflammatory monocytes, therefore allowing the investigation into the contribution of 

embryonic hematopoiesis to macrophages that do not express CX3CR1. E18.5 labeling in 

CX3CR1-CreER reporter mice led to the labeling of most macrophages in neonatal arteries. 

Interestingly, two weeks after birth, a significant portion of artery associated macrophages are 

replaced by unlabeled monocytes, suggesting the contribution of HSCs to cardiarc macrophages 

at the neonatal period (Ensan et al., 2016). Similarly, the MHCII+ macrophages in the 

peritoneum also develop within the first week after birth, in a CCR2-dependent manner, 

suggesting the perinatal contribution of HSCs to the development of this population (Kim et al., 

2016).  
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Unlike the differentiation of macrophages from adult HSCs, embryonic macrophage 

differentiation before the formation of fetal liver HSCs does not appears to involve monocyte 

intermediates (Ajami et al., 2007). A question raised by this model is the mechanisms by which 

tissue macrophages generated their phenotypic and functional diversity across various organs. 

One possibility is that the diversity could be generated already upon differentiation at the 

hematopoietic sites. Variable “clones” of macrophages could be armed with differing repertoire 

of chemokine receptors that drive their unique migration pathways towards different organs or 

even different sites within an organ. This “pre-determinism” model resembles the generation of 

the homing of tissue resident memory T cells, which are activated uniquely in secondary 

lymphoid sites and home to unique tissues. An alternative but related possibility is that 

heterogeneous EMP populations give rise to different macrophages that home to their target 

organs. This model might be unlikely, because the generation of a diverse progenitor population 

may be costly. However, characterization of EMPs is relatively simplistic. We may 

underestimate the heterogeneity of the “primitive” progenitors that may exist. Moreover, in all 

lineage-tracing models mentioned above, the labeling of various mature macrophages 

populations by a single promoter does not mean they share the same progenitor. E8.5 tamoxifen 

pulse may label various CSF1R+ progenitors, each of which later gives rise to different resident 

populations. This “progenitor heterogeneity” model also implies the concept of pre-determined 

diversity and pre-determined destination. 

Alternatively, progenitors such as EMPs could directly differentiate into macrophages, 

which then settle into embryonic organs or organ primordial, and quickly achieve organ-specific 

program upon the receipt of tissue specific niche signals. However, to accomplish this “fast 

maturation”, macrophages may also need to develop unique receptors or signaling machineries 
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that allows them to respond to environmental signals. Another possibility involves the 

differentiation of embryonic progenitors into intermediate precursors, similar to monocytes in 

adult hematopoiesis, which then differentiate into macrophages and obtain organ-specific 

transcriptional program upon tissue entry. This “step-wise diversification” model was supported 

by the profiling of a CD45+cKit-Lin-F4/80- population, whose surface markers and 

transcriptional profiles are intermediary between EMPs and mature macrophages (Mass et al., 

2016). While these transition-state “pre-macrophages” could explain the generation of 

phenotypic diversity among tissue macrophages, further studies are needed to validate their 

existence and contribution to the macrophage ontogeny. 

The contribution of multiple progenitors to macrophage ontogeny raised an important 

“nature vs. nurture” debate. Multiple studies demonstrated a wide range of diversity among 

various tissue macrophages. Macrophages resident in each tissue seem to demonstrate a distinct 

signature in terms of transcriptional activities (Gautier et al., 2012), enhancer landscape 

(Gosselin et al., 2014; Lavin et al., 2014), and chromosome modification profiles. A common 

theme of these studies is a focus on the importance of environment in the regulation of 

macrophage activities. To what extent does ontogeny contribute to the shaping of macrophage 

functionality? Answer to this question requires investigations into macrophages of different 

origins that co-exist within the same tissue. A number of studies used artificial systems by 

partially depleting the tissue resident population to induce their replacement by monocytes, 

followed by profiling the transcriptional signature of monocyte-derived macrophages and 

remaining tissue resident macrophages. In the lung and peritoneal cavity, macrophages derived 

from newly recruited monocytes acquired the majority of the majority of the gene signature of 

their endogenous counterparts. On the other hand, monocyte-derived liver macrophages differ 
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significantly from Kupffer cells in terms of enhancer signature (Lavin et al., 2014). Similarly, 

monocyte-derived microglia also had more than 2,000 differentially expressed genes compared 

from yolk sac-derived microglia (Bruttger et al., 2015). These studies suggest that ontogeny 

could be one of the determining factors that shape the functional properties of macrophages.  

However, these data should be taken with caution, because the depletion strategies involve 

genotoxic irradiation, which could cause alterations in the activities of the endogenous 

populations, even though tissue resident macrophages may be radiation-resistant. Indeed, several 

studies have made similar attempts to enforce the recruitment and differentiation of monocytes 

into tissue resident macrophages, either through shielded irradiation that protects the endogenous 

population, or through transgenic diphtheria toxin receptor-mediated depletion. In both the lung 

and the liver, monocyte-derived macrophages resemble their endogenous counterparts, with very 

little distinction in transcriptional activities that may suggest most overlapping functionalities 

between cells from different origins (Gibbings et al., 2015; Scott et al., 2016). These contrasted 

results in how monocyte-derived liver macrophages resembled endogenous Kupffer cells 

demonstrated how differences in experimental systems could lead to different conclusions, and 

remind us of interpreting these studies with caution. Another important note is that a lot of these 

studies looked at macrophages in the tissue as one homogeneous entity. However, each organ is 

an intricate system with a complicated anatomy; therefore, cells located in different parts of the 

tissue may behave differently. In the pancreas, monocyte-derived macrophages infiltrate the 

islets, while embryonically derived macrophages are enriched in the exocrine stroma. Moreover, 

various subsets of stromal macrophages, as distinguished by the expression of CD206, have 

different gene expression profile (Calderon et al., 2015). These data suggest the possibility that 
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ontogeny and signals from different environmental niches may interact with each other to shape 

the properties of resident macrophages.  

It is important to note that the ontogeny of tissue resident macrophages is not static. 

While embryonically derived macrophages are abundantly populated in almost all organs at birth, 

many cell populations are replaced by monocyte at various rates. On one end of the spectrum, 

brain microglia are the first tissue macrophages derived from yolk sac progenitors, and they 

persist long-term with very minimal contribution from blood monocytes. On the other end of the 

spectrum, macrophages in the colon and intestine are short lived, and rely on constant 

replenishment from the blood. The life spans of epidermis Langerhans cells, lung alveolar 

macrophages, and liver Kupffer cells are more like that of the microglia; dermis MHCII+ 

macrophages are more like colon macrophages. Macrophages in other organs mostly fall into the 

middle of the spectrum, including pancreas and heart. How do various tissue resident 

macrophage populations possess different life span? How do those in the brain, lung alveoli, and 

liver self-maintain through adulthood and aging? These unanswered questions are also worth 

addressing.  

Another important question is whether ontogeny plays a role in determining the fates of 

macrophages during various pathological conditions. Macrophages undergo extensive 

proliferation in Helminth infection, which implies the involvement of tissue resident 

macrophages in Th2 inflammatory responses against pathogens (Jenkins et al., 2011). Local 

proliferation also characterizes macrophages within visceral adipose tissues, suggesting that 

resident macrophages may play a role in the regulation of metabolic diseases (Amano et al., 

2014). Not only can resident macrophages participate in the regulation of these pathological 

conditions, they can also interact with the blood system to promote the infiltration of monocytes 
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to expand the local macrophage pool. In a Listeria monocytogenes infection mode, Kupffer cells 

undergo necroptosis to recruit monocytes that later differentiate into macrophages (Bleriot et al., 

2015). What is the fate of tissue resident macrophages during tumor development? How do they 

contribute to tumor progression and metastasis? These questions are poorly addressed. In a breast 

cancer model, mammary gland resident macrophages seemed to disappear while monocyte influx 

gave rise to tumor-associated macrophages (Franklin et al., 2014). On the other hand, microglia 

appeared to persist in glioblastoma (Chen et al., 2017) and brain metastasis (Bowman et al., 

2016). The limited number of studies suggests that the involvement of tissue resident 

macrophages in tumor development may be organ- and tumor- specific. One organ of particular 

interest to us is the pancreas. Pancreatic cancers can arise within either the exocrine or the 

endocrine portions of the organ; meanwhile, stroma and pancreatic islets are infiltrated with 

macrophages derived from different sources. It would be interesting to see if different 

macrophage sources supply TAMs to different kinds of pancreatic cancers. In addition, cancer 

occurrence in the heart is rare. Since the heart is infiltrated with macrophages of different 

ontogeny, it is also worth asking if these cells contribute differently to cancer 

immunosurveillance in this organ. 

 

1.4 Scope of This Dissertation  

1.4.1 Outstanding Needs for Improvement of Immunotherapies 

Our knowledge of cancer biology is growing at unprecedented speed. In particular, we 

are increasingly appreciative of the role that the tumor microenvironment plays in the regulation 

of cancer development and in the utilities of cancer treatment. In parallel, advancement in the 

development of therapeutics also demonstrates a promising future of cancer treatment by 
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targeting the tumor stroma. A lot of attention has been paid to the immune components of the 

cancer environment, with a focus on targeting the adaptive immune system. The advantage is 

that: (1) the adaptive immune system is capable of combatting cancer in an antigen specific 

manner, thereby allowing the minimization of side effects due to attacks on healthy cells in the 

organisms that are necessary for host fitness; (2) memory is the second hallmark of the adaptive 

immune system, which could build a long lasting anti-cancer arsenal that suppresses tumor 

reoccurrence. Immunotherapies that activate adaptive immune responses have demonstrated 

promising potential in multiple types of malignant diseases; in some cases these therapies even 

showed impressive efficacy at treating late-stage patients with metastasis.  

However, these immunotherapies do not work in all types of cancer. For example, 

checkpoint therapies do not improve patient outcome in pancreatic ductal adenocarcinoma. 

Moreover, even in responsive cancers such as skin melanoma, large cohorts of patients still do 

not sufficiently benefit. Therefore, we need a much better understanding of the tumor 

microenvironment unique in different kinds of tumors and metastasis in order to expand 

treatment benefits to a much larger group of patients.  

Activation of the adaptive immunity is reliant on the innate immune system, in particular 

myeloid cells. Myeloid cells compose the overwhelming majority of leukocytes and far 

outnumber the anti-tumor adaptive immune cells. However, tumor-infiltrating myeloid responses 

are heavily skewed in the tumor to adopt a suppressive phenotype that promotes tumor growth 

instead of inducing effective anti-tumor responses. Therefore, we need to change myeloid 

responses in order to optimize therapies that are targeted towards boosting the adaptive immune 

system. Targeting myeloid components of the tumor stroma is not a new concept in the 

development of cancer immunotherapies. The prevailing strategy is directed towards reducing 
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the amount of immune suppression by reducing the quantity of cells. However, such depleting 

strategies have their own limitations. First, lower quantity of suppressive myeloid cells does not 

equal higher quality of immune responses. Second, without understanding the sources of these 

myeloid cells, depletion of these cells from the tumor stroma could simply induce a positive 

feedback loop that further enhance their production and recruitment to the tumor site. Therefore, 

as we develop therapeutic strategies, we may need to change our thinking from depleting these 

cells to reprogramming these cells. In addition, we need to better understand the cellular origin 

that provides these myeloid cells to the tumor tissue, and cut the supply from the source. 

Furthermore, we can combine the knowledge in both aspects, and design an alternative strategy: 

first depleting pre-existing suppressive myeloid cells to create vacancies that can later be 

occupied by new comers, and then programing or conferring these new comers with anti-tumor 

functions.  

 

1.4.2 Central Questions of This Dissertation 

We choose pancreatic ductal adenocarcinoma (PDAC) as a cancer model due to the high 

lethality and the desperate need for effective immunotherapies. PDAC has a very rich stromal 

environment, which is very scarce in CD8+ T cells but very extensively infiltrated with myeloid 

cells that could be utilized for treatment. Our long-term goal is to understand how neoplastic 

cells in PDAC tissues interact with their microenvironment. The scope of this dissertation 

focuses on macrophages, one of the most abundant immune cells in PDAC tissue. The quantity 

and quality of macrophages in PDAC correlate with patient outcome; therefore we aim to 

develop strategies to reprogram macrophage functions to enable anti-tumor responses. Towards 

that end, we want to understand: (1) how tumor-associated macrophages (TAMs) polarize 
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toward pro-tumor or anti-tumor phenotypes, (2) what tumor-derived signals are responsible for 

programming TAM activities, (3) where do TAMs come from, and (4) how we can utilize the 

sources of TAMs to alter the myeloid compartment and the adaptive immune responses in PDAC.  
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Chapter 2: CSF1/CSF1R Blockade Reprograms 

Tumor-Infiltrating Macrophages and Improves 

Response to T Cell Checkpoint Immunotherapy in 

Pancreatic Cancer Models. 
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2.1 Summary 

Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to 

mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of 

immune escape in the tumor microenvironment include tumor-associated macrophages (TAM) 

and myeloid-derived suppressor cells (MDSC), which not only mediate immune suppression but 

also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, 

strategies to ablate the effects of these myeloid cell populations may offer great therapeutic 

potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma 

(PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally 

reprogram macrophage responses that enhance antigen presentation and productive anti-tumor T 

cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T 

cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial 

therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single 

agents to restrain PDAC growth, but that that combining these agents with CSF1R blockade 

potently elicited tumor regressions, even in larger established tumors. Taken together, our 

findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the 

tumor microenvironment under conditions that can significantly empower the therapeutic effects 

of checkpoint-based immunotherapeutics. 
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2.2 Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. 

Current therapies are ineffective at treating late stage disease. The few durable responses to 

therapy seen in PDAC patients are often associated with significant cytotoxic lymphocyte (CTL) 

infiltration into tumor tissue, suggesting that effective immunotherapy would hold promise to 

improve patient outcome (1, 2). However, attempts to use immunotherapeutics as single agents 

have achieved only limited clinical success (3, 4). While multiple factors can contribute to the 

resistance of PDAC to immunotherapies, one dominant player is the presence of a suppressive 

immune microenvironment. Critical drivers of this immunosuppressive microenvironment 

include tumor-associated macrophages (TAMs), monocytic myeloid-derived suppressor cells 

(Mo-MDSCs), and granulocytic MDSCs (G-MDSCs). These leukocytes can also promote tumor 

cell proliferation, confer resistance to cytotoxic stress, and facilitate metastatic dissemination (5, 

6). Therefore, high numbers of tumor-infiltrating myeloid cells often correlate with early local or 

metastatic relapse, leading to poor survival in pancreatic cancer patients (7-9). Therapeutics that 

can reprogram these myeloid responses might overcome immunosuppression to enhance 

responses to immunotherapy. Previous work by our group and others demonstrated that 

combining cytotoxic chemotherapy with the blockade of colony-stimulating factor 1 receptor 

(CSF1R), which is prominently expressed by monocytes, Mo-MDSCs, and macrophages, results 

in improved anti-tumor T cell responses (10-12). These data suggest that CSF1R blockade could 

be effective at alleviating local tumor-induced immune suppression and bolstering the response 

to immunotherapy.  

In this report, we investigate the mechanisms by which inhibition CSF1R signaling 

alleviates immune suppression. We demonstrate that CSF1/CSF1R blockade not only decreases 



	   57	  

the number of TAMs, but also reprograms remaining TAMs to support antigen presentation and 

bolster T cell activation within the tumor microenvironment. This in-turn leads to reduced 

immune suppression and elevated interferon responses, which restrain tumor progression. 

However, in response to reduced immune suppression programmed death 1 ligand 1 (PDL1) is 

up-regulated on tumor cells and cytotoxic T lymphocyte antigen 4 (CTLA4) on T cells. These 

checkpoint molecules limit the potential of CSF1R inhibition to stimulate anti-tumor immunity. 

While both programmed cell death protein 1 (PD1) and CTLA4 antagonists demonstrate limited 

ability to restrain PDAC growth in this mouse model, similar to reported efficacy as single 

agents in PDAC patients (3, 4). However, CSF1R blockade overcomes these limitations to 

achieve regression in even well-established tumors. These data suggest that reprogramming 

myeloid cell responses via CSF1/CSF1R blockade could improve the efficacy of checkpoint-

based immunotherapeutics. 
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2.3 Methods and Materials 

Pancreatic cancer tissue microarray cohort and analysis 

Tissue microarray (TMA) studies were conducted on surgically resected PDAC specimens from 

60 patients diagnosed in the Department of Pathology at Washington University. Patients 

underwent pancreaticoduodenectomy followed by adjuvant chemotherapy. Fifty-nine of the sixty 

patients did not receive neoadjuvant therapy. To assemble TMAs, clearly defined areas of tumor 

tissue were demarcated and two biopsies (1.0-mm diameter) were taken from each donor block. 

The Washington University School of Medicine ethics committee approved this study. Fully 

automated image acquisition was performed using an Aperio ScanScope XT Slide Scanner 

system with a 20× objective (Aperio Technologies) to capture whole-slide digital images. 

Fluorescent staining analysis was performed using MetaMorph software.  

 

Immunohistochemistry (IHC) 

 Tissues were fixed in 10% formalin, embedded in paraffin, and dehydrated in 70% ethanol. 

Five-mm-thick sections were deparaffinized in xylene, rehydrated in graded ethanol, and 

subjected to antigen retrieval by steam heating in Citra™ antigen retrieval solution (BioGenex). 

CSF1 was stained with clone 2D10 at 1:100 (Thermo) and detected using indirect 

immunofluorescence.  

 

Cell lines and constructs  

KC cells were derived from PDAC tumor tissue obtained from p48-CRE/LSL-KRas/p53flox/flox 

mice (backcrossed C57/B6, n=6 by speed congenic) by our laboratory. Kras-INK (KI) cells were 

obtained from Dr. Hanahan’s laboratory (Collisson et al., 2011; Roy et al., 2011). All cell lines 
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were negative for MAP and mycoplasma. Subsets of these cells were labeled with a polycistronic 

click beetle red luciferase-mCherry reporters.  

 

Orthotopic model and preclinical animal cohorts 

Syngeneic orthotopic PDAC tumors were established by surgical implantation, as previously 

described (Aaltonen et al., 2009). Briefly, we injected 200,000 cells in 50 µl Matrigel (BD-

Biosciences) into each mouse’s pancreas. Cohorts of mice were randomized into different 

treatment groups by either bioluminescence imaging on day 12 or gross palpation of the 

pancreas. Mice were treated with 50 mg/kg Gemcitabine (GEM; Hospira) by intravenous (i.v.) 

injection into the right retro-orbital sinus every 4–5 days. Preclinical studies were conducted with 

10–15 10-week-old female mice per group. Tumor burden was measured by establishing gross 

wet weight of the pancreas/tumor and comparing it to that of five parallel mice sacrificed at the 

beginning of treatment. All studies involving animals were approved by the Washington 

University School of Medicine Institutional Animal Studies Committee. 

 

CSF1R inhibitors, CSF1 neutralizing antibodies, and checkpoint antagonists 

CSF1 neutralizing antibody (clone 5A1, BioXCell) was administered via intraperitoneal (i.p.) 

injection every 4–5 days, with the 1st injection containing 1 mg and subsequent injections 0.5 mg. 

CSF1R inhibitors (CSF1Ri) were provided by Plexxikon Inc. PLX3397 is a selective bispecific 

inhibitor for c-Fms and the c-Kit receptor tyrosine kinases (Artis et al., 2005; DeNardo et al., 

2011; Tsai et al., 2008). GW2580 has been described in detail previously (Conway et al., 2005). 

Both GW2580 and PLX3397 were administered at 800 mg/kg in chow. CTLA4 and PD1 



	   60	  

antagonists (clones UC10-4F10 and RMP1-14, BioXCell) were given every 4–5 days at 250 and 

200 mg/dose, respectively.  

 

Flow cytometry analysis 

Single-cell suspensions were prepared from dissected pancreatic tumors by manual mincing 

using a scalpel, followed by enzymatic digestion with 3.0 mg/ml collagenase A (Roche) and 

DNase I (Sigma) for 30 min at 37°C with constant stirring. Digestion mixtures were quenched by 

10% fetal bovine serum (FBS), and filtered through 40-µm nylon strainers (Fisher Scientific). 

Cells were incubated for 10 min at 4°C with rat anti-mouse CD16/CD32 mAb (eBiosciences) at 

1:200 dilution. Cells were washed twice in PBS/BSA and incubated for 20 min with 100 µl of 

fluorophore-conjugated anti-mouse antibodies (CD3e (145-2C11), CD4 (6K1.5), CD8a (53-6.7), 

CD11b (M1/70), CD11c (N418), CD19 (MB19-1), Ly6C (HK1.4), CD45 (30-F11), CD115 

(AFS98), F4/80 (BM8), MHCII (M5/114.15.2), FoxP3 (FJK-16s), CD44 (IM7), CD69 (H1.2F3), 

PD1 (J43), PDL1 (MIH5), PDL2 (122), CTLA4 (UC10-4B9), IgG2α/κ (eBR2a), (all from 

eBioscience) and/or Ly6G (1A8, BioLegend), and CD206 (MR5D3, AbDSerotec) using the 

manufacturers’ recommended concentrations. Data acquisition was performed on the LSR-II 

system (BD Biosciences), and FlowJo software version 9.2 (Tree Star) was used for analysis. 

 

Quantitative reverse transcription-polymerase chain reaction (RT-PCR)  

Total tissue RNA was extracted from snap-frozen tumor tissue or lysed tissue culture cells using 

the E.Z.N.A. RNA Kit (Omega). cDNAs were synthesized using qScript cDNA SuperMix 

(QuantaBio). Quantitative real-time PCR Taqman primer probe sets specific for TBP, HPRT, 

GAPDH, CSF1R, CSF1, CCR2, CCL2, CCL5, CCL22, CXCL10, interferon (IFN)-α, IFNβ, 
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interleukin (IL)-1b, IL10, IL12p35, NOS2, ARG1, TGFβ, EGF, PDL1, PDL2, PD1, and CTLA4 

(Applied Biosystems) were used, and the relative gene expression was determined on a StepOne 

PlusTM 
Real Time PCR System (Applied Biosystems) using Taqman Gene Expression Master 

Mix (Applied Biosystems). The comparative threshold cycle method was used to calculate fold 

changes in gene expression, which were normalized to the expression of TBP, HPRT and/or 

GAPDH as reference genes.  

 

Flow cytometry analysis  

Single-cell suspensions were prepared from dissected pancreatic tumors by manual mincing 

using a scalpel, followed by enzymatic digestion with 3.0 mg/ml collagenase A (Roche) and 

DNase I (Sigma) dissolved in Dulbecco’s modified Eagle medium (DMEM; Gibco) for 40 min at 

37°C with constant stirring. Digestion mixtures were quenched by adding DMEM containing 

10% fetal bovine serum (FBS), and filtered through 40-µm nylon strainers (Fisher Scientific). 

Cells were incubated for 15 min at 4°C with rat anti-mouse CD16/CD32 mAb (eBiosciences) at 

1:200 dilution in phosphate-buffered saline (PBS) containing 1.0% bovine serum albumin (BSA; 

Sigma) to prevent nonspecific antibody binding. Cells were washed twice in PBS/BSA and 

incubated for 20 min with 100 µl of fluorophore-conjugated anti-mouse antibodies (CD3e (145-

2C11), CD4 (6K1.5), CD8a (53-6.7), CD11b (M1/70), CD11c (N418), CD19 (MB19-1), Ly6C 

(HK1.4), CD45 (30-F11), CD115 (AFS98), F4/80 (BM8), MHCII (M5/114.15.2), FoxP3 (FJK-

16s), CD44 (IM7), CD69 (H1.2F3), PD1 (J43), PDL1 (MIH5), PDL2 (122), CTLA4 (UC10-

4B9), IgG2α/κ (eBR2a), (all from eBioscience) and/or Ly6G (1A8, BioLegend), and CD206 

(MR5D3, AbDSerotec) using the manufacturers’ recommended concentrations. This was 

followed by two washes with PBS/BSA. Either 7-AAD (BD Biosciences) or Live/Dead Blue 
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(Invitrogen) was used to identify dead cells. Data acquisition was performed on the LSR-II 

system (BD Biosciences), and FlowJo software version 9.2 (Tree Star) was used for analysis.  

 

Fluorescence-Activated Cell Sorting (FACS)  

Cell suspension and antibody staining were prepared as described above. Sorting was performed 

using the FACSAria-II cell sorter (BD Biosciences) at the FACS Core of Washington University 

Department of Pathology and Immunology. For gene expression analysis, cells were directly 

sorted into the TRK lysis buffer (Omega). For all sorting experiments, post-sort analyses were 

performed to ensure >90% purity.  

 

Gene Signature Survival Analysis  

The full gene lists were matched for human-mouse ortholog by the provided gene symbols for 

human genome annotation (gene symbol and entrez ID); some genes are missing the annotation. 

The genes with human genome annotation were matched in the public datasets and their 

expression was matched with outcomes. We used GSE1501 for survival analysis. For each 

individual gene, the Kaplan-Meier survival curves on the binary gene expression (dichotomized 

by median as low/high) were generated with log-rank test p-values. Top significant individual 

genes log rank p-value included ZBP1, OAS3, PTPN6, SFPI1, IRF9, CDH13, SIGLEC1, STAT1, 

SLC11A1, SH2D2A etc. The up- regulated genes and the down-regulated genes were each 

centered by mean and scaled by standard deviation. The averaged expression of down-regulated 

genes (all available genes or the significant genes only from the previous individual gene 

analysis based on either log-rank test p or Wald test P<0.05) were separately calculated. Each 

sample was categorized into one of the two groups (low, high by median averaged gene 
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expression), then into one of the three groups (low, medium, high by the 33.33% and 66.67% 

quantile of the averaged gene expression). The resulting 2 groups and 3 groups classification was 

each associated with overall survival (OS).  
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2.4 Results 

2.4.1 CSF1 is overexpressed by human PDAC cells. 

Previously, we reported that inhibition of CSF1/CSF1R signaling could improve the 

efficacy of chemotherapy in murine PDAC models by enhancing chemotherapy-induced anti-

tumor immunity (Mitchem et al., 2013). However, the mechanisms by which inhibition of 

CSF1/CSF1R signaling regulates anti-tumor immunity are not well understood. To determine the 

cellular sources of CSF1 and CSF1R in human pancreatic cancer patients, we analyzed TMAs 

constructed from 77 cases of invasive PDAC and 4 samples of normal pancreatic tissue. IHC 

staining showed that CSF1 is frequently, but not exclusively, expressed by malignant PDAC 

cells (Figure 2.1A). In addition, tumors frequently had elevated expression of CSF1 compared to 

normal tissue. PDAC cells in 70% of tumor specimens exhibited moderate to high levels of 

CSF1 expression (Figures 2.1A–C). By contrast, CSF1R was frequently detected in the tumor 

stroma, while only ~10% of the tumors examined had CSF1R expression in the epithelial 

compartment (Figures 2.1A and D). These observations are consistent with other reports (Jiao et 

al., 2012; Pyonteck et al., 2011) and suggest that PDAC tumor cells frequently produce high 

levels of CSF1.  

 

2.4.2 Inhibition of CSF1R signaling reprograms the tumor microenvironment. 

In order to understand the impact of CSF1R signaling on the tumor microenvironment, 

we compared the gene expression profile of PDAC tumor tissue following treatment with either 

CSF1R inhibitors (CSF1Ri) or vehicle. Towards this end, we orthotopically implanted KI PDAC 

tumor cells into syngeneic mice. This cell line produces high levels of CSF1 but does not express 
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CSF1R (Mitchem et al., 2013). Starting on day 14 post-implantation, we treated mice with either 

vehicle or the CSF1R tyrosine kinase inhibitor, PLX3397. Additional details on PLX3397 can be 

found in the Methods section and published elsewhere (Artis et al., 2005; Conway et al., 2005; 

Schubert et al., 2007; Tsai et al., 2008). Eight days of CSF1Ri treatment resulted in a significant 

reduction in the number of tumor-infiltrating CD11b+Ly6G−Ly6CLoF4/80HiMHCII+ 

macrophages and CD11b+Ly6G−Ly6CHi monocytes/ Mo-MDSCs, but not 

CD11b+Ly6G+Ly6C+MHCIILow G-MDSCs (Figure 2.2A, Figure 2.8). Microarray analyses of 

whole tumor tissue mRNA expression revealed 204 downregulated and 158 upregulated genes 

following CSF1Ri treatment (Figure 2.2B, Table S1). As expected, expression of genes 

indicative of macrophage infiltration, including Cd68, Mrc1, Msr1, and Csf1r, were decreased in 

CSF1Ri-treated tumors (Figure 2.2D). The list of downregulated genes was enriched for 

molecules involved in “inflammatory responses, chemotaxis, myeloid leukocyte-mediated 

immunity, and proteolysis,” consistent with the decreased number of infiltrating macrophages 

(Figures 2.2C–D). The list of upregulated genes was enriched for molecules involved in 

“antigen presentation, allograft rejection, interferon responses, and TH1 immunity” (Figure 

2.2C). This is consistent with the idea that CSF1R blockade can overcome immune suppression. 

Corresponding to these altered pathways, genes indicative of cytotoxic T lymphocyte (CTL) 

responses (Ifng, Cd3e, Cd8a, and Prf1), T cell recruitment (Cxcl10, Ccl3, and Ccl4), and 

interferon responses (e.g. Ifng, Stat1, Irf1, and Irf9) were upregulated (Figure 2.2E). Array 

results were also validated by quantitative real-time PCR (qRT-PCR) on a second set of samples 

(Figure 2.2F). To determine the impact of these alterations, we applied these gene lists to 

existing gene expression datasets from PDAC patients (Stratford et al., 2010) and found that the 

core elements of the downregulated gene list were indicative of poor clinical outcomes (Figure 
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2.2G). Taken together, these results suggest that: (1) inhibition of CSF1R signaling in the 

stromal compartment decreases myeloid responses and reprograms the tumor microenvironment 

to support T cell-mediated anti-tumor immunity and (2) these changes could improve patient 

outcomes.  

 

2.4.3 CSF1/CSF1R signal blockade selectively kills CD206Hi TAMs.  

To determine how inhibition of CSF1/CSF1R signaling impacts myeloid responses, we 

treated tumor-bearing mice with CSF1 neutralizing antibodies for 6, 12, 24, or 48 hours or 8 days 

and analyzed tumor-infiltrating myeloid cell composition and cell death at these time points. 

Within the first 6 hours of aCSF1 treatment, total TAM numbers began to decrease. By 8 days, 

TAM numbers had decreased by ~60% (Figure 2.3B). TAMs are a heterogeneous population of 

macrophages with diverse biological activities (Mantovani, 2008; Mantovani and Sica, 2010; 

Martinez et al., 2008; Movahedi et al., 2010; Qian et al.). While classical activation of 

macrophages can restrain cancer development, alternative activation often plays a pro-

tumorigenic role (Martinez et al., 2009; Mosser and Edwards, 2008). Distinct surface markers 

have been used to distinguish between classically and alternatively activated macrophages. 

Murine PDAC tumors contain a distinct subset of CD206Hi TAMs (Figures 2.3A, 2.8), and their 

counterparts in human pancreatic cancer have been associated with poor clinical outcomes (Ino 

et al., 2013). Quantification of CD206Hi and CD206Low TAM subsets revealed that aCSF1 

treatment for 8 days led to a >90% depletion of CD206Hi TAMs, while CD206Low TAMs 

decreased by only ~45% (Figures 2.3C-D). Similar results were seen following CSF1Ri 

treatment (Figure 2.3G). The loss of CD206Hi TAMs could result from either preferential killing 

of this TAM subset or altered CD206 expression. To distinguish between these possibilities, we 
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analyzed the kinetics of macrophage cell death. We found that in PDAC tumors, CD206Hi TAMs 

experienced significantly higher levels of cell death following aCSF1 treatment than CD206Low 

TAMs (Figures 2.3C-E). These data suggest that CD206Hi TAMs are more sensitive to the 

CSF1R signal blockade. Consistent with this differential sensitivity, we found that CD206Hi 

TAMs express higher levels of CSF1R (Figure 2.3F). In addition, while total Mo-MDSCs 

(CD11b+/Ly6G-/Ly6C+) did not demonstrate decreased infiltration until after 8 days of aCSF1 

treatment, CD206Hi Mo-MDSCs were markedly reduced as early as 12 hours after CSF1 

neutralization (Figure 2.9A). By contrast, the number of CD206Low Mo-MDSCs, 

CD11b+/Ly6G+/Ly6C-/MHCII+ mature granulocytes, and CD11b+/Ly6G+/Ly6C+ G-MDSCs 

remained unaffected until after 8 days of CSF1/CSF1R blockade (Figure 2.9B). Taken together, 

these data suggest that the blockade of CSF1/CSF1R signaling preferentially, but not exclusively, 

depletes CD206Hi TAMs and CD206Hi Mo-MDSCs in pancreatic tumors.  

 

2.4.4 CSF1/CSF1R signal blockade reprograms TAMs.  

Despite extensive loss of macrophages and Mo-MDSCs, 40-50% of TAMs remain after 

αCSF1 or CSF1Ri treatment. To determine whether CSF1 blockade reprograms the remaining 

macrophages to support anti-tumor activities, we FACS sorted TAMs from 8-day vehicle or 

aCSF1-treated mice bearing established KI tumors and compared their gene expression profiles. 

TAMs from aCSF1-treated tumors displayed reduced expression of immunosuppressive 

molecules, including Pdcd1lg2, Il10, Arg1, Tgfb1and Ccl22. By contrast, anti-tumor immunity 

genes, such as Il12a, Ifna, Ifnb1, Ifng, Cxcl10, and Nos2, were upregulated (Figure 2.3H). We 

also observed markedly increased surface expression of MHCII after CSF1 or CSF1R inhibition 
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(Figure 2.3I). Taken together, these data suggest that the CSF1/CSF1R blockade reprograms 

remaining TAMs to support anti-tumor interferon responses and T cell activities. 

 

2.4.5 CSF1/CSF1R signal blockade alters the function of TAMs and dendritic cells.  

Based on the observed differences in cytokine profiles among TAMs, we predicted that 

CSF1/CSF1R blockade might also alter the ability of macrophages to suppress T cell functions. 

To address this hypothesis, we assessed the immunosuppressive activity and antigen presentation 

capacity of macrophages in PDAC tumors from mice following CSF1 blockade. Consistent with 

the reduced expression of immunosuppressive factors (Figure 2.3H), we found that 

fluorescence-activated cell sorted TAMs from 8-day aCSF1-treated mice had significantly 

reduced ability to block CD8+ T cell activation in ex vivo assays (Figure 2.4A). These data 

suggest that the TAMs that remain after CSF1 blockade have reduced immunosuppressive 

activity.  

We also analyzed how CSF1 blockade might impact the number and function of antigen 

presenting cells (APCs) in the tumor microenvironment. To identify potential APCs in PDAC 

tumors, we orthotopically implanted mCherry-labeled KI tumor cells. This model allowed us to 

identify potential APCs by their uptake of tumor antigens, based on their mCherry fluorescence 

(Figure 2.4B, (Engelhardt et al., 2012)). We were able to detect tumor-derived mCherry signal 

in granulocytes, monocytes, TAMs, and dendritic cells (DCs) (Figure 2.4B). The highest levels 

of mCherry uptake were observed in TAMs and a subset of CD11blow/-/Ly6G/C-/CD19-

/CD11c+/MHCII+ cells, presumably lymphoid-like DCs (LyDCs). CSF1/CSF1R blockade did not 

affect mCherry uptake. Interestingly, unlike in TAMs, CSF1/CSF1R blockade significantly 

increased the number of tumor-infiltrating LyDCs and their surface expression of MHCII 
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(Figure 2.4C, and Figures 2.9C-E). Because of the high level of tumor antigen uptake by 

TAMs and LyDCs, we tested the ability of these two cell types to present antigen to naïve CD8+ 

T cells and stimulate their proliferation. We isolated TAMs and LyDCs from orthotopic KC 

tumors obtained from mice treated with either vehicle or aCSF1 for 8 days. These leukocytes 

were then loaded with SIINFEKL peptide and assessed for their ability to activate OT1 T cells. 

While macrophages and LyDCs isolated from vehicle-treated tumors had very limited ability to 

activate T cells, aCSF1 treatment significantly enhanced the capacity of these two cell types to 

induce CD8+ T cell proliferation (Figure 2.4D). Taken together, these data suggest that CSF1 

blockade alleviates immunosuppressive activities and enhances APC potential in both TAMs and 

tumor-infiltrating LyDCs.  

 

2.4.6 CSF1/CSF1R blockade modestly increases anti-tumor T cell activity.  

To further understand how the blockade of CSF1/CSF1R signaling might reprogram the 

tumor microenvironment to regulate tumor progression, we assessed alterations in tumor-

infiltrating T lymphocytes and tumor growth following CSF1 or CSF1R blockade in established 

murine PDAC tumors. Mice bearing established (12 days, ~1cm) orthotropic KI or PAN02 

tumors were treated with aCSF1 IgGs or CSF1Ri. Tumor progression was modestly reduced by 

aCSF1 or CSF1Ri treatment as a single agent (Figures 2.5A–C). This reduction in tumor growth 

correlated with increases in CD3+CD8+ CTLs and CD3+CD4+ effectors T cells, decreases in 

CD4+ Foxp3+ T regulatory cells (TRegs), and significantly improved effector-to-TReg ratios 

(Figures 2.5D–E). While the majority of tumor-infiltrating CD8+ CTLs had a CD69+, CD44+, 

and CD62L- activated phenotype, CSF1R blockade led to a modest increase in both the number 

of CD69+ CD8+ T cells (65% to 76%) and the level of CD44 expression (Figure 2.5F). The 
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observed increase in T cell numbers and enhancement of activation status correspond to our 

results from gene expression profiling in Figure 1.2.  

 

2.4.7 CSF1/CSF1R signal blockade alters T cell checkpoint signaling. 

Although the CSF1/CSF1R blockade enhanced T cell infiltration, we hypothesized that 

anti-tumor immunity might be limited via the engagement of T cell checkpoints. We found that 

approximately 70% of activated CTLs had a high level of PD1 expression, which was unaffected 

by CSF1R blockade. By contrast, CTLA4 expression on CD8+ CTLs was significantly 

upregulated by CSF1R inhibition (Figure 2.5F). Along these lines, our array analysis (Figure 

2.2) showed that Cd274 (PDL1) was significantly upregulated following CSF1R blockade. We 

verified these results using qRT-PCR, and found that both Cd274 and Ctla4, but not Pdcd1lg2 

(PDL2), are upregulated in tumor tissues following CSF1 or CSF1R blockade (Figures 2.6A–B). 

These data suggest that while CSF1 blockade reprograms the tumor microenvironment to 

enhance effector T cell infiltration, engagement of T cell checkpoints is also enhanced.  

To determine the cellular sources of these molecules, we analyzed PDL1, PDL2, and PD1 

expression on tumor cells and tumor-infiltrating myeloid cells from vehicle- or CSF1Ri-treated 

mice. We found that TAMs expressed high levels of PD1, PDL1, and PDL2, but consistent with 

a decreased immunosuppressive capacity, tumor-infiltrating macrophages from CSF1Ri-treated 

mice had markedly decreased PDL2 and PD1 expression (Figures 2.6C, 2.6F). CSF1Ri 

treatment also decreased the total number of PD1- and PDL2-positive TAMs (Figure 2.6D). 

Similar effects were also seen with aCSF1 treatment (data not shown). Neither Mo-MDSCs nor 

G-MDSCs expressed significant levels of PDL2. While CSF1R blockade did not alter PD1 or 
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PDL1 expression in G-MDSCs, PDL1 expression was modestly elevated in Mo-MDSCs 

following CSF1Ri treatment.  

Expression of PDL1, PD1, and PDL2 has been reported on human PDAC tumor cells, 

potentially allowing them to evade immune surveillance by suppressing T cell function. To 

determine if CSF1R blockade affects the expression of these molecules on PDAC cells, we used 

mCherry-expressing KI or KC cells to identify tumor cells in vivo. We found that both KI and 

KC cells express PDL1 at modest levels in vivo, but neither cell line expresses PDL2 or PD1 

(Figures 2.6C, 2.6F, and not shown). However, following CSF1 or CSF1R blockade, the 

number of PDL1+ tumor cells and overall expression level of PDL1 was markedly upregulated 

on PDAC tumor cells (Figure 2.6C, 2.6E). These observations correspond with the increased 

mRNA levels of Cd274 identified by array analysis and qRT-PCR validation (Figure 2.2, 2.6A). 

Taken together, these results suggest that while CSF1/CSF1R blockade reprograms macrophage 

responses to bolster CTL responses, this reprogramming also leads to upregulation of PDL1 on 

tumor cells and CTLA4 on T cells. These checkpoints will likely limit the efficacy of observed 

anti-tumor immune responses. 

 

2.4.8 CSF1/CSF1R blockade enhances responses to checkpoint immunotherapy. 

Based on the above data, we hypothesized that CSF1 or CSF1R blockade could enhance 

PDAC responses to PD1- and/or CTLA4-antagonist based immunotherapy. To assess this 

hypothesis, we treated mice bearing established KI tumors with aPD1 or aCTLA4 with or 

without CSF1Ri in combination with gemcitabine (GEM). PD1 and CTLA4 antagonists in 

combination with GEM had only limited efficacy at blunting the progression of established 

tumors (Figures 2.7A–B). By contrast, the combination of CSF1R blockade with either PD1 or 
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CTLA4 antagonists reduced tumor progression by more than 90%. Since combined PD1 and 

CTLA4 antagonist therapy is being tested clinically for the treatment of both melanoma and 

PDAC, we also tried this combined therapeutic approach. In the absence of chemotherapy, even 

combined aPD1/aCTLA4 treatment only limited tumor progression by ~50%. However, the 

addition of CSF1R blockade to aPD1/aCTLA4 treatment completely blocked tumor progression 

and even regressed established tumors by 15% (Figure 2.7C). When CSF1 blockade was 

combined with aPD1/aCTLA4 and GEM treatment, we observed complete tumor regression in 

30% of animals and an average tumor regression of ~85% (Figure 2.7D). Similar results were 

seen in orthotopic KC tumors, and when the less potent CSF1R inhibitor, GW2850, was used 

(Figures 2.7B, 2.10A-B). Analysis of T cell responses following combined therapy with aCSF1 

and aPD1/aCTLA4 antagonists demonstrated increased CD8+ CTL and CD4+ effector T cell 

infiltration and decreased CD4+ Foxp3+ TReg numbers (Figure 2.7E). In addition, the number of 

TAMs, Mo-MDSCs, and G-MDSCs decreased following this combined therapeutic regimen 

(Figure 2.7F).  

To determine if alterations in tumor burden in CSF1Ri treatment mice were due to 

increased T cells responses we conducted CD4 and CD8 T depletion studies and found that 

CSF1R blockade no longer improved checkpoint-based therapy (Figure 2.7G). Taken together, 

these results suggest that CSF1/CSF1R blockade improve checkpoint immunotherapy by 

enhancing CD4+ and CD8+ T cell activities.  
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2.5 Discussion 

In this report, we show that blockade of CSF1/CSF1R signaling in pancreatic tumors 

depletes CD206Hi TAMs and reprograms remaining macrophages to support anti-tumor 

immunity. The blockade alone modestly enhances anti-tumor interferon responses, promotes 

CTL infiltration, and slows tumor progression. However, the therapeutic effect is limited by the 

induction of T cell checkpoint molecules, including PDL1 on tumor cells and CTLA4 on T cells. 

Addition of the CSF1/CSF1R blockade markedly improved the efficacy of aPD1 and aCTLA4 

checkpoint immunotherapy and led to the regression of even well-established PDAC tumors. 

These data suggest that CSF1/CSF1R signaling may be an effective therapeutic target to 

reprogram the immunosuppressive microenvironment of human PDAC tumors and enhance the 

efficacy of immunotherapy.  

Recent data from several groups suggest that inhibition of CSF1R signaling alters the 

immunologic responses of tumor-infiltrating macrophages in several cancer types (DeNardo et 

al., 2011; Mitchem et al., 2013; Mok et al., 2013; Priceman et al., 2010; Pyonteck et al., 2013; 

Strachan et al., 2013). Mok et al. targeted CSF1R signaling using the compound PLX3397 in a 

murine melanoma model; PLX3397 treatment depleted >80% of TAMs, leaving behind a small 

population of MHCIIHi macrophages (Mok et al., 2013). These effects led to increased efficacy 

of adoptively transferred T cell based therapies. These data agree with our report here. In 

addition, recent work by Pyonteck et al. has shown that blockade of CSF1R signaling, using the 

small molecule inhibitor BLZ945, significantly blunts murine glioma tumor growth by 

reprogramming macrophage responses (Pyonteck et al., 2013). In contrast to pancreas, 

melanoma and breast models, macrophage numbers in these murine glioma studies were not 

reduced. Instead, TAM survival was sustained by tumor-derived factors. However, in glioma, 
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CSF1R blockade impairs the tumor-promoting functions of TAMs and regresses established 

tumors. Taken together, these results suggest that CSF1/CSF1R signaling can regulate both the 

number and the function of TAMs, but these activities may be highly dependent on tumor-

type/tissue-specific factors.  

One possible mechanism by which CSF1Ri reprograms the remaining TAMs is that 

CSF1R signaling may promote tumor-promoting macrophage phenotypes, while its blockade 

polarizes TAMs into the anti-tumor phenotype. In a study by Fleetwood et al. , macrophages 

cultured in CSF1 or CSF2 demonstrated different cytokine profiles and transcription 

activity(Fleetwood et al., 2007). For example, in response to lipopolysaccharide, CSF2-derived 

macrophages preferentially produce IL-6, IL-12, and TNFα, while CSF1-derived macrophages 

produce IL-10 and CCL-2, but not IL-12. These data suggest that the exact cytokine milieu 

differentially program macrophages to play diverse roles. Intriguingly PDAC tumors can also 

produce high levels of CSF2 (Bayne et al., 2012; Pylayeva-Gupta et al., 2012), which could 

reprogram TAMs toward DC-like phenotypes when unopposed by CSF1R signaling.  

Alternative to TAMs being reprogrammed by CSF1Ri, another possible mechanism is 

that CSF1R signaling blockade selects for a subset of tumor-restraining macrophages that are 

insensitive to the CSF signal kills-off a subset of TAMs that have a pro-tumor phenotype. In 

many physiological and pathological settings, including cancers, macrophages are composed of 

heterogeneous subsets of populations with distinct functions (Movahedi et al., 2010). These 

subsets may depend on different factors for their survival, proliferation, and effector functions. 

Selection pressure due to CSF1 signal blockade may have enriched for subsets of anti-tumor 

macrophages in PDAC tissue that are less dependent on CSF1 signaling for their survival. Our 

analysis of cell death in CD206HiMHCIILow vs. CD206LoMHCIIHi TAM sensitivity to aCSF1 IgG 
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supports this hypothesis (Figure 2.3B). While both CD206Hi and CD206Low TAM populations 

had detectable cell death upon CSF1 neutralization, the CD206Hi populations were preferentially 

depleted. The CD206Hi TAM subset had significantly higher CSF1R expression levels, 

suggesting that this population may be more dependent on the CSF1 signal. Taken together, the 

heterogeneity of macrophages within the tumor tissue suggests that subsets of TAMs can be 

targeted to modulate the tumor microenvironment and enhance tumor elimination. 

CD206 is expressed in many subsets of myeloid cells other than macrophages, including 

immature dendritic cells and monocytes (Van Dyken and Locksley, 2013). Whether CD206 

expression is correlated to differential activation status in these cell types is not known. 

Interestingly, Tie2+ monocytes almost uniformly express CD206 (Pucci et al., 2009). It remains 

to be seen whether the loss of CD206Hi tumor-infiltrating monocytes upon αCSF1 treatment 

(Figure 2.9A) involves the Tie2+ monocytes and/or affects tumor vasculature. 

Although CSF1/CSF1R blockade enhances the anti-tumor activity of myeloid cells and T 

cell responses, its efficacy can be blunted by upregulation of immune checkpoint molecules, 

especially PDL1. While tumor intrinsic pathways have been reported to drive PDL1 expression 

in tumor cells (Le et al., 2013), multiple lines of evidence suggest that PDL1 expression by 

epithelial tumors is an adaptive response to interferon signaling from tumor stroma. Several 

groups have reported that IFNγ and IFNα directly lead to the upregulation of PDL1 (Chen et al., 

2012; Rowe et al., 2012; Spranger et al., 2013; Terawaki et al., 2011). Consistent with these 

studies, in vitro treatment with recombinant IFNγ markedly upregulated PDL1 expression in our 

PDAC cell lines (not shown). Given the elevated expression of interferons and interferon 

response genes in CSF1Ri-treated PDAC tumor tissue, we reason that CSF1Ri-mediated 
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interferon production might drive the upregulation of PDL1 in PDAC cells, an inherent 

limitation of this therapy. 

Even though T cell checkpoint inhibitors alone have achieved impressive clinical benefits 

in some other cancers, particularly melanoma (Hamid et al., 2013; Wolchok et al., 2013), their 

application in pancreatic cancer as single agents has had limited efficacy (Royal et al., 2010). 

This is potentially due to the immunosuppressive microenvironment of PDAC tissue, which 

could be alleviated by therapeutic strategies that reprogram dominant myeloid responses to allow 

for effective checkpoint therapy.  
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2.6 Figures  

	  

Figure 2.1. PDAC tumors overexpress CSF1.  

A–B) Immunohistochemical analysis of CSF1 expression in normal pancreas and PDAC tissue. 

Representative immunofluorescent images are shown. C–D) Stratification of patient PDAC 

samples based on expression levels of CSF1 and CSF1R (n=4 normal and 77 PDAC). 
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Figure 2.2. CSF1/CSF1R blockade reprograms the tumor immune microenvironment.  

A) Leukocyte infiltration in KI tumors from mice treated with vehicle or CSF1Ri (PLX3397) for 

8 days. The frequency of CD11b+CD3/19−Ly6G−Ly6CLoF4/80HiMHCII+ macrophages, 
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CD11b+Ly6G−Ly6CHi Mo-MDSC, and CD11b+Ly6GHiLy6C+MHCIIlow/- G-MDSC subsets is 

depicted as the mean percentage over total live cells.  

B) Cluster analysis of differential gene expression (Table S1) in vehicle- and CSF1Ri-treated 

tumors. 

C) Table of biologic processes enriched in “upregulated” or “downregulated” genes (DAVID 

analysis).  

D–E) Selected gene sets are displayed with associated biological activities.  

F) qRT-PCR analysis of orthotopic KI tumor tissue following treatment with vehicle or CSF1Ri 

for 8 days. Graph depicts mean fold change compared to vehicle.  

G) Kaplan Meier analysis of patient cohorts stratified by expression level of genes down-

regulated from the analysis in (B). 

In all panels n=4-6 mice/group and * denotes p<0.05 (Mann-Whitney U-test), unless specified. 
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Figure 2.3. CSF1/CSF1R signaling blockade reprograms TAM response. 

A) Representative flow cytometry plots with gating strategy to identify mature granulocytes, G-

MDSCs, Mo-MDSCs, and TAM subsets.  

B-D) Frequency of total, CD206Hi and CD206Low TAMs in orthotopic KI tumors treated with 

aCSF1 for 6 hours–8 days. Mean percentage of macrophages over total cells is depicted.  

C) Representative analysis of MHCII and CD206 expression in TAMs following 8-day treatment 

with vehicle or aCSF1.  

E) Analysis of dead (live/dead blue dye+) CD206Hi and CD206Low TAMs in PDAC tumors from 

(B).  

F) CSF1R expression by MFI in CD206Hi and CD206Low TAMs in vehicle-treated mice from (B).  

G) CD206 expression by MFI and CD206Hi TAM number following 8 days of aCSF1 treatment. 

H) qRTPCR analysis on CD11b+Ly6G/C-F4/80+MHCII+ TAMs sorted from KI tumors 

following 8-day treatment with vehicle or aCSF1. 

I) MHCII expression by MFI in TAMs from (H). 

All graphs depict means values or normalized fold change +/-SEM, n=4-6 mice/group and * 

denotes p<0.05 by unpaired t-test or Mann-Whitney U-test. 
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Figure 2.4. CSF1/CSF1R signaling blockade enhances TAM support for CTL responses.  

A) Analysis of T cell suppression by TAMs from vehicle- or aCSF1-treated mice. TAMs were 

isolated by FACS and assayed for their ability to suppress splenic CD8+ T cell proliferation 

following anti-CD3/CD28 stimulation. The mean number of proliferation cycles is depicted after 

70 hours. Representative data from two replicate experiments (n=3 mice/group).  

B) Flow cytometry analysis of tumor-derived mCherry fluorescence in tumor-infiltrating 

leukocytes. Representative plots from 5 mice are depicted.  

C) Frequency of CD11b+/Ly6G-/Ly6CLo/F4/80Hi/MHCII+ TAMs and CD11bLow/-/Ly6GC-/CD19-

/CD11c+/MHCII+ Lymphoid DCs in orthotopic KI tumors after 8 days of aCSF1 or CSF1Ri 

treatment. 
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D) TAMs and LyDCs were isolated by FACS from mice in (C), loaded with SIINFEKL peptide, 

co-cultured with splenic OT1 cells for 18 hours. OT1 proliferation was measured by CFSE 

dilution. Results reflect two triplicate experiments using 3 mice/group.  

All graphs depict mean values +/- SEM. * denotes p<0.05 by unpaired t-test. 
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Figure 2.5. CSF1/CSF1R blockade bolsters T cell responses. 

A–C) Mice bearing established orthotopic KI or PAN02 tumors were treated with vehicle, 

CSF1Ri, or aCSF1. Tumor burden is displayed as mean tumor weight (n=10–15 mice/group), 

normalized to five mice sacrificed at the start of treatment (“RX Start”).  
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D–E) Analysis of tumor-infiltrating CD3+CD8+CTLs, CD3+CD4+Foxp3- effector T cells, and 

CD4+Foxp3+ Treg from mice in (A–B) is depicted as mean percentage over total live cells (n=6 

mice/group). The mean effector (CTL + CD4+ effector)-to- TReg ratio is also depicted.  

F) CD69, CD44, CTLA4, and PD1 expression in CD3+CD8+CTLs from mice in (A) is depicted 

as both MFI and percentage of positive cells. Representative plots are depicted.  

* denotes p<0.05 by Mann-Whitney and n=5-6 in all panels. 
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Figure 2.6. CSF1/CSF1R signaling blockade elevates PDL1 expression in tumor cells.  

A–B) qRT-PCR analysis of KI tumors following 8-day treatment with vehicle, CSF1Ri or aCSF1.  

C) PDL1 and PDL2 expression in denoted tumor-infiltrating myeloid cells from orthotopic KI 

tumors treated with vehicle or CSF1Ri. Representative FACS plots and MFI are depicted.  
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D) Mean percentage of PDL1+ and PDL2+ TAMs and monocytes.  

E) Mean percentage of PDL1+ PDAC cells in orthotopic KI tumors from mice treated with 

vehicle, CSF1Ri, or aCSF1. PDAC cells were identified as CD45- mCherry+.  

F-G) PD1 expression in tumor-infiltrating myeloid cells following vehicle or CSF1Ri treatment. 

Representative expression plots, MFI and positive cells percentage data are depicted.  

All graphs depict means values +/-SEM, n=3-7 mice/group. * denotes p<0.05 by unpaired t-test. 
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Figure 2.7. CSF1/CSF1R signaling blockade enhances T cell checkpoint immunotherapy.  

A–D) Mice bearing orthotopic KI or KC tumors were treated with vehicle, CSF1Ri, or aCSF1, 

+/- GEM +/- aPD1, and +/-aCTLA4. The tumor burden is displayed as mean tumor weight 

(n=10–15 mice/group), normalized to five mice sacrificed at the start of treatment (“Start”).  

E) Frequency of tumor-infiltrating CD3+CD8+CTLs, CD3+CD4+Foxp3- T effectors, and Foxp3+ 

CD4+ TRegs from mice in (D) is depicted as mean percentage of total live cells (n=6 mice/group). 

Mean effector (CTL + CD4+ effector) to TReg ratio is depicted.  

F) Flow cytometric analysis of tumor-infiltrating CD11b+Ly6C/G-F4/80+MHCII+ TAMs, 

CD11b+Ly6C+Ly6G- Mo-MDSCs, and CD11b+ Ly6C+Ly6G+MHCII- G-MDSCs from mice in 

(D) is depicted as mean percentage of total cells (n=6 mice/group).  
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G) Mice bearing orthotopic KI tumors were treated with GEM, aPD1, aCTLA4, vehicle or 

aCSF1, +/- aCD4 and aCD8. The tumor burden is displayed as mean tumor weight (n=10-15 

mice/group). 

All graphs depict mean values +/- SEM and * denotes p<0.05 by unpaired t-test and/or Mann-

Whitney U-test. 
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Figure 2.8. Flow cytometric analysis of leukocyte infiltration in orthotopic PDAC tumors.  
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A) Representative FACS plots with gating strategy to identify mature granulocytes 

(CD11b+Ly6G+Ly6C-MHCII+), G-MDSCs (CD11b+Ly6G+Ly6C+), Mo-MDSCs (CD11b+Ly6G-

Ly6C+), and CD206Lo and CD206Hi TAMs (CD11b+Ly6G/C-F4/80+MHCII+).  

B) CD206 expression in TAM subsets. 
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Figure 2.9. CSF1 blockade depletes CD206+ Mo-MDSCs and upregulates MHCII 

expression in Lymphoid DCs.  

A) Frequency of CD206Hi Mo-MDSCs in orthotopic KI tumors from mice treated with aCSF1 

for 6 hours to 8 days.  

B) Frequency of Mo-MDSCs, G-MDSCs, and mature granulocytes in KI tumors from (A).  
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C) Flow cytometry analyses of MHCII, CD11c, and F4/80 expression in mCherryLow and 

mCherryHi tumor-infiltrating LyDCs from mCherry+ KI tumor-bearing mice. Representative 

plots from 6 mice are depicted.  

D) Flow cytometry analyses of MHCII, CD11c, and F4/80 expression in tumor-infiltrating 

LyDCs from orthotopic KI tumors following vehicle or CSF1Ri treatment.  

E) MHCII expression in tumor-infiltrating LyDCs from mice in (D) is quantified as MFI. 
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Figure 2.10. CSF1R signaling blockade enhances T cell checkpoint immunotherapy. 

A-B) Mice bearing orthotopic KC (A) or KI (B) tumors were treated with vehicle, PLX3397, 

GW2850, +/- GEM +/- aPD1 and/or aCTLA4. The tumor burden is displayed as mean tumor 

weight (n=10-15) compared to that of 5 mice sacrificed at the start of treatment (“Start”).   
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3.1 Summary 

Tumor-associated macrophages (TAMs) are essential components of the cancer 

microenvironment and play critical roles in the regulation of tumor progression. Optimal 

therapeutic intervention requires in-depth understanding of the sources that sustain macrophages 

in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic 

ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-

resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-

resident macrophages originate during embryonic development and expand through in situ 

proliferation during tumor progression. While monocyte-derived TAMs play more potent roles in 

antigen presentation, embryonically derived TAMs exhibit a pro-fibrotic transcriptional profile, 

indicative of their role in producing and remodeling extracellular matrix molecules. Collectively, 

these findings uncover the heterogeneity of TAM origin and functions, and could provide 

therapeutic insight for PDAC treatment. 
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3.2 Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases. 

Current therapeutic interventions are extremely ineffective in PDAC treatment, partly due to 

components in the microenvironment that promote tumor growth. Two hallmarks of the PDAC 

microenvironment are the dense fibrotic stroma and extensive infiltration of myeloid cells, 

including macrophages. Tumor-associated macrophages (TAMs) are one of the most abundant 

immune cells infiltrating PDAC. TAMs promote tumor growth by releasing growth factors, 

inhibiting anti-tumor adaptive immune responses, modifying angiogenesis, and promoting 

fibrosis, among other mechanisms (Biswas and Mantovani, 2010; Noy and Pollard, 2014; Ruffell 

and Coussens, 2015). Therefore, high numbers of TAMs correlate with poor patient outcome 

(Balaz et al., 2002; Ino et al., 2013; Kurahara et al., 2011). Consequently, TAMs are considered a 

highly desirable therapeutic target (Mantovani et al., 2014; Noy and Pollard, 2014).  

Optimal therapeutic strategies targeting TAMs require an in-depth understanding of their 

ontogeny and the mechanisms governing their homeostasis. The traditional view holds that tissue 

macrophages are derived from circulating Ly6CHi monocytes. In the last few years, an increasing 

amount of evidence suggests that various types of tissue-resident macrophages are established 

during embryonic development, persist into adulthood, and self-maintain independently of the 

adult hematopoietic system (Epelman et al., 2014; Ginhoux and Guilliams, 2016; Gomez 

Perdiguero et al., 2015; Hashimoto et al., 2013; Perdiguero and Geissmann, 2016; Schulz et al., 

2012; Varol et al., 2015; Yona et al., 2013). Under homeostatic conditions, macrophages derived 

from different developmental origins co-exist in many organs. Two notable exceptions are brain 

microglia, the majority of which are generated during embryonic hematopoiesis at the yolk sac 

stage (Ginhoux et al., 2010; Hoeffel et al., 2015), and intestinal macrophages, which rely on 
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continuous replenishment by adult blood monocytes (Bain et al., 2014). Macrophages in many 

other organs, including the pancreas, have mixed origins (Calderon et al., 2015). A limited 

number of studies suggest that co-existing macrophages, derived from different developmental 

origins, have both overlapping and distinct functions within the same tissue (Epelman et al., 

2014; Gibbings et al., 2015). However, more studies are needed to address the correlation 

between the ontogeny and functionality of different macrophage subsets.  

Despite the growing body of knowledge of tissue-resident macrophages, monocytes are 

still often considered as the precursors of macrophages in tumors (Franklin and Li, 2016). Indeed, 

multiple studies in several tumor models have demonstrated the contribution of circulating 

monocytes to sustaining TAM numbers. (Franklin et al., 2014; Laoui et al., 2014; Movahedi et 

al., 2010). In addition to bone marrow, spleen was also shown to serve as an extramedullary 

hematopoietic site that supplies monocytes to replenish TAM pools (Cortez-Retamozo et al., 

2013). However, the contribution of tissue-resident macrophages to TAMs has largely been 

understudied. Tissue-resident macrophages are known to proliferate in situ under pathological 

conditions (Amano et al., 2014; Jenkins et al., 2011). In addition, in situ proliferating 

macrophages have been observed in human cancers (Campbell et al., 2010). However, it is not 

known whether proliferation of tissue-resident macrophages contributes to TAM numbers in 

malignancies.  

In this study, we document a previously unappreciated heterogeneity in the ontogeny of 

TAMs in pancreatic ductal adenocarcinoma. We identify both Ly6CHi monocytes and tissue-

resident macrophages of embryonic origin as sources of TAMs. More importantly, TAMs 

derived from different origins demonstrate distinct phenotypes and transcriptional profiles, 

suggesting divergent functionality. While monocyte-derived TAMs are more potent at sampling 
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tumor antigens and regulating adaptive immune responses, embryonically derived TAMs have 

higher expression levels of pro-fibrotic genes that encode for extracellular matrix (ECM) and 

ECM remodeling molecules. These data reveal a potential novel function of embryonically 

derived macrophages, and suggest a previously unknown interaction between TAMs and the 

fibrotic PDAC stroma, which could serve as a therapeutic target for PDAC treatment.   
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3.3 Methods and Materials 

Murine PDAC Models 

KPC mice (p48-CRE/Lox-stop-Lox(LSL)-KrasG12D/p53flox/+) used in these studies have been 

previously described (Hingorani et al., 2005) and were backcrossed to C57BL/6 background and 

screened for C57BL/6 identity using congenic markers. KPC-1 cell line was derived from PDAC 

tissues of 2.2-month-old p48-CRE+/LSL-Lox KrasG12D/p53flox/flox (KPPC); the KPC-2 cell line 

was derived from tumors of 6-month-old p48-CRE+/LSL-Lox KrasG12D/p53flox/+ (KPC) mice. 

Cells were grown on collagen-coated tissue culture flasks for <12 passages, and were tested for 

cytokeratin-19, smooth muscle actin, vimentin, and CD45 to verify their carcinoma identity and 

purity. To establish orthotopic KPC models, either 50,000 or 200,000 KPC-1 or KPC-2 cells in 

50 µL of Cultrex (Trevigen) were injected into the pancreas of 6-12-week-old C57BL/6 mice 

according to published protocol (Kim et al., 2009). For mCherry analyses or bioluminescence 

imaging (BLI), KPC-1 or KPC-2 cells were infected with mCherry or click beetle red (CBR)-

GFP vector respectively. mCherryhi or GFPhi cells were selected by FACS prior to orthotopic 

implantation.  

 

Other Mouse Models  

The following mouse strains were purchased from Jackson Laboratories: CCR2-/-, Nur77-/-, 

Rosa26- LSL-eYFP, and Cx3cr1-CreERT2 (all on the C57BL/6 background). Csf1r-Mer-iCre-

Mer mice were purchased from Jackson Laboratories, and were crossed to Rosa26-LSL-

tdTomato mice, which were a kind gift from Dr. Gregory D. Longmore; both strains are on the 

FVB background. Flt3-Cretg mice were a kind gift from Dr. Thomas Boehm and were crossed to 

Rosa26-LSL-eYFP or –tdTomato mice, all under the C57BL/6 background. Mice were 
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maintained in the Laboratory for Animal Care barrier facility at Washington University School 

of Medicine. Washington University School of Medicine Institutional Animal Studies 

Committee approved all animal studies. 

 

Labeling of Blood Ly6Chi Monocytes  

To selectively label Ly6Chi monocytes, 250 uL of liposomes containing clodronate were injected 

intraveneously (i.v.), followed by i.v. injection of 250 uL of FITC-conjugated plain microspheres 

16-18 hours later (1.0 um, 2.5% solids [wt/vol]; Polysciences, diluted 1:4 in PBS). Tissues were 

processed for flow cytometry analyses at indicated time points after bead injection. 

 

Parabiosis 

Parabiotic pairs were generated according to established protocols (Peng et al., 2013) from age- 

(3.5-month-old) and weight-matched female CD45.2+ (KPC or wild-type C57BL/6) and CD45.1+ 

(C57BL/6) mice. Mice were injected with Buprenex subcutaneously after surgery. Sulfatrim was 

continuously added in drinking water for 10 days post-surgery to minimize infections at surgical 

wounds. Mice were separated and perfused with phosphate buffered saline (PBS) containing 

0.2% heparin. Single cell suspensions from tissues were stained with antibodies for flow 

cytometry analyses 2 or 6 weeks after the establishment of parabiosis. 

 

Bone Marrow Transplantation 

Three and a half-month-old C57BL/6 mice or KPC mice were exposed to γ-irradiation dosed at 

1100 rads. Animals were subsequently injected with 2.5 x 106 bone marrow cells from CD45.1+ 
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C57BL/6 mice through i.v. injection (retro-orbital or tail vain). Leukocyte chimerism was 

analyzed 6 weeks later. 

 

Macrophage Depletion 

To deplete tissue resident macrophages, 8-16-week old C57BL/6 mice were treated with 3 doses 

of CSF1 neutralizing antibody (clone 5A1, BioXCell) (1 mg, 0.5 mg, 0.5 mg on Days -18, -14, 

and -11, Figure 3) and 3 doses of clodronate-containing liposome (200 uL/each on Days -17, -13, 

and -10). Control mice were treated with same doses/volume of IgG (clone HRPN, BioXCell) 

and liposome (or phosphate buffered saline as indicated). On Day 0, Mice were implanted 

orthotopically with 200,000 CBR+ KPC-2 cells or 50,000 CBR+ KPC-1 cells, and subjected to 

BLI on Days 3 and 7.  

Similarly, KPC and KPPC mice were treated with 2 doses of αCSF1 (0.5 mg each, Day 1 and 

Day 5) and 2 doses of clodronate-loaded liposome (100 uL each, Day 3 and Day 7) starting at 

2.5-month and 1-month of age, respectively. Tumor burden was analyzed when mice reached 4.5 

months for KPC mice or 2.0 months for KPPC mice.  

To deplete embryonically derived macrophages, C57BL/6 or Flt3-CreYFP mice were 

intraperitoneally injected with 3.0 mgs of CSF1R depleting antibody (AFS98 clone, BioXCell) 

on 13.5 dpc. Surviving mice were implanted with 50,000 CBR+ KPC-1 at 6 weeks of age. Mice 

were sacrificed 12 days after tumor establishment for flow cytometry and tumor burden analyses. 

 

Lineage Tracing of Embryonically Derived Macrophages 

Timed breeding was set up by crossing Csf1r-Mer-iCre-Mer mice with Rosa26-LSL-tdTomato 

mice (both on the FVB background). Embryonic timeline was assessed based on vaginal plug 
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observation: 12pm on the day of plug formation was estimated to be 0.5 day post coitum (dpc). 

Pregnant mice were treated with tamoxifen (Sigma-Aldrich) (75 µg/g) combined with 

progesterone (Sigma-Aldrich) (37.5 µg/g) at one of the following time points: 8.5, 9.5, 10.5, or 

13.5 dpc. To test the contribution of embryonically derived CSF1R+ cells to monocytes or 

macrophages at homeostatic conditions, tumor-free F1 mice were sacrificed for fate mapping 

analyses as they reached 6 weeks of age. To test the contribution of embryonically derived 

CSF1R+ cells to TAMs in PDAC tumors, 50,000 syngeneic Kras-INK cells were orthotopically 

implanted into F1 mice as they reached 6 weeks. Kras-INK cells were derived from p48-

Cre/Lox-Stop-Lox (LSL)-KrasG12D/Ink4a-Arflox/lox mice on the FVB background as previously 

described. Mice were sacrificed approximately 12 days after tumor implantation for the analyses 

of tdTomato signal in different leukocyte populations. 

To trace CX3CR1+ cells, Cx3cr1-CreERT2 mice were crossed with Rosa26-LSL-eFYP mice 

(both on the C57BL/6 background). Pregnant mice were treated with tamoxifen (75 µg/g) and 

progesterone (37.5 µg/g) on 13.5 dpc. F1 neonates were fostered by lactating female mice and 

then aged to 6 weeks for fate mapping analyses.  

 

Mouse Tissue Isolation and Flow Cytometry 

Mice were euthanized by intracardiac perfusion using 20 mL of PBS-heparin under isoflurane 

anesthesia. Tumor tissues and colon were manually minced and digested in 25 mL of Dulbecco’s 

Modified Eagle Medium (DMEM) (Thermo Fisher) containing 2 mg/mL of collagenase A 

(Roche) and 1X DNase I (Sigma) for 30 minutes at 37˚C with constant stirring. Normal pancreas 

was digested in the same buffer for 15 minutes at 37˚C. Digestion was quenched in 5 mL of fetal 

bovine serum (FBS) (Atlanta Biologicals) and filtered through 40 µm Nylon mesh, pelleted 



	   104	  

through centrifugation (2000 rpm for 5 min at 4˚C), and resuspended in staining buffer (PBS 

containing 1% BSA). Brain and spleen were minced and triturated through 40 µm filters.  

Single cell suspensions were blocked with rat anti-mouse CD16/CD32 antibodies (eBioscience) 

(1/200) for 10 minutes, pelleted by centrifugation, and subsequently labeled with 100 uL of 

fluorophore-conjugated anti-mouse antibodies at recommended dilutions for 20 minutes on ice, 

and washed with staining buffer. For proliferation assays, mice were injected with 5-bromo-2’-

deoxyuridine (BrdU, 1 mg) i.p. 3 hours prior to sacrifice. BD Bioscience Cytofix/cytoperm kit 

was used to stain for BrdU. eBioscience transcription factor staining buffer set was used to stain 

for Ki67. Data were acquired on LSR-II (BD Biosciences), and analyzed using FlowJo software 

(Tree Star). To quantify proliferating/cycling cells in Flt3-CreYFP mice, tumors were digested as 

described above, stained with fluorophore-conjugated antibodies for 20 minutes, fixed in 4% 

formaldehyde for 10 minutes on ice, permeabilized in ice-cold 70% ethanol for 3 hours, stained 

with Ki67 antibody diluted in staining buffer for 20 minutes on ice, pelleted and resuspended in 

staining buffer, and immediately processed for data acquisition on LSR-II. To assess hypoxia, 

Flt3-CreYFP mice were intraperitoneally injected with pimonidazole hydroxychloride (60 mg/kg) 

1 hour prior to sacrifice (Hypoxyprobe). Single cell suspensions were stained with antibodies 

against pimonidazole adducts for 20 minutes at 4˚C without fixation or permeabilization prior to 

data acquisition. 

To quantitate blood monocytes, 200 uL of blood was obtained by intracardiac puncture prior to 

perfusion, incubated in red blood cell lysis buffer (BioLegend) for 15 minutes on ice, and stained 

with fluorophore-conjugated antibodies for 20 minutes on ice. Stained cells were counted using 

LSR-II.  For blood analysis that does not require numeration, blood was drawn via tail vein 

bleeding, followed by RBC lysis, antibody staining, and data acquisition.  
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Fluorescence-Activated Cell Sorting (FACS) 

Normal or tumor-bearing mice (Flt3-CreYFP, KPC, or C57BL/6 control) were perfused with 20 

mL of heparin-containing PBS. Tissues were digested in 25 mL of DMEM containing 2 mg/mL 

of collagenase A (Roche) and 1X DNase I (Sigma) for 30 minutes at 37˚C with constant stirring. 

CD45+ cells were enriched from single cell suspensions through MACS® magnetic selection 

using anti-mouse CD45 microbeads (Miltenyi). Elutes were blocked with rat anti-mouse 

CD16/CD32 antibodies (eBioscience) (1/200) for 10 minutes, pelleted by centrifugation, and 

labeled with fluorophore-conjugated anti-mouse antibodies at recommended dilutions for 20 

minutes on ice. Cells were filtered through 40 µm Nylon mesh, and immediately sorted using 

Aria-II (BD Biosciences). For microarray analyses and gene expression analyses, cells were 

sorted directly into RNA lysis buffer (Omega Biotek); RNA was isolated using the EZNA kit 

(Omega Biotek) according to instructions by the manufacturer. For ex vivo assays, cells were 

sorted into DMEM containing 20% FBS before being pelleted and resuspended for subsequent 

treatments. 

 

Human PDAC Tissues 

Human PDAC tissues were obtained from surgically resected specimens from patients diagnosed 

in the Department of Pathology at Washington University (St. Louis, MO). Patients underwent 

pancreaticoduodenectomy followed by adjuvant chemotherapy. Patients did not receive 

neoadjuvant therapy. Tissues were embedded in paraffin blocks and processed into 6 µm-thick 

sections for immunofluorescence staining.  
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For gene expression profiling in PDAC patients, tissues were freshly obtained from 9 patients at 

pancreaticoduodenectomy, digested into single cell suspension using the protocol described 

above, stained with indicated antibodies (Table 3.4), and processed for cell isolation using Aria-

II (BD Biosciences). Cells were directly sorted into RNA lysis buffer (Omega Biotek). RNA was 

isolated using the EZNA kit (Omega Biotek) according to instructions by the manufacturer. 

cDNA was synthesized using the qScript Supermix (Quanta). cDNA targets were pre-amplified 

for 12 cycles, followed by QPCR analyses (Taqman®, Thermo Fisher). Four out of the nine 

patients have received neoadjuvant therapies, including FOLFIRINOX or 

ABRAXANE/gemcitabine prior to being scheduled for resection.  All patients were off therapy 

for 21 days prior to surgery. All tissues were collected under informed consent from patients. 

Washington University Ethics committee approved the study under IRB protocol #201108117. 

 

PDAC Patient Outcome Analysis 

We used top 110 genes whose expressions were >10-fold higher in the mouse Flt3-CreYFP-negative 

TAM subset than the Flt3-CreYFP-positive subset. Mouse gene entrez IDs were mapped to human 

ortholog based on ENSEMBLE 87 annotation using Bioconductor package “biomaRt”. Genes 

were queried in the cbioportal TCGA pancreatic RNA-seq data through the R package “cdgsr” 

on 178 primary PDAC tumors. For association analysis with survival outcomes, we considered 

the gene signature using the averaged gene expression across all mapped genes (after centering 

each by their median). The gene signature was dichotomized by associated median to divide 

patients into the two groups of over- and under-expression. The Kaplan-Meier method was used 

to estimate empirical survival probabilities and log rank test to compare survival difference 
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between patient groups. Hazard ratio from Cox proportional hazard model was reported with 

95% confidence interval.    

 

Sirius Red Staining and Immunofluorescence Staining  

Tissues were isolated from perfused mice, fixed in 10% formalin overnight, incubated in graded 

ethanol, embedded in paraffin, and cut into 6 µm-thick sections. To analyze tumor fibrosis, tissue 

sections were deparaffinized in xylene, rehydrated in graded ethanol, and processed for Picro-

Sirius Red staining according to instructions by the manufacturer (Sigma Aldrich). To visualize 

macrophages in mouse KPC and human PDAC tissues, paraffin sections were steam heated for 

antigen retrieval in citrate-based buffer (Biogenex), treated with 1% hydrogen peroxide 

(Invitrogen) for 20 minutes to quench endogenous peroxidase, incubated with blocking buffer 

(PBS containing 5% goat serum and 2.5% BSA) for 1 hour at room temperature (RT), blocked 

for biotin/avidin according to instructions by the manufacturer (Vector Labs), and stained with 

primary antibodies at recommended dilutions at 4˚C overnight (Table 3.3). Opal 4-color IHC kit 

was then used according to instructions by the manufacturer (PerkinElmer). When two 

antibodies were used for co-staining, FITC and Cy5 were used to minimize emission spectral 

overlap. To visualize YFP-positive macrophages in Flt3-CreYFP mice, orthotopic PDAC tissues 

were fixed in 4% formaldehyde at 4˚C overnight, incubated in PBS containing 30% sucrose and 

0.1% sodium azide overnight at 4˚C, and embedded in OCT compound on dry ice. Frozen 

sections (6 µm-thick) were air-dried, treated with blocking buffer at RT for 1 hour, and stained 

with CD68 (1/200) (Abcam) overnight, followed by 1 hour incubation with goat anti-rabbit-

Alexa594 (1/400) (Molecular Probes) at RT. All sections were washed in PBS containing 0.05% 
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Tween-20 between incubation steps, and mounted in DAPI-containing media (Vector Labs) for 

imaging on Nikon 80i microscope.  

 

Statistical Analyses 

Statistical analysis was performed using Unpaired Student’s t-test, Mann-Whitney U test, 

Wilcoxon matched-pairs signed rank test, or ANOVA analysis as appropriate for the data set. 

Data in bar graphs are displayed as means ± SEM. Statistical significance is displayed as * 

p<0.05. 
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3.4 Results  

3.4.1 Pancreatic Ductal Adenocarcinoma Tissues are Infiltrated with Macrophages 

High levels of fibrosis and extensive inflammatory cell infiltration characterize the tumor 

microenvironment of human PDAC. Among the infiltrating cells, macrophages are frequently a 

dominant component. This can be readily observed by comparing the expression of pan-

macrophage/myeloid cell markers CD68, CD163, and CD206 in paired human pancreatic tissue 

samples containing both PDAC lesions and adjacent normal tissue (Figures 3.1A-B). This 

increase in macrophage number parallels the levels of tissue fibrosis. While tumor infiltration by 

macrophages is well characterized, the sources of these macrophages have not been elucidated 

completely.  

To explore the ontogeny of TAMs in PDAC, we analyzed p48-Cre+/LSL-

KrasG12D/p53flox/+ (KPC) genetically engineered mouse models (GEMMs), which undergo 

stepwise progression through stages of pancreatic intraepithelial neoplasia (PanIN) and 

ultimately develop PDAC (Hingorani et al., 2005). The KPC model faithfully recapitulates many 

pathological features of the human disease, including progressive development of stromal 

fibrosis and extensive accumulation of macrophages (Figure 3.1C). By flow cytometry, we 

identified CD45+CD11b+CD3-CD19-Ly6G-Ly6CLow/-F4/80+MHCII+ macrophages in normal 

pancreas, autochthonous tumors in KPC mice (Figure 3.1D), and syngeneic orthotopic PDAC 

tumors established using KPC-derived cancer cell lines (KPC-1) (Figure 3.8). In all cases, we 

confirmed macrophage identity in our gating strategy based on the expression of CD68, MerTK, 

CD64 (Gautier et al., 2012), colony-stimulating factor-1 receptor (CSF1R), and CX3C 

chemokine receptor-1 (CX3CR1), but not Siglec-F (Figur2s 3.1E, 3.8C). To confirm the 

exclusion of dendritic cells (DCs) in our macrophage gating, we established orthotopic tumors in 
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Zbtb46gfp/+ reporter mice (Satpathy et al., 2012), and found minimal GFP signal in the 

macrophage population compared to DC specific gating strategies (Figures 3.1E, 3.8D). 

Furthermore, the vast majority of DCs in both normal pancreas and orthotopic PDAC (identified 

by CD45+Zbtb46-GFP+) express considerably lower levels of macrophage markers, including 

MerTK, CD64, F4/80, and CX3CR1 (Figure 3.8E), suggesting that pancreas-infiltrating 

macrophages are phenotypically distinct from DCs. Flow cytometry analyses of tissues from the 

KPC mouse model demonstrated a 24-fold increase in total number and 5-fold increase in 

density of macrophages in end-point PDAC compared to normal pancreas (Figure 3.1F). 

Similarly, macrophage numbers expand in orthotopic PDAC tissues as the tumors progress 

(Figure 3.1G). Taken together, the dramatic upregulation of the number and density of 

macrophages in KPC mouse models mimics that seen in human pancreatic cancer. However, the 

sources of these macrophages are not clearly defined.  

  

3.4.2 Subsets of Macrophages in Pancreas and PDAC Tissues Are Maintained 

Independently of Blood Monocytes 

To test the contribution of blood monocytes to macrophages in tumors, we first 

performed parabiosis by surgically joining the CD45.2-expressing KPC mice with congenic 

wild-type mice that express CD45.1. Parabiotic pairs were set up when KPC mice were 3.5 

months of age. At this age, KPC mice have developed extensive PanIN lesions, with microscopic 

evidence of progression to full PDAC. To study the contribution of blood monocytes to 

macrophages in PDAC, we analyzed chimerism after 6 weeks (at 5 months of age), when disease 

in KPC mice would have progressed to late-stage PDAC. We also evaluated chimerism in a 

cohort of mice 2 weeks after the establishment of parabiosis to study the dynamics of 



	   111	  

macrophage turnover. We observed 28% chimerism of Ly6CHi monocytes in the blood of KPC 

mice within the first 2 weeks, which did not increase further after 6 weeks of parabiosis (Figures 

3.2A-3.2B). This level of chimerism was mirrored by tissue-infiltrating Ly6CHi monocytes in 

both normal pancreas and KPC tumors (Figures 3.9A-B). However, tissue macrophages in 

steady-state pancreas only achieved 2.5% chimerism after 6 weeks of parabiosis (Figure 3.2B), 

suggesting that the majority of macrophages are maintained independently of circulating 

monocytes during this time period. This level of chimerism was close to what we observed in 

brain microglia (0.5%), which are known to be locally maintained (Ginhoux et al., 2010; Hoeffel 

et al., 2015). Interestingly, the chimerism of macrophages present in KPC tumors was only 8.8%, 

compared to 27% for Ly6CHi monocytes in the same tissue. These data suggest that while 

monocytes contribute to the expansion of macrophage numbers during PDAC progression, they 

might not be the sole source of macrophages in tumor tissues. Additionally, the level of 

chimerism observed in macrophages in PDAC tissues was comparable after 2 and 6 weeks, in 

spite of significant increases in macrophage numbers during this time period (Figure 3.2B). 

These data suggest that chimerism reached equilibrium within 2 weeks of parabiosis and that the 

expansion of TAMs was maintained with equal contributions from both monocytes and other 

sources. 

It is well appreciated that macrophages in tumors exist in subsets with distinct pro-tumor 

activities. One approach to identity these TAM subsets is based on differential expression of 

major histocompatibility class (MHC) II (denoted MHCIIHi and MHCIILow here-in) (Movahedi et 

al., 2010; Zhu et al., 2014). To determine if monocytes replenish these subsets differentially, we 

analyzed the tumor tissue following parabiosis. We found that the MHCIIHi subset constituted up 
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to 80% of the donor-derived TAMs, suggesting that monocytes preferentially, but not 

exclusively, replenish this population over the 6-week time course (Figure 3.2C). 

To complement these parabiosis studies, we established bone marrow chimeras by 

lethally irradiating wild-type CD45.2+ mice and adoptively transferring bone marrow cells from 

CD45.1+ wild-type mice. Six weeks after transfer, more than 99% of the immune cells in the 

blood and the bone marrow of KPC mice were CD45.1+ donor-derived (Figure 3.2D). Strikingly, 

despite potential elimination of radio-sensitive tissue-resident macrophages and the influx of 

Ly6CHi monocytes induced by irradiation, 30% of macrophages in the pancreas were host-

derived (CD45.2+) (Figure 3.2D). In parallel, we lethally irradiated 3.5-month-old KPC mice at 

the PanIN stage, adoptively transferred bone marrow cells from CD45.1+ wild-type mice, and 

analyzed chimerism 6 weeks later in fully established PDAC. Similarly, a significant portion 

(>15%) of TAMs in KPC tumors were host-derived, which contrasts with the >99% chimerism 

detected in circulating monocytes (Figure 3.2G). These data confirmed the existence of 

pancreas-resident TAMs that were not rapidly replaced by blood monocytes. Consistent with the 

results of the parabiosis studies, host-derived (CD45.2+) macrophages were preferentially, but 

not exclusively, MHCIILow in both normal pancreas and KPC tumor tissues (Figures 3.2E-F, 

3.2H). 

To further assess the short-term contribution of blood monocytes to TAM maintenance, 

we used fluorescently labeled latex beads to selectively trace Ly6CHi blood monocytes in tumor-

bearing mice, and observed the fluorescent signals in the TAM compartments at 12, 24, 48, and 

72 hours after monocyte labeling (Figure 3.9C) (Tacke et al., 2006). While fluorescent beads 

labeled 25% of blood monocytes within 24 hours, which is the peak time for fluorescence 

detection in blood (Tacke et al., 2006), bead signal was observed in a negligible amount of 
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macrophages (<0.5%) in normal pancreas (Figure 3.2I), suggesting that the turnover of 

pancreas-resident macrophages relies minimally on monocyte influx, at least short-term. In 

orthotopic PDAC, a significantly larger percentage (12%) of TAMs were fluorescently labeled 

(Figure 3.2I), suggesting that tumors up-regulate the recruitment of circulating Ly6CHi 

monocytes to replenish a portion of TAMs. Consistent with BMT and parabiosis results, bead-

labeled monocytes almost exclusively replenished the MHCIIHi TAM subset (Figures 3.2J-K), 

and this replenishment persisted through 72 hours after bead injection (Figure 3.9D). 

 

3.4.3 Impairment of Circulating Monocytes Alone Does Not Impact PDAC Progression 

To determine the long-term contribution of blood monocytes to macrophages in the 

pancreas, we evaluated pancreas and PDAC macrophages in CCR2- and Nur77-defficient mice, 

which have impairments in circulating Ly6CHi and Ly6CLow monocytes, respectively (Hanna et 

al., 2011; Serbina et al., 2008). Despite >95% reduction in the number of circulating Ly6Chi 

monocytes (Figures 3.3A and 3.10A), the frequency of macrophages in steady-state pancreas 

was not changed in CCR2-deficient mice (Figure 3.10B). Additionally, while in PDAC tumor-

bearing CCR2-/- mice, circulating Ly6CHi monocytes was still decreased by >95%, PDAC-

infiltrating macrophages were decreased by only 50% (Figures 3.3B and 3.10C). Consistent 

with the results of the monocyte labeling experiments, CCR2 deficiency decreased MHCIIHi 

TAM frequency, while MHCIILow TAMs were not affected (Figure 3.3C). Surprisingly, while 

CCR2 deficiency did reduce macrophage numbers, this did not impact tumor growth in two 

independent PDAC models (Figures 3.3D and 3.10D). Similar to these syngeneic PDAC models, 

there were no changes in tumor burden in KPPC GEMMs treated with CCR2 inhibitors 

continuously for 45 days (Figure 3.3K). 
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To address the possibility that Ly6CLow monocytes might contribute to macrophages in 

PDAC tissues, we analyzed Nur77-/- mice. Similar to data from a previous reports (Hanna et al., 

2011), we observed a 75% decrease in circulating Ly6CLow monocyte numbers in Nur77-/- mice, 

compared to Nur77+/- littermates (Figures 3.3E and 3.10A). However, neither macrophage 

numbers nor their MHCII-subset distribution was changed in either normal pancreas or 

orthotopic PDAC tissues (Figures 3.3F-G). Additionally, Nur77 deficiency did not impact 

PDAC tumor growth in three distinct orthotopic PDAC models (Figures 3.3H and 3.10E). 

Together, these data suggest that circulating Ly6CHi monocytes are important for sustaining 

MHCIIHi macrophages, but dispensable for tumor progression. 

 

3.4.4 Tissue-Resident Macrophages Promote PDAC Progression 

To determine whether tissue-resident macrophages regulate tumor growth, we treated 

tumor-naïve mice with CSF1 neutralizing antibodies in combination with clodronate-loaded 

liposomes, followed by a 10-day chase period to allow mice to recover circulating monocyte 

numbers. Following the 10-day recovery, we found that circulating monocyte numbers in 

αCSF1/clodronate-treated animals were restored to control/untreated levels (Figure 3.3I). By 

contrast, pancreas-resident macrophages were depleted as early as 12 hours after injection and 

remained depleted by 85-95% after 10 days of recovery (Figures 3.3I and 3.10F). These data 

suggest that this regimen could allow us to test the impact of the loss of tissue-resident 

macrophages without decreasing circulating inflammatory monocyte numbers. To study how 

loss of resident macrophages affects tumor progression, we established orthotopic PDAC tumors 

10 days after treatment with αCSF1/clodronate or IgG/PBS. We found that loss of resident 

macrophages prior to tumor implantation resulted in a 50% reduction in TAMs in established 
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tumors (Figures 3.3I and 3.10F). These data suggest that loss of resident macrophages is not 

fully compensated for by monocyte-derived TAMs. In contrast to observations in CCR2-null 

mice, depletion of pancreas-resident macrophages led to a significant reduction in tumor burden, 

as measured by both bioluminescence imaging (BLI) and tumor wet-weights (Figure 3.3J). 

These studies were repeated using two distinct KPC-derived PDAC models (Figure 3.10G). To 

exclude the possibility that the impaired tumor progression was due to deficient tumor “seeding” 

upon implantation, we treated two genetic PDAC models (KPC and KPPC mice) with 

αCSF1/clodronate at the premalignant PanIN stage, and analyzed tumor burden after mice 

developed fully established PDAC. In both KPC and KPPC models, depletion of resident 

macrophages resulted in significant reduction in tumor burden (Figures 3.3K). By contrast, 

continuous treatment of KPPC-mice with CCR2 inhibitors during the same time period, in spite 

of reducing monocyte numbers, did not impact tumor burden (Figures 3.3K). More impressively, 

analysis of tumor pathology in KPPC mice showed that in addition to reducing overall tumor 

burden, depletion of resident macrophages dramatically reduced the development of high-grade 

invasive tumors, which correlated with reduced PDAC cell proliferation (Figures 3.3L-M). 

Taken together, these data suggest that pancreas-resident macrophages are more critical, 

compared to monocyte-derived TAMs, in driving PDAC tumor progression.  

 

3.4.5 Embryonically Derived Macrophages are Significant Components of Tissue-Resident 

Macrophages and Expand During Tumor Progression 

To determine whether tissue-resident macrophages are derived from the adult 

hematopoietic system, we performed lineage tracing using Flt3-Cre+/Lox-Stop-Lox (LSL)-YFP 

reporter mice (Flt3-CreYFP). Flt3 is upregulated at the multipotent progenitor stages of 
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hematopoietic stem cell (HSC) differentiation (Boyer et al., 2011). HSC-derived cells that have 

gone through the Flt3+ stage become labeled as YFP-positive, whereas macrophages derived 

from embryonic progenitors outside HSCs are YFP-negative (Schulz et al., 2012). To validate 

this model, we analyzed circulating leukocytes and found that >95.5% of leukocytes in the blood, 

including both Ly6CHi and Ly6CLow monocytes, were YFP-positive in both steady-state and 

tumor-bearing mice (Figure 3.4A). As controls, we analyzed colon macrophages and brain 

microglia. Consistent with previous reports (Bain et al., 2014; Ginhoux et al., 2010), in adult 

mice (8-10 weeks old), 93% of the macrophages in the colon were YFP-positive and 98.8% of 

brain microglia were YFP-negative (Figure 3.4B). In contrast, we observed heterogeneity of 

macrophage ontogeny in pancreatic tissues, with 32.4% of tissue macrophages labeled as YFP-

negative. To determine if this heterogeneity is retained in aged mice, we analyzed 15-month-old 

Flt3-CreYFP reporter mice and found that 30% of the macrophages in the pancreas were still 

YFP-negative (Figures 3.11A-B). These data suggest that embryonically derived pancreas-

resident macrophages persist with age.  

To determine whether these YFP-negative macrophages persist during tumor progression, 

we established orthotopic KPC tumors in Flt3-CreYFP reporter mice. Surprisingly, despite the 

known contribution from circulating monocytes to the tumor macrophage pool, 35.4% of the 

macrophages in these KPC tumors remained YFP-negative, similar to the frequency in normal 

pancreas (Figure 3.4C-D). Even more strikingly, the number of YFP-negative macrophages was 

elevated by >29-fold in tumors compared to normal pancreas (Figure 3.4E). 

Immunofluorescence analysis also identified clear subsets of both YFP-positive and YFP-

negative macrophages in normal pancreas and KPC-derived tumors (Figure 3.4F). These data 
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suggest that a significant portion of TAMs in PDAC tumors are derived independently of the 

Flt3+ progenitors, and that these TAMs expand rapidly in number during tumor progression. 

The presence of large numbers of YFP-negative macrophages suggests that many TAMs 

could be derived during embryonic hematopoiesis. Alternatively, these cells could have 

originated from adult HSCs without going through extensive Flt3+ stages. To distinguish 

between these two possibilities, we treated Flt3-CreYFP mice with one dose of a CSF1R antibody 

(αCSF1R) at 13.5 days post coitum (E13.5) (Hoeffel et al., 2015) to deplete macrophages 

derived from embryonic sources. We then quantified the abundance of YFP-negative 

macrophages in the pancreas of F1 progenies as they reached 6 weeks of age. Treatment with 

αCSF1R on embryonic day E13.5 resulted in 80% reduction in the density of YFP-negative 

macrophages in steady-state pancreas (Figure 3.4G). To further confirm the contribution of 

embryonically derived macrophages to TAMs in PDAC, we orthotopically implanted KPC tumor 

cells in adult mice following αCSF1R treatment on E13.5. Embryonic αCSF1R treatment 

resulted in a 40-60% reduction in the number of macrophages in established tumors (Figure 

3.4H). Additionally, the loss of embryonically derived macrophages led to delayed tumor 

progression in two distinct syngeneic PDAC models (Figure 3.4I). Taken together these data 

suggest that embryonically derived macrophages facilitate PDAC progression.  

To further assess the specific contribution of embryonic hematopoietic progenitors to 

PDAC TAMs, we administered one dose of tamoxifen in Csf1r-mer-iCre-mer; Rosa26-LSL-

tdTomato mice at E8.5, E9.5, E10.5, E11.5, or E13.5 to span yolk sac and fetal liver stages. 

Using this model, we observed that HSC-derived circulating monocytes were labeled at all time 

points later than E9.5 (Figures 3.12A-B). Using E8.5 or E9.5 tamoxifen pulsing, we observed 

labeling in 4% and 10% of macrophages, respectively, in normal pancreas retained the label as 
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mice reached 6 weeks of age (Figures 3.5A-B). To confirm this, we used Cx3cr1-CreERT2; 

Rosa26-LSL-eYFP reporter mice. After administration of tamoxifen on E13.5 at fetal liver stage, 

the majority of Ly6CHi monocytes are not labeled (Yona et al., 2013), but we also observed 

significant labeling in pancreas tissue macrophages (Figures 3.12C). To assess if the 

embryonically labeled macrophages would expand during tumor progression, we established 

orthotopic Kras-INK (KI)-derived PDAC tumors in Csf1r-mer-iCre-mer/ LSL-tdTomato mice. 

Consistent with results in Flt3-Cre reporter mice, tdTomato+ macrophages labeled with a 

tamoxifen pulse at E8.5 or E9.5 expanded in number by 6.8- or 13.5-fold, respectively, during 

PDAC tumor progression (Figures 3.5C). These data suggest that yolk sac-derived macrophages 

are a significant source of tissue-resident macrophages that undergo significant numerical 

expansion during tumor progression. 

In both CSF1R- and CX3CR1-driven lineage-tracing models, we observed higher levels 

of labeling in the MHCIILow macrophage subset (Figures 3.12D-E). Similarly, in the Flt3-Cre 

reporter mice, significantly larger portions of YFP-negative macrophages constitute the 

MHCIILow subset in both normal pancreas and PDAC tissues (Figures 3.11C-D). These results 

further confirm that embryonically derived macrophages are preferentially but not exclusively 

enriched in the MHCIILow macrophages. Interestingly, we found that in both HSC-derived and 

embryonically derived TAMs, the MHCIILow subset experiences higher levels of hypoxia. 

However, macrophage hypoxia level was independent of origin (Figure 3.11E-F). These data 

suggest that macrophage origin might drive intrinsic differences in macrophage phenotype and 

function that can be further molded by conditions in the tumor microenvironment.  
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3.4.6 Embryonically Derived Macrophages Expand through in situ Proliferation 

To determine if tissue-resident macrophages undergo expansion through local 

proliferation, we analyzed Ki67 expression and short-term 5-Bromo-2'-deoxyuridine (BrdU) 

incorporation in macrophages from normal pancreas and PDAC tissues. Analyses of normal 

pancreas demonstrated that <1% of macrophages incorporated BrdU following a 3-hour pulse 

and <3% were Ki67+ (Figure 3.6A-D). These data suggest that pancreas-resident macrophages 

in steady state are mostly quiescent. On the other hand, >15% of TAMs in either autochthonous 

KPC PDAC tissues or orthotopic KPC-1 tumors were Ki67+, and 3.5-4% were labeled with 

BrdU within 3 hours (Figures 3.6A-D). Of note, the 3-hour pulse resulted in no detectable BrdU 

signal in circulating monocytes (Figure 3.13A), suggesting that BrdU signals in pancreatic 

macrophages reflect in situ proliferation. Confirming these data, immunofluorescence staining 

also identified a significant portion of Ki67+F4/80+ cells in autochthonous KPC PDAC tissues 

(Figure 3.6C), but not in normal pancreas. Interestingly, the majority of these Ki67+F4/80+ cells 

localized to fibrotic tumor areas, whereas F4/80+ cells in the tumor nests were mostly Ki67 

negative (Figures 3.6C and 3.13C). Consistent with this, macrophages cultured on high-density 

collagen I gels had higher proliferation rates compared to those cultured on low-density collagen 

(Figure 3.13D), suggesting that there may be cross talks between tumor fibrosis and proliferative 

expansion of macrophages. Microarray analysis of TAMs from autochthonous KPC tumors 

demonstrated distinct changes in cell cycle regulatory genes when compared to macrophages in 

normal pancreas (Figure 3.6E). To assess if embryonically derived TAMs proliferate at higher 

rates than HSC-derived TAMs, we stained for Ki67 in tumor-bearing Flt3-CreYFP mice. 

Embryonically derived TAMs had a significantly higher frequency of Ki67 positivity than their 

HSC-derived counterparts (Figure 3.6F). This increased level of Ki67 in embryonic TAMs was 
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independent of their MHCII status (Figure 3.13B). In addition, transcriptional profiling by Q-

PCR also identified significantly reduced level of genes that negatively regulate cell cycle 

progression, such as Mafb and c-Maf, but higher levels of cell cycle promoting genes, such as 

Jun and Ets2, in the YFP-negative TAM subset (Figure 3.6G). These data suggest that 

macrophages in PDAC tissues up-regulate proliferative programs, perhaps in response to fibrosis, 

and that embryonically derived macrophages proliferate at high levels to keep pace with tumor 

progression. 

We next sought to identity what signals sustain the survival of these TAM subsets in 

PDAC tissues. We took a targeted approach and treated orthotopic PDAC-bearing Flt3-CreYFP 

mice with neutralizing antibodies against CSF1 and CSF2, both of which have been implicated 

in macrophage survival in mouse models of cancer (Hoeffel et al., 2015; Zhu et al., 2014). 

Although CSF2 signal blockade did not change the number of TAMs, inhibition of CSF1 

signaling led to a 48% reduction in the YFP-positive and a 75% reduction in the YFP-negative 

macrophages (Figure 3.6H). These data suggest that CSF1 is important for the survival of both 

TAM subsets, but embryonically derived macrophages are more sensitive. 

 

3.4.7 Embryonically Derived TAMs Have a Distinct Pro-fibrotic Phenotype. 

Having identified both embryonically derived and HSC-derived monocytes as sources of 

TAMs in PDAC, we next asked whether distinct macrophage origins correlated with phenotypic 

differences. Towards that end, we first performed flow cytometry analyses to compare the 

expression of a panel of cell surface markers in TAM subsets using the Flt3-CreYFP mice. Both 

subsets expressed similar levels of macrophage identity markers, including CD64, CD115, and 

F4/80, whereas YFP-negative TAMs expressed lower levels of CD11b (Figures 3.7A and 
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3.14A), consistent with previous reports of CD11b level in embryonically derived macrophages 

under homeostatic conditions (Schulz et al., 2012). YFP-negative TAMs also expressed 

significantly lower levels of MHCI and MHCII (Figure 3.7A). Similar differences were also 

seen between the two macrophage subsets in normal pancreas (Figure 3.14B), which suggests 

possibly inherent differences in antigen presentation activities. By contrast, co-stimulatory 

molecules (CD80, CD86), T cell-activating molecules (CD40), and immune checkpoint 

molecules (PDL1, PDL2, PD1) were expressed at comparable levels (Figure 3.7A). 

Embryonically derived TAMs also expressed significantly higher levels of CX3CR1 and lower 

levels of CD11a and CD49d (Figures 3.7A and 3.14C). Interestingly, despite the lack of 

CXCR4 expression in either macrophage subset in the normal pancreas, CXCR4 was 

significantly upregulated in TAMs, but only in the YFP-negative population (Figure 3.7A and 

3.14B). Taken together, these data suggest that TAMs derived from different origins are 

phenotypically distinct.  

To gain further insight into potential functional differences between embryonically 

derived and HSC-derived macrophages, we performed transcriptional profiling on macrophages 

sorted from Flt3-CreYFP mice (Figures 3.7B and 3.14D). Only a modest number of genes were 

expressed differentially between the YFP-positive and YFP-negative macrophages in steady-

state pancreas tissue. However, 660 genes were differentially expressed (>1.5 fold, p<0.05) 

between the two subsets in orthotopic KPC tumors, suggesting that TAMs of different origins 

may have distinct functions in PDAC tumors. Using gene set enrichment analysis, we found that 

the genes enriched in embryonic-derived macrophages showed a strong trend toward poor 

survival when mapped to data sets from human PDAC patients (Figure 3.14E). Analysis of gene 

ontogeny demonstrated that embryonically derived macrophages had a higher expression of 
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molecules involved in extracellular matrix (ECM) deposition and/or remodeling (Figure 3.7C). 

Indeed, molecules on top of the list of genes that were expressed at higher levels in 

embryonically derived TAMs were mostly involved in ECM organization (Table 3.1). This 

included genes encoding for ECM molecules (collagen isoforms, nidogen, tenascin C, and 

elastin), ECM-producing enzymes (hyaluronan synthases 2 and 3), and ECM-remodeling 

molecules (lysyl oxidase), which we validated using Q-PCR analyses in two independent 

experiments (Figures 3.7D and 3.14F). To test if the expression of pro-fibrotic genes is related 

to functional differences in ECM production, we isolated YFP-positive and YFP-negative TAMs 

from Flt3-CreYFP mice and tested their ability to produce collagen ex vivo. Correlating with their 

differential expression profiles, we found that embryonically derived TAMs could produce 

significantly more Collagen I and IV (Figure 3.7F). To correlate these ex vivo results to in vivo 

impact, we analyzed collagen density in PDAC tissue from mice treated on E13.5 with αCSF1R 

or control IgGs and compared these results to CCR2-deficient mice. We found embryonic 

macrophage depletion led to reduced collagen deposition. By contrast, CCR2-deficient mice had 

slightly elevated collagen levels compared to control mice (Figure 3.14G). These data suggest 

that macrophages of different origins have differential impacts on fibrosis. 

To rule out the possibility that the identified YFP-negative cells contained fibroblasts 

instead of macrophages, we compared cancer-associated fibroblasts (CAFs) to YFP-negative 

TAMs. We found that CAFs expressed platelet-derived growth factor receptor-a (PDGFRa), but 

not CD45, F4/80, or CD11b, whereas YFP-negative TAMs demonstrated the opposite pattern 

(Figure 3.14H). Similarly, the mRNA expression levels of macrophage/myeloid identity genes 

(Emr1, Itgam, Csf1r, Csf2r, and Cx3cr1) were comparable in both YFP-positive and YFP-

negative TAMs, as determined by Q-PCR analysis, and were 10- to 1000-fold higher in both 
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subsets of TAMs as compared to CAFs (Figure 3.14I). These data confirm that the YFP-

negative cells were not fibroblasts but were a macrophage subset with a unique pro-fibrotic 

phenotype. To evaluate how the pro-fibrotic gene signature in embryonically derived TAMs 

differed from that in CAFs, we compared selected fibrosis genes by Q-PCR. As expected, CAFs 

were the dominant producers of several isoforms of collagens (such as Col1a2 and Col3a1), 

Elastin, and Sparc (Figure 3.14J). However, mRNA for other ECM molecules, such as Col6a1, 

Nidogen, and Adamts12, were expressed at comparable levels. In contrast, embryonically derived 

TAMs were the more dominant expressers of Col4a4, Col10a1, Col17a1, Col18a1, and Has3 

(Figure 3.14J). Taken together, these data suggest that embryonically derived TAMs may be 

more involved in “fine-tuning” fibrotic responses in PDAC tumors. 

In contrast to pro-fibrotic genes, the levels of mRNA involved in class I and class II 

antigen presentations (Erap1, Psme1, and Ciita) were higher in HSC-derived TAMs (Figure 

3.7E). To test the antigen uptake capacity in TAMs subsets in vivo, we orthotopically implanted 

mCherry+ KPC-1 PDAC cells and determined the mCherry positivity in TAMs. Although both 

TAM subsets demonstrated potent capacity to uptake tumor antigen, the amount of antigen 

uptake was >2-fold higher in HSC-derived TAMs compared to their embryonic counterparts 

(Figure 3.7G). We next tested the ability of each TAM subset to present antigen (ovalbumin) to 

OT1+ CD8+ T cells and found that HSC-derived (YFP+) TAMs were far more potent at antigen 

presentation compared to their embryonically derived (YFP-) counterparts. In addition, HSC-

derived TAMs expressed significantly higher levels of Il12a, Il4, Ccl17, and Ifnb1 compared to 

their embryonic counterparts (Figure 3.7E). Taken together, these data suggest that TAMs 

derived from HSCs and embryonic sources likely play more potent roles in regulating adaptive 

immunity and/or driving immune tolerance. This is consistent with previous reports showing that 
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monocyte-derived TAMs regulate immunosuppression in PDAC models (Beatty et al., 2015; 

Mitchem et al., 2013; Sanford et al., 2013) and in early phase clinical trials (Nywening et al., 

2016).  

 

3.4.8 Subsets of TAMs in Human PDAC Tissue Resemble Murine Embryonically Derived 

TAMs 

To address whether the identification and characterization of embryonic TAMs in murine 

PDAC models is relevant for human cancer, we took advantage of the observation that CXCR4 

was almost exclusively upregulated in murine embryonic TAMs (Figure 3.7A). We first 

evaluated human PDAC tissues for CXCR4+ TAMs and found that 10-40% of TAMs expressed 

high levels of CXCR4 (Figure 3.7I). We also noted that these CXCR4+ TAMs expressed lower 

levels of HLA-DR in eight out of nine patients evaluated (Figure 3.7J). These results are 

consistent with our observation that CXCR4+ TAMs of embryonic origin expressed lower levels 

of MHCII in murine PDAC models. To determine if this subset of human PDAC TAMs shared 

the pro-fibrotic gene expression profile we identified in mice, we isolated CXCR4-positive and 

negative TAMs from PDAC tissues from three untreated surgical patients and performed Q-PCR 

analyses. Consistent with our animal model data, we found that CXCR4+ TAMs expressed 

significantly higher levels of Collagens and ECM-modulating molecules compared to their 

CXCR4-negative counterparts (Figure 3.7K). Collectively, these data suggest that CXCR4+ 

TAMs in human PDAC resemble the ECM regulatory phenotype of murine embryonically 

derived PDAC TAMs. 
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3.5 Discussion 

Ontological origins of tissue macrophages vary among different tissues under steady state. 

With the exception of brain and intestine, many other organs contain macrophages of different 

origins co-existing within the tissue context. Consistent with previous reports (Calderon et al., 

2015), our study demonstrated that pancreas-associated macrophages contain cells derived from 

both adult HSCs and embryonic hematopoietic sources. The precise nature of embryonic 

hematopoietic progenitors that gave rise to these macrophages needs to be defined; likely sources 

include yolk sac-derived erythro-myeloid progenitors (EMPs) (Gomez Perdiguero et al., 2015) 

and EMP-derived fetal monocytes (Hoeffel et al., 2015). The origin of HSC-derived 

macrophages in normal pancreas is also unclear; possible sources include fetal liver HSCs and 

bone marrow HSC-derived monocytes that may populate the pancreas perinatally. Regardless of 

developmental origin, significant portions of macrophages in the pancreatic stroma are likely 

resident in the tissue without rapid replenishment from circulating monocytes. The majority of 

pancreas-resident macrophages are quiescent under steady state, suggesting that these cells may 

self-maintain through longevity. It is also important to note that the ontogeny of tissue-resident 

macrophages is not static. Embryonically derived macrophages in multiple organs have shown 

various degrees of replacement by monocytes with different kinetics (Bain et al., 2016; Ginhoux 

and Guilliams, 2016; Molawi et al., 2014). Our study using aged mice demonstrated that 

embryonically derived macrophages could persist long-term in the pancreas, despite potential 

slow replacement by blood monocytes that we cannot rule out. It remains to be seen if and to 

what extent could embryonically derived macrophages persist in aged human patients.  

Fates of tissue-resident macrophages vary under different pathological conditions. For 

example, liver resident Kupffer cells undergo necroptosis during Listeria monocytogenes 
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infection, which recruits monocytes to replenish macrophages (Bleriot et al., 2015). On the other 

hand, tissue macrophages undergo in situ proliferation during helminth infections (Jenkins et al., 

2011). Very few studies have looked at the fate of tissue-resident macrophages during cancer 

progression. One report documented a loss of resident macrophages concomitant with the 

increase in monocyte-derived TAMs in a breast cancer model (Franklin et al., 2014). On the 

other hand, microglia were shown to be present in brain tumor models (Bowman et al., 2016; 

Hambardzumyan et al., 2016). Here, we demonstrated that in PDAC, embryonically derived 

tissue-resident macrophages not only persisted in the tissue, but also underwent significant 

proliferative expansion to keep pace with tumor progression. TAMs in the PDAC tissues adopted 

a transcriptional program to enhance proliferation, and embryonically derived tissue-resident 

macrophages further enhanced their proliferative programs compared to the monocyte-derived 

counterparts. Of note, PDAC also upregulated the proliferation of monocyte-derived 

macrophages, similar to what is seen in other cancers and tissue repair (Franklin et al., 2014; 

Wang and Kubes, 2016); though their proliferative activities were less robust than those in the 

embryonically derived macrophages. Factors that sustain and promote in situ proliferation in 

different TAM subsets, as well as the cellular sources of these factors, have yet to be identified. 

It also remains to been seen to what extent would these observations hold true in other tumors or 

if this feature is enriched in PDAC due to its uniquely fibrotic nature. One tumor type of interest 

is pancreatic neuroendocrine tumors (PNET), which originate from the islets of Langerhans. 

Under steady state, macrophages in the pancreatic islets are maintained by blood monocytes, 

whereas stromal macrophages are embryonically derived and locally maintained (Calderon et al., 

2015). It would be interestingly to see whether PNET contrasts with PDAC and relies on 

circulating monocytes to sustain TAMs in-spite of residing in the same tissue. Answers to these 
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questions could provide insights into how we can therapeutically target TAM subset-specific 

pathways in order to restrain the progression of different types of tumors even within the same 

organ.  

A highly debated question regarding macrophage ontogeny is the functional differences 

between macrophages derived from distinct origins that are located within the same tissue 

context. This question remains largely unsolved. A limited number of transcriptional studies 

suggest that macrophages of different ontogeny demonstrate mostly overlapping transcriptional 

profiles within the same tissue, at least in non-disease settings (Gibbings et al., 2015; Gundra et 

al., 2014; van de Laar et al., 2016). Upon engraftment, circulating monocytes could also 

replenish the resident macrophage pool and adopt a transcriptional profile similar to their 

embryonically derived counterparts (Scott et al., 2016). These studies led to the assumption that 

tissue environment, as opposed to ontogeny, is the main driver of macrophage functions. Indeed, 

macrophages resident in different organs or at different niches within the same organ have 

distinct transcriptional profiles, supporting the concept that tissue environment could educate 

macrophages to adopt distinct functionalities (Gautier et al., 2012; Mass et al., 2016; Movahedi 

et al., 2010; Ojalvo et al., 2009). However, our microarray data demonstrated that although gene 

expression profiles of embryonically derived and HSC-derived macrophages are fairly similar in 

the normal pancreatic tissue, their expression profiles and ex vivo functions are very distinct in 

PDAC tissues. As a harbinger of this dynamic, CXCR4 is largely not expressed in macrophages 

of either origin in the normal pancreas, but specifically upregulated in PDAC TAMs of 

embryonic origin. These data suggest that origin may epigenetically poise macrophages to 

differentially respond to inflammatory insults with distinct bioactivities, such as ECM 

modulation or antigen processing/presentation. Future experiments are needed to determine 



	   128	  

which lineage commitment factors poise macrophages for differing functional responses during 

tumor progression.  

Our studies also demonstrate unique fibrosis-modulating functions in embryonically 

derived TAMs. Macrophages are well known for their ability to promote fibrosis in multiple 

physiological and pathological conditions, such as wound healing and cancer (Wynn and 

Vannella, 2016). However, such activities are thought to be indirectly executed by activating 

fibroblasts to lay down and remodel ECM. Here, our data suggest that subsets of macrophages 

may fine-tune fibrosis by directly depositing and/or remodeling the ECM. Fibrosis is a hallmark 

of PDAC, which imposes a major physical barrier that not only inhibits endogenous anti-tumor 

immune responses but also deters effective delivery of chemo- and immune-therapies (Beatty et 

al., 2011; Jiang et al., 2016). Although it has been demonstrated that tumor-derived factors 

promote macrophage expansion and fibrosis, the initiation of these two pathological features 

were considered to be independent of each other. Our data suggest these responses may be more 

integrated. Corresponding with this idea, a recent report demonstrated that TAMs directly 

construct ECM in colon cancer (Afik et al., 2016). Interestingly, such activities were carried out 

by monocyte-derived TAMs in their model. 

Strikingly, depletion of macrophage subsets had different impacts on tumor progression 

in PDAC models. Loss of monocyte-derived macrophages had limited effects on tumor 

progression, whereas depletion of tissue-resident macrophages significantly reduced tumor 

growth and aggressivity/grade. These observations form a nice comparison to several other 

tumor models, where the depletion of monocyte-derived macrophages inhibits tumor growth and 

metastasis (Afik et al., 2016; Franklin et al., 2014; Qian et al., 2011). Although we cannot rule 
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out the importance of monocyte-derived TAMs in the regulation of PDAC development, our data 

suggest that tissue-resident macrophages are important in PDAC progression.  

In summary, our study demonstrates that PDAC contains macrophages with 

heterogeneous ontological origins. In addition to Ly6CHi monocytes, tissue-resident 

macrophages derived from embryonic origin are also a major source of TAMs in murine models. 

Embryonically derived macrophages expand in PDAC tissues through in situ proliferation and 

exhibit a pro-fibrotic transcriptional profile, suggesting a potential role in fine-tuning fibrosis in 

PDAC. We provide a new paradigm of macrophage heterogeneity under the tumor setting, which 

may facilitate future investigations that ultimately improve therapeutics to target the “fibro-

inflammatory” microenvironment of PDAC and potentially other cancers. 
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3.6 Figures and Tables 
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Figure 3.1. Pancreatic Ductal Adenocarcinomas Are Highly Infiltrated with Macrophages. 

(A) Representative images of human PDAC and adjacent normal pancreatic tissues assessed for 

macrophage density (CD68, CD206, or CD163) and fibrosis (Sirius Red). Epithelial cells were 

stained by pan-Keratin (PanK). 

(B) Quantitation of CD68+ cells in human PDAC tissue vs. normal adjacent tissue from the same 

surgical sample. 

(C) Representative images of pancreas tissue from the p48-CRE/KrasG12D/p53flox/+ (KPC) mouse 

model assessing macrophage infiltration (F4/80) and collagen density (Sirius Red).  

(D) Representative flow cytometry plots showing gating strategy to identify macrophages in 

autochthonous KPC tumors.  

(E) Measurement of listed cell surface markers analyzed by flow cytometry and pre-gated on 

macrophages as shown in (D). 

(F) Quantification of macrophages by flow cytometry in normal pancreas tissues and advanced 

KPC PDAC tissues (n=4-8/group). 

(G) Kinetics of macrophage numbers assessed by flow cytometry in syngeneic orthotopic KPC-1 

tumors. (n=4/group) 

Data are shown as mean ± SEM and * denotes p<0.05 by t-test or Mann-Whitney test. 
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Figure 3.2. Substantial Portions of Macrophages in Steady-State Pancreas and PDAC 

Maintained Independently of Blood Monocytes. 

(A) 3.5-month-old homozygous CD45.1 and CD45.2 (KPC or wild-type C57BL/6) mice were 

surgically joined to create parabiotic pairs. Tissues were analyzed after 2 or 6 weeks of 

parabiosis. Representative plots (6 weeks) of chimerism in indicated cell types are shown. 

(B) Quantification of chimerism in (A); (n=6-16/group). 

(C) MHCIIHi and MHCIILow composition of CD45.1+CD45.2(-)-derived TAMs in (B).  

(D) C57BL/6J mice were lethally irradiated and adoptively transferred with bone marrow cells 

from homozygous CD45.1 mice. Analysis of chimerism in several tissues after 6 weeks is 

depicted.  

(E) Quantification of chimerism in MHCIIHi and MHCIILow macrophage subsets in normal 

pancreas in (D).  

(F) Representative plots of (E). 

(G) Autochthonous KPC mice bearing premalignant disease (3.5-month-old) were lethally 

irradiated and adoptively transferred with bone marrow cells from CD45.1 mice. Tissues were 

analyzed for chimerism after 6 weeks, when disease had progressed to full PDAC. Relative 

CD45.1 and CD45.2 percentages analyzed by flow cytometry are depicted. 

(H) Quantification of chimerism in MHCIIHi and MHCIILow TAMs in (G). 

(I) Tumor-naïve mice and orthotopic KPC tumor-bearing mice were treated with clodronate-

loaded liposomes followed by i.v. injection of FITC-labeled beads. Tissue macrophages were 

analyzed for FITC signal by flow cytometry after 24 hours. 

(J) Representative flow cytometry plots of beads+ TAMs in orthotopic PDAC from (I). 

(K) MHCIIHi and MHCIILow composition of beads+ TAMs from (I). 
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Data are shown as mean ± SEM and * denotes p<0.05 by t-test. 
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Figure 3.3. Tissue-Resident Macrophages Promote PDAC Progression. 

(A-D) KPC cells were orthotopically implanted into CCR2+/- and CCR2-/- mice. Tumors were 

processed on Day 12 for flow cytometry analysis.  

(A) Blood was drawn from orthotopic KPC-2-bearing mice via intracardiac puncture. Monocytes 

were assessed by flow cytometry (n=3-4/group). 

(B) Frequency of macrophages orthotopic KPC-2 tissues of CCR2+/- and CCR2-/- mice. 

(C) Frequency of MHCIIHi and Low TAM subsets assessed by flow cytometry in orthotopic KPC-

2 tumors. Representative plots of TAM subsets are shown (n=3-4/group). 

(D) Wet weights of KPC-2 tumors in (B). 

(E-H) KPC-2 cells were orthotopically implanted into Nur77+/- and Nur77-/- mice. Tumors were 

processed on Day 13 for flow cytometry analysis (n=4/group normal, n=6-8/group of tumor 

bearing). 

(E) Blood was drawn from orthotopic PDAC-bearing mice via intracardiac puncture. Monocytes 

were quantified. 

(F) Quantity of macrophages in normal pancreas and orthotopic PDAC in Nur77+/- and Nur77-/- 

mice. 

(G) Representative plots of MHCIIHi and Low TAM subsets. 

(H) Wet weights of KPC-2 tumors in (F). 

(I-J) KPC-2-CBRLuc+ cells were orthotopically implanted into IgG/PBS- or αCSF1/clodronate-

treated mice. Bioluminescence imaging (BLI) was used to measure tumor progression. Tumors 

were processed on Day 12 for flow cytometry and tumor burden analyses. 
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(I) Scheme of pancreas-resident macrophage depletion followed by orthotopic PDAC of KPC-2-

CBRLuc+ cells. Blood monocytes and pancreatic macrophage numbers before and after PDAC 

implantation are shown.  

(J) Tumor burden based on BLI and wet weight measurement.  

(K) 2.5-month-old KPC or 1.0-month-old KPPC mice were treated with αCSF1/clodronate. 

Tumor burden was analyzed at 4.5 or 2.0 month of age. 

Data are shown as mean ± SEM and * denotes p<0.05 by t-test or Mann-Whitney test. 
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Figure 3.4. Embryonically Derived Macrophages are Significant Components of Tissue-

Resident TAMs and Expand During PDAC Progression. 

(A-C) KPC-1 cells were orthotopically implanted into Flt3-CreYFP mice. Indicated tissues were 

analyzed by flow cytometry for YFP expression. Representative flow cytometry plots of YFP 

signal in leukocytes from blood (A), macrophages from colon and brain (B), and macrophages in 

normal pancreas and end stage PDAC tissues (C) are depicted. 

(D) Quantifications of percentage of YFP-negativity in leukocytes from (A-C; n=7-22/group). 

(E) Kinetics of YFP-negative macrophages quantity and density in orthotopic KPC-1 tumors. 

(F) Representative immunofluorescence images of CD68 and YFP from (C). Inlets identify YFP-

positive and YFP-negative macrophages. 

(G) Flt3-CreYFP reporter mice were treated with αCSF1R on E13.5. Pancreas was isolated at 6 

weeks of age. Density of YFP-negative macrophages was quantified (n=3-5/group). 

(H) C57BL/6 mice were treated with αCSF1R or vehicle on E13.5. Orthotopic PDAC was 

established at 6 weeks of age. TAMs were quantified after 12 days (n=5-6/group). 

(I) Tumor burden from (H) was analyzed (n=6-9/group). 

Data are shown as mean ± SEM and * denotes p<0.05 by t-test. 
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Figure 3.5. Yolk Sac-Derived Macrophages Expand during PDAC Progression.  

(A) Representative flow cytometry plot of tdTomato signals in the normal pancreas and 

orthotopic KI tumors of adult mice upon E8.5 or E9.5 tamoxifen pulse. 

(B) Percentage of indicated leukocytes that were labeled upon E8.5 or E9.5 tamoxifen pulse 

(n=3-7/group). 

(C) Absolute numbers of tdTomato+ macrophages in the normal pancreas and orthotopic KI 

tumors (n=3-4/group). 

Data are shown as mean ± SEM and * denotes p<0.05 by t-test. 
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Figure 3.6. Embryonically Derived Macrophages in PDAC Expand through in situ 

Proliferation. 

(A) Analysis of autochthonous KPC PDAC and normal pancreas tissues for BrdU+ macrophages. 

Animals were injected with BrdU 3 hours prior to sacrifice. Representative plots are shown.  

(B) Quantification of BrdU incorporation in (A).  

(C) Representative immunofluorescence images of Ki67 and F4/80 staining in autochthonous 

KPC tumors. 

(D) Quantification of flow cytometry data for Ki67 and BrdU positivity in macrophages in 

normal pancreas and orthotopic KPC-1 tumors (n=4-5/group). 

(E) Heat map of cell cycle regulation genes assessed by array on RNA in macrophages isolated 

from normal pancreas and autochthonous KPC PDAC tissues (n=6/group). 

(F) Orthotopic KPC-1 tumors were established in Flt3-CreYFP reporter mice. Proliferation of 

TAM subsets was analyzed by flow cytometry for Ki67. 

(G) TAM subsets were sorted from orthotopic KPC-1 tumors in Flt3-CreYFP mice. Q-PCR 

analyses were performed to quantify transcripts of proliferation regulation genes. 

(H) Orthotopic KPC-1-bearing Flt3-CreYFP reporter mice were treated with three doses of aCSF1 

or αCSF2 on Days 7, 11, and 14. TAM subsets were quantified on Day 15. 

Data are shown as mean ± SEM and * denotes p<0.05 by t-test. 
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Figure 3.7. Embryonically Derived TAMs Have Distinct Phenotypes and Functions that are 

Recapitulated by Subsets of TAMs in Human PDAC. 

(A) Flow cytometry analysis of orthotopic KPC-1 PDAC tissues in Flt3-CreYFP mice stained with 

indicated antibodies and gated on TAMs (gray, isotype control; blue, YFP-negative TAMs; red 

YFP-positive TAMs). 

(B) YFP-positive and YFP-negative macrophages were sorted from normal pancreas or late-

stage orthotopic KPC-1 tumors of Flt3-CreYFP mice. RNA was extracted for microarray analyses. 

Hierarchical clustering of genes that were differentially expressed between macrophage subsets 

either in normal pancreas or PDAC is shown. 

(C) Gene ontogeny analyses of molecules expressed at higher levels in YFP-negative TAMs. 

(D-E) Q-PCR analyses of gene expression for molecules involved in ECM modification (D) or 

immune modulation (E). Analysis was performed on RNA from sorted YFP+ and (-) TAMs from 

Flt3-CreYFP mice bearing KCP-1 tumors (n=5/group). Genes were selected from the top 

candidates in (B). 

(F) Analysis of collagen production ex vivo by YFP+ and (-) TAMs sorted from orthotopic KPC-

1 PDAC tissues in Flt3-CreYFP mice. Collagen laydown was assessed after 36 hours by 

immunofluorescence intensity. Experiments are representative of three independent repeats.  

(G) Orthotopic tumors were established in Flt3-CreYFP reporter mice using KPC-1-mCherry+ 

tumor cells. TAMs were analyzed for mCherry positivity. Representative flow plots and mean 

fluorescence intensity (MFI) are depicted (n=4/group). 

(H) Analysis of antigen presentation to CD8+ T cells by YFP+ and (-) TAMs sorted from Flt3-

CreYFP mice bearing KPC-1 tumors. Antigen presentation was assessed by the ability of TAMs to 

activate OT1 cells after SIINFEKL loading and measured by CFSE-dilution and/or 
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CD44+/CD69+/CD62L- expression on T cells. Three independent sorting experiments are 

depicted as paired analyses. 

(I) Flow cytometry analysis of human PDAC tissues from surgical resections is depicted. The 

percentage of CXCR4+ TAMs of total is shown for nine patients. 

(J) Analysis of HLA-DR expression in CXCR4-positive and negative TAMs using data from (I). 

A representative flow plot and MFI analysis in paired samples are depicted. 

(K) Q-PCR analysis of mRNA from CXCR4-positive and negative TAMs sorted from human 

PDAC tissues. Pro-fibrotic genes assessed were identified in (B), and analysis of paired isolates 

from three patients is depicted. All graphs depict mean values +/- SEM and * denotes p<0.05 by 

t-test, Mann-Whitney test, or Wilcoxon matched pairs rank test as appropriate for the data set. 
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Figure 3.8, related to Figure 3.1. Macrophage Gating Strategy in Normal Pancreas and 

Orthotopic Tumors. 

(A) Representative flow cytometry plots showing gating strategy to identify macrophages in 

normal pancreas.  

(B) Representative flow cytometry plots showing gating strategy to identify macrophages in 

orthotopic tumors established using KPC-1 cells.  

(C) Measurement of listed surface markers analyzed by flow cytometry and pre-gated on 

macrophages in orthotopic KPC-1 tumors as shown in (B). To confirm CX3CR1 antibody 

staining, orthotopic KPC-1 tumors were established in CX3CR1gfp/gfp mice; Representative flow 

cytometry plot of GFP signals in TAMs is shown. (representative of n=15).  

(D) Representative flow cytometry plots of Zbtb46-GFP fluorescence in TAMs of orthotopic 

KPC-1 tumors, brain microglia (CD45Low/CD11bHi/F4/80+), and splenic dendritic cells (DCs) 

(CD45+/CD11c+/MHCII+/B220-/CD8+ or CD11b+). Mean fluorescence intensity (MFI) for each 

cell population is calculated by deducting baseline MFI of isotype staining control from the MFI 

of stained samples. (n=4-5/group, mean ± SEM). 

(E) Measurement of listed surface markers in pancreatic dendritic cells (DCs) and macrophages 

by flow cytometry.  
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Figure 3.9, related to Figure 3.2. Substantial Portions of Macrophages in Normal Pancreas 

and PDAC Self-Maintain Independently of Blood Monocytes. 

(A-B) 3.5-month-old homozygous CD45.1 and CD45.2 (KPC or wild-type C57BL/6) mice were 

surgically joined to create parabiotic pairs. Chimerism of indicated leukocytes were analyzed 2 

weeks (A) or 6 weeks (B) after the establishment of parabiosis. (n=6-16/group, mean ± SEM). 

(C) KPC-1 orthotopic tumor-bearing mice were treated with clodronate i.v. to deplete circulating 

Ly6CLow monocytes, followed by retro-orbital injection of FITC-labeled latex beads. 

Representative flow cytometry plots showing FITC signals in blood Ly6CHi monocytes 24 hours 

after bead injection.   

(D) Representative flow cytometry plots of beads+ TAMs in orthotopic KPC-1 tumors at 

indicated time points (n=3/time point).  
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Figure 3.10, related to Figure 3.3. Deficiencies in Tissue Resident Macrophages but Not in 

Blood Monocytes Impact PDAC Tumor Burden. 

(A) Representative quantification of blood monocyte frequency in tumor-bearing B6, CCR2-/- 

and Nur77-/- mice. (n=3-5/group). 

(B) Representative quantification of pancreatic macrophage frequency in tumor-free CCR2+/- and 

CCR2-/- mice. (n=3/group). 

(C) Orthotopic tumors were established in B6, CCR2+/- or CCR2-/- mice with 200,000 or 50,000 

KPC-1 or KPC-2 cells. Frequencies or quantities of TAMs from 4 independent experiments were 

analyzed at indicated time points after tumor implantation. Each bar graph represents an 

independent experiment. 

(D) Tumor burden analysis from (C). 

(E) Orthotopic tumors were established in B6, Nur77+/-, or Nur77-/- mice (numbers and cell types 

indicated). Tumor weights were measured at indicated time points. Each bar graph represents an 

independent experiment. 

(F) 8-week old C57BL/6 (left and middle) or Flt3-CreYFP (right) mice were treated with αCSF1 

combined with clodronate as described in Experimental Approach. Orthotopic tumors were 

subsequently established using KPC-2 or KPC-1 cells. Quantities of macrophages prior to or 

after tumor establishment were assessed by flow cytometry. (n=3-4/data point) 

(G) Tumor burden from (F) were analyzed by bioluminescence imaging (BLI) or wet tumor 

weight. (n=4-5/data point/group) 

Data are shown as mean ± SEM and ∗ denotes p<0.05 by t-test. 
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Figure 3.11, related to Figure 3.4. Embryonically Derived Macrophages are Present in the 

Pancreas and PDAC of Adult Mice and are Enriched in the MHCIILow Subset. 

(A) Representative flow cytometry plots of YFP signals in pancreatic macrophages of 15-month-

old tumor-free Flt3-CreYFP mice. 

(B) Percentage of YFP-negativity in indicated leukocytes from 15-month-old tumor-free Flt3-

CreYFP mice. (n=3). 

(C) Representative flow cytometry plots showing YFP and MHCII signals in macrophages from 

normal pancreas of orthotopic KPC-1 tumors. 

(D) Percentage of YFP-negativity in MHCIIHi and MHCIILow macrophage subsets in normal 

pancreas and orthotopic KPC-1 tumors. 

(E) Representative flow cytometry plots of pimonidazole (PIMO) signals in indicated TAM 

subsets. 

(F) MFI of PIMO signals in indicated TAM subsets from (E). 

Data are shown as mean ± SEM and ∗ denotes p<0.05 by t-test. 
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Figure 3.12, related to Figure 3.5. Yolk Sac and Fetal Liver Derived Pancreatic 

Macrophages are Present in the Pancreas and PDAC of Adult Mice and are Enriched in 

the MHCIILow Subset. 

(A) Csf1r-Mer-iCre-Mer; Rosa26-LSL-tdTomato mice were treated with tamoxifen at indicated 

time points. Labeling efficiency in indicated leukocyte populations was analyzed by flow 

cytometry. (n=3-7/group) 

(B) Kinetics of labeling efficiency in brain microglia, pancreas macrophages, and PDAC TAMs 

from (A). 

(C) Cx3cr1-CreERT2; Rosa26-LSL-eYFP mice were treated with tamoxifen at E13.5. Labeling 

efficiency in indicated leukocyte populations was analyzed by flow cytometry. Representative 

flow cytometry plots of YFP signals in pancreatic macrophages are shown. 

(D) Labeling efficiency of CSF1R+ cells in pancreatic macrophage subsets from (A-B). 

(E) Labeling efficiency of CX3CR1+ cells in pancreatic macrophage subsets from (C). 

Data are shown as mean ± SEM and ∗ denotes p<0.05 by t-test. 
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Figure 3.13, related to Figure 3.6. In Situ Proliferating Macrophages Localize in Proximity 

to Fibrotic Tumor Areas. 

(A) Representative flow cytometry plot showing 3-hour BrdU incorporation in blood Ly6CHi 

monocytes.  

(B) Percentage of Ki67 positivity in indicated TAM subsets of KPC-1 tumor-bearing Flt3-CreYFP 

mice. 

(C) Serial sections from autochthonous KPC tumors were stained for macrophages (F4/80) and 

proliferation marker Ki67. Inlets demonstrate double positive cells. Fibrosis was assessed in the 

adjacent section by Sirius Red staining.  

(D) Bone marrow-derived macrophages were cultured on collagen I at different densities. 

Percent of Ki67 positivity were quantified by immunofluorescence staining. 

Data are shown as mean ± SEM and ∗ denotes p<0.05 by t-test. 
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Figure 3.14, related to Figure 3.7. Embryonically Derived TAMs Have Distinct Surface 

Marker Expression and Unique Pro-fibrotic Transcriptional Profile. 

(A) MFI of indicated markers in TAMs from orthotopic KPC-1 tumors in Flt3-CreYFP mice. 

Value is calculated by deducting baseline MFI of isotype staining control from the MFI of 

stained samples. 

(B) MFI of CXCR4 and MHCII in normal pancreatic macrophages. Representative histograms 

are shown. 

(C) MFI of CD11a and CD49d in TAMs from orthotopic KPC-1 tumors in Flt3-CreYFP mice. 

Representative histograms are shown. 

(D) Representative flow cytometry plots showing gating strategies used to sort YFP-positive and 

-negative TAMs from Flt3-CreYFP mice. 

(E) Kaplan-Meier analysis of patient cohorts stratified by expression level of genes that are 

higher in Flt3-CreYFP-negative TAMs based on analysis in Figure 3.7B.  

(F) Q-PCR analyses of indicated genes in Flt3-CreYFP-positive (red) and Flt3-CreYFP-negative (blue) 

TAMs in a second repeat of sorting. (n=5/group for normal pancreas macrophages, n=6/group 

for TAMs). 

(G) Quantification of PDAC collagen density by image analysis of Trichrome or Sirus Red 

staining on orthotopic KPC-2 tumors implanted in mice treated with anti-CD115 at E13.5 or 

CCR2-/- mice or control mice.  

(H) Expression of listed surface markers in cancer-associated fibroblasts (CAFs) (orange) and 

TAMs (pink). 
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(I) Q-PCR analyses of indicated genes coding for macrophage surface identity markers in 

cancer-associated fibroblasts (CAFs) (orange), Flt3-CreYFP-positive (red) and Flt3-CreYFP-negative 

(blue) TAMs. (n=6/group for TAMs) 

(J) Q-PCR analyses of indicated genes coding for ECM production and modification molecules 

in cancer-associated fibroblasts (CAFs) (orange) and Flt3-CreYFP-negative TAMs (blue). (n=6/group 

for TAMs) 

Data are shown as mean ± SEM and ∗ denotes p<0.05 by t-test. 
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Table 3.1, Top 40 Genes Higher in the Flt3-CreYFP-Negative TAM subset on Microarray 
 
Entrez Gene ID Gene Symbol Fold Change (YFP- 

Negative vs. -Positive) 
Adjusted p-Value 

16949 Loxl1 63.289225 0.000875412 
20319 Sfrp2 49.434489 0.002976931 
14125 Fcer1a 47.168637 0.001479908 
13078 Cyp1b1 46.682438 0.000577909 
12833 Col6a1 44.095025 0.005380821 
14107 Fat1 43.982448 0.00067664 
17022 Lum 43.106335 0.002411298 
20716 Serpina3n 42.226946 2.36575E-06 
107449 Unc5b 37.411451 6.02918E-05 
21923 Tnc 36.737766 1.75967E-05 
12834 Col6a2 33.948455 0.0107914 
13179 Dcn 32.864451 0.000918713 
109624 Cald1 32.081952 0.009871551 
20692 Sparc 30.158108 0.002911626 
12945 Dmbt1 29.555895 0.002827771 
71228 Dlg5 28.841214 0.000450364 
218952 Fermt2 28.552239 0.000900703 
12873 Cpa3 28.488505 0.009611972 
50781 Dkk3 28.452825 0.000765057 
16948 Lox 28.392067 2.20501E-05 
18073 Nid1 26.763409 0.006042784 
13602 Sparcl1 26.16561 0.02195566 
18028 Nfib 24.737366 0.0450516 
242608 Podn 23.756922 0.001129132 
16948 Lox 23.563272 0.000163479 
170643 Kirrel 23.48621 0.004143432 
19662 Rbp4 23.361095 0.000281845 
22601 Yap1 22.207021 0.001841186 
67701 Wfdc2 22.1382 0.001520571 
12111 Bgn 22.120345 0.004549826 
69675 Pxdn 22.116972 0.003057716 
12831 Col5a1 22.061485 0.004469495 
17534 Mrc2 21.234791 0.001029897 
18596 Pdgfrb 21.193765 0.003426061 
17153 Mal 21.021883 0.000893123 
15228 Foxg1 21.009472 0.000115044 
239337 Adamts12 20.932199 0.008746559 
12842 Col1a1 20.290887 0.000281845 
17112 Tm4sf1 19.497997 0.00545794 
66773 Gm17019 19.069459 0.000785569 
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Table 3.2, Mouse Antibodies for Flow Cytometry and FACS 
 

 Antigen Clone Fluorophore Source 
B220 RA3-6B2 APC BioLegend 
BrdU 3D4 FITC BD Bioscience 
CD3 145-2C11 APC, PerCP-Cy5.5 eBioscience 
CD11a M17/4 PE BioLegend 
CD11b M1/70 Alexa700, PE-Cy7 eBioscience 
CD16/CD32 93 Unconjugated eBioscience 
CD19 eBio1D3 APC eBioscience 
CD40 1C10 PE-Cy5 eBioscience 
CD45 30-F11 PE-Cy7, APC-Cy7 eBioscience 
CD45.1 A20 APC eBioscience 
CD45.2 104 FITC eBioscience 
CD49d R1-2 PE BioLegend 
CD64 X54-5/7.1 PE eBioscience 
CD68 FA-11 FITC eBioscience 
CD80 16-10A1 PE-Cy5 eBioscience 
CD86 GL1 PE-Cy5 eBioscience 
CD115 AFS98 PE eBioscience 

BV605 BioLegend 
CD124 mIL4R-M1 PE BD Biosciences 
CD206 MR5D3 FITC AbD Serotec 

C068C2 PE-Cy7 BioLegend 
CX3CR1 SA011F11 PE BioLegend 
CXCR4 2B11 PerCP-eFluor710 eBioscience 
F4/80 BM8 PE-Cy5, PE eBioscience 
Keratin C11 Alexa488 Cell Signaling 
Ki67 SolA15 FITC eBioscience 

16A8 BV605 BioLegend 
Ly6C HK1.4 PerCP-Cy5.5, Alexa488 eBioscience 
Ly6G 1A8 PE eBioscience 

APC BioLegend 
MerTK 108928 PE R&D 

DS5MMER PE-Cy7 eBioscience 
MHCI 34-1-2S PE eBioscience 
MHCII M5/114.15.2 eFluor450, APC-Cy7 eBioscience 
PD1 J43 PE eBioscience 
PDGFRα APA5 PE eBioscience 
PDL1 MIH5 PE eBioscience 
PDL2 122 PE eBioscience 
SiglecF ES22-10D8 APC, PE-Vio770 Miltenyi 

E50-2440 PE BD Biosciences 
Tie2 TEK4 PE BioLegend 
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Table 3.3, Antibodies for Immunofluorescence Staining 
 
Antigen Clone Species Source 
CD68 KP-1 Mouse anti-human NeoMarkers 

Polyclonal Ab125212 Rabbit anti-mouse Abcam 
CD163 EPR19518 Rabbit anti-human Abcam 
CD206 Polyclonal Ab64693 Rabbit anti-human Abcam 
Collagen I 3G3 Rabbit anti-mouse Abcam 
Collagen IV Polyclonal Ab6586 Mouse anti-mouse Abcam 
CXCR4 D4Z7W Rabbit anti-human/mouse Cell Signaling 
F4/80 BM8 Rat anti-mouse eBioscience 
Ki67 MIB-1 Mouse anti-human DaKo 

Polyclonal Ab15580 Rabbit anti-mouse Abcam 
Pan-Keratin C11 Anti-Human/Mouse Cell Signaling 
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Table 3.4. Human Antibodies for Flow Cytometry and FACS 
  
Antigen Clone Fluorophores  Source 
CD3 HIT3a PE BD Biosciences 
CD11b ICRF44 Alexa488 BioLegend 
CD14 61D3 Qdot605 eBioscience 
CD16 3G8 PE BD Biosciences 
CD19 HIB19 PE BD Biosciences 
CD45 2D1 APC-Cy7 BD Biosciences 
CD115 12-3A3-1B10 PE-Cy7 eBioscience 
CXCR4 12G5 Alexa488 R&D Systems 

PerCP-Cy5.5 eBioscience 
HLA-DR L243 eFluor450 eBioscience 
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Chapter 4: Future Directions 

 

4.1 Reprogramming myeloid responses to improve cancer immunotherapies 

Therapeutics that activates anti-tumor immune responses has demonstrated significant 

potential for the treatment of solid tumors. One of the most promising strategies targets immune 

checkpoint molecules, such as programmed death 1 (PD1) or cytotoxic T lymphocyte-associated 

antigen 4 (CTLA4) (Simpson et al., 2013). These immune checkpoint molecules counteract pro-

inflammatory signals and block anti-tumor T cell activities. The potential of this type of 

strategies was demonstrated by the efficacy of CTLA4 antagonistic antibody, ipilimumab, in the 

treatment of subsets of metastatic melanoma (Hodi et al., 2010), as well as recent FDA approval 

of PD1 for the same indication. Another category of immunotherapies involves tumor 

vaccination through adoptive transfer of tumor antigen-specific T cells or dendritic cells 

(Rosenberg et al., 2008). An example is Sipuleucel-T, an autologous dendritic cell-based 

vaccination designed to activate T cells targeting a prostate cancer antigen, which significantly 

improved patient overall survival in a phase III trial (Kantoff et al., 2010). Despite clear efficacy 

in subsets of human cancer, these approaches are not effective in all patients or all cancer types. 

For example, although ipilimumab achieved impressive response rates in melanoma patients, it 

failed as a monotherapy to improve clinical outcome of patients with pancreatic cancer (Royal et 

al., 2010). 

One possible explanation for the lack of responses in many patients to immunotherapy is 

the presence of a suppressive immune microenvironment. While tumor antigen-specific T cells 

may be present in many cancers, the immune infiltrate is often dominated by various subsets of 

myeloid cells. Tumor-infiltrating suppressive myeloid cells include macrophages, immature 
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dendritic cells, and monocytic or granulocytic myeloid-derived suppressor cells (MDSCs). These 

suppressive cells can silence adaptive immune responses by blocking the recruitment of 

cytotoxic T lymphocytes (CTLs) to the tumor tissue, metabolically inhibiting CTL functions, 

chemically modifying T cell receptors to hinder the recognition of tumor antigens, and/or 

amplifying immune suppression via the expansion of regulatory T cells (Gabrilovich and Nagaraj, 

2009; Qian and Pollard, 2010). Altogether, these myeloid cell activities can allow tumor cells to 

evade endogenous and treatment-elicited immune surveillance. Therefore, these subsets of 

suppressive myeloid cells could impose significant limitations on efficient immunotherapies 

(Figure 4.1). Correspondingly, strategies to manipulate suppressive myeloid cells may also 

provide opportunities to improve the efficacy of immunotherapy. Several recent studies 

demonstrated that combining therapeutics that alleviates immune suppression by targeting 

myeloid cell activities could improve the outcome of immunotherapy in mouse models. 

Work from our own group assessed if targeting tumor-associated macrophages (TAMs) 

could mitigate immune suppression and improve immunotherapy in pancreatic ductal 

adenocarcinoma (PDAC) models (Zhu et al., 2014). We targeted TAMs through the inhibition of 

macrophage colony-stimulating factor receptor (CSF1R) signaling, which plays an essential role 

in macrophage differentiation, trafficking, and survival. Blockade of CSF1R signaling not only 

reduced the total number of suppressive macrophages in the tumor tissue, but also reprogrammed 

the remaining TAMs to support anti-tumor T cell responses, as shown by elevated interferon 

expression, reduced immunosuppressive activities, and improved antigen presentation capacity 

in the remaining TAMs. One unwanted consequence of CSF1R signal blockade is the 

upregulation of programmed death ligand 1 (PDL1) in tumor cells and CTLA4 in T cells, which 

potentially poses a significant limitation on the efficacy of CSF1R blockade. However, this may 
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also provide an opportunity to convert tumors that are unresponsive to PD1/CTLA4 antagonists 

to be more sensitive to checkpoint-based immunotherapeutics. Based on this rationale, we 

designed a combination therapy by coupling CSF1/CSF1R signal blockade with immune 

checkpoint antagonists in murine PDAC models. While checkpoint inhibitors alone achieved 

limited efficacy in restraining tumor growth, the addition of CSF1R blockade markedly 

improved the efficacy of PD1 and CTLA4 antagonists and led to regression of well-established 

tumors (Zhu et al., 2014). These data demonstrated that CSF1R signal blockade could render 

tumors more responsive to checkpoint antagonist-based therapies. Similarly, work by Mok et al. 

showed that targeting TAMs through CSF1R blockade could also enhance the efficacy of 

adoptive cell transfer (ACT)-based immunotherapy to reduce tumor burden in a mouse 

melanoma model (Mok et al., 2014). Interestingly, these tumor restraining effects correlated with 

increased expansion of adoptively transferred T cells both in the tumor and in peripheral 

lymphoid tissues, suggesting that reprograming myeloid responses could lead to increased anti-

tumor T cell function systemically. Taken together, these studies indicate that mitigation of 

immune suppression through depletion or reprogramming of TAMs could enhance the clinical 

outcomes of checkpoint-based therapeutics and adoptive cell transfer-based immunotherapies.  

It is important to note that innate immune cells other than macrophages are also 

promising targets. Examples include neutrophils, which are similarly abundant in many types of 

cancers. In a syngeneic murine rhabdomyosarcoma model, Highfill et al. demonstrated that an 

immunosuppressive microenvironment driven by granulocytic MDSC populations suppresses the 

efficacy of anti-PD1 treatment (Highfill et al., 2014). In human sarcoma patients and mouse 

models, tumor cells often overexpress a family of C-X-C motif chemokines, including CXCL1, 2, 

and 8. Their predominant receptor, CXCR2, is expressed on granulocytes and promotes 
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granulocytic MDSC trafficking into tumor sites. Inhibition of CXCR2 signaling blocked the 

recruitment of granulocytic MDSCs to the tumor site and significantly enhanced the efficacy of 

PD1 blockade. These data suggest that responses to immune checkpoint blockade are limited by 

the suppressive microenvironment driven by granulocytes, and that alleviation of this 

suppression could improve the efficacy of checkpoint-based therapies. 

In conclusion, the suppressive tumor microenvironment driven by myeloid cells may 

pose a major limitation on the efficiency of immunotherapy. Therefore, combining 

immunotherapy with strategies that reprogram the suppressive tumor microenvironment holds 

significant promises in cancer treatment (Figure 4.1). Development of such strategies will 

require careful evaluation, as tumor cells, immune responses, and chosen therapeutic strategies 

all interact in a complex and dynamic manner. Future work is needed to determine which 

myeloid populations mediate suppression in specific tumor types, and what immunotherapeutic 

strategies are optimal for combination. 

 

4.2 Regulation of tissue resident macrophages 

Having identified the contribution of pancreas resident macrophages to TAM populations 

in PDAC, the logical next question is how we can target these cells to improve cancer treatment. 

Solution to this question relies on better understanding of the basic biological activities of tissue 

resident macrophages.  

Tissue resident macrophages face two major challenges throughout the life of an 

organism. First, they need to self-maintain long-term both during homeostatic conditions and 

during aging. Second, they need to be able to expand to meet the proliferative demands upon 

pathological challenges, exemplified by the case of tumor development. To persist with aging, 
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tissue resident macrophages could be replenished through self-renewal. However, based on 

propidium iodine staining and BrdU incorporation assays, we saw very minimal level of 

apoptosis and proliferation in pancreas resident macrophages under homeostatic conditions. 

While low level of “tonic” proliferation could sustain long-term self-renewal, this could also 

suggest a second possibility that tissue resident macrophages persist through longevity. Further 

experiments are needed to distinguish between these two possibilities. One approach would be to 

perform a pulse chase experiment, such as BrdU or doxycycline-inducible H2B-GFP pulse. 

During the extended pulse period in young adult mice, tissue resident cells will be labeled as 

BrdU-or GFP-positive. The dilution or retention of the BrdU/GFP signals would tell us whether 

proliferation or longevity is responsible for the maintenance of tissue resident macrophages 

during aging.    

On the other hand, embryonically derived macrophages dramatically enhance their 

proliferative activities during tumor challenge. Concomitantly, molecules involved in both 

extrinsic and intrinsic apoptosis pathways are upregulated, leading to elevated level of apoptosis. 

This suggests that as embryonically derived macrophages expand through in situ proliferation, 

these cells achieve high turnover rates at the expense of the longevity machinery. It is important 

to note that we only observed proliferation in a small fraction of tumor-associated macrophages. 

This leads us to ask: during tumor progression, is the proliferative activity restricted to a small 

subset of macrophages with progenitor-like properties, or is the macrophage pool simply a 

uniform collection of terminally differentiated cells that undergo proliferation in a stochastic 

manner? The current paradigm supports the latter, despite the lack of sufficient number of 

studies to support these claims. Hashimoto et al. attempted to address this question using a 

combination of a diphtheria toxin (DT)-mediated macrophage double depletion model with BrdU 
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pulse-chase experiment. They treated CD169-DTR (diphtheria toxin receptor) with DT to deplete 

lung resident macrophages, and treated mice with daily doses of BrdU for 11 days, at the end of 

which the lung macrophage numbers recovered to pre-treatment level. Following a BrdU-free 

chase period, they treated mice again with one dose of DT, and analyzed cell cycle status 2 days 

later based on Ki67 staining. The prediction was that if there were progenitor-like cells within 

the macrophage population, the Ki67 positive cells, which indicate cell repopulation during the 

second recovery, would be restricted to the BrdU-labeled subset, i.e. cells that have proliferated 

during the first recovery. On contrary, if macrophages stochastically proliferate to repopulate, a 

fraction of Ki67-positive cells could be observed in both the BrdU-labeled and BrdU-negative 

cells. Indeed, the latter is what they observed, suggesting that lung macrophages proliferate in a 

stochastic model to repopulate, at least in this model (Hashimoto et al., 2013). Similarly, in a 

CX3CR1-CreER-based pulse-chase experiment, Bruttger et al. demonstrated that upon depletion 

using the DTR system, microglia repopulate possibly in a stochastic manner from a pre-existing 

population labeled by tamoxifen (Bruttger et al., 2015). On the contrary, in a different depletion 

experiment using CSF1R blockade, Elmore et al. showed that CX3CR1+ microglia repopulate 

through in situ proliferation of a CX3CR1- progenitor population (Elmore et al., 2014). Further 

characterization showed the expression of Nestin and IB4 in these population, which are markers 

not associated with microglia. Despite being positive for IBA1, which indicates microglia 

identity, these progenitor-like cells also express c-Kit and CD34, which are expressed in 

hematopoietic stem and progenitor cells. This study showed the possible existence of a 

progenitor subset that is capable of sustaining tissue macrophages, at least during the recovery of 

these cells.  
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In murine pancreatic ductal adenocarcinoma models, not all macrophages seem to expand 

during tumor progression. In the CSF1R-mer-iCre-mer; Rosa26-LSL-tdTomato lineage tracing 

model, yolk sac-derived macrophages can be labeled upon tamoxifen induction on E8.5 or E9.5. 

Labeled cells persist in adult mice and further expand numerically in established tumors 

(Figures 3.5 and 3.12). However, in the CX3CR1-CreER; Rosa26-LSL-eYFP model, E13.5 

tamoxifen treatment led to the labeling of a significant percentage of macrophages in normal 

pancreas of adult mice. However, the labeled population was dramatically decreased. Similarly, 

if we treat mice of this genotype in adulthood with 30 days of tamoxifen labeling followed by 

tumor implantation, the number of tamoxifen labeled macrophages was decreased in established 

tumors. This suggests the possibility that a population of CX3CR1Low/Neg macrophages residing 

the pancreas actively proliferated during tumor progression and replaced the CX3CR1Hi subset. 

Further experiments are needed to address the possibility that a macrophage progenitor subset is 

responsible for the expansion of tissue resident macrophages during PDAC progression. 

In order to target tissue resident macrophages, we need to understand what signals 

regulate their proliferation, and what stromal components produce these signals. These signals 

require tight regulation for several reasons. First, these signals need to be inhibited at steady state, 

so that the cells do not prematurely exhaust their proliferative potential that precludes their 

persistence with aging. Second, these signals need to be recognized to activate division cycles 

before the proliferative demands are overwhelmed.  Preliminary data demonstrate that loss of 

microbiota induces the expansion of macrophage numbers in normal pancreas (not shown), 

suggesting that signaling pathways downstream of certain pattern recognition receptors could 

mediate the quiescence of tissue resident macrophages. Alternatively, microbiota could educate 

some other circulating leukocytes, which then suppress the proliferative activities of pancreas 
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resident macrophages. It would be interesting to see if microbiota is altered in PDAC-bearing 

mice to change the in situ proliferation of embryonically derived TAMs.  

Microarray analyses of embryonically derived and hematopoietic stem cell-derived 

macrophages in normal pancreas and PDAC also demonstrated potential signaling pathways that 

mediate macrophage proliferation. A number of receptors are upregulated in the embryonically 

derived macrophages, including I-7 receptor, Frizzled B, cKit, CD44, CXCR4, CXCR7, CCR2, 

Endothelin receptor A, Ephrin A2, TGF beta receptor 1, nuclear hormone receptors (NR4A1, 

NR4A3, Retinoic acid receptor alpha 2), and GPR132. Comparison between embryonically 

derived and HSC-derived TAMs demonstrated that embryonically derived TAMs have higher 

level of TGF beta-receptor 3, FGF receptor like-1, Frizzled 1, and N-cadherin genes. 

Interestingly, among the genes in the embryonic macrophages that are upregulated by the tumor, 

three genes remained higher than their monocyte-derived TAM counterparts: PDGF receptor 

beta, Frizzled 4, and secreted Frizzled-related protein 2 (Sfrp2). Both Frizzled 4 and Sfrp2 are 

involved in Wnt signaling pathways. The identification of interesting targets suggests that we 

could explore the potential relevance of PDGF and Wnt signaling pathways in the regulation of 

TAM proliferation. 

Lastly, it is important to note that the pathways that mediate TAM proliferation and 

functionality may be uncoupled. CXCR4 is a unique marker of embryonically derived 

macrophages, and its specificity is only manifested in PDAC but not normal pancreas. Treatment 

of orthotopic PDAC-bearing mice did not alter TAM numbers or proliferation (data not shown). 

However, it would be interesting to see if CXCR4 signaling is involved in shaping the functions 

of the embryonically derived TAM subset. 
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4.3 Targeting the cancer cell-macrophage-fibrosis triad 

As we develop therapeutic strategies to target the cancer microenvironment, it is 

important to note that not all tumor types are created equal. Each tumor has its unique stromal 

structure that needs to be considered.  

Two hallmarks of pancreatic ductal adenocarcinoma are the extensive myeloid infiltration 

and dense desmoplastic reactions characterized by high level of fibrosis. High levels of 

macrophage infiltration predict worse survival duration for PDAC patients (DeNardo et al., 

2011; Ino et al., 2013), making them a good therapeutic target. Indeed, depletion of TAMs in 

murine models of PDAC decreased tumor infiltrating cells, relieved immunosuppression, and 

improved responses to both chemotherapies and checkpoint-based immune therapies (Mitchem 

et al., 2013; Zhu et al., 2014). On the other hand, fibrosis is considered to be another major 

barrier of PDAC treatment. While fibrosis was originally considered to provide a mechanical 

encapsulation that contains the primary tumor and prevents its spread, high level of fibrosis was 

later found to negatively correlate with patient outcome. Excessive amount of fibrosis increases 

interstitial fluid pressures, induces collapses of vasculature, and presents major physical barriers 

to perfusion and diffusion of small molecule-based therapeutics (Provenzano et al., 2012). 

Therefore, alleviation of fibrotic elements in the stroma, by targeting hyaluronan acid for 

example, enhances the delivery of chemotherapies and improves overall survival in preclinical 

mouse models. Alternatively, targeting tumor cell-intrinsic pathways, such as the focal adhesion 

kinase pathway, to reduce fibrosis also improves chemotherapy and checkpoint-based and 

adoptive cell transfer-based immunotherapies (Jiang et al., 2016). It is important to note that 

while fibroblast cells are the major source of fibrosis, simply stripping fibroblasts may not 

generate favorable outcome (Ozdemir et al., 2014). This could be due to the heterogeneity in the 
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quality of fibrosis: certain configurations of extracellular matrix structure could be necessary for 

anti-tumor activities. Therefore, it may be more favorable to reprogram tumor cells or fibroblasts 

to alleviate fibrosis, or alter the qualities of the ECM components. It would be interesting to see 

if macrophages could serve as a target during these processes. Our study demonstrated that 

myeloid cells, in particular tissue resident macrophages of embryonic origin, are involved in the 

modulation of fibrosis. Fibrosis, in turn, could serve as a positive feedback loop to enhance the in 

situ proliferation of tissue resident macrophages. Therefore, it is possible to foresee a 

combination treatment option that combines the reprogramming of macrophages with the 

alleviation of desmoplasia.  

 

4.4 Targeting the hematopoietic system to optimize tumor immunity 

As we expand our knowledge of the tumor immune microenvironment, it is important to 

remind ourselves that the local immune microenvironment likely results from a systemic level of 

immune responses. Immune cells are not generated in isolation, but are provided by the 

hematopoietic system at different stages in various lymphoid organs, such as bone marrow, 

spleen, and embryonic organs including yolk sac and fetal liver. This is not only true in mouse 

models but also observed in human patients: patients not only show enhanced level of immune 

infiltration in the tumor tissue, but also have elevated level of circulating immune cells and 

increased production in the bone marrow. Change in the qualities of systemic immune cell 

production is also seen in the hematopoietic system, as shown by the expansion of myeloid 

progenitors at the expense of lymphoid production (Casbon et al., 2015), which leads to 

increased myeloid-mediated immunosuppression coupled with impaired adaptive T cell 

cytotoxicity. Therefore, it is important to study how the hematopoietic differentiation pathways 
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are skewed in tumors, and how we can target these processes to combat cancer. Interestingly, 

bias towards myeloid expansion at the cost of lymphopoiesis is also seen during aging, 

suggesting the possibility that this skewed hematopoiesis during aging could contribute to cancer 

initiation by promoting chronic inflammation (Akunuru and Geiger, 2016; Geiger et al., 2013). 

In addition, knowledge of how tumors communicate with distant sites such as the bone marrow 

to modulate the immune system on an organismal level is still lacking. Such studies could 

provide insights into whether we can engineer an immune system from the source, i.e. 

hematopoietic stem and progenitor cells, and provide novel options that can further improve 

current immunotherapeutics.  
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Figure 4.1. Reprogramming of the myeloid responses to enhance anti-tumor immunity. 

Tumor tissues contain extensive infiltration of suppressive myeloid cells, such as tumor-

associated macrophages (TAMs), immature dendritic cells (DCs), and granulocytic myeloid-

derived suppressor cells (G-MDSCs), which inhibit anti-tumor activities of cytotoxic T 

lymphocytes (CTLs). Strategies to alleviate immune suppression mediated by these myeloid cells, 

such as using CSF1R inhibition or CXCR1/2 signal blockade, could reprogram these myeloid 

cells to activate the adaptive immune system and enhance the efficacy of immunotherapeutics to 

eliminate tumor cells.  

  



	   178	  

References 

Aaltonen, T., Adelman, J., Akimoto, T., Albrow, M.G., Alvarez Gonzalez, B., Amerio, S., 

Amidei, D., Anastassov, A., Annovi, A., Antos, J., et al. (2009). Search for the associated 

production of the standard-model Higgs Boson in the all-hadronic channel. Phys Rev Lett 103, 

221801. 

Afik, R., Zigmond, E., Vugman, M., Klepfish, M., Shimshoni, E., Pasmanik-Chor, M., Shenoy, 

A., Bassat, E., Halpern, Z., Geiger, T., et al. (2016). Tumor macrophages are pivotal constructors 

of tumor collagenous matrix. The Journal of experimental medicine 213, 2315-2331. 

Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W., and Rossi, F.M. (2007). Local self-renewal 

can sustain CNS microglia maintenance and function throughout adult life. Nature neuroscience 

10, 1538-1543. 

Akunuru, S., and Geiger, H. (2016). Aging, Clonality, and Rejuvenation of Hematopoietic Stem 

Cells. Trends in molecular medicine 22, 701-712. 

Amano, S.U., Cohen, J.L., Vangala, P., Tencerova, M., Nicoloro, S.M., Yawe, J.C., Shen, Y., 

Czech, M.P., and Aouadi, M. (2014). Local proliferation of macrophages contributes to obesity-

associated adipose tissue inflammation. Cell metabolism 19, 162-171. 

Arandjelovic, S., and Ravichandran, K.S. (2015). Phagocytosis of apoptotic cells in homeostasis. 

Nature immunology 16, 907-917. 

Artis, D.R., Bremer, R., Gillette, S., Hurt, C.R., Ibrahim, P.L., and Zuckerman, R.L. (2005). 

Molecular Scaffolds for Kinase Ligand Development (United States: Plexxikon, Inc.). 



	   179	  

Aurora, A.B., Porrello, E.R., Tan, W., Mahmoud, A.I., Hill, J.A., Bassel-Duby, R., Sadek, H.A., 

and Olson, E.N. (2014). Macrophages are required for neonatal heart regeneration. The Journal 

of clinical investigation 124, 1382-1392. 

Bain, C.C., Bravo-Blas, A., Scott, C.L., Gomez Perdiguero, E., Geissmann, F., Henri, S., 

Malissen, B., Osborne, L.C., Artis, D., and Mowat, A.M. (2014). Constant replenishment from 

circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature 

immunology 15, 929-937. 

Bain, C.C., Hawley, C.A., Garner, H., Scott, C.L., Schridde, A., Steers, N.J., Mack, M., Joshi, A., 

Guilliams, M., Mowat, A.M., et al. (2016). Long-lived self-renewing bone marrow-derived 

macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature 

communications 7, ncomms11852. 

Balaz, P., Friess, H., Kondo, Y., Zhu, Z., Zimmermann, A., and Buchler, M.W. (2002). Human 

macrophage metalloelastase worsens the prognosis of pancreatic cancer. Ann Surg 235, 519-527. 

Bayne, L.J., Beatty, G.L., Jhala, N., Clark, C.E., Rhim, A.D., Stanger, B.Z., and Vonderheide, 

R.H. (2012). Tumor-derived granulocyte-macrophage colony-stimulating factor regulates 

myeloid inflammation and T cell immunity in pancreatic cancer. Cancer cell 21, 822-835. 

Beatty, G.L., Chiorean, E.G., Fishman, M.P., Saboury, B., Teitelbaum, U.R., Sun, W., Huhn, 

R.D., Song, W., Li, D., Sharp, L.L., et al. (2011). CD40 agonists alter tumor stroma and show 

efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612-1616. 

Beatty, G.L., Winograd, R., Evans, R.A., Long, K.B., Luque, S.L., Lee, J.W., Clendenin, C., 

Gladney, W.L., Knoblock, D.M., Guirnalda, P.D., et al. (2015). Exclusion of T Cells From 

Pancreatic Carcinomas in Mice Is Regulated by Ly6C(low) F4/80(+) Extratumoral Macrophages. 

Gastroenterology 149, 201-210. 



	   180	  

Ben-Mordechai, T., Holbova, R., Landa-Rouben, N., Harel-Adar, T., Feinberg, M.S., Abd 

Elrahman, I., Blum, G., Epstein, F.H., Silman, Z., Cohen, S., et al. (2013). Macrophage 

subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the 

American College of Cardiology 62, 1890-1901. 

Biswas, S.K., and Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte 

subsets: cancer as a paradigm. Nature immunology 11, 889-896. 

Bleriot, C., Dupuis, T., Jouvion, G., Eberl, G., Disson, O., and Lecuit, M. (2015). Liver-resident 

macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated 

tissue repair during bacterial infection. Immunity 42, 145-158. 

Border, W.A., Okuda, S., Languino, L.R., and Ruoslahti, E. (1990). Transforming growth factor-

beta regulates production of proteoglycans by mesangial cells. Kidney international 37, 689-695. 

Boulter, L., Govaere, O., Bird, T.G., Radulescu, S., Ramachandran, P., Pellicoro, A., Ridgway, 

R.A., Seo, S.S., Spee, B., Van Rooijen, N., et al. (2012). Macrophage-derived Wnt opposes 

Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature medicine 

18, 572-579. 

Bowman, R.L., Klemm, F., Akkari, L., Pyonteck, S.M., Sevenich, L., Quail, D.F., Dhara, S., 

Simpson, K., Gardner, E.E., Iacobuzio-Donahue, C.A., et al. (2016). Macrophage Ontogeny 

Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell reports 17, 

2445-2459. 

Boyer, S.W., Schroeder, A.V., Smith-Berdan, S., and Forsberg, E.C. (2011). All hematopoietic 

cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell 

stem cell 9, 64-73. 



	   181	  

Brestoff, J.R., Kim, B.S., Saenz, S.A., Stine, R.R., Monticelli, L.A., Sonnenberg, G.F., Thome, 

J.J., Farber, D.L., Lutfy, K., Seale, P., et al. (2015). Group 2 innate lymphoid cells promote 

beiging of white adipose tissue and limit obesity. Nature 519, 242-246. 

Bruttger, J., Karram, K., Wortge, S., Regen, T., Marini, F., Hoppmann, N., Klein, M., Blank, T., 

Yona, S., Wolf, Y., et al. (2015). Genetic Cell Ablation Reveals Clusters of Local Self-Renewing 

Microglia in the Mammalian Central Nervous System. Immunity 43, 92-106. 

Calderon, B., Carrero, J.A., Ferris, S.T., Sojka, D.K., Moore, L., Epelman, S., Murphy, K.M., 

Yokoyama, W.M., Randolph, G.J., and Unanue, E.R. (2015). The pancreas anatomy conditions 

the origin and properties of resident macrophages. The Journal of experimental medicine 212, 

1497-1512. 

Campbell, M.J., Tonlaar, N.Y., Garwood, E.R., Huo, D., Moore, D.H., Khramtsov, A.I., Au, A., 

Baehner, F., Chen, Y., Malaka, D.O., et al. (2010). Proliferating macrophages associated with 

high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer 

Res Treat. 

Casbon, A.J., Reynaud, D., Park, C., Khuc, E., Gan, D.D., Schepers, K., Passegue, E., and Werb, 

Z. (2015). Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to 

generate immunosuppressive neutrophils. Proceedings of the National Academy of Sciences of 

the United States of America 112, E566-575. 

Castellana, D., Paus, R., and Perez-Moreno, M. (2014). Macrophages contribute to the cyclic 

activation of adult hair follicle stem cells. PLoS biology 12, e1002002. 

Cattin, A.L., Burden, J.J., Van Emmenis, L., Mackenzie, F.E., Hoving, J.J., Garcia Calavia, N., 

Guo, Y., McLaughlin, M., Rosenberg, L.H., Quereda, V., et al. (2015). Macrophage-Induced 



	   182	  

Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell 162, 

1127-1139. 

Chen, J., Feng, Y., Lu, L., Wang, H., Dai, L., Li, Y., and Zhang, P. (2012). Interferon-gamma-

induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. 

Immunobiology 217, 385-393. 

Chen, Z., Feng, X., Herting, C.J., Alvarez Garcia, V., Nie, K., Pong, W.W., Rasmussen, R., 

Dwivedi, B., Seby, S., Wolf, S.A., et al. (2017). Cellular and molecular identity of tumor-

associated macrophages in glioblastoma. Cancer research. 

Chow, A., Huggins, M., Ahmed, J., Hashimoto, D., Lucas, D., Kunisaki, Y., Pinho, S., Leboeuf, 

M., Noizat, C., van Rooijen, N., et al. (2013). CD169(+) macrophages provide a niche promoting 

erythropoiesis under homeostasis and stress. Nature medicine 19, 429-436. 

Coffelt, S.B., Hughes, R., and Lewis, C.E. (2009). Tumor-associated macrophages: effectors of 

angiogenesis and tumor progression. Biochimica et biophysica acta 1796, 11-18. 

Collin, M.P., Hart, D.N., Jackson, G.H., Cook, G., Cavet, J., Mackinnon, S., Middleton, P.G., 

and Dickinson, A.M. (2006). The fate of human Langerhans cells in hematopoietic stem cell 

transplantation. The Journal of experimental medicine 203, 27-33. 

Collisson, E.A., Sadanandam, A., Olson, P., Gibb, W.J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., 

Kim, G.E., Jakkula, L., et al. (2011). Subtypes of pancreatic ductal adenocarcinoma and their 

differing responses to therapy. Nature medicine 17, 500-503. 

Conway, J.G., McDonald, B., Parham, J., Keith, B., Rusnak, D.W., Shaw, E., Jansen, M., Lin, P., 

Payne, A., Crosby, R.M., et al. (2005). Inhibition of colony-stimulating-factor-1 signaling in 

vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proceedings of the National 

Academy of Sciences of the United States of America 102, 16078-16083. 



	   183	  

Cortez-Retamozo, V., Etzrodt, M., Newton, A., Ryan, R., Pucci, F., Sio, S.W., Kuswanto, W., 

Rauch, P.J., Chudnovskiy, A., Iwamoto, Y., et al. (2013). Angiotensin II drives the production of 

tumor-promoting macrophages. Immunity 38, 296-308. 

Coussens, L.M., Fingleton, B., and Matrisian, L.M. (2002). Matrix metalloproteinase inhibitors 

and cancer: trials and tribulations. Science 295, 2387-2392. 

Cumano, A., and Godin, I. (2007). Ontogeny of the hematopoietic system. Annual review of 

immunology 25, 745-785. 

De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., and Naldini, 

L. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for 

tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer cell 8, 

211-226. 

de Souza, L.F., Jardim, F.R., Sauter, I.P., de Souza, M.M., and Bernard, E.A. (2008). High 

glucose increases RAW 264.7 macrophages activation by lipoteichoic acid from Staphylococcus 

aureus. Clinica chimica acta; international journal of clinical chemistry 398, 130-133. 

DeNardo, D.G., Barreto, J.B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., and Coussens, 

L.M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by 

enhancing protumor properties of macrophages. Cancer cell 16, 91-102. 

DeNardo, D.G., Brennan, D.J., Rexhepaj, E., Ruffell, B., Shiao, S.L., Madden, S.F., Gallagher, 

W.M., Wadhwani, N., Keil, S.D., Junaid, S.A., et al. (2011). Leukocyte complexity predicts 

breast cancer survival and functionally regulates response to chemotherapy. Cancer discovery 1, 

54-67. 

Dunkelberger, J.R., and Song, W.C. (2010). Complement and its role in innate and adaptive 

immune responses. Cell research 20, 34-50. 



	   184	  

Dunn, G.P., Bruce, A.T., Sheehan, K.C., Shankaran, V., Uppaluri, R., Bui, J.D., Diamond, M.S., 

Koebel, C.M., Arthur, C., White, J.M., et al. (2005). A critical function for type I interferons in 

cancer immunoediting. Nature immunology 6, 722-729. 

Dutta, P., Hoyer, F.F., Grigoryeva, L.S., Sager, H.B., Leuschner, F., Courties, G., Borodovsky, 

A., Novobrantseva, T., Ruda, V.M., Fitzgerald, K., et al. (2015). Macrophages retain 

hematopoietic stem cells in the spleen via VCAM-1. The Journal of experimental medicine 212, 

497-512. 

Elmore, M.R., Najafi, A.R., Koike, M.A., Dagher, N.N., Spangenberg, E.E., Rice, R.A., 

Kitazawa, M., Matusow, B., Nguyen, H., West, B.L., et al. (2014). Colony-stimulating factor 1 

receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in 

the adult brain. Neuron 82, 380-397. 

Engelhardt, J.J., Boldajipour, B., Beemiller, P., Pandurangi, P., Sorensen, C., Werb, Z., Egeblad, 

M., and Krummel, M.F. (2012). Marginating dendritic cells of the tumor microenvironment 

cross-present tumor antigens and stably engage tumor-specific T cells. Cancer cell 21, 402-417. 

Ensan, S., Li, A., Besla, R., Degousee, N., Cosme, J., Roufaiel, M., Shikatani, E.A., El-Maklizi, 

M., Williams, J.W., Robins, L., et al. (2016). Self-renewing resident arterial macrophages arise 

from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. 

Nature immunology 17, 159-168. 

Epelman, S., Lavine, K.J., Beaudin, A.E., Sojka, D.K., Carrero, J.A., Calderon, B., Brija, T., 

Gautier, E.L., Ivanov, S., Satpathy, A.T., et al. (2014). Embryonic and adult-derived resident 

cardiac macrophages are maintained through distinct mechanisms at steady state and during 

inflammation. Immunity 40, 91-104. 



	   185	  

Erblich, B., Zhu, L., Etgen, A.M., Dobrenis, K., and Pollard, J.W. (2011). Absence of colony 

stimulation factor-1 receptor results in loss of microglia, disrupted brain development and 

olfactory deficits. PloS one 6, e26317. 

Eyles, J., Puaux, A.L., Wang, X., Toh, B., Prakash, C., Hong, M., Tan, T.G., Zheng, L., Ong, 

L.C., Jin, Y., et al. (2010). Tumor cells disseminate early, but immunosurveillance limits 

metastatic outgrowth, in a mouse model of melanoma. The Journal of clinical investigation 120, 

2030-2039. 

Fleetwood, A.J., Lawrence, T., Hamilton, J.A., and Cook, A.D. (2007). Granulocyte-macrophage 

colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes 

display differences in cytokine profiles and transcription factor activities: implications for CSF 

blockade in inflammation. Journal of immunology 178, 5245-5252. 

Franklin, R.A., and Li, M.O. (2016). Ontogeny of Tumor-associated Macrophages and Its 

Implication in Cancer Regulation. Trends Cancer 2, 20-34. 

Franklin, R.A., Liao, W., Sarkar, A., Kim, M.V., Bivona, M.R., Liu, K., Pamer, E.G., and Li, 

M.O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science 344, 

921-925. 

Gabrilovich, D.I., and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the 

immune system. Nature reviews Immunology 9, 162-174. 

Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., 

Elpek, K.G., Gordonov, S., et al. (2012). Gene-expression profiles and transcriptional regulatory 

pathways that underlie the identity and diversity of mouse tissue macrophages. Nature 

immunology 13, 1118-1128. 



	   186	  

Geiger, H., de Haan, G., and Florian, M.C. (2013). The ageing haematopoietic stem cell 

compartment. Nature reviews Immunology 13, 376-389. 

Gibbings, S.L., Goyal, R., Desch, A.N., Leach, S.M., Prabagar, M., Atif, S.M., Bratton, D.L., 

Janssen, W., and Jakubzick, C.V. (2015). Transcriptome analysis highlights the conserved 

difference between embryonic and postnatal-derived alveolar macrophages. Blood 126, 1357-

1366. 

Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M.F., Conway, 

S.J., Ng, L.G., Stanley, E.R., et al. (2010). Fate mapping analysis reveals that adult microglia 

derive from primitive macrophages. Science 330, 841-845. 

Ginhoux, F., and Guilliams, M. (2016). Tissue-Resident Macrophage Ontogeny and Homeostasis. 

Immunity 44, 439-449. 

Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., Garner, H., 

Trouillet, C., de Bruijn, M.F., Geissmann, F., et al. (2015). Tissue-resident macrophages 

originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547-551. 

Gosselin, D., Link, V.M., Romanoski, C.E., Fonseca, G.J., Eichenfield, D.Z., Spann, N.J., 

Stender, J.D., Chun, H.B., Garner, H., Geissmann, F., et al. (2014). Environment drives selection 

and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327-1340. 

Goswami, S., Sahai, E., Wyckoff, J.B., Cammer, M., Cox, D., Pixley, F.J., Stanley, E.R., Segall, 

J.E., and Condeelis, J.S. (2005). Macrophages promote the invasion of breast carcinoma cells via 

a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer research 65, 5278-

5283. 

Gregory, C.D., and Devitt, A. (2004). The macrophage and the apoptotic cell: an innate immune 

interaction viewed simplistically? Immunology 113, 1-14. 



	   187	  

Grivennikov, S.I., and Karin, M. (2010). Inflammation and oncogenesis: a vicious connection. 

Current opinion in genetics & development 20, 65-71. 

Gundra, U.M., Girgis, N.M., Ruckerl, D., Jenkins, S., Ward, L.N., Kurtz, Z.D., Wiens, K.E., 

Tang, M.S., Basu-Roy, U., Mansukhani, A., et al. (2014). Alternatively activated macrophages 

derived from monocytes and tissue macrophages are phenotypically and functionally distinct. 

Blood 123, e110-122. 

Gyorki, D.E., Asselin-Labat, M.L., van Rooijen, N., Lindeman, G.J., and Visvader, J.E. (2009). 

Resident macrophages influence stem cell activity in the mammary gland. Breast cancer 

research : BCR 11, R62. 

Haberstroh, U., Zahner, G., Disser, M., Thaiss, F., Wolf, G., and Stahl, R.A. (1993). TGF-beta 

stimulates rat mesangial cell proliferation in culture: role of PDGF beta-receptor expression. The 

American journal of physiology 264, F199-205. 

Hambardzumyan, D., Gutmann, D.H., and Kettenmann, H. (2016). The role of microglia and 

macrophages in glioma maintenance and progression. Nature neuroscience 19, 20-27. 

Hamid, O., Robert, C., Daud, A., Hodi, F.S., Hwu, W.J., Kefford, R., Wolchok, J.D., Hersey, P., 

Joseph, R.W., Weber, J.S., et al. (2013). Safety and tumor responses with lambrolizumab (anti-

PD-1) in melanoma. N Engl J Med 369, 134-144. 

Hanna, R.N., Carlin, L.M., Hubbeling, H.G., Nackiewicz, D., Green, A.M., Punt, J.A., 

Geissmann, F., and Hedrick, C.C. (2011). The transcription factor NR4A1 (Nur77) controls bone 

marrow differentiation and the survival of Ly6C- monocytes. Nature immunology 12, 778-785. 

Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M.B., Leboeuf, M., Becker, C.D., See, P., 

Price, J., Lucas, D., et al. (2013). Tissue-resident macrophages self-maintain locally throughout 

adult life with minimal contribution from circulating monocytes. Immunity 38, 792-804. 



	   188	  

Highfill, S.L., Cui, Y., Giles, A.J., Smith, J.P., Zhang, H., Morse, E., Kaplan, R.N., and Mackall, 

C.L. (2014). Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 

efficacy. Sci Transl Med 6, 237ra267. 

Hingorani, S.R., Wang, L., Multani, A.S., Combs, C., Deramaudt, T.B., Hruban, R.H., Rustgi, 

A.K., Chang, S., and Tuveson, D.A. (2005). Trp53R172H and KrasG12D cooperate to promote 

chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. 

Cancer cell 7, 469-483. 

Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, 

R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010). Improved survival with ipilimumab in 

patients with metastatic melanoma. N Engl J Med 363, 711-723. 

Hoeffel, G., Chen, J., Lavin, Y., Low, D., Almeida, F.F., See, P., Beaudin, A.E., Lum, J., Low, I., 

Forsberg, E.C., et al. (2015). C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give 

rise to adult tissue-resident macrophages. Immunity 42, 665-678. 

Hruban, R.H., Maitra, A., Kern, S.E., and Goggins, M. (2007). Precursors to pancreatic cancer. 

Gastroenterology clinics of North America 36, 831-849, vi. 

Hussain, S.P., and Harris, C.C. (2007). Inflammation and cancer: an ancient link with novel 

potentials. International journal of cancer 121, 2373-2380. 

Ino, Y., Yamazaki-Itoh, R., Shimada, K., Iwasaki, M., Kosuge, T., Kanai, Y., and Hiraoka, N. 

(2013). Immune cell infiltration as an indicator of the immune microenvironment of pancreatic 

cancer. Br J Cancer 108, 914-923. 

Ip, W.K., and Medzhitov, R. (2015). Macrophages monitor tissue osmolarity and induce 

inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nature 

communications 6, 6931. 



	   189	  

Jakubzick, C., Gautier, E.L., Gibbings, S.L., Sojka, D.K., Schlitzer, A., Johnson, T.E., Ivanov, S., 

Duan, Q., Bala, S., Condon, T., et al. (2013). Minimal differentiation of classical monocytes as 

they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599-610. 

Jantsch, J., Binger, K.J., Muller, D.N., and Titze, J. (2014). Macrophages in homeostatic immune 

function. Frontiers in physiology 5, 146. 

Jenkins, S.J., Ruckerl, D., Cook, P.C., Jones, L.H., Finkelman, F.D., van Rooijen, N., 

MacDonald, A.S., and Allen, J.E. (2011). Local macrophage proliferation, rather than 

recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284-1288. 

Jiang, H., Hegde, S., Knolhoff, B.L., Zhu, Y., Herndon, J.M., Meyer, M.A., Nywening, T.M., 

Hawkins, W.G., Shapiro, I.M., Weaver, D.T., et al. (2016). Targeting focal adhesion kinase 

renders pancreatic cancers responsive to checkpoint immunotherapy. Nature medicine 22, 851-

860. 

Jiao, X., Sherman, B.T., Huang da, W., Stephens, R., Baseler, M.W., Lane, H.C., and Lempicki, 

R.A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. 

Bioinformatics 28, 1805-1806. 

Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A.H. (2000). Induction of interleukin 

10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive 

stimulation with allogeneic immature human dendritic cells. The Journal of experimental 

medicine 192, 1213-1222. 

Kang, K., Reilly, S.M., Karabacak, V., Gangl, M.R., Fitzgerald, K., Hatano, B., and Lee, C.H. 

(2008). Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage 

polarization and insulin sensitivity. Cell metabolism 7, 485-495. 



	   190	  

Kantoff, P.W., Higano, C.S., Shore, N.D., Berger, E.R., Small, E.J., Penson, D.F., Redfern, C.H., 

Ferrari, A.C., Dreicer, R., Sims, R.B., et al. (2010). Sipuleucel-T immunotherapy for castration-

resistant prostate cancer. N Engl J Med 363, 411-422. 

Kaplan, D.H., Shankaran, V., Dighe, A.S., Stockert, E., Aguet, M., Old, L.J., and Schreiber, R.D. 

(1998). Demonstration of an interferon gamma-dependent tumor surveillance system in 

immunocompetent mice. Proceedings of the National Academy of Sciences of the United States 

of America 95, 7556-7561. 

Khorana, A.A., Ryan, C.K., Cox, C., Eberly, S., and Sahasrabudhe, D.M. (2003). Vascular 

endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival 

in patients with Stage II and Stage III colon carcinoma: a role for the host response in prognosis. 

Cancer 97, 960-968. 

Kim, K.W., Williams, J.W., Wang, Y.T., Ivanov, S., Gilfillan, S., Colonna, M., Virgin, H.W., 

Gautier, E.L., and Randolph, G.J. (2016). MHC II+ resident peritoneal and pleural macrophages 

rely on IRF4 for development from circulating monocytes. The Journal of experimental medicine 

213, 1951-1959. 

Kim, M.P., Evans, D.B., Wang, H., Abbruzzese, J.L., Fleming, J.B., and Gallick, G.E. (2009). 

Generation of orthotopic and heterotopic human pancreatic cancer xenografts in 

immunodeficient mice. Nat Protoc 4, 1670-1680. 

Kim, R., Emi, M., and Tanabe, K. (2006). Functional roles of immature dendritic cells in 

impaired immunity of solid tumour and their targeted strategies for provoking tumour immunity. 

Clinical and experimental immunology 146, 189-196. 

Kitamura, T., Qian, B.Z., Soong, D., Cassetta, L., Noy, R., Sugano, G., Kato, Y., Li, J., and 

Pollard, J.W. (2015). CCL2-induced chemokine cascade promotes breast cancer metastasis by 



	   191	  

enhancing retention of metastasis-associated macrophages. The Journal of experimental 

medicine 212, 1043-1059. 

Klose, C.S., and Artis, D. (2016). Innate lymphoid cells as regulators of immunity, inflammation 

and tissue homeostasis. Nature immunology 17, 765-774. 

Koebel, C.M., Vermi, W., Swann, J.B., Zerafa, N., Rodig, S.J., Old, L.J., Smyth, M.J., and 

Schreiber, R.D. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. 

Nature 450, 903-907. 

Kohyama, M., Ise, W., Edelson, B.T., Wilker, P.R., Hildner, K., Mejia, C., Frazier, W.A., 

Murphy, T.L., and Murphy, K.M. (2009). Role for Spi-C in the development of red pulp 

macrophages and splenic iron homeostasis. Nature 457, 318-321. 

Kopp, J.L., von Figura, G., Mayes, E., Liu, F.F., Dubois, C.L., Morris, J.P.t., Pan, F.C., Akiyama, 

H., Wright, C.V., Jensen, K., et al. (2012). Identification of Sox9-dependent acinar-to-ductal 

reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. 

Cancer cell 22, 737-750. 

Kurahara, H., Shinchi, H., Mataki, Y., Maemura, K., Noma, H., Kubo, F., Sakoda, M., Ueno, S., 

Natsugoe, S., and Takao, S. (2011). Significance of M2-polarized tumor-associated macrophage 

in pancreatic cancer. J Surg Res 167, e211-219. 

Lackner, C., Jukic, Z., Tsybrovskyy, O., Jatzko, G., Wette, V., Hoefler, G., Klimpfinger, M., 

Denk, H., and Zatloukal, K. (2004). Prognostic relevance of tumour-associated macrophages and 

von Willebrand factor-positive microvessels in colorectal cancer. Virchows Archiv : an 

international journal of pathology 445, 160-167. 



	   192	  

Langowski, J.L., Zhang, X., Wu, L., Mattson, J.D., Chen, T., Smith, K., Basham, B., 

McClanahan, T., Kastelein, R.A., and Oft, M. (2006). IL-23 promotes tumour incidence and 

growth. Nature 442, 461-465. 

Laoui, D., Van Overmeire, E., Di Conza, G., Aldeni, C., Keirsse, J., Morias, Y., Movahedi, K., 

Houbracken, I., Schouppe, E., Elkrim, Y., et al. (2014). Tumor hypoxia does not drive 

differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage 

population. Cancer research 74, 24-30. 

Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., Jung, S., and 

Amit, I. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local 

microenvironment. Cell 159, 1312-1326. 

Le, D.T., Lutz, E., Uram, J.N., Sugar, E.A., Onners, B., Solt, S., Zheng, L., Diaz, L.A., Jr., 

Donehower, R.C., Jaffee, E.M., et al. (2013). Evaluation of ipilimumab in combination with 

allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated 

pancreatic cancer. J Immunother 36, 382-389. 

Lee, J.J., Takei, M., Hori, S., Inoue, Y., Harada, Y., Tanosaki, R., Kanda, Y., Kami, M., 

Makimoto, A., Mineishi, S., et al. (2002). The role of PGE(2) in the differentiation of dendritic 

cells: how do dendritic cells influence T-cell polarization and chemokine receptor expression? 

Stem cells 20, 448-459. 

Lewis, C.E., De Palma, M., and Naldini, L. (2007). Tie2-expressing monocytes and tumor 

angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer research 67, 8429-8432. 

Liu, J., Xiang, Z., and Ma, X. (2004). Role of IFN regulatory factor-1 and IL-12 in 

immunological resistance to pathogenesis of N-methyl-N-nitrosourea-induced T lymphoma. 

Journal of immunology 173, 1184-1193. 



	   193	  

Lobov, I.B., Rao, S., Carroll, T.J., Vallance, J.E., Ito, M., Ondr, J.K., Kurup, S., Glass, D.A., 

Patel, M.S., Shu, W., et al. (2005). WNT7b mediates macrophage-induced programmed cell 

death in patterning of the vasculature. Nature 437, 417-421. 

Loser, K., Scherer, A., Krummen, M.B., Varga, G., Higuchi, T., Schwarz, T., Sharpe, A.H., 

Grabbe, S., Bluestone, J.A., and Beissert, S. (2005). An important role of CD80/CD86-CTLA-4 

signaling during photocarcinogenesis in mice. Journal of immunology 174, 5298-5305. 

Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in 

adipose tissue macrophage polarization. The Journal of clinical investigation 117, 175-184. 

Ma, Y., Shurin, G.V., Peiyuan, Z., and Shurin, M.R. (2013). Dendritic cells in the cancer 

microenvironment. Journal of Cancer 4, 36-44. 

Mahnke, K., Schmitt, E., Bonifaz, L., Enk, A.H., and Jonuleit, H. (2002). Immature, but not 

inactive: the tolerogenic function of immature dendritic cells. Immunology and cell biology 80, 

477-483. 

Mantovani, A. (2008). From phagocyte diversity and activation to probiotics: back to 

Metchnikoff. Eur J Immunol 38, 3269-3273. 

Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. 

Nature 454, 436-444. 

Mantovani, A., and Sica, A. (2010). Macrophages, innate immunity and cancer: balance, 

tolerance, and diversity. Curr Opin Immunol 22, 231-237. 

Mantovani, A., Vecchi, A., and Allavena, P. (2014). Pharmacological modulation of monocytes 

and macrophages. Current opinion in pharmacology 17, 38-44. 

Martinez, F.O., Helming, L., and Gordon, S. (2009). Alternative activation of macrophages: an 

immunologic functional perspective. Annual review of immunology 27, 451-483. 



	   194	  

Martinez, F.O., Sica, A., Mantovani, A., and Locati, M. (2008). Macrophage activation and 

polarization. Front Biosci 13, 453-461. 

Mass, E., Ballesteros, I., Farlik, M., Halbritter, F., Gunther, P., Crozet, L., Jacome-Galarza, C.E., 

Handler, K., Klughammer, J., Kobayashi, Y., et al. (2016). Specification of tissue-resident 

macrophages during organogenesis. Science 353. 

Meng, X.M., Nikolic-Paterson, D.J., and Lan, H.Y. (2016). TGF-beta: the master regulator of 

fibrosis. Nature reviews Nephrology 12, 325-338. 

Merad, M., Manz, M.G., Karsunky, H., Wagers, A., Peters, W., Charo, I., Weissman, I.L., Cyster, 

J.G., and Engleman, E.G. (2002). Langerhans cells renew in the skin throughout life under 

steady-state conditions. Nature immunology 3, 1135-1141. 

Mitchem, J.B., Brennan, D.J., Knolhoff, B.L., Belt, B.A., Zhu, Y., Sanford, D.E., Belaygorod, L., 

Carpenter, D., Collins, L., Piwnica-Worms, D., et al. (2013). Targeting tumor-infiltrating 

macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves 

chemotherapeutic responses. Cancer research 73, 1128-1141. 

Miyake, Y., Kaise, H., Isono, K., Koseki, H., Kohno, K., and Tanaka, M. (2007). Protective role 

of macrophages in noninflammatory lung injury caused by selective ablation of alveolar 

epithelial type II Cells. Journal of immunology 178, 5001-5009. 

Mok, S., Koya, R.C., Tsui, C., Xu, J., Robert, L., Wu, L., Graeber, T.G., West, B.L., Bollag, G., 

and Ribas, A. (2013). Inhibition of CSF-1 Receptor Improves the Antitumor Efficacy of 

Adoptive Cell Transfer Immunotherapy. Cancer research. 

Mok, S., Koya, R.C., Tsui, C., Xu, J., Robert, L., Wu, L., Graeber, T.G., West, B.L., Bollag, G., 

and Ribas, A. (2014). Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive 

cell transfer immunotherapy. Cancer research 74, 153-161. 



	   195	  

Molawi, K., Wolf, Y., Kandalla, P.K., Favret, J., Hagemeyer, N., Frenzel, K., Pinto, A.R., 

Klapproth, K., Henri, S., Malissen, B., et al. (2014). Progressive replacement of embryo-derived 

cardiac macrophages with age. The Journal of experimental medicine 211, 2151-2158. 

Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G., Doering, T.A., 

Angelosanto, J.M., Laidlaw, B.J., Yang, C.Y., Sathaliyawala, T., et al. (2011). Innate lymphoid 

cells promote lung-tissue homeostasis after infection with influenza virus. Nature immunology 

12, 1045-1054. 

Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. 

Nature reviews Immunology 8, 958-969. 

Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., Mack, M., 

Pipeleers, D., In't Veld, P., De Baetselier, P., et al. (2010). Different tumor microenvironments 

contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. 

Cancer research 70, 5728-5739. 

Muller, S., Quast, T., Schroder, A., Hucke, S., Klotz, L., Jantsch, J., Gerzer, R., Hemmersbach, 

R., and Kolanus, W. (2013). Salt-dependent chemotaxis of macrophages. PloS one 8, e73439. 

Multhoff, G., Molls, M., and Radons, J. (2011). Chronic inflammation in cancer development. 

Frontiers in immunology 2, 98. 

Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S., Gordon, S., 

Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., et al. (2014). Macrophage activation and 

polarization: nomenclature and experimental guidelines. Immunity 41, 14-20. 

Nandi, S., Gokhan, S., Dai, X.M., Wei, S., Enikolopov, G., Lin, H., Mehler, M.F., and Stanley, 

E.R. (2012). The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain 



	   196	  

expression patterns and regulate neural progenitor cell maintenance and maturation. 

Developmental biology 367, 100-113. 

Nascimento, M., Huang, S.C., Smith, A., Everts, B., Lam, W., Bassity, E., Gautier, E.L., 

Randolph, G.J., and Pearce, E.J. (2014). Ly6Chi monocyte recruitment is responsible for Th2 

associated host-protective macrophage accumulation in liver inflammation due to 

schistosomiasis. PLoS pathogens 10, e1004282. 

Nausch, N., and Cerwenka, A. (2008). NKG2D ligands in tumor immunity. Oncogene 27, 5944-

5958. 

Nguyen, K.D., Qiu, Y., Cui, X., Goh, Y.P., Mwangi, J., David, T., Mukundan, L., Brombacher, 

F., Locksley, R.M., and Chawla, A. (2011). Alternatively activated macrophages produce 

catecholamines to sustain adaptive thermogenesis. Nature 480, 104-108. 

Nielsen, S.R., Quaranta, V., Linford, A., Emeagi, P., Rainer, C., Santos, A., Ireland, L., Sakai, T., 

Sakai, K., Kim, Y.S., et al. (2016). Macrophage-secreted granulin supports pancreatic cancer 

metastasis by inducing liver fibrosis. Nature cell biology 18, 549-560. 

Novitskiy, S.V., Ryzhov, S., Zaynagetdinov, R., Goldstein, A.E., Huang, Y., Tikhomirov, O.Y., 

Blackburn, M.R., Biaggioni, I., Carbone, D.P., Feoktistov, I., et al. (2008). Adenosine receptors 

in regulation of dendritic cell differentiation and function. Blood 112, 1822-1831. 

Noy, R., and Pollard, J.W. (2014). Tumor-associated macrophages: from mechanisms to therapy. 

Immunity 41, 49-61. 

Nywening, T.M., Wang-Gillam, A., Sanford, D.E., Belt, B.A., Panni, R.Z., Cusworth, B.M., 

Toriola, A.T., Nieman, R.K., Worley, L.A., Yano, M., et al. (2016). Targeting tumour-associated 

macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with 



	   197	  

borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-

finding, non-randomised, phase 1b trial. Lancet Oncol. 

O'Sullivan, T., Saddawi-Konefka, R., Vermi, W., Koebel, C.M., Arthur, C., White, J.M., 

Uppaluri, R., Andrews, D.M., Ngiow, S.F., Teng, M.W., et al. (2012). Cancer immunoediting by 

the innate immune system in the absence of adaptive immunity. The Journal of experimental 

medicine 209, 1869-1882. 

Odegaard, J.I., and Chawla, A. (2013). Pleiotropic actions of insulin resistance and inflammation 

in metabolic homeostasis. Science 339, 172-177. 

Ojalvo, L.S., King, W., Cox, D., and Pollard, J.W. (2009). High-density gene expression analysis 

of tumor-associated macrophages from mouse mammary tumors. The American journal of 

pathology 174, 1048-1064. 

Orkin, S.H., and Zon, L.I. (2008). Hematopoiesis: an evolving paradigm for stem cell biology. 

Cell 132, 631-644. 

Ortega-Gomez, A., Perretti, M., and Soehnlein, O. (2013). Resolution of inflammation: an 

integrated view. EMBO molecular medicine 5, 661-674. 

Ozdemir, B.C., Pentcheva-Hoang, T., Carstens, J.L., Zheng, X., Wu, C.C., Simpson, T.R., Laklai, 

H., Sugimoto, H., Kahlert, C., Novitskiy, S.V., et al. (2014). Depletion of carcinoma-associated 

fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with 

reduced survival. Cancer cell 25, 719-734. 

Palucka, K., and Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature 

reviews Cancer 12, 265-277. 



	   198	  

Patsialou, A., Wyckoff, J., Wang, Y., Goswami, S., Stanley, E.R., and Condeelis, J.S. (2009). 

Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops 

involving the colony-stimulating factor-1 receptor. Cancer research 69, 9498-9506. 

Peng, H., Jiang, X., Chen, Y., Sojka, D.K., Wei, H., Gao, X., Sun, R., Yokoyama, W.M., and 

Tian, Z. (2013). Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. 

The Journal of clinical investigation 123, 1444-1456. 

Perdiguero, E.G., and Geissmann, F. (2016). The development and maintenance of resident 

macrophages. Nature immunology 17, 2-8. 

Pierce, J.H., Di Marco, E., Cox, G.W., Lombardi, D., Ruggiero, M., Varesio, L., Wang, L.M., 

Choudhury, G.G., Sakaguchi, A.Y., Di Fiore, P.P., et al. (1990). Macrophage-colony-stimulating 

factor (CSF-1) induces proliferation, chemotaxis, and reversible monocytic differentiation in 

myeloid progenitor cells transfected with the human c-fms/CSF-1 receptor cDNA. Proceedings 

of the National Academy of Sciences of the United States of America 87, 5613-5617. 

Pinto, A.R., Godwin, J.W., and Rosenthal, N.A. (2014). Macrophages in cardiac homeostasis, 

injury responses and progenitor cell mobilisation. Stem cell research 13, 705-714. 

Pollard, J.W. (2009). Trophic macrophages in development and disease. Nature reviews 

Immunology 9, 259-270. 

Pradere, J.P., Kluwe, J., De Minicis, S., Jiao, J.J., Gwak, G.Y., Dapito, D.H., Jang, M.K., 

Guenther, N.D., Mederacke, I., Friedman, R., et al. (2013). Hepatic macrophages but not 

dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate 

cells in mice. Hepatology 58, 1461-1473. 

Priceman, S.J., Sung, J.L., Shaposhnik, Z., Burton, J.B., Torres-Collado, A.X., Moughon, D.L., 

Johnson, M., Lusis, A.J., Cohen, D.A., Iruela-Arispe, M.L., et al. (2010). Targeting distinct 



	   199	  

tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of 

antiangiogenic therapy. Blood 115, 1461-1471. 

Provenzano, P.P., Cuevas, C., Chang, A.E., Goel, V.K., Von Hoff, D.D., and Hingorani, S.R. 

(2012). Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic 

ductal adenocarcinoma. Cancer cell 21, 418-429. 

Pucci, F., Venneri, M.A., Biziato, D., Nonis, A., Moi, D., Sica, A., Di Serio, C., Naldini, L., and 

De Palma, M. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-

expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests 

common functions and developmental relationships. Blood 114, 901-914. 

Pull, S.L., Doherty, J.M., Mills, J.C., Gordon, J.I., and Stappenbeck, T.S. (2005). Activated 

macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for 

regenerative responses to injury. Proceedings of the National Academy of Sciences of the United 

States of America 102, 99-104. 

Pylayeva-Gupta, Y., Lee, K.E., Hajdu, C.H., Miller, G., and Bar-Sagi, D. (2012). Oncogenic 

Kras-Induced GM-CSF Production Promotes the Development of Pancreatic Neoplasia. Cancer 

cell 21, 836-847. 

Pyonteck, S.M., Akkari, L., Schuhmacher, A.J., Bowman, R.L., Sevenich, L., Quail, D.F., Olson, 

O.C., Quick, M.L., Huse, J.T., Teijeiro, V., et al. (2013). CSF-1R inhibition alters macrophage 

polarization and blocks glioma progression. Nature medicine 19, 1264-1272. 

Pyonteck, S.M., Gadea, B.B., Wang, H.W., Gocheva, V., Hunter, K.E., Tang, L.H., and Joyce, 

J.A. (2011). Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic 

neuroendocrine tumor development. Oncogene. 



	   200	  

Qian, B.Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L.R., Kaiser, E.A., Snyder, L.A., 

and Pollard, J.W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour 

metastasis. Nature 475, 222-225. 

Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and 

metastasis. Cell 141, 39-51. 

Robinette, M.L., Fuchs, A., Cortez, V.S., Lee, J.S., Wang, Y., Durum, S.K., Gilfillan, S., 

Colonna, M., and Immunological Genome, C. (2015). Transcriptional programs define molecular 

characteristics of innate lymphoid cell classes and subsets. Nature immunology 16, 306-317. 

Rosenberg, S.A., Restifo, N.P., Yang, J.C., Morgan, R.A., and Dudley, M.E. (2008). Adoptive 

cell transfer: a clinical path to effective cancer immunotherapy. Nature reviews Cancer 8, 299-

308. 

Rowe, J.H., Ertelt, J.M., and Way, S.S. (2012). Innate IFN-gamma is essential for programmed 

death ligand-1-mediated T cell stimulation following Listeria monocytogenes infection. Journal 

of immunology 189, 876-884. 

Roy, L.D., Sahraei, M., Subramani, D.B., Besmer, D., Nath, S., Tinder, T.L., Bajaj, E., 

Shanmugam, K., Lee, Y.Y., Hwang, S.I., et al. (2011). MUC1 enhances invasiveness of 

pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 30, 1449-

1459. 

Royal, R.E., Levy, C., Turner, K., Mathur, A., Hughes, M., Kammula, U.S., Sherry, R.M., 

Topalian, S.L., Yang, J.C., Lowy, I., et al. (2010). Phase 2 trial of single agent Ipilimumab (anti-

CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33, 828-

833. 



	   201	  

Ruffell, B., Chang-Strachan, D., Chan, V., Rosenbusch, A., Ho, C.M., Pryer, N., Daniel, D., 

Hwang, E.S., Rugo, H.S., and Coussens, L.M. (2014). Macrophage IL-10 blocks CD8+ T cell-

dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic 

cells. Cancer cell 26, 623-637. 

Ruffell, B., and Coussens, L.M. (2015). Macrophages and therapeutic resistance in cancer. 

Cancer cell 27, 462-472. 

Saha, S., Aranda, E., Hayakawa, Y., Bhanja, P., Atay, S., Brodin, N.P., Li, J., Asfaha, S., Liu, L., 

Tailor, Y., et al. (2016). Macrophage-derived extracellular vesicle-packaged WNTs rescue 

intestinal stem cells and enhance survival after radiation injury. Nature communications 7, 13096. 

Sandberg, M.L., Sutton, S.E., Pletcher, M.T., Wiltshire, T., Tarantino, L.M., Hogenesch, J.B., 

and Cooke, M.P. (2005). c-Myb and p300 regulate hematopoietic stem cell proliferation and 

differentiation. Developmental cell 8, 153-166. 

Sanford, D.E., Belt, B.A., Panni, R.Z., Mayer, A.B., Deshpande, A.D., Carpenter, D., Mitchem, 

J.B., Plambeck-Suess, S., Worley, L.A., Goetz, B.D., et al. (2013). Inflammatory Monocyte 

Mobilization Decreases Patient Survival in Pancreatic Cancer: a Role for Targeting the 

CCL2/CCR2 Axis. Clin Cancer Res. 

Satoh, T., Nakagawa, K., Sugihara, F., Kuwahara, R., Ashihara, M., Yamane, F., Minowa, Y., 

Fukushima, K., Ebina, I., Yoshioka, Y., et al. (2017). Identification of an atypical monocyte and 

committed progenitor involved in fibrosis. Nature 541, 96-101. 

Satpathy, A.T., Kc, W., Albring, J.C., Edelson, B.T., Kretzer, N.M., Bhattacharya, D., Murphy, 

T.L., and Murphy, K.M. (2012). Zbtb46 expression distinguishes classical dendritic cells and 

their committed progenitors from other immune lineages. The Journal of experimental medicine 

209, 1135-1152. 



	   202	  

Schmid, R.M. (2002). Acinar-to-ductal metaplasia in pancreatic cancer development. The 

Journal of clinical investigation 109, 1403-1404. 

Schubert, C., Schalk-Hihi, C., Struble, G.T., Ma, H.C., Petrounia, I.P., Brandt, B., Deckman, I.C., 

Patch, R.J., Player, M.R., Spurlino, J.C., et al. (2007). Crystal structure of the tyrosine kinase 

domain of colony-stimulating factor-1 receptor (cFMS) in complex with two inhibitors. J Biol 

Chem 282, 4094-4101. 

Schulz, C., Gomez Perdiguero, E., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., 

Prinz, M., Wu, B., Jacobsen, S.E., Pollard, J.W., et al. (2012). A lineage of myeloid cells 

independent of Myb and hematopoietic stem cells. Science 336, 86-90. 

Scott, C.L., Zheng, F., De Baetselier, P., Martens, L., Saeys, Y., De Prijck, S., Lippens, S., Abels, 

C., Schoonooghe, S., Raes, G., et al. (2016). Bone marrow-derived monocytes give rise to self-

renewing and fully differentiated Kupffer cells. Nature communications 7, 10321. 

Serbina, N.V., Jia, T., Hohl, T.M., and Pamer, E.G. (2008). Monocyte-mediated defense against 

microbial pathogens. Annual review of immunology 26, 421-452. 

Shankaran, V., Ikeda, H., Bruce, A.T., White, J.M., Swanson, P.E., Old, L.J., and Schreiber, R.D. 

(2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour 

immunogenicity. Nature 410, 1107-1111. 

Sharma, S.K., Chintala, N.K., Vadrevu, S.K., Patel, J., Karbowniczek, M., and Markiewski, M.M. 

(2015). Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing 

antitumor T cell responses in the lungs. Journal of immunology 194, 5529-5538. 

Sheng, J., Ruedl, C., and Karjalainen, K. (2015). Most Tissue-Resident Macrophages Except 

Microglia Are Derived from Fetal Hematopoietic Stem Cells. Immunity 43, 382-393. 



	   203	  

Shi, C., and Pamer, E.G. (2011). Monocyte recruitment during infection and inflammation. 

Nature reviews Immunology 11, 762-774. 

Simpson, T.R., Li, F., Montalvo-Ortiz, W., Sepulveda, M.A., Bergerhoff, K., Arce, F., Roddie, 

C., Henry, J.Y., Yagita, H., Wolchok, J.D., et al. (2013). Fc-dependent depletion of tumor-

infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. 

The Journal of experimental medicine 210, 1695-1710. 

Spranger, S., Spaapen, R.M., Zha, Y., Williams, J., Meng, Y., Ha, T.T., and Gajewski, T.F. 

(2013). Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is 

driven by CD8(+) T cells. Sci Transl Med 5, 200ra116. 

Strachan, D.C., Ruffell, B., Oei, Y., Bissell, M.J., Coussens, L.M., Pryer, N., and Daniel, D. 

(2013). CSF1R inhibition delays cervical and mammary tumor growth in murine models by 

attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T 

cells. Oncoimmunology 2, e26968. 

Stratford, J.K., Bentrem, D.J., Anderson, J.M., Fan, C., Volmar, K.A., Marron, J.S., Routh, E.D., 

Caskey, L.S., Samuel, J.C., Der, C.J., et al. (2010). A six-gene signature predicts survival of 

patients with localized pancreatic ductal adenocarcinoma. PLoS Med 7, e1000307. 

Tacke, F., Ginhoux, F., Jakubzick, C., van Rooijen, N., Merad, M., and Randolph, G.J. (2006). 

Immature monocytes acquire antigens from other cells in the bone marrow and present them to T 

cells after maturing in the periphery. The Journal of experimental medicine 203, 583-597. 

Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 

805-820. 

Tamoutounour, S., Guilliams, M., Montanana Sanchis, F., Liu, H., Terhorst, D., Malosse, C., 

Pollet, E., Ardouin, L., Luche, H., Sanchez, C., et al. (2013). Origins and functional 



	   204	  

specialization of macrophages and of conventional and monocyte-derived dendritic cells in 

mouse skin. Immunity 39, 925-938. 

Terawaki, S., Chikuma, S., Shibayama, S., Hayashi, T., Yoshida, T., Okazaki, T., and Honjo, T. 

(2011). IFN-alpha directly promotes programmed cell death-1 transcription and limits the 

duration of T cell-mediated immunity. Journal of immunology 186, 2772-2779. 

Titze, J. (2014). Sodium balance is not just a renal affair. Current opinion in nephrology and 

hypertension 23, 101-105. 

Tsai, J., Lee, J.T., Wang, W., Zhang, J., Cho, H., Mamo, S., Bremer, R., Gillette, S., Kong, J., 

Haass, N.K., et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with 

potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United 

States of America 105, 3041-3046. 

Usunier, B., Benderitter, M., Tamarat, R., and Chapel, A. (2014). Management of fibrosis: the 

mesenchymal stromal cells breakthrough. Stem cells international 2014, 340257. 

van de Laar, L., Saelens, W., De Prijck, S., Martens, L., Scott, C.L., Van Isterdael, G., Hoffmann, 

E., Beyaert, R., Saeys, Y., Lambrecht, B.N., et al. (2016). Yolk Sac Macrophages, Fetal Liver, 

and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-

Resident Macrophages. Immunity 44, 755-768. 

Van Dyken, S.J., and Locksley, R.M. (2013). Interleukin-4- and interleukin-13-mediated 

alternatively activated macrophages: roles in homeostasis and disease. Annual review of 

immunology 31, 317-343. 

van Netten, J.P., Ashmead, B.J., Parker, R.L., Thornton, I.G., Fletcher, C., Cavers, D., Coy, P., 

and Brigden, M.L. (1993). Macrophage-tumor cell associations: a factor in metastasis of breast 

cancer? Journal of leukocyte biology 54, 360-362. 



	   205	  

Varol, C., Mildner, A., and Jung, S. (2015). Macrophages: development and tissue specialization. 

Annual review of immunology 33, 643-675. 

Wang, J., and Kubes, P. (2016). A Reservoir of Mature Cavity Macrophages that Can Rapidly 

Invade Visceral Organs to Affect Tissue Repair. Cell 165, 668-678. 

Wolchok, J.D., Kluger, H., Callahan, M.K., Postow, M.A., Rizvi, N.A., Lesokhin, A.M., Segal, 

N.H., Ariyan, C.E., Gordon, R.A., Reed, K., et al. (2013). Nivolumab plus ipilimumab in 

advanced melanoma. N Engl J Med 369, 122-133. 

Wynn, T.A., and Vannella, K.M. (2016). Macrophages in Tissue Repair, Regeneration, and 

Fibrosis. Immunity 44, 450-462. 

Xue, J., Schmidt, S.V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., Gohel, 

T.D., Emde, M., Schmidleithner, L., et al. (2014). Transcriptome-based network analysis reveals 

a spectrum model of human macrophage activation. Immunity 40, 274-288. 

Yang, J., Liao, D., Chen, C., Liu, Y., Chuang, T.H., Xiang, R., Markowitz, D., Reisfeld, R.A., 

and Luo, Y. (2013). Tumor-associated macrophages regulate murine breast cancer stem cells 

through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem cells 31, 248-258. 

Yona, S., Kim, K.W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D., Viukov, S., 

Guilliams, M., Misharin, A., et al. (2013). Fate mapping reveals origins and dynamics of 

monocytes and tissue macrophages under homeostasis. Immunity 38, 79-91. 

Yun, M.H., Davaapil, H., and Brockes, J.P. (2015). Recurrent turnover of senescent cells during 

regeneration of a complex structure. eLife 4. 

Zhang, L., and Wang, C.C. (2014). Inflammatory response of macrophages in infection. 

Hepatobiliary & pancreatic diseases international : HBPD INT 13, 138-152. 



	   206	  

Zhu, Y., Knolhoff, B.L., Meyer, M.A., Nywening, T.M., West, B.L., Luo, J., Wang-Gillam, A., 

Goedegebuure, S.P., Linehan, D.C., and DeNardo, D.G. (2014). CSF1/CSF1R blockade 

reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint 

immunotherapy in pancreatic cancer models. Cancer research 74, 5057-5069. 

 

 


	Defining the Ontogeny and Functions of Macrophages in Pancreatic Ductal Adenocarcinoma
	Recommended Citation

	Microsoft Word - Yu Zhu Thesis Submission.docx

