
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: 

2019-09-03 

Pipelined Parallelism in a Work-Stealing Scheduler Pipelined Parallelism in a Work-Stealing Scheduler 

Thomas Kelly 

A pipeline is a particular type of parallel program structure, often used to represent loops with 

cross-iteration dependencies. Pipelines cannot be expressed with the typical parallel language 

constructs offered by most environments. Therefore, in order to run pipelines, it is necessary to 

write a parallel language and scheduler with specialized support for them. Some such 

schedulers are written exclusively for pipelines and unable to run any other type of program, 

which allows for certain optimizations that take advantage of the pipeline structure. Other 

schedulers implement support for pipelines on top of a general-purpose scheduling algorithm. 

One example of such... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Kelly, Thomas, "Pipelined Parallelism in a Work-Stealing Scheduler" Report Number: (2019). All Computer 
Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/1176 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1176?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This ms project report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1176 

Pipelined Parallelism in a Work-Stealing Scheduler Pipelined Parallelism in a Work-Stealing Scheduler 

Thomas Kelly 

Complete Abstract: Complete Abstract: 

A pipeline is a particular type of parallel program structure, often used to represent loops with cross-
iteration dependencies. Pipelines cannot be expressed with the typical parallel language constructs 
offered by most environments. Therefore, in order to run pipelines, it is necessary to write a parallel 
language and scheduler with specialized support for them. Some such schedulers are written exclusively 
for pipelines and unable to run any other type of program, which allows for certain optimizations that take 
advantage of the pipeline structure. Other schedulers implement support for pipelines on top of a general-
purpose scheduling algorithm. One example of such an algorithm is "work stealing," a paradigm used by 
many popular parallel environments. The benefit of this approach is that it allows the user to arbitrarily 
combine pipeline and non-pipeline structures in their programs. This article is concerned with 
implementing support for pipelines in a work-stealing scheduler, and then attempting to optimize the 
scheduler in such a way that takes advantage of the pipeline structure, despite running in a general-
purpose environment. 

https://openscholarship.wustl.edu/cse_research/1176?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1176?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages


Pipelined Parallelism in a Work-Stealing Scheduler

Thomas Kelly
Computer Science and Engineering

Washington University in St. Louis

Abstract

A pipeline is a particular type of parallel program struc-
ture, often used to represent loops with cross-iteration
dependencies. Pipelines cannot be expressed with the
typical parallel language constructs offered by most en-
vironments. Therefore, in order to run pipelines, it is
necessary to write a parallel language and scheduler with
specialized support for them. Some such schedulers are
written exclusively for pipelines and unable to run any
other type of program, which allows for certain optimiza-
tions that take advantage of the pipeline structure. Other
schedulers implement support for pipelines on top of a
general-purpose scheduling algorithm. One example of
such an algorithm is “work stealing,” a paradigm used by
many popular parallel environments. The benefit of this
approach is that it allows the user to arbitrarily combine
pipeline and non-pipeline structures in their programs.
This article is concerned with implementing support for
pipelines in a work-stealing scheduler, and then attempt-
ing to optimize the scheduler in such a way that takes
advantage of the pipeline structure, despite running in a
general-purpose environment.

1 Introduction

A common problem in parallel computing is scheduling
parallel loops with cross-iteration dependencies. One ex-
ample of such a program is Dedup, a file compressor
from the PARSEC benchmark suite [1]. Algorithm 1
shows pseudocode for the program. The loop exhibits
cross-iteration dependencies in that WRITE TO FILE
(line 12) needs to be called on each file chunk, ex-
cluding some, in the same order as returned by
GET NEXT CHUNK (line 3).

The majority of the work in each iteration is done by
the COMPRESS method in line 10, which is unique in
that it does not depend on (the same part of) any previous
iteration. Therefore: we see potential for parallelism in
Dedup, but it is necessary to describe a parallel structure
in which certain segments of each iteration must be exe-
cuted sequentially, while other segments can be executed
in parallel. Such as a structure is henceforth referred to
as a pipeline.

Algorithm 1 Dedup pseudocode

1: procedure Dedup
2: while !done do
3: chunk ← get next chunk . Stage 0
4: if chunk = NULL then
5: done← true
6: else
7: chunk.is dup← deduplicate(chunk)
8: . Stage 1
9: if !chunk.is dup then

10: compress(chunk) . Stage 2
11: end if
12: write to file(chunk) . Stage 3
13: end if
14: end while
15: end procedure

1.1 The Pipeline DAG

It is common practice to describe a parallel program us-
ing a Directed Acyclic Graph, or DAG. Each node on
the DAG represents a point in the control flow of the
program. An edge from one node to another represents
a dependency between those points in the control flow:
that is, the point corresponding to the first node must be
executed logically before the second.

In order to draw a DAG for Dedup, or any other
pipeline, we first break up the loop into stages. The goal
is to separate the parts of each iteration that must be
executed sequentially from those that can be executed
in parallel. Algorithm 1 breaks Dedup down into such
stages. The only stage which can be executed in parallel
in this case is Stage 2. We henceforth refer to this type
of stage as a parallel stage, and other stages as sequential
stages.

We draw the DAG in a grid shape, where each column
represents a single iteration of the loop, and each row
represents a stage. Every node (except for the bottom in
each column) has an edge to the node directly below it.
This is because the different stages within a single iter-
ation must be executed sequentially. Nodes may or may
not have an edge to the node on their right, depending
on whether they belong to a sequential or parallel stage.
Figure 1 shows the DAG for Dedup.

1



Figure 1: DAG representation of Dedup

1.2 Pipeline Syntax

Most parallel environments offer a unique syntax for
defining a program’s parallel structure. Often, this will
be some variation of the “fork-join” paradigm. Halpern
describes fork-join parallelism which would be imple-
mented in Intel’s Cilk Plus environment as the keywords
“cilk spawn” and “cilk sync” [2] [5].

Unfortunately, it is not possible to describe a Pipeline
DAG with the typical fork-join syntax. For this reason:
pipelines cannot be executed in fork-join parallel environ-
ments, unless those environments offer specialized sup-
port for pipelines. In order to support pipelines, we first
need a syntax which can describe them. The environment
implemented in this article happens to use a syntax iden-
tical to that of Intel’s Piper environment by Lee et al.,
described here for completeness [7].

Algorithm 2 Pipelined Dedup pseudocode

1: procedure Dedup
2: pipe while !done do
3: chunk ← get next chunk
4: if chunk = NULL then
5: done← true
6: else
7: stage wait(1)
8: chunk.is dup← deduplicate(chunk)
9: stage(2)

10: if !chunk.is dup then
11: compress(chunk)
12: end if
13: stage wait(3)
14: write to file(chunk)
15: end if
16: end pipe while
17: end procedure

The first construct offered is pipe while. Syntacti-
cally, pipe while is very similar to a standard while loop.
It takes some conditional expression, and then offers a
body for more code. The code inside of the pipe while

body represents a complete iteration of the pipeline, and
it will keep executing iterations until the conditional ex-
pression evaluates to false.

All code inside of a pipe while loop belongs to a stage,
which necessarily has a stage number, and must be either
parallel or sequential as previously explained. The evalu-
ation of the loop condition, along with all code until the
first STAGE or STAGE WAIT statement, implicitly be-
longs to stage 0. As an implementation choice: stage 0 is
implicitly a sequential stage.

The next constructs are STAGE and STAGE WAIT.
Both of these take an integer value as argument. It is
required that the argument passed to these constructs al-
ways be greater than 0, and always be greater than the
value passed in the last STAGE or STAGE WAIT call.
Any code after a call to STAGE or STAGE WAIT, up
until the next call, belongs to the stage whose number
was passed as argument. A call to STAGE WAIT indi-
cates that the following code, up until the next STAGE
or STAGE WAIT, is a sequential stage. Likewise, a call
to STAGE indicates a parallel stage.

As another implementation detail: just before the end
of the loop body, there is an implicit sequential stage of
an arbitrarily high number. This, combined with the fact
that stage 0 must be sequential, guarantees that every
iteration starts and ends on a sequential stage. In other
words: no iteration can start or terminate before the pre-
vious iteration does so.

1.3 Existing Environments

A syntax is only one of two necessary components in a
parallel environment; the other is a runtime. That is, the
code which actually handles scheduling across multiple
cores. There does already exist a number of environments
that support pipelines, each with their own syntax and
scheduling style. Examples include:

• Intel’s Piper. Piper is an extension of Intel’s Cilk
Plus environment, which is based on the scheduling
method work-stealing [6]. Piper is a general-purpose
environment which, in addition to the pipeline syn-
tax described here, also supports the standard fork-
join paradigm. The benefit of this approach is that
it allows users to arbitrarily combine pipelined and
non-pipelined structure in their programs [7].

• Intel’s Threading Building Blocks (TBB). TBB is an-
other environment by Intel based on work-stealing,
which natively supports pipelines as of a recent ver-
sion. Like Piper, it is a general-purpose environment
and allows its users to arbitrarily combine different
DAG structures. However, unlike Piper, it does not
support “on-the-fly” pipelines. What this means is
that, in Piper, the number of stages in an iteration

2



can be determined at runtime, while in TBB the ex-
act structure of the pipeline must be specified ahead-
of-time [4].

• URTS. Mastoras et al. propose URTS, a unified run-
time system for pipelines. URTS is an environment
written exclusively for pipelines, and it cannot ex-
ecute any other type of parallelism. The benefit of
this is that it allows the runtime to take advantage of
the pipeline structure in ways that its creators claim
cannot be accomplished in a general-purpose run-
time. URTS does not support “on-the-fly” pipelines-
the number of stages must be known at compile time
[8][7].

• Pipelite. Pipelite is another environment from the
creators of URTS. Like URTS, it exclusively runs
pipelines and is optimized to take advantage of their
structure. Pipelite, however, supports on-the-fly
pipelines [9].

This project concerns implementing support for
pipelines in an existing work-stealing environment.
Specifically, we will be using a Cilk-like environment
called Cheetah by Lee et al. Cheetah is a work-stealing
environment similar in structure to Cilk Plus, but meant
to be simpler and lighter-weight. Similarly, we will be
adding features to base Cheetah which are intended to be
a simpler, lighter-weight version of Piper. Additionally:
we will be investigating the claim made by Mastoras et
al. that work-stealing schedulers cannot be optimized
for pipelines. We will be adding features to Cheetah
which are meant to mimic the optimizations in URTS
and Pipelite, and then analyze the results. The resulting
environment is henceforth referred to as Cheetah-Piper.

2 Work Stealing

We present here a brief overview of the Cheetah work-
stealing scheduler. This is prior work, and the summary
presented here is not meant to be an extensive report on
the runtime, but rather to highlight the points in the run-
time which will need to be changed to support pipelines.

2.1 Worker Threads

The core idea behind work-stealing schedulers is to bal-
ance work between a fixed number of threads. Usu-
ally, the runtime creates as many threads as there are
cores available. Applications that do not make use of
a fully-fledged parallel environment may instead choose
to accomplish their parallelism by manually instantiating
pthreads. This approach incurs unnecessary overhead,
and it leaves the work of scheduling to the operating sys-
tem. The worker thread approach saves the user from

having to interact with their operating system’s thread
interface at all.

In Cheetah (and Cilk), each thread maintains a ready-
deque. That is: a doubly-ended queue which, as its name
suggests, contains pieces of user code which are ready
to be executed. These pieces of user code are called
stacklets- in base Cheetah they contain a logically se-
quential chain of function calls, starting with a spawned
function.

When a worker completes execution of its current stack-
let, it pulls a new one off the bottom of its own ready-
deque. If that worker’s readydeque is empty, then the
work-stealing aspect of the scheduler comes into play:
the worker becomes a thief, and selects a victim (another
worker thread) at random. The thief attempts to steal a
stacklet from the top of the victim’s deque [6].

2.2 Closures

In Cheetah, functions can spawn off other functions and
then be stolen by another worker, leaving the spawned
child behind on the original worker’s deque. The original
worker still needs to know where to return (or if it is
necessary to return) when the child terminates. The data
structure that keeps track of this information is called a
Closure.

The top stacklet on every worker’s deque is automat-
ically wrapped inside of a closure. When a thief steals
the top stacklet (and its closure), it wraps the left-behind
child in a new closure and stores a link to the stolen clo-
sure. In this way, the runtime maintains a tree of closures
which stores the parent/child relationships between func-
tion calls [6].

2.3 Suspension

Upon a “cilk sync” keyword, a worker thread must halt
execution if any spawned children have not yet returned.
This is where suspension comes into play: the worker will
store its context into a jump buffer (from the C standard
library setjmp) and then remove the running Closure from
its own deque. When a Closure is suspended, it is not on
any worker’s deque, but maintains its parent/child rela-
tionships via the Closure tree. When a spawned child
returns, its worker will check to see if the parent is sus-
pended. If so, it will check if all of its spawned children
have returned (i.e., if this returning function is the last
to do so). If this is the case, the worker will install the
parent Closure on its own deque and resume its execution
[6].

An important note is that, in base Cheetah, suspen-
sion only happens upon hitting a sync. Furthermore: the
runtime relies on the fact that a suspended Closure has
spawned children, at least one of which will eventually
resume the Closure. These assumptions, however, don’t
hold up in Cheetah-Piper.

3



3 Implementing Pipelines

3.1 Pipe Frame and Iteration Frames

The pipe while loop itself transpiles (via preprocessor
macros) into code which does not look syntactically dif-
ferent from ordinary Cilk Plus.

Algorithm 3 Simplified transpiled pipe while loop

1: procedure Transpiled Pipe While
2: while !done do
3: Cilk Spawn(iter func)
4: Throttle
5: end while
6: end procedure

Algorithm 3 demonstrates a simplified version of what
the loop body might look like with a standard cilk spawn
construct. A serial while loop executes with the con-
dition supplied by the user, and at each iteration uses
cilk spawn to spawn off a new instance of the iteration
body (the iteration body is stored and executed as a C++
lambda). Given the way that Cheetah works, there ex-
ists a stack frame and (eventually) Closure for this while
loop, which is henceforth referred to as the Pipe Control
Frame or PCF. Likewise, there are frames corresponding
to the iterations themselves which, in Cilk Plus terms,
are spawned children of the PCF.

Before spawning each iteration, the loop must pass a
“throttle” method. This will be explained in detail below.

Where this differs from base Cheetah is not in the syn-
tax but in the runtime: the PCF is stored in a special
data structure distinct from the ordinary Cheetah stack
frame. Among other pertinent data such as the loop’s
current iteration and condition, the PCF is linked to a
fixed-size (more on this below) buffer of iteration frames.
Iteration frames contain data pertinent to a particular it-
eration, namely: a stage counter for that iteration, and
links to the iteration frames on the “left” and “right”
(before and after the current iteration).

3.2 Throttling

An important aspect of pipeline scheduling not yet dis-
cussed is throttling. Spawning new iteration introduces
overhead, and so we wish to prevent “runaway” pipelines.
That is: a pipeline which repeatedly spawns off new iter-
ations before executing the existing ones. This is possible
if, say, the new iterations repeatedly suspend (more on
this below) on stage 0 and the PCF keeps being stolen by
new workers. To combat this possibility: Cheetah-Piper
restricts the allowed number of spawned iterations to a
user-specified parameter.

Because the number of iterations is fixed, we can store
our iteration frames in a circular buffer of a fixed size.
Before spawning off a new iteration, the PCF must pass

the throttle method, which checks if the frame for the
current iteration is currently in use. If so, the PCF is
suspended.

Suspending the PCF is very similar to suspending a
Closure for sync in base Cheetah; we know that the PCF
has at least one active child, by virtue of the fact that
there is a currently executing iteration. For this reason,
we can rely on that child and Cheetah’s existing resump-
tion logic to eventually resume the PCF.

3.3 Suspending Iterations

As discussed: the iteration body is spawned just as any
other function frame. The iteration itself will therefore
execute sequentially, as written. The downward edges in
the Pipeline DAG are handled implicitly for this reason.

The only effect of a call to STAGE is to update the cur-
rent iteration’s stage counter to the supplied value (there
is no need to check any other iteration’s current stage
when about to execute a parallel stage). STAGE WAIT,
on the other hand, is where the real scheduling logic oc-
curs. Upon a call STAGE WAIT(j) on iteration i, the
worker will check if the left (i−1) iteration’s stage counter
is greater than j. This implies that iteration i−1 has com-
pleted the sequential stage j and iteration i should be free
to advance.

If this is not the case, then iteration i needs to be sus-
pended. This presents a problem: the assumptions that
base Cheetah relies on no longer apply. An iteration does
not necessarily have any spawned children, so the existing
Cheetah logic is not guaranteed to resume the suspended
iteration.

Piper experiences the same problem. Its solution is
to have a returning iteration– i.e. one that has gotten
past its final (implicit) STAGE WAIT– check if the next
iteration is suspended, and if so resumes it. Doing so
guarantees that any suspended iteration will eventually
be resumed: if the earlier iteration reaches this checking
point first, the later one won’t suspend because all stages
in the earlier iteration have completed. If the later iter-
ation suspends first, we know the earlier iteration must
still be executing and will eventually resume the later one
[7].

Cheetah-Piper’s solution is similar, but intended to
better take advantage of the pipeline structure.

4 Optimizing for Pipelines

URTS and Pipelite are environments that exclusively run
pipelines, and meant to take advantage of their structure
in ways that general-purpose environments cannot. The
structure of these runtimes is very different from that of
Piper or Cheetah-Piper, and it is difficult to precisely port
these optimizations. Roughly, they can be summarized as
follows [8] [9]:

4



• Prioritize scheduling earlier iterations. If a thread is
in need of work, and there are suspended iterations,
attempt to resume the earliest one.

• Synchronize using atomic operations, to reduce data
contention.

4.1 Suspended Iteration List

The second optimization is possible for URTS and
Pipelite because worker threads can always depend on the
existence of a pipeline. These runtimes keep an atomic
“ticket counter” in a location accessible by all workers,
and assign new iteration numbers according to its value.
By nature of the work-stealing environment, though, we
want our workers to remain naive to parallel structure of
the pipeline except as needed [8] [9].

The first optimization, however, is possible within this
framework. Our goal here is to write a concurrent data
structure which can store suspended iterations, and al-
lows a worker to inexpensively retrieve the earliest one.

If we require that the earliest iteration be retrievable
in O(1) time, it becomes necessary that we store some
kind of reference to the current earliest iteration, and
that retrieving the earliest iteration provides us with a
reference for the next suspended iteration. Maintaining
such a chain means having to perform O(n) worst-case
work somewhere in the runtime, where n is the iteration
buffer size (we could potentially use a concurrent prior-
ity queue to reduce this to log(n), but such an approach
seems overly complex for this application). This is ac-
ceptable, though, if we keep the O(n) work to the sus-
pending worker. This is in accordance with the work-first
principle. We prioritize speed in retrieving the earliest
suspended iteration because it is the more frequently exe-
cuted task. Suspension is already a fairly costly operation
by nature of the setjmp library.

To accomplish these speed goals, we store the sus-
pended iterations in what is effectively a concurrent
linked list, but with one caveat. There is a field in each it-
eration frame that stores the iteration number of the next
suspended iteration (this field’s value has no meaning if its
containing iteration frame is not suspended) rather than
a pointer. We access the appropriate iteration frame by
taking the modulus of this number with the buffer size,
and using the result as index. This approach has the ben-
efit of locality, since all of our elements are contiguous in
memory, while still providing constant-time access to our
earliest iteration.

The suspended linked list is concurrent and non-
blocking, its synchronization mechanisms based on
atomic Compare-and-Swap (CAS) primitives. Specifi-
cally, we use the design proposed by Harris [3].

With this linked list, a worker can retrieve the earliest
suspended iteration in constant time via a “head” pointer
in the PCF. In order to insert a suspended iteration,

a worker traverses the list until finding the appropriate
place based on iteration number.

4.2 Optimization Points

Broadly speaking, almost any inefficiency in a work-
stealing scheduler comes from “idle” time. This is time
that a worker spends without any work to execute, per-
haps due to failing steals. Idle time is essentially the
gap between a work-stealing scheduler in practice and
the ideal greedy scheduler, which instantaneously exe-
cutes work as soon as it becomes available.

In order to avoid idle time, a worker should imme-
diately execute any work that it knows to be available.
Work-stealing is one of the best possible paradigms when
the runtime has no inherent knowledge about the paral-
lelism in the program. However, while we wish to main-
tain the general-purpose nature of Cheetah, Cheetah-
Piper can rely on certain guarantees when executing
pipelines.

We’ve already covered how a worker can retrieve the
earliest suspended iteration. For correctness (not neces-
sarily performance), we call this method in the same place
where Piper checks the next suspended iteration. That
is: when an iteration returns. There are other points in
the runtime, though, where a worker may find itself with-
out work, and yet it still has access to at least one of the
pipeline-related structures. In other words: these are sit-
uations where the runtime can depend on the existence of
a pipeline, and therefore can take advantage of its struc-
ture. Piper actually includes its own optimizations here
as well: just like when an iteration is returning, it checks
the next iteration [7]. But in our case, we dictate that the
worker should resume the earliest suspended iteration if
possible.

This approach is preferable to jumping back into the
runtime and relying on stealing to find more work, as
the latter is more uncertain and could always lead to idle
time. With that in mind: Cheetah-Piper attempts to
resume the earliest suspended iteration at all of the fol-
lowing points:

• Upon an iteration returning (this is necessary to
guarantee completion of the pipeline)

• Upon an iteration suspending

• Upon trying to steal from another worker, and find-
ing a currently-executing iteration (and no parents
on the deque to steal)

At that last point in particular, Cheetah-Piper at-
tempts to optimize in another way: by resuming the PCF
if it is suspended (such as for throttling), but only af-
ter checking the suspended iterations. In this way, we
satisfy both the greedy property and the principles of
URTS/Pipelite: we resume an early iteration if available,

5



but otherwise we attempt to continue spawning new iter-
ations. In either case, we avoid idle time by not attempt-
ing another steal. The exact control flow in this case is
as follows:

• Attempt to steal from a worker currently executing
an iteration

• Resume the earliest suspended iteration, unless none
are available

• Resume the PCF if suspended

5 Testing

5.1 benchmarks

We present benchmarking results for three different run-
times: Piper, Cheetah-Piper without the pipeline opti-
mizations (except for those also implemented in Piper),
and Cheetah-Piper with the pipeline optimizations. We
use as benchmarks three different programs, each meant
to represent a different use case:

• Dedup. As previously mentioned, Dedup is a file
compressor from the PARSEC benchmark suite.
Dedup is a “coarse-grained” pipeline in the sense that
individual stages are a non-trivial amount of work.
Compared to the other two benchmarks utilized here,
Dedup has relatively little intrinsic parallelism. The
dataset being used with Dedup is the “native” file
input provided by PARSEC [1].

• Ferret. Ferret is an image comparison program, also
from the PARSEC suite. Ferret is coarse-grained,
but has much more intrinsic parallelism than Dedup.
Again, the dataset being used is “native” from PAR-
SEC [1].

• Pipe-Fib. Pipe-Fib is a fibonacci number calculator
by Lee et al., originally intended as a benchmark
for Piper. Pipe-Fib iteratively calculates Fibonacci
numbers where each number represents an iteration
in the pipeline, and the stages are represented by
individual bits of the arithmetic operations. It is
therefore a very “fine-grained” pipeline [7].

5.2 Timing

The three runtimes in question are instrumented to record
three different types of timing data:

• Working time. This is the time spent on the actual
user code within the program. Ideally, the total ag-
gregate work time across all threads should always
be constant for a given program (a parallel environ-
ment distributes work amongst the worker threads

Model name Intel Xeon CPU E5-2665 0 @
2.40 GHz

Cores 16
CPU MHz 2394.286
NUMA nodes 2
Cores per node 8
Threads per core 1

Table 1: Hardware specifications of the machine used for
benchmarking

but shouldn’t actually be able to change the amount
of it). When working time does change, the phe-
nomenon is referred to as “work inflation.” Work in-
flation may be caused by differences in cache local-
ity within the schedulers, any work that the runtime
may add within the scope of user code, or simply
flaws in the instrumentation design.

• Scheduling time. This is the time spent within the
scheduling logic of a runtime. For the three run-
times, this does include time spent in stage waits,
throttling, etc.

• Idle time. This time is technically also spent within
the scheduling logic, but is meant to demonstrate the
time that a worker spends without any work to do.
To be precise: this is the total amount of time that
workers spend on unsuccessful steals. When a steal
is successful, that time is instead added to scheduling
time.

5.3 hardware

Table 1 shows the hardware specifications of the CPU
which these tests were conducted on. This model of CPU
supports hyperthreading, but it was disabled for these
benchmarks.

6 Results

Here we present the results in three forms:

• The processing time (real time) spent by each
benchmark on various numbers of cores, Figures 2
through 4.

• The speedup exhibited when increasing the number
of cores, Figures 5 through 7. This is based on the
same timing data as in the previous type of chart,
but here each data point is the time value associated
with the serial (one-core) execution, divided by the
time value associated with the variable number of
cores.

6



Figure 2: Processing time for the Dedup benchmark

Figure 3: Processing time for the Ferret benchmark

Figure 4: Processing time for the Pipe-Fib benchmark

Figure 5: Speedup across different amounts of cores for
the Dedup benchmark

Figure 6: Speedup across different amounts of cores for
the Ferret benchmark

Figure 7: Speedup across different amounts of cores for
the Pipe-Fib benchmark

7



Figure 8: Breakdown of processing time by category for the Dedup benchmark

Figure 9: Breakdown of processing time by category for the Ferret benchmark

8



Figure 10: Breakdown of processing time by category for the Pipe-Fib benchmark

• The categorical breakdown of the aggregate time
spent by all cores, Figures 8 through 10. As pre-
viously discussed, there are three time categories.
These charts show the total time spent in each one.
Note that, because this is based on agrregate time
and not real-time as in the other two chart types, we
expect these values to strictly increase with the num-
ber of cores. If we were to divide the total height of
each bar by the associated number of cores, we would
arrive at the same time values used in the other two
charts.

All data points shown are averages taken from 5 indepen-
dent trials.

To make a general statement about the results: it is dif-
fcult to discern any difference between the three runtimes,
especially in terms of their overall processing times and
speedups. Some subtle differences do become apparent in
the breakdowns, though.

In dedup’s case, all three runtimes appear almost in-
distinguishable in terms of processing time and speedup.
(See Figures 2 and 5.) Unsurprisingly, the speedup falls
off below the linear reference in Figure 5 rather quickly.
Note, however, the rightmost three columns in Figure 8.
While all three are roughly the same height, (as could
already be inferred from Figure 2) a smaller portion
comes from scheduling time in the case of Cheetah. Since
this occurs for both base Cheetah-Piper and optimized
Cheetah-Piper, we can’t attribute this smaller schedul-

ing time to any of the optimizations. It does give us a
good baseline on the difference between Piper’s schedul-
ing logic and Cheetah’s logic, though. While not conclu-
sive, it supports the notion that Cheetah (not necessarily
Cheetah-Piper) is a lighter-weight scheduler. The smaller
scheduling time, however, is offset by a larger idle time.
Perhaps this owes to an intrinsic lack of parallelism in
Dedup- i.e., we are hitting the maximum speedup possi-
ble.

The next benchmark is Ferret. Just like in the case
of Dedup, the three runtimes perform almost identically
in terms of processing time and speedup (see Figures 3
and 6). Figure 6 demonstrates the high amount of intrin-
sic parallelism in Ferret- the speedup curves stay much
closer to the linear reference. This is also evident in
Figure 9. Note that a much larger portion of each col-
umn’s height comes from working time relative to Dedup.
Interestingly: our observations from Dedup regarding
scheduling time seem to be inverted. Cheetah-Piper ex-
hibits greater scheduling time than Piper, and optimized
Cheetah-Piper exhibits greater scheduling time than base
Cheetah-Piper. The latter could possibly owe to the
cost associated with the suspended linked list operations.
While we cannot yet say that the optimizations have im-
proved performance, this does perhaps support the notion
that they can reduce idle time. In this case, if such a phe-
nomenon occured it was offset by the cost of scheduling. If
Figure 6 is any indication, though, we aren’t hitting Fer-

9



ret’s maximum speedup at 16 cores. We could perhaps re-
duce scheduling time by further performance-engineering
the scheduling mechanisms, and idle time wouldn’t neces-
sarily increase to meet the change, thus resulting in better
overall performance. But again: this is only conjecture.
In reality, the implications of these data are inconclusive.

Lastly, we have Pipe-Fib. Here is where real-time per-
formance finally begins to differ, and not in Cheetah-
Piper’s favor (see Figures 4 and 7): Piper outperforms
Cheetah-Piper, and base Cheetah-Piper outperforms op-
timized Cheetah-Piper, in both processing time and
speedup. Furthermore: here is where the effects of work
inflation are most prevalent. The working times in Fig-
ure 10 vary rather drammatically, making it difficult
to draw conclusions regarding the effectiveness of each
scheduler. At this time, the only conclusion we can draw
from these data is that Cheetah-Piper needs to be further
optimized for fine-grained pipelines.

7 Conclusions and Future Work

In its current form, Cheetah-Piper seems to be unable
to offer a performance improvement upon Piper. The
most promising application is perhaps in coarse-grained
pipelines with ample parallelism such as Ferret, but even
so, further work is required.

Possible future work includes:

• Investigate concurrent data structures other than the
CAS-based linked list for suspended iterations. We
could, for example, implement a concurrent priority
queue based on iteration number.

• We could follow the lead of URTS and Pipelite and
implement an atomic ticket counter system within
the PCF, and furthermore restructure Cheetah such
that a worker can install a child frame on a parent
without actually owning the parent [8] [9]. That way,
upon encountering an iteration frame, a worker could
begin a new iteration without needing to steal the
PCF. This approach would, however, require some
major changes to Cheetah.

8 Acknowledgement

This research was supported in part by National Science
Foundation under grant number CCF-1527692 and CCF-
1733873.

References

[1] Christian Bienia. Benchmarking Modern Multiproces-
sors. PhD thesis, Princeton University, Princeton, NJ,
USA, 2011. AAI3445564.

[2] Pablo Halpern. Strict fork-join parallelism. Technical
report, Intel Corporation, 2012.

[3] Timothy L. Harris. A pragmatic implementation of
non-blocking linked-lists. In Proceedings of the 15th
International Conference on Distributed Computing,
DISC ’01, pages 300–314, London, UK, UK, 2001.
Springer-Verlag.

[4] Intel Corporation. Threading building blocks reference
manual, 2011.

[5] Intel Corporation. Intel Cilk Plus Language Extension
Specification, 2013.

[6] Balaji V. Iyer, Robert Geva, and Pablo Halpern. Cilk
plus in gcc, 2012.

[7] I-Ting Angelina Lee, Charles E. Leiserson, Tao B.
Schardl, Jim Sukha, and Zhunping Zhang. On-the-
fly pipeline parallelism. In Proceedings of the Twenty-
fifth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA ’13, pages 140–151,
New York, NY, USA, 2013. ACM.

[8] A. Mastoras and T. R. Gross. Unifying fixed
code mapping, communication, synchronization and
scheduling algorithms for efficient and scalable loop
pipelining. IEEE Transactions on Parallel and Dis-
tributed Systems, 29(9):2136–2149, Sep. 2018.

[9] Aristeidis Mastoras and Thomas R. Gross. Efficient
and scalable execution of fine-grained dynamic lin-
ear pipelines. ACM Trans. Archit. Code Optim.,
16(2):8:1–8:26, April 2019.

10


	Pipelined Parallelism in a Work-Stealing Scheduler
	Recommended Citation
	Pipelined Parallelism in a Work-Stealing Scheduler

	tmp.1571147848.pdf.Tymij

