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Mineral dust is a major component of ambient particulate matter (PM) globally, affecting visibility, 

air quality, human health, climate, and biogeochemistry. Dust mass cannot be directly measured 

and therefore is typically estimated using a dust equation to sum common oxides of major crustal 

elements based on measured elemental composition data. Both an accurate dust equation and 

reliable elemental data are essential to accurately estimate dust mass. However, most dust 

equations fail to account for all major dust compounds, exclude non-dust components of some 

elements, or account for regional variations in dust composition. Attenuation effects for light 

elements measured by the widely used X-ray fluorescence (XRF) technique can lead to 

underestimation of dust mass, yet correcting these effects in PM filter samples remains a 

significant challenge. Elemental characterization of PM also provides concentrations of trace 

elements, which can be strongly associated with morbidity and mortality. Ground-based 

monitoring of atmospheric elements is important to estimate the exposure to dust and trace 

elements, assess health risks, and investigate emission sources. However, many developing 

countries lack sufficient ground-based measurements of PM chemical composition. Uniform 

sampling protocols and reliable analyses are also needed to enable global comparisons. 
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This dissertation includes four studies aimed at improving measurements and understanding of 

mineral dust and trace elements in ambient PM. In the first study, a global-scale mineral dust 

equation with region-specific coefficients was developed and evaluated for various types of dust 

from different regions. The global equation reduced regional biases by about 6-10% for desert dust 

in source regions compared to an existing equation (IMPROVE) that was designed for the U.S. 

The second study presented the methodology and implications for the elemental characterization 

of ambient PM for a globally distributed monitoring network, the Surface PARTiculate mAtter 

Network (SPARTAN). Consistent protocols were applied to collect PM samples and analyze them 

at one central laboratory. Health risk assessment indicated significant airborne arsenic pollution at 

sites in South and Southeast Asia. The third study focused on characterizing dust contribution to 

PM in Central Asia, an understudied dust source region, using the first contemporary elemental 

composition data of PM samples collected from Tashkent, Uzbekistan. Large dust events 

originating from different deserts were identified by time series analysis, backward trajectory 

analysis, and satellite images. The fourth study assessed attenuation due to mass loading and 

particle size for light elements by comparing XRF and gravimetric measurements of samples with 

known compositions. Theoretical attenuation models were compared with measurements and 

applied to ambient PM samples to assess their impact on dust concentration estimates. These 

studies collectively advance the understanding of airborne mineral dust and trace elements and 

inform global air quality management. 
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Chapter 1: Introduction  

1.1 Background 

1.1.1 Mineral Dust Equation 

Mineral dust is the most dominant global aerosol by mass (Knippertz & Stuut, 2014), which can 

strongly reduce visibility (e.g., Ashley et al., 2015; Hand et al., 2014, 2020; Kavouras et al., 2009), 

perturb climate systems (e.g., Miller & Tegen, 1998; Sokolik et al., 2001; Tegen, 2003), affect 

biogeochemistry (e.g., Jickells et al., 2005; Koren et al., 2006; Mahowald et al., 2010; Muhs et al., 

2012), and cause adverse health effects (e.g., Goudie, 2014; Tong et al., 2017; Zhang et al., 2016). 

Also known as soil (Malm et al., 1994), geological minerals (Chow et al., 2015), and crustal 

material (Snider et al., 2016), mineral dust is commonly defined as airborne minerals originating 

from soil. It constitutes a major component of ambient particulate matter (PM), including PM2.5 

(aerodynamic diameter < 2.5 μm) and PM10 (aerodynamic diameter < 10 μm), and dominates the 

PM10-2.5 fraction (aerodynamic diameter between 2.5 and 10 μm). Mineral dust has both natural 

(e.g., desert) and anthropogenic (e.g., roads, construction, and agricultural activities) sources. 

The dust mass and therefore the dust fraction in PM cannot be measured directly because mineral 

dust is a complex mixture of many minerals, majorly quartz, feldspars, clays, calcite, and iron 

oxides (e.g., Nowak et al., 2018), and is often mixed with non-dust PM species that also contain 

crustal elements (e.g., Deboudt et al., 2010; Li et al., 2014). The practical and typical way to 

estimate dust mass is by applying a dust equation to sum oxides of major crustal elements by using 

measured elemental composition and assuming common oxide forms associated with dust. An 

accurate dust equation is essential to estimate the dust contribution to measured aerosols  (e.g., 

Andrews et al., 2000; Chow et al., 2015; Malm et al., 1994; Snider et al., 2016), and to serve as a 
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reference to evaluate and improve atmospheric models (e.g., Appel et al., 2013; Kok et al., 2021; 

Zhang et al., 2013) and satellite remote sensing algorithms (e.g., Diner et al., 2018). 

However, dust equations used in previous studies exhibit various sources of error. Most dust 

equations omit some important dust components such as carbonate. The calcite (CaCO3) content 

of dust can exceed 20 weight percent (wt%) in some deserts such as the Sahara (e.g., Scheuvens 

et al., 2013) and the Middle East (e.g., Ahmady-Birgani et al., 2015; Awadh, 2012). Thus, 

neglecting carbonate when estimating dust mass for these areas can cause substantial errors. Some 

dust equations (Andrews et al., 2000; Hueglin et al., 2005; Pryor et al., 1997) include K or Mg 

directly into the equation without excluding the non-dust component of these elements such as K 

from biomass burning and Mg from sea salt, which will therefore overestimate dust K or Mg. The 

U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network’s “soil” 

formula (Soil = 2.20Al+2.49Si+1.63Ca+2.42Fe+1.94Ti) was developed to characterize mineral 

dust within the United States (Malm et al., 1994). Soil K is incorporated as a fraction (0.6) of Fe 

to avoid the influence of smoke K emitted by biomass burning (Eldred, 2003; Pachon et al., 2013). 

A correction factor of 1.16 is applied to all five elements to account for other missing compounds 

(mainly MgO, Na2O, CO2, and H2O) based on the composition of average sediment (Eldred, 2003; 

Pettijohn, 1975). Although the IMPROVE equation is designed to address many of the challenges 

associated with dust characterization, Malm and Hand (2007) found that dust mass across the 

IMPROVE network may be underestimated by ~20%, suggesting that the IMPROVE equation 

needs further development. Some studies have applied the IMPROVE equation to natural or 

anthropogenic dust measured outside the US (e.g., Ho et al., 2003; Kim et al., 2001; Matawle et 

al., 2015; Pant et al., 2015; Shen et al., 2007; Wu et al., 2011), yet to our knowledge, none have 
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demonstrated its accuracy for that purpose. A more accurate dust equation is needed to estimate 

dust mass across different regions of the globe. 

1.1.2 Attenuation Effects in X-ray Fluorescence Analysis 

In addition to an accurate dust equation, reliable elemental composition data is essential for 

estimating dust mass, as elemental concentrations are directly used in the dust equation. Elemental 

characteristics (elemental ratios) are also commonly utilized to distinguish source areas of dust 

(Aldhaif et al., 2020; Cao et al., 2008; Hand et al., 2017; Scheuvens et al., 2013). A variety of 

techniques have been used for elemental analysis of PM samples, including both destructive and 

non-destructive techniques. Destructive techniques involve wet chemistry-based analytical 

methods that require digesting the sample into a liquid solution using acids, while non-destructive 

techniques do not require any digestion steps. The X-ray fluorescence (XRF) technique is widely 

used to characterize the elemental composition of PM samples collected on filters. Its non-

destructive nature enhances analysis efficiency, reduces costs, enables additional speciation 

analysis, and avoids extraction efficiency issues compared to destructive techniques such as 

inductively coupled plasma mass spectrometry (ICP-MS). This advantage is particularly 

significant for large-scale monitoring networks (Liu et al., 2024; Solomon et al., 2014).  

However, light elements are susceptible to attenuation effects in XRF analysis. Attenuation effects 

occur when part of the incoming X-rays and the fluorescent X-rays emitted by the target elements 

are absorbed by other components in the sample, resulting in a weaker detected signal than 

expected. Attenuation is more pronounced for light elements than for heavy elements because of 

the lower energy (“soft”) X-rays they emit. Light elements, particularly crustal elements like Si 
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and Al, are major elements in dust and are incorporated into the dust equation. Therefore, 

attenuation effects can lead to underestimation of dust mass and inaccuracies in elemental ratios. 

The magnitude of attenuation in XRF analysis of PM filter samples depends on multiple factors, 

including mass loading, particle size, and chemical composition (Gutknecht et al., 2010). Greater 

attenuation is anticipated with high mass loading and large particles because of the increased path 

length of X-rays traveling through the deposit compared to low mass loading and small particles. 

High concentrations of heavy elements within the matrix can also contribute to increased 

attenuation. Attenuation resulting from particle penetration into the filter can be substantial for 

quartz fiber filters but is negligible for Teflon filters which are considered “surface filters” (Chiari 

et al., 2018).  

Dzubay and Nelson (1974) established foundational theoretical models for estimating attenuation 

in PM filter samples. They utilized a homogeneous layer model for fine particles, assuming 

negligible attenuation within fine particles, and a particle size model for coarse particles, assuming 

these particles are collected as a monolayer on the filter. In the context of PM2.5, Gutknecht et al. 

(2010) reviewed theoretical models developed to estimate attenuation and proposed using the 

particle size model for light elements (Na, Mg, Al, and Si) and the homogeneous layer model for 

heavier elements (Z > 14) in PM2.5 based on Dzubay and Nelson’s work as extended by Kellogg. 

Kellogg (2005) assumed that particles containing light elements are primarily at the high end of 

the PM2.5 distribution and therefore used the particle size model to estimate attenuation for light 

elements in PM2.5 by averaging the attenuations for potential mineral forms containing these 

elements. However, considering only attenuation due to particle size for light elements in PM2.5 
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may be valid for filters with low mass loading where the monolayer assumption is applicable, but 

may not be suitable for filters with high dust loading such as those collected during dust events.  

These models have not been thoroughly evaluated by experiments. Only a limited number of 

studies have applied experimental methods to estimate the attenuation effects of light elements for 

PM filter samples in XRF (Formenti et al., 2010; Turner & Brown, 2015), as well as in a similar 

technique, particle-induced X-ray emission (PIXE) (Calzolai et al., 2014; D’Alessandro et al., 

2003; Maenhaut & Cafmeyer, 1998). Experimental assessments of the attenuation effects due to 

various factors and evaluations of these theoretical models are needed to better understand their 

impact on dust concentration estimates from XRF analysis of PM filter samples. 

1.1.3 Ground-based Monitoring of Dust and Trace Elements 

In addition to the major (crustal) elements used in dust estimation, the elemental characterization 

of PM also provides concentrations of trace elements. Trace elements are often concentrated in 

PM2.5 and primarily emitted by anthropogenic sources such as fossil fuel combustion, industries, 

and traffic. Many of the trace elements (e.g., Pb, As, Cd, Cr) have strong associations with 

morbidity and mortality (Krall et al., 2017; Paithankar et al., 2021). Concentrations of hazardous 

trace elements are particularly high in low-income and middle-income countries (LMICs) because 

of unregulated activities during urbanization and industrialization (Fuller et al., 2022; Majumder 

et al., 2021; Zhu et al., 2020). Ground-level observations of atmospheric elements are important 

to estimate the exposure to dust and trace elements, assess health risks, and investigate emission 

sources, as well as improve atmospheric models. However, few monitoring networks of PM 

chemical composition exist in LMICs. Uniform sampling protocols and reliable analyses are also 

needed to enable comparisons across the world.  
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The Surface PARTiculate mAtter Network (SPARTAN, https://www.spartan-network.org/) is a 

long-term project that measures ground-based speciated PM at globally dispersed sites in densely 

populated regions (Snider et al., 2015). This network is designed to expand available global 

ground-based observations of PM composition and to provide information to evaluate and improve 

satellite-based estimates of PM2.5. To our knowledge, SPARTAN is the only global monitoring 

network that measures the elemental composition of PM2.5 and to a lesser extent, PM10. Samples 

are collected from SPARTAN sites and analyzed for elemental composition at one central 

laboratory using consistent protocols, which ensures the comparability of data among the different 

sites. Beginning in 2019, the elemental measurements of SPARTAN samples have been conducted 

by energy-dispersive X-ray fluorescence (ED-XRF) spectroscopy, which is also used in the U.S. 

national PM2.5 Chemical Speciation Network (CSN) and the U.S. IMPROVE network (Solomon 

et al., 2014). Prior analysis of SPARTAN filters for 2013−2019 identified large global variations 

in measured airborne metal concentrations, but this analysis used inductively coupled plasma mass 

spectrometry (ICP-MS) with nitric acid digestion that introduced uncertainty in extraction 

efficiencies for some crustal elements such as Fe and Al and could not measure Si (McNeill et al., 

2020). There is a need to examine more recent filters using XRF to assess the robustness of prior 

conclusions and their degree of persistence over time. 

Especially for networks that operate over long periods across multiple sites, high-quality and 

consistent data is needed to interpret the measurements (Solomon et al., 2014). Robust quality 

assurance (QA) measures are needed including appropriate calibration, filter acceptance testing, 

routine analyses of blanks and standards, and appropriate blank subtraction to obtain reliable 

elemental data. Method detection limits (MDLs) and uncertainties for elemental concentrations 
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are needed to evaluate the data quality. These QA measures must be developed, and MDLs and 

uncertainties should be estimated for XRF analysis in the SPARTAN network.  

As a region not covered by the SPARTAN network, Central Asia has remained understudied 

concerning PM2.5 concentration and chemical composition, despite experiencing severe air 

pollution (Amonov & Nishonov, 2020; Kerimray et al., 2020; Miller-Schulze et al., 2015; 

Tursumbayeva et al., 2023). Air pollution caused by dust storms is common in Central Asia, which 

is a major global dust source region with several large deserts, including the Kyzylkum Desert, the 

Karakum Desert, and the Aralkum Desert (Shen et al., 2016; Zhang et al., 2020). Aralkum, the 

desiccated lakebed of the former Aral Sea, generates salt dust containing pesticides and other 

chemicals, which adversely affects the environment and human health in the region (Breckle et al., 

2012; Indoitu et al., 2015; Shen et al., 2019; Singer et al., 2003). Dust events occur frequently in 

Central Asia during spring, summer, and fall, with reduced frequency in winter (Zhang et al., 

2020). Some studies have investigated dust deposition (Bazarbayev et al., 2022; Groll et al., 2013; 

Opp et al., 2017) and dust optical depth in Central Asia (Hofer et al., 2017; L. Li & Sokolik, 2018; 

Xi & Sokolik, 2015). However, few studies have conducted ground measurements of PM 

composition to quantify dust contributions to PM in this region (Miller-Schulze et al., 2015).  

Uzbekistan, situated at the center of Central Asia, primarily relies on natural gas for power 

generation and heating, yet faces persistent air pollution challenges (Tursumbayeva et al., 2023). 

Given the frequent dust storms (Broomandi et al., 2023; Nishonov et al., 2023), dust is anticipated 

to be a major component of PM in Uzbekistan, but it has not been quantified. A previous long-

term monitoring campaign at two urban sites during the summer and fall of 2008–2009 quantified 

the contributions of inorganic ions, elemental carbon, and organic carbon to PM in Uzbekistan 
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(Amonov et al., 2010). However, the contemporary composition and emission sources of PM in 

Uzbekistan remain unexplored. 

1.2 Objectives 

Given the significant environmental and health impacts of mineral dust and trace elements, this 

dissertation aims to improve their ground-based measurements and understanding by developing 

a global-scale mineral dust equation, assessing attenuation effects in XRF, and exploring 

implications of elemental measurements from a global monitoring network as well as from field 

campaigns in Central Asia. This dissertation presents four studies: 

Chapter 2: A Global-scale Mineral Dust Equation 

I developed a global-scale dust equation that builds upon the IMPROVE “soil” formula 

using analyses of the elemental composition and carbonate content of desert dust in 

different regions compared with that of continental crust. I evaluated the global equation 

for desert dust over source and non-source regions, dust in the U.S. IMPROVE monitoring 

network, and major types of anthropogenic dust.  

Chapter 3: Elemental Characterization of Ambient Particulate Matter for a Globally Distributed 

Monitoring Network: Methodology and Implications 

I improved QA methods and estimated MDLs and uncertainties for the elemental 

characterization of ambient PM in the SPARTAN network using XRF. I explored the 

implications of the global PM elemental dataset measured by XRF by examining the 

concentration levels of dust and trace element oxides across globally distributed sites, 
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evaluating health risks caused by hazardous trace elements, and exploring emission sources 

of trace elements at the site with the highest estimated health risk levels. 

Chapter 4: Characterizing Particulate Matter Composition in Central Asia: Dust Contribution in 

Tashkent, Uzbekistan 

I analyzed the elemental composition of the first contemporary PM2.5 and PM10 filter 

samples collected from Tashkent, the capital of Uzbekistan, during dusty seasons in 2023. 

I estimated dust concentration levels to understand its contribution to PM2.5, PM10, and 

coarse PM (PM10-2.5). I identified large dust events, investigated their source areas and 

elemental characteristics, and explored potential emission sources of major and trace 

elements in addition to dust. 

Chapter 5: Assessing Attenuation Effects in X-ray Fluorescence Analysis of Light Elements in 

Mineral Dust  

I assessed attenuation effects due to mass loading, particle size, and chemical composition 

for Si and Al by comparing XRF measurements with gravimetric data of samples generated 

using powder oxides and Arizona test dust (ATD). I compared the experimental results to 

estimates derived from the homogeneous layer and particle size models. I evaluated the 

potential impact of attenuation effects on dust concentration estimates for ambient dust-

dominated PM2.5 samples collected from SPARTAN. 

Each chapter provides conclusions and recommendations for future work related to its specific 

study. Chapter 6 summarizes the key contributions of these studies.  



10 

 

 

Chapter 2: A Global-scale Mineral Dust Equation 

This work was funded by the National Science Foundation (Grant 2020673), the Clean Air Fund, 

and internal funds at Washington University in St. Louis. This chapter has been published as: Liu, 

X., Turner, J. R., Hand, J. L., Schichtel, B. A., & Martin, R. V. (2022). A Global-Scale Mineral 

Dust Equation. Journal of Geophysical Research: Atmospheres, 127(18), e2022JD036937. 

https://doi.org/10.1029/2022JD036937. 

2.1 Abstract 

A robust method to estimate mineral dust mass in ambient particulate matter (PM) is essential, as 

the dust fraction cannot be directly measured but is needed to understand dust impacts on the 

environment and human health. In this study, a global-scale dust equation is developed that builds 

on the widely used Interagency Monitoring of Protected Visual Environments (IMPROVE) 

network’s “soil” formula that is based on five measured elements (Al, Si, Ca, Fe, and Ti). We 

incorporate K, Mg, and Na into the equation using the mineral-to-aluminum (MAL) mass ratio of 

(K2O+MgO+Na2O)/Al2O3 and apply a correction factor (CF) to account for other missing 

compounds. We obtain region-specific MAL ratios and CFs by investigating the variation in dust 

composition across desert regions. To calculate reference dust mass for equation evaluation, we 

use total-mineral-mass (summing all oxides of crustal elements) and residual-mass (subtracting 

non-dust species from total PM) approaches. For desert dust in source regions, the normalized 

mean bias (NMB) of the global equation (within ±1%) is significantly smaller than the NMB of 

the IMPROVE equation (-6 to 10%). For PM2.5 with high dust content measured by the IMPROVE 

network, the global equation estimates dust mass well (NMB within ±5%) at most sites. For desert 

dust transported to non-source regions, the global equation still performs well (NMB within ±2%). 
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The global equation can also represent paved road, unpaved road, and agricultural soil dust (NMB 

within ±5%). This global equation provides a promising approach for calculating dust mass based 

on elemental analysis of dust. 

2.2 Introduction 

Mineral dust, also referred to as soil (Malm et al., 1994), geological minerals (Chow et al., 2015), 

and crustal material (Snider et al., 2016), is commonly defined as airborne minerals originating 

from soil, and is a major component of ambient particulate matter (PM) including PM2.5 

(aerodynamic diameter < 2.5 μm) and PM10 (aerodynamic diameter < 10 μm). Mineral dust has 

both natural (e.g., desert) and anthropogenic (e.g., agricultural soil, roads, and industry) sources, 

affecting visibility (e.g., Ashley et al., 2015; Hand et al., 2014, 2020; Kavouras et al., 2009), human 

health (e.g., Goudie, 2014; Tong et al., 2017; Zhang et al., 2016), the climate system (e.g., Miller 

& Tegen, 1998; Sokolik et al., 2001; Tegen, 2003), and biogeochemistry (e.g., Jickells et al., 2005; 

Koren et al., 2006; Mahowald et al., 2010; Muhs et al., 2012). The dust mass and therefore the 

dust fraction in PM cannot be measured directly because mineral dust is a complex mixture of 

many minerals, majorly quartz, feldspars, clays, calcite, and iron oxides (e.g., Nowak et al., 2018), 

and is often mixed with non-dust PM species that also contain crustal elements (e.g., Deboudt et 

al., 2010; Li et al., 2014). The practical and typical way to estimate dust mass is by applying a dust 

equation to sum oxides of major crustal elements by using measured elemental composition and 

assuming common oxide forms associated with dust. An accurate dust equation is essential to 

estimate the dust contribution to measured aerosols  (e.g., Andrews et al., 2000; Chow et al., 2015; 

Malm et al., 1994; Snider et al., 2016), and to serve as a reference to evaluate and improve 

atmospheric models (e.g., Appel et al., 2013; Kok et al., 2021; Zhang et al., 2013) and satellite 

remote sensing algorithms (e.g., Diner et al., 2018). 
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Table 2.1 summarizes dust equations used in previous studies and various sources of error. Most 

dust equations omit some important dust components such as carbonate. The calcite (CaCO3) 

content of dust can exceed 20 weight percent (wt%) in some deserts such as the Sahara (e.g., 

Scheuvens et al., 2013) and the Middle East (e.g., Ahmady-Birgani et al., 2015; Awadh, 2012). 

Thus, neglecting carbonate when estimating dust mass for these areas can cause substantial errors. 

Some dust equations (Andrews et al., 2000; Hueglin et al., 2005; Pryor et al., 1997) include K or 

Mg directly into the equation without excluding the non-dust component of these elements such 

as K from biomass burning and Mg from sea salt, which will therefore overestimate dust K or Mg. 

The U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network’s “soil” 

formula (Soil = 2.20Al+2.49Si+1.63Ca+2.42Fe+1.94Ti) was developed to characterize mineral 

dust within the United States (Malm et al., 1994), but is used worldwide. The IMPROVE equation 

assumes that iron is split equally between Fe2O3 and FeO in soil according to their abundance in 

most rock types (Eldred, 2003). Soil K is incorporated as a fraction (0.6) of Fe to avoid the 

influence of smoke K emitted by biomass burning (Eldred, 2003; Pachon et al., 2013). A correction 

factor of 1.16 is applied to all five elements to account for other missing compounds (mainly MgO, 

Na2O, CO2, and H2O) based on the composition of average sediment (Eldred, 2003; Pettijohn, 

1975). Across the IMPROVE network, the elemental composition of PM2.5 samples is measured 

using X-ray fluorescence (XRF) and the above equation is applied to estimate soil (dust) mass. 

Although the IMPROVE equation is designed to address many of the challenges associated with 

dust characterization, Malm and Hand (2007) found that dust mass across the IMPROVE network 

may be underestimated by ~20%, suggesting that the IMPROVE equation needs further 

development. 
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Table 2.1 Summary of dust equations used in previous studies 

Reference Dust Equation Sources of Error 

(Macias & Hopke, 

1981) 
1.89Al+2.14Si+1.4Ca+1.43Fe+1.2K 

Missing carbonate, oxides of 

Na, Mg, Ti, etc.; K susceptible 

to biomass burning 

(Chow et al., 1994; 

Solomon et al., 1989) 
1.89Al+2.14Si+1.4Ca+1.43Fe 

Missing carbonate, oxides of 

Na, Mg, K, Ti, etc. 

(Malm et al., 1994) 
[1.89Al+2.14Si+1.40Ca+(1.36+0.6×1.20)Fe+1.67Ti]×1.16 

= 2.20Al+2.49Si+1.63Ca+2.42Fe+1.94Ti (IMPROVE) 

Accuracy of the correction 

factor for missing compounds; 

Developed for the U.S. 

(Pryor et al., 1997) 2.2Al+2.49Si+1.63Ca+1.5Fe+1.4K+1.94Ti 

Accuracy of the correction 

factor for missing compounds; 

K susceptible to biomass 

burning 

(Andrews et al., 2000; 

Kleindienst et al., 

2010) 

1.89Al+2.14Si+1.4Ca+1.43Fe+1.67Ti+1.2K 

Missing carbonate, oxides of 

Na, Mg, etc.; K susceptible to 

biomass burning 

(Hueglin et al., 2005) 1.89Al+2.14Si+1.40Ca+1.43Fe+1.21K+1.66Mg 

Missing carbonate, oxides of 

Na, Ti, etc.; K susceptible to 

biomass burning; Mg 

susceptible to sea salt 

(Terzi et al., 2010) 1.89Al+2.14Si+1.95Ca+1.43Fe+1.67Ti+1.2K+1.66Mg 

Missing carbonate, oxides of 

Na, etc.; K susceptible to 

biomass burning; Mg 

susceptible to sea salt 

(Ni et al., 2013) 1.89Al+2.14Si+1.40Ca+1.43Fe+1.67Ti+1.21K+1.66Mg 

Missing carbonate, oxides of 

Na, etc.; K susceptible to 

biomass burning; Mg 

susceptible to sea salt 

Several issues need to be addressed to further develop the IMPROVE equation for mineral dust on 

a global scale. First, the relationship between soil K and Fe may change in regions outside the US 

or even within the US because of the variation in dust composition (e.g., Journet et al., 2014). 

Second, although using Fe as a surrogate for soil K works well for natural dust at IMPROVE sites, 

for anthropogenic dust in urban areas, Al or Si should be a better choice than Fe given that the Fe 

concentration is more likely affected by non-dust sources such as combustion (e.g., Chen et al., 

2012). Third, the fraction of missing compounds in dust may also differ inside or outside the US. 

Fourth, the data of average sediment (Pettijohn, 1975) used to derive the factor of 1.16 might not 
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represent natural dust composition which is usually represented using the data of continental crust 

from other sources (e.g., Cao et al., 2008; Choi et al., 2001; Contini et al., 2010; Ganor et al., 1991; 

Gao et al., 2018; Radhi et al., 2010a). Fifth, liquid water (different from crystal water) associated 

with special types of dust can be non-negligible. Dust is commonly assumed to be non-

hygroscopic, but high hygroscopicity has been observed for saline dust in some regions (e.g., 

Gaston, 2020; Gaston et al., 2017; Koehler et al., 2007; Tang et al., 2019), some types of aged dust 

(e.g., Sullivan et al., 2009; Tang et al., 2016), and some types of anthropogenic dust (e.g., Peng et 

al., 2020). Sixth, special types of dust such as saline dust (e.g., Gaston et al., 2017), volcanic dust 

(e.g., Gislason et al., 2011; Taylor & Lichte, 1980), and aged dust (e.g., Tang et al., 2016) may 

contain salt minerals that are not considered for common desert dust. Some studies have applied 

the IMPROVE equation to natural or anthropogenic dust measured outside the US (e.g., Ho et al., 

2003; Kim et al., 2001; Matawle et al., 2015; Pant et al., 2015; Shen et al., 2007; Wu et al., 2011), 

yet to our knowledge, none have demonstrated its accuracy for that purpose. The development of 

a global-scale dust equation should address the issues discussed above and assess its performance 

both within and outside the US. 

In this study, we develop a global-scale dust equation that builds upon the IMPROVE “soil” 

formula using analyses of the elemental composition and carbonate content of desert dust in 

different regions compared with that of continental crust. The global equation is evaluated for 

desert dust over source/non-source regions, dust in the U.S. IMPROVE monitoring network, and 

major types of anthropogenic dust. The performance of the IMPROVE equation is treated as a 

well-respected benchmark to evaluate the global equation. The goal of this study is to develop a 

global dust equation with regional parameterization that reduces the regional bias in dust mass 

estimated using measured elemental data. The reduced bias is especially important to PM mass 
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closure (e.g., Ni et al., 2013; Terzi et al., 2010) and model evaluation (e.g., Appel et al., 2013; 

Meng et al., 2021; Zhang et al., 2013). 

2.3 Data and Methods 

2.3.1 Development of the Global Dust Equation 

The five major crustal elements (Al, Si, Ca, Fe, and Ti) of the IMPROVE equation were used in 

the global equation assuming common oxide forms of Al2O3, SiO2, CaO, FeO and Fe2O3 (in equal 

amounts), and TiO2, respectively. However, in contrast to the use of Fe in the IMPROVE equation 

to estimate soil K, Al was investigated as the new surrogate and used to estimate dust components 

of K, Mg, and Na by defining a mineral-to-aluminum (MAL) mass ratio as 

(K2O+MgO+Na2O)/Al2O3. We combined these three elements into one coefficient because they 

are all major crustal elements that cannot be directly included due to their potentially significant 

sources from biomass burning and sea salt. We included only dust components of these elements 

by applying the MAL ratio obtained using dust data with negligible non-dust sources. The MAL 

ratio can be converted to: 

 MAL = (1.20K Al + 1.66 Mg Al + 1.35 Na Al⁄⁄⁄ ) 1.89⁄  (2.1) 

where 1.20, 1.66, 1.35, and 1.89 are the oxide factors that convert elements to oxides for K2O, 

MgO, Na2O, and Al2O3, respectively. Thus, with elemental ratios of dust, the MAL ratio can be 

calculated and compared between regions. The MAL ratio is similar to the Chemical Index of 

Alteration (CIA) defined as 100×Al2O3/(Al2O3+CaO+Na2O+K2O) and the Weathering Index of 

Parker (WIP) represented as 100×(2Na2O/0.35+MgO/0.9+2K2O/0.25+CaO/0.7) (Price & Velbel, 

2003), in the sense of representing the relative abundance of alkalis in dust.   
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We next examined the contribution from other elements. Although according to the composition 

of the upper continental crust (UCC) (Shaw et al., 1986), both CO2 (decomposed from carbonate) 

and the sum of remaining compounds (mainly crystal H2O, P2O5, and MnO) account for 1 wt% of 

UCC, for mineral dust in arid areas, the CO2 content can reach up to 10 wt% or higher (Awadh, 

2012; Modaihsh, 1997; Scheuvens et al., 2013). The abundance of bound H2O, P2O5, and MnO is 

relatively consistent with that in the UCC (Mahowald et al., 2008; Mendez et al., 2010; Moreno et 

al., 2006; Moufti, 2013; Najafi et al., 2014; Zarasvandi et al., 2011). Therefore, we further 

investigated the regionally resolved CO2 content at dry conditions but fixed the abundance of 

remaining compounds as 1 wt%. We derived an overall correction factor (CF) as: 

 
CF = 

100 wt%

100 wt% − [1 wt%+CO2(wt%)]
 

(2.2) 

Including the MAL ratio and CF, we proposed a global-scale mineral dust equation: 

 Dust = [1.89Al × (1 + MAL) + 2.14Si + 1.40Ca + 1.36Fe + 1.67Ti] × CF (2.3) 

where 1.89, 2.14, 1.40, 1.36, and 1.67 are the oxide factors for Al2O3, SiO2, CaO, FeO and Fe2O3 

(in equal amounts), and TiO2, respectively. Both the MAL ratio and CF vary regionally. Because 

the MAL ratio is estimated using dust data with negligible non-dust sources, the dust mass 

calculated by the global equation will exclude non-dust components of K, Mg, and Na when these 

elements are influenced by non-dust sources such as wildfire or sea salt. Similarly, we tested a 

mineral-to-silicon (MSI) ratio as (K2O+MgO+Na2O)/SiO2 to examine the feasibility of using Si as 

the surrogate to estimate K, Mg, and Na. 

To include adsorbed water and salt minerals for special types of dust such as saline dust, volcanic 

dust, and aged dust, we derived an expanded global equation with expanded MAL and CF as 
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described in the Supporting Information (Text 2.6.1). A water adjustment factor (WAF) was 

included in the CF based on the single hygroscopicity parameter κ (Kreidenweis et al., 2008; 

Snider et al., 2016). Although insufficient measured data were available to calculate the 

coefficients in the expanded global equation for these special types of dust, the expanded equation 

offers a framework to represent these special cases when detailed mineralogical information and 

hygroscopicity measurements are available in addition to elemental data. Dust hygroscopicity κ 

depends on many factors including the dust mineralogy or salinity (Tang et al., 2019), chemical 

mixing state (Sullivan et al., 2009), emission source (Peng et al., 2020), and particle size (Ibrahim 

et al., 2018). A review of the literature reveals that the κ of common desert dust is low (<0.1; 

(Gaston et al., 2017; Herich et al., 2009; Koehler et al., 2009; Tang et al., 2019), but for saline dust 

κ can be higher (>0.8; Gaston et al., 2017; Tang et al., 2019). For dust with high hygroscopicity, 

e.g., κ = 1.0, the resulting WAF will be 1.2, meaning adsorbed water can reach 20 wt% of the dry 

dust mass. For common desert dust, K, Mg, and Na exist mainly in feldspar or illite with low 

hygroscopicity (Tang et al., 2019), but they can exist mostly in salt minerals with high 

hygroscopicity for special types of dust such as saline dust. Salt minerals commonly observed in 

various special types of dust require the expanded global equation. For example, saline dust can 

have significant amounts of chlorides and sulfates besides carbonates, such as NaCl and Na2SO4 

(Gaston et al., 2017). Volcanic dust has non-negligible sulfates, chlorides, and fluorides, such as 

MgSO4, NaCl, and K2SiF6 (Gislason et al., 2011; Taylor and Lichte, 1980). Aged dust can contain 

nitrates, sulfates, and chlorides, such as Ca(NO3)2, CaSO4, and CaCl2 (Sullivan et al., 2009). 

To investigate variation in the MAL and MSI ratios of desert dust across different regions, we 

collected elemental characteristics data (elemental ratios) of mineral dust in six major dust source 

regions (Sahara, Sahel, Middle East, East Asia, Australia, and Southwest US) as shown in Table 
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2.2. Other source regions such as South Africa and South America were not selected because 

insufficient measured data are available for these regions. Figure S2.9 summarizes the median and 

interquartile range of elemental ratios and MAL for each region. The data we used were obtained 

from various analysis techniques such as X-ray fluorescence (XRF), inductively coupled plasma-

mass spectrometry (ICP-MS), and particle-induced X-ray emission (PIXE). These techniques have 

different detection limits and analytical errors, which can generate uncertainties on the elemental 

ratios, an inevitable problem for compiling different published analyses (Scheuvens et al., 2013), 

so we used the median value to reduce the influence of outliers. For the Southwest US, we used 

PM2.5 data with dust mass (SOIL) > 50% of the reconstructed fine mass (RCFM) based on the 

IMPROVE algorithm (http://vista.cira.colostate.edu/Improve/reconstructed-fine-mass/) measured 

at IMPROVE rural sites. The measured data in other dust source regions were collected from 

literature and the Surface Particulate Matter Network (SPARTAN, Snider et al., 2015, 

https://www.spartan-network.org/). Given that Na and Mg potentially come from sea salt and K from 

biomass burning, to ensure negligible non-dust sources of Na, Mg, and K in the collected dust data 

from literature, we excluded the data affected by sea salt or biomass burning indicated by the dust 

origin analysis in their literature sources, which removed ~20 potential data sources. We 

incorporated different types of dust (aerosol, soil, and sediment) to augment the data set size. We 

neglected the difference in elemental ratios between different types of dust because insufficient 

previous studies are available to examine this concern. As a reference, the MAL and MSI ratios 

for average continental crust were calculated using elemental ratios from commonly cited sources 

for natural dust (Lide, 1995; Mason, 1952; Taylor & McLennan, 1995; Wedepohl, 1995). We 

applied the Kruskal-Wallis test to compare the MAL and MSI ratios in major dust source regions 

and continental crust. The criterion of a calculated probability with significance level < 0.05 (P < 
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0.05) was used as a measure of statistically significant differences between the groups. When the 

measurements of any element used in the global equation are not available or not well 

characterized, the median elemental ratios for each region shown in Table 2.2 could be applied to 

estimate the concentration of that element. 

Measurements of the CO2 content in dust are commonly omitted, which handicaps the 

investigation of its regional variability. Thus, an indirect way to estimate CO2 content is needed. 

We obtained the worldwide distribution of CaCO3 content in topsoil (0−30 cm) from the 

Harmonized World Soil Database (HWSD version 1.21, FAO & ISRIC, 2012). This distribution 

is generally consistent with the mineralogical maps from several modeling studies (Claquin et al., 

1999; Journet et al., 2014; Nickovic et al., 2012). We estimated the average CaCO3 content in 

major dust source regions using an embedded query Tool in the HWSD viewer. We also used 

mineralogical maps for carbonates in the topsoil (A horizon, 5−10 cm) of the conterminous US 

from the U.S. Geological Survey (USGS, Smith et al., 2019) as a reference. To account for other 

carbonates in dust, we calculated the mass ratio of total CO2 to the CO2 in CaCO3 using available 

measured mineralogical data for major deserts worldwide from literature (Boose et al., 2016; 

Engelbrecht et al., 2016; Shen et al., 2009). Using the inferred total CO2 abundance and fixing the 

remaining compounds as 1 wt% and WAF as unity, we calculated the corresponding CF in the 

global equation.  

The measured data assembled from the literature for this study include various sizes of dust. 

Because the chemical composition of dust can be size-dependent (Cao et al., 2008; Pettijohn, 1975; 

Shen et al., 2007; Wu et al., 2011; Zarasvandi et al., 2011), we compared the differences of the 

elemental characteristics and carbonate content between PM10 and PM2.5 using a data set of surface 
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soil from arid regions (Engelbrecht et al., 2016). Detailed information on data processing is 

provided in the Supporting Information (Text 2.6.2).  

In addition to employing multiple major crustal elements to estimate dust mass, single crustal 

elements such as Si have also been used previously (Chow et al., 2015). As a comparison, Si alone 

with a coefficient M (Dust = Si×M) to account for all the major minerals was also investigated by 

calculating the coefficient M across dust source regions. 
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Table 2.2 Elemental Ratios of Dust in Major Dust Source Regions and Continental Crust 

Region Site Type Size (μm) Si/Al Fe/Al Ca/Al Ti/Al K/Al Mg/Al Na/Al MAL K/Fe Source Method 

Crust 

Upper Continental Crust  rock   3.83 0.44 0.37 0.04 0.35 0.17 0.36 0.63 0.80 
(S. R. Taylor & 

McLennan, 1995) 
NA 

Upper Continental Crust rock   3.92 0.40 0.38 0.04 0.33 0.17 0.33 0.60 0.83 (Wedepohl, 1995) NA 

Continental Crust  rock   3.41 0.62 0.45 0.05 0.32 0.26 0.35 0.68 0.52 (Lide, 1995) NA 

Continental Crust  rock   3.43 0.68 0.50 0.07 0.25 0.28 0.29 0.61 0.37 (Mason, 1952) NA 
 median     3.63 0.53 0.42 0.05 0.33 0.22 0.34 0.62 0.66    

               

Middle East 

Southwest Iran  aerosol 0.8-50 NA NA 1.15 0.08 0.22 0.29 0.13 0.49 NA (Torghabeh et al., 2020) ICP-OES 

Western Iran  aerosol TSP 3.57 0.66 2.86 0.07 0.23 0.56 0.11 0.72 0.35 (Najafi et al., 2014) XRF 

Central Iran 2008  aerosol TSP 4.34 0.79 4.28 0.10 0.22 0.44 0.21 0.68 0.29 (Hojati et al., 2012) ICP-MS 

Central Iran 2009  aerosol TSP 3.29 0.76 5.36 0.14 0.22 0.46 0.32 0.78 0.29 (Hojati et al., 2012) ICP-MS 

Ahvaz, Iran 2009  aerosol TSP NA 1.14 4.73 0.02 0.32 0.89 0.21 1.14 0.28 (Zarasvandi et al., 2011) ICP-MS 

Israela aerosol PM2.5 2.71 0.61 0.68 0.06 0.37 0.21 0.37 0.68 0.60  XRF 

Abu Dhabia aerosol PM2.5 3.05 0.76 2.03 0.06 0.38 0.70 0.23 1.02 0.50  XRF 
 median     3.29 0.76 2.86 0.07 0.23 0.46 0.21 0.72 0.32    

               

Sahara 

Northern Algeria  aerosol 0.1-1 1.85 0.45 1.09 0.06 0.17 NA NA NA 0.38 (Gomes et al., 1990) XRF 

Northern Algeria  aerosol 1-20 2.12 0.48 0.88 0.06 0.19 NA NA NA 0.40 (Gomes et al., 1990) XRF 

Morocco  aerosol TSP 4.97 0.64 5.22 0.09 0.40 0.86 NA NA 0.63 (Khiri et al., 2004) XRF 

Khamaseen dust  aerosol 5-20  4.05 0.73 3.60 0.13 0.25 0.58 0.13 0.77 0.33 (Abed et al., 2009) ICP-MS 

Cairo  aerosol <20 5.83 0.70 2.00 0.14 0.28 0.57 0.16 0.80 0.40 (Linke et al., 2006) XRF 

Cairo  soil <20 6.33 0.77 4.26 0.21 0.24 0.43 0.20 0.67 0.31 (Linke et al., 2006) XRF 

Morocco  soil <20 7.41 0.57 1.85 0.11 0.38 0.31 0.09 0.58 0.66 (Linke et al., 2006) XRF 

Western Sahara site 1  soil <30 6.26 0.66 1.98 0.08 0.34 0.37 0.15 0.66 0.52 (Moreno et al., 2006) ICP-AES 

Western Sahara site 2  soil <30 5.82 0.53 3.40 0.07 0.37 0.42 0.15 0.71 0.70 (Moreno et al., 2006) ICP-AES 

Western Sahara site 3  soil <30 9.88 1.10 3.24 0.20 0.42 0.43 0.23 0.80 0.38 (Moreno et al., 2006) ICP-AES 

Hoggar Massif site 1  soil <30 3.72 0.54 0.22 0.11 0.26 0.14 0.15 0.40 0.48 (Moreno et al., 2006) ICP-AES 

Hoggar Massif site 2  soil <30 4.06 0.50 0.20 0.10 0.28 0.13 0.20 0.44 0.56 (Moreno et al., 2006) ICP-AES 

Tindouf, Algeria  soil <63 4.68 0.65 6.52 0.11 0.34 0.96 0.48 1.40 0.52 (Criado & Dorta, 2003) ICP-AES 

Tiris, Mauritania  soil <63 7.07 0.53 0.25 0.17 0.42 0.14 0.20 0.53 0.79 (Criado & Dorta, 2003) ICP-AES 
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Northern Mali  soil NA NA 0.49 7.95 NA 0.27 0.65 0.13 0.84 0.57 
(Washington et al., 

2009) 
NA 

 median     5.40 0.57 2.00 0.11 0.28 0.43 0.16 0.69 0.52    

               

Sahel 

Dakar, Senegal  aerosol TSP 5.62 0.62 0.25 0.09 0.24 0.15 0.09 0.35 0.38 (Orange et al., 1993) NA 

Mbour, Senegal  aerosol TSP 6.69 0.68 0.14 0.10 0.16 0.16 0.02 0.26 0.24 (Orange et al., 1993) NA 

Pete, Senegal  aerosol TSP 6.59 0.67 0.12 0.10 0.16 0.15 0.01 0.24 0.25 (Orange et al., 1993) NA 

Zaria, Northern Nigeria  aerosol <2 2.23 0.42 0.01 0.06 0.10 0.09 0.00 0.14 0.23 (Møberg et al., 1991) AAS 

Niger, local  aerosol <40 2.50 0.57 0.21 0.11 0.17 0.10 0.04 0.22 0.29 (Formenti et al., 2008) XRF 

Niger, advected  aerosol <40 2.84 0.57 0.39 0.07 0.18 0.16 0.06 0.30 0.32 (Formenti et al., 2008) XRF 

Agadez, Niger  soil <20 6.10 0.23 0.08 0.03 0.49 0.04 0.27 0.54 2.13 (Linke et al., 2006) XRF 

Niger, Monsoon  aerosol <30 5.29 0.50 0.04 0.13 0.16 0.05 0.04 0.17 0.32 (Moreno et al., 2006) ICP-AES 

Niger, Harmattan  aerosol <30 4.84 0.62 0.18 0.11 0.23 0.08 0.07 0.27 0.37 (Moreno et al., 2006) ICP-AES 

Chad Basin  soil <30 4.00 0.63 0.13 0.08 0.16 0.10 0.11 0.27 0.26 (Moreno et al., 2006) ICP-AES 

Bodélé, Chad  soil NA NA 0.64 0.04 NA 0.16 0.08 0.26 0.36 0.26 
(Washington et al., 

2009) 
NA 

 median     5.07 0.62 0.13 0.09 0.16 0.10 0.06 0.27 0.29    

               

Australia 

Birdsville, Queensland  aerosol TSP 3.42 0.77 0.11 0.09 0.19 NA 0.24 NA 0.24 (Radhi et al., 2010a) PIXE, PIGE 

Muloorina Station  aerosol TSP 3.16 0.96 0.58 0.08 0.26 NA 0.12 NA 0.27 (Radhi et al., 2010b) PIXE, PIGE 

Ormiston Creek site 1  soil PM10 NA 0.47 0.09 0.04 0.24 0.10 0.06 0.28 0.51 (Moreno et al., 2009) ICP-AES 

Ormiston Creek site 2  soil PM10 NA 0.44 0.05 0.04 0.17 0.05 0.05 0.19 0.40 (Moreno et al., 2009) ICP-AES 

Wilpena Pound site 1  soil PM10 NA 0.62 0.03 0.05 0.11 0.05 0.01 0.13 0.18 (Moreno et al., 2009) ICP-AES 

Wilpena Pound site 2  soil PM10 NA 0.26 0.03 0.08 0.26 0.07 0.03 0.25 0.99 (Moreno et al., 2009) ICP-AES 

Silverton  soil PM10 NA 0.53 0.12 0.04 0.28 0.10 0.03 0.29 0.53 (Moreno et al., 2009) ICP-AES 

Queensland  sediment <80 3.45 0.59 0.09 0.09 0.14 0.10 0.06 0.23 0.23 (Kamber et al., 2005) ICP-OES 

Autralian continent  sediment <2, 000 8.47 0.53 0.08 0.08 0.23 0.07 0.05 0.25 0.44 
(Reimann & de Caritat, 

2012) 
XRF  

 median     3.44 0.53 0.09 0.08 0.23 0.07 0.05 0.25 0.40    

               

East Asia 

Zhenbeitai, China  aerosol TSP 4.14 0.52 0.79 0.08 0.25 0.26 NA NA 0.48 (Zhang et al., 2003) PIXE 

Zhenbeitai, China  aerosol PM9 2.79 0.63 0.79 0.05 0.31 0.32 0.19 0.62 0.49 (Alfaro, 2003) XRF 

Zhenbeitai, China  aerosol PM2.5 1.90 0.59 1.00 0.05 0.32 0.35 0.15 0.62 0.54 (Arimoto, 2004) PIXE 

Yulin, China  aerosol PM2.5 NA 0.51 0.81 0.07 0.46 0.24 0.19 0.64 0.90 (Xu, 2004) ICP-MS 
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Gansu, China  aerosol TSP 2.94 0.35 0.74 0.03 0.27 0.31 0.11 0.52 0.77 (Ta et al., 2003) XRF 

Desert area, China  soil ＜100 7.68 0.54 0.94 0.06 0.34 0.28 0.29 0.68 0.63 (Ta et al., 2003) XRF 

Gobi area, China  soil ＜100 7.85 0.35 1.17 0.04 0.39 0.18 0.36 0.67 1.09 (Ta et al., 2003) XRF 

Gansu, China  soil ＜30 4.61 0.49 0.97 0.06 0.32 0.26 0.22 0.59 0.66 (Nishikawa et al., 2000) XRF, etc.b 

Ningxia, China  soil ＜30 4.76 0.51 0.91 0.08 0.29 0.27 0.23 0.59 0.56 (Nishikawa et al., 2000) XRF, etc. 

Xi Feng, China  soil TSP 4.56 0.78 2.25 0.07 0.41 0.28 0.06 0.55 0.52 (Wu et al., 2011) XRF 

Xi Feng, China  soil PM10 2.03 0.71 2.30 0.06 0.39 0.29 0.08 0.56 0.55 (Wu et al., 2011) XRF 

Xi Feng, China  soil PM2.5 1.78 0.65 1.56 0.05 0.29 0.29 0.07 0.49 0.44 (Wu et al., 2011) XRF 

Xi Feng, China  soil PM1 1.88 0.68 1.77 0.05 0.29 0.29 0.06 0.49 0.43 (Wu et al., 2011) XRF 
 median     3.54 0.54 0.97 0.06 0.32 0.28 0.17 0.59 0.55    

               

Southwest  

USc  

Jarbidge  

Wilderness 
aerosol PM2.5 2.86 0.60 0.49 0.05 0.43 0.25 0.30 0.71 0.71  XRF 

Saguaro NM aerosol PM2.5 2.33 0.58 0.68 0.05 0.36 0.22 0.24 0.59 0.61  XRF 

Meadview aerosol PM2.5 2.40 0.63 0.78 0.06 0.36 0.30 0.26 0.68 0.57  XRF 

Owens Valley aerosol PM2.5 2.50 0.60 0.78 0.05 0.38 0.37 0.27 0.76 0.64  XRF 

Tonto NM aerosol PM2.5 2.32 0.58 0.63 0.05 0.34 0.26 0.24 0.62 0.59  XRF 

Chiricahua NM aerosol PM2.5 2.36 0.53 0.63 0.05 0.35 0.20 0.27 0.59 0.65  XRF 

Petrified Forest  

NP 
aerosol PM2.5 2.31 0.60 0.71 0.05 0.32 0.27 0.20 0.58 0.54  XRF 

Canyonlands NP aerosol PM2.5 2.31 0.56 0.88 0.05 0.36 0.32 0.19 0.65 0.65  XRF 

White Mountain aerosol PM2.5 2.40 0.57 1.10 0.05 0.33 0.42 0.21 0.73 0.58  XRF 

Capitol Reef NP aerosol PM2.5 2.48 0.63 1.02 0.06 0.39 0.38 0.22 0.74 0.62  XRF 

Zion Canyon aerosol PM2.5 2.44 0.60 1.01 0.06 0.37 0.40 0.27 0.77 0.61  XRF 

Gila Wilderness aerosol PM2.5 2.29 0.55 0.78 0.05 0.34 0.26 0.18 0.58 0.62  XRF 
 median   2.38 0.59 0.78 0.05 0.36 0.29 0.24 0.66 0.61    

Note. NA: not available; XRF: X-ray fluorescence; AAS: atomic absorption spectrometry; ICP-MS: inductively coupled plasma-mass spectrometry; ICP-OES: 

inductively coupled plasma-optical emission spectrometry; ICP-AES: inductively coupled plasma-atomic emission spectrometry; PIXE: particle-induced X-ray 

emission; PIGE: particle-induced gamma emission; TSP: total suspended particulate; NM: national monument; NP: national park.  

aThe Israel and UAE data are the ratios of mean element concentrations using PM2.5 data in 2019 from the SPARTAN network. Only the data with Na/Al < 0.45 

and K/Al < 0.5 were selected to avoid the effects of non-dust sources (Scheuvens et al., 2013). bThis is a reference material certified using multiple techniques. 
cThe Southwest US data are the ratios of mean element concentrations calculated using dust-dominated (SOIL > 50% RCFM) PM2.5 data in 2011-2018 from the 

IMPROVE network.  
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2.3.2 Reference Dust Mass 

To evaluate the performance of the global dust equation, we applied two approximate methods to 

obtain the reference dust mass since no absolute benchmark is available. One is called the total-

mineral-mass approach, which is calculated by summing all the oxides of measured major crustal 

elements (Si, Al, Fe, Ca, Ti, Na, Mg, and K). Elemental concentrations were multiplied by 

corresponding common oxide factors (Reff et al., 2009) to obtain oxide concentrations. 

Measurements of Na, Mg, and K can be directly used to calculate dust mass only when they have 

negligible non-dust sources. Other dust components such as H2O and carbonate are not commonly 

measured, so we applied the same CF used in the global equation to obtain “total mineral mass”.  

The other method is the residual-mass approach, which is calculated by subtracting organic mass 

(OM), elemental carbon (EC), sulfate, nitrate, ammonium, sea salt, and particle-bound water 

(PBW) from the measured PM. OM was calculated by multiplying OC with spatiotemporally 

varying estimates of the OM/OC ratio (Philip et al., 2014). Sea salt was represented as 1.8Cl−, or 

as 1.8Cl when the Cl− concentration was missing (Hand et al., 2012; Malm & Hand, 2007). PBW 

refers to water associated with sulfate, nitrate, ammonium, sea salt, and OM, which was estimated 

using a κ-Kohler framework (Kreidenweis et al., 2008) with specific parameters for each species 

at different RH conditions from Latimer & Martin (2019). Following the IMPROVE algorithm, 

we assumed sulfate exists as ammonium sulfate and nitrate as ammonium nitrate to calculate PBW. 

For anthropogenic dust such as road dust, non-dust trace metals were also subtracted because their 

influence on the residual mass may be non-negligible (Chow et al., 2015). Both approaches have 

limitations. The total-mineral-mass approach cannot directly test the accuracy of the CF because 

it is used in both the total mineral mass and the global equation. As for the residual-mass approach, 

uncertainties exist in the measurements of each PM component and related assumptions, especially 
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the uncertainty in estimating OM (Philip et al., 2014; Simon et al., 2011). Nevertheless, both 

approaches offer information to evaluate our global equation. To optimize the accuracy of the 

reference dust mass, we used dust-dominated samples where all measurements of mineral elements 

were well quantified and contributions from organics and other non-dust species were negligible. 

The data selection and the method of calculating the reference dust mass applied for different data 

sources are further discussed in the next section. 

To carry out the evaluation, we applied several statistical metrics including the normalized mean 

bias (NMB), mean fractional bias (MFB), and normalized root mean square error (NRMSE): 

 NMB (%) = 100 × ∑ (Cj-Rj) ∑ Rj⁄  (2.4) 

 MFB (%) = 100 × 1/N × ∑ (Cj-Rj) [(Cj+Rj)/2]⁄  (2.5) 

 NRMSE (%) = 100 × 1/σ ×√∑(Cj-Rj)
2

N⁄  (2.6) 

where Cj represents the calculated dust mass, Rj is the reference dust mass obtained using the total-

mineral-mass or residual-mass approach, j represents the pairing of the calculated dust mass and 

reference dust mass by site and time for N data points, and σ is the standard deviation of the 

reference dust mass. The NMB and MFB are also calculated with the IMPROVE equation to serve 

as a benchmark of our global equation. Some results with ratio form were plotted on a log scale so 

that deviations from unity are visually symmetrical. 

2.3.3 Evaluation of the Global Dust Equation 
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First, we examined the performance of the global equation for desert dust in source regions and 

for the average global continental crust using the same data sources as those in Table 2.2. For the 

Australian dust data without Si measurements, the median Si/Al ratio (3.44) from available 

measurements was used. We also evaluated the global equation for desert dust (African and Asian) 

transported to non-source regions using measurements from the European Monitoring and 

Evaluation Programme (EMEP, https://www.emep.int/) and literature. We used dust data 

measured at southern EMEP sites during summer African dust events. To reduce the influence of 

sea salt and biomass burning, we selected the data with Na/Al < 0.45 and K/Al < 0.5 reflecting 

typical elemental ratios for Northern African dust (Scheuvens et al., 2013). After the selection, 

PM10 data from six sites during three dust episodes (Alastuey et al., 2016; Matassoni et al., 2009) 

were used for the evaluation. We also applied the global equation to available literature data of 

African dust over the Atlantic islands (Criado & Dorta, 2003; Engelbrecht et al., 2014; Formenti, 

2003; Kandler et al., 2007) as well as Asian dust over Japan (Nishikawa et al., 1991) and Korea 

(Kim et al., 2003). We only used data with minimal influence of non-dust sources suggested in the 

literature. Because Si measurements were missing in the dust data over Japan and Korea, we used 

the median Si/Al ratio (3.54) in East Asian deserts from Table 2.2. For most of the above data, we 

were unable to apply the residual-mass approach owing to insufficient measurements of non-dust 

PM species, so the total-mineral-mass approach was the major method applied for the evaluation. 

According to the protocol of EMEP measurements, we used 50% RH to calculate PBW for EMEP 

data.  

To further evaluate the global dust equation within the US, we utilized daily-integrated PM2.5 

speciation data from the IMPROVE network. Mineral elements are analyzed with XRF for samples 

from IMPROVE sites which are primarily located in rural areas (Solomon et al., 2014). Following 
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the IMPROVE data advisories (http://vista.cira.colostate.edu/Improve/data-advisories/), we used 

data collected in 2011−2018 to avoid the influence of data anomalies or potential problems such 

as non-quantitative Na data prior to 2011 (Hyslop et al., 2015). To balance avoiding uncertainties 

in the measurements of low dust content data while retaining sufficient data, we used dust-

dominated PM2.5 data (SOIL > 50% RCFM based on the IMPROVE algorithm). For cases with 

measured elemental concentration below the minimum detection limit (MDL), we substituted one-

half of the MDL. The spatial distribution of the MAL ratio was investigated by calculating the 

ratio of the average K2O+MgO+Na2O to average Al2O3 concentrations. The NMB and MFB for 

the entire data set and for each site were calculated using both total-mineral-mass and residual-

mass approaches. The NRMSE was also provided for the entire data set. For the residual-mass 

approach, we adopted the common humidity protocol (35%) for gravimetric mass analysis to 

calculate PBW. Following the IMPROVE advisory about increased variation of humidity after the 

weighing laboratory moved in 2011, we applied an RH of 45% for summer (June to August) data 

after the laboratory move. The average fraction of calculated PBW in measured total PM2.5 was 

~4 wt%. All IMPROVE sites including rural and urban sites were considered but only the sites 

with ≥5 daily-integrated PM2.5 records that meet the criterion of SOIL > 50% RCFM were used in 

our maps to ensure representativeness. We neglected the data from the U.S. National PM2.5 

Chemical Speciation Monitoring Network (CSN) given that CSN dust concentrations were 

inconsistent with collocated IMPROVE dust concentrations, and comparisons between the two 

networks would be semiquantitative (Hand et al., 2012). Gorham et al. (2021) indicated that CSN 

has lower flow rate and larger sample deposit area than IMPROVE which makes quantification 

difficult, and particle size cut point efficiency also varies between the two networks. CSN has 
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higher MDLs for mineral elements than IMPROVE, and therefore some elements are poorly 

detected (e.g., Al). 

We explored the applicability of the global equation for anthropogenic dust by evaluating its 

performance for paved road, unpaved road, and agricultural soil dust using measured PM2.5 and 

PM10 data from the U.S. Environmental Protection Agency’s (EPA) SPECIATE 5.0 database 

(https://www.epa.gov/air-emissions-modeling/speciate) and available data from two studies of 

paved road dust in Spain and China (Amato et al., 2009; Zhao et al., 2006). Both total-mineral-

mass and residual-mass approaches were used to calculate the reference dust mass. All the data we 

used were dust-dominated (dust fraction > 50 wt%). More details about the data processing are 

described in the Supporting Information (Text 2.6.3). Insufficient dust-dominated data were 

available to evaluate the global equation for other types of anthropogenic dust including 

construction, combustion, and industrial dust (Pervez et al., 2018; Santacatalina et al., 2010; Shen 

et al., 2016). 

2.4 Results and Discussion 

2.4.1 Characteristics of Regional MAL and CF Coefficients 

The use of Si alone is explored first given its dominant abundance in dust. Figure S2.10 shows that 

the single Si coefficient M can vary by more than a factor of two within a region especially East 

Asia and Sahara where the standard deviation of M was 27% and 21% of the mean respectively. 

This high variability in the soil composition within the selected regions will result in undue errors 

in dust estimated using a single tracer, such as Si. Only the multi-component dust model is 

examined further. 
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We subsequently examine the use of regional MAL ratios. Table 2.2 shows dust data with 

negligible non-dust sources. The corresponding K/Fe ratios of desert dust in the southwestern US 

and eastern Asia are ~0.6 as used in the IMPROVE equation (Malm et al., 1994), but tend to be 

lower (~0.4) in other regions, providing evidence that the K/Fe ratio varies regionally. Figure 2.1 

shows the variation of the MAL ratio in six different dust source regions and the MAL ratio for 

the average global continental crust using the data in Table 2.2. The median MAL ratio is 

significantly different (P < 0.05 for the Kruskal-Wallis test) across regions. Australia and the Sahel 

have low MAL ratios (<0.3) due to high chemical weathering (Kamber et al., 2005; Moreno et al., 

2006, 2009; Reimann & de Caritat, 2012), while the MAL ratio in other regions is close to the 

crustal MAL ratio. Dust with relatively high MAL ratios (~0.8) in the Sahara (Linke et al., 2006; 

Moreno et al., 2006) and the Middle East (Hojati et al., 2012) is enriched in dolomite and 

palygorskite leading to their high Mg/Al ratios (>0.4). Figure S2.11 shows that the MSI ratio varies 

more widely than the MAL ratio both across and within regions, indicating that the sum of 

(K2O+MgO+Na2O) may associate better with Al than Si. This could be because Si has an 

additional major mineral source besides aluminosilicate, i.e., quartz, which makes the MSI ratio 

sensitive to the variation of quartz content across and within regions (Nickovic et al., 2012) as well 

as the significant mineralogical fractionation effect on quartz (Ahmady-Birgani et al., 2015; 

Formenti et al., 2014; Jeong et al., 2014). Therefore, we used the MAL ratio instead of the MSI 

ratio to develop the global equation. No consistent difference of the MAL ratio among aerosol, 

soil, and sediment was observed. Thus, all the data were used to develop regional MAL ratios. The 

particle size effect is discussed below. The median values in Table 2.2 were used to represent 

regional MAL ratios in six dust source regions and the crustal MAL ratio listed in Table 2.3.  
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Figure 2.1 The MAL ratio of (K2O+MgO+Na2O)/Al2O3 in six dust source regions and the average global 

continental crust shown on a log scale. The dashed line indicates the median MAL ratio (0.62) in continental crust of 

four data sources. Each symbol represents a data record in Table 2.2.  

The regional carbonate content and CF are thereafter investigated. Figure S2.12 demonstrates that 

CaCO3 of topsoil is predominantly distributed in arid areas with variation in amounts across 

different deserts. The approximate content of CaCO3 in topsoil for the six dust source regions is 

shown in Table 2.3, which generally agrees with available dust measurements in previous studies. 

Desert dust in the Middle East is commonly rich in carbonate due to abundant calcite and dolomite 

in local soils (Ahmady-Birgani et al., 2015; Awadh, 2012; Modaihsh, 1997). Saharan dust is 

considerably more carbonate-rich than Sahelian dust that is largely originated from the Chad Basin 

(Moreno et al., 2006; Scheuvens et al., 2013). The carbonate content of Australian dust is relatively 

low most likely linked to extensive and intense weathering of Australian soils (Moreno et al., 2009; 

Reimann & de Caritat, 2012). Asian dust in the Taklimakan Desert and Gobi area contains large 

amounts of carbonate (Cao, 2005; Wang et al., 2005). USGS reports somewhat higher calcite 

contents than the HWSD but they both show soils in the Southwest US are primarily carbonate-

rich. Figure S2.13 shows that the mass ratio of total CO2 to CO2 in CaCO3 is not significantly 
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different across regions (Kruskal-Wallis test, P > 0.05). Hence, we applied the median ratio (1.11) 

of total CO2 to CO2 in CaCO3 to account for other carbonates of dust in all the regions. Sensitivity 

tests using 25th percentile (1.06) or 75th percentile (1.20) for this mass ratio show that this 

variation does not significantly change the CF. The resulting dust CO2 content and the calculated 

CF across six dust source regions and the average global continental crust are shown in Table 2.3. 

Although regional-scale variation in MAL and CF is included, microscale or synoptic-scale 

variation cannot be resolved without sufficient measured data. 

We then examine the effects of particle size on the elemental ratios and CO2 content. Figure S2.14 

shows that using surface soil data from arid regions worldwide, the particle size of dust has a 

significant effect (paired-sample Wilcoxon test, P < 0.05) on Si/Al, Fe/Al, Ti/Al, and K/Al, but 

not on Ca/Al, Mg/Al, and Na/Al. As natural mechanical weathering can have various effects on 

minerals with different properties (Boose et al., 2016), the size effect is expected to differ among 

elemental ratios. However, Figure 2.2 indicates that the size effect is not significant for the MAL 

ratio (paired-sample Wilcoxon test, P = 0.14) and the CO2 content (paired-sample Wilcoxon test, 

P = 1.00) which are used in the global equation. A size-dependent dust equation appears 

unnecessary based on the available data. Nevertheless, more available data sets of measured size-

fractionated elemental composition and carbonate content of dust samples are needed to assess the 

size effect and possibly develop a size-dependent global dust equation.  
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Table 2.3 Region-specific MAL Ratio and CF for Natural Dust 

Type Region 
Regional 

MAL 

95% CI of 

MALa 

CaCO3 

(wt%) 

CO2 

(wt%) 

Regional 

CF 

 Crust 0.62 (0.60, 0.68)  1 1.02 

source region Middle East 0.72 (0.68, 1.00) 22 11 1.14 

source region Sahara 0.69 (0.56, 0.80) 22 11 1.14 

source region Sahel 0.27 (0.23, 0.35) 8 4 1.05 

source region Australia 0.24 (0.19, 0.28) 8 4 1.05 

source region East Asia 0.59 (0.54, 0.63) 18 9 1.11 

source region Southwest US 0.66 (0.58, 0.71) 22 11 1.14 

within the US Eastb 0.27    1.05 

within the US West 0.66    1.14 

non-source region 
South Europe & the 

Atlantic islands  
0.48    1.10 

non-source region Korea & Japan 0.59    1.11 

aThe 95% confidence interval (CI) of the median MAL ratio for six dust source regions (deserts) and the average 

global continental crust are calculated. bEastern and western regions are defined based on the dividing line shown in 

Figure 2.3. 

 

Figure 2.2 Particle size effect on the MAL ratio and CO2 content of dust using a data set of surface soil from arid 

regions (Engelbrecht et al., 2016).  Inset P-values are the results of the paired-sample Wilcoxon test. 

The coefficients used within the US are further investigated. Figure 2.3 shows the distribution of 

the MAL ratio at IMPROVE sites. Most of the western sites have a similar MAL ratio with deserts 

in the Southwest, while the MAL ratio at eastern sites is close to that of Sahelian dust (~0.27). A 

previous study (Perry et al., 1997) found that African dust transported to the US has a characteristic 

Ca/Al ratio of <0.26, similar to that of Sahelian dust (median Ca/Al = 0.13 shown in Table 2.2). 

Thus, we applied the coefficients of Sahelian dust (MAL = 0.27, CF = 1.05) to eastern sites and 
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those of the Southwest (MAL = 0.66, CF = 1.12) to western sites using the longitude (103.2°W) 

of the Big Bend National Park site in Texas as an approximate dividing line based on the data 

pattern shown in Figure 2.3. Because we only use dust-dominated data to investigate the MAL 

pattern, using the Sahelian MAL may underestimate dust mass for months without the influence 

of African dust but the dust contribution to total PM2.5 is small in those months. 

 

Figure 2.3 The MAL ratio of (K2O+MgO+Na2O)/Al2O3 at IMPROVE sites using daily-integrated dust-dominated 

(SOIL > 50% RCFM) PM2.5 speciation data in 2011−2018 from the U.S. IMPROVE network. Only the sites with ≥5 

data points were used to ensure representativeness. The number of selected IMPROVE sites is 95. The dashed line 

indicates the dividing line (103.2°W) through the Big Bend National Park site. 

Coefficients for desert dust transported to non-source regions are assumed to be the same as those 

used for source regions. Elemental ratios (e.g., Al/Ca, K/Fe) are used as dust source tracers in 

many studies and the elemental ratios used to calculate MAL (i.e., K/Al, Mg/Al, and Na/Al) can 

remain similar during long-range transport (Cao et al., 2008; Hand et al., 2017; Mori, 2003; 

VanCuren, 2002), so we used the MAL ratio of source regions for non-source regions. Previous 

studies show that CaCO3 may be converted to Ca(NO3)2 or CaSO4 by reacting with acidic species 

if the dust plume passes over highly polluted regions (Huang et al., 2010; Scheuvens et al., 2013a). 

Asian dust transported eastwards passing over urban areas of China can become aged (Heim et al., 
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2020), which may require a higher CF than that for Asian dust in the source region given the 

formation of secondary salts and adsorbed water due to increased hygroscopicity. The expanded 

expression of the global equation can be used in this case, but insufficient mineralogical 

information and hygroscopicity measurements are available to calculate the coefficients. Therefore, 

for Asian dust transported to Japan and Korea (Kim et al., 2003; Nishikawa et al., 1991), we still 

utilized the MAL ratio (0.59) and CF (1.11) of its source region. The loss of carbonate during long-

range transport is not severe for African dust (Coz et al., 2009; Denjean et al., 2015; Scheuvens et 

al., 2013). African dust traveling to southern Europe (Alastuey et al., 2016; Escudero, 2005; 

Sánchez de la Campa et al., 2013; Stuut et al., 2009) and the Atlantic islands (Criado & Dorta, 

2003; Engelbrecht et al., 2014; Formenti, 2003; Reid, 2003) can originate from both the Sahara 

and Sahel, so we employed the average MAL ratio (0.48) and average CF (1.10) of the two regions. 

With limited data for different types of anthropogenic dust in various regions, we estimate the 

coefficients for anthropogenic dust more simplistically than for natural dust. The crustal MAL 

ratio (0.62) was applied to both paved road and unpaved road dust. Given that the road dust data 

are from areas (Texas, Illinois, northeastern Spain, and northern China) where local soils are 

enriched in carbonates or places affected by dust storms (Amato et al., 2009; Smith et al., 2019; 

Zhao et al., 2006), we used a high CF of 1.12 for both paved road and unpaved road dust. For 

agricultural soils, mobile elements (Na, K, and Mg) and carbonates can be leached by irrigation 

(Chow et al., 2003), so we applied a lower MAL ratio of 0.31 (half the crustal MAL) and the 

crustal CF (1.02). 
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2.4.2 Evaluation of the Global Dust Equation 

Figure 2.4 shows the performance of the global equation and the IMPROVE equation for desert 

dust in six source regions and for the average global continental crust. The estimates by the global 

equation are consistent with the “total mineral mass” with a small NMB of -0.7 to 0.2% and a 

small MFB of -0.7 to 0.3% for all the source regions as well as the continental crust, while both 

the NMB and MFB of applying the IMPROVE equation are -6 to 10%. Because the same CF was 

used in both the global equation and “total mineral mass”, the comparison between the two 

estimates indicates the accuracy of applying the region-specific MAL ratio. Although the MAL 

ratio can vary by more than a factor of 4 within a region (Figure 2.1), the resulting bias in using a 

median MAL in each region is within ±1%. The underestimation of US desert dust by the 

IMPROVE equation is also observed in previous studies (Hand et al., 2019; Simon et al., 2010, 

2011). Therefore, it is necessary to consider the variation in dust composition to improve the 

accuracy of estimating dust mass. Using an equation with region-specific coefficients (MAL and 

CF) is found to be an effective approach, which reduced the regional bias by about 6-10% 

compared to the IMPROVE equation with universal coefficients. This reduction in bias matters to 

PM mass closure and model evaluation especially when dust mass is high during dust events. 

Although the global equation agrees well with the “total mineral mass”, the total-mineral-mass 

approach cannot be used when Na, Mg, and K are significantly influenced by non-dust sources 

because they are directly added to the total dust mass. Thus, the advantage of the global equation 

is that it accounts for only the dust component of these elements by applying an average MAL 

ratio obtained from analyses of dust data with negligible non-dust sources. 
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Figure 2.4 The ratio of the dust mass calculated by the global equation and the IMPROVE equation to the “total 

mineral mass” for desert dust in source regions and for the average global continental crust. 

The performance of the global equation for the IMPROVE network is shown in Figure 2.5. Both 

equations show a small bias compared to the “total mineral mass” (NMB and MFB within ±4%), 

which is within experimental uncertainties for the five elements (Al, Si, Ca, Fe, and Ti) measured 

in the IMPROVE network (Gorham et al., 2021; Hyslop & White, 2009). The global equation 

shows a slightly smaller NRMSE (8.5%) than the IMPROVE equation (10%). Applying the 

bootstrapping method, the mean estimates from the two equations have no statistically significant 

difference (P = 0.30). We also attempted to use the residual-mass approach for evaluation but were 

stymied by possible biases in gravimetric and speciated measurements as well as related 

assumptions. The relative humidity is not rigorously controlled in the weighing laboratory (Simon 

et al., 2011), especially after the laboratory was relocated in 2011, and RH generally increased 

after 2011 (Hand et al., 2019). Opposing biases from the residual-mass approach were observed 

before and after the IMPROVE weighing laboratory move in 2011, with no net bias as shown in 

Figure S2.15. Over the high dust mass range (>10 μg/m3), the “residual mass” tended to be larger 
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than estimates from the global equation after 2011, likely related to underestimated PBW, and 

tended to be smaller before 2011, possibly attributable to overestimated OM/OC ratio and the 

assumption of fully neutralized ammonium sulfate (AS) as discussed in Hand et al. (2019). The 

analytical changes in 2011 on dust could also contribute to the bias. Based on the IMPROVE 

advisory, the attenuation effect for light elements at high sample loadings was not corrected after 

the switch to the PANalytical XRF system and the implemented correction before 2011 could 

overcorrect the attenuation. 

 

Figure 2.5 Comparison of the dust mass calculated by the global equation and the IMPROVE equation with the “total 

mineral mass” using dust-dominated (SOIL > 50% RCFM) PM2.5 data in 2011−2018 from the U.S. IMPROVE 

network. Inset statistics are the normalized mean bias (NMB), mean fractional bias (MFB), and normalized root mean 

square error (NRMSE) of using the two equations for the entire data set. N is the number of speciation profiles.  

Despite the overall systematic, yet unquantified, bias in the residual mass approach at IMPROVE 

sites, comparison across sites remains instructive because all sites are similarly affected by 

laboratory protocols. Figure 2.6 presents the performance of the global equation at individual U.S. 

IMPROVE sites including the Virgin Islands National Park site which is known to be impacted by 

African dust (Perry et al., 1997). Compared to the “total mineral mass”, the global equation 

performs well at almost all sites (NMB within ±5%) and reduces the variable performance found 
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for the IMPROVE equation. The residual-mass approach shows similar improvement after using 

the global equation, although overestimation or underestimation was observed at some sites 

possibly related to the heterogeneity of soil carbonate content on a small scale (Smith et al., 2019). 

Soils in the West Coast region of the US are carbonate-poor due to Mediterranean climates 

(Machette, 1985; Smith et al., 2019), which may explain the overestimation at some sites in that 

region. The underestimation at the Pasayten site (48.4°N, 119.9°W) in the Northwest may be 

attributable to the influence of transported Asian dust (Hand et al., 2012, 2017). For the Virgin 

Islands National Park site, the global equation shows a much lower bias (NMB = 5.7%) than the 

IMPROVE equation (NMB = 15.9%). The overall improvement at IMPROVE sites is owing to 

the use of distinct MAL and CF for eastern and western sites in the global equation. Similar maps 

for MFB are shown in Figure S2.16.  
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Figure 2.6 Normalized mean bias (NMB) for the dust mass calculated by (a, b) the global equation and (c, d) the 

IMPROVE equation compared to (a, c) the “total mineral mass” and (b, d) the “residual mass” at IMPROVE sites 

using daily-integrated dust-dominated (SOIL > 50% RCFM) PM2.5 speciation data in 2011−2018 from the U.S. 

IMPROVE network. Only the sites with ≥5 data points were used to ensure representativeness. The number of selected 

IMPROVE sites is 95. 

Evaluation of the global equation for Europe is challenging due to the paucity of complete analyses 

of PM speciation and the strong effect of sea salt and biomass burning on the data (Manders et al., 

2010; Sigsgaard et al., 2015), as well as the transport of dust from both the Sahara and Sahel with 

different dust mineralogy. We identified a campaign in Italy with sufficient characterization to 

contribute to the evaluation of the global equation. Figure 2.7 shows that both the global equation 

and the IMPROVE equation perform well for African dust transported to Italy using the total-

mineral-mass and residual-mass approaches. The global equation shows a somewhat lower NMB 

(-0.3% and -0.9% respectively) than the IMPROVE equation (2.8% and 2.1% respectively) for 
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both approaches. The MFB of using the global equation (-0.2% and -0.0% respectively) is also 

somewhat lower than the IMPROVE equation (2.8% and 3.0% respectively) for both approaches. 

The performance of the global equation at EMEP sites during other African dust episodes is shown 

in Figure S2.17. The high correlation between the estimates by the global equation and “total 

mineral mass” indicates that the MAL ratio (0.48) in the global equation used for African dust 

transported to southern Europe is appropriate for data examined in Figure S2.17. The small 

difference between the estimates by the global equation and IMPROVE equation indicates that the 

fractions of missing compounds considered in both equations are close to each other in this case. 

However, for desert dust significantly depleted or enriched in mobile elements and carbonate, the 

difference will be larger as shown in Figure 2.4. 

 

Figure 2.7 Comparison of dust mass calculated by the global equation and the IMPROVE equation with the “total 

mineral mass” (left) and the “residual mass” (right) for dust-dominated PM10 data (SOIL > 50% RCFM) measured at 

Montelibretti, Italy during an African dust event (20-30 June 2006). Data with Na/Al > 0.45 or K/Al > 0.5 are excluded 

to reduce the influence of non-dust sources. Inset statistics are the normalized mean bias (NMB) and mean fractional 

bias (MFB) of using the two equations. 

We evaluated the global equation for transported African dust over the Atlantic islands as well as 

transported Asian dust over Japan and Korea shown in Figure S2.18. For African dust, the global 

equation shows a slightly lower bias (NMB = 1.4%, MFB = 1.6%) than the IMPROVE equation 
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(NMB = 2.0%, MFB = 1.7%). As for Asian dust, the global equation (NMB = -1.2%, MFB = -

1.2%) performs similarly to the IMPROVE equation (NMB = -1.0%, MFB = -1.0%). The good 

performance of the global equation for desert dust over both source and non-source regions 

confirms that long-range transport does not substantially alter the MAL ratio of desert dust. 

However, the dust mass could be underestimated because the potential secondary salts and 

adsorbed water due to chemical aging are not included. Sufficient mineralogical information and 

hygroscopicity measurements are needed to better estimate transported dust that likely undergoes 

significant chemical aging.    

Figure 2.8 shows the performance of the global equation and the IMPROVE equation for several 

major types of anthropogenic fugitive dust including paved road, unpaved road, and agricultural 

soil dust. Using the total-mineral-mass approach, the NMB for the global equation is similar to the 

IMPROVE equation for paved (3.3% vs 2.4%) and unpaved (-0.05% vs 1.1%) roads, while the 

bias for the global equation is much lower than the IMPROVE equation for agricultural soils (1.9% 

vs 15%). Similar results were found using the residual mass as the reference, although more noise 

was observed which is attributable to greater uncertainties in calculating the residual mass. The 

results suggest that the previously recognized overestimate by the IMPROVE equation of 

agricultural soil (Simon et al., 2010, 2011) can be remedied by accounting for the depletion of 

mobile elements and carbonates by irrigation. Because the evaluation is based on data with limited 

regional coverage, more measured data of anthropogenic dust in different regions are needed to 

further examine the performance of the global equation. It is difficult to derive general coefficients 

(MAL and CF) for other types of anthropogenic dust because their chemical composition can vary 

widely depending on the source and the area. However, an accurate dust equation is still important 
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to estimate the concentration of different types of anthropogenic dust if the missing compounds 

are not measured or some crustal elements have significant non-dust sources. 

 

Figure 2.8 The ratio of the dust mass calculated by the global equation and the IMPROVE equation to the “total 

mineral mass” (left) and the “residual mass” (right) for paved road, unpaved road, and agricultural soil dust using 

PM2.5 and PM10 data from the U.S. EPA’s SPECIATE database and collected literature data (Amato et al., 2009; Zhao 

et al., 2006). Ratios are presented on a log scale. Data points are jittered to avoid overlap. The number of asterisks 

indicates the significance level (**P < 0.01, ****P < 0.0001) of the difference between two groups using the paired-

sample Wilcoxon test.  

2.5 Conclusions 

This study develops a global-scale mineral dust equation used to estimate dust mass by building 

upon the IMPROVE equation that was designed for the U.S. The IMPROVE equation is widely 

used to calculate dust mass but prior work finds general underestimates in dust mass across the 

IMPROVE network, and had not been evaluated globally. Developing a global dust equation needs 

to address several issues especially the variation of dust composition across different regions. 

Three important mineral compounds, K2O, MgO, and Na2O, are usually either missing from 

previous dust equations or directly included without excluding biomass burning or sea salt sources. 

Our global dust equation incorporates the three compounds using Al as a surrogate by defining the 

MAL ratio as (K2O+MgO+Na2O)/Al2O3 that is specific to the dust components of K, Mg, and Na. 
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Analyses of dust data from major dust source regions of the world with negligible non-dust sources 

indicate that the MAL ratio is significantly different across regions with Australian and Sahelian 

dust exhibiting much lower MAL ratios than dust in other regions. A correction factor (CF) is used 

to account for other missing compounds, mainly CO2 which is an important mineral compound 

but is commonly not measured and not included in previous dust equations. The amount of CO2 in 

dust inferred from CaCO3 content in topsoil and mineralogical data also varies substantially across 

regions. We provide flexible options for expanding the global equation to include adsorbed water 

and salt minerals in special types of dust such as saline dust, volcanic dust, and aged dust. 

Applying the global dust equation with the region-specific coefficients (MAL and CF) to major 

dust source regions and using the IMPROVE equation as a benchmark demonstrates that the global 

equation provides evident improvement for estimating the dust mass. Compared to the reference 

dust mass, the resulting NMB and MFB of the estimates from the global equation are within ±1%, 

while those from the IMPROVE equation are -6 to 10%. The global equation also performs well 

(NMB and MFB within ±2%) for desert dust transported to non-source regions using coefficients 

that depend on their source regions and the pollution characteristics along the transport pathway. 

For major types of anthropogenic dust (paved road, unpaved road, and agricultural soil), the global 

equation generally performs well (NMB within ±5%) by applying the crustal MAL ratio and a 

high CF for road dust as well as a low MAL and CF for agricultural soil dust. Applying different 

coefficients to eastern and western IMPROVE sites, the global equation estimates the dust mass 

well (NMB within ±5%) at most sites.  

Further improvement of the global equation would benefit from more complete and accurate 

measurements of mineral elements and CO2 content in dust. More accurate estimation of organic 
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mass, sea salt, and particle-bound water can decrease the uncertainties in calculating the reference 

dust mass using the residual-mass approach. Assigning the coefficients on a finer spatial scale 

could further reduce the bias but would require much more data. Further examining the link of the 

MAL ratio and carbonate content between soil and aerosol is beyond the scope of our work but 

worthy of further study. Characteristics of different types of anthropogenic dust over various 

regions deserve further investigation. Despite the limitations, the global equation with region-

specific coefficients has an absolute advantage over the IMPROVE equation with universal 

coefficients because it considers the variation in dust composition across different regions which 

is important for accurate estimation of dust mass on a global scale.  

To our knowledge, this is the first study to develop and evaluate a region-specific global dust 

equation, which is challenging given the limitation of insufficient complete measurements of dust 

composition on a global scale and the lack of an absolute benchmark for reference dust mass. The 

use of regional coefficients for MAL and CF yields a promising method for estimating the dust 

mass not only outside the US but also within the US. This global equation can help future studies 

assess the measured dust contribution to aerosols more accurately when performing PM mass 

reconstruction and better understand the dust impacts on the environment and human health. More 

accurate representation of ground-based dust measurements can also benefit the development of 

atmospheric models and satellite remote sensing algorithms. 
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2.6 Supplementary Material 

2.6.1 Expanded Global Equation 

To develop a framework to address adsorbed water for special types of dust, we began with the 

single hygroscopicity parameter κ (Kreidenweis et al., 2008; Snider et al., 2016), and derived a 

water adjustment factor (WAF) as: 

 WAF = 1 + (κ
RH

100 − RH
)  × (

ρ
water

ρ
dust

 
) 

(S2.7) 

where RH is relative humidity and ρ is density. The overall κ of dust can be obtained from 

hygroscopic growth measurements or estimated using mineralogical composition and known κ 

values of each mineral. For common desert dust, WAF approaches unity.  

To account for salt minerals in special types of dust, we expanded the expressions of the MAL 

ratio, CF, and the global dust equation given that some elements can be associated with other 

anions besides carbonate and these anions are not considered for common desert dust.  

The expanded expression of MAL is shown below: 

MAL= {[x + 1.20(1 − x)] K Al⁄ + [y + 1.66(1 − y)] Mg Al⁄ + [z + 1.35(1 − z)] Na Al⁄ } 1.89⁄  

= [(1.20 − 0.20x)K Al + (1.66 − 0.66y) Mg Al + (1.35 − 0.35z) Na Al⁄⁄⁄ ] 1.89⁄  

(S2.8) 

The variables x, y, and z represent mass ratios of K, Mg, and Na ions that exist in salt minerals 

apart from carbonates to total K, Mg, and Na, respectively. Specific mineralogical information is 

needed to estimate x, y, and z. For common desert dust, x, y, and z approach zero, which reduces 

the equation to the original expression of MAL where K, Mg, and Na are only included as oxides. 
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The expanded expression of CF combined with WAF is shown below: 

CF=
100 wt%

100 wt% − [1 wt%+CO2(wt%)+Cl
−

(wt%)+F−(wt%)+SO4
2−

(wt%)+NO3
−

(wt%)]
×WAF 

(S2.9) 

Carbonate is incorporated as CO2 as in the original expression of CF. Specific mineralogical 

information is needed to estimate the abundance of all salt minerals. For common desert dust, the 

water content and salt minerals apart from carbonates are negligible, which reduces the equation 

to the original expression of CF.  

The expanded global equation with expanded MAL and CF is shown below: 

Dust={1.89Al×(1+MAL)+[α+2.14(1 − α)]Si+[β+1.40(1 − β)]Ca+1.36Fe+1.67Ti}×CF 

=[1.89Al×(1+MAL)+(2.14 − 1.14α)Si+(1.40 − 0.40β)Ca+1.36Fe+1.67Ti]×CF 

(S2.10) 

The variable α represents the mass ratio of Si in fluorides to total Si for volcanic dust. The variable 

β represents the mass ratio of Ca ions that exist in salt minerals apart from carbonates to total Ca 

for saline dust, volcanic dust, aged dust, etc. Specific mineralogical information is needed to 

estimate α and β. For common desert dust, α and β approach zero, which reduces the equation to 

the original expression of the global equation. 

2.6.2 Processing of a Soil Data Set 

We used an available data set (Engelbrecht et al., 2016) with chemical and mineralogical 

measurements of PM10 and PM2.5 surface soil samples from 65 sites worldwide to investigate the 

mass ratio of total CO2 to CO2 in CaCO3 as well as the effects of particle size on the elemental 

ratios and CO2 content. Since we are interested in desert dust, we excluded samples that are local 
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soils in Europe, lakebed or riverbed deposits, soils collected from roads and artillery firing pads, 

and special types of soil including red clay and green dust. We were therefore left with 38 samples 

in the final data set. This data set is missing measurements of Na, so we used available ICP-OES 

measurements of Na+ as the substitute. For calculating the mass ratio of total CO2 to CO2 in CaCO3 

in dust source regions, we excluded the samples with desert soil in non-source regions (the Atlantic 

islands) and averaged the data of soils with the same particle size from the same site. Hence, 13 

more samples were omitted.  

2.6.3 Processing of Anthropogenic Dust Data from SPECIATE 

We collected measured PM2.5 and PM10 data of paved road, unpaved road, and agricultural soil 

dust from the EPA’s SPECIATE5.0 database. The concentrations of species are given in the weight 

fraction form. Speciation profiles that are composites of other profiles were discarded to avoid 

double weighting. Data without information on the sampling date were excluded. We calculated 

the “residual mass” (RM) using the following equation: 

RM = 100% − OC × (OM OC) − EC − SO4
2−⁄ − NO3

− − NH4
+ − 1.8Cl

−(or Cl) − PBW 

(S2.11) 

When the measurement of NH4
+ is unavailable, we use 1.375 SO4

2−  and 1.29 NO3
−

 in the 

equation assuming (NH4)
2
SO4 and  NH4NO

3
 referring to the IMPROVE algorithm. The common 

humidity protocol (35%) was adopted for calculating the PBW. Table S2.4 provides information 

about the selected data.  
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Figure S2.9 The median and interquartile range of elemental ratios and MAL in six dust source regions and the 

average global continental crust. The six dust source regions include the Middle East (ME), Sahara, Sahel, Australia, 

East Asia (EA), and Southwest US (SW US). 

 

Figure S2.10 The single silicon coefficient M (total dust mass / Si) in six dust source regions and the average global 

continental crust shown on a log scale. The dashed line indicates the median coefficient M (3.4) in continental crust 

of four data sources. 
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Figure S2.11 The MSI ratio of (K2O+MgO+Na2O)/SiO2 in six dust source regions and the average global continental 

crust shown on a log scale. The dashed line indicates the median MSI ratio (0.15) in continental crust of four data 

sources. 

 

Figure S2.12 The distribution of CaCO3 content (wt%) in topsoil from the Harmonized World Soil Database (HWSD 

version 1.21). 
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Figure S2.13 The mass ratio of total CO2 to the CO2 associated with CaCO3 using measured data collected from the 

literature (Boose et al., 2016; Engelbrecht et al., 2016; Shen et al., 2009). Soils from islands were excluded and 

duplicated samples were averaged. 

 

Figure S2.14 Particle size effect on elemental ratios of dust using a dataset of surface soil from arid regions 

(Engelbrecht et al., 2016). ICP-OES measurements of Na+ were used to calculate Na/Al. Data points are jittered to 

avoid overlap. The number of asterisks indicates the significance level (*P < 0.05; **P < 0.01; ***P < 0.001) of the 

difference between two groups using the paired-sample Wilcoxon test. 
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Figure S2.15 Comparison of the dust mass calculated by the global equation with the “residual mass” using dust-

dominated (SOIL > 50% RCFM) PM2.5 data during 2008-2010 (red circles) and 2011−2013 (black crosses) from the 

U.S. IMPROVE network. 

 

Figure S2.16 Mean fractional bias (MFB) for the dust mass calculated by (a, b) the global equation and (c, d) the 

IMPROVE equation compared to (a, c) the “total mineral mass” and (b, d) the “residual mass” at IMPROVE sites 
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using daily-integrated dust-dominated (SOIL > 50% RCFM) PM2.5 speciation data in 2011−2018 from the U.S. 

IMPROVE network. Only the sites with ≥5 data points were used to ensure representativeness. The number of selected 

IMPROVE sites is 95. 

 

Figure S2.17 Comparison of the dust mass calculated by the global equation and the IMPROVE equation with the 

“total mineral mass” for PM10 data measured at EMEP sites during Saharan dust events (17-23 June 2012 and 28 June 

to 7 July 2012). Inset statistics are the normalized mean bias (NMB) and mean fractional bias (MFB) of using the two 

equations. The residual-mass approach was not applied because of insufficient measurements of other PM10 species. 

 

Figure S2.18 The ratio of the dust mass calculated by the global equation and the IMPROVE equation to the “total 

mineral mass” for African dust over the Atlantic islands as well as Asian dust over Japan and Korea. The amounts of 

dust elements are given in mass concentration or mass fraction, so only the mass ratios were shown in the plot for 

comparison. 
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Table S2.4 Anthropogenic dust data from the SPECIATE5.0 database used in this study 

Dust Type SPECIATE Profile Code Sampling Region 

Paved Road 4204, 4206, 4208, 4210, 4212 Texas 

Unpaved Road  4217, 4219, 4221, 3966, 3968 Texas, Illinois 

Agricultural Soila 3297, 3298, 3307, 3308, 3312, 3313, 3332, 3333, 3337, 

3338, 3357, 3358, 3392, 3393 

California 

aMg and Na data are missing. The average elemental ratios of Mg/Al (0.07) and Na/Al (0.02) from another study 

(Chow et al., 2003) in the same location were therefore applied. 
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Chapter 3: Elemental Characterization of Ambient 

Particulate Matter for a Globally Distributed 

Monitoring Network: Methodology and Implications 

This work was supported by the Clean Air Fund and the National Science Foundation (Grant 

2020673), with additional contributions from NASA and the US Agency for International 

Development via the MAIA project at the Jet Propulsion Laboratory, California Institute of 

Technology. This chapter has been published as: Liu, X., Turner, J. R., Oxford, C. R., McNeill, J., 

Walsh, B., Le Roy, E., … Martin, R. V. (2024). Elemental Characterization of Ambient Particulate 

Matter for a Globally Distributed Monitoring Network: Methodology and Implications. ACS 

ES&T Air, 1(4), 283–293. https://doi.org/10.1021/acsestair.3c00069. 

3.1 Abstract 

Global ground-level measurements of elements in ambient particulate matter (PM) can provide 

valuable information to understand the distribution of dust and trace elements, assess health 

impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize 

the elemental composition of PM samples collected from 27 globally distributed sites in the 

Surface PARTiculate mAtter Network (SPARTAN) over 2019−2023. Consistent protocols are 

applied to collect all samples and analyze them at one central laboratory which facilitates 

comparison across different sites. Multiple quality assurance measures are performed including 

applying reference materials that resemble typical PM samples, acceptance testing, and routine 

quality control. Method detection limits and uncertainties are estimated. Concentrations of dust 

and trace element oxides (TEO) are determined from the elemental dataset. In addition to sites in 

arid regions, a moderately high mean dust concentration (6 μg/m3) in PM2.5 is also found in Dhaka 
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(Bangladesh) along with a high average TEO level (6 μg/m3). High carcinogenic risk (>1 cancer 

case per 100,000 adults) from airborne arsenic is observed in Dhaka (Bangladesh), Kanpur (India), 

and Hanoi (Vietnam). Industries of informal lead-acid battery and e-waste recycling as well as 

coal-fired brick kilns likely contribute to the elevated trace element concentrations found in Dhaka.  

3.2 Introduction 

Elemental characterization of ambient particulate matter (PM) provides concentrations of major 

(crustal) and trace elements, which can be used to estimate two PM components – mineral dust 

and trace element oxides (TEO) (Chow et al., 2015; Liu et al., 2022). As the most dominant global 

aerosol by mass, mineral dust can strongly reduce visibility, perturb climate systems, affect 

biogeochemistry, and cause adverse health effects (Knippertz & Stuut, 2014). Some 

epidemiological studies find that acute exposure to dust in PM10 (aerodynamic diameter <10 µm) 

or PM2.5 (aerodynamic diameter <2.5 µm) during dust events as well as long-term exposure is 

associated with cardiovascular and respiratory events and diseases (Chan et al., 2008; Ostro et al., 

2016; Soleimani et al., 2020; Stafoggia et al., 2016; Vedal et al., 2013; Vodonos et al., 2014). Dust 

has both natural and anthropogenic sources such as deserts, unpaved roads, construction, and 

agricultural activities. Trace elements are often more concentrated in PM2.5 and primarily emitted 

by anthropogenic sources such as fossil fuel combustion, industries, and traffic. Many of the trace 

elements (e.g., Pb, As, Cd, Cr) have strong associations with morbidity and mortality (Krall et al., 

2017; Paithankar et al., 2021). Concentrations of hazardous trace elements are particularly high in 

low-income and middle-income countries (LMICs) because of unregulated activities during 

urbanization and industrialization (Fuller et al., 2022; Majumder et al., 2021; Zhu et al., 2020). 

Ground-level observations of atmospheric elements are important to estimate the exposure to dust 

and trace elements, assess health risks, and investigate emission sources, as well as improve 
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atmospheric models. However, few monitoring networks of PM chemical composition exist in 

LMICs. Uniform sampling protocols and reliable analyses are also needed to enable comparisons 

across the world.  

The Surface PARTiculate mAtter Network (SPARTAN, https://www.spartan-network.org/) is a 

long-term project that measures ground-based speciated PM at globally dispersed sites in densely 

populated regions (Snider et al., 2015). This network is designed to expand available global 

ground-based observations of PM composition and to provide information to evaluate and improve 

satellite-based estimates of PM2.5. To our knowledge, SPARTAN is the only global monitoring 

network that measures the elemental composition of PM2.5 and to a lesser extent, PM10. Samples 

are collected from SPARTAN sites and analyzed for elemental composition at one central 

laboratory using consistent protocols, which ensures the comparability of data among the different 

sites. Beginning in 2019, the elemental measurements of SPARTAN samples have been conducted 

by Energy-Dispersive X-Ray Fluorescence (ED-XRF) spectroscopy, which is also used in the U.S. 

national PM2.5 Chemical Speciation Network (CSN) and the U.S. Interagency Monitoring of 

PROtected Visual Environments (IMPROVE) network (Solomon et al., 2014). XRF is widely used 

to characterize the elemental composition of PM filters mainly because of its non-destructive 

nature that requires no acid digestion making the analysis less labor-intensive and allowing 

additional analysis such as Ion Chromatography (Galvão et al., 2018; Rodríguez et al., 2012). XRF 

can also measure the major dust element Si. Prior analysis of SPARTAN filters for 2013−2019 

identified large global variations in measured airborne metal concentrations, but this analysis used 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with nitric acid digestion that 

introduced uncertainty in extraction efficiencies for some crustal elements such as Fe and Al and 
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could not measure Si (McNeill et al., 2020). There is a need to examine more recent filters using 

XRF to assess the robustness of prior conclusions and their degree of persistence over time. 

Especially for networks that operate over long periods across multiple sites, high-quality and 

consistent data is needed to interpret the measurements (Solomon et al., 2014). Robust quality 

assurance (QA) measures are needed including appropriate calibration, filter acceptance testing, 

routine analyses of blanks and standards, and appropriate blank subtraction to obtain reliable 

elemental data. Method detection limits (MDLs) and uncertainties for elemental concentrations 

are needed to evaluate the data quality.  

Both high-quality elemental data and an accurate dust equation that sums dust compounds based 

on elemental data are essential to accurately estimate dust mass. However, most dust equations fail 

to account for all major dust compounds such as carbonate or fail to exclude non-dust components 

of some crustal elements such as K from biomass burning. A recently developed global dust 

equation with region-specific coefficients tackles these challenges and takes account of dust 

composition differences across regions (Liu et al., 2022), which allows calculating and comparing 

dust mass at globally distributed sites. 

The objectives of this paper are to (1) describe the laboratory methods of measuring PM elemental 

composition with ED-XRF employed in the SPARTAN network; (2) describe QA methods and 

reported values; and (3) explore this new global PM elemental dataset from SPARTAN. The 

dataset is analyzed to examine the concentration levels of dust and TEO across globally distributed 

sites, evaluate health risks caused by hazardous trace elements, and explore emission sources of 

trace elements at the site with the highest estimated health risk levels. 
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3.3 Materials and Methods 

3.3.1 Sampling Overview 

Table 3.1 provides specific location information of 27 SPARTAN sites with available XRF data 

examined in this study. High population density and poorly sampled regions are two key factors 

in the selection of SPARTAN sites. Given SPARTAN's objective to evaluate and enhance PM2.5 

estimates derived from satellite retrievals of aerosol optical depth, site locations should have 

available sun photometers providing aerosol optical depth measurements. Site safety and access to 

electricity are also considered in the selection process. The chosen SPARTAN sites represent a 

variety of PM2.5 concentrations and compositions. More details about early development of 

SPARTAN are provided by Snider et al. (Snider et al., 2015, 2016) and Weagle et al. (Weagle et 

al., 2018) 

Sampling procedures and chemical analysis instrumentation have been updated over the last few 

years. Most sites retain the original standard sampling protocol, while select sites have more 

frequent sampling as part of the National Aeronautics and Space Administration (NASA)−Italian 

Space Agency (ASI) Multi-Angle Imager for Aerosols (MAIA) satellite mission (Diner et al., 

2018). For the standard sampling protocol, AirPhoton (Baltimore, MD) SS5 sampling stations are 

employed to collect PM2.5 and PM10 on 25 mm Teflon filters (PT25DMCAN-PF03A, 

Measurement Technology Laboratories) assembled in a cartridge as described by McNeill et al. 

(McNeill et al., 2020) The sampling station uses a sharp-cut cyclone that operates at the target flow 

rate of 5 L/min to collect PM2.5 samples and 1.5 L/min to collect PM10 samples with a sampling 

period of 54 days for one filter cartridge. Each cartridge consists of six filters for PM2.5, one for 

PM10, and one for a field blank. The station collects PM2.5 at staggered 3-hour intervals followed 

by 30-minute intervals of PM10 sampling over a 9-day period to generate one 24-hour PM2.5 sample 
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covering one diel cycle (Figure S3.5). The entire 54-day period generates six 24-hour PM2.5 

samples and one 24-hour PM10 sample. The sampling time per day for the Canadian sites is 

doubled to increase filter mass loading given that the PM2.5 concentration is typically low at these 

sites. Cartridges are assembled with pre-weighed filters in the central laboratory, shipped to each 

site for sampling, and shipped back to the central laboratory for a series of analyses including 

elemental analysis. 

The SPARTAN sites that have been selected or established since 2021 as part of the MAIA mission 

are designed to collect PM2.5 samples in the Primary Target Areas to study the health impacts of 

exposure to different types of airborne particles (Diner et al., 2018). These sites use the same 

instrumentation (AirPhoton SS5), Teflon filter, cyclone, and target flow rate of 5 L/min to collect 

PM2.5 continuously for 24 hours from 9 am to 9 am at mission-defined frequency, currently every 

three days with a planned increase to every two days around the time of MAIA launch in 2025. 

The sites that apply the MAIA sampling protocol are indicated in Table S3.2. 

About 1800 PM2.5 samples and 140 PM10 samples collected during 2019−2023 as well as a few 

samples from December 2018 have been analyzed by XRF and are used in this study. The specific 

sampling period, seasons with samples, and number of samples for each site are summarized in 

Table S3.3 and Table S3.4. 

3.3.2 Instrumentation and Standards 

Pre- and post-sampling weighing of filters is performed using an automated weighing system 

(MTL AH500E). Prior to weighing, each filter is equilibrated for 24 hours in an environment where 

the temperature and relative humidity are controlled to 21.5 ± 1.0 °C and 35.0 ± 1.5%, respectively. 

Each filter is then weighed three times using a Mettler Toledo XPR6UD5 microbalance with a 0.5 
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µg readability within the controlled environment. The mean of these three measurements is 

calculated as pre- or post-weights and the difference between them provides the PM mass. 

The Epsilon 4 ED-XRF instrument (Malvern PANalytical) is used to analyze the elemental 

composition of SPARTAN samples. Details about the Epsilon 4 configuration are provided in the 

Supporting Information (Text 3.6.1). Spectrum background subtraction (blank correction) is 

performed to obtain the net intensity of each element which is converted to mass loading (µg/cm2) 

based on calibration curves established using a set of standards. Five analytical conditions with 

different mediums, X-ray filters, X-ray tube voltages and currents, and analysis time are applied 

to measure the 26 elements reported to SPARTAN as summarized in Table 3.1. 

Table 3.1 Epsilon 4 ED-XRF application used to analyze SPARTAN samples 

Reported Elements Medium X-ray filtera 
Voltageb 

(kV) 

Current 

(µA) 

Analysis 

time (s) 

Na, Mg, Al, Si, S, Cl Helium Ti 9 1666 720 

K, Ca, Ti Air Al-50 12 1250 540 

V, Cr, Mn, Ce Air Al-200 20 750 540 

Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Pb Air Ag 50 300 540 

Cd, Sn, Sb Air Cu 50 300 540 

aAl-50 and Al-200 represent aluminum with a thickness of 50 and 200 µm, respectively. bThe maximum X-ray tube 

voltage is 50 kV. 

Calibration curves are established with 62 standards to include enough standards for each element 

preferably covering the mass loading range of SPARTAN samples. Commonly used and 

commercially available Micromatter (Surrey, Canada) single-element/compound reference 

materials (RMs) and the U.S. National Institute of Standards and Technology (NIST) standard 

reference material (SRM) 2783 are included in the standards. However, these RMs insufficiently 

represent filter material and mass loadings of common ambient PM samples (Yatkin et al., 2018). 
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Inter-laboratory evaluations show that the single compound and multi-element RMs generated 

recently by the University of California-Davis (UCD) are a useful resource to address this issue 

(Hyslop et al., 2019; Yatkin et al., 2018, 2020). Therefore, the UCD-made RMs are also included 

in our standards. Background subtraction is performed on all standards using corresponding 

blanks. The correlation coefficients of calibration curves determined by linear regression are ≥ 

0.99 for all the elements except Mg with a correlation coefficient of 0.98. 

3.3.3 Quality Assurance 

Acceptance testing of filters is performed to ensure filter quality by evaluating the contamination 

level of elements on new filters from the manufacturer (Solomon et al., 2014). Five test filters from 

each new filter box (100 filters) are randomly selected and measured for elemental loadings using 

XRF. If the measurements are all within the acceptance limit, defined as the mean plus three times 

the standard deviation from measurements of 100 laboratory blank (LB) filters from multiple 

boxes, the new filter box is accepted for use in field sampling from the aspect of elemental analysis.  

Routine quality control (QC) measures are conducted to verify calibration and monitor the long-

term stability of the XRF instrument, which includes repeated analyses of one LB, RMs, and 

representative SPARTAN samples. The RMs include a UCD-made multi-element RM and NIST 

SRM 2783. The representative SPARTAN samples are nine selected samples that typify low, 

medium, and high loadings in the SPARTAN network. Details about the routine QC activities 

including frequencies, criteria, and corrective actions that are built on the QC methods used by 

IMPROVE (IMPROVE, 2022) are provided in the Supporting Information (Table S3.5 and Text 

3.6.2). When new calibrations are performed, an additional quality check is performed by 
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conducting replicate measurements of Micromatter stoichiometric standards and ensuring the 

relative uncertainty is < 5%. 

Background contamination levels from both the laboratory and field are considered in calculating 

the method detection limit (MDL) by using the greater of the MDL determined from either field 

blanks (FBs) or LBs. The FB filter is loaded along with the seven sample filters in one of the eight 

filter slots of a cartridge which is shipped to the field and installed in the sampling station without 

air pulled through the FB filter. Following methods used by the IMPROVE network (IMPROVE, 

2022), the MDLs based on FBs (MDLFB) and LBs (MDLLB or analytical MDL) are calculated as 

the 95th percentile minus the median mass loading of 100 FBs and LBs, respectively. 

Concentrations below MDL including negative values are retained and posted on the SPARTAN 

website to avoid losing potentially useful data and to allow data users the flexibility to process 

these values. Both analytical MDLs and final MDLs are reported on the SPARTAN website. 

The overall measurement uncertainties for elemental mass concentrations are estimated by 

combining additive and proportional (mass and volume) uncertainties: 

σ = √(σadditive × 
S

V
)

2

 + σproportion
2  × C

2
 = √(σadditive × 

S

V
)

2

 + (σmass
2  + σvolume

2 ) × C
2
 (3.1) 

where σ is the overall uncertainty for the elemental concentration (ng/m3); σadditive is the additive 

uncertainty (ng/cm2); σproportion is the total proportional uncertainty; C is the elemental 

concentration (ng/m3); S is the known deposition area for 25 mm filters (3.53 cm2); V is the 

sampled volume (m3); σmass is the proportional mass uncertainty; and σvolume is the proportional 

volume (flow rate) uncertainty. The additive uncertainty of each element is derived by dividing 

the MDL by 1.645 which is the critical value of the Z-score in a one-tailed test for a 5% 
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significance level. Deposition area and sampled volume are used to convert the unit of σadditive from 

mass loading (ng/cm2) to mass concentrations (ng/m3). σmass is estimated as the mean of relative 

standard deviations from monthly QC re-analyses of the representative SPARTAN samples using 

only the samples with mean > 3×MDL. σvolume is estimated as the relative standard deviation from 

120 flow rate measurements of six flow meters (3.5%).  

3.3.4 Dataset Analysis 

We use the XRF method described above at all SPARTAN sites and the global dust equation to 

estimate and compare concentration levels of dust and TEO at the global scale. First, ambient 

elemental mass concentrations (ng/m3) are calculated using elemental mass loadings (ng/cm2) 

measured by XRF and sampling flow measurements along with the deposition area on the filter. 

Dust concentrations are computed from concentrations of major crustal elements using the global-

scale mineral dust equation as shown in Eq. (2.3) in Chapter 2. Region-specific coefficients are 

used for different SPARTAN sites (Table S3.6). TEO concentrations are calculated by summing 

all the oxides of measured elements retained after excluding S, Cl, and major crustal elements (Si, 

Al, Fe, Ca, Ti, Na, Mg, and K):  

TEO = 1.79V + 1.69Cr + 1.63Mn + 1.34Co + 1.27Ni + 1.25Cu + 1.24Zn + 1.43As + 

1.41Se + 1.09Rb + 1.18Sr + 1.14Cd + 1.20Sn + 1.26Sb + 1.20Ce + 1.12Pb 

(3.2) 

where oxide factors summarized by Reff et al. (2009) are applied to calculate oxide concentrations 

by assuming common oxide forms of the trace elements. 

The SPARTAN elemental dataset measured using this consistent methodology enables evaluation 

and comparison of health risks from exposure to deleterious trace elements in PM2.5 across the set 

of globally distributed measurement sites. Both carcinogenic risk (CR) and non-carcinogenic risk 
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quantified by hazard quotient (HQ) are estimated by applying the U.S. Environmental Protection 

Agency (EPA) health risk assessment model (U.S. EPA, 2009), which includes the estimation of 

exposure concentration and the use of reference toxicity values (Table S3.7) (U.S. EPA, 2022). 

CR is estimated by multiplying exposure concentration and inhalation unit risk, while HQ is the 

ratio of exposure concentration to inhalation reference concentration (see details in Text 3.6.3). 

Summing the HQ for multiple elements yields the hazard index (HI). The mean elemental 

concentrations of available PM2.5 samples from SPARTAN sites over the study period are used to 

estimate exposure concentrations. Elements with <50% of samples above MDLs at each site are 

excluded when calculating CR or HI for that site to ensure more reliable results. 

We explore potential emission sources of PM2.5 trace elements at the site with the highest estimated 

health risks based on measured elemental data. Correlation analysis is conducted first to examine 

relationships among the elements by calculating non-parametric Spearman's correlation 

coefficients. Elements that are used in the health risk assessment or have source specificity are 

selected to perform correlation analysis. Elements with <50% of samples above MDLs at the 

specific site are excluded. Principal component analysis (PCA) (Henry & Hidy, 1979) is thereafter 

applied to qualitatively explore putative emission sources of trace elements by extracting principal 

components (PCs) that represent most of the variance from normalized elemental data (see details 

in Text 3.6.4).   

3.4 Results and Discussion 

3.4.1 Quality Assurance 

Figure S3.6 provides an example of acceptance testing where mass loadings of all elements on 

each test filter from six new filter boxes are within acceptance limits and therefore these new filter 
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boxes are considered “clean” in terms of elemental contamination level. The monthly 

measurements of a UCD-made multi-element RM, NIST SRM 2783, and representative 

SPARTAN samples within acceptance limits provide an indicator of instrument stability (Figure 

S3.7, Figure S3.8, Figure S3.9). These repeated measurements of the UCD-made multi-element 

RM over time also demonstrate high long-term precision (relative standard deviation within 6%) 

and high accuracy (relative bias within ±5%) by comparing with the certified or reference mass 

loading. The consistent positive or negative bias observed for some elements is attributable to the 

use of multiple types of standards in the calibration. SRM 2783 is difficult to keep flat, a 

requirement for it to receive consistent radiation during each analysis, because its filter membrane 

does not have a support ring (Hyslop et al., 2019), resulting in lower long-term precision than the 

UCD-made multi-element RM.  

The field blank-based MDL is generally higher than the lab blank-based MDL (Table S3.8), 

reflecting the greater range of conditions to which the field blank is exposed. The relative 

difference between the two MDL estimates is small for most elements but significant for sulfur 

which is not yet well understood. About 90%−100% of the samples are above MDL for major 

(crustal) elements except for Mg, while about 10%−90% are above MDL for trace elements. The 

overall uncertainty integrating both additive and proportional uncertainties is reported for each 

measured elemental concentration on the SPARTAN website. The total proportional uncertainty 

is estimated to be 4−11% for elements that have at least one re-analyzed sample with a mean > 

3×MDL (Table S3.9). For elements without estimated σproportion (Cr, Ni, Cu, Cd, Sn, and Sb), σadditive 

can approximate the overall expected uncertainty for most samples because the concentrations of 

these elements are usually low. In addition to this “bottom-up” approach, a “top-down” approach 

using collocated sampling (Hyslop & White, 2008, 2009) will be applied to provide more 



66 

 

 

comprehensive estimates of uncertainties when sufficient collocation data are available in the 

future. 

3.4.2 Dust and TEO Levels 

Table S3.10 and Table S3.11 summarize elemental concentration levels (mean ± standard 

deviation) in PM2.5 and PM10 samples from SPARTAN sites, respectively. To understand the 

magnitude of elemental uncertainties, we use measured elemental concentrations for the Dhaka 

site as an example and compare standard deviations of the measured concentrations with 

uncertainties for the means. The uncertainty is much lower than the standard deviation by about 

one order of magnitude for most elements (Figure S3.10), indicating that the measurement 

uncertainty is negligible. For most sites, the uncertainty is significantly lower than the standard 

deviation for most elements (Table S3.12).  

The mass concentration levels of dust and TEO calculated for PM2.5 and PM10 samples from 

SPARTAN sites are listed in Table S3.3 and Table S3.4, respectively. The two tables also provide 

PM2.5 and PM10 concentrations along with corresponding air quality levels by comparing with the 

World Health Organization's annual Air Quality Guideline and Interim Targets (WHO, 2021). 

Figure 3.1 shows the mean relative contributions of dust and TEO to PM2.5 samples across globally 

distributed SPARTAN sites. Dust contributes about 20%−40% to PM2.5 for sites located in deserts 

or otherwise impacted by dust events (Abu Dhabi, UAE; Ilorin, Nigeria; Fajardo, Puerto Rico; 

Rehovot, Israel; Haifa, Israel; and Addis Ababa, Ethiopia). The Abu Dhabi and Ilorin sites have 

the highest mean PM2.5-dust concentrations of ~10 μg/m3 as well as the highest mean PM10-dust 

concentrations of ~50 μg/m3. At the Kanpur (India) site, both natural dust (from the neighboring 

Thar Desert) and anthropogenic dust (e.g., road and agricultural dust) (Bhaskar & Sharma, 2008; 



67 

 

 

Misra et al., 2014; Prospero, 2002) contribute to a similarly high mean PM2.5-dust concentration 

(9 μg/m3, 21%) as that observed at desert sites. The Dhaka (Bangladesh) site, located in a humid 

region, also exhibits a moderately high mean concentration of dust (6 μg/m3) that is likely driven 

by anthropogenic sources such as road dust or construction dust (Kabir et al., 2022). Nonetheless, 

the relative dust contribution to PM2.5 in Dhaka is 16%, lower than that of desert sites because of 

the more significant PM2.5 contribution from non-dust species in Dhaka. The highest mean TEO 

concentration in PM2.5 is found in Dhaka (6 μg/m3) followed by Hanoi, Vietnam (1 μg/m3), while 

the TEO concentration at other sites is < 1 μg/m3. The relative TEO contribution to PM2.5 varies 

from <1% at most sites (e.g., Abu Dhabi, Rehovot, and Fajardo) to 4% in Hanoi, and reaches up 

to 16% in Dhaka. Prior analysis of SPARTAN filters for 2013-2019 using ICP-MS similarly 

identified high trace element concentrations at the same Dhaka and Hanoi sites, but mineral dust 

concentrations were uncertain due to weak acid digestion and lack of Si measurements, and the 

oxide forms of trace elements were not considered (McNeill et al., 2020). Our analysis finds that 

the TEO concentration at Dhaka not only persists but is even higher when oxide forms are 

included. This high average TEO level at Dhaka will be further discussed in Section 3.4. 
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Figure 3.1 Mass fraction of dust and trace element oxides (TEO) in PM2.5 based on mean concentrations at SPARTAN 

sites. Inset values are mean PM2.5 concentrations (μg/m3). Inset asterisks indicate sites that do not have samples from 

all four seasons.  

3.4.3 Health Risk Assessment 

Figure 3.2 shows the contributions of trace elements (As, Pb, Cd, Co, and Ni) to carcinogenic risk 

(CR, defined in Section 2.4) for adults across SPARTAN sites with ≥50% of samples above MDLs 

for at least three examined trace elements. The highest total CR of 7.7×10-5 for adults (about 77 

cancer cases per 1,000,000 adults) occurs in Dhaka followed by Kanpur and Hanoi. The CR caused 

only by As in Dhaka, Kanpur, and Hanoi exceeds the benchmark (Choi et al., 2022; U.S. EPA, 

1991) of 1×10-5 and is higher than the sum of CR caused by the remaining elements, suggesting a 

concerning level of atmospheric As at these sites. Estimates based on global simulation from 

Zhang et al. (2020) indicate similarly high CR caused by atmospheric As in several regions 

including Asian countries such as India and Bangladesh. Previous studies find that As pollution in 

groundwater is a serious problem in South and Southeast Asia (Fendorf et al., 2010; Podgorski & 

Berg, 2020; Shaji et al., 2021), while our measured data indicate that exposure to As through 
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inhalation of PM2.5 may also be of concern in these regions. In addition to As, the CR caused by 

Co or Cd alone also exceeds 1×10-5 in Dhaka. As and Co are major contributors to CR for most 

examined SPARTAN sites, while Pb contributes significantly to CR mainly in Dhaka and Ni to 

CR in Singapore. Specific CR estimates for each element for both adults and children at different 

sites are provided in Table S3.13. The CR value for adults is four times as high as that for children 

because of the difference in exposure duration used for the CR calculation (Text 3.6.3). Dhaka is 

the only site where the combined CR exceeds the benchmark of 1×10-5 for both adults and children.  

 

Figure 3.2 Absolute (left) and relative (right) contributions of trace elements to carcinogenic risk (CR) for adults 

estimated using mean elemental concentrations in PM2.5 samples from SPARTAN sites with ≥50% of samples above 

MDLs for at least three examined trace elements. The black dashed line represents the 1×10-5 cancer benchmark for 

adults. Sites are sorted by the total CR. Sites with shading lines do not have samples from all four seasons. 

Figure 3.3 displays the contributions of trace elements (As, Cd, Co, Ni, Mn, and V) to hazard index 

(HI, defined in Section 2.4) across SPARTAN sites with ≥50% of samples above MDLs for at 

least three examined trace elements. The inhalation reference concentration of Pb is not available 

to assess its hazard quotient (HQ, defined in Section 2.4). Specific HQ estimates for each element 

at different sites are provided in Table S3.14. Dhaka has the highest HI of 6.8, followed by Kanpur, 

Hanoi, Singapore, Beijing, and Kaohsiung all exceeding the threshold (U.S. EPA, 1991) of unity. 
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Similar to CR, the non-carcinogenic risk caused by As, Cd, or Mn alone exceeds the benchmark 

at the Dhaka site, which suggests that multiple large emission sources may exist and have 

significant adverse health impacts in Dhaka. Kanpur also has a high non-carcinogenic risk caused 

solely by As exceeding the threshold. The relative contributions of different elements to HI vary 

significantly across different sites. The highest absolute and relative contributions of V and Ni to 

HI are observed at the Singapore site. Given that V and Ni are often used as indicators for residual 

oil combustion and Singapore Strait has the highest density of emissions originating from shipping 

globally (Johansson et al., 2017), the high contribution of V and Ni to HI implies a considerable 

health impact of shipping emissions in Singapore.  

 

Figure 3.3 Absolute (left) and relative (right) contributions of trace elements to hazard index (HI) estimated using 

mean elemental concentrations in PM2.5 samples from SPARTAN sites with ≥50% of samples above MDLs for at 

least three examined trace elements (As, Cd, Co, Ni, Mn, and V). The dashed line represents the threshold HI of 1. 

Sites are sorted by the total HI. Sites with shading lines do not have samples from all four seasons. 

3.4.4 Investigation into TEO Sources in Dhaka 

The high TEO concentration observed at the Dhaka site with the highest CR and HI caused by 

hazardous trace elements across SPARTAN warrants further investigation. The Dhaka site is in a 

busy area with mixed residential, commercial, and industrial uses where many emission sources 
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could contribute to its high TEO concentration. The breakdown of oxides of different trace 

elements in PM2.5 samples from Dhaka indicates oxides of Zn (3.8 μg/m3) and Pb (1.1 μg/m3) are 

major contributors to this high TEO concentration (Figure S3.11). This PM2.5-Pb level 

substantially exceeds the U.S. National Ambient Air Quality Standard (NAAQS) for Pb of 0.15 

μg/m3 in total suspended particles as a 3-month average (U.S. EPA, 2016b), suggesting a 

significant Pb pollution issue at Dhaka. High concentrations of Zn (6.0 μg/m3) and Pb (5.4 μg/m3) 

in PM2.5 were also observed at a site located ~4 km north of the SPARTAN site in Dhaka from 

December 2012 to February 2013 (Rahman et al., 2020). 

We explore potential emission sources of trace elements in PM2.5 at the Dhaka site. Figure 3.4 

shows correlation coefficients among different elements for PM2.5 samples from the Dhaka site. 

High positive correlations (r > 0.9, P < 0.0001) are observed among Pb, Sb, Se, and As, and among 

crustal elements including Al, Si, Ca, Ti, and Fe. The strong correlation of As with Pb, Sb, and Se 

suggests that the high airborne As level at the Dhaka site is likely primarily driven by 

anthropogenic sources rather than natural dust sources. Significant correlations (r > 0.8, P < 

0.0001) exist among Zn, Cd, and Co, while V is only significantly correlated with Ni (r = 0.6, P < 

0.01) suggesting its unique emission source. In contrast to other trace elements, Cr correlates well 

with crustal elements (r > 0.7, P < 0.0001). 
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Figure 3.4 Correlation matrix for elemental concentrations of PM2.5 samples from the Dhaka site. Elements are sorted 

by atomic mass. The number of asterisks indicates the significance level (*P < 0.05; **P < 0.01; ***P < 0.001; ****P 

< 0.0001). The color indicates the correlation coefficient. 

The PCA results for the Dhaka site (Table S3.15) are consistent with patterns observed in the 

correlation analysis. Interpretation of each principal component (PC) is provided in the Supporting 

Information (Text 3.6.5). The PCA results interpreted with existing literature and an understanding 

of potential sources around the site location, indicate that coal-fired brick kiln industries 

(Guttikunda et al., 2013; Lee et al., 2021; Weyant et al., 2014) and unregulated lead-acid battery 

recycling (Kumar et al., 2022; Majumder et al., 2021) likely contribute to the elevated levels of Pb 

and As found in Dhaka, while traffic (Councell et al., 2004; Rahman et al., 2019) and the growing 

industries of informal e-waste recycling (Awasthi et al., 2016; Mowla et al., 2021) may be 

responsible for the elevated concentrations of Zn, Cd, and Co in Dhaka. Given the lack of surface 

wind data and a micro-scale emission inventory, further investigation of potential sources is 
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constrained. More samples from future sampling will help to better understand trace element levels 

and the emission sources in Dhaka.  

3.5 Outlook 

In summary, we described the methodology of PM elemental characterization with X-ray 

fluorescence for the SPARTAN network. Samples are collected from globally distributed urban 

cities and analyzed at one central laboratory using consistent protocols, which ensures the 

comparability of data across different sites. Reference materials that mimic filter material and mass 

loadings of typical PM samples are applied to calibrate the instrument. Acceptance testing is 

conducted to ensure filter quality and routine quality control measures are implemented to monitor 

instrument stability. Background levels from both the lab and field are considered to calculate 

method detection limits. Additive and proportional uncertainties are estimated to provide overall 

measurement uncertainties. Uncertainty is generally substantially lower than the standard 

deviation of measured concentrations, indicating that for most sites and elements measurement 

uncertainty is negligible. We applied this globally distributed PM elemental dataset to compare 

concentration levels of dust and trace element oxides (TEO) and health risks caused by hazardous 

trace elements across the SPARTAN sites. The average dust concentration contributes up to 40% 

to PM2.5 for sites located in arid regions. The Dhaka site located in a humid region features both a 

moderate dust level (6 μg/m3, 16%) and the highest TEO level (6 μg/m3, 16%) of PM2.5 contributed 

mainly by oxides of Zn and Pb. Dhaka has the highest total carcinogenic risk (~77 cancer cases 

per 1,000,000 adults) and the highest hazard index (6.8) exceeding the thresholds. High 

carcinogenic risk level caused only by As (>1 cancer case per 100,000 adults) in Dhaka, Kanpur, 

and Hanoi suggests significant airborne particulate As pollution. Growing industries of informal 

recycling of lead-acid batteries and e-waste as well as coal-fired brick kiln industries are identified 
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as likely sources contributing to the elevated concentrations of trace elements (Pb, As, Zn, Cd, and 

Co) in Dhaka.  

More samples representative of all four seasons are needed to better estimate dust and TEO levels 

across different sites and enable time-series analyses. Both health risk assessments and source 

apportionment analyses in this paper are intended to provide qualitative information about health 

risk levels and emission sources at SPARTAN sites. As the elemental dataset grows in the future, 

more complete measurements of exposure concentrations can be used to estimate health risks. 

Uncertainties exist in exposure parameters and reference toxicity values used for the risk 

assessment. The bioavailability of trace elements may be useful to further evaluate health risks 

(Huang et al., 2018). Further investigation of the oxidation state of trace elements would better 

constrain their mass concentrations. Given the sample collection schedule of periodic sampling 

over nine days onto a single filter, considerable smearing across factors is likely present in the 

PCA analysis. In the future, other models such as Positive Matrix Factorization (PMF) (Paatero & 

Tapper, 1994), can be used to perform source apportionment based on the data of all PM 

components and associated uncertainties at sites applying the MAIA protocol with increased 

sampling frequency and a larger sample size. Despite the limitations, the concerning health risk 

level caused by hazardous trace elements observed at the Dhaka, Kanpur, and Hanoi sites 

demonstrates the need for urgent attention to survey elemental composition to identify regions 

with elevated trace elements and inform air quality management strategies.  
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3.6 Supplementary Material 

3.6.1 Configuration of the Epsilon 4 ED-XRF Instrument 

Epsilon 4 is equipped with a 15-Watt silver anode X-ray tube, a high-resolution silicon drift 

detector, X-ray filters, a sample spinner, and a helium purge facility. X-ray filters placed between 

the X-ray tube and the sample are used to improve the signal-to-noise ratio by reducing the 

intensity of interfering tube lines and background. The spinner rotates the sample holder during 

measurement to reduce the effects of sample heterogeneity and physical imperfections. Helium 

instead of air is used to measure elements lighter than K because air absorbs low-energy radiation 

from these elements. The spectrum of fluorescence intensities versus energy is fitted to individual 

line profiles of elements present in the sample through a deconvolution process. K-lines are used 

to determine intensities for most elements, while L-lines are used for Ce and Pb because the 

required energy of their K-lines exceeds the measurement range of the instrument. The 

deconvolution method in Epsilon 4 cannot resolve line profiles of Na and Mg well, so their K-

lines are represented using assigned energy ranges.  

3.6.2 Definition of Acceptance Limits in Quality Control Criteria 

Acceptance limits in the quality control criteria for blanks and reference materials are defined 

differently following the IMPROVE method (IMPROVE, 2022). For PTFE blanks, the acceptance 

limit is defined as the mean plus three times the standard deviation from measurements of 100 lab 

blanks. For the UCD-made multi-element RM, uncertainties provided in the certification are used 

as the acceptance limit, i.e., ± 10% for certified loadings or 20% for reference loadings. For NIST 

SRM 2783, the acceptance limit is defined as root-mean-squared-relative-errors (RMSREs) plus 

three times the standard deviations of absolute relative biases from multiple measurements. The 

absolute relative bias is calculated using |C − Ccer/ref| Ccer/ref⁄  where C is the monthly 
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measurement of SRM 2783 and Ccer/ref is the certified or reference mass loading. For representative 

SPARTAN samples, the acceptance limit is defined as ±1 for Z-score which is calculated using 

the following equation:  

 
Zi =

Ci − Cref,i

√Ui
2 + Uref,i

2

 
(S3.3) 

where Ci is the mass loading of each representative SPARTAN sample i; Cref,i is the reference 

loading represented using the mean from multiple measurements of the sample; Ui is the 

uncertainty (combining additive and proportional mass uncertainties) of Ci; and Uref,i is the 

standard deviation from multiple measurements of the sample. 

3.6.3 Method of Health Risk Assessment 

Both carcinogenic and non-carcinogenic risks are estimated by applying the U.S. EPA health risk 

assessment model (U.S. EPA, 2009). The exposure concentration (EC) through inhalation for each 

element is calculated first by the following equation: 

EC = CA × 
ET × EF × ED

AT
 (S3.4) 

where CA is the contaminant concentration in air (µg/m3); ET is the exposure time (24 hours/day); 

EF is the exposure frequency (350 days/year); ED is the exposure duration (6 years for children 

and 24 years for adults); and AT is the averaging time (for carcinogens, AT = 70 years × 365 

days/year × 24 hours/day; for non-carcinogens, AT = ED × 365 days/year × 24 hours/day). The 

carcinogenic risk (CR) and non-carcinogenic risk represented using hazard quotient (HQ) can be 

calculated as: 
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CR = EC × IUR (S3.5) 

HQ = 
EC

RfC
 (S3.6) 

where IUR is the inhalation unit risk (μg/m3)−1 and RfC is the inhalation reference concentration 

(μg/m3). The IUR and RfC values used in this study are obtained from the Regional Screening 

Level (RSL) Resident Ambient Air Table (U.S. EPA, 2022) and listed in Table S3.7. Summing 

the HQ for multiple elements yields the hazard index (HI). The CR benchmark of 1×10-5 (one 

cancer per 100,000 people) is used to identify significant carcinogenic risk, and HI > 1 is used to 

indicate significant non-carcinogenic risk (Choi et al., 2022; Huang et al., 2018; U.S. EPA, 1991). 

3.6.4 Method of Principal Component Analysis (PCA) 

The elemental data is first normalized by subtracting the mean from each data point and dividing 

by the standard deviation, generating a Z-score for each data point. A covariance matrix is then 

calculated for the normalized data, and eigenvalues and eigenvectors of the covariance matrix are 

computed to identify principal components (PCs). The number of retained PCs is selected based 

on both the scree plot that displays eigenvalues for individual PCs and the Kaiser criterion that 

recommends retaining PCs with eigenvalue > 1.0 (Cattell, 1966; Kaiser, 1960). Varimax rotation 

is performed to better interpret the results by trying to associate each element to primarily one PC. 

To conduct the analysis with a sufficient sample size (≥15), we relax the flow rate criteria (5 L/min 

± 10%) and include samples collected at a start or end flow rate within 3.8−5.8 L/min which 

corresponds to a cyclone cut-point range of 2.1−3.4 μm. The correlations between elements are 

treated as similar in this size range. 
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3.6.5 Interpretation of PCA Results for Dhaka 

Table S3.15 presents the PCA results for the Dhaka site. Four PCs are extracted accounting for 

90% of the total variance and explaining 70%−100% of the variance for all elements except Mn 

(33%) which has an emission source different from the four PCs. The first PC (PC1) is strongly 

correlated with crustal elements and moderately correlated with Cr, potentially indicating mineral 

dust mixed with emissions from tannery industries. Soils and groundwater in the Hazaribagh area 

close to the sampling site were heavily contaminated with Cr by waste discharged from tannery 

industries (Khan et al., 2020; Rahman et al., 2019). PC2 has high loadings (> 0.95) of Pb, Sb, Se, 

and As, indicating a profile that may be related to emissions from coal combustion sources such 

as coal-fired brick kilns. Many elements including Pb, As, Se, and Sb are emitted during coal 

combustion (Tian et al., 2014). Across South Asia, bricks are widely produced in coal-fired kilns 

without pollution control to meet the high demand for construction materials due to rapid 

urbanization (Weyant et al., 2014). Hundreds of coal-fired brick kilns exist within and around 

Dhaka, significantly affecting air quality and human health (Guttikunda et al., 2013; Lee et al., 

2021). Another major emission source is unregulated lead-acid battery (LAB) recycling. The rising 

demand for motor vehicles leads to the growth of LAB recycling industries, while recycling is 

performed mainly through unregulated and dangerous smelting processes in LMICs such as 

Bangladesh (Kumar et al., 2022). Dhaka is located in one of the Pb-contaminated hotspot areas in 

Bangladesh with a significant number of LAB recycling and lead smelting industries (Majumder 

et al., 2021). Other elements besides Pb such as Sb and As can also be emitted from LAB smelters 

(Johnston et al., 2019). PC3 is dominated by Zn, Cd, and Co, which suggests traffic and industrial 

emissions. The Dhaka site is surrounded by heavily congested roads within ~1 km and Zn is a 

typical tracer for traffic emissions such as tire wear, brake wear, and lubricant oil (Councell et al., 
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2004). Zn, Cd,  and Co can be emitted from numerous nearby paint, rubber, plastic, and printing 

industries as well as informal e-waste recycling shops (Leyssens et al., 2017; Mowla et al., 2021; 

Rahman et al., 2019). The rapid digitalization in Bangladesh and export from elsewhere cause 

increasing e-waste that is informally recycled through unregulated combustion such as open 

burning, which may contribute to the elevated elemental concentrations found here (Awasthi et 

al., 2016; Mowla et al., 2021). PC4 likely represents shipping emissions given its high loadings of 

V and Ni. Many ships travel on the Buriganga River in the southwestern part of Dhaka and ships 

use residual oil which emits V and Ni (Begum et al., 2011). 

 

Figure S3.5 A 9-day sampling period following the SPARTAN standard sampling protocol. The red color indicates 

PM2.5 sampling time while the blue color represents PM10 sampling time.  
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Figure S3.6 Acceptance testing results of six new filter boxes. The dashed red line represents the acceptance limit 

that is defined as the mean plus three times the standard deviation from measurements of 100 lab blanks. 

 

Figure S3.7 Quality control plots of a multi-element reference material made by the University of California-Davis. 

The solid black line represents the certified or reference mass loading and the dashed red line represents the acceptance 
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limit, i.e., ±10% uncertainty of certified loadings or ±20% of reference loadings. Elements that have certified or 

reference mass loadings are indicated by a (C) or (R), respectively, after the element symbol. 

 

Figure S3.8 Quality control plots of absolute relative bias for NIST SRM 2783. The dashed red line represents the 

acceptance limit that is defined as the root mean squared relative error plus three times the standard deviation of the 

absolute relative bias from multiple measurements of NIST SRM 2783. Elements that have certified or reference mass 

loadings are indicated by a (C) or (R), respectively, after the element symbol. 
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Figure S3.9 Quality control plots of mean Z-score for the representative SPARTAN samples. The dashed red line 

represents the acceptance limit of ± 1. 

 

Figure S3.10 Comparison between the elemental standard deviations (ng/m3) of available PM2.5 samples collected 

from the Dhaka site and uncertainties (ng/m3) for the mean elemental concentrations at the Dhaka site. 



83 

 

 

 

Figure S3.11 Boxplots for oxide concentrations of individual trace elements in PM2.5 samples collected from the 

Dhaka site. The horizontal line indicates the median. The lower whisker extends from the first quartile to the smallest 

value greater than 1.5 times the interquartile range (IQR) below the first quartile. The upper whisker extends from the 

third quartile to the largest value smaller than 1.5 times the IQR above the third quartile. The dots represent outliers 

outside the range of the whiskers. 
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Table S3.2 Location information of SPARTAN sites used in this study sorted alphabetically 

Site Host Institute Latitude Longitude 
Start date for 

MAIA sites 

Abu Dhabi Masdar Institute 24.44 54.62  

Addis Ababaa Addis Ababa University 9.01 38.82 12/6/2022 

Bandung Institute of Technology Bandung -6.89 107.61  

Beijinga Tsinghua University 40.00 116.33 8/30/2022 

Bujumbura University of Burundi -3.38 29.38  

Delhia American Center 28.63 77.22 6/28/2022 

Dhaka Dhaka University 23.73 90.40  

Downsview Environment and Climate Change Canada 43.79 -79.47  

Fajardo Cabezas de San Juan Nature Reserve 18.38 -65.62  

Haifaa Technion Israel Institute of Technology 32.78 35.02 2/16/2022 

Halifax Dalhousie University 44.64 -63.59  

Hanoi Vietnam Academy of Science and Technology 21.05 105.80  

Ilorin Ilorin University 8.48 4.67  

Johannesburga University of Johannesburg -26.18 28.00 4/7/2022 

Kanpur Indian Institute of Technology Kanpur 26.51 80.23  

Kaohsiunga Kaohsiung Medical University 22.65 120.31 8/20/2022 

Lethbridge Lethbridge University 49.68 -112.87  

Melbourne University of Melbourne -37.80 144.97  

Mexico City Universidad Nacional Autónoma de México 19.33 -99.18  

Pasadenaa Jet Propulsion Laboratory 34.20 -118.17 11/9/2021 

Pretoriaa Council for Scientific and Industrial Research -25.76 28.28 4/15/2021 

Rehovota Weizmann Institute 31.91 34.81 11/5/2021 

Seoul Yonsei University 37.56 126.93  

Sherbrooke Sherbrooke University 45.38 -71.93  

Singapore National University of Singapore 1.30 103.78  

Taipeia National Taiwan University 25.04 121.50 1/27/2022 

Ulsan Ulsan National Institute of Science and Technology 35.58 129.19  

aThese sites began using the MAIA sampling protocol on the specified date. 
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Table S3.3 Sampling information and concentration levels (μg/m3) of PM2.5, dust, and trace element oxides (TEO) for PM2.5 samples from SPARTAN sites used 

in this study 

Site Start date Stop date Sampling seasonsa Nb 
PM2.5 

levelc 

PM2.5 Dust TEO 

mean median mean median mean median 

Kanpur 7/14/2021 5/24/2022 DJF, MAM, JJA 15 > 35 44 36 9.2 7.3 0.56 0.4 

Dhaka 8/11/2020 8/18/2021 MAM, JJA 10 > 35 39 36 6.2 5.9 6.3 6.9 

Bandung 7/4/2019 7/11/2021 DJF, MAM, JJA, SON 24 IT-1 35 34 1.6 1.4 0.19 0.15 

Abu Dhabi 4/26/2019 6/19/2023 DJF, MAM, JJA, SON 95 IT-1 31 30 11 9.9 0.16 0.13 

Ilorin 5/14/2019 12/1/2021 DJF, MAM, JJA, SON 40 IT-1 30 14 11 2.4 0.63 0.33 

Hanoi 11/27/2018 8/12/2019 DJF, MAM, JJA, SON 13 IT-1 28 27 3.1 2.9 1.1 0.96 

Beijing 5/8/2019 5/2/2023 DJF, MAM, JJA, SON 95 IT-1 28 18 4.5 3.3 0.21 0.18 

Delhi 7/17/2022 3/27/2023 DJF, MAM, JJA 13 IT-1 26 24 3 1.6 0.43 0.21 

Singapore 7/7/2019 12/17/2019 DJF, JJA, SON 12 IT-2 23 23 1.3 1.2 0.2 0.2 

Bujumbura 12/9/2022 6/26/2023 DJF, MAM, JJA 8 IT-2 22 20 1.3 1.3 0.091 0.077 

Addis Ababa 12/7/2022 6/26/2023 DJF, MAM, JJA 62 IT-2 21 19 4.4 3.7 0.075 0.064 

Seoul 5/2/2019 5/14/2023 DJF, MAM, JJA, SON 68 IT-2 19 18 2.2 1.8 0.12 0.1 

Kaohsiung 8/20/2022 2/16/2023 DJF, JJA, SON 63 IT-2 19 18 1.8 1.7 0.21 0.19 

Pretoria 10/22/2020 6/4/2023 DJF, MAM, JJA, SON 178 IT-2 16 15 1.5 1.3 0.11 0.071 

Johannesburg 4/7/2022 6/11/2023 DJF, MAM, JJA, SON 109 IT-2 16 14 1.1 1 0.2 0.11 

Mexico City 3/7/2021 5/7/2023 DJF, MAM, JJA, SON 46 IT-3 14 14 1.1 0.95 0.078 0.067 

Rehovot 2/22/2019 4/28/2023 DJF, MAM, JJA, SON 176 IT-3 14 13 3.1 1.4 0.071 0.055 

Haifa 2/16/2022 5/27/2023 DJF, MAM, JJA, SON 136 IT-3 13 12 2.8 1.2 0.055 0.039 

Ulsan 10/28/2021 6/17/2023 DJF, MAM, JJA, SON 56 IT-3 13 13 2 1.3 0.13 0.12 

Taipei 1/27/2022 2/22/2023 DJF, MAM, JJA, SON 124 IT-4 8.5 7.9 0.82 0.64 0.049 0.042 

Pasadena 11/9/2021 7/12/2023 DJF, MAM, JJA, SON 195 IT-4 6.6 6 0.69 0.66 0.016 0.012 

Downsview 3/27/2019 8/12/2019 MAM, JJA 12 IT-4 6.4 6.3 0.55 0.48 0.048 0.039 

Fajardo 3/18/2021 3/21/2023 DJF, MAM, JJA, SON 32 IT-4 5.8 5.1 1.7 0.9 0.013 0.0089 

Lethbridge 3/8/2019 8/31/2019 MAM, JJA 13 AQG 5 4.9 0.64 0.49 0.015 0.014 

Sherbrooke 4/3/2019 4/27/2023 DJF, MAM, JJA, SON 75 AQG 4.5 3.8 0.34 0.28 0.012 0.015 

Melbourne 8/9/2022 7/1/2023 DJF, MAM, JJA, SON 29 AQG 4.2 3.6 0.36 0.31 0.016 0.016 
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Halifax 4/5/2019 3/14/2023 DJF, MAM, JJA, SON 113 AQG 3.1 2.7 0.23 0.2 0.0094 0.008 

Note. Sites are sorted by mean PM2.5 concentration. Only the sites with ≥3 samples are shown. 

aDJF includes December, January, and February; MAM includes March, April, and May; JJA includes June, July, and August; SON includes September, October, 

and November. bN is the number of samples from each site included in this study. cPM2.5 level indicates the achieved air quality level by comparing the mean 

concentration with the WHO annual Air Quality Guideline (AQG: 5 μg/m3) and Interim Target X (IT-4: 10 μg/m3; IT-3: 15 μg/m3; IT-2: 25 μg/m3; IT-1: 35 μg/m3) 

for PM2.5. 

Table S3.4 Sampling information and concentration levels (μg/m3) of PM10, dust, and trace element oxides (TEO) for PM10 samples from SPARTAN sites used in 

this study 

Site Start date Stop date Sampling seasonsa Nb 
PM10 

levelc 

PM10 Dust TEO 

mean median mean median mean median 

Kanpur 7/14/2021 5/24/2022 DJF, MAM, JJA 3 > 70 110 95 41 30 0.62 0.54 

Abu Dhabi 4/26/2019 10/3/2022 DJF, MAM, JJA, SON 16 > 70 110 100 53 47 0.43 0.42 

Ilorin 5/14/2019 12/23/2021 DJF, MAM, JJA, SON 10 > 70 83 32 55 14 1.6 1.1 

Hanoi 11/9/2018 11/22/2020 MAM, JJA, SON 4 IT-1 52 52 13 13 1.8 1.7 

Rehovot 2/5/2019 4/13/2021 DJF, MAM, JJA, SON 8 IT-2 48 39 22 17 0.15 0.14 

Beijing 5/8/2019 8/27/2022 DJF, MAM, JJA, SON 11 IT-2 47 43 21 21 0.36 0.38 

Bandung 9/6/2019 7/11/2021 DJF, MAM, JJA, SON 4 IT-2 39 36 6.3 4.9 0.14 0.14 

Seoul 5/2/2019 3/25/2023 DJF, MAM, JJA, SON 9 IT-2 31 34 8.3 7.5 0.19 0.21 

Mexico City 8/27/2021 5/7/2023 DJF, MAM, JJA 7 IT-3 22 25 5.6 6.2 0.077 0.088 

Ulsan 9/4/2021 6/17/2023 DJF, MAM, JJA, SON 10 IT-3 21 20 6.7 5.2 0.15 0.12 

Fajardo 3/18/2021 3/21/2023 DJF, MAM, SON 5 IT-4 17 17 3.9 3.1 -0.0095 -0.0047 

Melbourne 8/9/2022 7/1/2023 DJF, MAM, JJA, SON 6 AQG 12 12 1.7 1.5 0.048 0.046 

Sherbrooke 5/27/2019 4/27/2023 DJF, MAM, JJA, SON 11 AQG 11 9.3 3 3.2 0.03 0.033 

Halifax 4/5/2019 3/13/2023 DJF, MAM, JJA, SON 21 AQG 5.9 5.6 0.94 0.85 0.023 0.013 

Note. Sites are sorted by mean PM10 concentration. Only the sites with ≥3 samples are shown. 

aDJF includes December, January, and February; MAM includes March, April, and May; JJA includes June, July, and August; SON includes September, October, 

and November. bN is the number of samples from each site included in this study. cPM10 level indicates the achieved air quality level by comparing the mean 

concentration with the WHO annual Air Quality Guideline (AQG: 15 μg/m3) and Interim Target X (IT-4: 20 μg/m3; IT-3: 30 μg/m3; IT-2: 50 μg/m3; IT-1: 70 

μg/m3) for PM10. 
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Table S3.5 Routine SPARTAN quality control (QC) frequencies, criteria, and corrective actions built upon the 

method used by IMPROVE 

Analysis Frequency Criterion Corrective Action 

PTFE blank  Daily 
≤ acceptance limits for all measured 

elements 
If the criterion is exceeded: 

a. Remeasure the sample 

b. Check the sample for 

damage/contamination  

c. Replace the sample if 

necessary 

d. Remeasure field samples 

since last passing QC 

e. Recalibration if necessary 

UCD-made multi-

element RMs  
Monthly 

Within acceptance limits for K, Cr, Co, 

Ni, Cu, Zn, As, Se, and Pb 

NIST SRM 2783  Monthly 

Absolute relative bias ≤ acceptance 

limits for Al, Si, K, Ca, Ti, V, Mn, Fe, 

and Zn 

Representative 

SPARTAN samples 
Monthly 

-1 ≤ mean Z-score ≤ 1 for Al, Si, K, Ca, 

Ti, V, Cr, Mn, Fe, Co, Ni, As, Se, Cd, Sb, 

and Pb 

Table S3.6 The mineral-to-aluminum ratio (MAL) and correction factor (CF) values used in the global dust equation 

to calculate dust mass for SPARTAN sites 

Sites MAL CF 

Addis Ababa, Bandung, Bujumbura, Delhi, Dhaka, Downsview, 

Halifax, Hanoi, Johannesburg, Kanpur, Kaohsiung, Lethbridge, 

Pretoria, Sherbrooke, Singapore, Taipei 

0.62 1.02 

Abu Dhabi, Haifa, Rehovot 0.72 1.14 

Fajardo, Ilorin, Mexico City 0.27 1.05 

Melbourne 0.24 1.05 

Beijing, Seoul, Ulsan 0.59 1.11 

Pasadena 0.66 1.14 

Table S3.7 Inhalation unit risk (IUR) and inhalation reference concentration (RfC) values used in this study 

Metal IUR (µg/m3)-1 RfC (µg/m3) 

As 0.0043 0.015 

Pb 0.000012a NAb 

Cd 0.0018 0.01 

Cr (VI) 0.084 0.1 

Co 0.009 0.006 

Ni (Refinery Dust) 0.00024 0.014 

Mn  0.05 

V  0.1 

aThe IUR value of lead phosphate is used. bNot available. 
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Table S3.8 Method detection limit (MDL, ng/cm2) estimates and percent of PM2.5 samples above MDL for SPARTAN 

Element MDLFB
a MDLLB

b
 MDLc Percent > MDL (%) 

Na 208 164 208 92 

Mg 269 163 269 58 

Al 27 19 27 98 

Si 24 15 24 99 

S 6.7 1.1 6.7 100 

Cl 49 27 49 32 

K 71 42 71 85 

Ca 23 16 23 98 

Ti 5.3 2.8 5.3 88 

V 0.5 0.4 0.5 85 

Cr 4.2 3.7 4.2 50 

Mn 1.8 1.0 1.8 91 

Fe 15 11 15 99 

Co 0.7 0.6 0.7 37 

Ni 6.8 4.7 6.8 13 

Cu 25 19 25 13 

Zn 11 7.6 11 80 

As 0.9 0.8 0.9 88 

Se 0.3 0.5 0.5 82 

Rb 1.8 1.7 1.8 43 

Sr 2.7 3.1 3.1 30 

Cd 9.8 8.3 9.8 10 

Sn 25 26 26 16 

Sb 21 18 21 13 

Ce 1.2 1.1 1.2 52 

Pb 2.4 2.6 2.6 66 

aMDL determined using the 95th percentile minus the median mass loading of 100 field blanks. bMDL determined 

using the 95th percentile minus the median mass loading of 100 lab blanks. cThe maximum of MDLFB and MDLLB. 
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Table S3.9 Estimates of proportional mass uncertainty (σmass), total proportional uncertainty (σproportion), and additive 

uncertainty (σadditive) for SPARTAN 

Element Na σmass
b (%) σproportion

c (%) σadditive (ng/cm2) 

Na 8 10 11 126 

Mg 3 8 9 164 

Al 8 4 5 16 

Si 9 4 5 15 

S 9 3 5 4.1 

Cl 2 7 7 30 

K 7 3 5 43 

Ca 7 5 6 14 

Ti 5 4 5 3.2 

V 6 8 9 0.3 

Cr 0 − − 2.6 

Mn 5 3 4 1.1 

Fe 8 5 6 9.1 

Co 3 10 11 0.4 

Ni 0 − − 4.1 

Cu 0 − − 15 

Zn 5 4 6 6.7 

As 4 9 10 0.6 

Se 1 5 6 0.3 

Rb 3 5 6 1.1 

Sr 2 5 6 1.9 

Cd 0 − − 5.9 

Sn 0 − − 16 

Sb 0 − − 13 

Ce 3 9 10 0.7 

Pb 4 3 5 1.6 

aN is the number of samples with the mean from 20 monthly measurements greater than 3×MDL out of the nine 

representative SPARTAN samples. bσmass is estimated as the mean of relative standard deviations from 20 monthly 

measurements of the representative SPARTAN samples with mean > 3×MDL. cσproportion is estimated by combining 

σmass and the proportional volume uncertainty of 3.5%. 
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Table S3.10 Elemental mass concentrations (mean ± standard deviation, ng/m3) measured for PM2.5 samples from SPARTAN sites used in this study 

site Kanpur Dhaka Bandung Abu Dhabi Ilorin Hanoi Beijing Delhi Singapore Bujumbura Addis Ababa Seoul Kaohsiung 

Na 15 10 24 95 40 13 95 13 12 8 62 68 63 

Na 1000±600 1800±790 730±150 1400±680 450±330 740±210 550±360 740±590 680±200 170±110 340±150 390±130 670±190 

Mg 560±360 480±170 260±90 750±380 240±250 180±74 290±250 290±210 220±64 27±100 220±130 150±86 270±100 

Al 900±730 550±260 210±81 810±480 1000±1600 280±98 380±580 310±310 150±54 160±46 390±240 200±140 160±62 

Si 2200±1800 1600±930 310±110 2100±1400 2800±4600 740±210 830±1300 660±710 250±79 270±82 990±560 450±330 350±150 

S 2600±1500 2400±1200 2300±530 4500±2700 580±190 2300±700 1500±1100 1400±720 2100±920 420±210 670±360 1300±500 1500±650 

Cl 110±160 760±820 52±16 36±100 100±170 120±98 90±210 480±950 17±11 23±6.5 49±38 35±31 63±66 

K 1300±1300 620±410 600±260 310±200 650±680 570±220 370±440 780±530 450±150 690±380 380±120 210±110 250±140 

Ca 580±620 300±170 92±36 1300±1100 350±580 190±58 290±290 190±190 64±12 46±15 390±240 91±46 100±36 

Ti 49±46 25±12 7.2±4.1 41±28 68±110 16±4.7 24±37 17±17 6.8±6.4 6.7±2.1 30±17 13±7.8 11±7 

V 2.2±1.5 14±9.9 0.98±0.43 6.9±5.8 2±2.3 2.3±0.98 1.4±1.4 0.88±0.58 36±20 0.28±0.18 1.1±0.56 1.3±1.8 2±0.99 

Cr 9.5±9 5.5±3.2 3±6 2.8±1.9 3.3±3.6 2.7±1.2 4.2±2.9 2.8±2.9 0.12±1.8 1.4±0.68 1.4±1.4 3.1±2.8 11±9.6 

Mn 21±13 80±110 3.6±1.6 12±6.2 18±22 37±24 35±45 12±10 6.9±2.6 9.6±4.7 8.9±4 11±4.1 22±27 

Fe 600±480 390±200 110±52 520±330 650±1000 210±100 510±470 250±230 100±31 100±28 320±170 210±100 290±250 

Co 1.5±1.2 5.4±3.5 0.01±0.38 1.3±1.1 2.2±3 1.3±0.59 1.2±1.3 0.64±0.68 0.09±0.34 0.028±0.23 0.56±0.48 0.48±0.34 0.81±0.69 

Ni 1.4±1.2 7.5±5.2 1.9±1.8 3.3±2.8 1.3±2 2±1.1 0.59±1.8 1.2±2 9.5±4.8 0.25±0.9 -0.0±1.4 1.3±2.1 4±3.1 

Cu 11±24 29±27 13±16 3±6.4 4±6.4 13±7.4 4.1±10 33±46 8±7.2 1.3±3.6 0.075±5 8.3±15 8.3±8 

Zn 120±71 3800±2900 57±29 51±47 410±570 650±440 74±53 190±170 50±26 54±33 27±29 43±22 86±44 

As 17±18 32±21 4.6±4 1.5±0.58 2.6±3 10±6.5 3.6±2.8 7.2±7.9 1.7±1.1 1.1±0.36 1±0.68 5.6±4.1 3.2±1.5 

Se 2.7±2.2 2.4±1.8 0.73±0.31 1.2±0.64 0.25±0.15 1.7±0.61 2.2±1.5 1.3±2.2 1.5±1.3 0.31±0.049 0.41±0.2 1.1±0.47 1.5±0.72 

Rb 5.1±4.9 5.7±3.1 3.6±1.3 1.9±1.3 2.7±2.8 3.6±1.2 1.5±1.5 3.4±2.9 2.2±1.4 3.3±1.4 1.8±0.74 0.95±0.94 1.2±0.63 

Sr 5.5±7.6 3.7±1.6 0.97±0.87 18±21 3.7±6.3 1.1±0.61 3.5±9.5 1.8±1.7 1±1.6 -0.21±0.33 2.8±2 0.63±1.3 1.5±1.8 

Cd 2.7±6.9 18±16 2.5±3.7 0.81±4.1 3.7±4.3 0.73±4.8 1.4±3.6 4±5.3 0.75±5 1.1±1 0.79±3.1 0.86±3.2 0.82±2.5 

Sn 6.2±6.3 16±14 11±8.2 5.2±12 7.2±9.1 20±9.7 5.4±12 12±8.1 17±8.4 -4.1±2.5 2.8±8.4 1.1±9.6 5.1±12 

Sb 8.9±7.6 35±32 5.5±6.4 4.2±10 1.7±7.9 7.4±5 5.6±6.4 12±11 3±6.8 -2.5±5.1 4.7±6.9 -0.75±6.9 0.89±6 

Ce 3.3±2.7 4±2.4 -0.72±1.6 2.3±1.6 4.3±6.6 0.55±2.3 1.8±2.4 0.047±1.7 -0.95±2.9 0.99±0.48 1.4±1.1 1.9±1.8 0.55±1.3 

Pb 250±430 1100±970 52±89 5.2±2.8 37±46 140±150 10±7.2 65±73 6±7.2 3.8±2.6 2.8±2.3 13±8.1 11±7.7 
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(continued) 

site Pretoria 
Johannes

-burg 

Mexico 

City 
Rehovot Haifa Ulsan Taipei Pasadena 

Downs-

view 
Fajardo 

Leth-

bridge 

Sher-

brooke 

Mel-

bourne 
Halifax 

Na 178 109 46 176 136 56 124 195 12 32 13 75 29 113 

Na 510±270 480±290 360±110 520±230 600±260 380±140 350±200 210±160 89±36 680±210 66±28 56±110 210±140 140±90 

Mg 210±140 180±220 100±73 240±180 260±180 150±96 110±120 80±110 32±31 170±140 43±28 -6.7±130 3.4±100 42±47 

Al 200±180 130±63 130±77 260±380 250±360 180±180 84±65 56±45 44±22 200±190 87±110 31±28 32±20 32±30 

Si 280±140 220±98 230±140 560±900 520±850 400±430 160±130 110±82 92±39 400±450 120±62 69±65 71±33 38±19 

S 1500±1000 1500±840 1300±320 1500±810 1600±870 1200±460 900±550 410±330 390±120 470±540 230±70 250±110 240±140 220±94 

Cl 22±36 41±150 19±11 35±100 61±220 16±8.8 41±100 19±51 4.7±2.8 760±370 2.6±2.2 6.2±13 150±130 60±110 

K 290±260 350±620 210±180 130±98 110±92 130±72 93±120 56±250 44±21 56±43 38±26 54±39 31±37 36±86 

Ca 42±37 40±25 61±25 310±570 230±450 71±62 49±29 50±31 69±51 72±51 42±25 28±68 34±12 15±8.7 

Ti 6.8±4.3 5.6±3.2 8.8±5.4 15±25 13±24 12±10 5.5±3.1 6.1±9.1 4.7±1.7 10±11 3.3±1 4.5±2.9 3.7±1.9 2.4±1.6 

V 0.84±0.71 0.64±0.52 4.1±3.2 2.2±1.9 2.9±2.4 0.77±0.73 1±0.77 0.33±0.52 0.26±0.17 0.66±0.41 0.12±0.11 0.04±0.26 0.62±0.52 0.57±1.1 

Cr 5.3±4.4 5.9±5.6 1.6±1.9 1.7±1.8 1.7±2 2.9±1.8 1.9±1.9 1.2±1.4 0.75±0.79 0.32±1.4 1.3±2.4 0.67±1.3 2.3±1.7 0.81±0.95 

Mn 7.1±7 5.4±4.3 4±1.4 4.3±4.4 3.4±4.3 15±7.6 4.9±3.7 1.4±0.97 2.7±1.2 1.5±1.6 0.72±0.32 1.8±1.4 2.3±0.97 0.6±0.33 

Fe 130±75 110±61 93±37 190±260 150±250 190±120 91±53 73±39 77±35 95±100 25±10 31±22 46±17 16±7.4 

Co 0.28±0.37 0.39±0.7 0.1±0.18 0.37±0.71 0.34±0.67 0.28±0.34 0.22±0.31 0.13±0.19 0.15±0.14 0.18±0.29 0.02±0.08 0.1±0.2 0.11±0.25 0.07±0.12 

Ni 0.0±2.5 -0.2±2.1 0.76±2 0.64±2.3 1±2.1 1.4±1.8 -0.01±2.6 -0.79±1.5 0.24±0.25 0.69±1.6 0.03±0.16 0.27±2.5 0.55±1.9 0.26±0.95 

Cu 5.2±15 23±62 4.9±7.3 3.4±8.3 0.19±7 3.6±6.6 -0.19±9.6 -0.96±9.7 3.3±1.5 1.5±5.5 0.8±0.45 1.2±9.1 1.3±6.9 1.3±4.1 

Zn 42±77 85±120 36±18 22±21 18±19 54±30 20±15 3.8±4.1 18±18 4.7±6.3 2.3±1.9 5.3±4.1 7±6.3 3.4±2.7 

As 2.4±2.3 2.4±1.6 2.1±1.7 1.4±1.2 1.2±0.85 6.5±6.5 1.3±1 0.59±0.3 0.78±0.25 0.33±0.27 0.32±0.17 0.76±0.71 0.98±0.37 0.49±0.25 

Se 1.4±2.4 1.3±1.7 1.3±0.71 0.56±0.3 0.43±0.22 1.2±0.87 0.59±0.44 0.57±0.75 0.45±0.2 0.14±0.12 0.37±0.22 0.17±0.15 0.48±0.38 0.13±0.09 

Rb 1.5±0.94 1.5±1.7 0.22±0.67 0.91±1.5 0.63±0.88 0.35±0.6 0.68±0.79 0.45±0.49 0.24±0.3 0.17±0.65 0.17±0.28 0.02±0.73 -0.28±0.53 0.02±0.36 

Sr 1±1.1 0.93±2 0.15±1.3 1.7±4.4 1.5±3.1 -0.08±0.91 0.96±2.7 1.3±5.8 0.27±0.57 0.61±1.1 0.07±0.44 -0.18±1.2 -0.31±1.3 0.12±1.9 

Cd 0.74±2.8 1.1±4.2 -0.22±2.6 -0.01±6.8 1±3.1 -0.3±2.7 1.5±3.6 -0.0±2.4 -1.8±1.6 -0.67±2.8 -2.6±1.6 -0.36±3.5 -0.0±3.4 0.07±2.1 

Sn 4.7±9.3 7±9.1 -1.9±6 4±11 0.79±9.1 0.1±7.5 -0.1±9.3 0.3±7.9 8±3.8 -2.1±8.9 6.1±3.5 -0.46±10 -3.1±6.6 -0.87±5.9 

Sb 6.2±7.7 6.6±10 -0.0±5.7 2.9±11 1.3±6.2 -0.79±5.8 0.4±7.7 3.1±5.7 1.4±3.6 0.97±4.9 1.5±3.2 -1.4±7.3 -3.6±5 -0.89±3.2 

Ce 0.0±1.1 0.49±2.7 2.9±3 0.73±2.1 0.42±1.5 2.7±1.7 0.53±1.2 0.41±0.95 0.95±1.4 1.0±1.6 0.43±0.75 0.98±1.4 3.0±1.8 0.89±1.1 
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Pb 9.1±17 13±15 3.3±2.8 7.6±15 6.8±9.8 10±8.9 2.9±3.7 0.27±0.70 1.8±2.6 -0.22±0.74 -0.12±0.28 0.2±1.4 -0.3±1.0 -0.17±0.55 

Note. Sites are sorted by mean PM2.5 concentration. Only the sites with ≥3 samples are shown. 

aN is the number of samples from each site. 

Table S3.11 Elemental mass concentrations (mean ± standard deviation, ng/m3) measured for PM10 samples from SPARTAN sites used in this study 

site Kanpur 
Abu 

Dhabi 
Ilorin Hanoi Rehovot Beijing Bandung Seoul 

Mexico 

City 
Ulsan Fajardo 

Mel-

bourne 

Sher-

brooke 
Halifax 

Na 3 16 10 4 8 11 4 9 7 10 5 6 11 21 

Na 
1600± 

1100 

3300± 

1200 

1400± 

1200 
1300±210 1300±540 1000±320 1200±320 740±200 390±200 520±180 2600±790 640±650 160±180 380±230 

Mg 
1300± 

1100 

2700± 

1400 

1000± 

1200 
600±320 840±530 690±320 580±180 450±250 160±250 190±210 700±280 -200±310 92±160 91±150 

Al 
3800± 

3100 

3000± 

1700 

5200± 

6100 
1100±250 1600±1200 1500±540 660±310 690±300 490±180 570±570 510±280 150±84 280±110 120±79 

Si 
9300± 

7500 

8800± 

5200 

15000± 

18000 
2600±580 3500±2400 3900±1300 1200±660 1700±780 1300±450 1400±1400 880±660 360±180 670±240 170±87 

S 
2700± 

1600 

6600± 

4000 

750± 

190 
2600±160 2000±900 2100±460 2500±220 1700±630 1100±260 1300±180 660±290 360±250 240±80 240±58 

Cl 
250± 

79 

1200± 

1000 

380± 

390 
480±250 640±510 120±100 91±54 73±35 41±9.9 67±67 3700±1400 980±630 81±180 430±340 

K 
2400± 

2400 

980± 

560 

1400± 

1200 
910±150 540±400 750±310 570±310 400±190 250±150 280±160 120±48 47±47 150±31 44±32 

Ca 
3000± 

3100 

10000± 

7000 

2300± 

2700 
1800±370 3500±2700 2300±740 590±160 580±250 600±170 380±290 240±76 160±60 250±110 54±15 

Ti 250±220 190±120 320±380 83±24 100±80 110±36 41±19 50±20 36±9.7 39±33 25±19 13±9 17±5.8 5.4±2.9 

V 7.4±6 14±10 7.3±8 3.3±0.81 5.3±3.5 4.3±1.5 1±1.2 2.4±2.5 3.8±3 1.1±1.8 0.79±1.1 0.83±0.93 0.74±0.38 1.1±1 

Cr 19±13 14±4.1 14±10 8.3±7.5 9.4±6.4 12±5.4 5.5±2.9 7±5.5 4.9±5.1 6.7±6.2 0.3±4 5.2±5.4 3.3±2.8 2.8±3 

Mn 68±55 50±24 75±81 78±41 20±12 55±21 13±4.1 22±6.8 11±1.8 23±9.7 3.3±2.7 6.8±2.3 6.2±1.9 2.4±1 

Fe 
2800± 

2400 

2400± 

1400 

3100± 

3500 
840±230 1200±840 1700±500 460±180 720±260 430±130 520±370 190±170 190±62 240±80 69±32 

Co 7.4±5.9 6.1±4.4 9.1±9.7 2.4±1.9 1.9±2.9 3±1.6 0.4±1.7 1.5±0.8 0.2±0.65 0.63±0.82 0.48±0.12 0.7±1.3 0.32±0.43 0.32±0.39 

Ni 2.5±6 10±9.6 0.027±7.5 2.9±7 -0±14 -1.5±6.1 -5.2±4 1.8±4.7 -2.7±8.8 0.34±5 1.4±2.4 -1±5.6 1.5±11 0.5±2.7 
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Cu 12±36 2±23 -4.5±27 18±23 6.4±44 3.2±25 -13±15 24±37 -4.7±30 0.95±15 3.2±11 -1.8±16 -2.4±10 3.3±9.5 

Zn 160±40 87±64 990±1300 1100±560 42±18 110±45 48±18 64±23 39±14 71±20 4.9±4 8±6 5.7±3.7 5±3.8 

As 14±6.1 3.3±2 4.9±7.2 12±3.4 2±1.3 4.5±1.7 4.7±1.7 6.8±3.5 2.4±1.4 7.2±3 1±1.1 1.5±1.3 0.79±0.47 0.58±0.66 

Se 3±1.2 2.3±1.3 0.47±0.55 1.8±0.57 0.62±0.68 2.9±0.65 0.98±0.39 1.2±0.4 0.86±0.26 1.2±0.5 0.28±0.18 0.43±0.75 0.27±0.24 0.19±0.2 

Rb 11±11 6.1±7.2 7.6±7.5 4.1±2.2 1.4±4.6 4.7±3.7 3±1 0.17±1.4 -0.4±1.9 0.18±1.7 0.23±2.1 -0.1±4.2 0.2±0.86 0.13±1.6 

Sr 19±21 92±77 20±24 3.3±4.8 8.2±9.9 11±6.5 3.3±2.2 1.1±2.3 1.3±3.2 0.54±3.4 1.5±3.6 0.61±6.5 0.21±1.4 -0.1±2.3 

Cd 7.8±17 1.8±21 7.9±13 6.8±26 3.4±12 5.7±17 2.8±15 -1.3±9.7 1.9±7.7 -2.1±7.4 -4.4±12 1.9±15 2.4±8.5 1.2±7 

Sn 9.1±22 2.8±56 19±31 19±51 4.2±59 14±45 -10±11 0.1±25 -13±31 -12±31 -25±22 2.8±30 1.8±25 -4.3±23 

Sb 9.7±13 14±49 5.7±26 -6.2±28 -11±40 16±33 6.7±15 -11±14 -1±23 -9.3±23 1.8±18 -0±32 -1.8±11 0.43±15 

Ce 13±12 12±6.2 18±20 4.9±1 6.2±4 7.5±3.2 4.9±5.7 6.5±4.3 7.9±6.9 6.7±7.4 1.6±4 9.8±6.1 0.95±1.4 2.5±2.2 

Pb 110±51 8.2±7.5 75±93 100±13 8.4±5.6 20±7.8 44±32 15±6.7 3.1±2.1 11±6.3 -1.6±2.6 -1±4 0.55±1.2 -0.2±1.8 

Note. Sites are sorted by mean PM10 concentration. Only the sites with ≥3 samples are shown. 

aN is the number of samples from each site. 

Table S3.12 Uncertainties (ng/m3) for the mean elemental concentration of PM2.5 samples from SPARTAN sites included in this study 

site Kanpur Dhaka Bandung Abu Dhabi Ilorin Hanoi Beijing Delhi Singapore Bujumbura Addis Ababa Seoul Kaohsiung 

Na 15 10 24 95 40 13 95 13 12 8 62 68 63 

Na 130 210 100 160 79 100 86 100 96 63 71 74 95 

Mg 93 89 82 100 81 80 82 82 81 78 81 79 82 

Al 49 30 14 44 56 17 22 18 11 12 22 13 12 

Si 110 80 17 110 140 38 42 34 15 16 51 24 19 

S 120 110 100 200 26 100 69 64 94 19 30 57 68 

Cl 17 58 15 14 16 17 16 39 14 14 15 14 15 

K 66 36 35 25 37 34 27 42 30 39 27 23 24 

Ca 36 20 8.7 83 23 14 19 13 7.7 7.2 25 8.7 9.1 

Ti 3.1 2.1 1.6 2.7 4 1.8 2 1.8 1.6 1.6 2.2 1.7 1.7 

V 0.24 1.3 0.17 0.64 0.23 0.25 0.19 0.16 3.3 0.15 0.17 0.19 0.23 

Cr 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Mn 1.1 3.5 0.55 0.73 0.96 1.7 1.6 0.73 0.61 0.67 0.65 0.7 1.1 
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Fe 37 24 7.9 32 39 14 31 16 7.7 7.4 20 13 18 

Co 0.25 0.62 0.19 0.24 0.31 0.24 0.23 0.2 0.19 0.19 0.2 0.2 0.21 

Ni 2 2 2 2 2 2 2 2 2 2 2 2 2 

Cu 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

Zn 7.5 210 4.6 4.3 23 37 5.3 11 4.3 4.4 3.5 4 5.8 

As 1.6 3.1 0.53 0.32 0.38 1 0.45 0.75 0.33 0.31 0.3 0.61 0.42 

Se 0.22 0.2 0.15 0.16 0.14 0.17 0.19 0.16 0.17 0.14 0.15 0.16 0.17 

Rb 0.6 0.62 0.56 0.54 0.55 0.57 0.53 0.56 0.54 0.56 0.54 0.53 0.53 

Sr 0.96 0.93 0.91 1.4 0.93 0.91 0.93 0.91 0.91 0.91 0.92 0.91 0.91 

Cd 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Sn 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

Sb 6 6 6 6 6 6 6 6 6 6 6 6 6 

Ce 0.47 0.52 0.34 0.41 0.55 0.34 0.38 0.33 0.35 0.35 0.36 0.39 0.34 

Pb 12 52 2.6 0.8 1.9 6.5 0.91 3.2 0.82 0.79 0.78 0.98 0.94 

(continued) 

site Pretoria Johannesburg 
Mexico  

City 
Rehovot Haifa Ulsan Taipei Pasadena Downsview Fajardo Lethbridge Sherbrooke Melbourne Halifax 

Na 178 109 46 176 136 56 124 195 12 32 13 75 29 113 

Na 82 81 72 83 90 74 72 65 61 97 61 61 65 62 

Mg 81 80 79 81 82 79 79 79 78 80 78 78 78 78 

Al 13 11 11 16 15 12 9.1 8.4 8.2 13 9.2 8.1 8.1 8.1 

Si 16 13 14 29 27 21 11 9.1 8.5 22 9.4 7.9 7.9 7.3 

S 69 66 57 67 73 53 40 19 18 21 11 11 11 10 

Cl 14 14 14 14 15 14 14 14 14 58 14 14 18 15 

K 25 26 23 22 21 22 21 21 21 21 21 21 21 21 

Ca 7.1 7.1 7.6 20 16 8 7.3 7.3 7.9 8 7.1 6.9 7 6.7 

Ti 1.6 1.6 1.6 1.7 1.7 1.7 1.6 1.6 1.6 1.6 1.5 1.5 1.5 1.5 

V 0.16 0.15 0.4 0.25 0.3 0.16 0.17 0.15 0.15 0.16 0.14 0.14 0.15 0.15 
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Cr 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Mn 0.61 0.58 0.55 0.56 0.55 0.85 0.57 0.53 0.54 0.53 0.53 0.53 0.53 0.53 

Fe 8.8 8 7.1 12 10 13 7 6.2 6.4 7.2 4.6 4.7 5.1 4.5 

Co 0.19 0.2 0.19 0.2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 

Ni 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Cu 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

Zn 4 5.8 3.8 3.4 3.4 4.4 3.4 3.2 3.4 3.2 3.2 3.2 3.2 3.2 

As 0.36 0.36 0.35 0.32 0.31 0.69 0.31 0.29 0.3 0.29 0.29 0.3 0.3 0.29 

Se 0.16 0.16 0.16 0.15 0.15 0.16 0.15 0.15 0.15 0.14 0.15 0.14 0.15 0.14 

Rb 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

Sr 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

Cd 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 

Sn 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

Sb 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Ce 0.33 0.34 0.44 0.34 0.34 0.43 0.34 0.34 0.35 0.35 0.34 0.35 0.45 0.35 

Pb 0.88 0.99 0.78 0.84 0.83 0.91 0.78 0.76 0.77 0.76 0.76 0.76 0.76 0.76 

Note. Sites are sorted by mean PM2.5 concentration. Only the sites with ≥3 samples are shown. 

aN is the number of samples from each site. 
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Table S3.13 Carcinogenic risk of trace elements estimated using mean elemental concentrations in PM2.5 samples 

from SPARTAN sites 

Site Na 
Children  Adults 

As Pb Cd Co Ni  As Pb Cd Co Ni 

Dhaka 10 1.1E-05 1.1E-06 2.6E-06 4.0E-06 1.5E-07  4.5E-05 4.4E-06 1.0E-05 1.6E-05 5.9E-07 

Kanpur 15 5.9E-06 2.4E-07 NA 1.1E-06 NA  2.4E-05 9.7E-07 NA 4.4E-06 NA 

Hanoi 13 3.7E-06 1.4E-07 NA 9.6E-07 NA  1.5E-05 5.4E-07 NA 3.8E-06 NA 

Delhi 13 2.5E-06 6.4E-08 NA 4.7E-07 NA  1.0E-05 2.6E-07 NA 1.9E-06 NA 

Ilorin 40 9.0E-07 3.7E-08 NA 1.6E-06 NA  3.6E-06 1.5E-07 NA 6.5E-06 NA 

Seoul 68 2.0E-06 1.3E-08 NA 3.6E-07 NA  7.9E-06 5.1E-08 NA 1.4E-06 NA 

Beijing 95 1.3E-06 1.0E-08 NA 8.6E-07 NA  5.1E-06 4.1E-08 NA 3.5E-06 NA 

Kaohsiung 63 1.1E-06 1.1E-08 NA 6.0E-07 8.0E-08  4.5E-06 4.5E-08 NA 2.4E-06 3.2E-07 

Abu Dhabi 95 5.2E-07 5.2E-09 NA 9.6E-07 NA  2.1E-06 2.1E-08 NA 3.8E-06 NA 

Singapore 12 5.9E-07 5.9E-09 NA NA 1.9E-07  2.4E-06 2.4E-08 NA NA 7.5E-07 

Addis Ababa 62 3.6E-07 2.7E-09 NA 4.1E-07 NA  1.5E-06 1.1E-08 NA 1.6E-06 NA 

Note. Sites are sorted by total carcinogenic risk. NA: not available.  

aN is the number of samples from each site. 

Table S3.14 Hazard quotient of trace elements estimated using mean elemental concentrations in PM2.5 samples from 

SPARTAN sites 

Site Na As Cd Co Ni Mn V 

Dhaka 10 2.1 1.7 0.87 0.51 1.5 0.13 

Kanpur 15 1.1 NA 0.24 NA 0.41 0.021 

Hanoi 13 0.67 NA 0.21 NA 0.72 0.022 

Singapore 12 0.11 NA NA 0.65 0.13 0.35 

Beijing 95 0.23 NA 0.19 NA 0.67 0.014 

Kaohsiung 63 0.2 NA 0.13 0.28 0.42 0.019 

Ilorin 40 0.16 NA 0.35 NA 0.35 0.019 

Delhi 13 0.46 NA 0.1 NA 0.22 0.0084 

Ulsan 56 0.41 NA NA NA 0.29 0.0074 

Seoul 68 0.36 NA 0.077 NA 0.2 0.013 

Abu Dhabi 95 0.094 NA 0.21 NA 0.23 0.066 

Bandung 24 0.3 NA NA NA 0.068 0.0094 

Addis Ababa 62 0.066 NA 0.089 NA 0.17 0.011 

Pretoria 178 0.15 NA NA NA 0.14 0.0081 

Johannesburg 109 0.15 NA NA NA 0.1 0.0061 

Bujumbura 8 0.07 NA NA NA 0.18 0.0027 

Mexico City 46 0.13 NA NA NA 0.076 0.039 

Rehovot 176 0.092 NA NA NA 0.082 0.021 

Taipei 124 0.081 NA NA NA 0.094 0.01 

Haifa 136 0.075 NA NA NA 0.065 0.027 

Melbourne 29 0.063 NA NA NA 0.043 0.006 

Downsview 12 0.05 NA NA NA 0.051 0.0025 

Pasadena 195 0.038 NA NA NA 0.028 0.0032 
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Halifax 113 0.031 NA NA NA 0.011 0.0055 

Lethbridge 13 0.02 NA NA NA 0.014 0.0012 

Note. Sites are sorted by total HI. NA: not available. 

aN is the number of samples from each site. 

Table S3.15 Component matrix of the PCA analysis for PM2.5 samples from the Dhaka site 

Element PC1 PC2 PC3 PC4 Communality 

Pb 0.16 0.97 0.12 0.02 0.99 

Sb 0.23 0.96 0.08 -0.02 0.98 

Cd 0.24 0.15 0.84 -0.06 0.79 

Se 0.24 0.96 0.01 -0.03 0.98 

As 0.24 0.96 0.13 0.02 0.99 

Zn 0.11 0.03 0.90 0.31 0.93 

Cu 0.30 0.53 0.06 0.58 0.70 

Ni 0.11 0.32 0.48 0.75 0.91 

Co 0.32 0.55 0.70 0.26 0.97 

Fe 0.96 0.03 0.12 0.14 0.95 

Mn 0.21 -0.12 0.41 0.37 0.36 

Cr 0.80 0.22 0.16 0.32 0.82 

V -0.22 -0.23 0.09 0.91 0.94 

Ti 0.96 0.17 0.12 -0.04 0.97 

Ca 0.89 0.25 0.27 -0.07 0.93 

Si 0.84 0.35 0.18 -0.15 0.88 

Al 0.93 0.32 0.14 0.01 0.98 

Initial Eigenvalue 8.4 2.8 2.6 1.2  

Percent of variance 50 17 16 6.9  

Cumulative percent 50 66 82 89  

Note. Elemenzts are sorted by atomic mass. Loadings > 0.60 are shown in bold.  
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Chapter 4: Characterizing Particulate Matter 

Composition in Central Asia: Dust Contribution in 

Tashkent, Uzbekistan 

This work was supported by the Global Incubator Seed Grant from the McDonnell International 

Scholars Academy Program at Washington University in St. Louis. We are grateful to the 

administration of the Agency for Hydrometeorological Service (Uzbekistan) for hosting the 

primary site. Sample collection was supported by Dr. Mansur Amonov and his students (Tashkent 

Institute of Irrigation and Agricultural Mechanization Engineers – National Research University). 

4.1 Abstract 

Insufficient ground-based measurements are available to understand particulate matter (PM) in 

Central Asia, a major global dust source region. Elemental characterization of PM is needed to 

examine dust contribution to PM and understand dust impacts in this region. We estimated the dust 

concentration levels using the first contemporary elemental composition data of both PM2.5 and 

PM10 samples collected from Tashkent, Uzbekistan during the dusty seasons of 2023, compared 

to data from historical PM2.5 samples collected in 2008–2010. Dust contributed an average of 6.8 

μg/m³ (30%) to PM2.5 in 2023, higher than in 2009 (4.9 μg/m³, 20%) and 2010 (5.3 μg/m³, 24%) 

but lower than in 2008 (13 μg/m³, 31%). A large dust event originating from the Kyzylkum Desert 

in 2023 and another from the Aralkum Desert in 2008 were identified by time series analysis of 

dust concentration, backward trajectory analysis, and satellite images. The two dust event days 

show lower Fe but higher Ca fractions in PM2.5 than normal days. Compared to 2008–2010, 

elevated Zn concentrations were observed in 2023, likely driven by metalworking industries, 

transportation, and construction activities.  
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4.2 Introduction 

Ambient air pollution by fine particulate matter (PM2.5) is a leading risk factor for disease and 

premature death (Apte et al., 2015; Fuller et al., 2022). However, many developing countries lack 

sufficient ground-based measurements to understand PM2.5 (Martin et al., 2019). Despite severe 

air pollution in developing countries of Central Asia (Amonov & Nishonov, 2020; Kerimray et al., 

2020; Miller-Schulze et al., 2015; Tursumbayeva et al., 2023), the PM2.5 concentration and 

chemical composition in this region remain understudied. Air pollution caused by dust storms is 

common in Central Asia, which is a major global dust source region with several large deserts, 

including the Kyzylkum Desert, the Karakum Desert, and the Aralkum Desert (Hao Shen et al., 

2016; Zhang et al., 2020). Aralkum, the desiccated lakebed of the former Aral Sea, generates salt 

dust containing pesticides and other chemicals, which adversely affects the environment and 

human health in the region (Breckle et al., 2012; Indoitu et al., 2015; H. Shen et al., 2019; Singer 

et al., 2003). Dust events occur frequently in Central Asia during spring, summer, and fall, with 

reduced frequency in winter (Zhang et al., 2020). Dust can be a major component of ambient PM 

including fine particles (PM2.5) and coarse particles (PM10-2.5, with an aerodynamic diameter 

between 2.5 and 10 μm). Some studies have investigated dust deposition (Bazarbayev et al., 2022; 

Groll et al., 2013; Opp et al., 2017) and dust optical depth in Central Asia (Hofer et al., 2017; L. 

Li & Sokolik, 2018; Xi & Sokolik, 2015). However, few studies have conducted ground 

measurements of PM composition to quantify dust contributions to PM in this region (Miller-

Schulze et al., 2015).  

Elemental characterization of PM is needed to estimate concentration levels of mineral dust in 

Central Asia. Dust mass is typically calculated using a dust equation that sums oxides of major 

crustal elements based on elemental data (Chow et al., 2015; Liu et al., 2022). Elemental 
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characteristics (elemental ratios) can help investigate the influence from long-range transport of 

desert dust (Cao et al., 2008; Hand et al., 2017). Aside from crustal elements, trace element 

concentrations obtained through elemental analysis provide valuable insights into anthropogenic 

sources such as coal combustion and traffic (Chang et al., 2018; Querol et al., 2007). Certain 

elements (e.g., Fe, Cu, Mn, Zn) can considerably contribute to the oxidative potential of PM, which 

is associated with adverse health effects (Bates et al., 2019; Charrier & Anastasio, 2012). 

Uzbekistan, situated at the center of Central Asia, primarily relies on natural gas for power 

generation and heating, yet faces persistent air pollution challenges (Tursumbayeva et al., 2023). 

Given the frequent dust storms (Broomandi et al., 2023; Nishonov et al., 2023), dust is anticipated 

to be a major component of PM in Uzbekistan, but it has not been quantified. A previous long-

term monitoring campaign at two urban sites during the summer and fall of 2008–2009 quantified 

the contributions of inorganic ions, elemental carbon, and organic carbon to PM in Uzbekistan 

(Amonov et al., 2010). However, the contemporary composition and emission sources of PM in 

Uzbekistan remain unexplored. 

In this study, we present the first contemporary elemental composition data of PM2.5 and PM10 

filter samples collected from Tashkent, the capital of Uzbekistan, during dusty seasons in 2023. 

We also include elemental data from available historical PM2.5 samples collected during the same 

seasons in 2008–2010. Dust concentration levels are estimated using the elemental data to 

understand its contribution to PM2.5, PM10, and coarse PM (PM10-2.5). We identify large dust 

events, investigate their source areas and elemental characteristics, and explore potential emission 

sources of major and trace elements in addition to dust. 
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4.3 Methods 

4.3.1 Sample Collection and Chemical Analysis 

The sampling site is located at the meteorological station “M-1 Tashkent-Observatory” 

(41°19'40.96"N, 69°17'42.98"E) of the Agency for Hydrometeorological Service in Tashkent, 

surrounded by residential and commercial areas with numerous construction activities and an 

active railroad within 2 km. Two MiniVol TAS samplers (AirMetrics, USA) with inertial 

impactors were collocated about two meters above the ground to collect PM2.5 and PM10 on 47 

mm Teflon filters at a flow rate of 5 L/min continuously for 24 hours every other day during dusty 

seasons (June–July and September–October) of 2023. Field blanks were collected after every 7 or 

8 samples for each sampler, by installing a blank filter in the sampler and immediately removing 

it without pulling air through the filter. A QuantAQ MODULAIR-PM sensor was also collocated 

at the site to provide 1-minute average PM1, PM2.5, and PM10 concentrations.  

A total of 37 pairs of PM2.5 and PM10 samples were collected from the site and analyzed at 

Washington University in St. Louis. The filters were equilibrated for 24 h in an environment with 

controlled temperature (21.5 ± 1.0°C) and relative humidity (35.0 ± 1.5%) before weighing. Pre- 

and post-weighing of the filters were conducted using an automated weighing system (MTL 

AH500E) with a Mettler Toledo XPR6UD5 microbalance (0.5 μg readability). The elemental 

composition of the filter samples was analyzed using the Epsilon 4 (Malvern Panalytical) Energy-

Dispersive X-ray Fluorescence (ED-XRF) instrument. Blank correction was conducted by 

subtracting the measurement of a laboratory blank filter from the sample measurement. Details 

about the instrument configuration and analytical application as well as measurement uncertainties 

for Teflon filters are provided by (Liu et al., 2024). The PM10-2.5 concentration and elemental 
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concentrations in PM10-2.5 were calculated as the differences between PM10 and PM2.5 

measurements. 

Available historical Teflon filter samples from Tashkent were included in this study for analysis 

and comparison with the contemporary filter samples. A pioneering field campaign collected PM2.5 

Teflon filter samples from the same site during the dusty seasons of 2008−2009 (Amonov et al., 

2009, 2010). Additional archived PM2.5 samples were collected from both this primary site at “M-

1 Tashkent-Observatory” and a secondary site at a major intersection with heavy traffic, 

approximately 4 km northwest of the primary site, during the same months of 2010. These samples 

from 2008–2010 were weighed using a Mettler Toledo XP-26DR microbalance at the 

Hydrometeorological Research Institute. The elemental composition of the samples from 2008–

2009 was analyzed at the Desert Research Institute using the Epsilon 5 ED-XRF instrument, while 

the samples from 2010 were analyzed at Washington University in St. Louis using the Epsilon 4 

ED-XRF instrument. To ensure comparability of the elemental data from the two instruments, only 

elements with >50% of measured samples above the method detection limits (MDLs) of both 

instruments, calculated using laboratory blank filters (U.S. EPA, 2016a), were included for 

comparison. The number of samples for different years is summarized in Table S4.2. 

4.3.2 Dust Calculation 

We calculated dust concentrations using a global mineral dust equation based on concentrations 

of major crustal elements (Liu et al., 2022): 

dust = [1.89Al × (1 + MAL) + 2.14Si + 1.40Ca + 1.36Fe + 1.67Ti] × CF (4.1) 

where the constants are oxide factors used to convert elements to oxides, MAL represents a 

mineral-to-aluminum mass ratio defined as (K2O+MgO+Na2O)/Al2O3, and CF is a correction 
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factor used to account for other missing compounds such as carbonate. The MAL and CF 

coefficients are developed for six major dust source regions (Middle East, Sahara, Sahel, Australia, 

East Asia, and Southwest US), but they are not available for Central Asia because of insufficient 

measured data from the dust source region required for developing the regional coefficients (Liu 

et al., 2022). To determine appropriate coefficients, we initially used those for the continental crust 

to calculate dust mass and compared the mean MAL ratio of dust-dominated (dust mass fraction 

> 50%) samples to the MAL ratios for the six major dust regions. The coefficients for the region 

with the closest MAL ratio were then applied to determine dust mass in this study. 

4.3.3 Trajectory Analysis 

We investigated source areas of large dust events characterized by high dust concentration and 

fraction in PM2.5. To identify dust plumes for these events, we downloaded natural color images 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the National 

Aeronautics and Space Administration (NASA) Aqua satellite through the NASA Worldview 

website (https://worldview.earthdata.nasa.gov/). We computed 72-h air mass backward 

trajectories with arrival heights of 50, 100, and 500 m above ground level using the HYbrid Single 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Rolph et al., 2017; Stein et al., 2015) 

with Global Data Assimilation System (GDAS) gridded meteorological files at 1° spatial 

resolution.  

To examine the frequency of air masses passing over major desert areas, we also conducted a 

cluster analysis of backward trajectories using the “trajCluster” function in the “Openair” R 

package that applies the Partitioning Around Medoids algorithm (Carslaw & Ropkins, 2012). The 

Euclidean distance matrix is used to compute the similarity between different trajectories. The 

https://worldview.earthdata.nasa.gov/
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optimal number of clusters was determined using the total spatial variance (TSV) method (Draxler 

et al., 2023). 

4.3.4 Principal Component Analysis 

We applied principal component analysis (PCA) to qualitatively explore potential emission 

sources of major and trace elements in PM2.5. The covariance matrix was computed from the 

standardized elemental dataset, and the eigenvectors and eigenvalues were calculated from this 

matrix to determine the principal components (PCs). PCs with high eigenvalues were extracted to 

explain most of the total variance, and Varimax rotation was used to simplify interpretation. In the 

resulting component matrix, the component loadings represent the correlation of each element with 

each PC, while the communalities indicate the variance of each element explained by the extracted 

PCs. 

4.4 Results and Discussion 

4.4.1 Elemental Concentration Levels 

Figure 4.1 shows the concentration levels of ten major and trace elements with >50% of measured 

samples above MDLs of both XRF instruments. Elevated levels of crustal elements, including Al, 

Si, K, Ca, Ti, Mn, and Fe, were observed in the summer of 2008, indicating large dust events 

during that year. S and Pb levels remained relatively consistent across different years, while Zn 

levels were significantly higher in 2023 than in 2008−2010. The mean PM2.5-Zn concentration in 

2023 (~200 ng/m3) is comparable to levels observed in other polluted cities worldwide, such as 

Delhi, India, and Ilorin, Nigeria (Liu et al., 2024; Pant et al., 2017). The elemental comparison 

between PM2.5 and PM10-2.5 for 2023 (Figure S4.6) shows that crustal elements dominated the 

coarse mode, while Zn, Pb, and S were concentrated in the fine mode. Given that Zn from tire 
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wear and brake wear is often associated with the coarse mode, the notably higher concentration of 

Zn in the fine mode suggests the presence of additional major sources (Fussell et al., 2022; 

Harrison et al., 2012; Hays et al., 2011). No significant differences in elemental concentrations 

were found between the primary and secondary sites (Figure S4.7), except for Pb (P < 0.05), 

indicating the overall representativeness of the elemental composition across a few kilometers. 

 

Figure 4.1 Elemental concentrations in PM2.5 samples collected at the primary Tashkent site during the summer and 

fall of 2023 and 2008−2010. The box represents the interquartile range and the line inside indicates the median. The 

whiskers extend to the minimum and maximum within 1.5 times the interquartile range, and the dots represent outliers. 

4.4.2 Dust Concentration Levels 

For dust-dominated (dust mass fraction > 50%) samples determined using continental crust 

coefficients, the mean MAL ratio is 0.92, which is closest to the regional MAL ratio for the Middle 

East (0.72) and higher than those for other major dust source regions (Liu et al., 2022). Therefore, 

the MAL ratio of 0.72 and the CF of 1.14 for the Middle East were applied to calculate the dust 

mass for samples collected from Tashkent. The high MAL ratio found for dust-dominated PM in 
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Tashkent indicates that natural dust in Central Asia is likely more alkaline than dust in other source 

regions. Ground measurements of dust composition for deserts in Central Asia are needed to 

develop the coefficients specific to Central Asia and estimate dust mass in this region more 

accurately.  

Table S4.2 summarizes the dust and total PM concentration levels (mean ± standard deviation) for 

the samples collected during the summer and fall of 2023 and 2008−2010. Figure 4.2 compares 

dust concentrations and dust fractions in PM2.5 across different years. The mean PM2.5-dust 

concentration in 2023 was 6.8 μg/m3, higher than that in 2009 (4.9 μg/m3) and 2010 (5.3 μg/m3) 

but lower than that in 2008 (13 μg/m3), a year characterized by low precipitation (Amonov et al., 

2010). The mean PM2.5-dust levels in different years all approach or exceed the World Health 

Organization (WHO) annual air quality guideline of 5 μg/m3 for PM2.5 (WHO, 2021), indicating 

a considerable contribution of dust to PM2.5 levels in Tashkent. The mean PM10-dust level of 37 

μg/m3 observed in 2023 also exceeds the WHO annual air quality guideline of 15 μg/m3 for PM10. 

These dust levels are comparable to those found in other dusty cities worldwide, such as Abu 

Dhabi, UAE, and Kanpur, India (Liu et al., 2024). In 2023, the mean dust contribution to PM2.5 

was 30%, close to that of 2008 (31%) but higher than those of 2009 (20%) and 2010 (24%). By 

deducting dust from the total PM2.5, the calculated mean concentration of other PM2.5 components 

in 2023 (15 μg/m3, 70%) far exceeds the guideline (Figure S4.8), indicating that controllable 

sources, in addition to the uncontrollable desert dust, significantly contribute to PM2.5 levels in 

Tashkent. 
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Figure 4.2 Dust concentration and dust fraction in PM2.5 samples collected at the primary Tashkent site during the 

summer and fall of 2023 and 2008−2010. The number of asterisks indicates the significance level (**P < 0.01; ***P 

< 0.001) of the difference across different years using the Kruskal-Wallis test. The red square indicates the mean. The 

box represents the interquartile range and the line inside indicates the median. The whiskers extend to the minimum 

and maximum within 1.5 times the interquartile range, and the dots represent outliers. 

Figure 4.3 presents the time series of dust concentrations and dust fractions in fine (PM2.5) and 

coarse (PM10-2.5) PM during the summer and fall of 2023 compared with 2008–2010. In the 

summer of 2008, multiple dust events, including the large event on 28 June with a peak dust 

concentration of 35 μg/m3 and a peak dust fraction of 58%, contributed to the elevated mean PM2.5-

dust level for that year. A comparable large dust event also occurred on 11 September 2023, with 

both a high fine dust concentration of 35 μg/m3 and a high coarse dust concentration of 110 μg/m3. 

This event was confirmed by the 1-minute average PM data from the QuantAQ low-cost sensor, 

showing a sharp increase in PM10 concentration and a substantial decrease in the PM1/PM10 ratio 

(Figure S4.9). The dust fraction in PM2.5 increased to 55% during this dust event, while the dust 

fraction in PM10-2.5 remained relatively constant, indicating that dust dominated the coarse mode 

during both dust event days and normal days. Throughout the 2023 sampling period, dust 

accounted for 60 ± 7% (mean ± standard deviation) of coarse PM, with the remaining 40% likely 

attributed to non-dust components and dust underestimation. A larger potential underestimation of 

dust was identified at sites in Kyrgyzstan through mass balance calculations (Miller-Schulze et al., 
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2015). Higher MAL and CF coefficients may be necessary to calculate dust mass in Central Asia, 

especially when dust originates from Aralkum, which emits salts such as chlorides and sulfates in 

addition to carbonates (Orlovsky et al., 2001; Singer et al., 2003). Dust can also absorb acidic 

species in urban areas forming secondary salts (Heim et al., 2020; Kakavas & Pandis, 2021; Zhai 

et al., 2023), and adsorbed water can be non-negligible for salt minerals with high hygroscopicity. 

The expanded global dust equation, which incorporates salt minerals and adsorbed water (Liu et 

al., 2022), should be applied when sufficient mineralogical and hygroscopicity information for 

natural dust in Central Asia becomes available in the future. Dust underestimation could also be 

due to the attenuation effect of light elements in XRF analysis, which can be significant for coarse 

PM and heavily loaded filter samples (Formenti et al., 2010; Gutknecht et al., 2010).  

 

Figure 4.3 Time series of dust concentration and dust fraction in PM2.5 and PM10−2.5 at the primary Tashkent site 

during the summer and fall of 2023 and 2008−2010. The dust events on 11 September 2023 and 28 June 2008 with 

the highest dust concentrations and dust fractions in PM2.5 are highlighted in black circles. 
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4.4.3 Characteristics of Two Large Dust Events 

We further investigated the source areas of the large dust events on 11 September 2023 and 28 

June 2008. The 3-day backward trajectories and satellite images shown in Figure 4.4 indicate 

different dust source areas for the two events, with the 2008 event originating from the Aralkum 

Desert and the 2023 event originating from the Kyzylkum Desert. The satellite image from the day 

before the 2008 event shows a whitish salt dust plume emitted from Aralkum and transported 

southeastward, while the satellite image for the 2023 event day shows a yellow dust plume along 

the edge of a cyclone over Kyzylkum. The backward trajectories for different arrival heights are 

similar and intersect with the two dust plumes. The cluster analysis results of backward trajectories 

for the entire year of 2023 (Figure S4.10) show that 22.7% of the air masses originated from the 

northwest, passing over Aralkum and Kyzylkum, and 17.5% originated from the southwest, 

passing over Karakum, indicating a high frequency (~40%) of air masses from major desert areas 

arriving in Tashkent. Similar results were obtained from the cluster analysis for the entire year of 

2008 (Figure S4.11).  

 

Figure 4.4 The 72-h HYSPLIT backward trajectories with arrival heights of 50, 100, and 500 m for the dust events 

observed at the primary Tashkent site on (left) 28 June 2008 and (right) 11 September 2023. The background images 

are MODIS/Aqua images for (left) 27 June 2008 and (right) 11 September 2023 (source: NASA Worldview).  
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We also examined the elemental characteristics of the two large dust events using the ternary 

diagram of Ca-Fe-Al. Figure 4.5 shows that PM2.5 from both dust event days, especially the 2008 

event, exhibits lower Fe but higher Ca abundance than normal days, suggesting a high carbonate 

content in the desert dust of Central Asia. The elevated Fe fraction observed on some normal days 

is likely attributable to large anthropogenic sources. The 2008 event originating from Aralkum has 

a higher Ca fraction (0.68) than the 2023 event (0.50) originating from Kyzylkum, confirming 

their different origins. Compared to major dust source regions and continental crust, the elemental 

characteristics of the two events are similar to those of the Middle East and Saraha, which produce 

carbonate-rich dust (Liu et al., 2022). Elemental characterization of dust across various source 

areas in Central Asia is important to help identify the origins of desert dust transported to urban 

areas within the region and beyond. 

 

Figure 4.5 Ternary diagram (Ca-Fe-Al) of PM2.5 samples collected from the primary Tashkent site during the summer 

and fall of 2023 and 2008−2010. Representative elemental compositions for major dust source regions and continental 

crust summarized by Liu et al. (2022) are included for comparison. The dust events on 11 September 2023 and 28 

June 2008 are highlighted with large dots. 
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4.4.4 Source Apportionment of Major and Trace Elements  

We qualitatively explored contemporary putative emission sources, in addition to dust, for major 

and trace elements using elemental data of PM2.5 samples collected from Tashkent during the 

summer and fall of 2023. The correlation analysis results (Figure S4.12) show strong positive 

correlations (r > 0.8, P < 0.0001) among major crustal elements including Al, Si, Ca, Ti, and Fe, 

indicating dust sources. Moderate correlations (r > 0.6, P < 0.0001) were found between K and 

major crustal elements, as well as between Mn and major crustal elements, suggesting the presence 

of both natural and anthropogenic sources for K and Mn. Zn strongly correlates with Mn (r = 0.7, 

P < 0.0001), while S and Pb did not show strong correlations (r ≥ 0.7) with the examined elements. 

Table 4.1 presents the PCA results with three PCs explaining 87% of the total variance and >70% 

of the variance for each element, except for K, which may have other sources such as wood burning 

for traditional cooking and the burning of leaves and plant residues in fall (Uzhydromet, 2020). 

PC1 is dominated by crustal elements, representing mineral dust emission. In addition to natural 

dust, anthropogenic sources such as road and construction dust also notably contribute to the 

crustal elements in Tashkent. PC2 is highly associated with Pb and S, implying possible 

combustion sources, while PC3 is strongly loaded with Zn, suggesting potential industrial and 

vehicle emissions. The elevated Zn concentrations observed in 2023 (Figure 4.1) could be 

attributed to various sources, including numerous metalworking factories in Tashkent, as well as 

lubricant oil combustion, tire wear, and brake wear from the increasing number of vehicles 

(Dallmann et al., 2014; Fussell et al., 2022). In addition to the large number of natural gas vehicles 

in Tashkent, diesel engines in construction equipment and railroad locomotives could also 

contribute to the high Zn concentrations (Reff et al., 2009), given the widespread construction 

activities and the busy railroad network across the city. Further investigation of potential emission 
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sources for these elements is constrained by the lack of a microscale emission inventory and 

samples covering all four seasons. 

Table 4.1 Component matrix of the PCA analysis for PM2.5 samples collected at the primary Tashkent site during the 

summer and fall of 2023  

Element PC1 PC2 PC3 Communality 

Pb 0.11 0.93 0.03 0.87 

Zn 0.02 0.17 0.97 0.97 

Fe 0.83 0.09 0.10 0.71 

Mn 0.82 0.23 0.44 0.92 

Ti 0.97 0.16 -0.03 0.96 

Ca 0.98 0.02 0.03 0.97 

K 0.70 0.37 -0.07 0.63 

S 0.16 0.84 0.24 0.80 

Si 0.98 0.09 0.03 0.97 

Al 0.97 0.13 0.02 0.96 

Initial Eigenvalue 6.1 1.7 0.9  

Percent of variance 61 17 9  

Cumulative percent 61 78 87  

Note. Loadings ≥ 0.70 are shown in bold. 

4.5 Conclusions 

Overall, this study quantified the dust contribution to ambient PM in Tashkent, Uzbekistan using 

the first contemporary elemental composition data of PM samples collected during dust storm 

seasons in 2023. The available historical (2008−2010) PM2.5 samples were also included for 

analysis and comparison. We found that the mean dust contribution to PM2.5 was 30% in 2023, 

similar to 2008 (31%) but higher than in 2009 (20%) and 2010 (24%). Both dust and non-dust 

components in PM2.5 exceeded the WHO annual guideline. Two large dust events in 2008 and 

2023 were identified by their high dust concentrations (35 μg/m3) and dust fractions (~60%) in 

PM2.5. Backward trajectory analysis and satellite images indicate that the 2008 event originated 

from the Aralkum Desert, while the 2023 event originated from the Kyzylkum Desert. PM2.5 

samples from both dust event days exhibit lower Fe but higher Ca content than normal days. The 
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Zn concentration level in 2023 was significantly higher than the levels observed in 2008–2010. In 

addition to natural dust, anthropogenic sources including construction, combustion, metalworking 

industries, and transportation also potentially contribute to the major and trace elements in 

Tashkent. 

Ground measurements of dust composition including elemental and mineralogical characterization 

across the source areas in Central Asia are needed to estimate dust contribution to PM more 

accurately in this region. Quantifying the attenuation effects of light elements in XRF analysis 

could further enhance the accuracy of dust estimation from XRF measurements. The health effects 

of contaminated salt dust in PM2.5 from the Aralkum Desert deserve to be investigated, given the 

role of Aralkum as a source area for large dust events in urban cities. The considerable contribution 

of non-dust components to PM2.5 suggests an urgent need to investigate anthropogenic sources of 

PM2.5 in Uzbekistan. Characterization of other PM2.5 components, samples representative of all 

seasons, and detailed emission inventories are needed to conduct comprehensive source 

apportionment of PM2.5. This study helps fill the gap in understanding dust contribution to PM in 

Central Asia, providing evidence to guide air pollution management strategies in the region. 
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4.6 Supplementary Material 

  

Figure S4.6 Comparison of elemental concentrations between PM2.5 and PM10−2.5 at the primary Tashkent site during 

the summer and fall of 2023. The number of asterisks indicates the significance level (****P < 0.0001) of the 

difference between the two sites using the Wilcoxon test. The box represents the interquartile range (IQR) and the line 

inside indicates the median. The whiskers extend to the minimum and maximum within 1.5 times the IQR, and the 

dots represent outliers. 
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Figure S4.7 Comparison of elemental concentrations in PM2.5 samples between the primary and secondary Tashkent 

sites during the summer and fall of 2010. The number of asterisks indicates the significance level (*P < 0.05) of the 

difference between the two sites using the Wilcoxon test. The box represents the IQR and the line inside indicates the 

median. The whiskers extend to the minimum and maximum within 1.5 times the IQR, and the dots represent outliers. 

 

Figure S4.8 Mass concentration and fraction of dust and other components in PM2.5 samples collected at the primary 

Tashkent site during the summer and fall of 2023 and 2008−2010. The dashed line represents the World Health 

Organization (WHO) annual air quality guideline of 5 μg/m3 for PM2.5. 
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Figure S4.9 The 1-minute average PM1/PM10 ratio and PM10 concentration from the MODULAIR-PM sensor at the 

primary Tashkent site for the dust event on September 11th, 2023. 

 

Figure S4.10 The mean trajectory of each cluster (left) and trajectory frequencies for each cluster (right) based on 72-

h HYSPLIT backward trajectories with an arrival height of 100 m for the primary Tashkent site in 2023. 

 

Figure S4.11 The mean trajectory of each cluster (left) and trajectory frequencies for each cluster (right) based on 72-

h HYSPLIT backward trajectories with an arrival height of 100 m for the primary Tashkent site in 2008. 
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Figure S4.12 Nonparametric Spearman’s correlation coefficients among elements for PM2.5 samples collected at the 

primary Tashkent site during the summer and fall of 2023. The number of asterisks indicates the significance level 

(*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). 

Table S4.2 Sampling information and mass concentrations (mean ± standard deviation) of PM and dust for PM 

samples collected at the primary and secondary sites 

Site Year Particle size Nsummer Nfall Ntotal 
XRF 

instrument 
PM (μg/m3) Dust (μg/m3) 

Primary 2023 PM10 22 15 37 Epsilon 4 73±39 37±22 

Primary 2023 PM2.5 22 15 37 Epsilon 4 22±9.8 6.8±5.5 

Primary 2010 PM2.5 15 15 30 Epsilon 4 25±11 5.3±2.0 

Primary 2009 PM2.5 14 15 29 Epsilon 5 25±9.7 4.9±2.6 

Primary 2008 PM2.5 9 6 15 Epsilon 5 41±18 13±11 

Secondary 2010 PM2.5 6 6 12 Epsilon 4 24±10 6.4±2.8 

Note. N indicates the number of collected samples. 
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Chapter 5: Assessing Attenuation Effects in X-ray 

Fluorescence Analysis of Light Elements in Mineral 

Dust 

This work was supported by NOAA (Grants NA230AR4310464 and NA24NESX432C001) and NSF 

(Grant 2020673). Sample collection was supported by Dr. Dhruv Mitroo and Yuxuan Ren 

(Washington University in St. Louis). Filter weighing was supported by Dr. Christopher Oxford, 

Wenyu Liu, and Zilin Wei (Washington University in St. Louis). 

5.1 Abstract 

Reliable elemental analysis is important for understanding mineral dust sources, mass 

concentrations, composition, and atmospheric processing. Attenuation effects for light elements 

measured by the widely used X-ray fluorescence (XRF) technique can lead to an underestimation 

of dust mass. However, correcting for these effects in filter samples of ambient particulate matter 

(PM) remains a significant challenge. This study assesses attenuation due to mass loading, particle 

size, and chemical composition for silicon and aluminum by comparing XRF and gravimetric 

measurements of samples with known compositions. Micron-sized powder oxides, SiO2 and 

Al2O3, and Arizona test dust (ATD) were aerosolized and collected on Teflon filters to generate 

samples with varying mass loadings and particle size ranges. The results from the oxide samples 

validated that attenuation increases with both mass loading and particle size, while the significantly 

higher attenuation in ATD samples than in SiO2 samples with the same mass loading and size 

range indicated the composition dependence of attenuation. The combined attenuation estimated 

by two theoretical models incorporating composition, mass loading, and particle size agreed well 

(slope = 1.01, R2 = 0.99) with the measured attenuation for silicon in collected PM2.5 ATD samples. 
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Applying attenuation corrections based on theoretical models to ambient PM2.5 samples from a 

global monitoring network (SPARTAN) revealed an average increase of 30% in estimated dust 

concentrations. This work demonstrates the importance of considering attenuation effects in XRF 

analysis for accurate dust measurements. 

5.2 Introduction 

Atmospheric mineral dust has a widespread impact on climate, ecosystems, human health, and 

socio-economic sectors (Cuevas-Agulló et al., 2024; Kok et al., 2023; Salvador et al., 2022). 

Exposure to dust in ambient fine particulate matter (PM2.5) with aerodynamic diameter <2.5 μm is 

associated with respiratory and cardiovascular diseases (Ostro et al., 2016; Vedal et al., 2013). In 

ground-based PM measurements, elemental composition is typically analyzed to estimate dust 

mass using a dust equation that sums common oxides of major crustal elements, such as Si and Al 

(Chow et al., 2015; Liu et al., 2022; Malm et al., 1994). Elemental ratios (e.g., Ca/Al) are 

commonly utilized to distinguish source areas of dust (Aldhaif et al., 2020; Scheuvens et al., 2013). 

Thus, reliable elemental composition is essential for estimating dust contributions to ambient PM 

and understanding dust characteristics. 

The X-ray fluorescence (XRF) technique is widely used to characterize the elemental composition 

of PM samples collected on filters. Its non-destructive nature, requiring no acid digestion, 

enhances analysis efficiency, reduces costs, enables additional speciation analysis, and avoids 

extraction efficiency issues compared to destructive techniques such as inductively coupled plasma 

mass spectrometry. This advantage is particularly significant for large-scale monitoring networks 

(Liu et al., 2024; Solomon et al., 2014). However, light elements are susceptible to attenuation 

effects in XRF analysis. Attenuation effects occur when part of the incoming X-rays and the 
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fluorescent X-rays emitted by the target elements are absorbed by other components in the sample, 

weakening the detected signal. Attenuation is more pronounced for light elements than for heavy 

elements because of the lower energy (“soft”) X-rays that light elements emit. Light elements, 

particularly crustal elements like Si and Al, are major elements in dust that are incorporated into 

dust equations used to infer dust mass. Therefore, attenuation effects can lead to underestimation 

of dust mass and inaccuracies in elemental ratios. 

The magnitude of attenuation in XRF analysis of PM filter samples depends on multiple factors, 

including mass loading, particle size, and chemical composition (Gutknecht et al., 2010). Greater 

attenuation is anticipated with high mass loading and large particles because of the increased path 

length of X-rays traveling through the deposit compared to low mass loading and small particles 

(Chiapello et al., 1997; Formenti et al., 2010). Attenuation resulting from particle penetration into 

the filter can be substantial for quartz fiber filters but is negligible for “surface filters” such as 

Teflon (Chiari et al., 2018).  

Dzubay and Nelson (1974) established foundational theoretical models for estimating attenuation 

in PM filters. They utilized a homogeneous layer model for fine particles, assuming negligible 

attenuation within fine particles, and a particle size model for coarse particles, assuming these 

particles are collected as a monolayer on the filter. In the context of PM2.5, Gutknecht et al. (2010) 

reviewed theoretical models developed to estimate attenuation and proposed using the particle size 

model for light elements (Na, Mg, Al, and Si) and the homogeneous layer model for heavier 

elements (Z > 14) in PM2.5 based on Dzubay and Nelson’s work as extended by Kellogg. Kellogg 

(2005) assumed that particles containing light elements are primarily at the high end of the PM2.5 

size distribution and therefore used the particle size model to estimate attenuation for light 
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elements in PM2.5 by averaging the attenuations for potential mineral forms containing these 

elements. However, considering only attenuation due to particle size for light elements in PM2.5 

may be valid for filters with low mass loading where the monolayer assumption is applicable, but 

may not be suitable for filters with high dust loading such as those collected during dust events. 

These models have not been thoroughly evaluated by experiments. Only a limited number of 

studies have applied experimental methods to estimate the attenuation effects of light elements for 

PM filter samples in XRF (Chiapello et al., 1997; Formenti et al., 2010; Turner & Brown, 2015), 

as well as in a similar technique, particle-induced X-ray emission (PIXE) (Calzolai et al., 2014; 

D’Alessandro et al., 2003; Maenhaut & Cafmeyer, 1998). 

This study aims to experimentally assess the attenuation effects with a specific focus on Si and Al 

in PM2.5. We examine attenuation due to mass loading, particle size, and chemical composition for 

Si and Al by comparing XRF measurements with gravimetric data of samples with known 

compositions. PM samples with varying mass loadings and particle size ranges are generated by 

aerosolizing micron-sized powder oxides (SiO2 and Al2O3) and Arizona test dust, which are then 

collected on Teflon filters. The experimental results are compared to estimates derived from the 

homogeneous layer and particle size models. These theoretical models are also applied to ambient 

PM2.5 samples with elevated dust content collected from the global monitoring network, Surface 

Particulate Matter Network (SPARTAN, Snider et al., 2015). The potential impact of attenuation 

effects on dust concentration estimates is evaluated. 



122 

 

 

5.3 Materials and Methods 

5.3.1 Materials 

We used commercially available 5-μm Al2O3 and SiO2 powder with a high purity of >99.5% (US 

Research Nanomaterials, Inc.) and Arizona Test Dust (ATD, ISO 12103‐1 A1 Ultrafine Grade, 

Powder Technology Inc.) with a volume mean diameter of 4.76 μm. The size distribution data for 

the micron powder oxides is not available from the manufacturer. The chemical composition of 

ATD measured by XRF following the ASTM C114-15 norm (ISO, 2024) and its size distribution 

determined by a laser diffraction analyzer (Microtrac, Inc.) were provided by the manufacturer. 

ATD primarily consists of SiO2 (69–77%) along with smaller amounts of other crustal element 

oxides (Table S5.1). 

5.3.2 Sample Collection and Analysis 

The micron powder oxides and ATD were aerosolized using a recently developed benchtop 

system, which contains a wrist-action shaker, custom-made flask, sharp-cut cyclone (BGI, 

SCC1.829), neutralizer, and dilution drum (Mitroo et al., 2021). An AirPhoton (Baltimore, MD) 

SS5 sampling station was connected to the dilution drum to collect aerosolized particles on 25 mm 

Teflon filters. PM1, PM2.5, and PM10 samples were collected by operating the cyclone at flow rates 

of 11 L/min, 5 L/min, and 1.5 L/min, respectively. Varying mass loadings were achieved by 

adjusting the sampling time. The cyclone was regularly checked for clogging, and samples 

collected with a severely clogged cyclone were excluded from the analysis. The system was 

cleaned with methanol-wetted KimwipesTM and compressed air before collecting new material. 

Method blanks were collected after cleaning to assess potential contamination from the system. 

These blanks followed all procedures without adding powder or ATD.  
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Filters were weighed before and after the sampling using a Mettler Toledo XPR6UD5 

microbalance with a high readability of 0.5 μg in an automated weighing system (MTL AH500E). 

Prior to weighing, the filters were conditioned for 24 h in a controlled environment (temperature 

= 21.5 ± 1.0°C, relative humidity = 35.0 ± 1.5%). Each filter was weighed three times, and the 

mean and standard deviations were recorded. The elemental composition of the collected filters 

was analyzed by the Epsilon 4 instrument (Malvern Panalytical), which employs the Energy-

Dispersive X-ray Fluorescence (ED-XRF) technique. The Epsilon 4 configuration and analytical 

conditions for analyzing PM composition on Teflon filters have been previously described (Liu et 

al., 2024). 

5.3.3 Experimental Assessment of Attenuation 

The attenuation effect for element i can be represented using the attenuation factor (Ai): 

Imeasured,i  = Ii × Ai (5.1) 

where Ii and Imeasured,i are the intensities before and after attenuation for element i. For all cases Ai  

1 and smaller values of Ai correspond to greater attenuation. The experimental Ai in this study was 

obtained by comparing XRF and gravimetric measurements: 

Ai  = 
MXRF,i

Mgrav,i
 = 

MXRF,i

m × wi / S
 (5.2) 

where MXRF,i and Mgrav,i are the mass loadings (μg/cm2) for element i from XRF and gravimetric 

measurements, m is the total mass of the deposit, wi is the mass fraction of element i in the total 

mass, and S is the known deposition area. The uncertainty of the measured Ai (σA,i) was calculated 

by considering the elemental uncertainties from both XRF and gravimetric measurements: 
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σA,i  = Ai × √(
σXRF,i

MXRF,i
)

2

 + (
σgrav,i

Mgrav,i
)

2

 (5.3) 

For micron powders of pure oxides, wi was determined by stoichiometry, and σgrav,i was determined 

by the uncertainty from measurements of m (σm), which can be calculated using the standard 

deviations of pre- and post-sampling weights from the microbalance (σpre and σpost): 

σgrav,i  = σm × 
wi

S
 = √σpre

2  + σpost
2  × 

wi

S
 (5.4) 

For ATD containing multiple oxides, σgrav,i was determined by both σm and the uncertainty in wi 

(σw,i) derived from the ATD composition data provided by the manufacturer: 

σgrav,i  =√(σm × 
wi

S
)

2

 + (σw,i × 
m

S
)

2

 (5.5) 

Given only the lower and upper limits of the oxide mass fractions in ATD, wi was calculated using 

stoichiometry and the mean mass fraction of the corresponding oxide based on the limits, and σw,i 

was roughly estimated using stoichiometry and half of the range between the limits. The calculated 

wi and σw,i are provided in the Supporting Information (Table S5.1). The elemental uncertainty and 

method detection limit (MDL) for XRF measurements of Teflon filters using the Epsilon 4 are 

from Liu et al. (2024). The MDL for mass measurements was calculated using the mean plus three 

times the standard deviation from the collected method blanks. Only samples with mass above the 

MDL were included for analysis.  

5.3.4 Theoretical Estimation of Attenuation 

The theoretical models developed by Dzubay and Nelson (1974) were applied to calculate 

theoretical A for PM2.5. Assuming the sample can be considered as a homogeneous layer where 
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particle size is smaller than the layer thickness and attenuation within particles is negligible, the 

theoretical A due to mass loading (Amass) can be calculated as: 

Amass = 
1−exp(−μ̅M)

μ̅M
 (5.6) 

where M is the total mass loading (g/cm2) and 𝜇̅ is the total mass absorption coefficient (cm2/g). 

The calculation of 𝜇̅ involves elemental mass fractions, elemental mass absorption coefficients for 

incoming and emitted fluorescent X-rays, and the geometry of the sample relative to the X-ray 

source and detector, as shown in the Supporting Information (Text 5.6.1). 

To determine the attenuation due to particle size, Dzubay and Nelson (1974) assumed particles 

could be treated as equivalent spheres and were collected as a monolayer on the filter. The 

attenuation factor for a sphere, A(sphere), can be calculated as a function of geometric particle 

diameter, particle density, and parameters used in the 𝜇̅  calculation, which is shown in the 

Supporting Information (Text 5.6.1). The theoretical A due to particle size (Asize) for a sample can 

be calculated by averaging A(sphere) over the size distribution: 

Asize = 
∫ A(sphere)

dV

dlogD
η(D)dlogD

∫
dV

dlogD
η(D)dlogD

 (5.7) 

where D is the geometric diameter, dV/dlogD is the volume size distribution, and η(D) is the 

penetration efficiency. η(D) for collected PM2.5 samples was calculated using the equation and 

parameters developed by Peters et al. (2001) for the cyclone model used in this study. However, 

the parameters for collecting PM1 and PM10 were not available. When calculating η(D), the 

geometric diameter was converted to aerodynamic diameter (Da) using particle density and 

dynamic shape factor for nonspherical particles (Hinds & Zhu, 2022): 
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Da = D√
ρp

ρ0χ
 (5.8) 

where χ is the dynamic shape factor, ρp is the particle density, and ρ0 is the standard particle density 

(1 g/cm3). For ATD, ρp is 2.65 g/cm3 according to the manufacturer, matching the density of quartz. 

Therefore, the χ of quartz (1.36) was used for ATD (Boose et al., 2016; Hinds & Zhu, 2022).  

5.3.5 Application to Ambient Dust 

The theoretical models were also applied to ambient PM2.5 samples collected from the SPARTAN 

network to assess the potential attenuation impact on dust concentrations. The SPARTAN samples 

were collected and analyzed using the same sampler, cyclone, Teflon filters, and XRF as used for 

powder oxides and ATD in this study. The early development, site locations, sampling procedures, 

quality assurance, and applications for SPARTAN have been described in previous studies 

(McNeill et al., 2020; Snider et al., 2015, 2016; Weagle et al., 2018). Dust concentrations were 

calculated using a global mineral dust equation with regional coefficients based on concentrations 

of major crustal elements (Liu et al., 2022).  

We estimated theoretical attenuation factors for dust-dominated (dust > 50% of total mass) PM2.5 

SPARTAN samples collected over 2019−2024. The composition and mass loading for each 

sample were represented by the oxides of crustal elements and relatively abundant trace elements 

(Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe, Zn, and Pb), which approximate the dust components. The 

effect of including additional PM2.5 species on the attenuation factors was evaluated. Since the size 

distribution of SPARTAN samples was not available, the size distribution for emitted dust aerosols 

developed by Kok (2011) was applied. A typical dust density of 2.5 g/cm3 was used, and a 45% 

increase was applied to convert aerodynamic diameter to geometric diameter for dust particles, as 
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suggested by a previous study (Huang et al., 2021). Attenuation factors estimated for Si and Al 

were used to correct the concentrations: 

Ccorr,i  = 
Cno corr,i

Ai
 (5.9) 

where Ccorr,i and Cno corr,i are the concentrations (μg/m3) of element i with and without attenuation 

correction, respectively. The resulting dust concentrations were calculated after applying the 

attenuation correction. 

5.4 Results and Discussion 

5.4.1 Experimental Assessment of Attenuation 

Figure 5.1 presents the measured attenuation factors for Al (AAl) in Al2O3 samples with varying 

size ranges and total mass loadings based on XRF and gravimetric measurements. A decreasing 

trend in AAl with increasing mass loading was observed across all size ranges, validating that Al 

attenuation increases with mass loading. For PM2.5 Al2O3 samples, AAl decreased from 0.93±0.06 

at a total mass loading of 7.5 μg/cm2 to 0.82±0.04 at 92 μg/cm2. Despite the limited number of 

samples, a slight increase in Al attenuation with particle size was also observed. AAl showed only 

a minor difference between PM1 and PM2.5 but decreased by approximately 0.05 as the size range 

increased from PM2.5 to PM10. The AAl in ATD samples is not shown because of the low Al mass 

fraction (~6%) and significant associated uncertainty (~28%) from the ATD composition data 

(Table S5.1), which results in substantial error bars for the calculated attenuation factor and hinders 

meaningful comparison. 
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Figure 5.1 Attenuation factors for Al in Al2O3 powder samples. The error bars indicate the combined uncertainties 

from both XRF and gravimetric measurements. The dotted line denotes an attenuation factor of 1, indicating no 

attenuation. 

Figure 5.2 shows the measured attenuation factors for Si (ASi) in SiO2 and ATD samples across 

various size ranges and total mass loadings. A decreasing trend in ASi (increasing attenuation) with 

increasing mass loading was observed for both SiO2 and ATD samples across all size ranges. For 

PM2.5 ATD samples, ASi decreased from 0.72±0.05 at a total mass loading of 59 μg/cm2 to 

0.33±0.02 at 923 μg/cm2. A significant decrease (~0.1) in ASi for ATD samples compared to SiO2 

samples at equivalent total mass loadings and size ranges was observed, indicating that attenuation 

is composition dependent. The presence of other oxides in ATD can absorb more fluorescent X-

rays emitted by Si than pure SiO2, leading to greater Si attenuation in ATD. The non-linear 

relationship of Si mass loadings between XRF and gravimetric measurements for PM2.5 samples 

of SiO2 and ATD is presented in Figure S5.5. A greater deviation from the one-to-one line was 

observed in ATD samples than in SiO2 samples at the same Si mass loading. Since the ATD 

samples better match the matrix of ambient PM than the pure SiO2 samples, their attenuation is 

expected to reflect real-world samples more closely.  
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Figure 5.2 Attenuation factors for Si in SiO2 powder and Arizona Test Dust (ATD) samples. The error bars indicate 

the combined uncertainties from both XRF and gravimetric measurements. The dotted line denotes an attenuation 

factor of 1, indicating no attenuation. The dashed and solid curves represent quadratic regression for PM2.5 SiO2 

powder and ATD samples, respectively. 

A size dependence of ASi similar to that observed in the Al2O3 samples was found in the SiO2 

samples but not in the ATD samples (Figure 5.2). The PM1 ATD samples exhibited slightly lower 

ASi than the PM2.5 ATD samples, potentially due to the size dependence of dust composition. 

Quartz (SiO2) has a higher Mohs hardness and lower cleavage than other minerals, and therefore 

it is less affected by mechanical processes and tends to dominate larger size fractions (Boose et 

al., 2016; Nousiainen, 2009). Thus, PM1 samples may contain less SiO2 and more other oxides 

than PM2.5 samples, which can enhance Si attenuation and lead to a slightly lower ASi, as suggested 

by the comparison between ATD and pure SiO2. The difference in ASi between PM10 and PM2.5 is 

also likely reduced because the attenuation decrease due to higher SiO2 content in PM10 offsets the 

attenuation increase due to larger particle sizes. Figure S5.6 provides evidence of the size-

dependent composition of ATD by examining the Si/Fe ratio across different particle size ranges. 

If the composition were size-independent, the Si/Fe ratio would decrease with increasing particle 
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size due to the increased attenuation of Si and negligible attenuation of Fe. However, a reverse 

trend was observed, indicating a higher Si content in the larger particle size fractions. 

5.4.2 Theoretical Estimation of Attenuation 

We compared the measured attenuation factors with estimates derived from the homogeneous 

layer and particle size models for Si in PM2.5 ATD samples as shown in Figure 5.3. The theoretical 

estimates best aligned with the measured values (slope = 1.01, R2 = 0.99) when attenuation factors 

due to mass loading and particle size were combined (Amass×Asize). The ATD composition was 

incorporated into the calculations of both Amass and Asize. Gutknecht et al. (2010) proposed using 

the particle size model for light elements in PM2.5. However, Asize calculated from the particle size 

model is a volume-weighted average that does not vary with mass loading for a given size 

distribution. Thus, considering only Asize cannot capture the observed decrease in the Si attenuation 

factor with increasing mass loading. This model assumed particles were collected as a monolayer 

on the filter, which may hold for filters with low mass loading but not for those with heavy loading. 

Dzubay and Nelson (1974) suggested using the homogeneous layer model for fine PM. However, 

when considering only Amass derived from the homogeneous layer model, the theoretical estimates 

were ~26% higher than the measured Si attenuation factor (R2 = 0.99) as shown in Figure S5.7, 

indicating a significant underestimation of the Si attenuation. The good agreement between 

Amass×Asize and the measured values could suggest that considering the deposit as a homogeneous 

layer contributing to Amass with a monolayer on top contributing to Asize is a more appropriate 

assumption than either a purely homogeneous layer or a monolayer alone. The multiplier of Asize 

applied to Amass could be interpreted as an adjustment factor to account for assumptions made in 

the homogeneous layer model.    



131 

 

 

 

Figure 5.3 Comparison between theoretically estimated and measured attenuation factors for Si in PM2.5 Arizona Test 

Dust samples. (a) The solid curve represents theoretical attenuation factors due to both mass loading and particle size 

(Amass×Asize), while the triangles and error bars indicate measured attenuation factors. (b) The dashed line shows the 

linear regression for the agreement between theoretical (Amass×Asize) and measured attenuation factors. 

Multiple sources of uncertainty exist in the assumptions and model calculations. First, particles 

were assumed as equivalent spheres to calculate the attenuation due to particle size, which may 

not represent the attenuation for irregularly shaped dust particles. Second, the same elemental 

composition was used to calculate attenuation across all particle sizes, although dust composition 

is size dependent (Boose et al., 2016; Nousiainen, 2009). Third, the ATD composition used in 

calculating total mass absorption coefficients has significant uncertainty for elements other than 

Si, based on the data provided by the manufacturer (Table S5.1). We examined the effect of using 

an iterative process to deduce elemental composition and the resulting attenuation factor from the 

XRF measurements and found that the attenuation factor stabilized after three iterations with 

changes of <3%. The performance of the models for PM1 and PM10 was not examined because 

penetration efficiency data for the cyclone at these size ranges were unavailable. 
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5.4.3 Dust Underestimation Due to Attenuation 

Given the good agreement between Amass×Asize and the measured values for PM2.5 ATD samples 

(Figure 5.3), we also calculated Amass×Asize for ambient dust-dominated PM2.5 samples from the 

SPARTAN network. The theoretical attenuation factors estimated for Si and Al in dust-dominated 

PM2.5 SPARTAN samples are summarized in Table S5.2. The combined Amass×Asize values are 

0.74±0.02 for Si and 0.71±0.02 for Al, similar to those observed for PM2.5 ATD samples with 

comparable mass loading (<120 μg/cm2) in Figure 5.3. The small standard deviations in Amass×Asize 

indicate minor differences in attenuation factors due to variations in elemental composition and 

mass loading across most SPARTAN samples.  

Figure 5.4 evaluates the impact on dust concentrations after correcting for estimated attenuation 

effects. The dust concentration increased by 30% on average based on linear regression results for 

dust-dominated PM2.5 samples, demonstrating the importance of considering attenuation effects 

for PM2.5 dust measured by XRF. We assessed the validity of using only elemental oxides to 

represent composition and mass loading for each sample. We calculated the change in estimated 

attenuation after including other species and found no significant difference when adding 

measured sulfate, nitrate, ammonium, chloride, or elemental carbon. Since organic matter was not 

measured, we assumed an organic matter to organic carbon ratio of 1.8 (Hand et al., 2012; Malm 

& Hand, 2007), with the organic matter mass approximated by summing organic carbon and 

oxygen, and found a resulting difference of <5%. The small effect of other species on attenuation 

in dust-dominated samples suggests that using only elemental oxides is appropriate. Future 

measurements of organic matter concentration could further refine the attenuation calculations and 

extend their applicability to samples that are not dust-dominated. 
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Figure 5.4 Comparison between dust mass with attenuation correction and dust mass without attenuation correction 

for dust-dominated (dust > 50% of total mass) PM2.5 samples at SPARTAN sites. The dashed line shows the linear 

regression with zero intercept. 

5.5 Conclusions 

The XRF technique is widely used to analyze the elemental composition of PM filter samples to 

understand dust composition and estimate dust mass. Attenuation effects for light elements in XRF 

analysis can cause inaccurate elemental composition and dust underestimation, yet correcting these 

effects has often been overlooked in previous studies and remains a significant challenge. Here, 

we experimentally assessed attenuation due to mass loading, particle size, and chemical 

composition for Si and Al by comparing XRF and gravimetric measurements of samples generated 

using powder oxides and Arizona test dust (ATD). Results show that attenuation increased with 

both mass loading and particle size in the oxide samples. The attenuation for Si in ATD samples 

was significantly higher than in SiO2 samples with the same mass loading and size range, verifying 

that attenuation is composition dependent. We compared the attenuation factors measured for ATD 

samples to estimates derived from a homogeneous layer model and a particle size model. 

Theoretical estimates for Si in PM2.5 ATD samples aligned best with the measured values when 
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using combined estimates from both models, rather than a single model suggested by previous 

studies. Applying these models to ambient dust-dominated PM2.5 samples from the SPARTAN 

network indicated an average increase of 30% in estimated dust concentrations after correcting for 

attenuation effects. 

The uncertainty introduced by the spherical particle assumption in the particle size model requires 

further evaluation. The effect of particle morphology, such as shape, on attenuation should also be 

considered. A comprehensive analysis of all species in ambient PM samples and their particle size 

distribution would enable more accurate attenuation estimates using the models. Size-segregated 

dust composition could further reduce uncertainty in theoretical estimates. Further evaluation of 

the models is needed for coarse PM or PM10, which experiences greater attenuation of light 

elements than fine PM, although the difference may not be substantial based on our experiments. 

Other experimental methods could be used to assess attenuation effects, such as comparing XRF 

with an attenuation-free technique suitable for light elements (e.g., particle-induced gamma-ray 

emission, PIGE), which allows the use of samples with unknown compositions. 

This study provides experimental evidence for the significant attenuation of light elements in dust 

samples and its variations with mass loading, particle size, and composition. Correcting for 

attenuation effects will enhance understanding of dust characteristics and provide more accurate 

estimates of dust contributions to PM, which is important for PM mass closure, especially for 

samples collected during dust events. More accurate ground-based dust measurements are 

important for improving atmospheric models and satellite remote sensing algorithms, leading to a 

better understanding of dust impacts on the environment and human health. 
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5.6 Supplementary Material 

5.6.1 Details for Theoretical Attenuation Calculations  

The total mass absorption coefficient (𝜇̅) was calculated as:  

μ̅ = μ csc θ + μ' csc θ
'
 (S5.10) 

where µ and µ’ are the total mass absorption coefficients (cm2/g) of all elements for the incoming 

and emitted fluorescent X-rays respectively, and θ and θ’ are the angles between the sample surface 

and the incoming X-rays or emitted X-rays that reach the detector. µ and µ’ were calculated as: 

μ = ∑(μ
i
wi) (S5.11) 

μ' = ∑ (μ
ij
wi) (S5.12) 

where µi and µij are the mass absorption coefficients (cm2/g) of element i for the incoming X-ray 

and the emitted fluorescent X-ray from element j respectively, and wi is the mass fraction of 

element i in the sample. 

The attenuation factor for a sphere, A(sphere) was calculated as: 

A(sphere) = 
3

2Y3 [Y2 − 2 + (2Y + 2)exp( − Y)] [exp( − KY(θ + θ')
2
)] (S5.13) 

where K = 4×10-6 (degrees)-2, and  

Y = (μ + μ')Dρ
p
 (S5.14) 

where D is the geometric particle diameter and ρp is the particle density. 
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Figure S5.5 Comparison of Si mass loading based on XRF and gravimetric measurements for PM2.5 SiO2 powder and 

Arizona Test Dust (ATD) samples. The vertical and horizontal error bars indicate uncertainties from XRF and 

gravimetric measurements, respectively. The dashed and solid curves represent quadratic regression for PM2.5 SiO2 

powder and ATD samples, respectively. The one-to-one line indicates no attenuation. 

 

Figure S5.6 The mass ratio of Si/Fe for Arizona Test Dust samples. The error bars indicate the combined 

uncertainties from XRF measurements of both Si and Fe. 
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Figure S5.7 Comparison between theoretically estimated and measured attenuation factors for Si in PM2.5 Arizona 

Test Dust samples. (a) The solid curve represents theoretical attenuation factors accounting only for mass loading, 

while the triangles and error bars indicate measured attenuation factors. (b) The dashed line shows the linear regression 

for the agreement between theoretical and measured attenuation factors. 

Table S5.1 Chemical composition of ISO 12103‐1 A1 Ultrafine Arizona Test Dust 

Compound 
Oxide mass 

fraction (%) 

Meana 

(%) 
σb (%) 

Element-to-

oxide ratio 
Element, i wi

c (%) σw,i
d (%) 

SiO2 69.0 – 77.0 73.0 4.0 0.47 Si 34.3 1.9 

Al2O3 8.0 – 14.0 11.0 3.0 0.53 Al 5.8 1.6 

Fe2O3 4.0 – 7.0 5.5 1.5 0.70 Fe 3.9 1.1 

CaO 2.5 – 5.5 4.0 1.5 0.71 Ca 2.8 1.1 

K2O 2.0 – 5.0 3.5 1.5 0.83 K 2.9 1.2 

Na2O 1.0 – 4.0 2.5 1.5 0.74 Na 1.9 1.1 

MgO 1.0 – 2.0 1.5 0.5 0.60 Mg 0.9 0.3 

TiO2 0.0 – 1.0 0.5 0.5 0.60 Ti 0.3 0.3 

Note. Only the oxide mass fractions were provided by the manufacturer (Powder Technology Inc.). 

aMean is the average of the lower and upper limits of the oxide mass fraction range. bσ represents half the range 

between the upper and lower limits of the oxide mass fraction range. cwi is the mass fraction of element i in the total 

mass calculated by multiplying the Mean by the element-to-oxide ratio. dσw,i is the uncertainty in wi calculated by 

multiplying σ by the element-to-oxide ratio. 

Table S5.2 Theoretically estimated attenuation factors (mean ± standard deviation) for dust-dominated (dust > 50% 

of total mass) PM2.5 samples from SPARTAN 

Element Amass
a Asize

b Asize × Amass 

Si 0.96±0.03 0.78±0.01 0.74±0.02 

Al 0.95±0.03 0.75±0.01 0.71±0.02 

aAmass is the attenuation factor due to mass loading. bAsize is the attenuation factor due to particle size. 
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Chapter 6: Conclusions  

Chapters 2 through 5 each present conclusions and recommendations for future work related to its 

specific study. This chapter summarizes the key contributions of these studies. 

Chapter 2: A Global-scale Mineral Dust Equation 

This study developed a global-scale mineral dust equation with region-specific 

coefficients, which provides a promising approach for calculating dust mass based on 

elemental analysis of dust. The global equation performed well for different types of dust 

over different regions. To our knowledge, this is the first study to develop and evaluate a 

region-specific global dust equation, which is challenging given the limitation of 

insufficient complete measurements of dust composition on a global scale and the lack of 

an absolute benchmark for reference dust mass. Further improvement of the global 

equation would benefit from more complete and accurate measurements of crustal elements 

and carbonate content in dust at a finer spatial scale. Sufficient mineralogical and 

hygroscopicity measurements are needed to account for adsorbed water and salt minerals 

in special types of dust (e.g., saline dust, volcanic dust, and aged dust). 

Chapter 3: Elemental Characterization of Ambient Particulate Matter for a Globally Distributed 

Monitoring Network: Methodology and Implications 

This study presented a detailed methodology for elemental analysis of ambient PM in the 

SPARTAN network. The global PM elemental dataset from SPARTAN was obtained using 

consistent protocols for sample collection and chemical analysis, which enabled the 

comparison of mineral dust and trace elements across globally distributed sites. Significant 



139 

 

 

airborne arsenic pollution was identified at sites in South and Southeast Asia using this 

dataset. This work draws attention to the need for sustained consistent monitoring of the 

elemental composition of fine PM in urban areas worldwide. More representative samples 

are needed to better estimate long-term levels of dust and trace elements, assess health 

risks, and identify emission sources.  

Chapter 4: Characterizing Particulate Matter Composition in Central Asia: Dust Contribution in 

Tashkent, Uzbekistan 

This study analyzed the elemental composition of the first contemporary PM filter samples 

collected from Uzbekistan in Central Asia, a region that suffers from severe air pollution 

but remains understudied. This work addresses the gap in estimating dust contribution to 

PM and understanding the source areas of major dust events in Central Asia, providing 

essential evidence to inform air pollution management strategies in the region. Ground 

measurements of dust composition including elemental and mineralogical characterization 

across source areas in Central Asia are needed to estimate dust contribution to PM more 

accurately. More representative samples and comprehensive analyses of PM species are 

needed to better understand anthropogenic sources in the region. 

Chapter 5: Assessing Attenuation Effects in X-ray Fluorescence Analysis of Light Elements in 

Mineral Dust  

This study provided experimental evidence of attenuation effects due to mass loading, 

particle size, and composition in XRF analysis of light elements for PM filter samples. 

Significant underestimation of dust mass in fine PM due to potential attenuation effects 

was found by applying theoretical models evaluated against experimental data. This work 
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demonstrates the importance of considering attenuation effects in XRF analysis for 

accurate dust measurements. Further evaluation of the models is needed for coarse PM. 

Comprehensive analyses of all PM species, accurate particle size distribution, and size-

segregated composition would enable more accurate attenuation estimates using the 

models. The effect of particle morphology, such as shape, on attenuation should also be 

considered.  
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