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wk induced velocity, (m/s)
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Φ̄ viscosity dissipation function

Φmc
n ,Φmc

n cosine and sine part of pressure potentials

φmn radial expansion shape function

xx



χ skew angle

Ψmc
n ,Ψms

n cosine and sine part of velocity potentialssn

ψq,k angular position from rotor aft, (rad)

ψ∗q,k adjoint angular position from rotor aft, ψq,k + π (rad)

Ω rotor speed, rad/sec

ω reduced frequency, ω = ΩR/V∞

ν ,η ,ψ ellipsoidal coordinates

ν∗ ,η∗ ,ψ̄∗ ellipsoidal coordinates of centro-symmetric point of the current position

νon, ηon on-disk ellipsoidal coordinates

νoff , ηoff off-disk ellipsoidal coordinates

Subscripts and Special Characters

m,r harmonic numbers

n,j polynomial numbers

()k on k rotor (U or L)

()q on q-th blade

(̇) derivative in time, ∂/∂t

( )∗ derivative in nondimensional time, ∂/∂t

xxi




. . .

( )
. . .

 diagonal matrix

~∇ Laplacian operator

xxii



Acknowledgments

I would like to start out by thanking Dr. David A. Peters for all of his guidance to help me

reach this point in my research. He has taken me from a limited understanding of rotary

systems to developing methods for solving complex problems that I never imagined could

be modeled mathematically. Through his dedication to the development of understanding

rotorcraft systems, I have gained a greater appreciation for the work behind the governing

equations of fluid dynamics that are simply accepted as fact by students.

Thank you to my committee members, Dr. Swami Karunamoorthy, Dr. Dale Pitt, Dr. Pal-

ghat Ramachandran, and Dr. Shankar Sastry for their commitment and guidance throughout

the process of this work.

This research was partially funded by the Government under Agreement No. W911W6-

17-2-0002. The foundations of the research pertaining to machine learning were developed

through the ATR Center of the Air Force Research Lab.

Cory Seidel

Washington University in Saint Louis

August 2020

xxiii



Dedicated to my family.

xxiv



ABSTRACT OF THE DISSERTATION

Coupled Inflow and Structural Dynamics of Rotors

with Time Delays and Adjoint Variables

by

Cory Seidel

Doctor of Philosophy in Mechanical Engineering

Washington University in St. Louis, August 2020

Research Advisor: Professor David A. Peters

In this work, the finite-state models of Morillo-Duffy and Fei (including the Adjoint Theorem)

are expanded to calculate the coupled inflow and rotor dynamics of a coaxial rotor system.

Because the Adjoint Theorem involves coupling of rotor and inflow states with adjoint rotor

states (including pure time delays in both types of variables), the resultant coupled dynamics

experiences characteristics heretofore not studied in a dynamic system. It is the purpose

of this work to study these new and interesting dynamic behaviors that can occur in the

physically meaningful context of a coaxial rotor. The work is also interested in how this

interesting behavior can be found in real time for applications to flight simulators for coaxial

rotors.

In order to study this new behavior, this present work first introduces a dynamic inflow

model that does more than just compute the flow on a given rotor (as is done with most

inflow models). Rather the model must compute for each of two interacting rotors: 1.) the

flow above each rotor and 2.) the flow below the upper rotor. This must be done so that the

xxv



effect of the lower rotor on the upper (and of the upper rotor on the lower) can be found in

a flight simulation. The dynamic models of the two rotors are simple blade flapping, no in

plane motion or torsion, for both an infinite and a finite number of rotor blades in axial flow.

This model will be sufficient for understanding the most significant dynamics of the type of

systems in which we are interested. In particular two rotors will be coupled in interesting

ways. First, the upper rotor will be affected by the flow due to the lower rotor. This is

a standard, state-variable coupling that involves neither adjoint variables nor time delays.

However, the upper rotor also affects the dynamics of the lower rotor. In that case, the flow

on the lower rotor due to the upper rotor will involve both adjoint states and pure time

delays, giving the new and interesting behavior.
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Chapter 1

Introduction

The aerodynamics of rotary wing systems can be described through several methods in-

cluding computational fluid dynamics (CFD), vortex methods (fixed and free wake), vortex

particle method (VPM), and finite-state methods. While very powerful and important to

the understanding of multi-rotor systems, CFD methods are not presently developed to the

point that they could be used in real-time flight simulation or in control systems designs.

Fixed wake vortex methods do not require significant computational power, but also are not

as close to the true wake geometry as they do not allow distortion. Free wake, or prescribed

wake methods better account for distortions in the wake, but require significant computation

because the induced velocity throughout the wake must be calculated, rather than just on

the disk [1]. VPM solves for rotor wake vorticity transportation and diffusion through a

Lagrangian formulation rather than a numerical solution over a grid. VPM performs faster

than CFD methods but is also unable to perform in real-time. The finite-state approach

provides a computationally less expensive approach that can be used for real-time analysis.

The development of the finite-state inflow models over the last 50 years has seen them ad-

vance from momentum theory approximations to three dimensional solutions to potential

flow equations. In addition, inflow models are ideal solutions for induced flow in rotorcraft
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because they explain the physics of the dynamic behavior of the rotor and are designed in a

hierarchical nature to incorporate previous models.

In [2], Peters describes the three characteristics that make a theory a dynamic inflow model

as:

1. Provided the time history of blade loads, the theory must be a mathematical model

that determines induced flow normal to the rotor as a function of time and position.

2. The mathematical model must be made up of a finite number of time-based ordinary

differential equations following the form:

[M ] {α̇mn }+ [L] {αmn } = {τmn } (1.1)

where the αmn are states that define the flow field, [M ] is the mass matrix, [L] is a

matrix of influence coefficients, and τmn is the loading on the blades. It follows that α

are state variables for the flow field that are driven by the blade loads.

3. The number of states chosen is user determined based on the application being solved

and hierarchical in that it can handle varying numbers of states.

Until the recent work of Fei [3,4], the developed models only accounted for flow on and above

the rotor disk. Fei introduced an approach to find the flow below the rotor disk using the

adjoint theorem. The adjoint theorem introduces velocity co-state variables and time delays

into the coupled solution. The main focus of this work is to use the models developed by

Morillo, Duffy and Fei to investigate the dynamics of the coupled system.
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1.1 Previous Work with Inflow Models

In the early 1980s, the Pitt-Peters model was developed to satisfy the need for a physics-based

unsteady dynamic theory for helicopter rotor systems [5]. This model relates transient rotor

loads (thrust, roll moment, and pitch moment) to the overall transient response of the rotor

induced flow field. The basis of the Pitt-Peters model was Mangler’s actuator-disc theory

[6]. The Pitt-Peters model describes the perturbed induced inflow and pressure distribution

as:

λ = λ0 + r̄λssin
(
ψ̄
)

+ r̄λc cos
(
ψ̄
)

(1.2)

P =
1∑

m=0

m+3∑
n=m+1

Pm
n (ν)Qm

n (iη)
[
Cm
n cos

(
mψ̄

)
+Dm

n sin
(
mψ̄

))
] (1.3)

where ν, η, and ψ̄ are the ellipsoidal coordinates (Appendix A). Pm
n andQm

n are the associated

Legendre functions of the first and second kinds, respectively. Cm
n and Dm

n are coefficients

which are functions of time and are governed by a set of ordinary differential equations. The

Pitt-Peters model assumes superposition of pressure, which states that superimposing the

unsteady pressure and static pressure of the field results in the total pressure due to the

velocity field. In turn, developing the equation for dynamic inflow derivatives for a rotor

with unsteady loading and induced flow distribution, which is written as:

[M ]


λ̇0

λs

λc


+ [L]−1


λ0

λs

λc


=


CT

−CL

−CM


(1.4)
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where [M ] is the apparent mass matrix and [L] is the dynamic inflow gain matrix. These

matrices were found in closed form to be:

[M ] =


128
75π 0 0

0 16
45π 0

0 0 16
45π

 (1.5)

[L] = 1
V


1
2 0 −15

64

√
1−sin (α)
1+sin (α)

0 4
1+sin (α) 0

15
64

√
1−sin (α)
1+sin (α) 0 4 sin (α)

1+sin (α)

 (1.6)

where V is the flow velocity and α is the skew angle of the streamline at the disk. As depicted

in Eq. 1.4, the Pitt-Peters model describes three states. The first state, λ0, describes the

uniform flow over the disk whereas the other two states, λs and λc, describe the side-to-side

and fore-to-aft gradient, respectively. The theory behind the Pitt-Peters model has been

validated experimentally [7]. The Pitt-Peters model is only able to provide a crude wake

description of the uniform flow due to a lack of higher harmonic terms (one harmonic and

one radial shape function).

David Peters and Chengjian He expanded on the work of the Pitt-Peters model by improving

the accuracy through the development of a higher harmonic theory [8,9]. The Peters-He

generalized dynamic wake model was able to accomplish that by extending the pressure

distribution of the Pitt-Peters model to include higher harmonic terms and an arbitrary

number of radial functions for each harmonic. The expanded pressure distributions were

modeled as:

P = −1
2

∞∑
m=0

∞∑
n=m+1,m+3,...

P̄m
n (ν) Q̄m

n (iη)
[
τmcn cos

(
mψ̄

)
+ τmsn sin

(
mψ̄

)]
(1.7)
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where τmcn and τmsn are the new pressure coefficients for the side-to-side and fore-to-aft

gradients. Similarly, the inflow distribution was expanded to include an arbitrary number of

harmonics and radial functions:

vz =
∞∑
m=0

∞∑
n=m+1,m+3,...

P̄m
n (ν)
ν

[
αmn cos

(
mψ̄

)
+ βmn sin

(
mψ̄

)]
(1.8)

Here, P̄m
n (ν) and Q̄m

n (iη) are the normalized associated Legendre functions of the first and

second kind, respectively. The derivations of normalized Legendre functions are outlined in

Appendix B.

The Peters-He model also assumes superposition of pressures, which excludes inflow models

with no induced velocity on the disk. This model has a similar form to the Pitt-Peters model

in Eq. 1.4:

[M ] {α̇mn }+ V
[
L̃c
]−1
{αmn } = 1

2 {τ
mc
n } (1.9)

[M ]
{
β̇mn
}

+ V
[
L̃s
]−1
{βmn } = 1

2 {τ
ms
n } (1.10)

except that the pressure coefficients, τmcn and τmsn , are updated for a coaxial rotor system

and V is the velocity normal to the disk. The Peters-He model has been validated with

wind-tunnel data [9].

The Peters-He model cannot describe inflow distribution that is caused by mass-injection.

It disregards the m+n = even terms for Legendre polynomials and therefore only considers

m + n = odd terms which represent pressure discontinuities at the disk. Additionally, the

Peters-He model only treats the normal components of flow on the disk.

Following the work by He, the focus shifted to finding the flow throughout the field, primarily

above the rotor disk. Wen-Ming Cao and David Peters set out to find the flow off the disk as

well as on the disk and determined that a second set of wake states must exist for the flow off
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the disk, but were unable to determine what the state should be [10]. Later, Jorge Morillo

and David Peters discovered that these states could be solved for rigorously with no need

for the assumption of superposition of pressures [11]. This was completed by including the

mass source terms in the expansions and using the gradient of velocity potentials to compose

the velocity field. The Peters-Morillo model was now able to account for m + n = odd and

m+ n = even Legendre polynomials. Morillo’s pressure and velocity distributions are:

P = −
∞∑
m=0

∞∑
n=m+1

[τmcn Φmc
n + τmsn Φms

n ] (1.11)

−→v =
∞∑
m=0

∞∑
n=m+1

[âmn −→Ψmc
n + b̂mn −→Ψms

n ] (1.12)

where Φm
n and Ψm

n are the pressure and velocity potentials, respectively. The Morillo pressure

and velocity potentials differ from the Pitt and He potentials in that they incorporated even

and odd functions and considered all velocity components, not just the normal component.

Morillo and Peters solved for the inflow states using a Galerkin approach to obtain a closed

form solution and solve for all three components of the velocity potential. They were able to

solve for the velocity potential on the rotor disk and the velocity field above the rotor disk.

The closed form solutions using the Galerkin approach are:

[M c] {ȧmn }+ [Dc]
[
L̃c
]−1

[M c] {amn } = [Dc] {τmcn } (1.13)

[M s]
{
ḃmn
}

+ [Ds]
[
L̃s
]−1

[M s] {bmn } = [Ds] {τmsn } (1.14)

where [D] is the damping matrix and amn and bmn are the velocity state variables relative

to the side-to-side and fore-to-aft gradients. Compared to closed-form solutions for step

response and frequency response above the rotor disk, the Peters-Morillo model proved to

be accurate, but slow to converge. This is due to ill-conditioned matrices. In addition, the

Peters-Morillo model could not handle non-zero flux mass sources, which are the fundamental
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mass-source terms (the terms with m = n) because they were unable to find the potential

function associated with those velocity distributions.

Hsieh and Peters later found the potential functions for m = n and approximated the solution

for the special case of m = n = 0 [12]. The approximate solution for the special case still

involved a singularity, but they replaced the infinite integral with an approximate solution

for the infinite kinetic energy that converged as the number of terms was increased. Garcia-

Duffy and Peters then incorporated the Hsieh solutions into a dynamic inflow model for all

components of flow above the rotor disk [13].

Although the work of Morillo extended the models from normal flow at the disk to all three

components of flow through a volume in space, that volume only included the disk plane and

the infinite hemisphere above the disk plane. Velocities below the plane were not capable

of being found. Fei and Peters expanded on the Morillo-Duffy model to include all three

components of induced flow everywhere in the flow field—including below the plane of the

rotor disk and in the rotor wake itself [4][14]. In order to find the flow below the disk Fei

used the adjoint theorem to compute the adjoint of the velocity based on co-state variables.

The adjoint theorem provides that the flow below the disk converges at least as well as the

flow above the disk. Fei further validated the adjoint theorem for both step responses and

frequency response with a varying range of skew angles.

1.2 Relevant Research for Coaxial Rotors

While the model developed in this paper is for multi-rotor systems, the immediate results

and applications are for coaxial rotor systems. Therefore, the survey of literature on current

methods for multi-rotor systems primarily focuses on coaxial rotor helicopters. Notable

work in the field that is relevant to this research is primarily conducted using CFD, VPM,
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or some form of finite state methods. In some cases, these methods are combined to for

a hybrid model. In addition, this literature survey extends to machine learning algorithms

(MLA) and the current work within the rotor industry involving varying MLAs. In the CFD

realm Chen et al. extract dynamic inflow models from CFD investigations to evaluate the

computed induced flow with test data [15]. Meanwhile, Lakshminarayan and Baeder use

Reynolds-averaged Navier-Stokes solvers to investigate microscale coaxial rotors in hover

[16]. Their work highlights the predictive capabilities of the computational approach, the

development of the wake below each rotor, and the impact of rotor interactions on power

and thrust. In [17], Rajmohan et. al develop a hybrid CFD/VPM method to study rotor

dynamics in a coaxial rotor system. The method uses CFD airloads to generate vorticity in

VPM simulations and uses VPM to simulate far wake in the CFD solution.

Singh and Friedmann study coaxial rotor interactions in hover using VPM in [18] and outline

the blade passage frequency as a source for oscillations in the loading profile. In [19] Singh

and Friedmann also used VPM to analyze the wake development, performance, and loads

from the vortex wake interaction of a coaxial rotor system in hover. He and Zhao modeled

rotor wake dynamics in hover and forward flight using viscous vortex particle method in

[20]. The model is also able to capture wake contraction and tip-vortex roll-up without the

empirical modeling parameters other models rely on. Zhao and He expanded their work with

VPM to identify essential modeling parameters and advance the Peters-He model [21].

In [22] Prasad et. al propose two coaxial rotor models for hover conditions. The first model

extends the Peters-He model by superimposing two pressure fields to create a dual actuator

scenario. The second model uses Galerkin weighted residuals for the finite state inflow theory

and wake contraction developed from incompressible flow equations. In [23-24] Prassad et

al. used superposition with single rotor models to develop solutions for coaxial rotor systems

8



while removing the need for backward time marching, which is required under the adjoint

theorem. In [25] Cardito et. al present a linear finite-state dynamic perturbation model

for coaxial rotor systems that provides good correlation for hover conditions but struggles

with forward flight. Cardito et al. further investigated finite-state models for coaxial rotor

systems with rational approximation of corresponding transfer functions [26].

Juhasz et. al present three different models in [27] that are developed through blade-element

theory, free-vortex wake model, and CFD. The work finds that the best solution is a com-

bination of all three models. In [28] Obayashi et. al compare a commercial Navier-Stokes

solver with a hybrid Navier-Stokes free-wake analysis for a trimmed rotor with equal but

opposite torques on the rotors. The hybrid method proved to be more efficient at producing

acceptable results for lower settings but overestimates the figure of merit and underesti-

mates the power required as thrust increases. Silwal and Raghav use high-speed particle

image velocimetry to study the interactions between rotors in a coaxial system [29]. The

study focuses on impact of rotor spacing on tip vortex structures and observed that rotor

spacing heavily influences the trajectories of tip vortices.

Some other applications of models for different types of rotor systems include the work by

Tsushim and Su in [30]. Here they combine finite-state methods with dynamic structural

equations for highly flexible wings to combine energy harvesting and piezoelectric actuation

in a UAV. Henriksen et. al present three models for wind turbines in [31] that are based on

blade element momentum theory to estimate the free mean wind speed. Two of the models

use dynamic states to illustrate the physics within the wake.

Within the realm of machine learning for helicopter applications, a large portion of the

research focus has been on controls––especially through reinforcement learning [32-34] and

autonomous flight––with aerobatic maneuvers being one of the key focuses [35-36]. However,
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other overlaps with machine learning for helicopter applications exist as well, including the

work by Pawar and Jung [37] which focuses on the use of support vector machines to predict

damage to composite helicopter rotor blades and how much fatigue life is left in the blades.

Kumar and Ben-Tzvi [38] use machine learning for estimating ambient air turbulence for RC

helicopters.

Outside of the helicopter realm, machine learning is being utilized in almost every field

imaginable. In data sciences one particular framework, XGBoostTM, is gaining a lot of

attention for its ability to perform efficiently and accurately. XGBoostTM is a gradient

boosted tree framework that is scalable for large and small data sets [39]. XGBoostTM is

used throughout a wide range of applications including short-term load forecasting of power

systems [40][41], price forecasting [42], and image classification [43].

1.3 Objective and Approach

The aim of this research is broken down into five main goals: 1) develop a single inflow

state proof of concept solution for a system with adjoint variables and time-delayed terms;

2) expand the approach of the proof of concept solution to a coaxial rotor system that is an

extension of the work of Morillo and Fei with multiple inflow states and an infinite number

of blades; 3) adapt the multiple inflow-state solution for a system with a finite number of

blades; 4) apply the finite blade model to wind turbines to investigate optimal rotor spacing;

and 5) design machine learning algorithm methods for regression analysis across the lower

rotor disk.

In this work, we first discuss the underlying physics of a single lifting rotor system and the

corresponding governing equations. This provides a basis for the work that is expanded into

the final coupled coaxial rotor model and bridges the gap between Fei’s investigations of
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flow below the rotor disk and coupled feedback of the coaxial system. The addition of a

second rotor brings modifications to existing equations through coupling terms, new state

(and co-state) variables for velocity, and time-delayed terms. However, a co-state variable

for the lower rotor is not included because the flow below the lower rotor is not of interest

in this work. The makeup of the governing inflow state equations will be discussed in the

following chapters. It is important to know that the velocity state and co-state variables

for both rotors are coupled, some of the coupled terms are time delayed (a result of the

adjoint theorem), and the co-state terms are solved through reverse time marching due to

an instability that occurs when forward time marching.

The expansion from the proof of concept model to the infinite and finite blade models is

accomplished by expanding the pressure coefficients of Morillo with the adjoint theorem

utilized in Fei’s work. The new pressure coefficients contain on-disk and off-disk terms along

with coupling matrices, time-delayed terms, and co-state variables. The off-disk terms are a

new development in this work. The solution containing the finite number of blades provides

a higher fidelity analysis of the blade dynamics and velocity profile development with varying

degrees of rotor spacing. These methods are then expanded to wind turbine applications

through minimal adjustments to the model to account for the change to power generation.

The finite-blade model is used to create a dataset for the development of machine learning

algorithms with regression analysis. Gradient boosted trees within XGBoostTM are utilized

here to model the velocity across the lower rotor. The models are fit by tuning hyperparam-

eters for the gradient boosted tree to obtain a good fit with the model without overfitting to

the training data. The models are used to predict values within the dataset and intermediate

values as a feasibility study towards future use with predicting higher harmonic solutions.

The machine learning algorithms cannot replace the finite-state models because they rely on
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them for training data, but hopefully in the future can used to obtain real-time analysis for

higher harmonic simulations.
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Chapter 2

Fundamental Concepts for Inflow

Models and the Adjoint Theorem

2.1 Fluid Dynamics Equations

The equations used in this work apply to a rotor in a Newtonian fluid and are governed by

the conservation laws: conservation of mass, conservation of momentum, and conservation

of energy, as well as the boundary condition of no-slip at solid-fluid interfaces [44]. The

conservation of mass is given as:

∂ρ

∂t
+−→∇ · (ρ−→v t) = 0 (2.1)

where ρ is the fluid density and −→v t is the total velocity vector. For this application, it is

assumed that the helicopter is flying at standard atmospheric conditions and therefore the

inflow is incompressible and inviscid. The conservation of mass further reduces to:

−→
∇ · −→v t = 0 (2.2)
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By Newton’s laws, the conservation of momentum, is described by the Navier-Stokes equa-

tions, which, for a viscous fluid, are:

ρ

(
∂−→v t

∂t
+−→v t ·

−→
∇−→v t

)
= −−→∇p+−→∇

(
λ
−→
∇ · −→v t

)
+µ

(−→
∇
(−→
∇·−→v t

)
+
(−→
∇·
−→
∇
)−→v t

)
+ρ−→f (2.3)

where p is the pressure, λ is the second viscosity coefficient, µ is the dynamic viscosity

coefficient, and −→f represents the external forces. Under the assumptions of incompressible

and inviscid flow (and the understanding that there are no significant body forces on the

disk), it follows that:

ρ

(
∂−→v t

∂t
+−→v t ·

−→
∇−→v t

)
= −

−→
∇p (2.4)

Finally, conservation of energy can be expressed in the form:

ρ

(
∂e

∂t
+−→v t ·

−→
∇e

)
= −−→∇p · −→v t +−→∇

(
k
−→
∇T

)
+ Φ (2.5)

where e is the internal energy per unit mass, k is the thermal conductivity of the fluid (air),

T is temperature, and Φ is the viscous dissipation function (which is zero in this case). In

a system where ρ and µ are constant, the conservation of mass and momentum become

uncoupled from the conservation of energy (and temperature). Under the assumption of

adiabatic flow, energy can be neglected.

In the following derivation for velocity about a steady free-stream, only linearized equations

are considered because this work only utilizes linear equations. The steady free-stream

velocity is represented as V∞ in the total velocity equation:

−→v t = V∞
−→
ξ + δ−→v (2.6)

14



where −→ξ is a unit vector along the streamline. Here, δ−→v is defined as:

δ−→v = δ−→v x
−→
i + δ−→v y

−→
j + δ−→v z

−→
k (2.7)

As demonstrated in Figure 2-1, the skew of the streamline, χ, is measured with respect to

the positive z axis such that:

−→
ξ = −sin (χ) −→i + cos (χ) −→k (2.8)

Figure 2-1: Cartesian coordinate system

Here the unit vectors −→i , −→j , and −→k are in the x, y, and z directions, respectively. Equation

2.6 is then substituted into Eqs. 2.2 and 2.4, the momentum and continuity equations, with

the assumption that V∞ is constant to obtain:

∇ · δv = 0 (2.9)

ρ
∂δ~v

∂t
+ ρV∞

∂δ~v

∂ξ
= −~∇p (2.10)

Throughout this work all variables for length and velocity are made nondimensional on the

length scale of the rotor radius R, the velocity scale of the ΩR, and the mass scale associated

with density ρ. In addition, the time component is also nondimensionalized as t̄ = Ωt. The

Laplacian operator ∇ is redefined to represent the gradient with respect to nondimensional
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coordinates. Nondimensionalization simplifies the momentum and continuity equations in

Eqs. 2.9 and 2.10 down to:

∇ · −→v = 0 (2.11)

∂−→v
∂τ

+ V
∂−→v
∂ξ

= −−→∇P (2.12)

where −→v = δ−→v /ΩR, V = V∞/ΩR, ξ = ξ/R, and P = p/ρΩ2R2. These terms are the

nondimensional terms for pressure P, induced velocity v, and the nondimensional coordinate

on the streamline ξ.

If we assume that the velocity can be written as the gradient of a potential function Ψ, then

continuity is automatically fulfilled.
−→v = −→

∇Ψ (2.13)

−→
∇ · −→v = −→∇ · −→∇Ψ = 0 (2.14)

Now to determine the pressure potential, Eq. 2.13 is substituted into Eq. 2.12, resulting in:

∂
−→
∇Ψ
∂t

+ V
∂
−→
∇Ψ
∂ξ

= −−→∇P (2.15)

The divergence of Eq. 2.15 gives:

∂
−→
∇ ·
−→
∇Ψ

∂t
+ V

∂
−→
∇ ·
−→
∇Ψ

∂ξ
= −−→∇ · −→∇P (2.16)

Equation 2.14 shows that the divergence of the gradient of the velocity potential function is

zero and thus:
−→
∇ ·
−→
∇P = 0 (2.17)

The pressure can be written as a potential function, Φ:

Φ = P (2.18)
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Solutions for the velocity and pressure potentials for this work will be expanded upon in the

following sections.

2.2 Pressure Potentials

To solve the governing equations for this work (Eqs. 2.11 and 2.12), the pressure potential, Φ,

and velocity potential, v, are expanded in terms of potential functions that satisfy Laplace’s

equation. These equations must satisfy the boundary conditions for pressure and velocity.

For the pressure field, the boundary conditions are given by a discontinuity across the rotor

disk. Ellipsoidal coordinates (ν, η, ψ) were selected because for any odd function of v there is

a resultant discontinuity across the rotor disk. Therefore, any function that satisfies Laplace’s

equation and is odd can be considered for the expansion functions used in determining Φ.

Even functions for v that satisfy Laplace’s equation result in discontinuities in the normal

derivative of the pressure potential and are relevant to mass source terms (Appendix B).

The pressure potential is composed as:

Φmc
n (ν, η, ψ) = P

m
n (ν)Qm

n (iη)cos(mψ) (2.19)

Φms
n (ν, η, ψ) = P

m

n (ν)Qm

n (iη)sin(mψ) (2.20)

The analytical solution of the Laplace equations is known for ellipsoidal coordinates (Ap-

pendix B). In the plane of the rotor disk, but off the disk (ν = 0), Pm
n odd functions are

zero, but for even functions the pressure potential has normal derivatives on the plane. Thus,

Legendre functions that are even functions of ν occur when m+ n = even and they become

odd functions of ν when m + n = odd. It is also important to note that the coordinate ν

is positive above the disk and negative below the disk, whereas the opposite is true for z.

The range of ν is −1 < ν < 0 below the disk and 0 < ν < 1 above the disk. The jump in
17



ν across the disk correlates with a jump in pressure across the disk, the boundary condition

for Φ at the disk. On the disk, η = 0 and the odd potentials can be used to describe the

pressure jump across the rotor disk. Meanwhile, the even potentials have a discontinuity in

slope which is used to describe the mass source in the flow field.

The pressure jump across the disk is written as a summation of the terms that include both

pressure discontinuities and mass-source terms.

P = −
∞∑
m=0

∞∑
n=m

(τmcn Φmc
n + τmsn Φms

n ) (2.21)

Here τmcn and τmsn are the cosine and sine forms of the pressure coefficient. The pressure

change across the disk is found from:

∆P = [Plower − Pupper]|η=0 = 2
∞∑
m=0

∞∑
n=m+1,m+3,···

(τmcn Φmc
n + τmsn Φms

n )|η=0 (2.22)

where ∆P is the net pressure drop across the disk from above the disk (-z) to below the disk

(+z). The injected mass in the system is expressed by:

∆ṁ
ρV∞

= [Plower + Pupper]|η=0 = 2
∞∑
m=0

∞∑
n=m,m+2,···

(τmcn Φmc
n + τmsn Φms

n )|η=0 (2.23)

∆ṁ is the net mass per unit time per unit area that is injected at the disk. It is important

to note that only m+n = odd will contribute to ∆P and only m+n = even will contribute

to ∆ṁ.

2.3 Velocity Potentials

In previous work for finite-state models, two sets of velocity potentials are explored, prime

potentials and derived potentials. The velocity potentials must satisfy the boundary con-

dition that states the velocity field far upstream from the rotor disk is equal to zero. We
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do not expand the flow field below the rotor disk because it is only potential flow between

vortex sheets. Rather, we will use the Adjoint Theorem to find flow below the disk in terms

of flow on and above the disk.

For flow above the disk, the pressure potentials not only satisfy Laplace’s equation, but also

are zero at an infinite distance above the rotor and finite on the disk (z = 0). As z → −∞,

η→∞, and lim
η→∞

Q̄m
n (iη) = 0.

The prime potential functions are defined as integrals along a streamline of pressure poten-

tials. The prime potentials are represented as:

Ψmc
n =

∫ ξ

−∞
Φm
n cos

(
mψ̄

)
dξ (2.24)

Ψms
n =

∫ ξ

−∞
Φm
n sin

(
mψ̄

)
dξ (2.25)

Thus, since the prime potentials satisfy the upper boundary layer condition, the flow veloci-

ties may be represented by an expansion summation of the gradient of the prime potentials.

~v =
∞∑
m=0

∞∑
n=m

(
âmn

~∇Ψmc
n + b̂mn

~∇Ψms
n

)
(2.26)

The derived potentials, Ψ̂m
n , are chosen such that we can write the gradient in closed form

(this is not possible for the prime potentials). We have chosen to define the derived potentials

such that their derivative with respect to z is:

dΨmc
n

dz
= P

m
n (ν)Qm

n (iη)cos(mψ) (2.27)

dΨms
n

dz
= P

m
n (ν)Qm

n (iη)sin(mψ) (2.28)

Peters and Morillo [11] found these derived potentials in the following form:

Ψ̂m
n = σmn Φm

n+1 + ςmn Φm
n−1 (2.29)
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where σmn is:

σmn = 1

Km
n

√
(2n+ 1) (2n+ 3)

[
(n+ 1)2 −m2

] (2.30)

ςmn = 1
Km
n

√
(4n2 − 1) (n2 −m2)

n , m (2.31)

Here Km
n is:

Km
n =

(
π

2

)(−1)n+m

Hm
n (2.32)

and Hm
n is:

Hm
n = (n+m+ 1)!! (n−m− 1)!!

(n+m)!! (n−m)!! (2.33)

This definition of the derived potentials is only valid above the rotor plane (z < 0). Morillo

was only able to find them for cases where m , n. Peters and Hsieh [12] later were able to

find the derived potentials for the special cases where m = n , 0 and m = n = 0. For the

former case, a formula in terms of a Legendre function where the subscript is greater than

the superscript was developed.

Ψ̂mc
m =

[
σmmP̄

m
m+1 (ν) Q̄m

m+1 (iη) + P̄m
m−1 (ν) Q̄m

m−1 (iη)
]

cos
(
mψ̄

)
(2.34)

Ψ̂ms
m =

[
σmmP̄

m
m+1 (ν) Q̄m

m+1 (iη) + P̄m
m−1 (ν) Q̄m

m−1 (iη)
]

sin
(
mψ̄

)
(2.35)

Here the “alternative” Legendre terms contain an m− 1 subscript. The calculation for these

first and second order Legendre terms are:

P̄m
m−1 (ν) = 2

π

√
(2m)!!√

(2m+ 1)!!
(1− ν2)

m/2
(1 + ν)m

m−1∑
n=0

(m− 1)!2m−1−n (−1)n

n! (m− 1− n)! (n+m) (1− ν)n (2.36)

Q̄m
m−1 (iη) = 1

(1 + η2)
m/2

(2.37)
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For the special case of m = n = 0 Peters and Hsieh found the derived velocity potential to

be:

Ψ̂0
0 = 2

π
ν

[
1− η tan−1

(
1
η

)]
− 2
π

ln |1 + ν| − 1
π

ln
∣∣∣1 + η2

∣∣∣+ 2
π

ln |Zmax| ν > 0 (2.38)

where Zmax is a large number representing the radius to which the ξ integral is taken. The

exact value of this arbitrary number does not enter our equations. It is strictly a conceptual

idea.

The velocity potentials all satisfy Laplace’s equation and the conservation of mass. There-

fore, the conservation of momentum is the only governing equation of the velocity expansion

coefficients. To obtain a finite-state wake model, the momentum equations must be repre-

sented in finite state form.

2.4 Equations in Terms of Derived Potentials

The Galerkin method (Appendix C) is used to find the closed form representation of the

dynamic equations for the velocity potential expansions in terms of prime potentials. A

change of variable is then needed to find the velocity in terms of the derived potentials. The

relationship needed to transform between the two bases must obey the following:

{âmn }
T [Ψmc

n ] = {amn }
T
{
σmn Φmc

n+1 + ςmn Φmc
n−1

}
(2.39)

In order to find the transform between the two bases, the prime and derived potential

functions are dotted with the gradient of each potential function and integrated over the

region above the rotor disk. The resultant relation between the two types of potentials is:

{âmn } =
[
L̃c
]−1

[M c] {amn } (2.40)
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where [M c] is:

[M c] =
[
L̃c
]
χ=0

=
[∫∫

s

∂Φrc
j

∂z
Ψmc
n ds

]
(2.41)

A similar relationship exists between
{
b̂mn
}

and {bmn } that incorporates the [Ls] and [M s]

terms which relate the sine coefficients.With the appropriate change of variables achieved,

the equation of motion in terms of the derived potentials is found to be:

[M c]
{∗
a
m

n

}
+ V [Dc] [Lc]−1 [M c] {amn } = [Dc] {τmcn } (2.42)

This equation represents the all components of velocity above and on the rotor plane in

closed form. Equation 2.42 can be further reduced for the case of axial flow (χ = 0) where[
L̃c
]

and [M c] are equivalent. The simplified equation of motion is:

[M c]
{∗
a
m

n

}
+ V [Dc] {amn } = [Dc] {τmcn } (2.43)

Amazingly, the transform of Morillo also applied to derived potentials of Hsieh when m = n.

2.5 Flow Below the Disk by Adjoint Theorem

At the time of Hsieh’s work, only solutions for the velocity on and above the disk were

possible because that was the limit of the Galerkin integrals. The Galerkin method is

not applicable to the region below the rotor plane because the wake contains complicated

boundary conditions. The flow inside the wake is not entirely potential flow because vortex

shedding from the blades creates vortex sheets. Between the vortex sheets potential flow

exists, but the entire field below the rotor disk is not irrotational and therefore cannot be

simplified to be solvable by the Galerkin method.
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Although the flow is not irrotational below the rotor disk plane and not potential flow, it still

satisfies the conservation of mass and momentum equations. By satisfying the conservation

equations, a solution below the disk can be obtained in terms of the flow field on and above

the disk. This was the case for Fei’s work with the adjoint theorem and adjoint states (also

referred to as co-states) [4]. The adjoint theorem resulted from a closed form solution for

frequency response below a perturbed disk which was then transformed it into the time

domain. A complex conjugate that appeared in the frequency domain translated into an

adjoint in the time domain. Time delays also appeared in the transformation to the time

domain. The resultant solution for velocity at a location ξ0 below the rotor disk is represented

as:

−→v
(
r0, ψ0, ξ0, t

)
= −→v

(
r0, ψ0, 0, t− ξ0

)
+−→v ∗

(
r0, ψ̃0, 0, t− ξ0

)
−−→v ∗(r0, ψ̃0,−ξ0, t) (2.44)

where −→v ∗ is the adjoint velocity, ψ̃0 is the adjoint azimuth angle, r0 is the nondimensional

radial location of the intersection point of the streamline with the rotor plane, and t − ξ0

indicate a time delayed term. The solution in the frequency domain can be generalized to

Eq. 2.44 because any general time-domain solution can be expressed as a Fourier Transform

in terms of frequency components. Since the frequency domain solution is true for any

frequency in the transform, then it is true in general for the inverse transform in time when

written in terms of −→v ∗ as in Eq. 2.44. It should be noted that the solution in Eq. 2.44 does

not include the jump in velocity across the actuator disk due to the mass sources.

Analyzing each velocity component in Eq. 2.44 and illustrated in Fig. 2-2, −→v
(
r0, ψ0, ξ0, t

)
is

the velocity below the rotor disk at point a along the streamline; −→v
(
r0, ψ0, 0, t− ξ0

)
is the

velocity at point b where the free streamline intersects the rotor plane; −→v ∗
(
r0, ψ̃0, 0, t− ξ0

)
is the adjoint velocity at point c which is centro-symmetric to point b; −→v ∗(r0, ψ̃0,−ξ0, t)is

the adjoint velocity at point d which is centro-symmetric to point a.
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Figure 2-2: 3-D perspective of co-states for the adjoint theorem

The adjoint to the momentum equation is:

− [M c]
{ ∗

∆m

n

}
+ V [Dc] [Lc]−1 [M c]

{
∆m

n

}
= [Dc]


. . .

(−1)n+1

. . .

 {τ
mc
n } (2.45)

This equation must be solved backwards in time for the co-state variables because the solution

is unstable in a forward time marching. The backwards time-marching process is discussed

in greater detail in Chapter 3.

The methods outlined in this chapter are used in conjunction with the adjoint theorem for

development of a coaxial rotor model. The first model is a simplified proof of concept model

using simplified pressure coefficients with the adjoint theorem. Then a more rigorous model

based on the Morillo-Duffy model and the adjoint theorem is presented.
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Chapter 3

Proof of Concept for Single and

Coaxial Rotor Systems

Prior to this work, finite-state inflow models with adjoint variables had not been derived for

a coaxial rotor system. Before proceeding with the full development of the equations for the

coaxial rotor system, a simplified proof of concept was developed to find solution methods for

systems of equations with time delays and adjoint variables. In addition, a coaxial rotor sys-

tem requires the development of coupled terms to describe the rotor interaction. This section

explains the process of expansion from a single rotor to coaxial rotors and illustrates three

solution methods used to model the proof of concept. The equations in this chapter are

nominally presented in nondimensional form. The derivations for nondimensional form are

given in chapter 4. As part of the simplification, the developed equations only cover a single

harmonic, have a reduced shape function, and do not describe a real wake.

3.1 Derived Equations for Single Inflow State System

The equations in this section consider a single lifting rotor system (a tail rotor is assumed

to counter balance the torque of the lifting rotor) and a coaxial lifting rotor system where
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the rotors rotate in opposite directions to counterbalance torque. Illustrated in Figure 3-1,

each rotor in the coaxial system contains its own set of dynamic equations for states and co-

states. The lower rotor does not contain a co-state variable (δ) because we are not interested

in the flow below the lower rotor. A simplified single lifting rotor system is discussed first

to demonstrate the underlying equations and physics in a simplified case. These methods

are then adapted to a coaxial rotor system and finally to a coaxial rotor system with blade

flapping.

𝑑

Upper Rotor: α! , δ! , 𝑏!

Lower Rotor: α" , 𝑏"

Figure 3-1: Coaxial rotor helicopter

3.1.1 Single Lifting Rotor System in Axial Flow

For a single lifting rotor system, the velocity on and above the rotor disk is found using state

variables (αmn ) where the state variable is found from:

[M ]
{ ∗
α
m

n

}
+ υ [D] [L̃]−1 [M ] {mn } = [D] {τmn } (3.1)

26



The flow below the rotor is found using the adjoint theorem and requires co-state variables

(δmn ). The co-state variables are solved for from:

− [M ]
{∗
δ
m

n

}
+ υ [D]

[
L̃
]−1

[M ] {mn } = [D]


. . .

(−1)n+1

. . .

 {τ
m
n } (3.2)

In these equations, [M ] is the apparent mass matrix, [D] is the damping matrix, [L] is the

influence coefficient matrix, υ is the nondimensional freestream flow and τmn is the pres-

sure coefficient. The mass, damping, and influence coefficient matrices are found using the

Galerkin method, which is discussed in Appendix C. In axial flow, the case throughout all

of this work, the relationship holds that [L̃]−1 = [M ]. Simplifying and rearranging Eqs. 3.1

and 3.2 results in: { ∗
α
m

n

}
+ υ [M ]−1 [D] {mn } = [M ]−1 [D] {τmn } (3.3)

−
{∗
δ
m

n

}
+ υ [M ]−1 [D] {mn } = [M ]−1 [D]


. . .

(−1)n+1

. . .

 {τ
m
n } (3.4)

In the case of a single inflow state, the mass and damping matrices contain only a single

term:

λ = D

M
(3.5)

where λ is the characteristic eigenvalue. In addition, υ = 1 for the proof of concept. Equa-

tions 3.3 and 3.4 are further reduced to form a set of differential equations as:

∗
α1 + λα1 = λτ1 (3.6)

−
∗
δ1 + λδ1 = λτ1 (3.7)
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where the subscript 1 is indicative of the lifting rotor in a single rotor system. For a single

lifting rotor system, the pressure coefficient is:

τ1 = θ1 − kV 11 (3.8)

where θU is the pitch angle of the rotor (which is a step input function), k is the inflow

feedback parameter, and V 11 is the nondimensional velocity impact of the rotor on itself.

V 11 occurs on the rotor disk plane. In the single lifting rotor system, only on disk terms

impact the velocity state and co-state development. In a coaxial rotor system, on-disk and

off-disk terms impact the state and co-state development.

For the proof of concept, the pressure potential is reduced to:

Φ(z) = e−λz (3.9)

This function still satisfies the boundary condition above the disk (approaches zero as dis-

tance above the rotor approaches infinity).

The velocity vector for flow above and on the rotor disk for a single state is:

V A (z, t) = α(t)Φ(z) (3.10)

From the adjoint theorem, the velocity below the rotor is:

V B (z, t) = V (0, t− z) + V
∗ (0, t− z)− V ∗(−z, t) (3.11)

where V
∗ is the adjoint velocity and the t − z are the time delayed terms. The adjoint

velocity in this simplified model is:

V
∗ (z, t) = δ(t)Φ(z) (3.12)
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The velocity on the rotor plane is found using Eq. 3.10 and plugging in z = 0. From Eq.

3.9, we know that Φ(0) = 1 and therefore V 11 = α(t). This allows for further modification

of Eqs. 3.6 and 3.7, resulting in:

∗
α1 + λα1 = λ [θ1 − kα1] (3.13)

−
∗
δ1 + λδ1 = λ [θ1 − kα1] (3.14)

It should be noted that the right side of Eqs. 3.13 and 3.14 are identical and that δ1 is

dependent on α1, but α1 is independent of δ1. In addition, F1 is equivalent to the lifting

force of the rotor (only in the proof of concept) and can be denoted as:

F1 = θ1 − kα1 (3.15)

3.1.2 Coaxial Rotor System in Axial Flow

The addition of a second lifting rotor to create a coaxial system results in additional terms

for Eqs. 3.13 and 3.14, and the addition of a new equation to solve for the velocity state of a

second rotor. In this system, the subscript U is used to denote upper rotor variables and L

is used to denote the lower rotor variables. The flow below the lower rotor is not of interest

for this work and therefore a second co-state variable is not needed. Combined, the coaxial

rotor system contains 3 equations and 3 coupled state/co-state variables, αU , αL, and δU .

Equation 3.13, the velocity state variable for a single lifting rotor, is adapted for the upper

rotor through inclusion of an additional term to account for the impact of the lower rotor

on the upper rotor. The state variable for the upper rotor is modeled as:

∗
αU + λαU = λ

[
θU − kV UU − hV UL

]
(3.16)
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where h is the cross-feedback parameter and V UL is the impact of the lower rotor on the

upper rotor. Given that the upper rotor is upstream from the lower rotor, the velocity

component is simply:

V UL (d, t) = αL (t) Φ (−d) (3.17)

where d is distance between the rotors. This results in:

∗
αU+λαU=λ [ θU−kαU− qαL] (3.18)

where q = he−λd. The lift force of the upper rotor is:

FU = θU − kαU − qαL (3.19)

In turn, the co-state variable solution from Eq. 3.14 incorporates the same new τU as the

state variable for the upper rotor and is:

−
∗
δU + λδU = λ [ θU − kαU − qαL] = λFU (3.20)

For the lower rotor, the velocity state variable, αL, is modeled by:

∗
αL + λαL = λ

[
θL − kV LL − hV LU

]
(3.21)

where V LU is the impact of the upper rotor on the lower rotor and V LL is the impact of the

lower rotor on the lower rotor. V LL is solved similar to V UU , such that:

V LL (0, t) = αL (t) Φ (0) (3.22)
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V LU requires the adjoint theorem because it is flow on the lower rotor due to the upper rotor

(i.e. flow below the upper rotor). It is solved for here as:

V LU (d, t) = V UU

(
0, t− d

)
+ V

∗
UU

(
0, t− d

)
− V ∗UU (−d, t) (3.23)

which results in:

V LU (d, t) = αU
(
t− d

)
Φ (0) + δU

(
t− d

)
Φ (0)− δU (t) Φ (−d) (3.24)

Inserting Eqs. 3.22 and 3.24 into Eq. 3.21 yields:

∗
αL + λαL = λ

[
θL − kαL(t)− hαU

(
t− d

)
− hδU

(
t− d

)
+ qδU (t)

]
(3.25)

The lift exerted by the lower rotor is written as:

FL = θL − kαL(t)− hαU (t− d)− hδU (t− d) + qδU (t) (3.26)

3.1.3 Blade Flapping in a Coaxial Rotor System

The coaxial rotor system was further modified to account for blade flapping. Each rotor

introduces a blade flapping state variable, b, and 4 new equations, for a total of 7 equations

and 7 coupled state and co-state variables (the blade flapping equations are second-order

ODEs in time and therefore have b and
∗
b terms). Blade flapping introduces oscillations into

all of the other state/co-state variables. The new velocity state equation for the upper rotor

with the coupled blade flapping term is:

∗
αU + λαU = λ

[
θU − kV UU − hV UL −

∗
bU

]
(3.27)

31



where
∗
bU is the slope of the blade flapping variable for the upper rotor. The velocity com-

ponents for Eq. 3.27, V UU and V UL, are the same as for the solution without blade flapping

in Eq. 3.25. The new velocity co-state equation for the upper rotor is:

−
∗
δU + λδU = λ

[
θU − kV UU − hV UL −

∗
bU

]
(3.28)

where FU is now:

FU = θU − kαU − hαL −
∗
bU (3.29)

The lower rotor velocity state solution is:

∗
αL + λαL = λ

[
θL − kαL(t)− hαU (t− d)− hδU (t− d) + qδU (t)−

∗
bL

]
= λFL (3.30)

The blade flapping state variable equations, for the upper rotor, bU , and the lower rotor, bL,

are dependent on the lift forces of their respective rotors (FU and FL), the Lock number (γ),

and the flapping frequency p. The blade flapping state equations for their respective rotors

are:
∗∗
b U = γ

8FU − p
2bU (3.31)

∗∗
b L = γ

8FL − p
2bL (3.32)

3.2 Solution Methods

Three approaches were taken to solve and model the systems of equations: closed form

(using Laplace transforms), time marching, and the convolution integral. The closed form

solution is only applied to the single rotor system because the coaxial system proved to be

too complex due to the time delayed terms.
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3.2.1 Closed Form Solution

The closed form solution is the first solution process that was investigated for this work. The

closed form solution is based off of Eqs. 3.13 and 3.14 and yields:

α1 =


0

θ1
k+1

(
1− e−(k+1)λt

) t < 0

t > 0
(3.33)

δ1 =


2θ1
k+2 e

λt

θ1
k+1 + θ1k

(k+1)(k+2)e
−(k+1)λt

t < 0

t > 0
(3.34)

While α and δ are not fully coupled, which is the case with all of the state and co-state

variables in the coaxial rotor system, the one way coupling was enough to confidently develop

time marching and convolution methods that could be expanded to a coaxial rotor system.

3.2.2 Time Marching Method

The time marching solution utilizes ODE45 in MatLab, which is a Dormand-Prince method

that is in the Runge-Kutta family of solution methods. The unique feature of solving the

system of equations using a time marching method is that δ must be time marched backwards

because it becomes unstable when time marching forward. Given that δ is one way coupled

to α in the single lifting rotor system (assuming k , 0) the state and co-state variables

can be solved separately. In the coaxial system all state and co-state variables are coupled,

therefore the equations must be solved simultaneously.

3.2.3 Convolution Integral

The convolution integral method utilizes the time marching process (ODE45) for solving the

state variables (αU , αL, and later bU , bL) and a convolution integral for the co-state variable
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δ. The co-state still requires the alternate nondimensional time domain, τ , because δ is

dependent on time marched state variables. The convolution integral is defined as:

δ1 (d) =
∫ z

0
f (τ) g (d− τ) dτ (3.35)

where f (τ) is the force from the upper rotor (FU) and g (d− τ) is the impulse response and

is also defined as:

g (d−τ) =λe−λ(d−τ) (3.36)

The integral solution is approximated using the Trapezoidal rule, shown here:

Area =
∫ b

a
f ≈ ∆x

2 (f) + 2
N∑
i=1

(f (xi) + f (xN)) (3.37)

Other forms of Riemann Sums can be used and provide accurate results, but require a

significantly smaller step size than the trapezoidal rule. The time marching method and

convolution integral both provided accurate results with a variation in simulation time that

was insignificant for one inflow state.

3.2.4 Initial and Terminal Conditions

One of the most important aspects of the solution for coupled rotor inflow dynamics is the

set of initial conditions used for the states (αU , αL, bU , bL) and co-states (δU). The initial

conditions for the state variables are straightforward. At nondimensional time t = 0, the

initial conditions are αU = 0, αL = 0, bU = 0, and bL = 0.

The terminal conditions for the co-state variables are more subtle because the co-state equa-

tions are solved in reverse time: τ = tref – t, dτ = −dt . The terminal conditions apply to

the location where t = tref and therefore τ = 0, which is equivalent to the current time in

the regular nondimensional time domain. The terminal condition for the co-state remains
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constant throughout the solution process. However, the development of the co-state profiles

are dynamic and the time-delayed co-state values change with each time step. Thus, at every

time step in t, one must stop and time march the co-states backwards as far as the time

delay requires.

In either of the above cases, one could ask the question, “How do we know what termi-

nal conditions to put on the co-states?” Fortunately, the Adjoint theorem shows that the

velocity below a disk computed by the co-states is independent of the initial and terminal

conditions because the Adjoint theorem sweeps out the homogeneous solution, making initial

and terminal conditions unobservable in the velocity. Evaluating the vorticity equation:

∂V

∂t
− υ∂V

∂z
= ∆P (3.38)

the adjoint velocity terms V ∗
(
t − d

)
terms can be plugged in to Eq. 3.38 to form:

∂V
∗ (

t− d
)

∂t
− υ

∂V
∗ (

t− d
)

∂z
= ∆P (3.39)

Solving by the chain rule, we find that:

∂V
∗ (

t− d
)

∂t
= V

∗′ × (1) + V
∗′ × (−1) = 0 (3.40)

and therefore, the velocity solution is independent of the terminal conditions utilized.

Since we are left with the ability to select any terminal conditions, there are two basic

methods that make logical sense. One is simply to make the terminal conditions zero at

τ = 0. The other approach is to make the terminal conditions at τ = 0 equal to the steady-

state values, should the equations be taken to steady-state. The latter method is very

advantageous for computation of the required pitch input for load sharing of two rotors,
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but the method of zero initial conditions is more advantageous for simplicity. We use both

methods here to show that they do result in the identical solution.

Going into the selection of terminal conditions, one of the primary concerns for the zero

terminal condition is that the co-state profile develops slower and has a large drop off at the

end as shown in Figure 3-2.

Figure 3-2: δU with zero terminal conditions

The steady-state terminal condition has the obvious benefit that the final value is the steady-

state value. The initial thought with this approach is that it would take less time for the

state and co-state values reach steady state. In order to find the steady-state values, the

system of equations must be reduced through known quantities. The approach taken is

similar to that used to determine load sharing in Appendix D. Evaluating the system at

t = ∞, it can be said that the time delayed state variables are equivalent to their non-

time delayed counterparts (i.e. α(∞− d) = α(∞)). The steady-state terminal condition
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allows that the equivalence within the state variables is also true for co-state variables (i.e.

δ(∞− d) = δ(∞)). For load sharing the lifting force for the upper rotor must be equal to

the lifting force of the lower rotor (FU = FL), such that:

FU + FL = FTotal (3.41)

FU = FL = 1
2FTotal (3.42)

For the purposes of the examples in this section, the total lifting force is set to be 1 and

therefore, the lifting force on each rotor is 0.5. In a fully converged system, the first order

terms go to zero and leave behind the relationships: αU = FU , δU = FU , and αL = FL. From

load sharing FU = FL, and therefore we find that FU = FL = αU = αL = δU .

By the previous declaration that FTotal = 1, all state and co-state values will have a steady-

state value of 0.5 and thus, the steady-state terminal conditions are set to d(∞) = 0.5. The

co-state profile for steady-state terminal condition is shown in Figure 3-3.
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Figure 3-3: δU with steady-state terminal conditions

The development of the δ profiles for both sets of terminal conditions are significantly dif-

ferent. Initially, the development of the profiles was demonstrated through short gifs that

cycled through every time step. Here, we have selected various nondimensional times in the

development that show when different characteristics of the profile develop. It is important

to note the values of the user defined input variables for these plots. The rotor spacing is set

as d = 1, the feedback parameters are also set as h = k = 1, and through load sharing, the

step input pitch angles for each rotor are θU = 1.06 and θL = 1.94. For the zero terminal

conditions, as shown in Figure 3-4, nine nondimensional times were selected to demonstrate

the development of the co-state profiles. The first trend that can be noticed is the peak of

the d profile grows significantly and does not reach a stable peak until 1-1.5 nondimensional

time. After the peak stabilizes, the steady-state region begins to develop, but it takes until

t ∼ 4− 5 for a respectable amount of the profile to cover a converged region. The drawback
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of the zero terminal condition case is that the simulation has to be calculated for a decent

amount of time to find the steady-state region of the co-state variable.

Figure 3-4: Development of δU profile with zero terminal conditions

From Fig. 3-5 the development of the δ profile for steady-state terminal conditions proves

to be more rapid and contains less variation than that of the zero terminal condition. The

peak in the system stabilizes around t = 0.5. The profile contains a reasonable region of

converged values within two seconds. After the peak in the system, there is a minor over

correction that causes the profile to dip below the converged value. This exists in the plot

of the zero initial conditions but is difficult to notice given the more drastic fluctuations in

other regions. There is minor fluctuation in this region as it develops and stabilizes, which

occurs between t = 1− 2.
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Figure 3-5: Development of δU profile with zero terminal conditions

Figure 3-6 demonstrates that at a long enough time the profiles reach similar peaks and

steady-state values. As can be seen, the profiles are identical before the zero terminal

condition profile begins to trail off towards zero.
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Figure 3-6: Comparison of δU profiles for different terminal conditions

3.3 Numeric Illustrations for Single Inflow State

The presented numeric illustrations draw on single inflow state solutions for single lifting

rotor and coaxial rotor systems in axial flow. The comparisons between the systems are

meant to examine and rationalize trends that appear in one or both rotor systems. For the

single inflow state λ = 2.094, which is determined from D00
11/M

00
11 (where r = 0,m = 0, j =

1, n = 1).

3.3.1 Trends in Single Rotor System

The purpose of the single lifting rotor system was to provide a starting point for developing

solution methods for time marching and convolution integral methods and validate the results

from these methods with the closed form solution. In addition, this system provides a general

understanding of the velocity state and co-state profile shapes relative to θ and k parameters.
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First the comparison of methods will be discussed and then impact of k and θ on state profiles

are explored.

Comparisons of the velocity profile for the closed form solution and the time marching

solution are shown in Figure 3-7 and Figure 3-8 the profiles in each figure have the same

inputs (k = 1, θ = 1), but vary in nondimensional time. The nondimensional time step size

and displacement step size are both 0.05. The vertical blue line in Fig. 3-7 is to demonstrate

the current time in the system (t0) and mark the end of the wake. The convolution integral

is not illustrated to prevent more overlay in the plots, but the values are approximately the

same as the other two methods.

Figure 3-7: Velocity profile for closed form and time marching solutions for single lifting
rotor system with k = 1, θ = 1 at t = 4
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Figure 3-8: Velocity profile for closed form and time marching solutions for single lifting
rotor system with k = 1, θ1 = 1 at t = 8

The nondimensional time and displacement step sizes are controllable factors that impact

the accuracy of the solution methods. For the single lift rotor solution, a sufficient level of

accuracy for the nondimensional velocity at critical locations is approximately ±0.005 and

is achieved with a step size of 0.05. The time marched solution was slightly more accurate

at any given time step size, but the convolution integral method required less computational

time to reach a final solution. To reach the same level of accuracy, a smaller nondimensional

time step size for the convolution integral method is required. As a result, the computational

time required is approximately the same for both methods to reach the same level of accuracy.

In Eqs. 3.33 and 3.34, the relationship between k and α1 and δ1 is displayed, and demon-

strates that an increase in k results in a decrease in α1 and δ1. Looking at Figure 3-9 and

Figure 3-10, when k changes from 0 (Fig. 3-9) to 1 (Fig. 3-10), the converged values of α1

and δ1 decrease from 1 to 0.5. For k > −1 the exponential terms for α1 and δ1 approach
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zero as time increases, resulting in a converged value of:

α1 (t∞) = 1 (t∞) = θ1

k + 1 (3.43)

Figure 3-9: α1 and δ1 profiles for single lifting rotor system with k = 0, θ = 1

Figure 3-10: α1 and δ1 profiles for single lifting rotor system with k = 1, θ = 1
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While variation in k impacts the steady-state value, it also impacts the rate of convergence

through how fast the exponential portion of α1 and δ1 approaches 0. The same trend also

occurs by varying λ, but the steady-state solution does not vary in magnitude (only the

decaying portion of the solution is a function of λ). These trends are illustrated in the α

profiles in Figs. 3-9 and 3-10 for variations in k.

For the single lifting rotor system, θ1 is a unit input. For the case where k = 0, the converged

α1 and δ1 values are solely dependent on θ1 in that:

α1 (t∞) = δ1 (t∞) = θ1 (3.44)

The δ profile in Figure 3-10 contains an additional trend of peak amplitude at t = 0 along

with the convergence rate. The peak amplitude is governed by:

δ (0) = 2θ1

k + 2 (3.45)

and is a result of the reverse time march process and sudden inflow from the collective pitch.

As stated previously, in a single rotor system θ1 is defined as 1 throughout this work. The

decay of the exponential term follows the same process as for the α equation, but δ converges

from above the stable value. This is due to the addition of the exponential term as opposed

to the subtraction in the α equations.

While the trends are not exactly the same in the coaxial equations, the impact of these

parameters is similar and can be identified. The similarities between the single rotor system

and the coaxial rotor system will be discussed further in the next section.
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3.3.2 Trends in Coaxial Rotor System

The results in this section are from the time marching method, but results from the con-

volution integral are approximately the same. Four cases of varied parameters for systems

with and without blade flapping are investigated to study the impact of rotor spacing on

step input for each rotor in the system. The parameters for the cases are given in Table 3-1.

Table 3-1: Input value cases for coaxial system investigations.

Input

Variable Case #1 Case #2 Case #3 Case #4

θU 1.33 1.06 1.01 1.00

θL 1.67 1.94 1.99 2.00

k 1.00 1.00 1.00 1.00

h 1.00 1.00 1.00 1.00

d 0.20 1.00 2.00 4.00

These pitch angles were generated using a load sharing input to ensure that both rotors

contribute equally to the total lift in the system. Load sharing occurs when the system

stabilizes. Prior to stabilization, the load distribution between rotors is uneven, as can be

seen in the Figs. 3-11 through 3-13 for the state and co-state variables. Under load sharing,

the torques from each rotor are the same magnitude, but different direction, resulting in a

stable system.

First, for systems without blade flapping, it is noticeable from Fig. 3-11 that the αU states

for all input cases reach convergence around t = 2. There are only small variations between

the different cases prior to reaching steady state. All input cases result in the same steady

state value because load sharing was applied and the pitch angles adjust to accommodate
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for the change in rotor spacing. The minor variations are due to the system adjusting to

initial startup of the helicopter and the overshoot of the αL terms on the lower rotor.

Figure 3-12 shows that the size of the overshoot for the αL terms increases significantly as

the rotor spacing increases. This is due to the increased time it takes for the flow from the

upper rotor to reach the lower rotor and for system to balance out. The terms all reach the

same steady-state value due to load sharing. The large variation in the αL terms is the most

significant trend to notice, especially when observing the velocity terms on the rotors. The

variations in the shape of the initial region demonstrate that the rotor spacing has significant

impact on αL.

The co-state variable (δU), profiles in Fig. 3-13 show minor variations between the different

input cases. This is not surprising as the co-state equation has the same pressure coefficient

as the state variable equation for the upper rotor.

Figures 3-14 and 3-15 depict the velocity on the upper and lower rotor disks, respectively.

First, Fig. 3-14 shows that the converged velocity on the upper rotor decreases notably as

the rotor spacing increases. There are very minor changes in the converged velocity as the

distance between the rotors becomes large (d > 2). These trends demonstrate that as the

rotor spacing increases, the impact of the lower rotor on the upper rotor decreases. This is

also demonstrated in Eq. 3.17 and is true of off-disk terms because the exponential in the

shape function approaches zero as d→∞.

For the velocity on the lower rotor in Fig. 3-15, there are two trends to discuss, the change

in converged velocity with rotor spacing and the delayed increased to convergence for the

cases with larger rotor spacings. As the rotor spacing increases, the converged velocity on

the lower rotor increases. This is again related to the off-disk terms. However, the impact

of the velocity on the lower rotor due to the upper rotor in Eq. 3.25, the adjoint term
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above the rotor disk is negative. Therefore, as the spacing increases the impact of this term

decreases. The second trend of the delayed time to reach convergence is related to the time

delay associated with the flow from the upper rotor reaching the lower rotor.

As discussed previously, the blade flapping equations are second-order ODEs, which intro-

duces a damped oscillation to the state and co-state variables. As is shown in Figs. 3-16 to

3-18 the state and co-state variables converge to the same values as before but take longer

to converge due to the blade flapping dynamics. The blade flapping investigations used the

same input cases from above to provide a direct comparison of profiles between the systems

with and without blade flapping.

Figures 3-16 and 3-18 show minor variations with rotor spacing for αU and δU , respectively.

This remains consistent with the previous systems without blade flapping. The blade flap-

ping itself remains consistent in amplitude and frequency in both systems. The profiles

for the various αL terms in Fig.3-17 are more dynamically interesting because the profiles

differ with spacing. It is noticeable that the oscillations within all of the cases are similar

in frequency, but the peaks occur at different times. This is due to the delay in time for

the flow from the upper rotor to reach the lower rotor. The velocity profiles are made up of

both on-disk and off-disk terms and thus are a combination of the oscillations in both. The

velocity on the lower rotor is heavily driven by the off-disk terms, while to upper rotor is

driven by the on-disk terms. This is why the peaks do not vary for the upper rotor but will

vary for the lower rotor.

The velocity profiles on the upper and lower rotors in Figs. 3-19 and 3-20 show similar

trends of velocity magnitudes versus rotor spacing as systems without blade flapping. The

velocity on the upper rotor experiences oscillations from the addition of blade flapping, but

the rotor spacing does not impact the frequency or peak location. However, the velocity on
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the lower rotor does experience variations in frequency and peak location with changes in

rotor spacing. Case #4 provides the most notable variation in peak location, which reaches

its maxima near when the other profiles reach their minima, and the peaks are less defined.

This is the result of the maxima in the off-disk terms lining up with the minima in the

on-disk terms and vice versa.

Finally, Figs. 3-21 and 3-22 show the blade flapping states for the upper and lower rotors,

respectively. On the upper rotor, the magnitude of the oscillations decreases as the rotor

spacing increases, which falls in line with decreased influence of the lower rotor on the upper

rotor. The blade flapping state on the lower rotor shows variations in peak location for the

different input cases, a result of increased rotor spacing and the time delay. Case #4 for the

lower rotor has inconsistent decay, which is likely a result of the alignment of the on-disk

and off-disk velocity terms.

Figure 3-11: αU profiles vs. nondimensional time for the four test cases
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Figure 3-12: αL profiles vs. nondimensional time for the four test cases

Figure 3-13: δU profiles vs. nondimensional time for the four test cases
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Figure 3-14: Nondimensional velocity on upper rotor vs. t for the four test cases

Figure 3-15: Nondimensional velocity on lower rotor vs. t for the four test cases
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Figure 3-16: αU profiles vs. t for system with blade flapping (γ = 5 and p2 = 1.08)

Figure 3-17: αL profiles vs. t for system with blade flapping (γ = 5 and p2 = 1.08)
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Figure 3-18: δU profiles vs. t for system with blade flapping (γ = 5 and p2 = 1.08)

Figure 3-19: Nondimensional velocity on upper rotor vs. t for system with blade flapping
(γ = 5 and p2 = 1.08)
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Figure 3-20: Nondimensional velocity on lower rotor vs. t for system with blade flapping
(γ = 5 and p2 = 1.08)

Figure 3-21: Upper rotor blade flapping state profiles vs. t (γ = 5 and p2 = 1.08)
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Figure 3-22: Lower rotor blade flapping state profiles vs. t (γ = 5 and p2 = 1.08)
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Chapter 4

Multiple Inflow States and an Infinite

Number of Blades

4.1 Improved Representation of Governing Equations

In Chapter 3, a simple model for a coaxial rotor helicopter was developed with a single

inflow state and simplified shape functions as a proof of concept for a system of coupled

equations with adjoint variables and time delays. The simple model was developed based

on the work of Morillo [11], Hsieh [12], Garcia-Duffy [13][45], and Fei [3], but was reduced

in complexity to compare the time-marching and convolution solution methods with the

closed form solution of a single lifting rotor helicopter. The model included simplified rotor

feedback terms (k, h, and q) and neglected coefficients from the lift equation (σ, c, a, etc.).

It also included a predefined shape function that is now be replaced by a more complete

approach that includes Legendre functions. The transition from a single inflow state to

multiple inflow states requires updates to the approach for initial and terminal conditions,

for load sharing, and for the blade loading. The following sections discuss the updates and

process of developing a more complete model, and the correlation to the previous simple

model.
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4.1.1 Improved Velocity Feedback Terms

To more accurately define the rotor interaction within the coaxial system, more inclusive

feedback terms are developed. These are applicable for either a single inflow state or multiple

inflow states, the latter of which is discussed in this chapter. For the model developed in this

chapter, a solution with a single inflow state is a special case of the multiple inflow state case,

which contains fewer equations and unknowns, but is generally less accurate. The simplified

equations in chapter 3 for a single inflow state are not equivalent to a single inflow state

solution based on this model.

The cross-coupling velocity terms, VUU , VUL, VLU , and VLL from Chapter 3 were developed

as a function of nondimensional time and rotor spacing (d). The previous terms are:

VUU (d, t) = αU (t) (0) (4.1)

VUL (d, t) = αL (t) (−d) (4.2)

VLU (d, t) = αU
(
t− d

)
(0) + δU

(
t− d

)
(0)− δU (t) (−d) (4.3)

VLL (d, t) = αL (t) (0) (4.4)

where the previous pressure potential (and shape function) was:

Φ (z) = e−λz

The transition to the multiple inflow state formulation is completed, in part, by a change

from the previous notional shape function to the Legendre functions utilized by Pitt [5].

Therefore, the pressure potentials are now those of the Pitt-Peters model:

Φ0c
n = P

0
n (ν)Q0

n (iη) (4.5)
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Φmc
n = P

m
n (ν)Qm

n (iη) cos (mψ) (4.6)

Φms
n = P

m
n (ν)Qm

n (iη) sin (mψ) (4.7)

Here, Pm
n are normalized Legendre functions of the 1st kind, Qm

n are normalized Legendre

functions of the 2nd kind, and ν, η, and ψ are ellipsoidal coordinates. In chapter 3, Φ was

only a function of z, the distance above or below the rotor. Here, the Legendre functions Φmc
n

and Φms
n depend on the exact location off the velocity in three-dimensional space, represented

through ellipsoidal coordinates. For this chapter we will only use Eq. 4.5 because we only

study the 0th harmonic terms for a system with an infinite number of blades. Generally, the

number of harmonics is chosen to be an integer multiple of the number of blades. For an

infinite number of blades, only the 0th harmonic can be used.

The next step is to determine the pressure potential on the disk—previously Φ(0)—and off

the disk—previously Φ(d). From the ellipsoidal coordinates illustrated in Appendix A, it

can be seen that on the rotor disk (z = 0) that η = 0 and ν varies with location on the disk.

Thus, the pressure potential on the disk is:

Φ0c
n = P

0
n (ν)Q0

n (0i) (4.8)

where it can be shown that Qm

n (0i) = 1 and therefore

Φ0c
n = P

0
n (ν) (4.9)

For the off-disk case, where z < 0 (above the disk), η and ν both vary and are dependent on

location, thus

Φ0c
n = P

0
n (ν)Q0

n (iη) (4.10)

The cross-coupling velocity components are nondimensionalized to put for the state variables

in nondimensional form. The nondimensional cross-coupling velocity components are found
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through the relationship:

V UU = VUU
ΩR ;V LU = VLU

ΩR ;V UL = VUL
ΩR ;V LL = VLL

ΩR (4.11)

Therefore, substitution of Eqs. 4.9 and 4.10 into the nondimensional cross-coupling velocity

equations yields:

V UU (t, ν, η, ψq,U) =
∑
{αmn (t)}UP

m

n (νon) cos (mψq,U) (4.12)

V LL (t, ν, η, ψq,L) =
∑
{αmn (t)}LP

m
n (νon) cos (mψq,L) (4.13)

V UL (t, ν, η, ψq,U) =
∑
{αmn (t)}LP

m

n (νoff )Q
m

n

(
iηoff

)
cos (mψq,U) (4.14)

V LU (t, ν, η, ψL) = V
(
t− d, ν, 0, ψL

)
+ V

∗ (
t− d, ν, 0, ψ∗L

)
− V ∗ (t, ν, η, ψ∗L)

(4.15)

where V ∗ is the adjoint velocity. The adjoint velocity contains co-state terms. For example,

the adjoint velocity above the disk:

V
∗ (t, ν, η, ψL) =

∑
δmn (t)Pm

n (νoff )Q
m
n (iηoff )cos (mψ∗L) (4.16)

Therefore, the velocity on the lower rotor caused by the upper rotor is:

V LU (t, ν, η, ψq,L) =
∑{

αmn (t− d)
}
U
P
m
n (νon) cos (mψq,L)

+
∑{

δmn (t− d)
}
L
P
m

n (νon) cos
(
mψ∗q,L

)
+
∑
{δmn (t)}LP

m
n (νoff )Q

m
n

(
iηoff

)
cos

(
mψ∗q,L

) (4.17)

4.1.2 Lift Equations

To this point the pressure distribution, τmn , has been significantly simplified in several aspects.

Previously, the pitch angles of the rotors, θU and θL, were applied as step inputs of varying
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magnitude, dependent only on rotor spacing. In addition, each “pitch angle” absorbed several

coefficients, including the rotor solidity (σ) and the slope of the lift curve (a). Through blade

element theory, we now discuss the formation of the new τmn in terms of explicit rotor variables

and expand to exactly define the inflow feedback. The pressure distribution in terms of blade

loading (lifting force) is more accurately represented as:

{
τ 0c
n

}
k

= 1
4π

Q∑
q=1

[∫ 1

0

Lq, k

ρΩ2R3φ
0
n (r) dr

]
(4.18)

{τmcn }k = 1
2π

Q∑
q=1

[∫ 1

0

Lq, k

ρΩ2R3φ
m
n (r) dr

]
cos (mψq,k) (4.19)

{τmsn }k = 1
2π

Q∑
q=1

[∫ 1

0

Lq, k

ρΩ2R3φ
m
n (r) dr

]
sin (mψq,k) (4.20)

where Q is the number of blades, Lq is the lift on blade q, ρ is the density of the fluid (air),

R is the rotor diameter, Ω is the rotor speed, r is the nondimensional radial coordinate r/R,

and φ0
n is the radial expansion shape function. These pressure distributions are from the

Peters-He model [9]. For this chapter, we will derive the new pressure distributions for the

τ 0c
n case, as it is the only one that applies for an infinite number of blades. The other two

will be discussed in the next chapter for a system with a finite number of blades.

Previously for a single inflow state, it was accepted that the lift on the upper and lower rotor

were equivalent to the pressure distribution such that:

τU = FU = θU − kVUU − hVUL (4.21)

τL = FL = θL − kVLL − hVLU (4.22)

However, as shown in Eqs. 4.18-4.20 above, the lift force and pressure distributions are

no longer directly equivalent and a more complex relationship exists. From blade element
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theory, the lift on a rotor is represented as:

Lq,kdr = dF1 = 1
2ρac

[
UT,k

2θq,k − UP,kUT,k
]
dr (4.23)

In this equation, c is the chord length, a is the slope of the lift curve, UT,k represents

the tangential velocity component on the k-th rotor, and UP,k represents the perpendicular

velocity component on the k-th rotor. Figure 4-1 illustrates the components of velocity and

lift for an air foil with pitch angle θ.

Figure 4-1: Velocity components on rotor blade cross-section

UT,k is a function of the radius of the rotor (r) and the radial velocity (Ω), such that:

UT,k = Ωr (4.24)

The velocity perpendicular to the rotor disk is related to the state equations and through

the rotor feedback terms. The representations for the upper and lower rotors are as follows:

UP,U= V UU + VUL (4.25)

UP,L= V LL + VLU (4.26)
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Substitution of Eqs. 4.24-4.26 into Eq. 4.23 yields:

Lq,U = 1
2ρac

[
θq,UΩ2r2 − ΩrVUU − ΩrVUL

]
(4.27)

Lq,L = 1
2ρac

[
θq,LΩ2r2 − ΩrVLL − ΩrVLU

]
(4.28)

To further simplify these equations, we substitute the lift equations into Eq. 4.18 and

nondimensionalize the components. In addition, we can drop the summation and replace it

with a Q outside of the integral because the system contains and infinite number of blades

and all blades are identical. From these we obtain:

{
τ 0c
j

}
U

= Q

4π

∫ 1

0

1
2
ac

R

[
θq,Ur

2 − V UUr − V ULr
]
φ0
j (r) dr (4.29)

{
τ 0c
j

}
L

= Q

4π

∫ 1

0

1
2
ac

R

[
θq,Lr

2 − V UUr − V ULr
]
φ0
j (r) dr (4.30)

The final reorganization before integrating the right side of the equations is to pull the

constant terms to the front and substitute for the rotor solidity (σ):

σ = Qc

πR
(4.31)

to obtain
{
τ 0c
j

}
U

and
{
τ 0c
j

}
U

:

{
τ 0c
j

}
U

= σa

8

∫ 1

0

[
θq,Ur

2 − V UUr − V ULr
]
φ0
j (r) dr (4.32)

{
τ 0c
j

}
L

= σa

8

∫ 1

0

[
θq,Lr

2 − V UUr − V ULr
]
φ0
j (r) dr (4.33)

The rotor solidity must be user defined in this model due to the infinite number of blades

(c would be infinitely small and Q = ∞). It is desired to find the solution in terms of the

ellipsoidal coordinate system. The general relationship for the change of coordinates is:

ν2 = 1− r2 (4.34)
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νdν = −rdr (4.35)

From this relationship we find that the new bounds of the integral are:

at r = 0, ν = 1

at r = 1, ν = 0

These bounds are flipped to put the greater value as the upper limit. φrj can now be defined

in terms of ν as:

φrj (r) = 1
ν
P
r
j (ν) (4.36)

Substitution of all of these relationships into Eqs. 4.32 and 4.33 yields:

{
τ 0c
j

}
U

= σa

8

∫ 1

0

[
θq,UP

r
j (ν)

√
1− ν2 − V UUP

r
j (ν)− V ULP

r
j (ν)

]
dν (4.37)

{
τ 0c
j

}
L

= σa

8

∫ 1

0

[
θq,LP

r

j (ν)
√

1− ν2 − V LLP
r

j (ν)− V LUP
r

j (ν)
]
dν (4.38)

The cross-coupling velocity terms in Eqs. 4.12-4.15 are substituted in to form:

{
τ 0c
j

}
U

= σa

8

∫ 1

0

θq,UP 0
j (νon)

√
1− ν2

−
∑{

α0
j (t)

}
U
P

0
j (νon)P 0

n (νon)

−
∑{

α0
j (t)

}
L

(t)P 0
j (νoff )Q

0
j

(
iηoff

)
P

0
n (νon)

dν
(4.39)
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{
τ 0c
j

}
L

= σa

8

∫ 1

0

θq,LP 0
j (ν)

√
1− ν2

−
∑{

α0
j (t)

}
L
P

0
j (νon)P 0

n (νon)

−
∑{

α0
j

(
t− d

)}
U
P

0
j (νon)P 0

n (νon)

−
∑{

δ0
j

(
t− d

)}
U
P

0
j (νon)P 0

n (νon)

+
∑{

δ0
j (t)

}
U
P

0
j (νoff )Q

0
j

(
iηoff

)
P

0
n (νon)

dν

(4.40)

The integrals are then separated and the state and co-state variables can be brought outside

because they are only a function of nondimensional time. Eqs. 4.39 and 4.40 then become:

{
τ 0c
j

}
U

= σa

8

θq,U ∫ 1

0

[
P

0
j (ν)

√
1− ν2

]
dν

−
∑{

α0
j (t)

}
U

∫ 1

0

[
P

0
j (νon)P 0

n (νon)
]
dν

−
∑{

α0
j (t)

}
L

∫ 1

0

[
P

0
j (νoff )Q

0
j

(
iηoff

)
P

0
n (νon)

]
dν


(4.41)

{
τ 0c
j

}
L

= σa

8

θq,L ∫ 1

0

[
P

0
j (νon)

√
1− ν2

]
dν

−
∑{

α0
j (t)

}
L

∫ 1

0

[
P

0
j (νon)P 0

n (νon)
]
dν

−
∑{

α0
j

(
t− d

)}
U

∫ 1

0
[P 0

j (νon)P 0
n (νon)]dν

−
∑{

δ0
j

(
t− d

)}
U

∫ 1

0
[P 0

j (νon)P
0

n
(νon)]dν

+
∑{

δ0
j (t)

}
U

∫ 1

0
[P 0

j (νoff )Q
0
j

(
iηoff

)
P

0
n (νon)]dν



(4.42)
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From these equations, we notice three common integrals of Legendre functions. We represent

these integrals in matrix form as follows:

{
Arj
}

=
∫ 1

0

√
1− ν2

onP
r
j (νon) dν (4.43)

[Bmr
nj ] =

∫ 1

0
P
m
n (νon)P r

j (νon) dν (4.44)

[Cmr
nj ] =

∫ 1

0
P
m
n (νon)P r

j (νoff )Q
r
j (iηoff ) dν (4.45)

{Amn } represents the pitch coupling terms, [Bmr
nj ] are the on-disk inflow coupling term, and

[Cmr
nj ] are the off-disk inflow coupling term. Now, the pressure distribution for the upper and

lower rotors are represented as:

{
τ 0c
j

}
U

= σa

8

[{
A0
j

}
θ
q,U
− [B00

nj ]
{
α0
j (t)

}
U
− [C00

nj ]
{
α0
j (t)

}
L

]
(4.46)

{
τ 0c
j

}
L

= σa

8

{A0
j}θq,L − [B00

nj ]
{
α0
j (t)

}
L
− [B00

nj ]
{
α0
j

(
t− d

)}
U

− [B00
nj ]
{
δ0
j

(
t− d

)}
U

+ [C00
nj ]
{
δ0
j (t)

}
U

 (4.47)

The summations drop out of the equations and are replaced by the product of the new

coupling matrices and state and co-state column matrices.

The final forms of the state equations can be represented as follows:

{ ∗α
0
j}U + υ [M ]−1[D]{α0

j (t)}
U

= σa

8 [M ]
−1

[D]
{A0

j

}
θ
q,U

−
[
B00
nj

] {
α0
j (t)

}
L
−
[
C00
nj

] {
α0
j (t)

}
L

 (4.48)
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{ ∗α
0
j}L + υ[M ]−1[D]{α0

j (t)}
L

= σa

8

{A0
j}θq,L − [B00

nj ]
{
α0
j (t)

}
L

− [B00
nj ]
{
α0
j

(
t− d

)}
U
− [B00

nj ]
{
δ0
j

(
t− d

)}
U

+ [C00
nj ]
{
δ0
j (t)

}
U

 (4.49)

−{
∗
δ

0

j}U + υ[M ]−1[D]{δ0
j (t)}

U
= σa

8 [M ]
−1

[D]
{A0

n

}
θ
U

−
[
B00
nj

] {
α0
j (t)

}
L
−
[
C00
nj

] {
α0
j (t)

}
L

 (4.50)

4.1.3 Blade Flapping

To include blade flapping in the multiple inflow state solution, the following set of equations

must be introduced for each blade on both the upper and lower rotors:

Iy b̈q,k +
(
IyΩ2 + κβ

)
bq,k =

∫ L

0
Lq,krdr (4.51)

where bk is the blade flapping state variable for the k-th blade, Iy is the flapping inertia of

the blade, and κβ is the root spring. In addition to solving Eq. 4.51, Lq,k must be updated to

include blade flapping terms. Therefore, the perpendicular velocity components from Eqs.

4.25 and 4.26 must be updated to include blade flapping terms. The new Up components

with blade flapping are:

UP,U= V UU + VUL +
{
ḃ
}
q,U
r (4.52)

UP,L= V LL + VLU +
{
ḃ
}
q,L
r (4.53)

The lift equations for each rotor are now:

Lq,U = 1
2ρac

[
θq,UΩ2r2 − ΩrVUU − ΩrVUL −

{
ḃ
}
q,U

Ωr2
]

(4.54)

Lq,L = 1
2ρac

[
θq,LΩ2r2 − ΩrVLL − ΩrVLU −

{
ḃ
}
q,L

Ωr2
]

(4.55)
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Converting the terms to nondimensional form, and solving Eq. 4.51 for blade flapping of the

upper and lower rotors, it is found that:

∗∗
b q,U + p2{b (t)}q,U = γ

2

(
1
4θq,U −

{ ∼
B0
n

}T{
α0
n (t)

}
U
−
{ ∼
C0
n

}T{
α0
n (t)

}
L
− 1

4
∗
bq,U

)
(4.56)

∗∗
b q,L + p2{b (t)}q,L = γ

2

1
4θq,L − {B̃

0
n}

T{
α0
n (t)

}
L
−
{
B̃0
n

}T{
α0
n

(
t− d

)}
U

−
{
B̃0
n

}T{
δ0
n

(
t− d

)}
U

+
{
C̃0
n

}T {
δ0
n (t)

}
U
− 1

4
∗
bq,L

 (4.57)

In these equations, p is the flapping frequency and γ is the Lock number, both of which are

equivalent to:

p2 =
(

1 + κβ
IyΩ2

)
(4.58)

γ = ρacR4

Iy
(4.59)

The coupling terms in Eqs. 4.56 and 4.57 are:

{ ∼
Br
j

}
=
∫ 1

0
νon

√
1− ν2

onP
r

j (νon) dν (4.60)

{
∼
C
r

j

}
=
∫ 1

0
νoff

√
1− ν2

offP
r

j (νoff )Q
r

j (iηoff ) dν (4.61)

Finally, the state equations are updated to reflect the updated lift and are as follows:

{
∗
α

0
j

}
U

+ υ [M ]−1[D]
{
α0
j (t)

}
U

= σa

8 [M ]
−1

[D]
{A0

j

}
θ
q,U

−
[
B00
nj

] {
α0
j (t)

}
U
−
[
C00
nj

] {
α0
j (t)

}
L
−
{
A0
j

} ∗
bq,U

 (4.62)

{ ∗α
0
j}L + υ[M ]−1[D]

{
α0
j (t)

}
L

= σa

8

{A0
j}θq,L − [B00

nj ]
{
α0
j (t)

}
L

− [B00
nj ]
{
α0
j

(
t− d

)}
U
− [B00

nj ]
{
δ0
j

(
t− d

)}
U

+ [C00
nj ]
{
δ0
j (t)

}
U
−
{
A0
j

} ∗
bq,L

 (4.63)
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−{
∗
δ

0

j}U + υ[M ]−1[D]
{
δ0
j (t)

}
U

= σa

8 [M ]
−1

[D]
{A0

n

}
θ
q,U

−
[
B00
nj

] {
α0
j (t)

}
L
−
[
C00
nj

] {
α0
j (t)

}
L
−
{
A0
n

} ∗
bq,U

 (4.64)

4.1.4 Initial and Terminal Conditions for Multiple Inflow States

The initial conditions for the state variables for multiple inflow states are similar to those

for a single inflow state. All are zero. For the co-state terms, there are again multiple

options for terminal conditions, which are similar to that of the single inflow state. The

terminal conditions will again be referred to as the zero terminal condition and the steady-

state terminal conditions. The results presented in this chapter use the steady-state terminal

conditions. Velocity is independent of the terminal conditions, provided there are enough

inflow states and a long enough nondimensional time is simulated to reach convergence.

The process of solving for the converged terminal condition is almost entirely the same as the

load sharing process outlined in Appendix D. Therefore, it is not necessary to recompose the

entire process. After the pitch angle θU of the upper rotor is determined from load sharing,

it can be plugged back into: 
{
δ0
j

}
U{

δ0
j

}
L

 = [F ]−1[G]


θq,U

θq,L

 (4.65)

to find the terminal conditions. Equation 4.65 is the condensed form of:

{
δ0
j

}
U{

δ0
j

}
L

 =

 I + σa
8υ [B] σa

8υ [C]

2σa8υ [B]− σa
8υ [C] I + σa

8υ [B]


−1  σa

8 {A} 0

0 σa
8 {A}



θq,U

θq,L

 (4.66)

The steady-state value for δ0
1U , α0

1U , and α0
1L should be equivalent to

√
3

4ν CT for an equal load

sharing case.
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4.2 Numerical Illustrations of Multiple Inflow States

without Blade Flapping

This section presents results for systems with multiple inflow states and illustrates the trends

of general solutions when more inflow states are added. The processes presented will also

vary the spacing between the two rotors and illustrate changes in the state/co-state profiles

and the velocity profiles on the rotor disk. Outside of the variance in the number of inflow

states and the rotor spacing, the only other adjustable parameters are σ, γ, p, υ, and CT ,

which will not be varied in this work. The values selected for these parameters are σ = 0.1,

γ = 5, p2 = 1.08, υ = 0.01, and CT = 0.01. All graphs of velocity vs. nondimensional time

occur at location r = 0.8. In addition, all presented results are for systems with steady-state

terminal conditions and utilize load sharing, therefore θU and θL vary with rotor spacing.

4.2.1 Velocity State and Co-state Variable Profiles

The development of the velocity state and co-state variable profiles depict several notable

trends in relation to number of harmonics and rotor spacing. For these plots, equal load

sharing is utilized, which results in the same steady-state value for the first odd state and

co-state values ({α0
1}U={α0

1}L={δ0
1}U), regardless of number of harmonics and rotor spacing.

However, dynamic portions of the first odd profiles at small values of time vary with rotor

spacing and number of harmonics. For this section, the overall trends of the state, co-state,

and velocity profiles will be discussed along with the early dynamics and dynamics when the

flow form the upper rotor hits the lower rotor.

Figures 4-2 to 4-7 illustrate the profile development for {α0
n}U state variables in arrangements

of 2, 4, and 6 states and rotor spacings of d = 0.2 and d = 1.0. It is noticeable in all of

the figures that the even inflow states converge to a steady-state value of zero, which was
69



expected because they are mass source terms. As was discussed earlier, {α0
1}U = 1

ν

√
3

4 CT at

steady-state, which is depicted in Figs. 4-2 to 4-7. As more inflow states are added, it takes

longer for the states to reach their steady-state values, as is evident in Figs. 4-3,4-4, 4-6, and

4-7. For the {α0
n}U state variables, smaller rotor spacings generally result in larger peaks in

the early dynamics of the system. Increasing the number of states also impacts the early

dynamics because all of the states are reacting to the inflow when the system starts up.

The {α0
n}L profiles in Figs. 4-8 to 4-13 demonstrate similar overall trends to the {α0

n}U

profiles. However, the impact of when the flow from the upper rotor hits the lower rotor

can be seen. In these plots the time delay is d = 2 for a rotor spacing d = 0.2 and d = 10

for a rotor spacing d = 1.0. Therefore, the change in dynamics due to the flow from the

upper rotor hitting the lower rotor occurs at t = 2 and t = 10, respectively. For brevity,

we will refer to the change in dynamics when the flow from the upper rotor hits the lower

rotor as time-delay dynamics because they occur when t = d. For the {α0
n}L profiles with

d = 0.2 rotor spacing in Figs. 4-8 to 4-10, it is difficult to see time-delay dynamics in the

2-state and 4-state results because the dynamics occur early in the profiles when the states

are close to their steady-state values. However, for the 6-state profiles the time-delays are

more evident because the profiles are much farther from steady-state. When d = 1.0 in

Figs. 4-11 to 4-13, the time-delay dynamics are evident in the profiles for 2, 4, and 6 state

solutions. These changes are more noticeable because they cause a change in direction for

many of the profiles.

The development of the co-state profile is described by two different formats. First the time-

delayed co-state profiles are shown in Figs. 4-14 to 4-19 and then the full co-state profiles

developed after the entire simulation is run in Figs. 4-20 to 4-25. The former case are the
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values used for the calculations with each time step. The purpose of the latter is to simply

demonstrate how the profile develops when calculated over the entire time domain.

As is illustrated in Figs. 4-14 to 4-19, the time-delayed co-state, {δ0
n(t− d)}U , profiles change

dynamically when t = d and then decay to the steady-state value. These profiles vary with

terminal conditions but will converge to the same steady-state value. The number of states

has a significant impact on the profile development, especially prior to t = d. This part of

the {δ0
n(t− d)}U profile occurs at t < 0, which contains no blade loading.

The co-state profiles in Figs. 4-20 to 4-25 provide a clearer illustration of how the time-

delayed terms are formed and an overall picture of what the {δ0
n(t− d)}U profiles would look

like for larger rotor spacings. Rotor spacing itself has little impact on the shape of the {δ0
n}U

profile. The full {δ0
n}U profile also demonstrates that co-states converge to zero as t→ −∞.

It is worth noting that for a solution with more co-states, it takes longer to converge to zero

as t→ −∞, but this does not impact the accuracy of the velocity profiles.

Figure 4-2: {α0
n}U state variable for 2 inflow states (1 even and 1 odd) with d = 0.2
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Figure 4-3: {α0
n}U state variable for 4 inflow states (2 even and 2 odd) with d = 0.2

Figure 4-4: {α0
n}U state variable for 6 inflow states (3 even and 3 odd) with d = 0.2
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Figure 4-5: {α0
n}U state variable for 2 inflow states (1 even and 1 odd) with d = 1.0

Figure 4-6: {α0
n}U state variable for 4 inflow states (2 even and 2 odd) with d = 1.0
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Figure 4-7: {α0
n}U state variable for 6 inflow states (3 even and 3 odd) with d = 1.0

Figure 4-8: {α0
n}L state variable for 2 inflow states (1 even and 1 odd) with d = 0.2
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Figure 4-9: {α0
n}L state variable for 4 inflow states (2 even and 2 odd) with d = 0.2

Figure 4-10: {α0
n}L state variable for 6 inflow states (3 even and 3 odd) with d = 0.2
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Figure 4-11: {α0
n}L state variable for 2 inflow states (1 even and 1 odd) with d = 1.0

Figure 4-12: {α0
n}L state variable for 4 inflow states (2 even and 2 odd) with d = 1.0
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Figure 4-13: {α0
n}L state variable for 6 inflow states (3 even and 3 odd) with d = 1.0

Figure 4-14: {δ0
n(t−d)}U co-state variable for 2 inflow states (1 even and 1 odd) with d = 0.2
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Figure 4-15: {δ0
n(t−d)}U co-state variable for 4 inflow states (2 even and 2 odd) with d = 0.2

Figure 4-16: {δ0
n(t−d)}U co-state variable for 6 inflow states (3 even and 3 odd) with d = 0.2
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Figure 4-17: {δ0
n(t−d)}U co-state variable for 2 inflow states (1 even and 1 odd) with d = 1.0

Figure 4-18: {δ0
n(t−d)}U co-state variable for 4 inflow states (2 even and 2 odd) with d = 1.0
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Figure 4-19: {δ0
n(t−d)}U co-state variable for 6 inflow states (3 even and 3 odd) with d = 1.0

Figure 4-20: {δ0
n}U co-state variable for 2 inflow states (1 even and 1 odd) with d = 0.2
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Figure 4-21: {δ0
n}U co-state variable for 4 inflow states (2 even and 2 odd) with d = 0.2

Figure 4-22: {δ0
n}U co-state variable for 6 inflow states (3 even and 3 odd) with d = 0.2
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Figure 4-23: {δ0
n}U co-state variable for 2 inflow states (1 even and 1 odd) with d = 1.0

Figure 4-24: {δ0
n}U co-state variable for 4 inflow states (2 even and 2 odd) with d = 1.0
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Figure 4-25: {δ0
n}U co-state variable for 6 inflow states (3 even and 3 odd) with d = 1.0

4.2.2 Velocity Profiles Across the Upper and Lower Rotor Disks

The velocity profiles in this section are total velocity on the rotor disks and can mathemat-

ically be expressed as:

V U = V UU + V UL (4.67)

V L = V LL + V LU (4.68)

The velocity profile is given over r. As can be seen in Figs. 4-26 through 4-29, the velocity

profiles vary drastically with differing numbers of states but begin to form a uniform trend

as the number of states increases. As r → 1, the velocity on the rotor disk drops of to zero,

which is due to the fact that the odd Legendre functions of the first kind all are zero at

the tip. In addition, there is a notable difference in the magnitude of the velocity profiles

for different rotor spacings. V U increases when the rotor spacing decreases. Meanwhile V L

increases as rotor spacing increases. A deeper correlation of this trend is discussed in the

next section. From this work it was discovered that somewhere in the range of 10 inflow

states provide good results, but the use 16-20 states are more ideal, if it can be supported
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computationally. For most of this work 10 inflow states are used because of limitations with

required computational resources for extremely small rotor spacings. Ten states are enough

to demonstrate the dynamics of the system.

Figure 4-26: V U for varied number of inflow states with rotor spacing d = 0.2
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Figure 4-27: V U for varied inflow states with rotor spacing d = 1.0

Figure 4-28: V L for varied inflow states with rotor spacing d = 0.2

85



Figure 4-29: V L for varied inflow states with rotor spacing d = 1.0

4.2.3 Velocity Profiles with 10 States with Varied Rotor Spacing

This section discusses the impact of rotor spacing on the dynamics of the system with ten

inflow states. Theory suggests that at a rotor spacing of d = 0, the velocity profiles for V U

and V Lwould be identical for both rotors. As has previously been demonstrated, the total

velocity on the lower rotor disk (V L) is larger than that of the upper rotor (V U). However,

this is more noticeable with larger rotor spacings. Momentum theory proves that at a large

distance downstream from a rotor, the magnitude of velocity doubles. It is important to

understand that this theory is for a single lifting rotor system; and, thus, for a coaxial rotor

system, the theory implies that (for large d) the velocity on the upper rotor caused by the

upper rotor (V UU) is equivalent to one-half the velocity on the lower rotor caused by the

upper rotor (V LU). Demonstration of this concept is done through the comparison of a

coaxial system with larger rotor spacing (d = 10). The individual components that make up

86



the velocity on the upper and lower rotor disks are also investigated to demonstrate how the

spacing impacts the individual terms.

Rotor spacings of d = 0.01, 0.2, 1, 2, 10 were selected to represent the trends at both ends

of rotor spacing. A rotor spacing of d = 0.01 was utilized to represent the minimal spacing

because it was able to represent the trends while remaining a coaxial system. For a larger

rotor spacing d = 10 was ideal because it represents a large enough rotor spacing without

requiring too large of a time domain (Note: Remember the time delayed terms require a time

domain that is at minimum −d < t < d).

To demonstrate the case for identical V U and V L when d = 0, we elect to use d = 0.01

to illustrate the model performance. In addition, we look at the individual components of

velocity and correlate them with the previously derived equations. As can be seen in the

velocity profiles in Fig. 30, the velocity components V UU and V LU are nearly identical, and

V UL and V LL are nearly identical outside of the velocity magnitude near the edge of the

rotor disk. One would assume that if the rotor spacing were in fact d = 0, the profiles would

be identical. As the rotor spacing increases in Figs. 4-31 to 4-34, the component magnitudes

gradually become dissimilar and combined velocities on the disk begin to separate.

In Fig. 4-35, the ratio of V LU to V UU versus d is shown at distances of r = 0.6, 0.7, and 0.8

from the center of the rotor. For all three r, V LUbegins approaching twice the magnitude of

V UU with a ratio of 1.92 when d = 2. At d = 5 the ratio climbs to 1.99 and at d = 10 the

ratio is 2.0.

To better visualize the changes in V U and V L with varied rotor spacing, Figs. 4-36 and 4-37

compare the velocity profiles for d = 0.01, 0.2, 1, 2, 10. Figure 4-36 further demonstrates that

the V U show very small change in magnitude from d = 2 to d = 10. Figure 4-37 shows that

for V U there are only minor changes in magnitude from d = 1 to d = 10.
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Analysis of the previously-derived equations demonstrates how they incorporate the effect

of rotor spacing. The driving force for the variations within the coupled velocity terms

Eqs. 4.12-4.15 is the rotor spacing and the impact it has on the shape functions Pm
n (ν) and

Q
m

n (iη). For the case where the rotor spacing is small, we know that, on the disk, where

η → 0, Qm

n (iη) → 1, correlates to a case where d = 0. For this explanation we will assume

that for d = 0.01, η≈0 and Qm

n (0i) = 1. Applying this to Eqs. 4.14 and 4.15 in steady state

(where {α0
n (t)}U = {α0

n

(
t− d

)
}
U

and {δ0
n (t)}U = {δ0

n

(
t− d

)
}
U

), we find:

V UL (t, rU , ψU , d) =
∑
{α0

n (t)}LP
0
n (νL) (4.69)

V LU (t, rU , ψU , d) =
∑
{α0

n (t)}UP
0
n (νU) (4.70)

This is due the relationship that when d = 0, [B] = [C]. Therefore, it can further be observed

that:

V UU (t, rU , ψU , d) = V LU (t, rU , ψU , d) (4.71)

V LL (t, rL, ψL, d) = V UL (t, rU , ψL, d) (4.72)

From this, we can correlate V U and V L through:

V U = V UU + V UL = V LU + V LL = V L (4.73)

Now, for the case for a large rotor spacing, we consider the limit as d = ∞. As z→ -∞

(distance far above the rotor disk), η→∞ and Q
m
n (iη) → 0. In this case [C]→0. Applying

this to Eqs.4.14 and 4.15, we have:

V UL (t, rU , ψU ,−∞) = 0 (4.74)

V LU (t, rU , ψL,−∞) =
∑
{α0

n (∞)}UP
0
n (νon) +

∑
{δ0

n (∞)}UP
0
n (νon) (4.75)
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In this case, {αmn (∞)}U and {δmn (∞)}U are steady-state values and converge to the same

values. Therefore, it can be written that:

V LU (t, rU , ψL,−∞) = 2
∑
{α0

n (∞)}UP
0
n (νon) = 2V UU (t, rU , ψU ,−∞) (4.76)

Finally, Figs. 4-38 and 4-39 illustrate how the velocity profile develops over time for systems

with differing numbers of inflow states. Keep in mind that r = 0.8 in this plot. Therefore,

the oscillations in the velocity profile—as a function of r—are not seen. Thus, the magnitude

of the steady-state velocity for plots having varying number of harmonics cannot be directly

compared. All of the profiles develop in a similar manner for both rotors. Looking at the

impact of the rotor spacing on the development of the velocity profiles in Figs. 4-40 and

4-41, the profiles take longer reach steady-state values with increasing rotor spacing. More

notably, the V L profiles display noticeable jumps in velocity where t = d, which is when the

flow from the upper rotor hits the lower rotor.

Figure 4-30: Velocity components for 10 inflow states with rotor spacing d = 0.01

89



Figure 4-31: Velocity components for 10 inflow states with rotor spacing d = 0.2

Figure 4-32: Velocity components for 10 inflow states with rotor spacing d = 1.0
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Figure 4-33: Velocity components for 10 inflow states with rotor spacing d = 2.0

Figure 4-34: Velocity components for 10 inflow states with rotor spacing d = 10
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Figure 4-35: Comparison of Ratio of V LU to V UU for varied rotor spacings

Figure 4-36: V U for 10 inflow states and varied spacing
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Figure 4-37: V L for 10 inflow states and varied spacing

Figure 4-38: V U for varied number of inflow states and d = 0.2 spacing
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Figure 4-39: V L for varied number of inflow states and d = 0.2 spacing

Figure 4-40: V U for 10 inflow states and varied rotor spacing
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Figure 4-41: V L for 10 inflow states and varied rotor spacing

4.3 Numerical Illustrations of Multiple Inflow States

with Blade Flapping

4.3.1 States and Co-states with Blade Flapping

Blade flapping was added to the system to provide a more realistic dynamic interaction

between the two rotors. The dynamics of the blade flapping terms die out with time, and

eventually the state and co-state profiles reach the same steady-state values as the system

without blade flapping. The blade flapping states, bU and bL, in Figs. 4-42 through 4-47

reveal how velocity profiles develop for different values of rotor spacing and varying number

of inflow states. Figures 4-42 and 4-43 illustrate that a closer rotor spacing results in higher

peak magnitudes for the upper rotor; and larger spacings increase the peak magnitudes for

the lower rotor. In addition, time-delay dynamics are evident in the bL profiles, especially

when d = 0.2 and d = 10.0. Figures 4-44 to 4-46 demonstrate that, aside from the case with
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two inflow states, the number of inflow states has only minor impact on the shape of blade

flapping profiles.

Figures 4-47 through 4-70 illustrate {α0
n}U , {α0

n}L, {δ0
n}U , and {δ0

n(t − d)}U with blade

flapping in the systems. The biggest take away from these figures is that the addition

of blade flapping impacts the profile development. The blade flapping terms, themselves,

generally drive an early rise to reach the peaks and then approach the steady-state values

with decaying oscillations that are driven by the decay in the blade flapping terms. Overall,

the number of states has a similar impact as before where the dynamics occur early in the

simulation—but now with the added complexity of blade flapping. The impact of the rotor

spacing on state profiles is more evident here than it was for the case without blade flapping.

For example, the comparison in profiles for {α0
n}L in Figs. 4-55 and 4-58 shows different

shapes in the peaks and magnitudes in the early dynamics. The development of the time-

delay dynamics is more difficult to discern when blade flapping is included, but they still

occur when t = d.

Figure 4-42: bU profiles for 10 inflow states and varied rotor spacings
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Figure 4-43: bL profiles for 10 inflow states and varied rotor spacings

Figure 4-44: bU profiles for a varied number of inflow states and d = 0.2
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Figure 4-45: bL profiles for a varied number of inflow states and d = 0.2

Figure 4-46: bL profiles for a varied number of inflow states and d = 2.0
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Figure 4-47: {α0
n}U state variable for 2 inflow states (1 even and 1 odd) with d = 0.2 for

system with blade flapping

Figure 4-48: {α0
n}U state variable for 4 inflow states (2 even and 2 odd) with d = 0.2 for

system with blade flapping
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Figure 4-49: {α0
n}U state variable for 6 inflow states (3 even and 3 odd) with d = 0.2 for

system with blade flapping

Figure 4-50: {α0
n}U state variable for 2 inflow states (1 even and 1 odd) with d = 1.0 for

system with blade flapping
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Figure 4-51: {α0
n}U state variable for 4 inflow states (2 even and 2 odd) with d = 1.0 for

system with blade flapping

Figure 4-52: {α0
n}U state variable for 6 inflow states (3 even and 3 odd) with d = 0.2 for

system with blade flapping
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Figure 4-53: {α0
n}L state variable for 2 inflow states (1 even and 1 odd) with d = 0.2 for

system with blade flapping

Figure 4-54: {α0
n}L state variable for 4 inflow states (2 even and 2 odd) with d = 0.2 for

system with blade flapping
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Figure 4-55: {α0
n}L state variable for 6 inflow states (3 even and 3 odd) with d = 0.2 for

system with blade flapping

Figure 4-56: {α0
n}L state variable for 2 inflow states (1 even and 1 odd) with d = 1.0 for

system with blade flapping
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Figure 4-57: {α0
n}L state variable for 4 inflow states (2 even and 2 odd) with d = 1.0 for

system with blade flapping

𝑡̅

Figure 4-58: {α0
n}L state variable for 6 inflow states (3 even and 3 odd) with d = 1.0 for

system with blade flapping
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Figure 4-59: {δ0
n(t − d)}U state variable for with 2 inflow states (1 even and 1 odd) with

d = 0.2 with blade flapping

Figure 4-60: {δ0
n(t− d)}U state variable for 4 inflow states (2 even and 2 odd) with d = 0.2

with blade flapping
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Figure 4-61: {δ0
n(t−d)}U state variable for 6 inflow states (3 even and 3 odd) with d = 0.2

with blade flapping

Figure 4-62: {δ0
n(t−d)}U state variable for 2 inflow states (1 even and 1 odd) with d = 1.0

with blade flapping
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Figure 4-63: {δ0
n(t−d)}U state variable for with 4 inflow states (2 even and 2 odd) with

d = 1.0 with blade flapping

Figure 4-64: {δ0
n(t−d)}U state variable for 6 inflow states (3 even and 3 odd) with d = 1.0

with blade flapping
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Figure 4-65: {δ0
n}U state variable for 2 inflow states (1 even and 1 odd) with d = 0.2 with

blade flapping

Figure 4-66: {δ0
n}U state variable for 4 inflow states (2 even and 2 odd) with d = 0.2 with

blade flapping
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Figure 4-67: {δ0
n}U state variable for 6 inflow states (3 even and 3 odd) with d = 0.2 with

blade flapping

Figure 4-68: {δ0
n}U state variable for 2 inflow states (1 even and 1 odd) with d = 1.0 with

blade flapping
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Figure 4-69: {δ0
n}U state variable for 4 inflow states (2 even and 2 odd) with d = 1.0 with

blade flapping

Figure 4-70: {δ0
n}U state variable for 6 inflow states (3 even and 3 odd) with d = 1.0 with

blade flapping
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4.3.2 Velocity Profiles with Blade Flapping

Recreating the previous velocity profiles with blade flapping we find that, for both rotors in

Figs. 4-71 and 4-72, the case with 4 inflow states sees the largest dynamic oscillations from

blade flapping. This is largely a result of the location on the disk and the development of

the velocity profiles across the rotor (Figs. 4-26 to 4-29). The 4 inflow state profile has the

highest magnitude of the profiles at r = 0.8 and therefore the largest max velocity in Figs.

4-71 and 4-72. It can be said, however, that the profile shape differs significantly between

the 2 state and 4 state simulation cases. The profiles with 4, 6, 10, and 20 states illustrated

in Figs. 4-71 and 4-72 appear to have similar shapes and illustrate similar dynamics.

The velocity profiles with respect to t in Figs. 4-73 and 4-74 illustrate that blade flapping

causes very shallow oscillations, but the previous trends of magnitudes and location of time-

delay dynamics remain the same. For the rotor spacings of d = 1.0, 2.0, 10.0, the shape and

size of the time-delay dynamics are different due to the blade flapping dynamics. For the

smaller rotor spacings, the changes are more subtle and blend with the early blade flapping

dynamics.

Figure 4-71: V U for varied number of inflow states and d = 0.2 for system with blade flapping
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Figure 4-72: V L for varied number of inflow states and d = 0.2 for system with blade flapping

Figure 4-73: V U for system with blade flapping and 10 inflow states and varied rotor spacing
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Figure 4-74: V L for system with blade flapping and 10 inflow states and varied rotor spacing
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Chapter 5

Chapter 5: Finite Number of Blades

In Chapter 4, a solution for a coaxial rotor system with an infinite number of blades was

developed as a broader proof of concept with the intent of being expanded for a system

with a finite number of blades. The transition to a system with a finite number of blades

primarily requires summations over the number of blades to develop the state and co-state

equations and the inclusion of higher harmonic solutions. In addition, climb rate (η) and

advance ratio (µ) terms were added to this model. This system also provides more unique

dynamics that better illustrate the rotor coupling in the system.

5.1 Model Development for Finite Number of Blades

The basis of the finite number of blades model is an extension of the work in Chapter 4.

The solution of the state and co-state variables now involve sine and cosine portions of the

solution. The solution approach is that used by Morillo [11] and Fei [3]. The cosine forms of

the state and co-state variables are represented by αmn and δmn , respectively, while the sine

form of the state variables are βmn and co-state variables are εmn . The state and co-state

variable equations for the cosine and sine forms are:
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[M ]
{ ∗
α
m

n

}
U

+ υ [D]
[
L̃c
]−1

[M ] {αmn }U = [D] {τmcn }U (5.1)

[M ]
{ ∗
α
m

n

}
L

+ υ [D]
[
L̃c
]−1

[M ] {αmn }L = [D] {τmcn }L (5.2)

− [M ]
{∗
δ
m

n

}
U

+ υ [D]
[
L̃c
]−1

[M ] {δmn }U = [D]


. . .

(−1)n+1

. . .

 {τ
mc
n }U (5.3)

[M ]
{ ∗
β
m

n

}
U

+ υ [D]
[
L̃s
]−1

[M ] {βmn }U = [D] {τmsn }U (5.4)

[M ]
{ ∗
β
m

n

}
L

+ υ [D]
[
L̃s
]−1

[M ] {βmn }L = [D] {τmsn }L (5.5)

− [M ]
{∗
ε
m

n

}
U

+ υ [D]
[
L̃s
]−1

[M ] {εmn }U = [D]


. . .

(−1)n+1

. . .

 {τ
ms
n }U (5.6)

The solution of the differential equations for the state and co-state variables assume zero

initial conditions for all states. The co-states, on the other hand must be given defined

terminal conditions, due to the backward time-marching. Here, the terminal conditions for

the co-state variables are also set to zero. Although the velocity does not depend on the

terminal conditions in the limit of many states, there can be some residual effect, especially

for a lower number of states; but zero terminal conditions is the simplest to manipulate

numerically.

Developing the finite number of blades model primarily focuses on reworking {τmcn }k and

{τmsn }k terms by enhancing the lift equations and keeping the summation over the finite

number of blades. In this model the UP and UT terms in the lift equations include the

perpendicular and in plane components of flow. In Chapter 4, the summation over the finite
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number of blades was manipulated to accommodate the infinite number of blades. We begin

with the same {τmcn }k and {τmsn }k in Chapter 4, which are:

{
τ 0c
n

}
k

= 1
4π

Q∑
q=1

[∫ 1

0

Lq,k
ρΩ2R3φ

0
n (r) dr

]
(5.7)

{τmcn }k = 1
2π

Q∑
q=1

[∫ 1

0

Lq,k
ρΩ2R3φ

m
n (r) dr

]
cos (mψq,k) (5.8)

{τmsn }k = 1
2π

Q∑
q=1

[∫ 1

0

Lq,k
ρΩ2R3φ

m
n (r) dr

]
sin (mψq,k) (5.9)

For the upper and lower rotors, the azimuth location of each blade is found by:

ψq,U = t+ 2π
(
q − 1
Q

)
(5.10)

ψq,L = −t− 2π
(
q − 1
Q

)
(5.11)

In this work we will only derive the cosine form of the pressure potential ({τmcn }k) in Eq. 5.8,

but the axisymmetric and sine form are derived in a similar manner. From blade element

theory, the lift on each blade of a rotor is represented as:

Lq,k = 1
2ρac

[
UT,k

2θq,k − UP,kUT,k
]

(5.12)

In this equation, c is the chord length, a is the slope of the lift curve, UT represents the

tangential velocity component, and UP represents the perpendicular velocity component.

UT is a function of the radius of the rotor (r), the radial velocity (Ω), and the in-plane
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component of flow (U) such that:

UT,k = Ωr + Usin(ψq,k) (5.13)

The perpendicular portion of the velocity with respect to the blade is:

UP,k = ϑ+ wk +
{
ḃq
}
k
r + {bq}kUcos(ψq,k) (5.14)

In Eq. 5.14 wk is the induced velocity, ϑ is the flow perpendicular to the disk, and {bq}k is

the blade flapping of blade q on rotor k. The induced velocity for the upper and lower rotors

are:

wU = VUU + VUL (5.15)

wL = VLL + VLU (5.16)

The perpendicular velocity terms for the upper and lower rotors are:

UP,U = ϑ+ VUU + VUL +
{
ḃq
}
U
r + {bq}UUcos(ψq,U) (5.17)

UP,L = ϑ+ VLL + VLU +
{
ḃq
}
L
r + {bq}LUcos(ψq,L) (5.18)

Insertion of Eqs. 5.13, 5.17, and 5.18 into Eq. 5.12 gives the lift equations for each blade on

the upper and lower rotors:

Lq,U = 1
2ρac

[
(Ωx+ U sin (ψq,U))2 θq,U

−
(
ν + VUU + VUL +

{
ḃq
}
U
x+ {bq}U U cos (ψq,U)

)
(Ωx+ U sin (ψq,U))

] (5.19)

Lq,L = 1
2ρac

[
(Ωx+ Usin (ψq,L))2θq,U

−
(
ν + VLL + VLU +

{
ḃq
}
L
x+ {bq}LUcos (ψq,L)

)
(Ωx+ Usin (ψq,L))

] (5.20)
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At this point, we revisit the updated axisymmetric, cosine, and sine Φ terms from Chapter

4 and further enhance them for multi-blade, coaxial rotor systems by adding the subscripts

q and k to ψ to obtain:

Φ0c
n = P

m

n (ν)Qm

n (iη) (5.21)

Φmc
n = P

m

n (ν)Qm

n (iη)cos(mψq,k) (5.22)

Φms
n = P

m

n (ν)Qm

n (iη)sin(mψq,k) (5.23)

The shape functions are a factor of the location in space in ellipsoidal coordinates (ν, η, ψ).

On the rotor disk, η = 0 and Q
m
n (0i) = 1, which simplifies the above shape functions to:

Φ0c
n = P

m

n (ν) (5.24)

Φmc
n = P

m

n (ν)cos(mψq,k) (5.25)

Φms
n = P

m

n (ν)sin(mψq,k) (5.26)

At this point, the coupled velocity terms in are updated with the new Φm
n in Eqs. 5.24-

5.26 and summations accounting for multiple inflow states. Finally, nondimensionalizing the

coupled velocity terms (V xx = Vxx/ΩR), we obtain:

V UU (t, ν, η, ψq,U) =
∑
{αmn (t)}UP

m
n (νon) cos (mψq,U)

+
∑
{βmn (t)}UP

m

n (νon) sin(mψq,U)
(5.27)

V LL (t, ν, η, ψq,L) =
∑
{αmn (t)}LP

m
n (νon) cos (mψq,L)

+
∑
{βmn (t)}LP

m
n (νon) sin(mψalq,L)

(5.28)
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V UL (t, ν, η, ψq,U) =
∑
{αmn (t)}LP

m
n (νoff )Q

m
n

(
iηoff

)
cos (mψq,U)

+
∑
{βmn (t)}LP

m
n (νoff )Q

m
n

(
iηoff

)
sin(mψq,U)

(5.29)

V LU (t, ν, η, ψq,L) =
∑{

αmn (t− d)
}
U
P
m

n (νon) cos (mψq,L)

+
∑{

βmn
(
t− d

)}
L
P
m
n (νon) sin (mψq,L)

+
∑{

δmn (t− d)
}
L
P
m

n (νon) cos
(
mψ∗q,L

)
+
∑{

εmn (t− d)
}
L
P
m
n (νon) sin(mψ∗q,L)

+
∑
{δmn (t)}LP

m
n (νoff )Q

m
n

(
iηoff

)
cos

(
mψ∗q,L

)
+
∑
{εmn (t)}LP

m

n (νoff )Q
m

n

(
iηoff

)
sin(mψ∗q,L)

(5.30)

We next combine Eqs. 5.27-5.30 with Eqs. 5.19-5.20 and plug them into Eq. 5.8 and

nondimensionalize the terms with the relations µ = U/ΩR, η = ϑ/ΩR, r = x/R, and b∗ =

ḃ/Ω. Thus, the new {τmcn }U and {τmcn }L terms are represented as:
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(5.31)

(5.32)

where {A}, {A2}, and {A3} are pitch coupling terms, [B] and [B2] are the on-disk inflow

coupling terms, and [C] and [C2] are the off-disk inflow coupling terms. These terms can

be precalculated prior to simulation because they are not a function of time. The coupling
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terms are defined as follows:

{Amn } =
∫ 1

0

√
1− ν2

onP
m

n (νon) dν (5.33)

{Amn }2 =
∫ 1

0
P
m

n (νon) dν (5.34)

{Amn }3 =
∫ 1

0

1√
1− ν2

on

P
m
n (νon) dν (5.35)

[Bmr
nj ] =

∫ 1

0
P
m

n (νon)P r

j (νon) dν (5.36)

[Bmr
nj ]2 =

∫ 1

0

1√
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j (νon) dν (5.39)

In this dissertation, numerical results include only the case of axial flow (climb); and, there-

fore, the nondimensional in-plane component of flow, µ, is zero. This reduces the impact of

some of the coupling matrices in Eqs. 5.31-5.32. This will also impact the blade flapping

terms below in Eqs. 5.47-5.48.
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5.2 Development of Blade Flapping Terms

The final portion of the derivation of equations is developing the blade flapping terms. The

equations for the blade flapping terms have many similarities to the equations for the state

and co-state variables but differ slightly in format. The governing equation for the blade

flapping terms is:

Iy
..

bq,k+
(
IyΩ2+κβ

)
bq,k=

∫ L

0
Lq,krdr (5.40)

where Iy is the flapping inertia of the blade and κβ is the root spring. The coupling terms

in this case only consist of on-disk and off-disk terms and work out to be:
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m
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We further simplify the blade flapping solution with the following relationships:

p2 =
(

1 + κβ
IyΩ2

)
(5.45)

γ = ρacR4

Iy
(5.46)
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Applying these relationships along with the blade flapping coupling terms and nondimen-

sionalizing the equation, we obtain:

(5.47)
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(5.48)

5.3 Numerical Illustrations of Coaxial Rotor with a

Finite Number of Blades

With the model developed in this chapter, we investigate how variations in d,N , and Q

impact the dynamics in velocity profiles, the steady-state region in the velocity profiles, and

the blade flapping dynamics. In addition, velocity contour plots of each rotor disk plane

will be discussed to illustrate velocity across the entire disk at a given time. All of the

results in this section are presented for the case of axial flow (χ = 0, µ = 0) and, aside

from the contour plots, are at a nondimensional radial distance r = 0.8 and azimuth angle

ψq,k = 0. The fixed system parameters for the coaxial rotor system in this work are as

follows: θU = θL = 0.1605, γ = 5, p2 = 1.08, σ = 0.1, and CT = 0.001. It is acknowledged

that a coaxial rotor system would not actually have a rotor spacing equal to and exceeding
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the length of the rotor radius, but the focus of this work is to explore the boundaries of the

system to determine how the finite-state model behaves in a wide range of scenarios. The

time delays presented here are realistic because υ could be realistically adjusted to create

the same d relationships. The profiles presented here would not be entirely the same because

υ appears several times throughout the model, but it is important to understand how the

time delay would behave in many scenarios should a system require a larger time delay.

5.3.1 Impact of Rotor Spacing on Velocity Profile Dynamics

The total velocity on the upper rotor V U for varied d is outlined in Figs. 5-1 to 5-4. In Fig. 5-

1, for a system that contains three-bladed rotors with M = 3 harmonics, the velocity profiles

decrease in amplitude and magnitude as the rotor spacing increases. This is due to the

decreasing impact of the lower rotor on the upper rotor. Overall, the dynamics of the profile

are uniform with no unique variation due to the rotor spacing. In Fig. 5-2, the same three-

bladed system is analyzed with M = 6 harmonics and shows the similar trend of decreasing

magnitudes and amplitudes with increased rotor spacing. Figures 5-3 and 5-4 illustrate V U

for a system of four-bladed rotors with M = 4 and M = 8 harmonics, respectively. The

major difference in the trends for the four-bladed system is that the addition of an extra

blade to each rotor (with the same solidity as the three-bladed system) results in a reduction

in the magnitudes of the velocity peaks because the load in the system is now distributed

between more blades. In addition, there is an extra oscillation per full revolution because

of the extra blade. However, the average velocity remains the same in the system. After

a rotor spacing of d = 0.4 there is very little change in the V U profile as the effect of the

lower rotor on the upper approaches zero. It is important to note that blade passage does

not actually occur at the peak, but instead it occurs right before the peak. For an M = Q

harmonic case, the blade passing occurs midway between the minima and maxima. For the
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lower rotor case this is not entirely true after t = d because the vortices from the upper rotor

impact the peak occurrence in the lower rotor velocity profile.

The impact of rotor spacing on the total velocity on the lower rotor V L is outlined in Figs.

5-5 to 5-8. For a three-bladed system with M = 3 harmonics in Figs. 5-5 and 5-6, it is

illustrated that the rotor spacing impacts the development of the velocity profile due to the

variability in how long it takes the flow from the upper rotor to hit the lower rotor. The

early dynamics of the velocity profiles are similar. This is especially evident for the larger

rotor spacings, d = 1.1 − 1.9. However, the more interesting dynamics on the lower rotor

occur when the flow from the upper rotor hits the lower rotor. This happens when the

t = d and thus we will refer to the dynamics in this region as the time-delay dynamics.

The time-delay dynamics are denoted by black vertical lines and rotor spacing descriptors

throughout this chapter. In Figs. 5-5 and 5-6 the time-delay dynamics cause sudden jumps

before the profile begins to oscillate around a higher magnitude. For a four-bladed system

with M = 4 harmonics, Figs. 5-7 and 5-8 illustrate that the time-delay dynamics in the V L

profiles can vary significantly. For d = 0.1 in Fig. 5-7, there is a sudden drop off, whereas

for d = 0.3 the change very slight. For d = 0.9 the dynamics span a larger region in the area

where the effect of the time delay takes place. For all of these plots, as the rotor spacing

increases, the magnitude and amplitude of the V L profiles increase. In addition, it should be

noted that the dynamics are not constant for different azimuth angles around the disk and

the dynamics shown here are simply a representation of how the time-delay dynamics at a

set point change with d and Q. The variations in dynamics in relation to different locations

on the disk, specifically azimuth, will be discussed later in this chapter.

The velocity components V UU , V UL, V LL, and V LU for a system with Q = 3 and M = 3

are outlined in Figs. 5-9 and 5-10 and for a system with Q = 4 and M = 4 are outlined in
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Figs. 5-11 and 5-12. The rotor spacings for these systems are d = 0.1 and d = 0.5. As the

rotor spacing is increased V UL approaches zero and V LU increases significantly. There are

only minor changes to V UU and V LL illustrates a slight drop off in average velocity for the

larger rotor spacing. The fact that V UL approaches zero and V UU shows little change with

increasing rotor spacing validates the above trend that V U does not vary much with larger

rotor spacing. In addition, because V UL approaches zero and V UU experiences minor change,

only a deeper analysis of the impact of rotor spacing on V LL and V LU will be discussed.

The V LL profiles in Figs. 5-13 to 5-16 reveal that there is an initial overall increase followed

by a decrease. This is a result of the time-delay and the rotor adjusting to the initial startup

of the system. The later portion of the overall decrease is a result of the flow from the

upper rotor hitting the lower rotor. The number of blades on each rotor does not impact

the overall trends but does impact the shape of the peaks. This is due to spreading the total

load between a different number of blades and the location on the disk.

The V LU profiles in Figs. 5-17 through 5-20 show two distinct regions that are divided at

t = d. The region before the flow from the upper rotor hits the lower rotor is highlighted by a

smooth increase without oscillations. The region after t = d also includes an overall gradual

increase with oscillations. These oscillations represent the vortices shed from the blades on

the upper rotor hitting the lower rotor. At t = d, there is either a jump (three-bladed rotors)

or a slight drop (four-bladed rotors) that marks the flow from the upper rotor reaching the

lower rotor.
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Figure 5-1: Velocity on upper rotor with 3 blades and 3 harmonics at varied rotor spacings
(d = 0.1-0.5 )

Figure 5-2: Velocity on upper rotor with 3 blades and 6 harmonics at varied rotor spacings
(d = 0.1-0.5 )
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Figure 5-3: Velocity on upper rotor with 4 blades and 4 harmonics at varied rotor spacings
(d = 0.1-0.5 )

Figure 5-4: Velocity on upper rotor with 4 blades and 8 harmonics at varied rotor spacings
(d = 0.1-0.5 )
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Figure 5-5: Velocity on lower rotor with 3 blades and 3 harmonics at varied rotor spacings
(d = 0.1-0.9 )

Figure 5-6: Velocity on lower rotor with 3 blades and 3 harmonics at varied rotor spacings
(d = 1.1-1.9 )

130



Figure 5-7: Velocity on lower rotor with 4 blades and 4 harmonics at varied rotor spacings
(d = 0.1-0.9 )

Figure 5-8: Velocity on lower rotor with 4 blades and 4 harmonics at varied rotor spacings
(d = 1.1-1.9 )
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Figure 5-9: Velocity components for system with 3 blades per rotor and 3 harmonics at rotor
spacing d = 0.1.

Figure 5-10: Velocity components for system with 3 blades per rotor and 3 harmonics at
rotor spacing d = 0.5
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Figure 5-11: Velocity components for system with 4 blades per rotor and 4 harmonics at
rotor spacing d = 0.1.

Figure 5-12: Velocity components for system with 4 blades per rotor and 4 harmonics at
rotor spacing d = 0.5.
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Figure 5-13: V LL for system with 3 blades and 3 harmonics at varied rotor spacings
(d = 0.1− 0.9)

Figure 5-14: V LL for system with 3 blades and 3 harmonics at varied rotor spacings
(d = 1.1-1.9 )
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Figure 5-15: V LL for system with 4 blades and 4 harmonics at varied rotor spacings
(d = 0.1-0.9 )

Figure 5-16: V LL for system with 4 blades and 4 harmonics at varied rotor spacings
(d = 1.1-1.9 )
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Figure 5-17: V LU for system with 3 blades and 3 harmonics at varied rotor spacings
(d = 0.1-0.9 )
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Figure 5-18: V LU for system with 3 blades and 3 harmonics at varied rotor spacings
(d = 1.1-1.9 )
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Figure 5-19: V LU for system with 4 blades and 4 harmonics at varied rotor spacings
(d = 0.1-0.9 )
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Figure 5-20: V LU for system with 4 blades and 4 harmonics at varied rotor spacings
(d = 1.1-1.9 )
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5.3.2 Impact of Harmonics on Velocity Profile Dynamics

The next phase of analyses investigates how the number of harmonics impacts the velocity

profile, starting with V U in Figs. 5-21 to 5-24. For the three-blades per rotor system in

Figs 5-21 and 5-22 it is noticeable that as the number of harmonics increases, we obtain

a more defined time of when the blade passes over the point being investigated (r = 0.8,

ψ = 0). In addition, the region between blade passages trends closer to the average velocity

in the higher harmonic cases. It is again illustrated that the rotor spacing has little impact

on the rotor dynamics and primarily just impacts the magnitude and amplitude. For the

four-blade per rotor system in Figs. 5-23 and 5-24, the region between blade passages trends

even closer to the average for M = 16 harmonics. Overall, the number of blades impacts the

early dynamics, but this is not unique to a coupled, coaxial rotor system.

The V L profiles in Figs. 5-25 through 5-32 illustrate the impact of the number of harmonics

on the dynamics in the lower rotor velocity profile and steady-state velocity. There is a

clear illustration of the time-delay dynamics, however it can be difficult to see in the higher

harmonic cases because the profiles are more dynamic. The locations of blades passing over

are marked with red lines and the nondimensional times when shed vortices are hitting the

lower rotor marked by purple lines. It should be noted that shed vortices are always hitting

at this location when t = d because we selected an azimuth angle (ψq,k = 0) where a blade on

the upper rotor starts from rest. The transition to steady-state is highlighted by a general

increase in magnitude of the major peaks. Also, in the transition to steady-state the shapes

of the peaks change slightly. The dynamics on the lower rotor are unique in the steady-state

region because at higher harmonics (M ≥ 2Q) they better illustrate blade passage and where

the vortices shed by the upper rotor hit the lower rotor. For the lower harmonic case, the

blade passage and shed vortices hitting the rotor are rolled into a single peak.
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When the rotor spacing is increased from d = 0.1 to d = 2.0 in Figs. 5-25 to 5-28, the

early dynamics develop slightly different depending on the rotor spacing, with the variations

in development occurring slightly before the point when t = d. A prime example of the

development process starting out similar is the comparison of Fig. 5-27 and Fig. 5-28 with

rotor spacings of d = 1 and d = 2, respectively. Up to the nondimensional time t = 8p/3, the

profiles are approximately the same, but then the dynamics begin to change for the d = 1

case in Fig. 5-27. The early region is composed of on-disk terms (V LL) and therefore the

regions are initially similar.

For t > d , additional peaks begin to develop representing the shed vortices from the upper

rotor; but they occur in different shapes and at varying locations for the various rotor

spacings. This is due to the difference in time delays and how close together a blade passage

and shed vortices intersection are to the point under investigation. In addition, the residuals

of solutions also impact the shape and are the reason why the profiles often have more

than two peaks between blades passing. Comparing the proximity of shed vortices to blades

passing, it can be further understood how the profile shapes differ. Typically, a blade passing

is easy to recognize, occurring midway between the minima and maxima on a large oscillation,

but the addition of shed vortices changes the trend. In Fig. 5-25, the blade passing is

generally occurring near the decline to the minima and the shed vortices are hitting near

the maxima of the oscillation pattern. In Fig. 5-27, the blade passing occurs slightly after

the maxima of the oscillation pattern and the shed vortices are hitting slightly before. The

patterns are dependent on the proximity of blades passing to shed vortices hitting the rotor.

The addition of an extra blade to each rotor in Figs. 5-29 to 5-32 demonstrates different

trends in the dynamics near the where the time-delay effect occurs and in the steady-state

profiles. The extra blade has a large impact on the early dynamics and the time-delay
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dynamics because it changes the blade passage and vortex shedding pattern and where the

shed vortices from the upper rotor hit the lower rotor for a given rotor spacing. It can be

concluded that the time-delay dynamics are a factor of d,Q,M, r,and ψ. The time-delay

dynamics are often easier to locate in lower harmonic cases because they are less complex,

but the blade passage and steady-state regions are more accurate and easier to analyze with

a higher number of harmonics.

In order to better understand how the varied M cases for V L is impacted by each rotor, the

V LL and V LU components are analyzed here in Figs. 5-33 to 5-40. The V LL profiles in Figs.

5-33 to 5-36 provide a good amount of detail for when a blade on the lower rotor passes by

the location being observed and the average velocity. V LL does not contain any time-delayed

terms and therefore only sees minor secondary impacts around t = d.

The V LU profiles,in Figs. 5-37 to 5-40 the time-delay dynamics are evident given the drastic

change in the profile. There is some variation in the time-delay dynamics with number

of harmonics, but the general trend tends to be an overall drop off before increasing and

oscillating. For a blade passage, the general trend is for the velocity profile to go from minima

to maxima with the blade passage occurring in the middle. For vortices, the lower rotor feels

bound vortices from the upper rotor for small rotor spacings. Therefore, the profile for the

vortices in this case would behave similar to the blade passage. However, for a larger rotor

spacing when the shed vortices hit the lower rotor, the behavior is different. The peak due to

the vortex sheet is smooth and diminishes as the rotor spacing increases. The shed vortices

are at the peak instead of midway between the maxima and minima. In Fig. 5-37, due to

the close rotor spacing the impact due to the vortices is on the increasing slope towards the

maxima. In Fig. 5-38 the rotor spacing increases to d = 1.0 and the vortex effects are closer

to the peak. This is also illustrated for a four bladed system in Figs. 5-39 and 5-40.

140



Figure 5-21: Velocity on upper rotor with 3 blades and d = 0.1 and varied harmonics

Figure 5-22: Velocity on upper rotor with 3 blades and d = 0.1 and varied harmonics
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Figure 5-23: Velocity on upper rotor with 4 blades and d = 0.1 and varied harmonics

Figure 5-24: Velocity on upper rotor with 4 blades and d = 0.1 and varied harmonics
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Figure 5-25: Velocity on lower rotor with 3 blades and d = 0.1 and varied harmonics

Figure 5-26: Velocity on lower rotor with 3 blades and d = 0.1 and varied harmonics
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Figure 5-27: Velocity on lower rotor with 3 blades and d = 0.1 and varied harmonics

Figure 5-28: Velocity on lower rotor with 3 blades and d = 0.1 and varied harmonics
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Figure 5-29: Velocity on lower rotor with 4 blades and d = 0.1 and varied harmonics

Figure 5-30: Velocity on lower rotor with 4 blades and d = 0.1 and varied harmonics
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Figure 5-31: Velocity on lower rotor with 4 blades and d = 0.1 and varied harmonics

Figure 5-32: Velocity on lower rotor with 4 blades and d = 0.1 and varied harmonics
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Figure 5-33: V LL for system with 3 blades and d = 0.1 and varied harmonics

Figure 5-34: V LL for system with 3 blades and d = 0.1 and varied harmonics
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Figure 5-35: V LL for system with 4 blades and d = 0.1 and varied harmonics

Figure 5-36: V LL for system with 3 blades and d = 0.1 and varied harmonics
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Figure 5-37: V LU for system with 3 blades and d = 0.1 and varied harmonics

Figure 5-38: V LU for system with 3 blades and d = 0.1 and varied harmonics
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Figure 5-39: V LU for system with 4 blades and d = 0.1 and varied harmonics

Figure 5-40: V LU for system with 4 blades and d = 0.1 and varied harmonics
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5.3.3 Blade Flapping Dynamics

Looking at the blade flapping dynamics in Figs. 5-41 through 5-48, we compare how d and

M impact the upper and lower rotors of three and four blade per rotor systems. In Figs.

5-41 and 5-42 bU profiles for Q = 3 and Q = 4 are compared for different d. Dynamically

the only variation with respect to d is the small oscillations when d = 0.1. These oscillations

occur at a rate of 2Q per revolution and are a result of the interactions of the rotors with

each containing Q blades. The profiles for bL with variations in d are shown in Figs. 5-43 and

5-44. In these figures, the impact of d on the dynamics and the delay to reach steady-state

is clearly illustrated. d impacts the time-delay dynamics differently for each rotor spacing.

When the flow from the upper rotor hits the lower rotor the bL profile drops off and hits its

minimum before oscillating to reach a steady-state. For d = 0.1, the initial peak does not

reach as high of an amplitude because flow from the upper rotor hits the lower rotor during

its initial increase and suppresses the oscillation. For d = 0.5, the oscillation is already

trending down when the flow from the upper rotor hits the lower rotor. For the other three

cases the system is in the process reaching a steady state (as it would in a single rotor system)

when the flow from the upper rotor hits the lower rotor and causes bL to drop. In both the

upper and lower rotor, the number of blades impacts the magnitude of the blade flapping

profiles and the 2Q per revolution oscillations but has little impact on the larger dynamics

of the blades.

The impact of harmonics on the blade flapping profiles is shown in Figs. 5-45 to 5-48. Here

it is noticeable that the number of harmonics impacts the magnitudes of blade flapping for

the upper and lower rotors. The blade flapping profile for the upper rotor in Fig. 5-45 does

not illustrate any notable dynamic differences other than the 2Q per rev oscillations become

shallower as the number of harmonics increases. For the bL in Figs. 5-46 to 5-48, the cases
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with M = 6, 9, and 12 are all very similar dynamically. The dynamic differences between the

M = 3 case and the higher harmonic cases appear slightly after t = d. If blade dynamics are

of the primary interest of a simulation, no more than M = 2Q harmonics would be needed.

Figure 5-41: Upper rotor blade flapping for system with 3 blade and 3 harmonics and varied
rotor spacings (d = 0.1-2.0 )

Figure 5-42: Upper rotor blade flapping for system with 4 blade and 4 harmonics and varied
rotor spacings (d = 0.1-2.0 ).
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Figure 5-43: Lower rotor blade flapping for system with 3 blade and 3 harmonics and varied
rotor spacings (d = 0.1-2.0 ).

Figure 5-44: Lower rotor blade flapping for system with 4 blade and 4 harmonics and varied
rotor spacings (d = 0.1-2.0 ).
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Figure 5-45: Upper rotor blade flapping for system with 3 blades and d = 0.1 and varied
number of harmonics.

Figure 5-46: Lower rotor blade flapping for system with 3 blades and d = 0.1 and varied
number of harmonics
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Figure 5-47: Lower rotor blade flapping for system with 3 blades and d = 1.0 and varied
number of harmonics

Figure 5-48: Lower rotor blade flapping for system with 3 blades and d = 2.0 and varied
number of harmonics
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5.3.4 Velocity Dynamics Variation by Location on the Rotor

In addition to d and Q, the location on the rotor disk, in terms of ψ and r, impacts the

time-delay dynamics on the lower rotor. In this section, we only outline the variations with ψ

and use the same r = 0.8. The three-bladed, M = 3 system with a rotor-spacing of d = 0.5

in Fig. 5-49 illustrates that at t = d different azimuth angles have different time-delay

dynamics. The dynamics in this region are impacted by two major components, the location

of the blade relative to the location being observed and where the shed vortices from the

upper rotor are hitting on the lower rotor when. In this case, the blade on the lower rotor is

at about ψ = 74◦, which is why the effect of the time-delay is smoother at ψ = 80◦.

Now, looking at Figs. 5-50 and 5-51 for a four-bladed system (M = 4) with d = 0.9 and

d = 2.0, the time-delay dynamics illustrate a flatter transition to steady-state for ψ = 0◦ than

the other azimuth angles. The flow from the vortex sheets are hitting in similar proximity

to the blade for both cases. The exact correlation between shed vortices and blade location

when the flow from the upper rotor hits the lower rotor should be further studied in the

future to understand what relationship causes the large variation in dynamic differences.

Figure 5-49: Variation in time-delay dynamics on lower rotor velocity with location on disk
for a system d = 0.5, Q = 3, M = 3.
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Figure 5-50: Variation in time-delay dynamics on lower rotor velocity with location on disk
for a system d = 0.9, Q = 4, M = 4.

Figure 5-51: Variation in time-delay dynamics on lower rotor velocity with location on disk
for a system d = 2.0, Q = 4, M = 4.
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5.3.5 Velocity Contours

The development of the velocity contour profiles provides a visual of the flow across the

entire disk at a moment in time. The velocity contours help better visualize where the rotor

blades are at in the system and where the vortex sheets from the upper rotor hit the lower

rotor. Some of the variables that are evaluated with the contour profiles are Q,M, d, and t.

To keep the profiles cleaner and provide a better visualization of the flow between the blades

and shed vortices that hit the lower rotor, only Q = 3 is used. Larger Q values can lead

to overlapping in flow regions that do not provide a good representation of the individual

impact of each component.

In Fig. 5-52, the total velocity on the upper rotor is analyzed at t = 9π for d = 0.1, 0.5, 1.0

and M = 3, 6, 9, 12. Increases in the rotor spacing demonstrate slight increases in the

magnitudes of velocities, but the velocities across the rotor for d = 0.5 and d = 1.0 are

almost entirely the same. The increase in the number of harmonics primarily provides a

better resolution within the system. The locations of the blade tips are more accurately

defined when M > 3. Figure 5-53 shows the lower rotor for the same system as Fig. 5-52.

As M increases, the location of the blade tips and the shed vortices again become more

well defined. We can differentiate the lower rotor blades from the locations where the shed

vortices hit with the blade markings in red and vortex sheet markings in black. At the close

rotor spacing, the vortices are bound vortices whereas the larger rotor spacing they become

shed vortices. As rotor spacing changes, it is also notable that the location of the shed

vortices changes due to variations in the time delay.

The contours in Fig. 5-54 compare the total velocity across the three-bladed lower rotor

(M = 12) for a case where d = 0.1 and where d = 0.5 at different points in time. Combined

these plots show how the variations in rotor spacing and t impact the velocity across the
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disk. At t = 10π both systems show 6 distinct regions to account for the three blades and

three regions where the shed vortices hit. In the next frame at t = 10.22π the blades and the

shed vortices for the d = 0.1 case are separating from overlapping, creating a longer region

of higher velocity. Meanwhile the d = 0.5 case illustrates that the blade and shed vortices

pass over one another. In the final frame the blade and vortices regions in the d = 0.1 case

are close to overlapping, creating a more elongated region of high velocity. The blade and

vortices regions in the d = 0.5 case are overlapping, resulting high magnitudes of velocity.
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Figure 5-52: Velocity contours for V U across the upper rotor for a three-bladed system at
t = 9π with variables a) d=0.1 and M=3, b) d=0.1 and M=6, c) d=0.1 and M=9, d)
d=0.1 and M=12, e) d=0.5 and M=3, f) d=0.5 and M=6, g) d=0.5 and M=9, h) d=0.5
and M=12, i) d=1.0 and M=3, j) d=1.0 and M=6, k) d=1.0 and M=9, and l) d=1.0 and
M=12.
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Figure 5-53: Velocity contours for V L across the rotor for a three-bladed system at t = 9π
with variables a) d=0.1 and M=3, b) d=0.1 and M=6, c) d=0.1 and M=9, d) d=0.1 and
M=12, e) d=0.5 and M=3, f) d=0.5 and M=6, g) d=0.5 and M=9, h) d=0.5 and M=12,
i) d=1.0 and M=3, j) d=1.0 and M=6, k) d=1.0 and M=9, and l) d=1.0 and M=12.
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Figure 5-54: Velocity contours for V U across the upper rotor for a three-bladed system with
M=12 and variables a) d=0.1 and at t = 10π, b) d=0.1 and t = 10.22π, c) d=0.1 and
t = 10.4π, d) d=0.5 and t = 10π, e) d=0.5 and t = 10.22π, and f) d=0.5 and t = 10.44π.
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Chapter 6

Wind Turbine Applications

6.1 Application of Model to Wind Turbines

The model presented herein is easily adapted to the analysis of wind turbines either for

coaxial turbines or two interacting turbines. The maximum distance studied in this work is

for a rotor spacing of one diameter. While wind farms generally have turbine spacings of

seven rotor diameters or more, some studies suggest spacings of 15 diameters are needed [46].

This work looks at up to one diameter because the model shows no significant changes after

that point. The primary adaptation for the model was to change from consuming power

to generating power. In addition, the induced flow was adjusted for an ideal scenario. The

purpose of this section is to demonstrate the adaptability of the coaxial rotor model for other

uses.

For wind-turbine applications, the user defined parameters are η = 1/6, σ = 0.1, and

a = 5.73. η is larger for the wind turbines because the lift to drag ratios of wind turbine

airfoils are typically higher. In chapter 5, it is assumed that the coaxial rotor system was

lightly loaded and therefore θ was only a function of CT and η. For the wind turbine

simulations, we no longer consider it lightly loaded and therefore η is not >> ν. In the
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optimum system for wind energy applications one-third of the wind is stopped such that the

ratio of ν to η is:

ν = −1
3η (6.1)

Here ν is negative because the wind turbine is slowing down the wind. Previously, CT was

a set value in the results for Chapters 4 and 5, but here we calculate it as:

CT = 2ν(η + ν) (6.2)

The pitch angles for the blades on each rotor can be determined with the relationship:

θ = 6CT
σa

+ 3
2(η + ν) (6.3)

Applying the defined values above to these equations, ν, CT , and θ are ν = −1/18, CT =

−1/81, and θF = θT = 0.0432.

6.2 Numerical Illustrations of Wind Turbine Dynamics

All velocities are presented at the location r = 0.8 and ψ = 0 for the scenario of axial flow

(χ = 0, µ = 0). For this work, the rotor spacings vary between d = 0.1−2.0 rotor radii. The

focus of the results in this chapter is to explore the adaptation of the previously developed

finite-state model for wind turbine applications.

6.2.1 Impact of Rotor Spacing Variations on Wind Turbine

Velocity Profiles

Figures 6-1 to 6-4 illustrate the impact of rotor spacing on the total velocity on the front

wind turbine, V F . Figure 6-1 gives V F for a three-bladed rotor with three harmonics and

164



shows that maximum velocities in the oscillations are nearly identical for all rotor spacings,

but the minima peaks vary, with the smallest rotor spacings having the largest negative peak.

It also illustrates that, for rotor spacing of d > 0.5, there is minimal change in the velocity

profile. When the number of harmonics is increased to M = 6 in Fig. 6-2, it is noticeable

that the minimum peak velocities vary; but the maximum peak velocities are similar for

all rotor spacings. This is opposite of the helicopter applications, but we are slowing down

the wind in this case. Blades passing through the point of interest occurs as the profile

approaches the minimum peaks, midway between the maxima and the minima. Figures 6-3

to 6-4 show the velocity profiles for a four-bladed rotor with M = 4 and M = 8 harmonics,

respectively. The main difference between the three-bladed and four-bladed rotors is the

magnitudes of the oscillations. The three-blade and four-blade rotors each have the same

rotor solidity; but a three-bladed rotor has a larger bound vorticity on each blade which is

why the oscillation magnitudes vary, but the average velocity remains the same. The trends

for the front turbine rotor are consistent with the patterns illustrated in Chapter 5 for the

upper rotor velocity.

The impact of rotor spacing on the total velocity on the trailing rotor, V T , is shown in Figs.

6-5 to 6-8. The point in time where the flow from the leading rotor hits the trailing rotor

is marked in the images to assist in identifying the time-delay dynamics. In Fig. 6-5, a

three-bladed rotor with three harmonics and rotor spacings of d = 0.1, 0.3, 0.5 easily depicts

the time-delay dynamics with sharp peaks. The nature of the time-delay dynamics and the

dynamics—transitioning into the steady-state—is impacted both by the rotor spacing and

by the location being observed on the disk. An increase in the rotor spacings to d = 1.1, 1.5,

and 1.9, respectively, for the three-bladed system in Fig. 6-6 shows that the early dynamics

are similar among the cases because the flow from the leading rotor has not reached the

trailing rotor, therefore it is driven purely by on-disk terms. This is also the case for the
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helicopter dynamics. The trends for the transition dynamics in Fig. 6-6 are similar to those

in Fig. 6-5. Figures 6-7 and 6-8 show V T for a four-bladed system and demonstrate that

the time-delay dynamics are more difficult to discern without the markings because many

of the time-delay dynamics are smooth. It should be noted that the shape of the dynamic

oscillations for rotor spacing d = 1.5 is more unique and is due to the combination of location

on the disk and rotor spacing.

Figures 6-9 to 6-12 show the different components for the velocity on the front rotor (V FF ,

V FT ) and trailing rotor (V TT , V TF ). The main takeaways from these plots are that as

rotor spacing increases V TF increases and V FT decreases. For d > 0.5, V FT effectively

becomes zero. The on-disk components V FF and V TT only undergo slight variations with

rotor spacing. These trends are all similar to those of the helicopter system.

Variations in the velocity profiles of V TT with different rotor spacings are highlighted in

Figs. 6-13 to 6-16. There are no visible instantaneous changes in the profiles when the flow

from the front rotor hits the trailing rotor, which should be expected because V TT does not

contain any time-delay terms. However, an impact from the flow from the front rotor hitting

the trailing rotor can still be noticed in the region between the flow hits and the steady-state

oscillations. This is best depicted in Fig. 6-14 in which the early oscillations are identical for

all of the rotor spacings. In the range of 2π< t <5π, the profiles begin to vary; but ,for t >5π

they begin to converge again and are similar in shape and magnitude. V TT is an on-disk

term. Therefore it makes sense that the profiles are relatively similar in the steady-state

region.

For V TF presented in Figs. 6-17 to 6-20, the time delay causes a smooth increase prior to

the flow from the leading rotor hitting the trailing rotor. The peaks in these profiles each

represent when the vortex sheets hit the location being investigated on the trailing rotor. It
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should be noted that for the larger rotor spacings in Fig. 6-18 and Fig. 6-20, the steady-

state oscillations have similar magnitudes. The oscillation peaks are also double that of the

V FF terms shown in Figs. 6-9 to 6-12. For wind turbines, the flow downstream reaches is

maximum at a smaller rotor spacing it does for the helicopter. This is due to the differing

freestream velocities utilized between the applications. In the wind turbine simulations the

vortex sheets are more compact and the time delay is shorter.

Figure 6-1: Velocity on front turbine rotor with 3 blades and 3 harmonics at varied rotor
spacings (d = 0.1− 0.9)
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Figure 6-2: Velocity on front turbine rotor with 3 blades and 6 harmonics at varied rotor
spacings (d = 0.1− 0.9)

Figure 6-3: Velocity on front turbine rotor with 4 blades and 4 harmonics at varied rotor
spacings (d = 0.1− 0.9)
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Figure 6-4: Velocity on front turbine rotor with 4 blades and 8 harmonics at varied rotor
spacings (d = 0.1− 0.9)

Figure 6-5: Velocity on trailing turbine rotor with 3 blades and 3 harmonics at varied rotor
spacings (d = 0.1− 0.9)
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Figure 6-6: Velocity on trailing turbine rotor with 3 blades and 6 harmonics at varied rotor
spacings (d = 1.1− 1.9)

Figure 6-7: Velocity on trailing turbine rotor with 4 blades and 4 harmonics at varied rotor
spacings (d = 1.1− 1.9)
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Figure 6-8: Velocity on trailing turbine rotor with 4 blades and 8 harmonics at varied rotor
spacings (d = 1.1− 1.9)

Figure 6-9: Velocity components for system with 3 blades per rotor and 3 harmonics at rotor
spacing d = 0.1
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Figure 6-10: Velocity components for system with 3 blades per rotor and 3 harmonics at
rotor spacing d = 0.5

Figure 6-11: Velocity components for system with 4 blades per rotor and 4 harmonics at
rotor spacing d = 0.1
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Figure 6-12: Velocity components for system with 4 blades per rotor and 4 harmonics at
rotor spacing d = 0.5

Figure 6-13: V TT for system with 3 blades per rotor and 3 harmonics at turbine rotor
spacings (d = 0.1− 0.9)
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Figure 6-14: V TT for system with 3 blades per rotor and 3 harmonics at turbine rotor
spacings (d = 1.1− 1.9)

Figure 6-15: V TT for system with 4 blades per rotor and 4 harmonics at turbine rotor
spacings (d = 0.1− 0.9)
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Figure 6-16: V TT for system with 4 blades per rotor and 4 harmonics at turbine rotor
spacings (d = 1.1− 1.9)

Figure 6-17: V TF for system with 3 blades per rotor and 3 harmonics at turbine rotor
spacings (d = 0.1− 0.9)

175



Figure 6-18: V TF for system with 3 blades per rotor and 3 harmonics at turbine rotor
spacings (d = 1.1− 1.9)

Figure 6-19: V TF for system with 4 blades per rotor and 4 harmonics at turbine rotor
spacings (d = 0.1− 0.9)
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Figure 6-20: V TF for system with 4 blades per rotor and 4 harmonics at turbine rotor
spacings (d = 1.1− 1.9)

6.2.2 Impact of Harmonic Variations on Wind Turbine

Velocity Profiles

Next we study the impact of harmonics on the velocity profiles, starting with V F in Figs.

6-21 to 6-24. An increase in the number of harmonics provides a more focused representation

of blade passage over the point of interest—as well as a better representation of the mean

velocity between blades passing. The M = 9 and M = 12 harmonic cases in Figs. 6-21

and 6-22 illustrate the improvement of identify blade passage and mean velocity for a three-

bladed rotor. The rotor spacing doesn’t have much overall impact on the dynamics of the

higher harmonic cases other than in magnitude. The four-bladed rotor case in Figs. 6-23

and 6-24 demonstrates similar trends, but the M = 12 harmonic case better models the

velocity between blades passing while the M = 16 harmonic case better models the blades
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passing. If more harmonics are utilized, the representation of both the blades passing and

the velocity between blades passing would see further improved representation.

The impact of number of harmonics on V T is illustrated in Figs. 6-25 to 6-32. The oscillations

in these figures can be more difficult to decode at times because the profiles illustrate not

only the blade passage, but also the shed vortices from the front rotor. The location (in

nondimensional time) of the peaks caused by shed vortices are denoted with the purple

markers and the blade passage are marked with red lines. The first vortex sheet to hit the

point of interest occurs at t = d because we selected an azimuth that is the same starting

azimuth for s a blade from the leading rotor. In Figs. 6-25 through 6-32 it is noticeable that

the shape of the profile is dependent on the proximity of the occurrence of blades passing

and the shed vortices hitting. In addition, an extra blade changes the dynamics because of

the increased frequency of blades passing and vortices hitting the trailing rotor.

The variations in harmonics for the V TT profiles in Figs. 6-33 and 6-34 provide a better

understanding of how the on-disk terms shape the overall velocity profile on the trailing

rotor. The blade passage for all number of harmonics occurs halfway between the maxima

and the minima. As the number of harmonics increases the maxima peak to minima peak

duration decreases, providing a more precise time of when the blade passes.

The V TF profiles in Figs. 6-35 to 6-38 benefit from the increased harmonics and allow one

to decipher at what point the vortex sheets hit the rotor. For the smaller rotor spacings,

the trailing rotor feels bound vortices from the front rotor which do not occur at the peak.

However, as the rotor spacing increases the bound vortices are replaced by shed vortices

which occur at a peak and smooth out as rotor spacing increases. The higher harmonic

cases in these profiles provide a better illustration of when the vortices hit the rotor. There
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are more oscillations in these profiles because the Fourier Series is trying to converge to the

sharp peaks of the blade passage.

Figure 6-21: Velocity on front turbine rotor with 3 blades and d = 0.1 and varied harmonics

Figure 6-22: Velocity on front turbine rotor with 3 blades and d = 0.5 and varied harmonics
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Figure 6-23: Velocity on front turbine rotor with 4 blades and d = 0.1 and varied harmonics

Figure 6-24: Velocity on front turbine rotor with 4 blades and d = 0.5 and varied harmonics
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Figure 6-25: Velocity on trailing turbine rotor with 3 blades and d = 0.1 and varied harmonics

Figure 6-26: Velocity on trailing turbine rotor with 3 blades and d = 0.5 and varied harmonics
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Figure 6-27: Velocity on trailing turbine rotor with 3 blades and d = 1.0 and varied harmonics

Figure 6-28: Velocity on trailing turbine rotor with 3 blades and d = 2.0 and varied harmonics
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Figure 6-29: Velocity on trailing turbine rotor with 4 blades and d = 0.1 and varied harmonics

Figure 6-30: Velocity on trailing turbine rotor with 4 blades and d = 0.5 and varied harmonics
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Figure 6-31: Velocity on trailing turbine rotor with 4 blades and d = 1.0 and varied harmonics

Figure 6-32: Velocity on trailing turbine rotor with 4 blades and d = 2.0 and varied harmonics
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Figure 6-33: V TT for system with 3 blades and d = 0.1 and varied harmonics

Figure 6-34: V TT for system with 4 blades and d = 0.1 and varied harmonics .
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Figure 6-35: V TF for system with 3 blades and d = 0.1 and varied harmonics

Figure 6-36: V TF for system with 3 blades and d = 2.0 and varied harmonics
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Figure 6-37: V TF for system with 4 blades and d = 0.1 and varied harmonics

Figure 6-38: V TF for system with 4 blades and d = 2.0 and varied harmonics
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6.2.3 Wind Turbine Blade Flapping Dynamics

The final set of results in Figs. 6-39 through 6-48 illustrates the blade flapping dynamics

and how rotor spacing and the number of harmonics impact the blade flapping profiles.

Figures 6-39 and 6-40 show the impact of rotor spacing on bF for for three-bladed and four-

bladed rotors, respectively. Rotor spacing has a slight impact on the magnitudes of the

oscillations and steady-state values, but no unique variations in dynamics near the time

delay. The number of blades has only a slight impact on the magnitudes, and the only

dynamic difference is with the 2Q per revolution oscillations. For the trailing rotor, the

blade dynamics (bT ) in Figs. 6-41 and 6-42 illustrate the dependence on rotor spacing with

unique dynamics occuring near the time delay. The steady-state portion of the profile is

similar for larger rotor spacings (d ≥ 0.5). Figures 6-43 and 6-44 demonstrate that the

number of harmonics also has little impact on the bF profiles. Similar to bF , bT does not

show significant variations with the number of harmonics. This is illustrated in Figs. 6-45

to 6-48.

Figure 6-39: Front turbine rotor blade flapping for system with 3 blades and 3 harmonics
and varied rotor spacings (d = 0.1− 2.0).
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Figure 6-40: Front turbine rotor blade flapping for system with 4 blades and 4 harmonics
and varied rotor spacings (d = 0.1− 2.0)

Figure 6-41: Trailing turbine rotor blade flapping for system with 3 blades and 3 harmonics
and varied rotor spacings (d = 0.1− 2.0).
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Figure 6-42: Trailing turbine rotor blade flapping for system with 4 blades and 4 harmonics
and varied rotor spacings (d = 0.1− 2.0).

Figure 6-43: Front turbine rotor blade flapping for system with 3 blades at d = 0.1 and
varied number of harmonics.
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Figure 6-44: Front turbine rotor blade flapping for system with 4 blades at d = 0.1 and
varied number of harmonics.

Figure 6-45: Trailing turbine rotor blade flapping for system with 3 blades at d = 0.1 and
varied number of harmonics.
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Figure 6-46: Front turbine rotor blade flapping for system with 3 blades at d = 2.0 and
varied number of harmonics.

Figure 6-47: Front turbine rotor blade flapping for system with 4 blades at d = 0.1 and
varied number of harmonics.
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Figure 6-48: Front turbine rotor blade flapping for system with 4 blades at d = 2.0 and
varied number of harmonics.

193



Chapter 7

Gradient Boosted Trees

In this chapter, the viability of using gradient boosted trees for estimation of the velocity

values on rotor disks is investigated. The finite-state methods developed in previous work

by He and Morillo are efficient for single-lifting rotors. In addition, the finite-state methods

developed in the previous chapters of this dissertation can also be efficient for coaxial rotor

systems with lower harmonic solutions (M < 6). However, in higher harmonic solutions, the

simulation time for a coaxial rotor system increases significantly, in part due to the reverse

time marching requirements of the adjoint variables. The application of gradient boosted

trees with XGBoostTM allows for generation of more densely populated data sets and a

greater number of systems by developing data for systems with new parameter combinations.

7.1 Background of Gradient Boosted Trees

and XGBoostTM

To better understand XGBoostTM and gradient boosted trees we will first explain what

boosted trees are and then what gradient boosting is. In machine learning the word boosting

refers to the process of converting weak learners into strong learners. The trees in boosting

are built sequentially. The first tree is fit to the data set and evaluated to determine locations
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where fitting is done accurately and areas of wrong predictions or high errors. The next

tree is then built with adjustments to the weights with a higher weight on areas of wrong

predictions and higher error and reduced weights on areas that fit well (correct predictions

or lower error). The model is updated with each new tree developed in a format similar to:

N (1) = Tree (1)

N (2) = Tree(1) + Tree(2)

N (n) = Tree (1) + Tree (2) + . . .+ Tree (n− 1) + Tree(n)

Gradients minimize the loss function by iteratively adjusting model hyperparameters based

on the gradient of the loss function. In each iteration of the model when a new tree is

added, the error rate of the model is determined by comparing the predicted values with

the actual values. The gradient itself is the partial derivative, or the slope of the error

function. The gradient finds the local minima in the loss function and influences the change

in model hyperparameters for the next tree to further reduce the error. XGBoostTM utilizes

second-order partial derivatives to reach the minimum of the loss function faster.

7.2 Coaxial Rotor Dataset

The dataset utilized in this work is that of a coaxial rotor system in axial flow (climb) and

was generated using the model developed in chapter 5. The ultimate goal is the application of

XGBoostTM models to a more sparsely populated data set with a higher number of harmonics

M). The work presented here is a baseline investigation into the feasibility of XGBoostTM

for predicting the velocity across the lower rotor disk. Therefore, only results from a three

blade per rotor helicopter with three harmonics are analyzed. In this case we are looking
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at variations in a limited number of parameters that include nondimensional radial location

on the disk (r) and the following system parameters: rotor spacing (d), rotor solidity (σ),

and Lock Number (γ). The range of the parameters are as follows: r = 0 − 1 (step size

∆r = 0.01), d = 0.1 − 2 (step size ∆d = 0.1), σ = 0.05 − 0.15(step size ∆σ = 0.01), and γ

= 5-8 (step size ∆γ = 0.5). Overall, the data set contained over 150,000 data points but

was trimmed down with different train-test splits in order to illustrate performance of future

sparsely populated data sets, and to illustrate how different parameters react to the size of

the dataset. The different dataset parameters versus the velocity on the rotor are shown

in Fig. 7-1. Despite the appearance of poor correlation between γ and the velocity on the

lower rotor, early investigations illustrated improved model performance with the inclusion

of γ. The primary focus here is to determine model accuracy for variations in r because it

has one of the more unique variations across its range and can further be adapted for higher

harmonic cases.

Figure 7-1: Comparison of coaxial rotor variables to velocity on lower rotor
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7.3 XGBoostTM Parameters

Within XGBoostTM, there are several hyperparameters that adjust how the trees are formed

and perform. This work focuses on the hyperparameters that impact the number of trees

(NT ), depth of trees (MD), and how fast the model fits (LR). In addition, the size of data

withheld for testing was varied. Several thousand combinations of these hyperparameters

are tested to determine the best sets for fitting the data and make sure that the model is

not overfit. It is necessary to initially utilize a wider range of hyperparameters in order

to determine the best performing ranges for each within the dataset. A description of the

function of the utilized hyperparameters is detailed in the following sections.

7.3.1 Number of Trees

The number of trees in a model denotes the number of weak learners the model contains

and therefore the number of iterations of the model. In gradient boosted trees, each model

iteration is inclusive of the previous model plus the newest tree from that iteration. By

increasing the number of trees, a more detailed model can be developed.

The number of trees needed in a model is correlated to other XGBoostTM hyperparameters

such as the maximum depth of each tree and the learning rate. A deeper tree would result in

more terminal nodes and therefore more decision points, resulting in a need for less trees. In

addition, a higher learning rate would mean the model learns faster and therefore it would

take a lesser number of trees for the model to reach its best performance. A deeper tree or

higher learning rate does not necessarily lead to a faster and more accurate solution.
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7.3.2 Maximum Tree Depth

The maximum tree depth is how many decision layers a tree has and therefore how many

terminal nodes exist in a tree. A tree of depth 1 has two terminal nodes and is often referred

to as a stump. A system of stumps can be effective in that it is a slower learning model with

each tree having a smaller impact on the overall system. Stumps require more trees to reach

a satisfactory fit. Models with deeper trees require a lesser number of trees, and generally

fit faster, but are often prone to over-fitting (a model that fits too well to the training data

and has significantly lower performance on testing data). The size of the dataset and the

number of variables to fit to can also dictate the tree depth. A smaller data set would likely

benefit more from smaller trees.

7.3.3 Learning Rate

In simple terms, learning rate is how fast the model fits to the data. Learning rate is the

step size taken between each model iteration towards finding the loss function local minima.

For a higher learning rate, the model will likely fit in a smaller number of trees, generally

resulting in a less accurate model because it will miss the local minima. A lower learning

rate increases the probability that the model will reach the local minima, but it generally

requires more model iterations to do so. Utilizing a learning rate that is too small will take

the model an excessive amount of time to reach the optimal fit and does not guarantee the

best fit will be reached.

7.3.4 Regularization Terms

Regularization is important in machine learning to help reduce error while avoiding overfit-

ting the model to the training data. To accomplish this, regularization terms are added to
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the loss function. XGBoostTM contains terms for L1 regularization and L2 regularization.

L1 regularization is not impacted as significantly by outliers in the data and is able to adjust

the model more appropriately when outliers exist. L2 regularization is highly influenced by

outliers and performs poorly if there are many outliers.

The dataset in this work does not contain outliers, which result in testing L2 regularization

adjustments with XGBoostTM. After several hundred iterations of testing different L2 regu-

larization values, it was determined that there was little to no effect on varying sets of model

hyperparameters. It is believed that this is the case because the data was generated using

finite-state inflow models and therefore any minor variations that may exist will have little

influence. In this work, we used L2 norm as our error metric to further illustrate how close

the models fit to the data.

7.3.5 Overfitting, Underfitting, and the Art of Hyperparameter

Tuning

One of the biggest concerns with hyperparameter tuning is overfitting the model to the

training data and reducing the performance on the testing data. Overfitting occurs when

a model learns and fits to the noise in its training data; this subsequently has a negative

impact on the performance of the model on new data. If the model learns the noise in the

training data, it is unable to generalize the with new data. Overfitting is more likely to occur

in nonlinear and nonparametric models because they are more flexible and likely incorporate

outliers. Increasing the complexity of a model through hyperparameter tuning, such as the

addition of more trees or deeper trees, are common causes of overfitting. Figure 7-2 shows

an example of overfitting where the model hyperparameters have fit to the outlier points.
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On the other end of the spectrum, an underfit model is one that does not model the training or

testing data well. Underfitting is generally easier to detect and can be mitigated through fine

tuning of the hyperparameters outlined above. Figure 7-3 provides an example of underfitting

where the model does not fit the data well in several regions. This model is splitting at the

wrong point in the r = 0 − 0.15 region and later in the r = 0.7 − 0.9 region. In addition,

there are not enough split points in the middle of the profile, leading to a small region of

under predicted values. This model can be improved by adjusting the regularization terms

and tuning the learning rate, depth, and number of trees.

Figure 7-2: Example of an overfit model that fits to outliers in the data
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Figure 7-3: Example of an underfit model that needs more break points

Given that our dataset was developed through finite-state inflow models, there is no noise

or scatter in the data like what would be found in experimental work. For this reason, it

is difficult to overfit a model in the traditional sense, especially because this is a densely

populated dataset. However, the model could overfit in the sense that an excess number of

trees can be fit to the model and the overall error remains the same (or display exceptionally

small change). Underfitting is more prevalent because it simply takes a bad set of hyper-

parameters to underfit a model. A broad evaluation of overfitting and underfitting for this

work is shown in Fig. 7-4. Figure 7-4a shows that for a test size of 20% of the data, the

baseline range of L2 norm error is 0.3-667. In this plot any set of hyperparameters that is

not represented with a dark blue dot would be a severely poor fit. This is the case all models

with a learning rate of 0.001 and shows somewhat uniform performance across the varied

max depths. If these models were able to further improve, more trees would be needed, and

potential tuning of regularization terms.
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Figures 7-4b-d illustrate a trimmed L2 norm error scale range to 0.3-1 for the same set of

hyperparameters with test sizes of 20%, 50%, and 80% to help identify the best fit models.

The non-blue data points seen do not necessarily indicate an underfit model, but the error is

larger than the better performing hyperparameter combinations. Rows or columns of data

points that change from yellow to blue demonstrate model improvement with the respective

hyperparameter. However, a row of data that illustrates successive data points of dark blue,

such as the row with a learning rate of 0.05 and max depth of 10 in Fig. 7-4c, are indicative

of a model that is being given too many trees and fit with a few trees. Further investigations

indicated that the best fit in the row of data was for 200 trees with more trees providing the

same or slightly worse performance. Comparing performance for between the different test

sizes, it should be noted that many of the best performing sets of hyperparameters are the

same for all the 20%, 50%, and 80% groupings. This is attributed to size of the data set and

the lack of outliers within it. The relationship of performance with test size is addressed in

the results section. From these plots the best performing hyperparameter combinations were

determined to be MD = 10, LR = 0.05, NT = 200 for the 20% test size and MD = 10, LR

= 0.05, NT = 1000 for the 50% and 80% test sizes. These two combinations along with two

others shown in Table 7-1 are further investigated throughout this work. Hyperparameter set

1 was utilized to show what fits looked like for a poorer performing model. Hyperparameter

set 2 was selected because it had relatively good performance and utilized shallower trees.
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Figure 7-4: Performance of XGBoostTM regression models over different sets of parameters

Table 7-1: Hyperparameter sets used in analysis and associated L2 norm error.

Hyperparameter L2 Norm
Set No. MD LR NT (20, 50, 80)

1 2 0.15 1000 8.28, 8.04, 8.95
2 5 0.05 1000 0.86, 1.27, 1.05
3 10 0.01 1000 0.45, 0.44, 0.48
4 10 0.05 200 0.33, 0.46, 0.49

7.4 Results

Two separate approaches to studying the feasibility of XGBoostTM are implemented in this

work. The first approach is to evaluate different train-test split ratios to dictate the amount

of data being withheld for testing. This illustrates the amount of data needed to accurately

develop a model for fitting within the bounds of the helicopter properties. In order to

further understand the capabilities of XGBoostTM to determine values within the domain, the
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second approach only trains on limited data for every ∆r in the range of 0-1. For example, if

∆r = 0.02 the training data would contain all data points with r = 0, 0.02, 0.04, . . . , 0.98, 1.

The remaining data is referred to as the intermediate values. Splitting the data this way

forces the model to correlate values based on neighboring values with similar σ, γ, and d,

rather than correlating the values with the neighboring values and data points of equivalent

r and different σ, γ, and d.

7.4.1 Train-Test Split Variation

Performance of XGBoostTM Hyperparameters

The results for this work focus on the performance of the XGBoostTM hyperparameter com-

binations and visualization of how the models fit to the training data. The four different sets

of hyperparameters in Table 7-1 are analyzed with respect to test size comparisons before

focusing on how performance develops with variations in MD and LR. In Fig. 7-5 the MD

and LR in the four sets of hyperparameters were tested across test sizes of 10-90% of the full

data for varying NT values. For the four sets of hyperparameters the 10% test size tends to

perform better than the other test sizes, but not significantly better in some cases. In ad-

dition, the models tend to perform well for 40% test size, but again not significantly better.

The models all consistently have their worst performance with a test size of 70%. However,

the overall performance of the models is relatively similar across the 20-90% test sizes, espe-

cially for the cases with larger NT, which are generally the better performing models. The

exceptions to this trend are sets 2 and 4 in Figs. 7-5b and 7-5d, respectively. In Fig. 7-5b,

the profiles for NT = 500 and NT = 700 are buried beneath the NT = 1000 profile, which

is technically the best performing set of hyperparameters, however, the improvement is small

when considered relatively. Though it is important to note that a small change in L2 can

be significant irrespective of the relative numerical improvement when compared to other
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hyperparameter sets. In Fig. 7-5d, the NT = 300, 500, and 700 profiles are all beneath the

NT = 1000 profile. For set 4, the best performing number of trees is for NT = 200. In Fig.

7-5c, the profile for NT = 100 is not shown because it performed so poorly that it contained

L2 norm errors in the 200-250 range and skewed the plot significantly. The NT = 700 and

1000 profiles in set 3 performed significantly better than the others and are better illustrated

in Fig. 7-6, which shrinks the scale of Figs. 7-5c and 7-5d to show the better performing

models. The results of this rescaling serve to echo the results of other hyperparameter sets in

terms of the general trends described above on a much smaller scale, particularly in Figure

7-6a. Figure 7-6b reinforces this idea, noting that the greater variation in the curve is due

to the more extreme rescaling which led to a higher distortion of relative L2 norm values.

In Fig. 7-7, the performance of the hyperparameter sets in Table 7-1 are illustrated for

test sizes of 20%, 50%, and 80%. All of these plots reiterate how close the performance is

between different test sizes with the model. The first set of hyperparameters in Fig. 7-7a

are poorly fit and bottom out at L2 norm error near 8. The other three sets reach much

better fits near or below L2 norm error of 1. Figure 7-7c does not show values below 700

trees because the error in earlier profiles exceeded 200. The high rate of development is

common with a low learning rate and deep trees. For set 4 in Fig. 7-7d, the model quickly

reaches peak performance at 200 trees which is due to the combination of deep trees and

a higher learning rate. Ultimately variation between different test sizes is small, though

hyperparameter development and convergence are impacted by more than just test size.

To better illustrate why the performance of the models appears to be independent of the

train-test split (i.e. the relative percent of the data withheld for testing) Fig. 7-8 shows the

spread of the training data when only 2% of the entire data set is used for training. The

spread and amount of data points available within 2% is significant and provides confidence
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in the model performance when a majority of the data is withheld for testing. In other

words, there is still a significant amount of data to train on despite the small train split.

This allows the model to have considerably deep trees using a comparatively sparse data set.

This provides confidence in further expansion to higher harmonic cases that are less densely

populated

To better visualize how the XGBoostTM model performance develops with variations in

hyperparameters, MD is held constant in Fig. 7-9 and LR and NT are varied. Figure 7-9a

shows a model with MD = 5 and demonstrates how the learning rate impacts how quickly

the model reaches is peak performance. In addition, the selection of LR is important for

reaching peak performance. The smallest learning rate takes longer to reach its lowest L2

norm error, but also does not come close to the performance of other learning rates. In Fig.

7-9b for models with MD = 10, higher learning rate models reached their lowest L2 norm

values with the initial simulation of NT=100. However, the performance of these models is

also worse than the cases with LR = 0.01 and LR = 0.05. For this dataset, the MD = 10

models fit better than the MD = 5 models.

Next LR is held constant and MD is varied along with NT in Fig. 7-10. Figure 7-10a shows

models with LR = 0.05 and it is easy to conclude that for this dataset a MD ≥ 5 provides

a significantly better performance. This trend is also true for models with LR = 0.1 in

Fig. 7-10b. Together, Figs. 7-9 and 7-10 demonstrate the importance of testing a range

of hyperparameters for a new dataset to determine how the model fits the data and then

further tune the model to reach peak performance.
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Figure 7-5: Comparison of hyperparameter performance over varying train-test split sizes

Figure 7-6: Performance of hyperparameter sets 3 and 4 over varying train-test split sizes
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Figure 7-7: Influence of number of trees for the four hyperparameter sets with test sizes of
20%,50%, and 80%

Figure 7-8: Example of data spread for a training size of 2% of entire dataset
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Figure 7-9: Impact of variation of LR and NT with fixed MD

Figure 7-10: Impact of variation of MD and NT with fixed LR

XGBoostTM Model Fits

The next phase of the analysis sought to better analyze how the model fit the data and to

look for any obvious outliers in the performance. The first analysis compares how well the

predicted velocity values aligned with the actual velocity values in Fig. 7-11. This analysis

is completed for the four sets of XGBoostTM hyperparameters in Table 7-1 for test sizes of
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20%, 50%, and 80%. This gives insight to whether the model tends to predict values above

or below the actual value, how tight the predicted values fit to the correct prediction, and

if certain velocity value regions are fitting better or worse than others. For the first set of

hyperparameters in the first row of Fig. 7-11, the models do not fit as tight to the actual

velocity fit line, which is the result of an underfit model. From the three plots, it appears

that some of the smallest values near -0.2 are predicted to be larger than they actually are.

In addition, the velocities around zero are predicted to be less than what the actual values

are. The other three sets of hyperparameters have a tighter fit to the actual velocity line

and do not display trends like this.

Figure 7-12 shows a broad layout of the actual test data values and predicted test data

values for the first hyperparameter set. This layout shows early values that are predicted to

be higher than the actual and velocity values near zero that are predicted to be lower than

actual. Both of these line up with the trends outlined in Fig. 7-11, though it is not possible

to correlate the predicted value with its corresponding actual value. It is evident from this

figure that the model is underfit. In Fig. 7-13, the actual and predicted values for the fourth

set of hyperparameters demonstrate a much better correlation with no obvious outliers.

To better visualize how well the models fit, a single set of helicopter parameters are used

to compare the actual and predicted values with each other. The parameters are d = 0.2,

γ = 5, and σ = 0.1. These fits also give a form of preliminary inspection to ensure that

the profiles are fitting well and go along with the L2 norm error. Figures 7-14 to 7-16 show

fits for the first set of hyperparameters for test sizes of 20%, 50%, and 80%. The 20% test

size case in Fig. 7-14 shows a decent fit comparison of fits between the actual and predicted

values. The values are slightly off which is due to a model that has either not fully reached

its best performance and would benefit from more splits in the model fitting. The influence
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of larger test sizes can be seen in Figs. 7-15 and 7-16 as the predicted values tend to stray

farther from the actual values. Moreover, the influence of an underlying step function is more

prevalent with several clear sections of constant velocity over a range of r. These profiles also

better illustrate the underlying splits made in the model and that the model would benefit

from either more splits or better split locations. The fit of the second hyperparameter set

is illustrated in Fig. 7-17 for a test size of 20%. The predicted values are closer than the

first hyperparameter set but are still slightly off for the early values (r < 0.4). The final

two hyperparameter sets (Figs. 7-18 and 7-19), which had the lowest L2 norm errors clearly

demonstrate a well fit model with differences between the actual and predicted velocity terms

that are not visible in the plot.
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Figure 7-11: Comparison of predicted velocity and actual velocity for the four different
hyperparameter sets
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Figure 7-12: Comparison of actual and predicted velocities across the rotor for hyperparam-
eter set 1

Figure 7-13: Comparison of actual and predicted velocities across the rotor for hyperparam-
eter set 4
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Figure 7-14: Performance of hyperparameter set 1 for a test size of 20% with helicopter
parameters d = 0.2, γ = 5 and σ= 0.1

Figure 7-15: Performance of hyperparameter set 1 for a test size of 50% with helicopter
parameters d = 0.2, γ = 5, and σ= 0.1
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Figure 7-16: Performance of hyperparameter set 1 for a test size of 80% with helicopter
parameters d = 0.2, γ = 5, and σ= 0.1

Figure 7-17: Performance of hyperparameter set 2 for a test size of 20% with helicopter
parameters d = 0.2, γ = 5, and σ= 0.1
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Figure 7-18: Performance of hyperparameter set 3 for a test size of 20% with helicopter
parameters d = 0.2, γ = 5, and σ= 0.1

Figure 7-19: Performance of hyperparameter set 4 for a test size of 20% with helicopter
parameters d = 0.2, γ = 5, and σ= 0.1
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7.4.2 Evaluation of Intermediate Values

For investigations into predicting the intermediate values the data step size was defined

as ∆r = 0.02. Prior to analyzing the intermediate values, the model still needs to be

validated for performance within the training data. Therefore, 20% of the training data

was withheld for testing the model. Figure 7-20 shows that many of the best performing

parameters for this model are the same as for the full dataset. Given the similarities, the

same four sets of hyperparameters from Table 7-1 are utilized for the results in this section.

Figure 7-21 demonstrates the performance of the models for the intermediate values and

illustrates a much larger L2 norm error. In addition, a wider range of hyperparameters

provide performance near the best L2 norm of ∼7.5. The best performing of these set of

hyperparameters was a set 3 from Table 7-1.

Figure 7-22 validates the predicted and actual velocities of the testing data for hyperparam-

eter set 3. The predicted values fit close to the line and show little visible error, which is

the case for the full data set with the same hyperparameters. Next, Figure 7-23 illustrates

an underfit model for hyperparameter set 1 and Fig. 7-24 shows a better fit model for set 3.

These are presented to further illustrate that the model is fitting well with the training data.

Figures 7-25 to 7-28 illustrate model fit for a single set of helicopter parameters (d = 0.2,

γ = 5, andσ = 0.1), which show similar performance to the previous tests of the full models.

Now that the model fitting has been validated for the training portion of the dataset, the

intermediate values are evaluated to determine where the models are fitting poorly and

rationalizing why. Figure 7-29 shows a comparison of the predicted and actual velocity

terms for the intermediate values for a model with hyperparameter set 3. The region in the

red circle in Fig. 7-29 is a group of underpredicted velocities for the model. In Fig. 7-30, the

XGBoostTM model using parameter set 1 shows significant widespread variations between
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the actual velocity values and predicted velocity values across the rotor disk. This was a poor

performing model during training and was not expected to do well. Figure 7-31 shows the

same comparison using hyperparameter set 3 and only illustrates significant issues between

the predicted and actual intermediate values near the tip of the rotor blade (r = 0.95−0.99).

Upon further investigation, it was revealed that these values accounted for all of the circled

underpredicted values in Fig. 7-29. Due to the large drop in velocity near the tip, more

datapoints would be needed to obtain a better fit in this region. It was also determined

that the L2 norm of the better performing models dropped down to as low as 2.95 when the

values from r = 0.91 − 1 were removed. Refitting the model for an r range of 0 − 0.9 did

not significantly change the way the model fit to the data and therefore, this avenue was not

further pursued.

To gain better understanding of where the error existed in the models, the same single set of

helicopter parameters (d = 0.2, γ = 5, and σ= 0.1) are evaluated for the intermediate values

with all four hyperparameter sets. In Fig. 7-32, hyperparameter set 1 had issues reaching a

tight fit with the predicted values pretty much across the entire profile. Outside of near the

tip, the area with the poorest fit was from r = 0.7 − 0.9. For hyperparameter set 2 in Fig.

7-33, the model did a better job of fitting close to the data, especially in the r = 0− 0.2 and

r = 0.7 − 0.9 regions. The region in between these two illustrated consistent minor errors.

The final two hyperparameter sets performed similarly, as is shown in Figs. 7-34 and 7-35.

These two sets had a tighter fit in the r = 0.2 − 0.7 than hyperparameter set 2, but still

did contain consistent minor errors. Observing the predicted values closely, it is noticeable

that many of them have the same velocity value as the datapoints immediately on either

side of them. This illustrates that the model is closely following the splits that form and are

struggling with the intermediate values. Given that the data points are close together, the

resultant error is low. However, if ∆r was instead 0.05 (training on every fifth data point),
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as was the case in Fig. 7-36, the predictions are much worse. This case better illustrates the

underlying step functions that are forming in the model development.

Testing of the intermediate values provided insight into how XGBoostTM works with our

current approach for fitting to data. At this point we could make a case for creating a large

dataset spanning several harmonics and feel confident of predicting values within the domain

with considerable accuracy. However, more work needs to be done in the refinement of our

approach to better evaluate intermediate values.

Figure 7-20: Performance of test data from training set
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Figure 7-21: Performance of intermediate values with ∆r = 0.02

Figure 7-22: Comparison of predicted velocity and actual velocity for test data from training
set for hyperparameter set 3
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Figure 7-23: Comparison of actual and predicted velocities across the rotor for test data
from training set hyperparameter set 1

Figure 7-24: Comparison of actual and predicted velocities across the rotor for test data
from training set hyperparameter set 3
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Figure 7-25: Performance of hyperparameter set 1 for a test data from training set with
helicopter parameters d = 0.2, γ = 5, and σ= 0.1

Figure 7-26: Performance of hyperparameter set 2for a test data from training set with
helicopter parameters d = 0.2, γ = 5, and σ= 0.1
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Figure 7-27: Performance of hyperparameter set 3 for a test data from training set with
helicopter parameters d = 0.2, γ = 5, and σ= 0.1

Figure 7-28: Performance of hyperparameter set 4 for a test data from training set with
helicopter parameters d = 0.2, γ = 5, and σ= 0.1
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Figure 7-29: Comparison of predicted velocity and actual velocity for intermediate values
with hyperparameter set 3

Figure 7-30: Comparison of actual and predicted velocities across the rotor for intermediate
values with ∆r = 0.02 and hyperparameter set 1
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Figure 7-31: Comparison of actual and predicted velocities across the rotor for intermediate
values with ∆r = 0.02 and hyperparameter set 3

Figure 7-32: Performance of hyperparameter set 1 for intermediate values with ∆r = 0.02
and helicopter parameters d = 0.2, γ = 5, and σ= 0.1
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Figure 7-33: Performance of hyperparameter set 2 for intermediate values with ∆r = 0.02
and helicopter parameters d = 0.2, γ = 5, and σ= 0.1

Figure 7-34: Performance of hyperparameter set 3 for intermediate values with ∆r = 0.02
and helicopter parameters d = 0.2, γ = 5, and σ= 0.1
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Figure 7-35: Performance of hyperparameter set 1 for intermediate values with ∆r = 0.02
and helicopter parameters d = 0.2, γ = 5, and σ= 0.1

Figure 7-36: Performance of hyperparameter set 3 for intermediate values with ∆r = 0.05
and helicopter parameters d = 0.2, γ = 5, and σ= 0.1
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Chapter 8

Summary, Conclusions, and Future

Work

8.1 Summary and Conclusions

In the first part of this work, a simple proof of concept is formulated to verify the appli-

cability of a solution process for a coupled system with time delays and adjoint variables.

The proof-of-concept model provides a simple model with which to develop solution methods

that utilize reverse time marching or convolution integrals. It is shown that either solution

method provides an accurate solution. Therefore, only the time-marching solution process

is carried out in the remainder of the work. The consideration of load sharing is also de-

veloped in this model to evenly distribute the total system load between the two rotors. It

is also demonstrated in the proof-of-concept model that the solution of the velocity field

is independent of the terminal conditions for the co-states. Therefore, the terminal condi-

tions can be any value; but there is an advantage to setting them equal to either zero (for

ease of use) or the steady-state value (for faster convergence to steady-state). Ultimately,

the proof-of-concept model was able to demonstrate the model development processes for

coupled systems with time delays and adjoint variables.

228



In the second part of this work, the proof of concept is expanded to develop a multiple inflow-

state solution for a coupled coaxial rotor system with the pressure coefficients of Morillo.

In this section, more rigorous equations are derived based on Fei’s work with the adjoint

theorem. The new model is at first simplified under the assumption of an infinite number

of blades. Consequently, only the 0th harmonic is involved in the solution. On-disk, off-disk,

and pitch- angle-coupling matrices are developed for the coupled system. The off-disk matrix

and the state variables for the second rotor (which include time-delayed terms) are the new

elements of the model developed here.

The third part of this work extends the infinite-blade model to solve for a finite number of

blades. The finite-blade model can include an arbitrary number of blades and an arbitrary

number of harmonics, as defined by the user. In addition to a finite number of blades, a

rigorous treatment of the angle of attack due to climb is also added to the model. On-disk,

off-disk, and blade coupling dynamic matrices are derived for this case. The finite-blade

model is able to provide a more accurate dynamic solution for the system and is able to

illustrate blade passage and vortex sheets from the upper rotor hitting the lower rotor.

In section 4 of this work, the finite-blade model is adapted for wind turbines. The purpose

of this adaptation is to display the capabilities of the model for other applications. In the

wind turbine case, the model is no longer considered lightly loaded; and, therefore, the angle

of attack due to induced flow is factored into the calculation of thrust coefficient and pitch

angle. For wind turbine applications, the inflow velocities are of different magnitudes than

they were for the applications to lightly-loaded rotors. This changes the time delay and

the distance between the vortex sheets, which leads to the off-disk velocity doubling at a

smaller distance downstream. The wind-turbine model successfully illustrates similar rotor

interactions for wind energy applications.
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Finally, data from the model developed in the third part of this work is used to develop

gradient boosted tree models as a feasibility study for potential future applications with

higher harmonic models. The gradient boosted tree models are trained with different sets

of hyperparameters to determine the best fit for the dataset. In addition, intermediate

values are tested to determine how well the model performs with data points of unseen

parameters. Overall, the use of gradient boosted trees is a probable approach for higher

harmonic solutions, but more work needs to be done with predicting intermediate values.

The key conclusions from this work are:

1. Adjoint variables and time delays can be used in a dynamic analysis of coupled rotor

inflow systems. The dynamics of these systems are interesting and fundamentally

different from systems without adjoint variables and time delays.

2. The number of harmonics used depends on the purposes of the results and can vary

from just a few (for handling qualities and flight dynamics) to dozens (for blade loads

and clarity of shed vorticity).

3. Rotor spacing impacts the velocity on the upper and lower rotor disk planes differently.

As spacing increases, the velocity on the lower rotor increases, but velocity on the upper

rotor decreases.

4. The rotor spacing and number of harmonics have only a minor impact on the upper

rotor blade dynamics. For the lower rotor, blade dynamics are significantly impacted

by the rotor spacing but show only minor variations for systems with more than 6

harmonics.

5. The spacing of vortex sheets impacts how the time-delay dynamics develop and when

they occur.
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6. The machine learning applications illustrated the ability to model a well populated

and sparsely populated dataset, but struggled with reaching the same tight prediction

capabilities for intermediate values.

8.2 Future Work

In this work, all of the applications and results are for a coaxial rotor system in axial flow.

This leads to two areas for potential future work, 1) development of the dynamics of coaxial

rotors in skewed flow and 2) further development of the model for tandem rotor systems

in both axial and skewed flow. The model developed in this work provides a framework

for both skewed flow and tandem rotor development. A majority of the updates needed to

expand to either of these models involve applications of the ellipsoidal coordinates into the

integrals. This will in turn modify the coupled matrices and time delay, thus altering the

coupled dynamics.

Another area of future work is to further investigate the how the dynamics on the rotor

vary in relation to location of vortex sheets hitting both the lower rotor and the blades on

the lower rotor. Several variations in dynamics were illustrated in this work, but a better

understanding of how system parameters (rotor spacing, number of blades, freestream flow,

etc.) impact the dynamics in the system is needed.

Future work with gradient boosted trees and XGBoostTM first should focus on developing

models that better fit to the intermediate values. This could be done through use of addi-

tional model parameters, different loss functions, or a different machine learning algorithm.

Following this development, higher harmonic terms should be investigated for flow across the

rotor to determine if a smaller sampling of higher harmonic solutions can be coupled with a
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dense population of lower harmonic solutions to accurately predict intermediate higher har-

monic solutions. Finally, this work should be expanded to the nondimensional time domain

to attempt to fit the model across a more complex domain and ideally be able to develop in

real time for flight simulator applications.
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Appendix A

Ellipsoidal Coordinate System

The ellipsoidal coordinate system
(
ν, η, ψ̄

)
is defined as:

x = −
√

1− ν2
√

1 + η2 cos
(
ψ̄
)

(A.1)

y =
√

1− ν2
√

1 + η2 sin
(
ψ̄
)

(A.2)

z = −νη (A.3)

where the coordinates ν, η, and ψ̄ are restricted to the following range:

−1 ≤ ν ≤ 1 (A.4)

0 ≤ η ≤ ∞ (A.5)

0 ≤ ψ̄ ≤ 2π (A.6)

Figure A1-1 shows the ellipsoidal coordinate system viewed in the xz plane. The surfaces

for ν = constant are hyperboloids and the surfaces for η =constant are ellipsoids. For the

special case, η = 0 represents the flat circular plane, and ν is anti-symmetric along the plane

which contains the η = 0 circular plane. ψ̄ is the azimuth angle measured from the negative

x axis, with counterclockwise direction viewed along the positive z axis.
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The nondimensional radial position with the ellipsoidal coordinates are obtained from equa-

tions (A.1), (A.2) and (A.3):

r̄2 = x2 + y2 + z2 =
(
1 + η2

) (
1− ν2

)
+ ν2η2 (A.7)

Similarly, from equations (A.1), (A.2) and (A.3), the ellipsoidal coordinates ν ,η and ψ̄ can

be expressed in terms of x,y and z as:

ν = −sign (z)√
2

√
1− S̄ +

√(
S̄ − 1

)2
+ 4z2 (A.8)

η = 1√
2

√
S̄ − 1 +

√(
S̄ − 1

)2
+ 4z2 (A.9)

ψ̄ = tan−1
(−y
x

)
(A.10)

where S̄ is:

S̄ = x2 + y2 + z2 (A.11)
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Figure A-1: Ellipsoidal coordinate system
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Appendix B

Normalized Associated Legendre

Functions

In the ellipsoidal coordinate system defined in Appendix A, the Laplace’s equation takes the

form:

∂

∂ν

[(
1− ν2

) ∂Φ
∂ν

]
+ ∂

∂η

[(
1 + η2

) ∂Φ
∂η

]
+ ∂

∂ψ̄

[
(ν2 + η2)

(1− ν2) (1 + η2)
∂Φ
∂ψ̄

]
= 0 (B.1)

Using the principle of separation of variables to solve equation (B.1), the Laplace equation

is expressed by a multiplication of three separated parts which are only functions of ν, η and

ψ̄ respectively.

Φ
(
ν, η, ψ̄

)
= Φ1 (ν) Φ2 (η) Φ3

(
ψ̄
)

(B.2)

Applying equation (B.2) to equation (B.1), the Laplace equation can be separated into the

following three equations:
d2Φ3

dψ̄2
+m2Φ3 = 0 (B.3)

d

dν

[(
1− ν2

) dΦ1

dν

]
+
[
− m2

1− ν2 + n (n+ 1)
]

Φ1 = 0 (B.4)
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d

dη

[(
1 + η2

) dΦ2

dη

]
+
[
m2

1 + η2 − n (n+ 1)
]

Φ2 = 0 (B.5)

where m and n are the constant of separation.

Equations (B.4) and (B.5) are Legendre’s associated differential equations, and the solutions

to which are the associated Legendre Functions of the first kind and the second kind (Pm
n (ν),

Pm
n (iν), Qm

n (η) and Qm
n (iη)). Since Pm

n (iν) and Qm
n (η) will yield an infinite pressure in the

flow field, they are omitted.

For the purpose of this research, the associated Legendre functions of the first and second

kind are normalized as:

P̄m
n = (−1)m Pm

n (ν)
ρmn

(B.6)

Q̄m
n = Qm

n (iη)
Qm
n (i0) (B.7)

where ρmn is:

(ρmn )2 =
∫ 1

0
(Pm

n (ν))2 dν = 1
2n+ 1

(n+m)!
(n−m)! (B.8)

Qm
n (i0) =


π
2 (−1)m+n+1 (i)n+1 (n+m−1)!!

(n−m)!! , m+ n = even

(−1)m+n+1 (i)n+1 (n+m−1)!!
(n−m)!! , m+ n = odd

(B.9)

In this research, numerical codes are developed to compute all the required values of P̄m
n (ν)

and Q̄m
n (iη) based on the following recurrence relations:

P̄m
n+1 (ν) =

√√√√(2n+ 3) (2n+ 1)
(n+ 1)2 −m2

νP̄m
n (ν)−

√
n2 −m2

4n2 − 1 P̄
m
n−1 (ν)

 (B.10)
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P̄m
n+1 (ν) =

√√√√ (2n+ 3)
(n+m+ 1) (n+m)

√(n−m+ 1) (n−m)
2n− 1 P̄m

n−1 (ν)

+
√

1− ν2
√

2n+ 1P̄m−1
n (ν)

 (B.11)

P̄m+1
n (ν) = 1√

1− ν2


√√√√ (2n+ 1) (n+m)

(2n− 1) (n+m+ 1) P̄
m
n−1 (ν)

− (n−m)√
(n+m+ 1) (n−m)

νP̄m
n (ν)

 (B.12)

Q̄m
n+1 (iη) = Q̄m

n−1 (iη)− (2n+ 1)Km
n ηQ̄

m
n (iη) (B.13)

Q̄m+1
n (iη) = 1√

1 + η2

[
Q̄m
n−1 (iη)− (n−m)Km

n ηQ̄
m
n (iη)

]
(B.14)

where Km
n is:

Km
n =

(
π

2

)(−1)n+m

Hm
n (B.15)

Hm
n = (n+m− 1)!! (n−m− 1)!!

(n+m)!! (n−m)!! (B.16)

(n)!! =


(n) (n− 2) (n− 4) . . . (2)

(n) (n− 2) (n− 4) . . . (1)

for n even

for n odd
(B.17)

(0)!! = 1, (−1)!! = 1, (−2)!! =∞, (−3)!! = −1

In order to calculate to the derivation of P̄m
n (ν) and Q̄m

n (iη), the recurrence relations are

given by: (
1− ν2

) dPm
n (ν)
dν

=

√√√√(2n+ 1) (n2 −m2)
(2n− 1) P̄m

n−1 (ν)− nνP̄m
n (ν) (B.18)

(
1− ν2

) dP̄m
n (ν)
dν

=
√

(n+m+ 1) (n−m)
√

1− ν2P̄m+1
n (ν)−mνP̄m

n (ν) (B.19)
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(
1 + η2

) dQ̄m
n (iη)
dη

= −
[

1
Km
n

Q̄m
n+1 (iη) + (n+ 1) ηQ̄m

n (iη)
]

(B.20)

(
1 + η2

) dQ̄m
n (iη)
dη

=
√

1 + η2Q
m+1
n (i0)
Qm
n (i0) Q̄m+1

n (iη) +mηQ̄m
n (iη) (B.21)

where Km
n (A2.15).

B.1 Orthogonality Integrals

∫ 1

0
P̄m
j (ν) P̄m

n (ν) dν =



δjn, n+m = odd, j +m = odd

δjn, n+m = even, j +m = even

Um
jn, n+m = even, j +m = odd

(B.22)

Um
jn =

√√√√Hm
n

Hm
j

√
(2j + 1) (2n+ 1)

(j + n+ 1) (j − n) (−1)
j+n−2m−1

2 (B.23)

B.2 Area Integrals

∫ 1

0
P̄m
n (ν) P̄m

j (ν) νdν =



Amjn, j +m = odd, n+m = odd

Gm
jn, j +m = even, n+m = even

Dm
jn, j +m = odd, n+m = even

(B.24)

where Amjn, Gm
jn, and Dm

jn are defined as:

Amjn = 2√
Hm
n H

m
j

√
(2n+ 1) (2j + 1)

(n+ j + 2) (n+ j)
(−1)

n+j−2m
2(

(j − n)2 − 1
) (B.25)
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Gm
jn =



√
Hm
j H

m
n

√
(2j + 1) (2n+ 1)(2m2−n2−j2−n−j)

(n+j+2)(n+j)
(−1)

n+j−2m
2

((n−j)2−1) ;

j , 0; n , 0; m , 0

G0
00 = 1

2 j = n = m = 0

(B.26)

Dm
jn =


√

1
Hm

j Hm
n

1√
(2j+1)(2n+1)

, j = n± 1

0, j , n± 1
(B.27)
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Appendix C

Galerkin Method, Damping, Mass,

and Influence Matrices

In order to transform the momentum equation into a set of ordinary differential equations,

the Galerkin Method is adopted here in which velocities are expanded in terms of the prime

potentials. The test functions for the Galerkin method are chosen to be the same Laplace

solutions that are used as expansions for the pressure potentials. Since the velocity poten-

tials are only defined in the upper hemisphere, the integrations will be done in the upper

hemisphere, and all boundary conditions are matched. As the integration is only considered

over the upper hemisphere, the velocity solution will only be valid above the disk.

After substitution of the proper expansions of pressure potentials, velocity potentials, and

the expression of velocity into the momentum equation, volume integration is taken on both

sides of the momentum equations. With the divergence theorem, we can then transfer the

volume integral into a surface integral, which vanishes at r → ∞. By the method shown

in Ref. [5], the surface integral in the plane of the rotor is transformed to integrals on the

rotor disk, itself, which have closed-form representations. This leads to a set of ordinary

differential equations. The cosine and sine functions completely separate into two uncoupled
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sets during this procedure. For the cosine parts, the Galerkin method gives:
[
L̃c
]
o,o

[
L̃c
]
o,e[

L̃c
]
e,o

[
L̃c
]
e,e




∗
{âmn }o
∗
{âmn }e

+

 [D]co,o [D]co,e
[D]ce,o [D]ce,e



{âmn }o

{âmn }e


=

 [D]co,o [D]co,e
[D]ce,o [D]ce,e



{τmcn }o

{τmcn }e


(C.1)

where [
L̃c
]

=
[∫∫

s

∂Φrc
j

∂z

(∫ ∞
0

Φmc
n dξ

)
ds

]
=
[∫∫

s
Φrc
j

∂

∂z

(∫ ∞
0

Φmc
n dξ

)
ds

]
(C.2)

[Dc] =
[∫∫

s

∂Φrc
j

∂z
Φmc
n ds

]
=
[∫∫

s
Φrc
j

∂Φmc
n

∂z
ds

]
(C.3)

The sine components are similar to equation (C.1). Note that the subscript notation ”o”

stands for the terms with m+ n = odd and ”e” is for the terms with m+ n = even. For the

cosine terms, m = 0, 1, 2, 3, . . . and for the sine terms m = 1, 2, 3, . . .. The sine terms begin

at m = 1 because the pressure potential:

Φms
n = P̄ms

n (ν) Q̄ms
n (iη) sin

(
mψ̄

)
(C.4)

implies that when m = 0, Φms
n = 0. In either the case of sine terms or cosine terms,

n = m,m + 2,m + 4, . . . or n = m + 1,m + 3,m + 5, . . . depending on the subscript of the

partition is ”e” or ”o”. The [D] matrix is as follows for both cosine and sine case:

Drm
jn = 1

Km
n
δjnδrm

j + r = odd; n+m = odd

j + r = even; n+m = even

(C.5)
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Drm
jn = 2δnm

π
√
Hm

n Hm
j

√
(2j+1)(2n+1)

(j+n+1)(j−n) (−1)
j+3n−1

2

j + r = odd; n+m = even

j + r = even; n+m = odd

(C.6)

And the
[
L̃
]

matrix is given by [
L̃0m
jn

]c
= XmΓ0m

jn (C.7)
[
L̃rmjn

]c
=
[
X |m−r| + (−1)lX |m−r|

]
Γrmjn (C.8)

[
L̃rmjn

]s
=
[
X |m−r| − (−1)lX |m−r|

]
Γrmjn (C.9)

where

X = tan (χ/2) , l = min (r,m) (C.10)

Γrmjn = sign(r−m)√
Km

n Kr
j

√
(2n+1)(2j+1)

δj,n±1

r +m = odd; j + r = odd; n+m = odd

r +m = odd; j + r = even; n+m = even

(C.11)

Γrmjn = (−1)
n+j−2r

2 (2)
√

(2n+1)(2j+1)√
Hm

n Hr
j (n+j)(n+j+2)[(n−j)2−1]

r +m = even; j + r = odd; n+m = odd

(C.12)

Γrmjn = (−1)
n+j−2r+2

2 (8)
√

(2n+1)(2j+1)
π2
√
Hm

n Hr
j (n+j)(n+j+2)[(n−j)2−1]

r +m = even; j + r = even; n+m = even

(C.13)

Γrmjn = (−1)
3n+j+2m−2r

2 (4)sign(r−m)
√

(2n+1)(2j+1)
π
√
Hm

n Hr
j (n+j)(n+j+2)[(n−j)2−1]

r +m = odd; j + r = odd; n+m = even

r +m = odd; j + r = even; n+m = odd

(C.14)
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Γrmjn = 1√
Hm

n Hr
j

√
(2n+1)(2j+1)

δj,n±1

j +m = even; j + r = odd; n+m = even

j +m = even; j + r = even; n+m = odd

(C.15)

The potential for m = n = 0, has a logarithmic term, so the integral for Γ is formally infinite

for the case of m = r = n = j = 0. However, based on [6], we can express this integral as a

finite series that approaches infinity as the number of terms approaches infinity.

Γ00
00 =

(
4
π2

Nmax∑
n=1

1
n

)
+ 1

2 (C.16)

where Nmax is the largest harmonic number. In this way, the integral is finite for a truncated

approximation. This also allows a solution with a finite number of terms that provides formal

convergence to the exact answer.
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Appendix D

Load Sharing

Load sharing in a coaxial system is an approach to ensure that both rotors are contributing

equally to the total lift within the system. Many helicopters contain a tail rotor which serves

the purpose of countering the torque that is generated by the lifting rotor and preventing the

body of the helicopter from rotating continuously. Coaxial rotor helicopters do not contain

a tail rotor and obtain a net zero torque within the system by balancing the load shared by

each lifting rotor. As will be shown in the following two sections, load sharing does not occur

until the system has stabilized which leaves a small amount of time where the system is not

balanced. In general, a coaxial rotor must be such that the torque of each rotor is equal to

the other so that the craft will not yaw. We are not computing torque here. However, as

a first-approximation to balanced torque, one can assume balance lift. If the lift (i.e., the

torque) is not balanced, the rotorcraft would yaw due to the net torque on fuselage.

D.1 Load Sharing for Single Inflow State

For a system with a single inflow state, the load sharing considerations are more simple, but

provide a solid foundation for further expansion to the system with multiple inflow states.
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It has previously been shown that

∗
αU + λαU = λFU (D.1)

∗
δU + λδU = λFU (D.2)

FU = θU − kαU − qαL (D.3)

Assuming that h = k (and therefore q = ke−λd) and that convergence of the state and co-

state variables has been achieved as t→∞. When convergence occurs the first order terms

become zero such that

λαU = λFU (D.4)

λδU = λFU (D.5)

and therefore, we find that

αU= δU = FU (D.6)

Similarly, for the lower rotor it is shown that when convergence is achieved, the first order

terms are zero.
∗
αL + λαL = λFL (D.7)

FL = θL − kαL − kαU
(
t̄− d̄

)
− kδU

(
t̄− d̄

)
− qδU (D.8)

αL = FL (D.9)

In a system where t → ∞, the time-delayed terms are assumed to be equivalent to the

non-time delayed counterparts where

αU = αU
(
t̄− d̄

)
(D.10)

δU = δU
(
t̄− d̄

)
(D.11)
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This results in the revision of the FL

FL = θL − kαL − kαU − kδU − qδU (D.12)

For shared lift between the upper and lower rotor

FU+FL= F Total (D.13)

the lift of each rotor is equal such that

FU= FL= 1
2F Total

(D.14)

Therefore, it is shown that

αU= δU = FU = αL = FL (D.15)

Looking at the equations for the force of each rotor, it is noticeable that the input functions

θU and θL have not yet been defined for load sharing like the other variables. Rearranging

the force equations above and substituting FTotal in for all variables it is shown that

θU = 1
2F Total

[1 + k + q] (D.16)

θL = 1
2FTotal [1 + 3k + q] (D.17)

θU and θL are functions of the magnitude of total lift in the system, the inflow feedback (k),

and cross-flow feedback (h).

In this work, the inflow feedback, cross-flow feedback, rotor spacing, and total lifting force

in the system are user defined and the input functions θU and θL are determined as a result

of the user defined values. Normally, this work utilizes a system of unit normal load (FTotal

= 1) and varies the spacing and feedback parameters. In general terms for a unit normal
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load, θU and θLare modeled as

θU = 1
2 [1 + k + q] (D.18)

θL = 1
2 [1 + 3k + q] (D.19)

D.2 Load Sharing for Multiple Inflow States

Determination of load sharing for multiple inflow states is achieved in a similar manner

as that of the single inflow state process, but as one would expect is more complex. The

process also varies slightly based on final conditions of δU . At this point only the process for

the converged final conditions will be presented because the zero final conditions process is

currently incomplete.

To begin this process, we will again assume that the system is observed at time t =∞ such

that the system has reached a converged state. Therefore, the first order derivative terms

are zero and the time delayed terms are equivalent to their non-time-delayed forms. We are

again able to show that

αmnU = τmnU (D.20)

αmnL = τmnL (D.21)

δmnU = τmnU (D.22)

Apply the converged final conditions, it can be further demonstrated that

τmnU = αmnU = δmnU = αmnU
(
t̄− d̄

)
= δmnU

(
t̄− d̄

)
(D.23)

It should be noted that unlike the single inflow state case, the terms related to the upper

rotor (τmnU , αmnU ,δmnU) are not equivalent to the terms related to the lower rotor (αmnL,τmnL).
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The exception to this is for the first odd inflow state (m = 0,n = 1) where

τ 0
1U = τ 0

1L =
√

3
4 CT (D.24)

This relationship is critical for load sharing and will be further explained below. The pressure

potentials for load sharing with multiple inflow states are taken from equations

{
τ 0c
n

}
U

= σa

8
[
{A} θU − [B]{αmnU

(
t̄
)
} − [C] {αmnL

(
t̄
)
}
]

(D.25)

{
τ 0c
n

}
L

= σa

8

(
{A}θL − [B]

{
αmnL

(
t̄
)}
− [B]

{
αmnU

(
t̄− d̄

)}
− [B]

{
δmnU

(
t̄− d̄

)}
+ [C]

{
δmnU

(
t̄
)}) (D.26)

Understanding from the previous section that our unknown terms for load sharing are the

pitch angles of the rotors θU and θL. We can then solve for the θU and θL using Eqs. E.25

and E.26 by first applying the equivalencies in Eqs. E5.23 and E.21, respectively.

{
τ 0c
n

}
U

= σa

8 [{A} θU − [B]{τmnU} − [C] {τmnL}] (D.27)

{
τ 0c
n

}
L

= σa

8 [{A}θL − [B] {τmnL} − [B] {τmnU} − [B] {τmnU}+ [C] {τmnU}] (D.28)

which is further simplified to:

{
τ 0c
n

}
L

= σa

8 [{A} θL − [B] {τmnL} − [2B − C] {τmnU}] (D.29)

These equations can be combined into:
{τmnU}

{τmnL}

 = σa

8

 {A} 0

0 {A}

− σa

8

 [B] [C]

2 [B]− [C] [B]

 (D.30)
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Isolating the pitch angles, we find I + σa
8 [B] σa

8 [C]

2σa8 [B]− σa
8 [C] I + σa

8 [B]



τmnU

τmnL

 =

 σa
8 {A} 0

0 σa
8 {A}



θU

θL

 (D.31)

For simplicity, we define the matrices as

[F ] =

 I + σa
8 [B] σa

8 [C]

2σa8 [B]− σa
8 [C] I + σa

8 [B]

 (D.32)

[G] =

 σa
8 {A} 0

0 σa
8 {A}

 (D.33)

Therefore, obtaining 
τmnU

τmnL

 = [F ]−1[G]


θU

θL

 (D.34)

As mentioned earlier, only the first odd state for the pressure distributions are equal, such

that

α0
1U = α0

1L = δ0
1U = τ 0

1U = τ 0
1L =

√
3

4 CT (D.35)

where CT is user defined. Load sharing within the system is accomplished by adjusting the

magnitudes of the pitch angles, θU and θL. The magnitudes of the pitch angles are dependent

on the number of inflow states within the system. To solve we adjust the previous equation
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to develop the system a system that results in two solutions, θU and θL.


τ 0

1U

τ 0
1L

 =





1

0
...

0





0

0
...

0



0

0
...

0





1

0
...

0





T

[F ]−1[G]


θU

θL

 (D.36)

In this equation, the column vectors are 1xN in size, where N is the number of inflow states.

To again simplify the equation, we elected to state that

[H] =





1

0
...

0





0

0
...

0



0

0
...

0





1

0
...

0





T

[F ]−1[G] (D.37)

Finally, solving for the pitch angles we obtain:
θU

θL

 = [H]−1


τ 0

1U

τ 0
1L

 (D.38)
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or 
θU

θL

 = [H]−1


√

3
4 CT
√

3
4 CT

 (D.39)

It should be noted that this process varies slightly for the case where the final conditions for

the co-state variable are set to zero, but the overall solution will remain the same.
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