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mint ∥ẑ(t)∥ > maxt ∥c1(t)∥ hold, they belong to the same homotopy class
regarding the orange obstacle. . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.3: Orange circles represent the obstacles and blue curves represent the syn-
thesized shortest path in each iteration. In each iteration, the computed
optimal trajectory is seen to stay on the right side of the obstacle, which
fulfills the control barrier constraints. . . . . . . . . . . . . . . . . . . . . 65

Figure 4.4: The optimal trajectory is synthesized for a unicycle system with two sta-
tionary obstacles centered at (2,−1) and (2, 1) with R = 0.5 and k = 4.
The initial and target points of the system are set to (0, 0) and (4, 0),
respectively. The left figure shows the stationary obstacles (orange) and
the given trajectory (green) in the x − y plane. The right figure illus-
trates how the initial system trajectory (yellow) gradually deforms into
the optimal trajectory (blue) that obeys the homotopy class constraints. 67

vii



Figure 4.5: The optimal trajectory is synthesized for a unicycle system with one sta-
tionary obstacle centered at (1.5, 0) with R = 0.5 and k = 4. The start
and target point of the system are (0, 0) and (3, 0), respectively. The up-
per row shows the given trajectory (green), the system trajectory (blue)
and an obstacle (orange) in the x− y plane, while the lower row presents
the corresponding trajectory in the x− y − t space. The middle column
indicates the initial trajectories with s = 1.0, and the right column shows
the final results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.6: Comparison of the computation time between two methods. The error
distribution at each number of sample points is estimated based on 5
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.7: The optimal trajectory is synthesized for a quadcopter system with four
stationary obstacles centered at (±1,±1) with R = 0.5 and k = 4. The
start and target point of the system trajectory are set at (0, 0). The
layout and explanation of the figure are identical to Figure 4.5, except
that the push distance is initialized as s = 2.5. . . . . . . . . . . . . . . 69

Figure 4.8: The optimal trajectory is synthesized for a quadcopter system with two
moving obstacles, which are originally centered at (1,−1) and (3, 1) with
R = 0.5 and k = 4 with a constant moving speed at 0.1 m/s, and the
moving direction is indicated by the orange arrow. The start and target
point of the system are set at (0, 0) and (4, 0), respectively. The layout
and explanation of the figure are identical to Figure 4.5, except that the
push distance is initialized as s = 2.5. . . . . . . . . . . . . . . . . . . . 70

Figure 5.1: The three curves are the trajectories connecting identical starting and tar-
get points, and grey rectangles are obstacles. According to the definition
of the homotopy class, the two blue trajectories are homotopy equivalent,
but the green one belongs to a different homotopy class. . . . . . . . . . 73

Figure 5.2: The two curves are the trajectories connecting identical starting and tar-
get points. They belong to the same homology class but different homo-
topy classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.3: 3-dimensional obstacles with (n,m) = (2, 2), (2, 8), (8, 8) from left to right,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.4: Three different paths connecting (0, 0) and (x, y) belong to different ho-
mology classes, where the corresponding nodes at (x, y) are marked as
well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



Figure 5.5: A super-toroid obstacle and three trajectories are shown in the left figure
and their shapes in the embedding space are shown in the right figure,
where the homotopy property of three trajectories still holds. . . . . . . 79

Figure 5.6: Shortest path with respect to the given homology class. The labels of
obstacles are marked on it and the target homology label (s1, s2, s3) is
shown below each figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.7: Four trajectories start from (0, 0, 0) to (100, 100, 100) with the terminal
homology class label (s1, s2) = (1, 1) and (−1,−1), respectively. . . . . 83

Figure 5.8: Comparison of the computation time of getting the homology class label
in a 3D environment with random obstacles between H-signature and the
proposed phase-change-based method. . . . . . . . . . . . . . . . . . . . 84

Figure 5.9: Comparison of the computation time in a 3D environment with random
obstacles between Dijkstra Algorithm and VIA. The complete computa-
tion time is the sum of the graph-building time and the searching time.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.1: 3-dimensional obstacles with (n,m) = (2, 2), (2, 8), (8, 8) from left to right,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 6.2: Investigation of three trajectories and a doughnut obstacle in 3-dimensional
space. Left: In the x−y−z view, according to the definition of the homo-
topy class, the green curve and purple curve belong to the same homotopy
class, and the red curve belongs to another homotopy class. Right: In the
2-dimensional

√
x2 + y2−z view, the 3-dimensional doughnut obstacle is

reformatted into a 2-dimensional circular obstacle, where the homotopy
property of three trajectories still holds. . . . . . . . . . . . . . . . . . . 88

Figure 6.3: A super-toroid obstacle and three trajectories are shown in the left figure
and their shapes in the embedding space are shown in the right figure,
where the homotopy property of three trajectories still holds. . . . . . . 90

Figure 6.4: The trajectory of the dynamical system gradually deforms to the optimal
one while satisfying homotopy class constraints with s = 1.5, 1.0, 0.5, 0,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 6.5: The trajectory of the dynamical system eventually deforms to the optimal
one while satisfying homotopy class constraints. . . . . . . . . . . . . . . 93

ix



Acknowledgments

I want to express my deepest gratitude to everyone who has played a role, in shaping my
doctoral journey and enhancing this thesis with their guidance, encouragement and friend-
ship. I am especially grateful to my advisor, Shen Zeng for his support and insightful advice
that have been crucial throughout my PhD experience. I also want to thank Yunshen Huang
for his invaluable collaborations and his remarkable expertise in controller design and quad-
copter experiment design. I also want to thank Jie Wang, Jingran Qie and Haoyu Yin for
their assistance in paper writing. Furthermore, I am very thankful to my committee members
Jr-Shin Li, ShiNung Ching, Andrew Clark and Mohamed Ali Belabbas.

This work was supported by NSF grant CMMI-1933976.

Wenbo He

Washington University in St. Louis
December 2024

x



ABSTRACT OF THE DISSERTATION

Optimization-based Motion Planning with Homotopy and Homology Class Constraints

by
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Motion Planning is a fundamental problem in robotics that aims to find an optimal trajectory

for a system to move on while avoiding obstacles in the environment. Often, a feasible

trajectory connecting the start and target point with the shortest length is highly desirable.

Additionally, in scenarios such as drone racing or surveillance, topology constraints may

arise. At the low level, the LQR or PID controller is utilized to steer the agent to move

along the designed trajectory. At a high level, optimization-based, search-based, or sample-

based algorithms are utilized to synthesize the feasible trajectory. In this thesis, we deal with

optimization-based trajectory synthesizing along with a special type of topology constraint

named homotopy and homology class constraints.

In the first part of the thesis, we just ignore topology constraints and emphasize how to

transform motion planning tasks into optimization tasks while considering start-point end-

point constraints and minimal energy or minimal time loss function. Although the loss

function is a differential function, the first-order gradient optimization method, such as

Adam, shows less ability to find the optimal. However, methods that utilize second-order

information, such as the Gaussian-Newton method and the interior point optimizer, can

solve the problem quickly and perfectly.

xi



The second part of the thesis emphasizes our proposed optimization method for motion

planning with homotopy and homology class constraints. We first introduce the Auxiliary

Energy Reduction Technique. The hallmark of our approach is that we first introduce virtual

control terms to the original system dynamics that ensure that any preset state trajectory

is dynamically feasible with respect to the new extended system. We then gradually shift

the contribution of the artificial inputs to the actual original inputs, and in the end, the

trajectory will be deformed to the one of the same homotopy class that is now also feasible

with respect to the original system. However, the aforementioned method suffers from low

efficiency when the required homotopy class is complex. Therefore, in the second method,

we deal with two-dimensional obstacles by synthesizing auxiliary trajectories for obstacles

then synthesizing optimal trajectories for the agent, and then gradually deforming obstacle

trajectories to the original ones and keeping the agent’s trajectory optimal, which improves

efficiency. To explore the homology class constraints, in the third method, we solve homology

class constraints with respect to three-dimensional obstacles by embedding them in two-

dimensional. In the fourth method, we combine our method of the third method to extend the

second method to deal with special 3-dimensional obstacles with homotopy class constraints.

xii
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Chapter 1

Introduction

1.1 Background and Motivation

The basic task of motion planning is to find a dynamically feasible trajectory connecting
a given starting point with a desired target point in a state space that possibly contains
one or more obstacles. This topic has been intensively investigated in literature and has
been applied to real-world applications, especially in drones [38], automated vehicles [79]
and mobile robots [30]. Although most authors divided the whole planning task into global
planning and local planning parts, synthesizing control inputs for the dynamical system in
the first step helps generate high-fidelity trajectories [21] [51]. When the focus is only on
steering complicated dynamics (without the consideration of the constraints), many control
techniques can be leveraged to achieve this goal, such as iterative LQR [17], model predictive
control [23], sliding mode control [20], and collocation methods [43]. But when obstacles are
considered, other methods need to be considered.

If the dynamic system is as simple as mobile robots that can roam freely, the motion planning
task is simply finding a path connecting the given start point and the goal point, which falls
into the realm of graph searching algorithms. By separating continuous state space into
discrete ones, the number of states now becomes limited and the Dijkstra algorithm can
be used to find the required path with minimal length [58] [53], which has been applied in
real-world challenge [13]. Similarly, other graph searching methods including A* algorithm
[85] [22], Field D* [24], Theta* [19], Anytime repairing A* (ARA*) [54] and jump point
search [91] have been applied in motion planning with improved performance.

For more intricate systems where free roam is infeasible, the state lattice algorithm is usually
utilized. The method separates the state space into the grid and connects vertexes with
feasible and smooth curves [67]. A cost function that counts the length and the curvature
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assigns weights to connections, and then a search algorithm like A* [52] or D* [71] finds the
best path that connects the start state and the goal state without overlapping obstacles.
Different from the aforementioned pure graph searching method, the state lattice algorithm
carefully selects candidate middle points and feasible potential interconnect trajectories, and
synthesizes a smooth path with low computational cost. Thus it has been widely applied in
mobile robot [68] and vehicle motion planning tasks [4] [18].

For a highly investigated dynamic system, quadcopter, any smooth curve can be considered
as a feasible trajectory due to its holonomic properties. Hence the global motion planner
for quadcopter is to synthesize a smooth curve that connects given points and meanwhile
be obstacle-free. The workflow is usually getting a set of waypoints that are obstacle-free
and marking the contour of the required path, then synthesizing a smooth curve interpo-
lating waypoints [14]. The interpolating curve planners can utilize different techniques to
fit waypoints and generate different curves. Lines and circles have been used to generate
curves, which also fit the real trajectories of vehicles and airplanes [35]. The spline curve is
the piecewise polynomial parametric curve that has been used in motion planning [66] [75].
However, if the spline curve uses waypoints as control points, the curve actually doesn’t go
across waypoints. Bézier curves mitigate this challenge as Bézier curves will travel across
waypoints iteratively. As a type of parametric trajectory, a widely-adopted choice in motion
planning [60] [70] [78], the Bézier curve is selected for its simple representation and inherent
smoothness [63] [78] [59]. These properties enable fast plannings and easy track for differen-
tially flat systems [76] [27], a large family including mobile robots [62], quadcopters [28].

Sampling-based motion planning is another set of widely applied motion planning methods
[21] that can handle environments with obstacles. This approach has its advantages in
providing fast solutions for difficult problems by simply sampling in the configure space.
However, it has the drawback of finding the suboptimal solution. Randomized Potential
Planner (RPP) uses random walk to escape local minima of the potential field planner [6]
or only utilizes the random walk for planning [15]. Probabilistic Roadmap Method (PRM)
[42] [41] and Rapidly-exploring Random Trees (RRT) [50] are proposed later. Kinodynamic
RRT∗ [82], and LQR-RRT∗ [65] further provide asymptotic optimality and the ability to
process kinodynamic systems.

While the obstacle constraints have been well considered in methods mentioned above, han-
dling the motion planning problem concerning homotopy class constraints is still challenging.
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In addition to the aforementioned issues, oftentimes, merely avoiding collisions is insufficient
in some topology-sensitive tasks. To illustrate, the constraint of assigning a car to pass the
crowd but only on their right side can be considered as a homotopy class constraint. Letting
the drone fly around two people once can be transformed into a homology class constraint.
Hence, it is important to consider and distinguish among different homotopy classes for gen-
erated trajectories. For this consideration, [10] provides a way to classify homotopy classes
in higher-dimensional space and proposes a search-based robot path planning method ful-
filling topological constraints. Probabilistic roadmaps introduced in [40] are also capable
of path generation under homotopy classes constraints. Furthermore, Gaussian process in-
ference is leveraged in [49] to achieve online motion planning involving multiple homotopy
classes. However, these methods are again limited to robots with simple dynamics. Al-
though the methods mentioned above are promising in their specified tasks, there are only
a few works that address the motion planning problem with both considerations of full-scale
nonholonomic dynamical systems and homotopy class constraints. The task of fulfilling the
homotopy class constraints introduced by the obstacles is more challenging than mere obsta-
cles, which are aimed at obtaining feasible trajectories belonging to a certain homotopy class.
The work in [10] provides a way to classify homotopy classes in higher-dimensional space and
proposes a search-based robot path planning method fulfilling topological constraints. How-
ever, it still suffers from the limiting application of the simple dynamic system. [7] and [57]
provide an elegant way, which is named the affine geometric heat flow, to solve the motion
planning problems with homotopy class constraints. Nevertheless, this approach relies on
partial differential equation solvers, and the application is confined to the form of control
affine system.

After synthesizing the global motion planning, the acquired trajectories may lack control in-
puts (by graph searching or sample-based methods) or they may not be safe due to environ-
mental disturbances, the movement of obstacles, or the shift of the system’s dynamic. There-
fore local motion planning methods are needed. Optimal control such as Linear Quadratic
Regulators (LQRs), can be utilized to design local controllers, which been widely applied on
quadcopters [69] [26] [55]. Model Predictive Controls (MPCs) [90] [37] is another popular
control technique that uses the model to compute suitable inputs at each time step. These
methods require a known system dynamic, which may fail the control design if the system
is not properly modeled [34]. Due to the limitations of model-based approaches, the data-
driven design of flight control systems is becoming an increasingly active research area. For
instance, neural networks are leveraged to identify the dynamics of quadcopters [5], [16], and
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design attitude controllers [11]. Reinforcement learning is also shown to be effective in control
UAVs [44], [47], [31]. However, data-driven approaches usually require large computational
power and customized flight stack designs [47].

Among the methods above, the optimization-based method shows great ease of use and
scalability when further constraints are to be added to the original motion planning task.
However, the straightforward way of inserting constraints to optimization tasks often re-
quires constraint terms to be differentiable, while topology constraints are generally not
eligible. To mitigate this challenge, we propose several methods in Part 2. In this chapter,
a general method, called the iterative method, to solve well-formed differentiable nonlinear
programming tasks that we utilized in our works will be introduced.

1.2 Iterative Method

In the optimization-based motion planning method, the planning task is first transformed
into a linear or nonlinear programming form, then a solver is assigned to solve the form.
Numerous off-the-shelf NLP solvers exist, including SGD, ADAM, Newton’s method, and the
iterative method. Compared with other methods, the iterative method has great efficiency
and scalability and it is the extension of the Gaussian-Newton method [83]. Furthermore, we
can modify it to let the trajectory of the agent deform continuously. This feature is helpful
when we design motion planning methods with topology constraints. In this section, we
show the composition of the iterative method and the process of extending it to solve energy
or time optimal motion planning tasks, which will be used in our works later.

1.2.1 On the Time-discretization and Linearization of Nonlinear

Control Systems

This section first provides a review of the core idea of our previous contribution to the
discretization and linearization of the nonlinear control systems with respect to the flow.
For more details, readers are referred to [89].
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Now, consider a continuous-time nonlinear system in the general form

ẋ(t) = f(x(t), u(t)), x(t) ∈ Rn, u(t) ∈ Rm. (1.1)

To discretize both control signal and time, the zero-order hold assumption, i.e., that

∀t ∈ [k∆T, (k + 1)∆T ], u(t) ≡ ūk, ūk ∈ Rm,

is often applied. By stacking x, u as ξ1, ξ2, we end up with an "autonomized" system, which
is represented as:

d

dt

(
ξ1

ξ2

)
=

(
f(ξ1, ξ2)

0

)
,

(
ξ1(0)

ξ2(0)

)
=

(
x(k∆T )

ūk

)
.

In this way, particularly for the time interval t ∈ [k∆T, (k + 1)∆T ], a new transformed
autonomous system, abbreviated as ξ̇ = F (ξ), is built. In more detail, the flow of this
system is denoted by (Φt)t∈R, where we simply have(

x((k + 1)∆T )

ūk

)
= Φ∆T

((x(k∆T )

ūk

))
.

By directly truncating the bottom states associated with the u-dynamics, we obtain a con-
structive formulation of the discrete-time states evolution for the original control system.

1.2.2 Joint Linearization, Discretization and Numerical Integration

for Nonlinear Systems via Taylor Series Methods

In this subsection, we introduce a fundamental yet novel approach for the numerical solution
of the original differential equations by examining the Taylor series of its solution. More
specifically, we consider the expansion of the state around the particular time point t

ξ(t+ h) = ξ(t) + hξ̇(t) +
h2

2
ξ̈(t) +

h3

3!

...
ξ(t) + . . . (1.2)
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to some desired order p ∈ N. Evidently, a higher value of p theoretically gives a more
accurate approximation of ξ(t + h), but introduces more computational complexity at the
same time.

To get over this dilemma we can simply recognize the composited derivative denoted as
Ψq : Rn → Rn, regardless the order of the derivative q, is just a vector field. For instance,
Ψ2 : ξ 7→ J(F )|ξ F (ξ) is another vector field like Ψ1 : ξ 7→ F (ξ). Keep this in mind, it is
straightforward to see that the Jacobians Ψq obey the following functional recursion

Ψk+1 = J(Ψk)F, Ψ0 = Id, (1.3)

where Id : ξ 7→ ξ denotes the identity operator. To derive the symbolic representation of
Ψk in (1.3), merely a (differentiable) analytic description of the vector field F is required.
Moreover, there are many available symbolic differential solving tools can be utilized to avoid
tedious hand-work. Eventually, the exact representation of ξ at time point t + h and the
corresponding approximation is given by

ξ(t+ h) =
∞∑
q=0

hq

q!
Ψq(ξ(t)) ≈

p∑
q=0

hq

q!
Ψq(ξ(t)). (1.4)

Having done so, the numerical integration up to the any desired order p is achieved.

Another great features of the proposed method is that the procedure for computing the
Taylor series coefficients also directly carries out the Jacobians of the flow as a by-product.
It can be seen by denoting ϕh as the time-h-map of the autonomous system ξ̇ = F (ξ), where
h is the time step. Because ξ(t+ h) = ϕh(ξ(t)), we can also write

ϕh(ξ) = Ψ0(ξ) + hΨ1(ξ) +
h2

2
Ψ2(ξ) + . . . . (1.5)

Thus, we immediately reach the linearized flow

∂

∂ξ
ϕh

∣∣∣∣
ξ

= J(Ψ0)|ξ + h J(Ψ1)|ξ +
h2

2
J(Ψ2)|ξ + . . . . (1.6)

By recognizing the terms

J(Ψ0) = I, J(Ψ1) = J(F ), J(Ψ2) = J(J(F )F ), . . . ,
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we can see that these coefficients have already been computed as an intermediate product
during the process of obtaining the approximation of ξ(t+ h) in (1.4).

1.2.3 Sensitivities on The Time Step Size

We now extend this Taylor series-based approach to inspect the sensitivity of the dynamic
flow in terms of the time size h, by merely recognizing h as another free variable alongside
the state ξ of the flow, which is denoted as ϕ(ξ, h) and has the identical value defined in
(1.5). Thus, the linearly approximated flow with respect to the time size is immediately
obtained as

∂

∂h
ϕ(ξ, h)

∣∣∣∣
h

=
∞∑
q=1

hq−1

(q − 1)!
Ψq(ξ) ≈

p∑
q=1

hq−1

(q − 1)!
Ψq(ξ). (1.7)

Since every term Ψq is already given by previous calculations, the computation of sensitivities
on the time window size is virtually for free.

The time size h can be viewed as the time step size for discrete-time systems. Accordingly,
the linearly approximation in (1.7) provides an insightful perspective of systems: how the
state trajectory evolution is influenced by the tiny variation of the time step size. This
thought naturally leads to some interesting topics about solving time related-optimal control
problems by manipulating the length of the time step for discrete-time systems. To this end,
we will introduce an approach on providing optimal solutions for nonlinear systems in terms
of joint energy and time consumption in the next section.

1.2.4 On Computing Energy-optimal Controls for Nonlinear Con-

trol Systems

In this section, we consider the practical problem of synthesizing energy-optimal control
inputs for general nonlinear control systems by computational means. Our focus will be on
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point-to-point minimum-energy steering laws that solve

minimize
u(·)

∥u(·)∥2 =
∫ T

0

∥u(t)∥2 dt

subject to ẋ(t) = f(x(t), u(t)),

x(0) = x0,

x(T ) = xtarget.

(1.8)

Instead of directly addressing this continuous-time nonlinearly constrained quadratic pro-
gram by obtaining the analytical solution, we propose a systematic iterative scheme that
slices the entire optimization into unconstrined pieces.

1.2.5 Mapping From Control to State Trajectory

We now consider the discretized control system that is already efficiently computed from
the time-continuous version by applying the Taylor series method discussed in 1.2.1. To
simplify notations, we write xk := x(k∆T ) and uk := u(k∆T ). Thus we naturally obtain
the discrete-time nonlinear control system as

xk+1 = Φ∆T (xk, uk), (1.9)

where for further simplicity, we denote Φ as Φ∆T in the remainder of this subsection. Given
a perturbation in both states and inputs

(x̃k, ũk) = (xk + δxk, uk + δuk),

the perturbed system evolves according to

x̃k+1 = Φ(x̃k, ũk) = Φ(xk + δxk, uk + δuk)

≈ Φ(xk, uk) +
∂Φ

∂x

∣∣∣∣
(xk,uk)

δxk +
∂Φ

∂u

∣∣∣∣
(xk,uk)

δuk.
(1.10)
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Since Φ(xk, uk) = xk+1 and δxk+1 := x̃k+1 − xk+1, we can thus describe the evolution of the
state perturbation in terms of the linear time-varying system

δxk+1 ≈
∂Φ

∂x

∣∣∣∣
(xk,uk)

δxk +
∂Φ

∂u

∣∣∣∣
(xk,uk)

δuk, (1.11)

provided that (δxk, δuk) are sufficiently small. The relevance of this system is due to the
fact that (1.11) initialized with δx0 = 0 describes the differences between the nominal state
trajectory obtained from applying the nominal input signal U = (u0, u1, . . . , uN−1) and the
perturbed state trajectory obtained from applying the perturbed input signal

U +∆U = (u0 + δu0, u1 + δu1, . . . , uN−1 + δuN−1),

in a linear manner, provided again that the pertubation is such that (δxk, δuk) are sufficiently
small so that the approximation is indeed meaningful. Then, denoting

Ak :=
∂Φ

∂x

∣∣∣∣
(xk,uk)

, Bk :=
∂Φ

∂u

∣∣∣∣
(xk,uk)

,

and unfolding the discrete-time system, we obtain the linear relationship between δxk and
∆U given as

δx1 ≈ B0δu0,

δx2 ≈ A1δx1 +B1δu1 = A1B0δu0 +B1δu1,

...

δxN ≈ AN−1 · · ·A1B0δu0

+ AN−1 · · ·A2B1δu1

...

+ AN−1BN−2δuN−2

+BN−1δuN−1.

This shows that if U is a nominal input that drives the system xk+1 = Φ(xk, uk) from x0 to
x1 all the way to xN , then appyling a slightly perturbed input U +∆U will drive x0 to

x̃N = xN + δxN ≈ xN +H∆U, (1.12)
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where
H =

(
AN−1 · · ·A1B0 AN−1 · · ·A2B1 · · · BN−1

)
. (1.13)

This linear mapping forms the basis of the later introduced iterative scheme to syntheses
minimum energy steering laws for nonlinear control systems. Moreover, it can be efficiently
obtained by applying the Taylor series-based linearizing technique shown in (1.6).

1.2.6 On Synthesizing Energy-optimal Controls

The established basis offers us a powerful tool for designing input signals, such that xN

is driven to be closer to the target xtarget. However, given the fact that (3.8) is only valid
locally, we have to admit that the target steering problem cannot be achieved in one shot but
in a gradual manner. For the purpose of achieving both tasks of target steering and energy
minimizing for nonlinear control systems, we simultaneously update two control components
in each episode to solve both tasks, respectively.

Steering component

During each episode, by updating the steering component ∆U s in the form of U+ ← U+∆U s,
we desire to see xN is steered closer to xtarget than the one recorded from applying the
original input signal U . Thanks to the linear mapping represented in (3.8), the solution of
this problem can be obtained by equally solving the unconstrained quadratic program

∆U∥xN +H∆U − xtarget∥2 + λ∥∆U∥2 (1.14)

where λ is a regularization parameter that applies a penalty on the increment of δuk at each
time step, which in turn restricts the change of δxk. The closed-form solution of (1.14) is
given as

∆U s = (H⊤H+ λI)−1H⊤(xtarget − xN). (1.15)

Moreover, given the zero-initialized nominal input U and the regularization parameter λ, we
may ensure that the updates ∆U s are chosen in an intuitively economic way in each step.
However, it cannot guarantee the energy optimality of the resulting control when the entire
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Figure 1.1: Geometric explanation of the update of ∆U e. The initialized zero input signal
is represented as O. Brown contours represent the level set of ∥xN(U)∥, where xN(U)
maps U in the control space to XN in the state space, while the darker one is defined as
{U |xN(U) = xtarget}. The red solid line and red dash line represent ker(H) and C(HT ),
respectively. This 2D figure is normally projected from a much higher dimension of the
control space.

iterative process finishes. To this end, we similarly consider updating another component in
each episode to fulfill the optimal-energy requirement.

Energy-minimizing component

In order to not disturb the target steering procedure, the terminal state is desired to maintain
the same position during the energy minimizing phase. Recalling that (3.8) describes the
effect of a small perturbed input U+ ← U+∆U to the terminal state, we can see that any ∆U

that lies in the kernel of H does not alter the terminal state. Accordingly, we can compute
this component by solving the following constrained quadratic optimization problem

∆U e∥U +∆U e∥2subject to H∆U e = 0 ⇒ ∆U e ∈ ker(H), (1.16)

with the additional implicit assumption that ∆U e again be small. This linearly constrained
quadratic program has a geometric interpretation that is illustrated in Figure 1.1. It shows
a convenient heuristic way to solve the above linearly constrained quadratic program by
merely tilting U towards the orthogonal projection of U onto the orthogonal complement of
the kernel space of H (denoted as ker(H)), which is just the column space of HT ( denoted
as C(HT )). Such projection is given by

PC(HT )U = HT (HHT )−1HU.

This tilting can be achieved by forming a convex combination of U and PC(HT )U , i.e.

U+ ← (1− α)U + αHT (HHT )−1HU

=U + α(HT (HHT )−1H− I)U.
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This evidently corresponds to a perturbation

∆U e = α(HT (HHT )−1H− I)U, (1.17)

where α ∈ [0, 1] can be adjusted to guarantee a sufficiently small magnitude of ∆U e so as
to satisfy the basic assumption that gives the linearization a valid meaning as an approx-
imation. In this way, the constrained quadratic optimization problem can be relaxed to a
non-constrained one and then solved by (1.17).

1.1 also provides a useful graphical intuition that for all U ∈ {U |xN(U) = xtarget}, the closer
of U to the heading local optimum U∗, the more alignment of U with C(HT ) will be, which
in turn means the less component of U lying in ker(H) defined as

Pker(H)U = U − PC(HT )U. (1.18)

Therefore, the magnitude of Pker(H)U can roughly measure the distance from the current
solution U to the U∗. Thus, ∥Pker(H)U∥ = 0 simply means U∗ is arrived. Concisely, our pro-
posed method continuously removes Pker(H)U , which has no contribution to the steering task
but only wastes energy, by repeatedly updating ∆U e. In addition, the energy minimization
process should be terminated when the reduction of the control energy between two adjacent
episodes is too little, which simply means the current solution is close enough to U∗.

In practice, to increase the efficiency of the energy minimizing process, a reasonably large
α is preferred. However, the larger α simultaneously leads to larger ∆U e, which causes
the violation of the local linearization, so that the underlying terminal constraint may not
hold anymore, i.e., δxN has a slight bias towards H∆U e = 0. Fortunately, it will not cause
a noticeable problem by updating ∆U s and ∆U e in parallel as we proposed here, since
the steering component ∆U s will naturally compensate the drifting xN caused by ∆U e by
driving the system closer to xtarget. To this end, we need to ensure the drift never exceeds
the steering progress contributed by ∆U s for each episode, so that systems are guaranteed
to be steered to the target in an accumulated manner. Therefore, one heuristic way to
determine the value of α is to keep decreasing the value of α via α+ ← βα, β ∈ (0, 1),
until ||xi

N − xtarget|| < ||xi−1
N − xtarget||, where xi

N denotes the computed terminal state in ith

episode. Once the target is arrived, same strategy can be used to ensure ||xi
N − xtarget|| ≤ ϵ,

where ϵ is small enough. This adopted scheme is quite similar to the backtracking line search
used in the gradient method for optimization problems.
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In summary, we come up with the following iterative scheme for solving the energy-optimal
point-wise steering control problem. Detailed steps are shown in Algorithm 1. Together
with the Taylor series-based method in 1.2.1, which computes H with high accuracy and
efficiency, the iterative scheme forms a framework aiming on efficiently synthesizing energy-
optimal controls for continuous-time nonlinear systems.

Algorithm 1 Point-to-point minimum-energy control
Require: x0, xtarget, initial input U , parameters λ, α

1. Apply the input U to the system and compute the matrices Ak, Bk along the resulting
state trajectory x0, x1, . . . , xN and compute

H =
(
AN−1 · · ·A1B0 AN−1 · · ·A2B1 · · · BN−1

)
.

2. Compute the incremental updates

∆U s = (H⊤H+ λI)−1H⊤(xtarget − xN)

∆U e = α(HT (HHT )−1H− I)U

3. Update α until the steering process is valid.

4. Update control input via U+ ← U +∆U s +∆U e.

5. Repeat until ∥xN − xtarget∥ falls below a desired tolerance and the decrease of ∥U∥2 is
too little.

1.2.7 Comparison Between Iterative Method and Previous Approaches

Both the newly proposed and the previous optimal control syntheses techniques [87] share
the same analyzing basis (utilizing H to construct the mapping from control to the terminal
state) and the strategy of iteratively solving sliced optimizations. But their underlying logic
of solving sub-optimization problems is distinct.

The previous approach splits the entire iterative scheme into two separate steps: first itera-
tively drives the system to a small ball centered at the target state, then gradually minimize
the control energy while maintaining the terminal state inside the ball. The calculation of
the first part is identical to the steering component ∆U s (1.14). During the second step, due
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to the fact that the terminal state is sufficiently close to the target, a linearly constrained
quadratic program can be safely taken into account:

minimize
∆U

∥U +∆U∥2 + γ∥∆U∥2

subject to H∆U = xtarget − xN ,
(1.19)

where γ is a regularization parameter that offers the same purpose as λ (1.14). It can
be observed that by repeatedly updating ∆U , the optimal control laws can be eventually
achieved. However, because the energy-minimizing process actives only after the target
constraints have been satisfied, the total energy need to be minimized is expectedly high,
which in turn requires more episodes to reach the energy optimum. In addition, the linear
constraint implicitly limits the range of the amount of minimized energy per episode.

In contrast, our latest strategy involving the energy-minimizing component can be simul-
taneously deployed at the very beginning of the entire iterative scheme. Thus, the first
computed control that steers the system to the target consumes comparatively low energy.
Additionally, based on the statement in 1.2.6, more aggressive ∆U e can be safely applied,
which leads to the faster convergence to the optimum. Furthermore, we revealed the an-
alytically valuable fact that the distance between the current result to the optimum can
be roughly measured based on our new approach. To sum up, the method proposed here
surpasses our previous one from the efficiency and analytical point of view.

1.3 Contributions, Structure and Publications

1.3.1 Contribution and Outline of the Thesis

The main focus of this thesis is on designing planning motion for general nonlinear dynamical
systems with homotopy or homology class constraints leveraging optimization methods. The
main contributions are summarized below.

• In Chapter 2, we introduce the optimization-based technique to deal with continuous
curve following and waypoint following tasks. Optimization-based methods are known
for easily handling differentiable targets and constraints. However, path following
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targets and topology constraints are typically discrete and thus can not be inserted
into optimization formulas directly. The work in this section is our initial trial for
dealing with hybrid motion planning tasks with optimization-based methods, and the
result suggests that the time complexity of the mixed integer approach is not affordable,
even though the generated trajectory is acceptable. Hence in the following works, we
avoid the usage of integer parts in the optimization formula.

• In Chapter 3, we introduce the so-called Auxiliary Energy Reduction (AER) tech-
nique, which is a gradient-based approach to solving motion planning problems with
homotopy class constraints for system models with full-scale nonholonomic dynamics.
The hallmark of our approach is that we first introduce virtual control terms to the
original system dynamics that ensure that any preset state trajectory is dynamically
feasible with respect to the new extended system. We then gradually shift the con-
tribution of the artificial inputs to the actual original inputs by solving a sequence of
associated quadratic programs. When the contribution of the artificial inputs has been
fully removed, the preset trajectory will have been deformed to a trajectory of the
same homotopy class that is now also feasible with respect to the original system. The
practicality of our method is demonstrated in simulation examples for the Brockett
integrator, the unicycle, and a 12-dimensional nonlinear quadcopter model.

• In Chapter 4, we introduce a novel optimal motion planning technique with 2-dimensional
homotopy class constraints for general dynamical systems called HMHCC. The previ-
ous method in Chapter 3 can handle general dynamical systems and obstacles, but its
efficiency is limited as usually tens of seconds is required for synthesizing. In order to
thoroughly improve efficiency, HMHCC is proposed. We first initialize an optimal sys-
tem trajectory regardless of obstacles and homotopy class constraints, and design an
auxiliary obstacle trajectory for each obstacle such that the system trajectory belongs
to the desired homotopy class regarding these auxiliary obstacle trajectories. During
the procedure of deforming the auxiliary obstacle trajectory to the original counter-
parts, we propose a homotopy method based on nonlinear programming (NLP) such
that the synthesized optimal system trajectories fulfill the aforementioned homotopy
class constraints. The proposed method is validated with numerical results on two
classic nonlinear systems with planar static and moving obstacles.

• In Chapter 5, we propose a novel method to address the shortest path problem with
homology class constraints in both 2D and 3D environments. The HMHCC method
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shows great efficiency, but its optimization formula limits it to 2D obstacles. Thus in
this chapter, we explore a specific class of 3D obstacles that has the potential to be
combined with HMHCC. We first define the phase change of the path with respect to
2D obstacles and then apply the same technique to a class of super-toroid obstacles
compressed by an embedding map. To synthesize the shortest path, we leverage the
visibility graph and the Value Iteration Algorithm (VIA). Finally, we demonstrate the
effectiveness of our approach with various simulation examples.

• In Chapter 6, to address the practical issue of higher dimensional obstacles in Chap-
ter 4, we introduce a method to embed specific 3D obstacles to 2D ones as in Chapter 5
and leverage the HMHCC method to synthesize the differentiable trajectories for the
agent with homotopy class constraints. Consequently, the proposed method can handle
moving obstacles and 3D obstacles while using an optimization framework, which gives
it capabilities to apply in real-world scenarios.

1.3.2 Publications

All the work presented is in peer-reviewed journals (denoted as J) and conferences (denoted
as C). The publications are listed below in the order of appearance. Submitted publications
are marked with ‘s’, while in progress but not submitted publications are marked with ‘p’.

The research related to motion planning with homotopy and homology constraints, which
concern the topological relations between planned trajectories and obstacles is covered in:

(C1) W. He, Y. Huang, and S. Zeng (2022). "Motion planning with homotopy class con-
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Chapter 2

A Unifying Approach to Continuous
Curve Following and Waypoint Following
via Block Coordinate Descent

2.1 Introduction

Optimization-based motion planning techniques can readily deal with differentiable con-
straints and optimization targets. However, the aforementioned method is not obvious when
discrete parts exist in NLP. In this section, we investigate the optimization-based methods
for path-following problems, which are typical hybrid motion planning tasks. This is also
our initial trial to investigate the possible method in dealing with homotopy class constraints
because these kinds of constraints are also discrete and not differentiable. As one of the fun-
damental areas within motion control problems [77], the Path Following (PF) problem has
attracted extensive studies and found its various applying platforms ranging from unmanned
aerial vehicles to unmanned submarine vehicles. In PF problems, one is asked to synthesize
the control input to steer a system along a desired geometric path without the need to satisfy
explicit time and speed constraints, in contrast to trajectory tracking. Due to the fact that
the pre-designed geometric path is normally defined as a curve that is continuous in space,
this PF problems can be further categorized as Continuous Curve Following (CCF) prob-
lems [32]. To solve such problems, many techniques, e.g., Feedback Linearization [2], which
benefits from the linearization of the nonlinear systems around a certain region of the state
space, Non-Linear Guidance Law [64], which adopt a simple geometric strategy that steers
the system toward a virtual target point located on the path, and Backstepping [48], which
achieves the zero tracking-error convergence based on the Lyapunov theory, have demon-
strated their effectiveness with many successful applications. In addition, Model Predictive
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Control [72], energy shaping [25] and the vector field method [86] are also leveraged to solve
CCF problems.

In some other configurations of path guidance tasks, the characteristic motions are defined
by a small number of waypoints rather than a geometric continuous curve, where the corre-
sponding PF problems are categorized as Waypoint Following (WF). In contrast to the CCF
which requires the desired curve to be aligned with the entire trajectory, the WF problems
only expect each waypoint to be visited by the system in a pre-established order, where no
constraint between two waypoints exists for the trajectory. Due to the more flexible motions
for systems, such configuration is more efficient and thus more preferred [32] in some PF
problems. The comparison between problems of CCF and WF is illustrated in Figure 2.1.
Several related techniques have been proposed to solve waypoint tracking tasks, e.g., the
proposed guidance design method steers the system along straight lines to pass through the
preset waypoints [84], the work in [61] manages to find a time-optimal strategy for traveling
between waypoints by leveraging Sequential Quadratic Programming (SQP), and in [32], a
minimum-effort waypoint-following method is derived as the solution of a linear quadratic
optimal control problem.

However, to the best of the authors’ knowledge, there is no work managing to solve both
problems of CCF and WF in a single framework. Hereby, we propose a novel direction in
this section to shed some light on addressing these two PF problems via a unified approach.
For the CCF problems, we need to first properly discretize the continuous curve so that
we can describe it as a sequence of a large number of waypoints. Then we are able to
unify these two distinct PF problems into a single Mixed Integer Nonlinear Programming
(MINLP) problem that can be solved by our approach based on Block Coordinate Descent
(BCD). Despite the seemingly naive pre-processing that simply converts the CCF problems
into the WF problems, our approach solves them individually, as different problems vary the
configurations of the formulated optimization problem. As the unified framework is proposed
for WF and CCF problems, it is suggested that the mixed problems that involve both WF
and CCF parts can also be solved in this framework.

More specifically, the advocated approach finds the optimal solution via iteratively and suc-
cessively descending along two directions: finding the two optimal alignment functions, whose
configurations rely on the PF problem to be solved, and tracking a sequence of waypoints.
These two alignment functions are introduced to pair waypoints sequence and trajectory
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Desired path

Trajectory

WF

Waypoint

Trajectory 1

Trajectory 2

Figure 2.1: Two different sub-problems of the path following problem. Left: The goal of
the CCF problem is that the trajectory, which is the orange curve with recorded position
coordinates as the dots with uniform time intervals, is aligned with the pre-established path,
the blue curve, regardless of the velocity of the system. Right: In WF problem, a valid
trajectory is supposed to pass through the designed waypoints in a certain order. Thus, both
trajectories are considered legitimate.

together, which allow us to easily quantify the mismatch between them. Moreover, given a
fixed trajectory driven by a pre-determined control input, the two optimal alignment func-
tions, which yield the best trajectory-waypoints alignment, can be analytically obtained by
applying DP. In the other descending direction, by leveraging SQP, we are able to find a
control input that steers the system to track the waypoints sequence with the alignment
functions computed above. By iteratively solving these two sub-problems, we will gradually
arrive at the optimal solution that accomplishes the overall PF task.

This section is organized as follows. Section 2.2 defines and formulates the problem. Then
we introduce our approach for CCF and WF in Section 2.3. The applicability of the proposed
algorithm is presented In Section 2.4. Finally, we conclude the section in Section 2.5.
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2.2 Problem Formulation

For the purpose of the computational implementation, we assume the discrete time nonlinear
dynamic system

x(k + 1) = F (x(k), u(k)), (2.1)

where state x ∈ Rn, control input u ∈ Rm and F is continuously differentiable. Throughout
this section, we consider the state trajectory X = (x(0), x(1), · · · , x(N)) is given by driving
the system (2.1) with an input sequence U = (u(0), u(1), · · · , u(N − 1)).

Let a sequence of M + 1 numbers of waypoints {p(v)}Mv=0, where M ≪ N , be defined as
a collection of points in Rp with a certain order. According to the objective of the WF
problems, every waypoint needs to be successively visited by the trajectory, where, in our
setup, we aim to associate every waypoint with a certain point of the trajectory. Meanwhile,
we define a continuous curve as pc ⊂ Rp. Considering the fact that both waypoints and
continuous curves are utilized to regulate the characteristic motions of a system, we attempt
to describe the continuous curve obeying the definition of the waypoints. In particular, we
consider replacing a continuous curve pc with a sequence of M + 1 numbers of waypoints
that is denoted in the same form as {p(v)}Mv=0, whereas M has to be sufficiently large for
the accurate discretization so that M is far greater than N . In such a setup, to fulfill the
CCF problems, we expect every trajectory point is aligned with an associated point in the
waypoints sequence.

It is noted that we always strive to map every point from the shorter sequence to that of
the longer one, which is an invariant to the different problems we are treating. In order to
unify the formulations of these two problems, we further introduce two injective functions.
The first one is defined as

λp : {0, . . . , Z} → {0, . . . ,M}, Z ∈ N

to assist us in indexing some waypoints of the entire sequence, where the indexed waypoints
are denoted as {p(λp(z))}Zz=0. Another one has the form of

λx : {0, . . . , Z} → {0, . . . , N}, Z ∈ N

23



that is utilized to index some points of the trajectory which are described as {x(λx(z))}Zz=0.

Equipped with the definitions above, for the problem of CCF, we are able to quantify the
mismatch between the trajectory and the desired continuous curve (represented in a sequence
of waypoints) in the form:

dCCF (X, p, λp) :=
1

2

N∑
z=0

∥Cx(z)− p(λp(z))∥2,

where C ∈ Rn×p is a projection matrix. For the feasibility of the PF problem, one has to
further ensure that λp is non-decreasing, the boundary conditions λp(0) = 0, λp(N) = M ,
and that the increment of λp is relatively small to prevent a big jump of the path within a
small trajectory segment. As for the WF problems, the mismatch between the trajectory
points and the desired waypoints can be formulated as

dWF (X, p, λx) :=
1

2

M∑
z=0

∥Cx(λx(z))− p(z)∥2,

where we have similar constraints of that λx is non-decreasing, λx(0) = 0 and λx(M) =

N . Because both λp and λx are used to create alignments between the trajectory and the
waypoints sequence, they are called alignment functions in the rest of this section.
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Having done so, both types of path following problems can be addressed by solving a single
MINLP

minimize
(U, λx, λp)

L(U,λx, λp) =
1

2

Z∑
z=0

∥Cx(λx(z))− p(λp(z))∥2

+
1

2

N∑
n=0

u(n)TRuu(n)

+
1

2
(x(N)− xtarget)

⊤Qf (x(N)− xtarget)

subject to umin ≤ u(k) ≤ umax,

x(0) = xstart, x(k + 1) = F (x(k), u(k)),

λx(0) = 0, λx(Z) = N, λx(z) ∈ N,

λp(0) = 0, λp(Z) = M,λp(z) ∈ N,

0 ≤ αx ≤ λx(z + 1)− λx(z) ≤ βx,

0 ≤ αp ≤ λp(z + 1)− λp(z) ≤ βp,

(2.2)

where z ∈ {0, · · · , Z}; k ∈ {0, · · · , N}; αx, αp, βx, βp are pre-defined hyper-parameters to
regulate the increment of λx and λp. In addition, xtarget ∈ Rn and Qf ∈ Rn×n terms are
introduced to regulate the terminal state of the system, which are required when terminal
angle constraints [73] or terminal velocity constraints [46] are considered. Meanwhile, we
have

Z = N, αx = βx = 1,

Z = M, αp = βp = 1,

for the problems of CCF and WF, respectively. Figure 2.2 illustrates different configurations
of alignment functions in different problems.
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Figure 2.2: Graphical representation of the alignment functions in different tasks. The
injective functions λx and λp are utilized to index some points of trajectories (in the red
curves) and waypoints sequence (in blue curves), respectively, and thus pair these points
together. It is noted that, λx and λp are forced to be identity functions in CCF and WF
problems, respectively.

2.3 Path Following by Block Coordinate Descent

Directly solving MINLP (2.2) is challenging, as the input sequence U and the alignment
function λx are mutually correlated. In order to make the problem more tangible and man-
ageable, we propose an algorithm to decouple decision variables by leveraging the idea of
BCD. More specifically, the proposed methodology contains two consecutive steps in each
iteration. Step 1 is to find out the optimal alignment given a fixed control input, which will
be introduced in Section 2.3.1. Section 2.3.2 describes Step 2 which is to update control
inputs to minimize the mismatch of the trajectory-waypoints alignment, while keeping the
alignment functions fixed. A summary of our approach will be provided in Section 2.3.3.

2.3.1 Optimal Alignment via Dynamic Programming

Once the control input U∗ is given, the trajectory of the system X driven by U∗ is determined
and fixed, where we assume that x(0) is known. Meanwhile, the optimization problem that
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solely relies on the alignment functions can be reformulated as

minimize
λx, λp

LU∗(λx, λp) =
1

2

Z∑
z=0

∥Cx(λx(z))− p(λp(z))∥2, (2.3)

which has the same constraints as (2.2). Problem (2.3) is to find the optimal alignment
functions that match the trajectory {x(k)}Nk=0 and the waypoints sequence {p(v)}Mv=0 the
best, and can be solved by addressing dependent subproblems, where we attempt to find
the best alignment between the subsequence of {x(k)}Nk=0 and the subsequence of {p(v)}Mv=0.
Likewise, the problems of finding the best alignments between these subsequences can also
be broken down into aligning subsequences of themselves. Due to the existing recursive
pattern, we can start from solving the "smallest" subproblems, i.e., aligning {x(k)}0k=0 and
{p(v)}0v=0, and build up to solve problem (2.3) eventually, which is referred to as DP. To this
end, we need to store the distance of every possible pair of trajectory point and waypoint,
as well as the information of the optimal value of each subproblems.

In particular, we consider building a local loss matrix ∈ R(M+1)×(N+1) with entries

i,j =
1

2
∥Cx(j)− p(i)∥2,

which stores the squared distance between the current trajectory to the desired waypoints.
Based on , an accumulated loss matrix ∈ R(M+1)×(N+1) can be formed as

0,0 =0,0,

i,j = min(ri,rj)∈Ri,j
{ri,rj}+i,j,

where Ri,j = {(ri, rj)|αp ≤ i− ri ≤ βp, αx ≤ j − rj ≤ βx}. For those elements whose indices
are out of range, i.e., i < 0, j < 0, i > M or j > N , we treat the corresponding i,j = +∞.

Proposition 1 Each entry of i,j represents the minimum loss of matching a subsequence of
waypoints {p(v)}0v=i and a subsequence of trajectory {x(k)}0k=j for all feasible alignment with
the constraints of end-to-end alignment and the limited increment described in (2.2), where
any i,j with infinity value simply means the corresponding problem is infeasible.

Proof: For the index out of bound, there is no feasible solution, thus the loss value is +∞.
For 0,0, there is only one feasible alignment λx(0) = λp(0) = 0 with the loss value M0,0. Then
consider an arbitrary entry i,j and the length of the corresponding alignment denoted as z,
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the constraints of the problem suggest αp ≤ i− λp(z− 1) ≤ βp and αx ≤ j− λx(z− 1) ≤ βx,
thus the minimum loss of the corresponding sub-problem is i,j = min(ri,rj)∈Ri,j

{ri,rj}+i,j.
Moreover, according to the constraints of either CCF or WF, we have αx + αp > 0, which
suggests i+j > ri+rj for all (ri, rj) ∈ Ri,j. Therefore, the proposed algorithm can recurrently
evaluate i,j bottom-up.

An auxiliary directed graph G(V , E) is introduced to store the information of indices for the
optimal alignment. More specifically, if ij is finite, we add (i, j) to V and add the directed
link (i, j)→ (r̂i, r̂j) to E , where (r̂i, r̂j) = argmin(ri,rj)∈Ri,j

{ri,rj}. Having done so, the optimal
alignment can be obtained by searching in G:

(λ∗
x(Z), λ

∗
p(Z)) = (N,M),

(λ∗
x(z + 1), λ∗

p(z + 1))→ (λ∗
x(z), λ

∗
p(z)) ∈ E .

(2.4)

Corollary 2.3.1 The solution λ∗ found in (2.4) is the optimal solution of the optimization
problem (2.3).

Proof: Given a preset path and determined trajectory, the associated optimal loss is
shown in M,N which relies on other entries of , where G provides the information of which
alignment of the sub-problem gives that optimal value and thus should be chosen. By
iterating in such a way back to the starting point of the trajectory, the optimal alignment
(λ∗

x, λ
∗
p) is constructed and is thus the optimal solution of the optimization problem (2.3).

According to the method proposed above, the time and the space complexity of building
matrices , are O(MN). One way to increase efficiency is to simply omit the computation
of the entries whose indices conflict with the constraints of the alignment functions. More
specifically, the computation of the entry of and with index (i, j) that belongs to the union
of the following sets can be ignored

S1 = {(i, j)| ⌊i/αx⌋ < ⌈j/βp⌉},

S2 = {(i, j)| ⌈i/βx⌉ > ⌊j/αp⌋},

S3 = {(i, j)| ⌊(N − i)/αx⌋ < ⌈(M − j)/βp⌉},

S4 = {(i, j)| ⌈(N − i)/βx⌉ > ⌊(M − j)/αp⌋}.

(2.5)

The corresponding constraint window is similar to Itakura Parallelograms [39] in Dynamic
Time Warping.
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2.3.2 Optimal Input via Sequential Quadratic Programming

In this subsection, given fixed alignment functions λp and λx, we propose an approach
to compute the optimal control signal in an iterative scheme. Because Qf = R⊤

f Rf and
Rn = R⊤

s Rs in (2.2) are symmetric and positive semi-definite, which transforms problem
(2.2) into a more compact form:

minimize
U

Lλ∗(U) =
1

2
∥R(U)∥2

subject to umin ≤ u(k) ≤ umax,

(2.6)

where

R(U) =



Cx(λ∗
x(0))− p(λ∗

p(0))
...

Cx(λ∗
x(Z))− p(λ∗

p(Z))

Rf (x(N)− xtarget)

Rsu(0)
...

Rsu(N)


,

and the trajectory X is obtained by steering the system (2.1) with the input U . Problem (2.6)
can be solved by Sequential Quadratic Programming (SQP). More specifically, we consider
solving the following optimization problem iteratively

minimize
∆U

∇UL
⊤
λ∗∆U +

1

2
∆U⊤∇2

ULλ∗∆U

subject to umin ≤ u(k) + δu ≤ umax,

(2.7)

where ∇ULλ∗ is the gradient vector, and ∇2
ULλ∗ is the Hessian matrix. For nonlinear pro-

grams with a least-squares objective function like problem (2.6), the Hessian matrix can be
approximated using Gauss-Newton method for the purposes of reasonable time complex-
ity [12]. Hereby, we arrive at

∇2
ULλ∗ ≈

∂R

∂U

⊤∂R

∂U
+ γI, (2.8)

where γI is the regularization term in case the term of ∂R
∂u

⊤ ∂R
∂u

is not invertible. By solving
quadratic program (2.7), the updated input is given by U = U +∆U .
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In the following part, we will show how to compute the ∂X
∂U

, which is critical in calculation
of ∇ULλ∗ . Given the discrete nonlinear system (2.1), a nominal control signal U and the
corresponding nominal state trajectory X, discrete-time linearization of (2.1) can be obtained
via perturbing the entire trajectory and control signals. The resulting dynamics of the
perturbed state are given as

δx(k + 1) ≈ Akδx(k) +Bkδu(k), δx(0) = 0, (2.9)

where Ak = ∂F
∂x
(x(k), u(k)) and Bk = ∂F

∂u
(x(k), u(k)) are Jacobian matrices of the flow with

respect to the state and the input, respectively. Iterating (3.7) from δx(1) to δx(N), we
arrive at

δx(1) ≈ B0δu(0)

δx(2) ≈ A1B0δu(0) +B1δu(1)

...

δx(N) ≈ AN−1 . . . A1B0δu(0) + · · ·+BN−1δu(N − 1).

It is noted that, these linear approximations are only valid for sufficiently small control
perturbations, i.e., ∥∆U∥ = ∥(δu(0), δu(1), . . . , δu(N − 1))∥ sufficiently small. To condense
the approximation above, the variation of the entire state trajectory caused by small ∆U

can be rewritten as

∆X :=


δx(0)

δx(1)
...

δx(N)

 ≈

H0∆U

H1∆U
...

HN∆U

 = H∆U, (2.10)

where

H :=



0 0 · · · 0

B0 0 · · · 0

A1B0 B1
...

...
... 0

AN−1 · · ·A1B0 AN−1 · · ·A2B1 · · · BN−1


,

and the matrices Hi represent the ith horizontal block of H, respectively. The obtained
matrix H is the desired term ∂X

∂U
.
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2.3.3 Summary and Practical Setups

As discussed in Section 2.2, both problems of CCF and WF can be described in a unified
MINLP with a loss function L(U, λx, λp). Based on the previous results, we propose a BCD-
based approach to solve this MINLP by considering the alignment functions λx and λp as
a block of decision variables and the control input U as another one. Our approach then
sequentially minimizes L(U, λx, λp) in terms of each block of variables while keeping the other
one fixed. The general method is summarized in Algorithm 2.

Algorithm 2 BCD for Path Following
Input: Initial input U , desired terminal state xtarget and waypoints p.
1: Apply U to the system and store the trajectory X.
2: Update the alignment λx and λp by solving (2.4).
3: compute H as defined in (3.8).
4: Solve the quadratic program (2.7) for ∆U .
5. Update the control input U = U +∆U .
6. Repeat step 1− 5 until L(U, λx, λp) converges.

In practice, carefully selected hyper-parameters are helpful to acquire better performance.
For CCF tasks, we set αp = 0, βp = ⌈M/N · µ⌉, where µ is a hyper-parameter, enabling
dynamical systems to stay in place and meanwhile not jump over a large portion of the path.
For waypoint tracking tasks, we set αx = ⌈N/M/µ⌉, βx = ⌈N/M · µ⌉ to prevent aligning
adjacent trajectory points to waypoints that are far from each other, which usually causes
an unacceptable local minimum of the optimization problem. Moreover, when the system
is initialized at xstart, our approach tends to ignore the first small portion of the alignment
functions, which may lead to slow convergence. To mitigate this challenge, inspired by the
observation that updating the control input with uniform alignment functions, which are
defined as

λunif
x (z) = ⌈z/Z ·N⌉, λunif

p (z) = ⌈z/Z ·M⌉,

will steer the trajectory to spread uniformly and make use of whole length of alignment
functions, we hereby propose Algorithm 3 to provide proper initialization of control inputs.
Experiments suggest that the proposed initialization is effective as shown in Figure 2.5.
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Algorithm 3 Proper Initialization of U
Input: Initial input U , desired terminal state xtarget, waypoints p and the required iteration
d.

1: Apply U to the system and store the trajectory X.
2: compute H as defined in (3.8).
3: Solve Quadratic Programming (2.7) for ∆U with the uniform alignment λunif

x and λunif
p .

4. Update the control input U = U +∆U .
5. Repeat step 1− 4 for d iterations.

2.4 Illustrative Examples

Throughout this section, the theoretical results are evaluated through intensive numerical
simulation studies, where the proposed algorithm is applied to a quadcopter for both CCF
and WF problems. The adopted quadcopter is modeled by a state space representation
ẋ = f(x, u) with 12 states and 4 inputs that represent the rotating speed of four motors [74].
The 4th Order Runge Kutta method is leveraged to transfer it to a discrete-time dynamical
system. In the following tasks, the position parts of xstart and xtarget are equal to the first and
the last points of the path, respectively, while the rest of the entries are zero. We additionally
set the time horizon to 6 seconds, the sampling rate to be 50 Hz, umin = 0, umax = 700,
Qf = 10I12, Rn = 10−6I4,γ = 0.0001 · L(U, λx, λp) and µ = 2.

Application to CCF Tasks: Given the quadcopter model above, we leverage the proposed
method to find the input sequence that drives the drone to follow two different paths, a star-
shaped path in XY -plane and a square-shaped one in three-dimensional space, where we
utilize two sequences of 2000 and 1500 waypoints to represent these two continuous curves,
respectively. For both tasks, our approach converges to the optimal solutions within 60
iterations, where the proper initialization of control inputs is adopted with d = 5. Figure 2.3
and Figure 2.4 illustrate the results of these two tasks, including trajectories in a two-
dimensional view, three-dimensional view, control inputs, and alignment functions, where
the pre-designed paths are shown to be followed well.

To illustrate the effectiveness of the initialization process for PF tasks, we consider the CCF
task with the same setup as the one shown in Figure 2.3 except the time horizon is 10

seconds. In Figure 2.5, we compare the rates of convergence and the alignments of the last
iteration with different initialization iterations. The results suggest that the initialization
process is necessary for CCF and a few iterations are sufficient.
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Figure 2.3: The quadcopter following a two-dimensional star-shaped continuous curve. (a):
The pre-established path and the resulting trajectory in XY -plane. (b): The pre-established
path and the resulting trajectory in three-dimensional space. (c): Control inputs. (d):
Alignment of the trajectory and the continuous curve of the last iteration.
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Figure 2.4: The quadcopter following the three-dimensional square-shaped continuous curve.
(a): The pre-established path and the resulting trajectory in XY -plane. (b): The pre-
established path and the resulting trajectory in three-dimensional space. (c): Control inputs.
(d): Alignment of the trajectory and the continuous curve of the last iteration.
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Figure 2.5: Comparison between different iterations of initialization in terms of the loss
function and the alignment. Left: The value of L(U, λx, λp) in each iteration. Right:
Alignment of the trajectory and the continuous curve of the last iteration.

Application to WF Tasks: Here we leverage a two-dimensional eight-shaped and a three-
dimensional star-shaped waypoint sequence to illustrate the performance of the proposed
method on WF tasks. For both tasks, our approach converges to the optimal solutions
within 60 iterations, where the proper initialization strategy is not adopted. Figure 2.6 and
Figure 2.7 illustrate the results of these two tasks, including trajectories in two-dimensional
view and three-dimensional view, control inputs, and alignment functions.

2.5 Conclusion

In this section, we introduced a novel approach based on block coordinate descent with Dy-
namic Programming and Sequential Quadratic Programming to address Continuous Curve
Following (CCF) and Waypoint Following (WF) problems. The advocated approach first
formulates both problems into a Mixed Integer Nonlinear Program, and then solves it by
leveraging the idea of block coordinate descent. We further provided some discussions on the
practical setups of the approach for better performance. We have additionally demonstrated
the advantage and the practicability of the proposed method in a quadcopter model with
various CCF and WF tasks. In addition, it is suggested that the mixed problems that involve
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Figure 2.6: Quadcopter following the two-dimensional eight-shaped waypoints. Blue dash
lines demonstrate the sequence of waypoints. (a): Waypoints and the trajectory in XY -
plane. (b): Waypoints and the trajectory in 3-dimensional space. (c): Control inputs. (d):
Alignment of the trajectory and the waypoints of the last iteration.
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Figure 2.7: Quadcopter following a three-dimensional star-shaped waypoints. Blue dash
lines demonstrate the sequence of waypoints. (a): Waypoints and the trajectory in XY -
plane. (b): Waypoints and the trajectory in 3-dimensional space. (c): Control inputs. (d):
Alignment of the trajectory and the waypoints of the last iteration.
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both WF and CCF parts can also be solved in this framework, which we will investigate in
future work.

In investigating this approach, we also realized that transforming hybrid optimization-based
motion planning tasks to mixed integer nonlinear programming is a solution. However, the
time complexity of MINLP is exponential and far from real-time. It also suggests that to
deal with discrete constraints, the number of sample points needs to be minimized, which is
not parallel with the requirement of high-fidelity trajectory generation. Hence we tend not
to use mixed integral optimization techniques in our works of the following sections.
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Chapter 3

Motion Planning with Homotopy Class
Constraints via the Auxiliary Energy
Reduction Technique

3.1 Introduction

The basic task of motion planning is to find a dynamically feasible system trajectory con-
necting a given starting point with a desired target point in a state space that possibly
contains one or more obstacles. However, merely avoiding collisions is insufficient in some
topology-sensitive tasks, e.g., a vehicle having to stay on the right side of the road. Hence,
it is important to consider and distinguish among different homotopy classes for generated
trajectories. For this consideration, [10] provides a way to classify homotopy classes in
higher-dimensional space and proposes a search-based robot path planning method fulfilling
topological constraints. Probabilistic roadmaps introduced in [40] are also capable of path
generation under homotopy classes constraints. Furthermore, Gaussian process inference
is leveraged in [49] to achieve online motion planning involving multiple homotopy classes.
However these methods are again limited to robots with simple dynamics.

There are few prior works on motion planning that allow for the simultaneous considerations
of full-scale nonlinear nonholonomic dynamics and homotopy class constraints. Recent works
that made important contributions towards this direction are [7], [57] and [56]. These works
introduce the so-called affine geometric heat flow, which is a partial differential equation
that evolves an arbitrary differentiable path between an initial and final state to a path that
meets additional constraints imposed on the problem. A potential drawback is the reliance
of this approach on the numerical solution of the involved partial differential equation.
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In this section, we propose a novel direction for addressing motion planning problems with
homotopy class constraints that can be applied to general, possibly high-dimensional, non-
linear dynamical systems. The approach first adds an auxiliary control term to the original
system, which turns a preset reference trajectory that is dynamically infeasible for the origi-
nal system to a feasible one for the new extended system. Afterwards, the approach gradually
(cf. [80], [81]) eliminates the influence of the auxiliary control term so as to let the original
input slowly take over the control of the system. As a result, the dynamically infeasible
trajectory is gradually deformed to a feasible one that the original system is fully capable
to track. In addition, the advocated approach is able to preserve the homotopy class for
generated trajectories throughout the iterative synthesis process.

The general idea underlying our proposed technique is reminiscent of the process by which
young children first learn how to ride a bicycle, where in the beginning, the children often
require external assistance, e.g., via parents actively holding or via a pair of training wheels
to mitigate the challenging unstable dynamical component. After having gained sufficient
experience under the externally facilitated steady conditions, the external assistance/forces
can be gradually removed during subsequent phases of the learning process.

This section is organized as follows. Section 6.2, introduces the precise problem setup. Then
we develop our method for generating feasible trajectories in Section 3.3, and its extension
that concerns homotopy class constraints in Section 3.4. The applicability of the advocated
technique is presented in Section 3.5. Finally, we conclude the section in Section 6.5.

3.2 Problem Formulation

We consider the general nonlinear dynamical system

ẋ(t) = f(x(t), u(t)), (3.1)

where x(t) ∈ Rn and u(t) ∈ Rm. The feasible trajectory of the system above can be
represented as a tuple (x, u), which satisfies the dynamical constraint (3.1) and terminal-
point constraints x(0) = xstart, x(T ) = xtarget, where T is the terminal time. We denote
x ∈ Xdynamic, if there exists a corresponding admissible input u that steers (3.1) along x. We
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take the parallel parking problem as an example to illustrate feasible and infeasible state
trajectories as shown in 3.1.

Figure 3.1: Parallel parking problem from the current car position (0, 2) to the parking spot
that is shown as the green rectangular and centered at (0, 0). The trajectory on the left
shown as the blue straight line is dynamically infeasible, which can be observed by the fact
that the car’s facing directions (shown as the red arrows) are perpendicular to the path. In
contrast, the trajectory on the right is feasible, as the car’s facing directions are tangent to
the path.

Moreover, we denote H as the homotopy class which satisfies the homotopy class constraints
described by a set of obstacles. The definition of homotopy class is given in Definition 1. A
graphical illustration is presented in 5.1. A more detailed definition is referred to [10].

Definition 1 Two trajectories belong to the same homotopy class if and only if they have
identical start and target points and they can be smoothly deformed into one another without
intersecting any obstacles.

Given a nominal state trajectory, the objective of this work is to find a feasible trajectory
x ∈ Xdynamic∩H and the corresponding admissible control u, with the property x ∈ H being
preserved throughout the iterative computation process. It is noted that the initially chosen
state trajectories are not required to be dynamically feasible.

Notation:
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Figure 3.2: Three trajectories connecting identical starting and target points. According to
the definition of homotopy class, the blue trajectory is homotopy equivalent with the purple
one, but belongs to the different homotopy class of the green one.

1. For conciseness, (x0, x1, . . . , xN) will represent the vector (x⊤
0 , x

⊤
1 , . . . , x

⊤
N)

⊤ ∈ Rn(N+1).

2. By default, ∥ · ∥ stands for ∥ · ∥2 in this section.

3.3 Motion Planning by

Auxiliary Energy Reduction (AER)

In this section, we first introduce the general structure of the AER method in the absence
of a cluttered environment. In Section 3.3.1, we transform the motion planning problem to
an energy-minimization problem by virtue of the framework centered around the auxiliary
control terms. The resulting nonlinear optimization problem to eliminate the virtually-
added control energy is then solved in an iterative fashion, which is described in more detail
in Section 3.3.2.

3.3.1 Auxiliary control inputs and the Extended System

For the purpose of the computational implementation, we assume that the continuous-time
nonlinear system

ẋ(t) = f(x(t), u(t)), x(t) ∈ Rn, u(t) ∈ Rm, (3.2)
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has been appropriately discretized into

xk+1 = F (xk, uk). (3.3)

In order to track an arbitrary, even dynamically infeasible, nominal trajectory, we introduce
an auxiliary (virtual) control component ûk to the discrete-time nonlinear system (4.7)

xk+1 = F (xk, uk) + ûk, (3.4)

where xk ∈ Rn, uk ∈ Rm, and ûk ∈ Rn. Moreover, for any pair of X = (x0, x1, ..., xN) and
U = (u0, ..., uN−1), not necessarily feasible for the original system (4.7), there always exists
a corresponding auxiliary control

ûk = xk+1 − F (xk, uk), (3.5)

such that (3.4) initialized at x0 and driven with U and Û traces out the given trajectory X

in the state space.

In our Auxiliary Energy Reduction framework, the problem of generating feasible trajectories
for the original system can be then cast as an energy minimization problem:

minimize
(U, Û)

∥Û∥2

subject to x0 = xstart,

xN = xtarget,

xk+1 = F (xk, uk) + ûk,

(3.6)

where the start and end point of the given predetermined trajectory have been fixed. It is
clear that if this optimization problem admits a solution where the auxiliary control term
reaches zero, i.e., ∥Û∥2 = 0, the virtually-added input no longer impacts the system (4.7),
i.e., we obtain the admissible control that steers the system (4.7) from xstart to xtarget along
with the corresponding feasible trajectory.

The purpose of our overall approach to first introduce an auxiliary term and then to work
towards reducing it is to have a feasible starting point (for the extended system) in the
computational optimal control setup, which in particular also allows for the fixing of known
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and desired start and end points. Furthermore, in some instances, a user may already have
a sense of how the desired trajectory of a system may end up looking like, and incorporate
this information in terms of a useful prior design of the desired state trajectory, with the
parts of the prior that are dynamically infeasible for the original system being outsourced
to the auxiliary control terms. Another key is that we subsequently solve the nonlinear
optimization problem (4.8) in an iterative fashion which is very efficient in that it results in
a sequence of quadratic programs that need to be solved.

3.3.2 Auxiliary Energy Reduction

Given the discrete nonlinear system (3.4), a nominal state trajectory X, a nominal control
signal U , and the derived auxiliary input signal Û , we obtain the discrete-time linearization
of (3.4) via perturbing the entire trajectory (except x0) and control signals, which yields the
dynamics of the pertubation of the state as

δxk+1 ≈ Akδxk +Bkδuk + B̂kδûk, δx0 = 0, (3.7)

where Ak = ∂F
∂x
(xk, uk), Bk = ∂F

∂u
(xk, uk), B̂k = In are Jacobian matrices of the flow with

respect to the state and the input, respectively. Unfolding (3.7), we arrive at

δx1 ≈ B0δu0 + B̂0δû0

δx2 ≈ A1B0δu0 +B1δu1 + A1B̂0δû0 + B̂1δû1

...

δxN ≈ AN−1 . . . A1B0δu0 + · · ·+BN−1δuN−1

+ AN−1 . . . A1B̂0δû0 + · · ·+ B̂N−1δûN−1.

It is noted that, these linear approximations are only valid for small control perturbations,
i.e., ∥∆U∥ = ∥(δu0, δu1, . . . , δuN−1)∥ and ∥∆Û∥ = ∥(δû0, δû1, . . . , δûN−1)∥ are sufficiently
small. To condense the approximation above, the variation of the entire state trajectory
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caused by small ∆U and ∆Û can be rewritten as

∆X :=


δx1

...
δxN

 ≈

H1∆U + Ĥ1∆Û

...
HN∆U + ĤN∆Û

 = H∆U + Ĥ∆Û, (3.8)

where

H :=


B0 0 · · · 0

A1B0 B1
...

...
... 0

AN−1 · · ·A1B0 AN−1 · · ·A2B1 · · · BN−1

 ,

Ĥ :=


B̂0 0 · · · 0

A1B̂0 B̂1
...

...
... 0

AN−1 · · ·A1B̂0 AN−1 · · ·A2B̂1 · · · B̂N−1

 ,

and the matrices Hi and Ĥi represent the ith horizontal block of H and Ĥ, respectively.
Moreover, the corresponding state trajectory driven by the slightly drifted nominal control
can thus be quantified as

X(U +∆U, Û +∆Û) ≈ X(U, Û) +H∆U + Ĥ∆Û. (3.9)

With these insights, we can tackle the solution of the optimization problem (4.8) in a iterative
manner where in each step of the iteration, we are looking at a drastically simpler quadratic
program

minimize
(∆U,∆Û)

∥Û +∆Û∥2 + γ1∥∆U∥2 + γ2∥∆Û∥2

subject to xN +HN∆U + ĤN∆Û = xtarget,

(3.10)

for gradually reducing the auxiliary energy. Here γ1, γ2 are regularization parameters that
penalize large values of ∥∆U∥ and ∥∆Û∥, which ensures the validity of the first order Taylor
expansion applied in (3.8). By iteratively updating U and Û by solving (3.10), the auxiliary
control energy Û will be steadily reduced. Furthermore, if we arrive at Û = 0, this would
mean that the original input U has taken over full control of the system in steering the
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state on a trajectory connecting xstart and xtarget. The general structure of AER which is
summarized as below.

Algorithm 4 Auxiliary Energy Reduction (AER)
Require: A nominal trajectory X connecting xstart and xtarget, as well as a pair of nominal
inputs (U, Û), such that (U, Û) steers the extended system along X.
1: Apply the input (U, Û) to the system and calculate H, Ĥ.
2: Solve for (∆U∗,∆Û∗) of the optimization problem (3.10).
3: Update the control input via U ← U +∆U∗ and Û ← Û +∆Û∗.
4: Repeat step 1− 3 until ∥Û∥2 ≤ ϵ2,tol.

As the dimension of the input of the extended system dim(U) + dim(Û) = m + n is larger
than the dimension of the state, the extended system is an over-actuated system, and more
than one pair of (uk, ûk) can drive the system from xk to xk+1. To decrease the total iteration
times needed when employing the AER method, an initial Û with less energy is preferred. In
the next part, we show how this may be achieved by manipulating the way U is initialized.

Without loss of generality, we focus on minimizing the energy of the initial auxiliary control
term in the kth time step of the trajectory by considering (3.5) through choosing the initial
input uk according to min

uk

||xk+1 − F (xk, uk)||2. Given a nominal trajectory, a nonlinear

regression approach can be utilized to update uk:

uk ← uk + λB†
k(xk+1 − F (xk, uk)), (3.11)

where λ is the step size which is small enough to ensure a steady convergence, and B†
k is

the left pseudo inverse of Bk. This procedure can be generalized to the entire time steps for
properly initialization that is concluded in Algorithm 5.

Algorithm 5 Proper initialization of U, Û
Require: A nominal trajectory X from xstart to xtarget.
1: Initialize U = (u0, ..., uN−1) as a sequence of small random numbers.
2: Calculate Bk for every k, and update uk by (3.11) until converged.
3: Set the auxiliary control input via ûk = xk+1 − F (xk, uk), and Û = (û0, ..., ûN−1).

We note that the AER method without optimizing the initial U is fast enough for simpler
systems, such that the energy minimization step is not necessary in general, in which case
step 2 of Algorithm 5 can be skipped.
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3.4 Motion Planning with Homotopy Class Constraints

In this section, we illustrate how the AER method can be extended to preserve the homotopy
class of generated trajectories when tackling motion planning problems involving cluttered
environments and homotopy constraints. To this end, we integrate the AER method with
two new components: anchors that are to identify the obstacles and the associated anchor
loss that is added to the objective function for maintaining the topological properties of the
trajectory.

Anchors are obstacles with regular shapes, such as points, lines and planes. In addition,
obstacles with irregular shapes can be approximated by tightly arranging multiple anchors
around their boundaries. An anchor is defined as a tuple (C, a), where C ∈ Rp×n is the
linear operator for dimension selection and rotation, and a ∈ Rp. As a result, the distance
between a point x and the anchor can be measured as ∥Cx− a∥. Moreover, a set of anchors
is defined as a collection of tuples: A = {(C1, a1), ..., (CM , aM)}.

To keep a given trajectory X(U, Û) = (x0, x1, ..., xN) that is obtained by an extended system
(3.4) starting from xstart and driven by inputs (U, Û) away from an anchor setA, we introduce
the so-called anchor loss L(X,A) ∈ RM(N+1) by utilizing the framework of barrier functions.
Within our particular implementation, the anchor loss is defined to be logarithmic-like, whose
(i+ kM)th element is expressed as

L(X,A)i+kM =

0, if ∥Cixk − ai∥2 ≥ µ,

− log(∥Cixk − ai∥2), otherwise,
(3.12)

where (Ci, ai) denotes the ith anchor of A, µ ∈ (0, 1] and xk represents the state at the kth
time step of the trajectory. The logarithm distance of the form −log(d2) is preferred here
because its derivative will not vanish as −d2 or expand too fast as 1/d2 when d approaches
zero.

In order to prevent the trajectories from crossing through the anchor set during the trajectory
updates, we need to ensure that there is no anchor standing inside the smooth deformation
from X(U, Û) to X(U + ∆U, Û + ∆Û). To this end, we consider the following. If there
is an intersection between (Ci, ai) and the interpolated trajectory segment xk to xk+1, we
have ∥Cixk − ai∥2 ≤ ∥Ci(xk+1 − xk)∥2, which implies that there exists xk, xk+1 and an
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anchor (Ci, ai) ∈ A, such that L(X,A)i+kM ≥ −log(∥Ci(xk+1 − xk)∥2), where we assume
that the sampling rate of the discretization from (3.2) to (4.7) is sufficiently fast so that
∥Ci(xk+1 − xk)∥2 ≤ µ holds for every k. In addition, by denoting Xα = X(U + α∆U, Û +

α∆Û), α ∈ [0, 1], we can leverage X0 7→ X1 to present a smooth deformation from X(U, Û)

to X(U +∆U, Û +∆Û). We conclude that, as long as one can ensure

∥L(Xα,A)∥∞ < min
i,k
−log(∥Ci(xk+1 − xk)∥2) = Ξ, (3.13)

and Xα
N = X0

N for all α ∈ [0, 1], the trajectory driven by updated inputs X(U+∆U, Û+∆Û)

belongs to the same homotopy class of X(U, Û).

Proof: According to the definition of the anchor loss, ∥L(Xα,A)∥2 < Ξ2 implies the
interpolated Xα will not intersect any obstacle in the state space. Therefore X0 to X1

presents a smooth deformation from X(U, Û) to X(U + ∆U, Û + ∆Û) without intersecting
any obstacle, which indicates that they belong to the same homotopy class. For instance,
as shown in Figure 3.3, the necessary condition of the trajectory x̂ intersects the obstacle
located at a is there exists a sample point x̂k, such that ∥Cx̂k− a∥ < ∥Cx̂k−Cx̂k+1∥, where
C is the matrix that map the configure space of the agent to the work space.

Figure 3.3: Case when blue trajectory intersect the obstacle marked as a.

It is natural to consider an optimization problem minimizing the norm of the anchor loss so
as to fulfill the condition in (3.13). Before we take the further step towards the optimization
formulation, we first investigate the linear approximation of the anchor loss with respect to
(U, Û). Based on (3.8) and (3.12), the (i + kM)th row of the Taylor expansion’s first-order
term regarding L(X,A) is expressed as

∆L(X,A)i+kM =

0, if ∥Cixk − ai∥2 ≥ µ,

Mi+kM∆U + M̂i+kM∆Û, otherwise,
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where

Mi+kM =
−2(Cixk − ai)

TCi

∥Cixk − ai∥2
Hk,

M̂i+kM =
−2(Cixk − ai)

TCi

∥Cixk − ai∥2
Ĥk.

Having done so, the following quadratic program is considered for maintaining the auxiliary
energy and decreasing the anchor loss simultaneously,

minimize
∆U

∥L(X,A) +M∆U∥2 + γ∥∆U∥2

subject to xN +HN∆U = xtarget,

(3.14)

where γ ≥ 0 is the regularization parameter.

We note that it is in general cumbersome to choose γ1 and γ2 in (3.10) for each iteration
such that the condition (3.13) is satisfied. Instead, one could simply use the same γ1 and
γ2 in Algorithm 4, and choose an appropriate update step size α to update the controls: for
∆U∗ and ∆Û∗ obtained from (3.10), we employ a line search strategy to find the largest
update step size α∗ ∈ (0, 1], such that ∥L(Xα,A)∥∞ < ξ for all α ∈ [0, α∗], where ξ ≤ Ξ

is a predetermined threshold. This strategy has been found to be particularly effective in
dealing with highly nonlinear systems.

To summarize, by incorporating anchors, we endow AER method with the capability of
preserving the topology class for the generated trajectories through out iterations. The
overall procedure is summarized in Algorithm 6.

Algorithm 6 AER with anchors
Require: A nominal trajectory X connecting xstart and xtarget, as well as a pair of corre-
sponding inputs (U, Û).
1: Apply the input (U, Û) to the system and calculate H, Ĥ.
2: Solve for ∆U∗ and ∆Û∗ of the optimization problem (3.10), and find the largest step size
α∗ using line search.
3: Update U ← U + α∗∆U and Û ← Û + α∗∆Û .
4: Calculate L(X,A) and M , update U according to (3.14).
5: Repeat step 4 until ∥L(X,A)∥2 ≤ ϵA.
6: Repeat step 1− 5 until ∥Û∥2 ≤ ϵ2,tol.
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3.5 Illustrative Examples

We first demonstrate the effectiveness of the proposed AER method on two well-studied
benchmark platforms: Brockett integrator and a unicycle that operates on a plane. Then a
more complex and highly nonlinear model of the quadcopter in 3-D space is evaluated.

3.5.1 Brockett Integrator Model

As a classical nonholonomic control system, the Brockett integrator

d

dt

x1

x2

x3

 =

 u1

u2

x1u2 − x2u1


has been widely studied.

We consider the setup in which x0 = (0, 0, 0)⊤, xtarget = (0, 0, 1)⊤, T = 2, and the preset state
trajectory is set as a naive straight line between these two points. We set γ1 = γ2 = 0.05∥Û∥2,
and the sampling rate to be 20 Hz. By leveraging the geometric interpretation of the Brockett
integrator in terms of the connection to the sector area of the curve in the xy-plane (cf. [88]),
the value of x3 is known to be a function of the area of the (x1, x2) curve. Therefore, this
preset reference is clearly dynamically infeasible. 3.4 illustrates the deformation from the
reference trajectory to a dynamically feasible one obtained by AER, where the x0 and xtarget

are represented in red and blue dots, respectively.

3.5.2 Unicycle Model with Homotopy Class Constraints

The unicycle model is another popular nonholonomic testbed for illustrating path generation
methods, cf. [57]. Its corresponding system dynamics are described by the following system
of nonlinear differential equations

d

dt

x

y

ϕ

 =

v cosϕ

v sinϕ

ω

 ,
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Figure 3.4: From top to bottom, the three rows represent the results of the 0th, 40th and
55th iteration of the computation. In the left column, the state trajectory of the Brockett
integrator evolves from being dynamically infeasible to being feasible. The corresponding
control signals U and auxiliary input signals Û are shown in the middle and the right column.
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Figure 3.5: From top to bottom, the three rows show the computational results of the 0th,
11th and 42th iteration, respectively. In the left column, the generated paths tend to be more
dynamically feasible. Additionally, the corresponding control U and the virtually added
input Û are shown in the middle and the right column, respectively.

where ϕ represents the facing angle of the unicycle, v stands for the moving velocity, and ω

denotes the steering velocity.

We set x0 = (0, 0, 0)⊤, xtarget = (3, 0, 0)⊤, T = 3. We set γ1 = γ2 = 0.0001∥Û∥2, γ =

0.005, and the sampling rate of the discretization to be 20 Hz. In order to illustrate AER
method’s capability of keeping the consistency of homotopy class for generated trajectories,
two anchors are placed at (1.25, 0.25) and (1.75,−0.25), respectively. 3.5 shows snapshots of
the unicycle’s movements within three representative iterations, as well as the corresponding
input signals.
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3.5.3 Quadcopter Model with Homotopy Class Constraints

Here we consider a quadcopter model with full-scale nonlinear dynamics to highlight the
effectiveness of the proposed AER method to generate a feasible tracking trajectory, which
at the same time preserves a desired homotopy class. The adopted dynamic model of the
quadcopter system is described by a system of nonlinear ODEs with 12 states and 4 control
inputs representing the rotating speed of four motors in rotation per minute (rpm) and takes
the form

d

dt
x = fd(x) +

4∑
i=1

fi(x)u
2
i ,

where fd and fi are nonlinear differentiable functions. Readers are referred to [74] for the
detailed dynamics structure.

Given the quadcopter model above, we leverage the AER method to plan feasible trajectories
with homotopy constraints for three flight tasks in different environments. The simulation
setup and results are shown in 3.6. In these tasks, we set γ1 = γ2 = 0.0001∥Û∥2, γ = 0.005,
the sampling rate to be 20 Hz, and total time horizon of each task to be 5, 6 and 8 seconds,
respectively. Moreover, we heuristically initialize U such that the quadcopter hovers at
the starting point, while the initial Û then would act as the invisible force that drives the
quadcopter along the preset trajectory.
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(a) Flight task 1 (b) Flight task 2

(c) Flight task 3

Figure 3.6: For each flight task, the cluttered environment contains different types of obsta-
cles that are identified by a set of anchors shown in red points/lines. The states with regard
to the position of the preset nominal reference trajectory is presented as green polylines,
while the rest, i.e. translational velocities, altitudes, angular velocities, are set to zero. AER
method has transformed the preset reference to a dynamically-feasible one shown in the blue
dashed curve for the quadcopter to track. Meanwhile, the homotopy class constraints are
observed to be fulfilled. The sequential snapshots demonstrate the tracking procedure of the
quadcopter starting from the darker blue color to lighter yellow color gradually.

3.6 Conclusion

In this section, we introduced a new motion planning technique called the auxiliary en-
ergy reduction (AER) method. The AER method obtains a dynamically feasible trajectory
through minimizing the energy of the auxiliary control term which is artificially added to
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the original dynamics. By incorporating the so-called anchor and anchor loss, the method
further preserves the homotopy class for generated trajectories. We have demonstrated the
practicability of the method in three different simulation examples. However, the efficiency
of the proposed method is limited. We observed that when the dynamic of the agent or
the required homotopy class is complicated, the updating of the trajectory may oscillate and
eventually converge after tens of seconds. We believe it happens because of the contradiction
of the AER optimization and the anchor loss optimization. To mitigate this challenge, we
proposed a more efficient method that eliminate this contradiction, which will be introduced
in the next chapter.
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Chapter 4

Homotopy Method for Optimal Motion
Planning with Homotopy Class
Constraints

4.1 Introduction

In the previous chapter, we introduce the AER method to solve the motion planning problem
with homotopy class constraints. However, the proposed algorithm includes two alternating
parts, the AER part and the anchor loss part. The AER part pulls the trajectory to a more
feasible shape, while the anchor loss part pushes the trajectory away from obstacles. When
these alternating updates point in opposite directions, the trajectory will oscillate and the
convergence will be slow. To mitigate this challenge, we refrain from updating the trajectory
from infeasible to feasible, instead, we keep the trajectory always feasible while updating the
environment from trivial to the original one. By implementing this method, the opposite
update directions are eliminated and the efficiency is improved dramatically.

In this section, we propose a novel direction that addresses the optimal motion planning task
with 2-dimensional homotopy class constraints for general nonlinear nonholonomic dynami-
cal systems with both static and moving obstacles. We first initialize an optimal trajectory
of the dynamical system without considering obstacles, then we design the auxiliary trajec-
tories of obstacles such that the initial system trajectory is collision-free and belongs to the
desired homotopy class regarding the auxiliary obstacle trajectories. Next, we iteratively
deform auxiliary obstacle trajectories to the original ones and determine the optimal sys-
tem trajectory accordingly. Having done so, the resulting trajectory is feasible and satisfies
homotopy class constraints regarding the original obstacles.
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This section is organized as follows. Section 6.2 introduces the problem setup and mathemat-
ical preliminaries. We then provide the method of auxiliary obstacle trajectory synthesizing
in Section 4.3. The overall algorithm is given in Section 4.4. We present the numerical
results in Section 6.4 and conclude the section in Section 6.5.

4.2 Mathematical Preliminaries and Problem Statement

4.2.1 Differentiable Obstacle Representations

Consider M number of moving obstacles which can be of any shape or size, in a 2-dimensional
cluttered environment. An often-faced challenge is non-differentiable shapes such as a square
and triangle that can not be directly handled by nonlinear programming. To address this
issue, we approximate non-differentiable obstacles using super-ellipses [8], which in turn
yields the collision avoidance constraints(

x(t)− zix(t)

rix

)ki

+

(
y(t)− ziy(t)

riy

)ki

−Ri
ki ≥ 0, (4.1)

where z(t) = [zix(t), ziy(t)] denotes the center of the ith obstacle at time t. rix, riy ≥ 1

represent the object’s spatial extensions, and [x(t), y(t)] is the trajectory of the dynamical
system. Ri > 0 is a size constant and the exponent ki is a positive even number. If ki = 2,
the obstacle is a circle or an ellipse, otherwise a rounded square, as shown in Figure 4.1.

Figure 4.1: One obstacle approximation with (zx, zy) = (0, 0), rx = ry = R = 1. As k
increases, the obstacle turns more toward a rounded square.
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4.2.2 Optimal Motion Planning

The basic task of motion planning is to find a dynamically feasible trajectory that connects
the given starting and target points while satisfying some obstacle constraints imposed by
the environment. The task of optimal motion planning further requires the synthesized
trajectory to be optimal, or locally optimal, with respect to a certain metric, such as energy
consumption. Generally, the optimal trajectory can be obtained by solving the following
nonlinear program:

minimize
(x(·), u(·))

Φ(x(·), u(·))

subject to x(0) = xstart, x(T ) = xtarget,

ẋ(t) = f(x(t), u(t)),

G(x(t)) ≥ 0, ∀t ∈ [0, T ],

(4.2)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and control input respectively. Φ is the loss
function, f : Rn × Rm → Rn describes the system dynamics, and G(x(t)) ≥ 0 is the control
barrier function which defines a collision-free space. In this section, we focus on energy-
optimal motion planning such that Φ(x(·), u(·)) =

∫ T

0
∥u(t)∥2dt while the total time T is

pre-given, but it is straightforward to modify the nonlinear program to further accommodate
the time-optimal requirement.

4.2.3 Homotopy Class Constraints for Movable Obstacles

Collision avoidance of movable obstacles is critical in some topology-restricted tasks, e.g., a
vehicle properly avoids other cars while merging off a highway. In this example, an appropri-
ate route fulfilling the homotopy class constraints for movable obstacles, i.e., other in-moving
cars, is desired. The definition of homotopy class is given in Definition 1 and it has been
well explained in Section 6.2.

Given a nominal 2-dimensional trajectory, one homotopy class is specified and such a con-
straint should be preserved throughout the iterative optimization process. However, obstacles
being movable imposes more challenges to the homotopy class constraint guarantee as both
obstacles and the trajectory of the given dynamical system are changing over time. We hence
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first define the homotopy class constraints under movable obstacle scenarios here and further
prove that the proposed approach can preserve the desired homotopy class in Section 4.3.

By virtue of the Residue Theorem [1], if the analytic function F : C → C does not have
poles, and c(t) is a continuous and closed curve on the complex plane that never intersects
a point z0 ∈ C, then the following line integral holds,∮

c

F (z)

z − z0
dz = 2πjF (z0)n(c, z0), (4.3)

where j is the imaginary unit, n(c, z0) is the winding number representing the total number of
times that the curve c encircles counterclockwise around z0. Therefore we have the followings.

Lemma 4.2.1 Two continuous trajectories c1 and c2 in the complex plane with identical
start and target points belong to the same homotopy class regarding the obstacle at z0, if and
only if ∮

c1⊓c−2

F (z)

z − z0
dz = 0,

where c1 ⊓ c−2 is a closed trajectory concatenating c1 and inverse c2, which starts from the
start point of c1 to the end point of c1 along the trajectory c1 and then travel from it to the
start point along the trajectory c2.

The proof can be seen in Lemma 1 of [9]. Note that for any trajectory c(t), we have∮
c

F (z)
z−z0

dz =
∮
c′

F (z+z0)
z

dz, where c′(t) = c(t) − z0. In addition, we are able to heuristically
generalize the criterion to a moving obstacle. More specifically, trajectories c1(t) and c2(t)

belong to the same homotopy class regarding a obstacle trajectory z0(t), if and only if∮
c′1⊓c′2

−

1

z
dz = 0,

where c′1(t) = c1(t)− z0(t), c′2(t) = c2(t)− z0(t) and F (z) is simply chosen as a constant map
to 1. Note that if the obstacle trajectory is time-invariant, i.e. z0(t) ≡ z0(0), this criterion
also degenerates to the form of Lemma 4.2.1. Moreover, in a cluttered environment with
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multiple obstacles, this criterion becomes
∮
c′1,1⊓c

′−
2,1

1
z
dz

...∮
c′1,M⊓c′−2,M

1
z
dz

 = 0M×1, (4.4)

where c′1,i(t) = c1(t) − zi(t) and c′2,i(t) = c2(t) − zi(t), and zi(t) is the trajectory of the i-th
obstacle.

4.3 Auxiliary Obstacle Trajectory Synthesis

In this section, we propose a method of auxiliary obstacle trajectory synthesizing that guar-
antees the satisfaction of homotopy class constraints of the initial system trajectory towards
these modified obstacles. In addition, we provide the condition under which this homotopy
property holds while trajectories are deforming. All trajectories in this section are discussed
on the complex plane for concise proof, but the results can be directly adopted in the R2

space. Let zi(t) = zix(t)+ j ·ziy(t) be the known trajectory of the center of the i-th movable
obstacle and r(t) be another given trajectory to specify the desired homotopy class. r(t) is
designed to never intersect the obstacles, i.e. ∥r(t)− zi(t)∥ > 0 holds for all i = 1, 2, . . . ,M

and t ∈ [0, T ]. A system trajectory p(t) is acquired without concerning homotopy class con-
straints and obstacles but has the same start and target points as the ones of r(t). Based
on the notations, we define the auxiliary obstacle trajectory parameterized by s as

ẑi(t; s) = zi(t) + s
zi(t)− r(t)

∥zi(t)− r(t)∥
, (4.5)

where s ∈ [0,∞) is called the push distance. As ∥r(t)− zi(t)∥2 ≥ Ri > 0, ∀t ∈ [0, T ] because
r(t) is collision-free, we can choose a large-enough s0 so that the conditions hold

min
t
∥ẑi(t; s0)∥ > max

t
∥r(t)∥

min
t
∥ẑi(t; s0)∥ > max

t
∥p(t)∥.

(4.6)

A graphical example is demonstrated in Figure 4.2. We now show, according to (4.6), the
sufficient condition that p(t) and r(t) belong to the same homotopy class with respect to ẑi.
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Lemma 4.3.1 Given two continuous and closed trajectories c0(t) and c1(t) in the complex
plane which never intersect the origin for t ∈ [0, T ], if there exists a continuous function
H(v, t) such that H(0, t) = c0(t), H(1, t) = c1(t), ∥H(v, t)∥ ≠ 0,∀v ∈ [0, 1],∀t ∈ [0, T ], and
H(v, t) is the continuous and closed trajectory with any fixed v ∈ [0, 1], then

∮
c0

1
z
dz =

∮
c1

1
z
dz.

Proof: Because H(v, t) is continuous and never intersects the origin, θ(v) :=
∮
H(v,·)

1
z
dz, v ∈

[0, 1] is also continuous. According to the Residue Theorem [1], θ(v) = 2πj · n(H(v, ·), 0)
where n(H(v, ·), 0) ∈ Z is the winding number. Therefore the function θ(v) has to be both
continuous and discrete, which implies θ(v) is constant, so that θ(0) = θ(1).

Corollary 4.3.2 Given three trajectories c0(t), c1(t) and ẑ(t) on the complex plane, where
c0(0) = c1(0), c0(T ) = c1(T ), if mint ∥ẑ(t)∥ > maxt ∥c0(t)∥ and mint ∥ẑ(t)∥ > maxt ∥c1(t)∥,
then

∮
c
1
z
dz = 0, where c = (c0 − ẑ) ⊓ (c1 − ẑ)−.

Proof: We define the continuous function

H1(v, t) =

{
v · c0(t)− ẑ(t), 0 ≤ t ≤ T

v · c1(2T − t)− ẑ(2T − t), T < t ≤ 2T

where v ∈ [0, 1], t ∈ [0, 2T ]. Therefore, H1(v, t) is the closed trajectory with any fixed
v ∈ [0, 1]. For v = 0, H1(0, t) is a trivial trajectory that moves forth and back along −ẑ such
that

∮
H1(0,·)

1
z
dz = 0. ∥H1(v, t)∥ ≥ ∥ẑ(t)∥− s∥c0(t)∥ ≥ ∥ẑ(t)∥−∥c0(t)∥ > 0 for t ∈ [0, T ], and

similarly ∥H1(v, t)∥ > 0 for t ∈ [T, 2T ]. Therefore H1(v, t) never intersects the original point.
Hence according to Lemma 4.3.1,

∮
H(1,·)

1
z
dz =

∮
H(0,·)

1
z
dz = 0, where H(1, ·) is actually the

closed curve concatenating c0 − ẑ and inverse c1 − ẑ.
By virtue of Lemma 4.2.1 and Corollary 6.3.2, with a large s0 that pushes the obstacle far
enough so as to satisfy the conditions in (4.6), p(t) and r(t) are within the same homotopy
class concerning the auxiliary obstacle trajectory ẑi(t; s0). The same idea can be directly
generalized to the environment with multiple obstacles {z1(t), ..., zM(t)}, where a suitable
s0 is chosen for all obstacles. More specifically, the initialized system trajectory p(t) and
the pre-defined r(t) belong to the same homotopy class with respect to a set of auxiliary
obstacles trajectories {ẑ1(t; s0), ..., ẑM(t; s0)} as long as the conditions in (4.6) holds for every
obstacle.
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Figure 4.2: Orange curve represents the auxiliary obstacle trajectory ẑ(t). Trajectories c0(t)
and c1(t) in blue and green, respectively, have the same start and target point. As the
conditions mint ∥ẑ(t)∥ > maxt ∥c0(t)∥ and mint ∥ẑ(t)∥ > maxt ∥c1(t)∥ hold, they belong to
the same homotopy class regarding the orange obstacle.

In the following, we aim to show how to obtain the trajectory that belongs to the same
homotopy class of the given trajectory r(t) towards original obstacle trajectories by deforming
p(t) and ẑi(t; s) continuously.

Corollary 4.3.3 Given three trajectories c0(t; 0), c1(t; 0) and ẑ(t; 0) on the complex plane
that continuously deform to c0(t; 1), c1(t; 1) and ẑ(t; 1) for t ∈ [0, T ], respectively. If c0(t; 0)
and c1(t; 0) are homotopy equivalent towards ẑ(t; 0), c0(0; v) = c1(0; v), c0(T ; v) = c1(T ; v),∀v ∈
[0, 1], and c0(t; v) ̸= ẑ(t; v), c1(t; v) ̸= ẑ(t; v),∀v ∈ [0, 1],∀t ∈ [0, T ] then c0(t; 1) and c1(t; 1)

are homotopy equivalent towards ẑ(t; 1).

Proof: We define the continuous function

H2(v, t) =

{
c0(t; v)− ẑ(t; v), 0 ≤ t ≤ T

c1(2T − t; v)− ẑ(2T − t; v), T < t ≤ 2T

where v ∈ [0, 1], t ∈ [0, 2T ], then H2(v, t) is the closed trajectory with any fixed v ∈ [0, 1].
H2(v, t) never reaches the origin because c0(t; v) ̸= ẑ(t; v) and c1(t; v) ̸= ẑ(t; v) always hold.
Therefore according to the Lemma 4.3.1, c0(t; 1) and c1(t; 1) are homotopy equivalent towards
ẑ(t; 1).
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According to Corollary 4.3.3, during the continuous deformation of the auxiliary obstacle
trajectories ẑi(t; s) and the system trajectory p(t), p(t) remains within the same homotopy
class of r(t) if ẑi(t; s) never intersects p(t) and r(t). Based on the definition (4.5), the
deformation of ẑi(t; s) can be controlled by s ∈ [0,∞). Therefore, by gradually decreasing s

from s0 to zero, i.e. ẑi(t; s0) is deformed to ẑi(t; 0) = zi(t), and deforming p(t) accordingly
with no intersection, the resulting p(t) also satisfies the homotopy class constraints regarding
the original obstacles zi(t). It is noted that ẑi(t; s) never intersects the pre-defined trajectory
r(t) in this deformation, which can be seen below:

∥ẑi(t; s)− r(t)∥ =
(
1 +

s

∥zi(t)− r(t)∥

)
∥zi(t)− r(t)∥ > 0.

4.4 Implemention with Optimal Control Criterion

In this section, we propose an algorithm to solve the problem of preserving the homotopy
property from the last section by reformulating it into a sequence of nonlinear programming
problems (NLP). The resulting NLP can be efficiently addressed by mature and off-the-shelf
solvers and toolboxes such as CasADi [3]. In the following, we first describe a process of
achieving optimal motion planning tasks with known obstacles using NLP. Then we show
how to prevent the system trajectories from intersecting the obstacles by transferring this
task into sequential optimal motion planning problems.

4.4.1 Nonlinear Programming

To use the multiple shooting method, a continuous-time nonlinear dynamical system is dis-
cretized to the form

x(k + 1) = F (x(k), u(k)),

p(k) = g(x(k)),
(4.7)

where x(k) := x(k∆T ), u(k) := u(k∆T ). The obstacle trajectories are also discretized as
ẑi(k; s) := ẑi(k∆T ; s). Although the full state trajectory x(k) can be high-dimensional, ho-
motopy class constraints are only applied to p(k), which is a 2-dimensional system trajectory.

63



Therefore, the optimal motion planning problem can then be framed as the NLP

minimize
(U,X)

∥U∥2

subject to x(0) = xstart, x(N) = xtarget,

x(k + 1) = F (x(k), u(k)),

G(g(x(k)), ẑi(k; s)) ≥ 0,

∀k ∈ {0, ..., N}, i ∈ {1, ...,M},

(4.8)

where X = [x(0), ..., x(N)], U = [u(0), ..., u(N − 1)], and G(g(x(k)), ẑi(k; s)) is the control
barrier function described in constraint (6.3). In our following experiments, the interior
point optimizer is utilized to address such NLP (4.8). And the convergence analysis of the
solver can be seen in [29].

4.4.2 Homotopy Method

As mentioned in Section 4.3, resolving the motion planning problems with non-differentiable
homotopy class constraints is equivalent to resolving the sequential differentiable motion
planning problems. The auxiliary obstacle trajectory initialization can be simply achieved
by choosing a large enough s0, and the challenging task is to ensure that the system trajectory
and obstacles remain untouched during the continuous deformation of the auxiliary obstacle
trajectory by decreasing the push distance s, as specified in Corollary 4.3.3.

To address the challenge, we adopt the idea of the homotopy method [36] which first solves
the simpler problems that are deformed from the original and complicated problem, and then
gradually leverages the intermediate results to solve the ones all the way back to the original
problem. In this process, we take advantage of the fact that if the local optimal trajectory
is already synthesized, then obstacles are moved by a small distance and the solver uses the
last result as initial values, the solver tends to provide the nearest local optimal solution.
To illustrate the adapted homotopy method to our problem, we utilize a simple motion
planning problem shown in Figure 4.3. In this example, we attempt to solve an energy-
optimal motion planning problem concerning a simple system ẋ = u and a circle obstacle
that is centered at (4.5, 0) with the radius of 0.5, such that the system starts from (0,−1.5)
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to (0, 1.5) and bypasses the obstacle on its right side. Instead of directly solving this hard-
to-address problem, we first solve an easier problem that places the obstacle center at (0, 0).
Based on this intermediate result, we then solve the problem that moves the obstacle a bit
right to (0.1, 0). By iterating this procedure, the problem will be gradually deformed to the
original one that can be easily solved based on results from the previous iteration.

−1 0 1 2 3 4 5

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

Figure 4.3: Orange circles represent the obstacles and blue curves represent the synthesized
shortest path in each iteration. In each iteration, the computed optimal trajectory is seen
to stay on the right side of the obstacle, which fulfills the control barrier constraints.

Algorithm 7 Homotopy Method for Homotopy Class Constraints
Require: Obstacle trajectories {z1(k), ..., zM(k)} and pre-established trajectory r(k) which
defines the required homotopy class.
1: Initialize inputs U0 and state trajectory X0 by solving (4.8) without considering obstacles.
2: Synthesis trajectories for obstacles {ẑ1(k; s), ..., ẑM(k; s)} according to (4.5) with s large
enough.
3: Set iteration step m = 0.
4: Set s = max(s−∆s, 0), m = m+ 1
5: Solve optimal motion planning problem (4.8) with obstacles and initial (U,X) =
(Um−1, Xm−1), and the solution of it is noted as (Um, Xm).
6: Repeat step 4− 5 until s = 0.

The proposed approach is summarized in Algorithm 7. To choose the initial value of s, we
first set it as zero and gradually increase it until no collision happens and the initial system
trajectory p(t) and the given trajectory r(t) are in the same homotopy class towards auxiliary
obstacle trajectories by checking whether the criterion (4.4) is satisfied. Corollary 6.3.2
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guarantees the existence of such s, while it is worth noting that a small value of s will
decrease the efficiency of the method. To find a suitable value of ∆s, we may start from a
large value of it and update obstacle trajectories and the system trajectory. If the homotopy
class constraints are not satisfied with the updated trajectory, we can return to the last
step and try a smaller ∆s. But setting ∆s = miniRi/5 is found to be good in practice.
To prevent obstacles from passing through the discrete trajectory and moving to another
homotopy class, sample points of the system trajectory should be dense enough by choosing
suitable ∆T .

4.5 Numerical Results

We present numerical results on two classic dynamical systems: the unicycle and the quad-
copter. The results demonstrate that the proposed approach can iteratively synthesize op-
timal trajectories with homotopy class constraints for nonholonomic unicycle systems and
highly nonlinear quadcopter systems.

4.5.1 Unicycle

We first adopt the unicycle model

d

dt

x

y

ϕ

 =

v cosϕ

v sinϕ

ω

 ,

as a classical nonholonomic system to illustrate optimal trajectory generation under homo-
topy class constraints. Here x and y indicate the position of the unicycle, and ϕ denotes the
facing angle of the unicycle. Moreover, v and ω are control inputs that stand for the moving
and steering velocity, respectively.

In the following demonstrations, the homotopy class constraints are applied to the position
states. The facing angle ϕ is set to zero at both the start and target points. Figure 4.4 shows
the results of the advocated approach that addresses the energy-optimal motion planning
problems for a unicycle system, where the unicycle is requested to encircle two stationary
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obstacles before reaching the target. The total time is 10 seconds and the discrete time
interval is set as ∆T = 0.05 second. In addition, the push distance s is decreased from 2.5 to
0 with a step of ∆s = 0.1. Another simulation with one obstacle and a different homotopy
class is carried out on the same system and setups except that s is initialized as 1.0, whose
results are presented in Figure 4.5.

We additionally compare the computational efficiency of our proposed method with the MIP-
based method, which is shown in Figure 4.6. We attempt to leverage both methods on the
same motion planning problems shown in Figure 4.5 but with varying sample points number,
N = T/∆T , by changing ∆T . Because of the larger gap between each adjacent sample
points of the trajectory, smaller N tends to result in a trajectory that violates the obstacle
constraints. Due to the exponentially-like growing computation complexity of the MIP-
based method, our method enjoys the fulfillment of the obstacle constraints with reasonable
computation time.
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Figure 4.4: The optimal trajectory is synthesized for a unicycle system with two stationary
obstacles centered at (2,−1) and (2, 1) with R = 0.5 and k = 4. The initial and target points
of the system are set to (0, 0) and (4, 0), respectively. The left figure shows the stationary
obstacles (orange) and the given trajectory (green) in the x − y plane. The right figure
illustrates how the initial system trajectory (yellow) gradually deforms into the optimal
trajectory (blue) that obeys the homotopy class constraints.

4.5.2 Quadcopter

Here we consider a holonomic but highly-nonlinear quadcopter model that is described by
the nonlinear dynamics with 12 states and 4 control inputs denoting the rotating speed of
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Figure 4.5: The optimal trajectory is synthesized for a unicycle system with one stationary
obstacle centered at (1.5, 0) with R = 0.5 and k = 4. The start and target point of the
system are (0, 0) and (3, 0), respectively. The upper row shows the given trajectory (green),
the system trajectory (blue) and an obstacle (orange) in the x−y plane, while the lower row
presents the corresponding trajectory in the x − y − t space. The middle column indicates
the initial trajectories with s = 1.0, and the right column shows the final results.

four motors in rotation per minute and takes the form

d

dt
x = fd(x) +

4∑
i=1

fi(x)(ui + ueq)
2,

where u = [u1, u2, u3, u4]
T are control inputs, fd and fi are differentiable functions. ueq

is the hovering motor speed, such that (x, u) = (012×1,04×1) is the equilibrium point of
the dynamical system. Readers are referred to [74] for the detailed dynamics structure.
According to the definition of the homotopy class in Section 4.2.3, the constraints considered
here are only applied to the x− y plane, which means the altitude of the quadcopter is not
concerned. As for the initial and target points, all states besides x1 and x2 are set to zero.

Figure 4.7 presents the numerical results for a quadcopter flight in a cluttered environment
with four stationary obstacles. The total time needed is set as T = 10s and the time interval
as ∆T = 0.05s. In addition, the push distance is gradually decreased from s = 2.5 to
s = 0 with ∆s = 0.05. In Figure 4.8, the algorithm is applied to the same system with the
same experimental setups, whereas two moving obstacles are considered instead. The results
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Figure 4.6: Comparison of the computation time between two methods. The error distribu-
tion at each number of sample points is estimated based on 5 simulations.

suggest that the proposed method is further capable of addressing the homotopy-constrained
optimal motion planning problems with moving obstacles.
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Figure 4.7: The optimal trajectory is synthesized for a quadcopter system with four station-
ary obstacles centered at (±1,±1) with R = 0.5 and k = 4. The start and target point of
the system trajectory are set at (0, 0). The layout and explanation of the figure are identical
to Figure 4.5, except that the push distance is initialized as s = 2.5.
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Figure 4.8: The optimal trajectory is synthesized for a quadcopter system with two moving
obstacles, which are originally centered at (1,−1) and (3, 1) with R = 0.5 and k = 4 with
a constant moving speed at 0.1 m/s, and the moving direction is indicated by the orange
arrow. The start and target point of the system are set at (0, 0) and (4, 0), respectively.
The layout and explanation of the figure are identical to Figure 4.5, except that the push
distance is initialized as s = 2.5.

4.6 Conclusion

In this section, we introduced a novel optimal motion planning technique with 2-dimensional
homotopy class constraints. The proposed method first forces the initialized dynamical sys-
tem trajectory to belong to the desired homotopy class regarding the auxiliary obstacle
trajectories rather than the original obstacles. By gradually deforming the auxiliary ones
to their original counterparts, the dynamical system trajectory, which fulfills the homotopy
property, and the corresponding inputs are eventually synthesized. We have demonstrated
the practicability of the proposed method on nonholonomic systems with both static obsta-
cles and movable obstacles. However, the current method is limited to the planer homotopy
class constraints. To find the possible method that extends it to 3D obstacles, we explore
the embedding method, which will be shown in the next section.
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Chapter 5

Value Iteration Algorithm for Solving
Shortest Path Problems with Homology
Class Constraints

5.1 Introduction

In the last chapter, we proposed HMHCC which is limited to the planer homotopy. To
find possible methods that can handle 3D obstacles in 2D space, we explore the embedding
method and utilize it for shortest path problems with homology class constraint tasks. class
constraints Generally speaking, two trajectories belong to the same homology class if they
are homotopy equivalent regarding every single obstacle. Again, in drone racing, trajectories
that connect the same initial and target locations and pass through every gate in arbitrary
order constitute a homology class. Although homology class constraints can be considered
as the loose representation of homotopy class constraints, the corresponding optimization
is much harder to address, as the feasible solution set is no longer compact. Therefore,
the global search-based algorithm is preferable. Pioneering methods based on H-signature
are proposed to generate optimal trajectories under homology class constraints for both
2D [45] and 3D [10] environments. Despite the capability of dealing with obstacles with
general shapes, H-signature-based methods have to be defined differently depending on the
environmental dimensionality, which hinders efficiency. In this section, we proposed a novel
approach that solves the constrained shortest path problem for both 2D and 3D environments
in a unified manner. For 3D cases, we first compress the super-toroid-shaped obstacles into
a 2D counterpart. We then classify the homology class of the 2D trajectory by adopting the
idea of phase change. Having done so, we are able to compute the shortest path fulfilling
the topological requirement using a visibility graph and VIA. The analysis of our method
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suggests the potential generalization to higher dimensional environments with obstacles that
are properly described.

This section is organized as follows. Section 6.2 defines the homotopy and homology class,
as well as obstacles in different dimensions. Then we introduce the proposed method in
both 2D and 3D environments and the Value Iteration Algorithm in Section 5.3. Numerical
Results are shown in Section 6.4 and we conclude the section in Section 6.5.

5.2 Mathematical Preliminaries and Problem Statement

5.2.1 Homotopy and Homology Classes for Static Obstacles

In this section, we begin with the definition of homotopy class for trajectories and depict
the connection between homotopy and homology. Two continuous trajectories belong to the
same homotopy class if and only if they have identical start and target points and they
can be smoothly deformed into one another without intersecting any obstacles, as shown in
Figure 5.1. Although the definition of homotopy class is given in Definition 1, a more formal
definition that will be used in the later part of this section is shown below:

Definition 2 Two continuous trajectories r1(t) : [0, 1] → Rn and r2(t) : [0, 1] → Rn belong
to the same homotopy class if and only if r1(0) = r2(0), r1(1) = r2(1), and there exists a
continuous function H(s, t) : [0, 1] × [0, 1] → Rn which satisfies H(0, t) = r1(t), H(1, t) =

r2(t) and H(s, t) never intersects any obstacles for all s ∈ [0, 1] and t ∈ [0, 1].

Considering a 2-dimensional space with a single obstacle, the homotopy class of a trajectory
can be quantified from the perspective of phase change. Given a trajectory r(t) : [0, 1]→ R2

and a fixed point oi representing the center point of the obstacle, the responding phase
change regarding the obstacle is defined as

p(r) = θ(r(1)− oi)− θ(r(0)− oi), (5.1)

where θ : R2 → R is the unwrapped angle, which is the unwrapped version of arctan : R2 →
[0, 2π) that ensure θ(p(·)) is continuous if p(·) is continuous. It implies that two trajectories
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with identical start and target points belong to the same homology class if they own the
same phase change.

Figure 5.1: The three curves are the trajectories connecting identical starting and target
points, and grey rectangles are obstacles. According to the definition of the homotopy class,
the two blue trajectories are homotopy equivalent, but the green one belongs to a different
homotopy class.

In a cluttered environment, the phase change with respect to n obstacles is given by p(r) =

[p1(r), . . . , pn(r)]
T , where pi(r) is the phase change regarding the ith obstacle. Generally,

for an arbitrary dimensional space with multiple obstacles, trajectories belong to the same
homology class if they have the same p(r), i.e., they belong to the same homotopy class
regarding every individual obstacle. However, having the same phase change is only a nec-
essary condition for homolopy as shown in Figure 5.2, and the formal definition is given
below.

Definition 3 Two continuous trajectories r1(t) : [0, 1] → Rn and r2(t) : [0, 1] → Rn belong
to the same homology class if and only if r1(0) = r2(0), r1(1) = r2(1), and r1(t) together with
r2(t) with the opposite orientation forms the complete boundary of a 2-dimensional manifold
embedded in Rn not containing any obstacles.

Although homology is a loose representation of homotopy in many applications, finding the
optimal trajectory belonging to a specified homology class is even more challenging than
that of the homotopy counterpart. It can be seen from the fact that a homotopy class
can be treated as a compact set, as every element can continuously deform to one another.
Therefore, starting from a random feasible trajectory, one can reach the local or even global
optimum of such a homotopy class by leveraging the gradient information. Nevertheless, a
homology class is usually a disconnected set that contains various homotopy classes, which
prevents the implementation of the gradient method, and thus a global searching mechanism
is needed. The objective of this section is to design the shortest trajectory that is obstacle-
free and belongs to a particular homology class in both 2D and 3D space.
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Figure 5.2: The two curves are the trajectories connecting identical starting and target
points. They belong to the same homology class but different homotopy classes.

5.2.2 Static Obstacle Representations

For practical purposes, we consider M numbers of static obstacles in i) a 2-dimensional (2D)
and ii) a 3-dimensional (3D) cluttered environment. In case i), though the proposed method
can handle obstacles with arbitrary shapes, we approximate them using super-ellipse [8] that
is aligned with the case of the 3D environment. In case ii), we consider a type of obstacle
with a hole connecting the two opposite facets, which emulates the obstacle that a moving
object needs to pass through.

In 2D environments, the collision avoidance constraints regarding the ith obstacle can be
written as [

x̂

ŷ

]
:= Mi diag(eix, eiy)

[
x

y

]
+ bi, (5.2)

x̂ki + ŷki −Ri
ki ≥ 0, (5.3)

where [x, y] denotes the allowed spatial trajectory of the dynamical system, Mi is the rotation
matrix, eix, eiy ≥ 1 represent the spatial expansion factor along each axis, bi is the offset of
the center of the obstacle, Ri > 0 is a size constant and the exponent ki is a positive even
number, which regulates the shape of the obstacle. Particularly, when ki = 2, the obstacle
is a circle or ellipse, otherwise, it would be a rounded square.

In 3D environments, we consider a group of obstacles with super-toroid shapes, where the
ith obstacle is described by
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x̂ŷ
ẑ

 := Mi diag(eix, eiy, eiz)

xy
z

+ bi, (5.4)

ẑmi + (Ri − (x̂ni + ŷni)
1
ni )mi − ri

mi ≥ 0, (5.5)

where Ri is the distance from the center of the tube to the center of the obstacle, ri is the
radius of the tube, and the rest of the parameters are defined in a similar way to that in (6.4).
It is noted that mi and ni have to be positive even numbers. Some examples of the obstacle
are shown in Figure 6.1

Figure 5.3: 3-dimensional obstacles with (n,m) = (2, 2), (2, 8), (8, 8) from left to right, re-
spectively.

5.3 Methods

In this section, we describe our strategy to synthesize the shortest obstacle-free path within
a specific homology class. Our method relies on the phase change representation of the
homology class that is well-defined in 2D space, which will be illustrated in Section 5.3.1. In
Section 5.3.2, we prove that the interested type of 3D obstacles can be simply compressed
into a 2D space. In both cases, we transform feasible paths into a graph and find the shortest
one using the value iteration shown in Section 5.3.3.

5.3.1 2D Environment

To better present the corresponding homotopy class of a path, we associate a phase change
with each point of the path. More specifically, given a path and M obstacles, we define a
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node of the path as a vector (x, y, p1, . . . , pM), where (x, y) represents the position of the
node and pi ∈ R denotes the corresponding phase change regarding the ith obstacle. Because
of the conservation of the phase change, given a specified path, the phase change regarding
an obstacle only relies on the number of the encirclement around it that must be an integer.
Therefore, the difference in the phase change of the two paths with the same ending points
has to be an integral multiple of 2π. As a result, we are able to define a straight line, which
connects the given start point xstart and (x, y), as a base path with a base phase change
defined as (p̄1, . . . , p̄M). It is noted that such a base path does not have to be feasible in
terms of obstacles. According to the base path, the node located at (x, y) of any feasible path,
which starts from xstart, can can be expressed as (x, y, p̄1 + s12π, . . . , p̄M + sM2π), si ∈ Z.
For simplicity, we use (x, y, s1, . . . , sM) to define the state in the rest of the section and
(s1, . . . , sM) is the homology class label, where an example is shown in Figure 5.4. Likewise,
if the line connects (xa, ya, sa1, . . . , s

a
M) and (xb, yb, sb1, . . . , s

b
M), we define the label-wise phase

change as (∆s1, . . . ,∆sM) = (sa1 − sb1, . . . , s
a
M − sbM).

(0,0,0)

(x,y,1)
(x,y,0)

(x,y,-1)

Figure 5.4: Three different paths connecting (0, 0) and (x, y) belong to different homology
classes, where the corresponding nodes at (x, y) are marked as well.

Equipped with the definition above, we proposed a graph search-based method to find the
shortest path for moving an agent from the start point to the target, where the agent is
assumed to be holonomic, i.e., any path is dynamically feasible to the agent. Specifically,
we consider a visibility graph that is denoted as G = (V , E), where V is the set of sampled
states and E contains obstacle-free connections between these states. Given an interested
point (x, y), we obtain (x, y, s1, . . . , sM) as sampled states with si ∈ {−Γ,−Γ + 1, . . . ,Γ}
and Γ ∈ Z+ is the hyper-parameter that determines the size of the sample space. Likewise,
we say a state is legal iff −Γ ≤ si ≤ Γ for all i ∈ {1, . . . ,M}. As such, given N interested
points, the cardinality of the sample space is |V| = N(2Γ + 1)M , whose value significantly
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impacts the time complexity of graph search-based algorithms. To reduce the number of
interested points without highly degenerating the performance of the proposed method, we
sample locations around obstacles rather than discretize the space into a grid. Around the
obstacles described in Section 5.2.2, we adopt the sampling strategy shown below:[

x

y

]
sample

=diag(1/eix, 1/eiy)M−1
i(

Ri + δ

(cos(θ)ki + sin(θ)k1)1/ki

[
cos(θ)

sin(θ)

]
− bi

)
,

(5.6)

where θ ∈ {0, 2π/Ni, . . . , 2(Ni− 1)π/Ni} is the sampling angle, Ni is the number of samples
around the obstacle, and δ > 0 is a hyper-parameter that ensures the sampled points residing
outside the obstacle. The algorithm for building the visible graph is summarized in Algo-
rithm 8. Note that the graph assumes that each state is self-connected. Given the graph G,
the shortest path can be obtained by value iteration that will be described in Section 5.3.3.

Algorithm 8 Construct Visibility Graph
Require: Obstacle description and hyper-parameter Γ
1: Initialize an empty graph G = (V , E) and a potions set L
2: Sampled points according to (5.6), and store them in L
3: Push the start and target points into L
4: for each pair of points ((xa, ya), (xb, yb)) from L
5: if the straight line connecting the pair is infeasible
6: continue
7: Get phase change (∆s1, . . . ,∆sM) of the straight line
8: for each legal (s1, . . . , sM)
9: if (s1 +∆s1, . . . , sM +∆sM) is also legal
10: Add the edge between (xa, ya, s1, . . . , sM)

and (xb, yb, s1 +∆s1, . . . , sM +∆sM) to G
11:return G

5.3.2 3D Environment

It is noted that the graph-based method proposed above depends on the phase change for
classifying homology classes. Hereby, it is severely restricted and thus only applicable to
planar systems. To generalize the method to 3-dimensional, as defined in Section 5.2.2,
we consider a certain type of 3D obstacle equipped with a hole, where the agent can pass
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through. Because the coordinate transformation between (x̂, ŷ, ŷ)⊤ and (x, y, z)⊤ is invertible
in (6.1), in this section and without loss of generality, we only discuss normalized obstacles

zmi + (Ri − (xni + yni)
1
ni )mi − ri

mi ≥ 0. (5.7)

We consider an embedding mapping fi : R3 → R2

fi


xy
z


 =

[
(xni + yni)

1
ni

z

]
:=

[
xe
i

yei

]
, (5.8)

which compresses the ith 3D obstacle to a super-ellipse centered at (Ri, 0) with the radius
ri and the exponent mi. As a result, the phase change technique proposed in Section 5.3.1
can be safely applied.

Lemma 5.3.1 Given a trajectory r(t) : [0, 1]→ R3 and the super-toroid obstacle, the trajec-
tory is obstacle-free iff the embedded trajectory (xe

i (t), y
e
i (t))

⊤ = fi (r(t)) is obstacle-free for
all t ∈ [0, 1] in the embedding space:

(Ri − xe
i (t))

mi + yei (t)
mi − rmi

i ≥ 0.

Proof: Replacing xe
i (t) and yei (t) by (x(t)ni + y(t)ni)

1
ni and z(t) in (6.4), respectively,

the obstacle-free condition for 2D super-ellipse is identical to the one of that in 3D space.

As such, one can easily evaluate the phase change of a trajectory and further the homotopy
relationship of multiple trajectories in the embedding space, which is shown in Figure 6.3.
Having the same phase change in the embedding space is the necessary and sufficient condi-
tion for two trajectories to be within the same homotopy class when only one obstacle exists
as shown in the corollaries below. If trajectories are homotopy equivalent towards every
single obstacle, then they belong to the same homology class.

Corollary 5.3.2 If two continuous trajectories r1(t) : [0, 1] → R3 and r2(t) : [0, 1] → R3

belong to the same homotopy class regarding the super-toroid obstacle, then their embedding
trajectories re1(t) and re2(t) are also homotopy equivalent regarding the embedded obstacle.

Proof: There exist a continuous function H(s, t) : [0, 1]× [0, 1]→ R3 that H(s, t) never
inside the obstacle, H(0, t) = r1(t) and H(1, t) = r2(t) because r1 and r2 are homotopy
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Figure 5.5: A super-toroid obstacle and three trajectories are shown in the left figure and
their shapes in the embedding space are shown in the right figure, where the homotopy
property of three trajectories still holds.

equivalent. We define He(s, t) = fi (H(s, t)), then He(0, t) = re1(t) and He(1, t) = re2(t).
According to Lemma 6.3.1, He(s, t) is obstacle-free, and the function He(s, t) is still con-
tinuous because the embedding function fi is continuous. Therefore re1(t) and re2(t) are also
homotopy equivalent.

Corollary 5.3.3 If two continuous trajectories r1(t) : [0, 1] → R3 and r2(t) : [0, 1] → R3

have the same initial and terminal points, and their embedded trajectories re1(t) and re2(t)

are homotopy equivalent regarding the compressed obstacle, then r1(t) and r2(t) belong to the
same homotopy class towards the original 3-dimensional super-toroid obstacle.

Proof: We define the complementary embedding mapping

f c
i


xy
z


 =

(xni + yni)
1
ni

z

arctan(y, x)

 :=

x
e
i

yei

zci

 ,

then f c
i is the generalized cylindrical coordinate transformation. We kindly assume r1(t) and

r2(t) never attach the z-axis, then their complementary trajectories rc1(t) = f c
i (r1(t)) and

rc2(t) = f c
i (r2(t)) are also continuous and well-defined. Because re1(t) and re2(t) are homotopy

equivalent, there exists a continuous function H(s, t) that is obstacle-free and connects re1(t)
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and re2(t). Then we define

Hc(s, t) = f̄ c
i


 H(s, t)1

H(s, t)2

(1− s) · zci (r1(t)) + s · zci (r2(t))


 ,

where f̄ c
i : R3 → R3 is the mapping from the generalized cylindrical coordinate to the original

Cartesian coordinate, thus Hc(0, t) = r1(t) and Hc(1, t) = r2(t). According to Lemma 6.3.1,
Hc(s, t) is obstacle-free. Because f̄ c

i is continuous, Hc(s, t) is also continuous. Hence r1(t)

and r2(t) are homotopy equivalent.

Similar to the 2D case, the state in a 3D environment is defined as (x, y, z, s1, . . . , sM), where
(x, y, z) is the space location and (s1, . . . , sM) is the homology class label calculated in the
2-dimensional embedding space. To decrease the number of sampled states, we uniformly
sample nodes around the obstacle as shown in Algorithm 9, and then construct the graph in
the same way as Algorithm 8 except that the trajectory and obstacles need to be transformed
to the embedding space according to (6.6).

5.3.3 Optimization Method: Value Iteration

Given an undirected graph built in the previous sections, the Value Iteration Algorithm
(VIA) will then be implemented to yield the shortest path. Although VIA has been widely
applied in stochastic shortest path problems, it is less efficient compared with the Dijkstra
algorithm in deterministic situations. But we will show that the format of VIA can be
embarrassingly paralleled and therefore outperform the Dijkstra algorithm on multi-core
CPU or GPU.
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Algorithm 9 Sample locations around the 3D obstacle
Require: obstacle parameters, hyper-parameter δ

1: Initialize empty set S

2: for θ ∈ {θ1, . . . , θn} and s ∈ {s1, . . . , sn}
3: λ← (ri + δ)/((cos(s)mi + sin(s)mi)1/mi

4: µ← ((cos(θ)ni + sin(θ)ni)1/ni

5:

x̂ŷ
ẑ

←
(Ri + λ sin(s)) cos(θ)/µ

(Ri + λ sin(s)) sin(θ)/µ

λ cos(s)


6:

xy
z

← diag(1/eix, 1/eiy, 1/eiz)M
−1
i


x̂ŷ
ẑ

− bi


7: Put (x, y, z)T to S

8:return S

Shortest path problems based on a graph G = (V , E) can be converted to reinforcement
learning (RL) problems, which are infinite-horizon Markov decision processes (MDP) with
a terminal state. To begin with, we use the vertex set G(V) to represent the state set of
RL, and A(si) to denote the feasible actions set of the state si. An action ai,j ∈ A(si) will
transfer the state from si to sj. Moreover, the return function of the state transfer is:

R(si, ai,j) =

Λ− E(si, sj), if sj is sT

−E(si, sj), else
(5.9)

where sT is the terminal state, Λ ∈ R is a large enough value and E(si, sj) is the Euclidean
distance of two states’ locations. A policy π(a|s) describes a deterministic desired action for
each state. Starting from an initial state s1, the policy π provides an infinite state sequence
{s1, s2, . . . } with return value sequence {r1, r2, . . . }. We define γ ∈ (0, 1) as the discount
factor, then the value function is defined as

V π(s1) = r1 + γr2 + γ2r3 + · · · = r1 + γV π(s2) (5.10)

Under the optimal policy π′ which maximize the value function V π′ for every states, we have
V π′

(sT ) = Λ/(1 − γ) and V π′
(s0) =

∑n
i=0 γ

iE(si, si+1) + γn+1V π′
(sT ), where {si}ni=0 forms

a feasible trajectory from s0 to sT for any s0 ∈ V . If we choose γ close enough to 1, then
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{si}ni=0 is the shortest path, and V π′
(s0) approaches V π′

(sT ) minus the length of the shortest
path from s0 to xT . Note that Λ should be larger than the longest shortest path from every
state, otherwise the optimal state sequence of some states would trivially stay in place. The
optimal trajectory is hereby given by

si+1 = argmax
sj

(
−E(si, sj) + γV π′

(sj)
)
, (5.11)

where si and sj should be connected directly in the graph and therefore ai,j ∈ A(si).

To obtain the optimal value function V π′ , we start from a initial estimated value function
V π
0 and update it iteratively:

V π
n+1(si) = max

ai,j∈A(si)
(R(si, ai,j) + γV π

n (sj)) , (5.12)

which is referred to as Value Iteration as Algorithm 10. Although it’s proven that V π
n will

converge to V π′ for any initial estimate, the reasonable initial value will dramatically reduce
the iterations it needs. In practice, we choose V π

0 (sT ) = Λ/(1− γ) and V π
0 (s) = 0 for other

states. Within each iteration, the updating processes of states are independent, therefore
no effort is needed to separate the updating into a number of parallel tasks and reach linear
speedup, which is referred to as embarrassingly parallel.

Algorithm 10 Value Iteration Algorithm (VIA)
Require: a small number θ
1: Initialize V π

0 , n← 0
2: do
3: ∆← 0
4: for each si ∈ V :
5: Update V π

n+1(si) according to (5.12)
6: ∆← ∆+ |V π

n+1(si)− V π
n (si)|

7: n← n+ 1
8: while ∆ > θ
3. return V π

n
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5.4 Numerical Results

We evaluate the performance of the proposed method on various 2D and 3D cases, and
compare the efficiency with cutting-edge algorithms [10]. For all simulations, we set the
sample distance δ = 0.5 in (5.6) and Algorithm 9, Γ = 1 for sampling candidate states,
and Λ = 1000, γ = 0.999 in Algorithm 10. Figure 5.6 demonstrates the resulting shortest
trajectories with respect to the given homology class. The 3-dimensional case is shown in
Figure 5.7 with two obstacles.
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Figure 5.6: Shortest path with respect to the given homology class. The labels of obstacles
are marked on it and the target homology label (s1, s2, s3) is shown below each figure.

Figure 5.7: Four trajectories start from (0, 0, 0) to (100, 100, 100) with the terminal homology
class label (s1, s2) = (1, 1) and (−1,−1), respectively.

The proposed method can be separated into two steps: graph building and then finding the
shortest path using VIA. Given the graph, one can assign different states as the final states
and then design the shortest path accordingly. Therefore, we demonstrate the efficiency
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of these two steps separately. During building the graph, there exists a trade-off between
precision and efficiency. However, given a fixed number of obstacles, the number of G(V)
will be squared with an increased number of sampled points. Fortunately, Algorithm 8 can
also be paralleled and, hereby, dramatically decrease the computational time.
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Figure 5.8: Comparison of the computation time of getting the homology class label in a 3D
environment with random obstacles between H-signature and the proposed phase-change-
based method.
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Figure 5.9: Comparison of the computation time in a 3D environment with random obstacles
between Dijkstra Algorithm and VIA. The complete computation time is the sum of the
graph-building time and the searching time.

Figure 5.8 demonstrates the cost time of getting homology labels in 3D environments. H-
signature methods are required to discretize the skeleton of obstacles to line segments, and
the low number of segments may lead to inaccurate modeling and wrong labels. The proposed
method can achieve fast labeling without discretizing obstacles. Figure 5.9 illustrates the
computation time of the proposed method to find the shortest path from (0, 0, 0) to (1, 1, 1)

with the homology class label (1, . . . , 1). Obstacles are randomly generated in the 3D space,
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and 100 locations are sampled for each obstacle. For parallel computing VIA using OpenMP,
the 6-core Intel 9400F CPU is used. For the case using CUDA, the NVIDIA GTX 1660 GPU
is leveraged. As the number of sampled locations increases linearly, the number of possible
homology classes and the number of sampled states increase exponentially, therefore the
calculation time also increases exponentially.

5.5 Conclusion

In this section, we introduced a novel path-planning method with homology class constraints
that can handle 2-dimensional and 3-dimensional environments in a unified manner. The idea
of the proposed method is to first sample states around obstacles and connect them according
to the phase change to build the graph. For 3-dimensional super-toroid obstacles, we defined
the embedding space in which the phase change can be calculated in a manner similar to
the case of 2-dimensional obstacles. Then Value Iteration Algorithm is leveraged to find the
shortest path in the synthesized graph. The analysis of the embedding function suggests
that even higher dimensional obstacles can also be mapped to 2-dimensional embedding
space and therefore be processed by the proposed method if it has a proper formulation.
This is planned to be investigated in future work. On the other hand, the proposed global
searching method lacks efficiency when the number of possible homology classes increases,
which is also planned to be addressed in the future.
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Chapter 6

Homotopy Method for Optimal Motion
Planning with Homotopy Class
Constraints and 3-dimensional
Super-toroid Obstacles

6.1 Introduction

In Chapter 4, we introduced the HMHCC method that is able to efficiently deal with motion
planning task with homotopy class constraints. However, it is limited to 2D obstacles. In
Chapter 5, we explore features of super-toroid obstacles and utilize them to find the shortest
path in 3D space with specific 3D obstacles and homology class constraints. In this section,
we further utilize another feature of the super-toroid obstacle formula, differentiability, to
propose a novel direction for addressing motion planning problems with homotopy class
constraints that can be applied to general, possibly high-dimensional, nonlinear dynamical
systems. Especially, we consider 3-dimensional super-toroid obstacles by embedding them
into 2-dimensional space. The approach first adds an auxiliary control term to the original
system, which turns a preset reference trajectory that is dynamically infeasible for the original
system into a feasible one for the new extended system. Afterward, the approach gradually
(cf. [80], [81]) eliminates the influence of the auxiliary control term so as to let the original
input slowly take over the control of the system. As a result, the dynamically infeasible
trajectory is gradually deformed to a feasible one that the original system is fully capable
of tracking. In addition, the advocated approach is able to preserve the homotopy class for
generated trajectories throughout the iterative synthesis process.
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6.2 Mathematical Preliminaries and Problem Statement

6.2.1 Differentiable Super-toroid Obstacles Representations

In 3D environments, we consider a group of obstacles with super-toroid shapes, where the
ith obstacle is described by

x̂ŷ
ẑ

 := Mi diag(eix, eiy, eiz)

xy
z

+ bi, (6.1)

ẑmi + (Ri − (x̂ni + ŷni)
1
ni )mi − ri

mi ≥ 0, (6.2)

where Ri is the distance from the center of the tube to the center of the obstacle, ri is the
radius of the tube, and the rest of the parameters are defined in a similar way to that in (6.4).
It is noted that mi and ni have to be positive even numbers. Some examples of the obstacle
are shown in Figure 6.1

Figure 6.1: 3-dimensional obstacles with (n,m) = (2, 2), (2, 8), (8, 8) from left to right, re-
spectively.

According to equation (6.2), 3-dimensional super-toroid obstacles can be embedded into 2-
dimensional space (x, y) by x = ẑ and y = (x̂ni + ŷni)

1
ni , which in turn yields the collision

avoidance constraints in 2-dimensional embedding space(
x(t)− zix(t)

rix

)ki

+

(
y(t)− ziy(t)

riy

)ki

−Ri
ki ≥ 0, (6.3)

where z(t) = [zix(t), ziy(t)] denotes the center of the ith obstacle at time t. rix, riy ≥ 1

represent the object’s spatial extensions, and [x(t), y(t)] is the trajectory of the dynamical
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system. Ri > 0 is a size constant and the exponent ki is a positive even number. If ki = 2,
the obstacle is a circle or an ellipse, otherwise a rounded square, as shown in Figure 6.2.
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Figure 6.2: Investigation of three trajectories and a doughnut obstacle in 3-dimensional
space. Left: In the x − y − z view, according to the definition of the homotopy class,
the green curve and purple curve belong to the same homotopy class, and the red curve
belongs to another homotopy class. Right: In the 2-dimensional

√
x2 + y2 − z view, the

3-dimensional doughnut obstacle is reformatted into a 2-dimensional circular obstacle, where
the homotopy property of three trajectories still holds.

In 2D environments, the collision avoidance constraints regarding the ith obstacle can be
written as [

x̂

ŷ

]
:= Mi diag(eix, eiy)

[
x

y

]
+ bi, (6.4)

x̂ki + ŷki −Ri
ki ≥ 0, (6.5)

where [x, y] denotes the allowed spatial trajectory of the dynamical system, Mi is the rotation
matrix, eix, eiy ≥ 1 represent the spatial expansion factor along each axis, bi is the offset of
the center of the obstacle, Ri > 0 is a size constant and the exponent ki is a positive even
number, which regulates the shape of the obstacle. Particularly, when ki = 2, the obstacle
is a circle or ellipse, otherwise, it would be a rounded square.
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6.3 Homotopy Method for 3-dimensional Obstacles

In the previous section, we provide the algorithm for synthesizing feasible trajectories with
homotopy class constraints. However, the general auxiliary obstacle moving strategy is only
adaptable to 2-dimensional space. In order to deal with 3-dimensional obstacles, such as gate-
like ones, we describe the embedding method of 3-dimensional super-toroid obstacles which
transfer obstacle space to 2-dimensional. In this section, we will describe the embedding
method and prove it is homotopy equivalent after embedding.

The shape of super-toroid obstacles is defined in (6.1). We consider an embedding mapping
fi : R3 → R2

fi


xy
z


 =

[
(xni + yni)

1
ni

z

]
:=

[
xe
i

yei

]
, (6.6)

which embeds the ith super toroid obstacle to a super-ellipse centered at (Ri, 0) with the
radius ri and the exponent mi. Similarly, the dynamical system’s trajectory will also be
embedded in 2D space using fi. According to Lemma 6.3.1, the continuous deforming and
obstacle-free properties still hold in this embedding space as shown in Figure 6.3. Thus in
the deforming process, if the trajectory never intersects the obstacle in embedding space, it
also never intersects in the original 3D space.

Lemma 6.3.1 Given a trajectory r(t) : [0, 1]→ R3 and the super-toroid obstacle, the trajec-
tory is obstacle-free iff the embedded trajectory (xe

i (t), y
e
i (t))

⊤ = fi (r(t)) is obstacle-free for
all t ∈ [0, 1] in the embedding space:

(Ri − xe
i (t))

mi + yei (t)
mi − rmi

i ≥ 0.

Proof: Please see [33].

Moreover, it leads to a mutual homotopy equivalent relationship between 2D embedding
space and original 3D space. If the dynamical system’s trajectory satisfies homotopy class
constraints at the beginning, and the trajectory and obstacles never intersect in the embed-
ding space during the deforming process, then it still satisfies homotopy class constraints.
The aforementioned assertion is based on Corollary 6.3.4. The proof of Corollary 6.3.2 and
Corollary 6.3.3 can be seen in [33].
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Figure 6.3: A super-toroid obstacle and three trajectories are shown in the left figure and
their shapes in the embedding space are shown in the right figure, where the homotopy
property of three trajectories still holds.

Corollary 6.3.2 If two continuous trajectories r1(t) : [0, 1] → R3 and r2(t) : [0, 1] → R3

belong to the same homotopy class regarding the super-toroid obstacle, then their embedding
trajectories re1(t) and re2(t) are also homotopy equivalent regarding the embedded obstacle.

Corollary 6.3.3 If two continuous trajectories r1(t) : [0, 1] → R3 and r2(t) : [0, 1] → R3

have the same initial and terminal points, and their embedded trajectories re1(t) and re2(t)

are homotopy equivalent regarding the compressed obstacle, then r1(t) and r2(t) belong to the
same homotopy class towards the original 3-dimensional super-toroid obstacle.

Corollary 6.3.4 If two continuous trajectories r1(t) : [0, 1] → R3 and r2(t) : [0, 1] → R3

have the same initial and terminal points are homotopy equivalent towards original multiple
3D super-toroid obstacles, and their embedded trajectories are keeping homotopy equivalent
regarding the embedding obstacle while deforming, then they still belong to the same homo-
topy class towards the original 3-dimensional obstacles.

Proof: According to Corollary 6.3.2 and Corollary 6.3.3, r1(t) and r1(t) never intersect
3D obstacles because they are always homotopy equivalent regarding the embedding obstacle.
Hence they can deform to each other in an obstacle-free manner. According to Definition 2,
the homotopy relationship holds for two trajectories in the original space.

Therefore, similar to the 2D case, we first synthesize the initial system trajectory p0 by
ignoring obstacle constraints using an NLP solver. Then we design embedding mapping
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according to 6.6 for each obstacle, and the 3D task has been transformed into the 2D task
with super-ellipse obstacles. The HMHCC method is then applied to the embedding space
and acquires the optimal trajectory for the original task by iteratively solving the following
NLP sequentially:

minimize
(U,X)

∥U∥2

subject to x(0) = xstart, x(N) = xtarget,

x(k + 1) = F (x(k), u(k)),

∥fi(g(x(k)))− fi(ẑi(k; s))∥2 ≥ R2
i ,

∀k ∈ {0, ..., N}, i ∈ {1, ...,M},

(6.7)

where fi is the embedding mapping. Because fi are differentiable functions, they can be
directly integrated into the optimization-based framework and be solved using off-the-shelf
solvers, such as the primal-dual interior point method. In our following experiments, the
toolbox CasADi is utilized which provides the interface to the interior point solver and it
shows more robustness than sequential quadratic programming solvers. The overall algorithm
is shown in Algorithm 11.

Algorithm 11 Homotopy Method for Homotopy Class Constraints with Super-toroid Ob-
stacles
Require: Obstacle trajectories {z1(k), ..., zM(k)} and pre-established trajectory r(k) which
defines the required homotopy class.
1: Initialize inputs U0 and state trajectory X0 by solving (4.8) without considering obstacles.
2: Design embedding functions fi according to (6.6).
3: Synthesis trajectories for obstacles {f1(ẑ1(k; s)), ...} according to (4.5) with s large enough.
4: Set iteration step m = 0.
5: Set s = max(s−∆s, 0), m = m+ 1
6: Solve optimal motion planning problem (6.7) with obstacles and initial (U,X) =
(Um−1, Xm−1), and the solution of it is noted as (Um, Xm).
7: Repeat step 5− 6 until s = 0.

6.4 Numerical Results

In this section, we present our method for integrator models. The result demonstrates
that our iterative synthesizing method can generate optimal and smooth trajectories while
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satisfying homotopy class constraints. The model we adopt is shown below:

d

dt



x

y

z

dx

dy

dz


=



dx

dy

dz

ux

uy

uz


,

where x,y and z indicate the position of the system, and ux, uy and uz are control inputs. As
a class dynamical model, the integrator model with an optimal energy target can generate a
smooth trajectory, which can be utilized in the online path following the algorithm to steer
real-world systems.

In the demonstrations, we apply the homotopy class constraints to the 3-dimensional position
states. The facing angle ϕ is set to zero at both the start and target points. The total time
is 10 seconds and the discrete-time interval is set as ∆T = 0.1 second. In addition, the push
distance s is decreased from 1.5 to 0 with a step of ∆s = 0.1. The results are shown in
Figure 6.4. Another simulation with two obstacles and a different homotopy class is carried
out on the same system and setups except that s is initialized as 2.5, whose results are
presented in Figure 6.5.

Figure 6.4: The trajectory of the dynamical system gradually deforms to the optimal one
while satisfying homotopy class constraints with s = 1.5, 1.0, 0.5, 0, respectively.
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Figure 6.5: The trajectory of the dynamical system eventually deforms to the optimal one
while satisfying homotopy class constraints.

6.5 Conclusion

In this section, we introduced the homotopy method for homotopy class constraints (HMHCC).
It first synthesizes the initial trajectory for the dynamical system without considering the
obstacles-free condition and homotopy class constraints. By choosing a large enough push-
ing distance, the homotopy property holds initially. Then the pushing distance gradually
decreases and the system’s trajectory deforms accordingly until the pushing distance reaches
zero, and the resulting trajectory is optimal satisfying homotopy class constraints. To extend
the aforementioned method to the 3D environment, we proposed the embedding method
of gate-like 3D super-toroid obstacles. The proof of the embedding method is given and
numerical results demonstrate that the proposed can correctly handle 3D homotopy class
constraints. However, the current method is limited to specified super-toroid obstacles, and
the problem of finding the general embedding formula is to be investigated in the future.
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