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Abstract—We consider a cloud service based on spot instances
and explore bidding and pricing strategies aimed at optimizing
users’ utility and provider’s revenue, respectively. Our focus is on
jobs that are heterogeneous in both valuation and sensitivity to
execution delay. Of particular interest is the impact of correlation
in these two dimensions. We characterize optimal bidding and
pricing strategies under some simplifying assumptions, and more
importantly highlight the impact of correlation in determining
the benefits of a spot service over an on-demand service. We
also provide a preliminary assessment of the results’ robustness
under more general assumptions.

I. INTRODUCTION

Cloud computing has experienced explosive growth and
become the computing platform of choice for an increasingly
diverse set of users. Cloud providers have responded to this
growing diversity by offering different types of computing
services, each with its own pricing scheme'.

In particular, Amazon offers three main pricing options that
provide different trade-offs between the level of commitment
the user is willing to make and the cost of the service. On-
demand instances let users dynamically acquire compute ca-
pacity one hour at the time without any prior commitment, but
come at a premium. In contrast, reserved instances call for a
one or three year commitment, but enjoy a significant discount
compared to on-demand instances. Finally, spot instances, like
on-demand instances come with a one hour time granularity
and do not require any type of commitment, but while they
can be cheaper than on-demand instances, they exhibit large
price variations (new spot instance prices are announced every
hour). Users who have registered a bid in excess of the spot
price gain access to the desired resource for the next hour?,
but lose it as soon as their bid falls below the next announced
price. Amazon advertises historical spot price information for
the past 90 days to enable users to devise bidding strategies
that realize different trade-offs between cost and the ability to
secure the desired resources. It also offers a tool, Spot Bid
Advisor?, which seeks to help users identify the right bidding
level given a certain tolerance for service interruption.

ISee https://aws.amazon.com/ec2/pricing for an example.

2 Amazon recently introduced a variation of the spot service, Spot blocks,
which lets a user specify a fixed duration for its spot instance. Once started
a spot block runs uninterrupted for its stated period, but won’t benefit of
decreases in spot price during that time.

3https://aws.amazon.com/ec2/spot/bid-advisor/.

This paper is concerned with a cloud computing offering
based on the spot service option. In other words, we con-
sider users interested in the spot service of a cloud provider
either as their main source of computing services, or as a
backup/overflow facility for their own compute resources. Our
goal is to develop a better understanding of user bidding
strategies and provider pricing strategies. Of particular interest
are pricing strategies that maximize the provider’s revenue in
the presence of users with diverse profiles. Users diversity
can clearly take many different forms, and we focus on two
core aspects with a direct influence on a user’s willingness
to pay, namely, job value and timeliness of job completion or
sensitivity to delays caused by service interruptions. The value
of a compute job is obviously of relevance when it comes to
determining what a user is willing to pay to have it executed.
Potentially more interesting in the context of a spot service is
a job’s sensitivity to any delay in its execution, as the latter is
directly affected by the user’s bidding strategy, i.e., high bids
ensure immediate execution while low bids are more likely
to be interrupted multiple times and to incur large completion
delays. In such an environment, an important question for a
provider seeking to maximize its revenue, is how to account
for differences in job valuation and sensitivity to delay across
users when setting spot prices.

Pricing is typically a function of both offer (provider’s
capacity) and demand (user). In this paper, we assume, as
others have recently done [6], that the provider capacity is
large enough (infinite) to accommodate any demand, so that
pricing is solely to maximize revenue given the user demand.
This assumption is not unreasonable given the size of modern
cloud computing facilities, and the fact that powered-down
servers can be quickly brought online when needed [7], [8].
In addition, recent empirical work [3] analyzing Amazon’s
own pricing strategies hints at spare capacity that typically
exceeds the demand. Hence, further validating the assumption
that capacity constraints are rarely if ever present in modern
public cloud systems.

Under these assumptions, our focus is on exploring how a
cloud provider should set spot prices given a user population
with heterogeneous profiles, i.e., job valuations and sensitivity
to delay. Individual user profiles are private information, but
the cloud provider has knowledge of the profiles’ distribution
over the user population. Conversely, users are aware of past



spot prices, as in the Amazon EC2 setting, and can therefore
rely on an empirical distribution of spot prices when making
bidding decisions, i.e., select bidding prices that optimize their
own utility. In that context and consistent with the findings
of [3], we assume that the provider selects a set of spot prices
p and a corresponding distribution 7 for announcing prices so
as to maximize its revenue.

Our investigation reveals several interesting features. Under
reasonable assumptions regarding users’ utility and the relation
between a job’s value and its execution time, we show that for
any provider pricing, a fixed bidding strategy is optimal for
users that decide to bid. In other words, a user either does
not bid (the service is not cost-effective for her), or selects
a bidding price, function of the job value and sensitivity to
delay, and repeatedly bids at that price until the job completes.
Conversely, we identify conditions under which a spot service
yields no benefit to the provider over an on-demand service,
i.e., a service with a single spot price. Of particular interest is
the fact that correlation between job value and sensitivity to
delay plays a key role. Specifically, offering a spot service ben-
efits a provider’s revenue only when this correlation exceeds
a certain threshold. The findings can help providers determine
when a spot service is a meaningful addition to their offering,
and users how to bid for spot instances.

The remainder of this paper is structured as follows. Sec-
tion II briefly reviews previous works of relevance. Section III
introduces our model more formally. Section IV investigates
the user’s bidding strategies, while Section V explores the
provider’s pricing strategies. The robustness of the results
are tested numerically under more general assumptions in
Section VI. Section VII summarizes the paper’s findings.

II. RELATED WORKS

In this section, we review the vast literature on pricing in
computing systems and highlight a few recent relevant works.

The idea of using pricing for resource allocation in com-
puting systems with jobs that are heterogeneous in either
value or sensitivity to delay is not new. It dates back to
the 1960’s with pricing for shared computing time e.g., [5],
[12]. In this early context, computing resource were typically
constrained, with pricing used to realize an allocation of
resources that maximized a global utility function across
heterogeneous users. The finite resource assumption naturally
lends itself to a queueing system formulation very different
from that of this paper. The 1990 paper by Mendelson and
Whang [9] offers a representative example. It considers an
M/M/1 queue with multiple classes of jobs with different
valuations and sensitivity to delay, and investigates pricing
policies that maximize utility (social welfare) across classes.
Conversely, [2] considers the provider’s revenue maximization
problem, and demonstrates that the damaged goods strategy
of [4] also applies in this context.

However, while ideas of pricing regularly surfaced in the
academic computing literature, their use in practice was lim-
ited [10] as pricing was never really necessary for the contin-
ued development and operation of large computing systems.

Most of such systems were centrally controlled, e.g., by the
organization running the mainframe, which made defining
usage policies easy, so that the complexity and cognitive
overhead of mechanisms that price resources were not worth
the payoff. Thus, research focused on scheduling algorithms to
maximize utilization of shared resources rather than the pursuit
of pricing policies to achieve explicit social goals [10].

The emergence of the cloud, with computing as a utility,
changed this calculus. Users became accustomed to thinking
about payoffs for timely job completions, with pricing an
integral part of this assessment. In this context, two works
close to this paper are [1], [6]. They target cloud computing
services under a (mostly) infinite capacity setting while seek-
ing to understand how job value and sensitivity to delay affect
cloud service offerings. Both works offer interesting initial
insight, but leave several questions unanswered, in particular
regarding the role of correlation between a job’s value and its
sensitivity to delay. As we shall see, it plays an important role
in determining to what extent a spot service can add value to
an on-demand service offering®.

III. MODEL FORMULATION

We assume a setting with a single cloud provider, i.e.,
a monopoly environment, where the provider has access to
“infinite” compute resources. The provider offers spot ser-
vice with spot prices drawn from a set of n prices p =
(p1,P2, +sPn )01 < p2 < < pn, with a probability
distribution w = (my,m9,...m,). Spot prices are updated
periodically by randomly selecting a price from p according
to w. As in the Amazon EC2 spot service, users whose bid
equals or exceeds the spot price are allowed to execute during
that period, but their execution is stopped whenever their bid
price falls below the spot price.

Demand for computing services is heterogeneous and orig-
inates from a large user population. Each job is characterized
by its total computation time or length ¢ > 0, its value
v per unit of computation time, i.e., the value of a job of
length ¢ is vt, and its sensitivity to computation delays £ > 0.
Assume that customers know t¢,v and x for all their jobs.
For notation purposes, a job is represented through its triplet
(t,v, k). Job lengths are assumed independent of their unit
value v and sensitivity to delay x, and are drawn from a
probability distribution with density function® f(t). Note that
the independence of v and ¢ implies that a long job with a
small v can be less valuable than a short job with a large v.
Conversely, jobs’ value and sensitivity to delay are drawn from
a distribution with joint density function ¢(v, ). Hence, we
allow for correlation between v and k, e.g., high value jobs
can be more sensitive to delay (positive correlation).

Users are aware of p and , e.g., from data published by
the cloud provider (as with Amazon spot instances), and use

4We note that the result of [1] that an on-demand service is always superior,
appears to be a consequence of its assumptions of finite spot service capacity
and auction based mechanism to decide which jobs access that capacity.

SFor simplicity, we assume that ¢, v, and & are continuous random variables.
Similar expressions are readily available for discrete random variables.



this information to select bidding strategies for new jobs.
A bidding strategy I' specifies both a first bidding price,
as well as bids at subsequent bidding instances. These may
in turn depend on past bids and spot prices, i.e., I' can
be as simple as bidding at the same price until the job
completes, or a complex state-dependent strategy that accounts
for previous winning bids. Specifically, given spot prices p
and associated distribution 7, a user selects among bidding
strategies I'p x(t,v, k) for a job (¢,v, k) (denoted simply as
T or I'(t,v, k) when unambiguous), so as to maximize the
job’s expected utility, where expectation is computed over spot
prices realizations. When the maximum expected utility is not
positive, the user’s bidding strategy is to not bid. In this case,
the expected utility is taken to be zero (0). Otherwise, the
job’s expected utility under bidding strategy I" is of the form

U(t,v,k,T") =vt — P(t,v,k,T') — D(t,v,k,T),

where ot is the value derived from completing the job,
P(t,v,k,T") is the expected execution cost of the job under
bidding strategy I', and D(t, v, k,I") is the expected penalty
associated with the job’s execution delay under I'. Addition-
ally, a job’s value is accrued only after it has completed, i.e.,
there is no partial value for incomplete jobs.

Given p,m and T, a user can readily compute the expected
execution cost P(t, v, k,T") for a job of length ¢. Similarly, she
can compute the expected job completion time 7'(¢,v, k,T)
so that T'(t,v,x,I") — t represents the delay penalty above
and beyond the job’s execution time ¢ under bidding strategy
T, e.g., the delay penalty is 0 when bidding at p,, while
it is maximum when bidding at p;. Intuitively, D(¢,v,k,T)
should be an increasing function of s and T'(t,v,k,T") — t.
There are many possible choices for such a function, and in
Section VI we experiment with concave and convex increasing
functions. However, for analytical tractability, we assume a
linear function of the form k (T'(¢t,v,x,T') —t). This then
yields a utility function of the form

U(t,v,k,T) =vt — P(t,v,k,T) — k(T (t,v,k,T) —t). (1)

Selecting an optimal bidding strategy I'* for a job (¢,v, k),
therefore, consists of solving the following problem:

T*(t,v,k) = argmax U(t,v, k,T), 2)
r

where we further make the assumption that if a customer
starts bidding for a job, she continues bidding for it until it
completes. In other words, once a user identifies an optimal
strategy that yields a positive expected utility, she does not
revisit her decision and proceeds with this strategy until the
job completes. Note that while this ensures a positive average
(over a large number of jobs) utility, it is possible for individual
jobs to realize a negative utility, e.g., when encountering a
long sequence of high spot prices. This is the price paid
for the simplicity of not re-evaluating bidding strategies in
every period. We explore numerically in Section VI the impact
of allowing bidding to terminate once the expected utility
associated with further bids becomes negative.

The previous discussion identified how, given a known dis-
tribution of spot prices as characterized by p, 7, a user selects
an optimal bidding strategy for a job (¢,v, ). Conversely,
given such a behavior on the part of users, a natural question
is how the cloud provider should select p and m so as to
maximize its expected per job revenue Ry x, i.e., solve

(p*, ") = arg max Rp,x, 3)
p,’r

where Ry » is given by

Rpr = ///M,H f(t)q(v, k)P (¢,T5 o (t, v, k)) dt dv dk.

In solving the optimization of Eq. (3), we assume that the
triplets (¢,v,x) are private information, but that the cloud
provider has knowledge of f(¢) and ¢(v,t), e.g., from em-
pirical customer data.

In the next two sections, we proceed to characterize first
I'* and then (p*,n*). Due to space constraints, we omit all
proofs, which can be found in [11].

IV. OPTIMAL BIDDING STRATEGY

In this section, we show that for all jobs and all pricing
systems an optimal fixed bidding strategy exists that only
depends on k. We assume that customers only consider pure
strategies, i.e., never choose a mixed bidding strategy. This
assumption is reasonable as an optimal mixed bidding strategy
is simply a randomization among several pure optimal bidding
strategies that have the same expected utility as the optimal
pure strategy.

Since customers who choose to bid do not terminate jobs
before completion, Eq. (1) implies that maximizing utility is
equivalent to minimizing expected cost (vt is constant), which
for job (¢, v, k) under strategy I' is of the form:

C(t,v,k,T) = P(t,v,k,T)+ c(T(t,v,kT)—t), (@)

where recall that P(t,v,k,T") is the expected payment, and
T(t,v,x,T) is the job’s expected completion time. Both
P(t,v,k,T") and T'(t,v,k,I") are expectations over realiza-
tions of spot prices and bidding prices under I'.

To simplify notation, when focusing on a specific job, we
use C(T") to denote the expected cost under strategy I'. For
ease of presentation, we also assume that job lengths are
integer multiple of the slot length, and w.l.o.g. assume the
slot length to be 1. We narrow the strategy space to those
with bidding prices in {p1, ..., p,}. This does not affect the
optimal strategy, as shown in the following lemma.

Lemma 1. Bidding at a price b € [p;,piy1), where 1 < i <
n, generates the same expected cost and the same winning
probability as bidding at p;.

We first prove the existence of an optimal fixed bidding
strategy for jobs of length one-slot.

Proposition 2. For job (1,v, k) and any pricing system, there
always exists an optimal bidding strategy.



The proof of Proposition 2 (see [11]) argues that if there
is no optimal strategy, an infinite sequence of strategies
exists whose expected cost approaches (but never reaches)
the infimum, and proceeds to show that the infimum can be
achieved by an optimal fixed bidding strategy. This establishes
the existence of an optimal strategy and hints at the fact that
it is a fixed bidding strategy. However, given the existence
of an optimal bidding strategy, the strategy space need not
be continuous, so that the next proposition is necessary to
formally establish the optimality of a fixed bidding strategy.

Proposition 3. For job (1,v, k), there exists an optimal fixed
bidding strategy.

The next proposition extends the optimality of a fixed
bidding strategy to jobs of arbitrary length.

Proposition 4. A strategy that bids at b*(v, k) in every slot
is an optimal bidding strategy for (t,v, k), where b*(v,K) is
the optimal bidding price for (1,v, k).

Proposition 4 establishes not only that a fixed bidding
strategy is optimal, it also shows that the optimal bidding
price b*(v, ) is independent of the job length. The next step
is to characterize b*(v, k), or more precisely, as we shall
see, b*(k), ie., the optimal bidding price only depends on
a job’s sensitivity to delay. However, note that whether or
not a customer bids for a job depends on the job value v. In
characterizing b* (x), we also show that computing the optimal
bidding price can be realized with a simple linear search.

If a customer bids for a job (¢,v, k) using a fixed bidding
strategy with a bidding price b, the expected fraction of time
or probability that the job is active is

Oga(b):Zﬂ'igl.

pi<b

®)

The expected payment per unit of time given that the job is
active is then

Yo <p TiDi
b) = =Pi=" 6
p(b) al) (6)

so that the expected payment is

P(t,b) = p(b)t. @)

and the average job completion time is

t

T(t,b) = ——. 8
(D) = 25 ®)

Denote the expected cost for the strategy that bids at b as
C(t,v, k,b) Substituting Eq. (7) and Eq. (8) in Eq. (4) gives

Ctv,1,b) = —t <p(b) T <a(1b) _ 1)) )

Note that for a given b, C(t, v, k,b) is proportional to ¢ (as is
U(t,v,k,b)). Note also that the optimal bidding price needs
not to be unique. W.l.o.g, assume that users always bid at the
lowest optimal price. The optimal fixed bidding price is then
b*(v,k) = min argmin C(¢,v, K, p;)
i€{1,2,...n}

=min argmin C(1,v,k,p;),
i€{1,2,..n}

where the second equality comes directly from C(¢,v,x,b)’s
proportionality to ¢ (and/or Proposition 4).

Proposition 5. A customer’s optimal fixed bidding price b* (k)
is independent of v and t, and non-decreasing in k.
Specifically, a customer with k. € (K;_1, ;] will bid at p; if she
chooses to adopt the service, where k; =3, (Pi+1 — Pj)T;
for v >1, and Ky = —e < 0.

Proposition 5 states two interesting results: 1) valuation
plays no role in the optimal bidding price; and 2) the optimal
bidding price is an increasing function of . Note though that
while v does not influence the choice of a bidding price, it
affects whether to bid or not. Additionally, as we shall see
in Section V, the distribution of v also plays a role in the
choice of the service provider’s pricing strategy. We also note
that 2) is intuive as a higher delay sensitivity implies a greater
willingness to pay to avoid delays.

Finally, we show how a job’s optimal bidding price can be
obtained using a simple linear search.

Corollary 6. A job’s optimal bidding price can be determined
using a simple linear search.

The corollary’s proof is constructive in nature and takes
advantage of the structure of a job’s utility characterized in
Proposition 5, which shows that it admits a single maximum
as a function of the bidding price.

V. OPTIMAL PRICING STRATEGY

In this section, we turn to characterizing how a cloud service
provider should price its spot service to maximize revenue
given that users bid according to the optimal bidding strategy
of the previous section.

For simplicity, we limit ourselves to binary job profiles with
only two job valuations (0 < v; < v9) and delay sensitivity
(0 < K1 < K2). While obviously a simplification, this still
captures job heterogeneity along two dimensions, and allows
us to incorporate correlation between those dimensions. As we
shall see, the latter plays an important role in the structure of
the optimal pricing configuration.

We start with a simple result that limits the number of prices
the cloud provider needs to consider under those assumptions.

Lemma 7. For binary profiles with 0 < k1 < kg, the optimal
pricing system needs at most two prices.

Denote the prices as p; and ps, where 0 < p; < p2, and
denote the probability of p; being selected as 7. Our goal is to
characterize pi1, p2, and w, as functions of vy, vs, k1, ke and
the correlation between them. We start with a configuration
where v and k are independent.

A. Independent v and K

We assume that job valuations and delay sensitivities are
independent, with a job having valuation v; with probability
p and delay sensitivity ;1 with probability g, i.e.,



K1 K2
vy Pq p(1—q) P
va [ q(l—p) | (A=p)(1—¢q) | 1—p
q 1—gq

We show that under these assumptions, a single spot price
maximizes revenue, i.e., the optimal spot pricing strategy is
equivalent to an on-demand service.

Proposition 8. For a system with independent v and k, where
v € {v1,v2},0 < v; < vy and Kk € {K1,K2},0 < K1 < Ko,
one-price service maximizes the expected revenue. Specifically,
o if u1 > va(1 — p), a price of v1 — € maximizes revenue
and realizes full adoption;
o if v1 < va(l — p), a price of vo — € maximizes revenue,
and only customers with valuation ve will adopt.

Proposition 8 seems counterintuitive as market segmentation
usually leads to higher revenue. However, under a two-price
spot service, we basically ask jobs with large delay sensitivity
to pay more. This in turn has the potential to 1) exclude jobs
with large delay sensitivity and small valuation, and 2) extract
a smaller price from jobs with small delay sensitivity and large
valuation. Keeping both quantities small is key to generating
a higher revenue, and this ends-up not being feasible when
job valuation and delay sensitivity are independent. In the
next section, we explore how this result changes as correlation
between the two varies.

B. Correlated v and

We begin our investigation with the cases of perfect neg-
ative or positive correlation between job valuation and delay
sensitivity, and then proceed with general correlation.

Proposition 9. When valuation and delay sensitivity are
perfectly negatively correlated, i.e., the system only has jobs
(v1, k2) and (vg, k1), where 0 < v; < vg and 0 < k1 < Ko, a
single price spot service is optimal, i.e., maximizes revenue.

The result is reasonably intuitive as a two-price system
with a low enough price p; to attract (v, k2) jobs will also
have (v, k1) find p; attractive. Next, we consider the case of
perfect positive correlation.

Proposition 10. When valuation and delay sensitivity are
perfectly positively correlated, i.e., the system only has jobs
(v1,k1) and (v, Ka), where 0 < v1 < v9 and 0 < K1 < Ko,
then using q to denote the fraction of (v1, k1) jobs, we have

o When k2(1 —q) — k1 > 0 and v1ke > vaKk1, a two-price
spot service is optimal;
o Otherwise, a one-price spot service is optimal.

Note that v1ky > wok1 iS equivalent to % > 2—2 when
v1, k1 > 0. Hence, the proposition states that when the relative
difference in delay sensitivities is larger than that of valuations
and the fraction of (ve,k2) jobs is large, a two-price spot
service can generate a higher revenue.

Next, we turn to the general case of intermediate correla-

tion. For that purpose, we consider distributions with fixed

marginals. Specifically, v; has a fixed marginal a and x; has
a fixed marginal b, where a,b € (0, 1). Denote the probability
that a job is of type (v;, k;) as g;;, where ¢, € {1,2}. Then

K1 R2

U1 | q11 | 412 a

v2 | @21 | q22 1-a
b 1-0

The next proposition characterizes the optimal pricing strategy
in this configuration. In particular, it highlights the presence
of a possible correlation threshold p*.

Proposition 11. Given a distribution with fixed marginals for
job valuation and delay sensitivity, depending on the value
of p*, where p* is a function of a,b, k1, ko,v1 and va, the
optimal pricing strategy takes either one of two forms as the
correlation coefficient p varies from —1 to 1:

e if p* € (—1,1), when p < p*, a one-price spot service
is optimal and when p > p*, a two-price spot service is
optimal;

o otherwise, a one-price spot service is always optimal
whatever p.

An explicit expression for p* is available in the proof of
Proposition 11. Note also that given Proposition 8, Proposi-
tion 11 implies that a one-price spot service, i.e., an on-demand
service, is optimal in all configurations with a non-positive
correlation between valuation and delay sensitivity.

VI. ROBUSTNESS EVALUATION

This section offers a preliminary assessment of the extent
to which the findings of the previous section remain valid
under more general conditions. Because the system becomes
quickly intractable as simplifying assumptions are relaxed, the
investigation is carried out using numerical analysis. Our focus
is on testing the role of correlation, in particular the presence
of p*, when assumptions are relaxed.

A. Allowing Job Terminations

In this section, we allow customers to terminate jobs under
certain conditions. The bidding strategy remains the optimal
fixed bidding strategy of Section IV, but customers terminate
jobs once their residual expected utility is no longer positive.
Specifically, for a job (¢,v, k) that started at time 0 with an
optimal bidding price p;, let £y < ¢ denote the execution time
of the job up to time Ty. The job terminates at T} if

t—to
a(p:)
vt is the value that successfully completing the job would
yield, p(p;)(t—to) is the expected additional cost for complet-

Ut—p(pi)(t—to)—H<To+ —t)so, (10)

ing the job, and & (To + ;Zpto) — t) is the job’s total expected

delay penalty. Eq. (10) states that the job will be terminated,
once its expected utility going forward becomes negative.
Eq. (10) also points out that termination decisions depend
on job length. To test this factor, we choose a job length
distribution, where jobs have length 1 with probability r (we




consider different values for r) and length 5 otherwise, while
reusing the binary job profile of Section V. We fix v; and x;
to 0.1, and independently vary ve and ko from 0.1 to 1. We
also vary the distribution marginals a and b. Because of the
complexity of characterizing the optimal pricing strategy, we
assume that the service provider is oblivious to the fact that
customers may terminate jobs, i.e., it sets prices ignoring job
terminations.

Numerical results highlight that Proposition 11 holds, but
only when at least one of a or b is close to either 0 or 1,
i.e., the distribution exhibits a strong mode, while r does not
have much influence. This likely stems from the assumption
that pricing remains oblivious to possible job terminations.
Specifically, revenue differences between termination and non-
termination can be large when job profiles are evenly dis-
tributed, as the service provider needs to balance between
all job types. It is, therefore, of interest to investigate the
structure of the optimal pricing strategy when job termination
is allowed, and to evaluate whether Proposition 11 now holds
more broadly. This is a topic for future work.

B. Convex and Concave Delay Sensitivity Functions

Our model assumes linear sensitivity to delay. We relax
this assumption using convex and concave piecewise linear
functions. As before, we use a binary job profile with jobs
of length 1 with probability r and of length 5 otherwise. The
pricing policy is, however, now (numerically) obtained for the
new delay sensitivity functions.

1) Convex Delay Sensitivity: A job’s delay sensitivity is of
the form:

Dy (k,t) = max{0, k(T (t) — T")},

T'(t) is the expected execution time, and 7 is a threshold.
In other words, the job is insensitive to delay until 7 and
experiences a linear penalty with slope « after that. Note that
the optimal bidding strategy now depends on x,t and T™.

We ran experiments with » = 0.2,0.5,0.8, and T* =
2,6,10. We fixed vy to 0.1, and kq to 0 and varied vo from
0.2 to 1, and k9 from 0.1 to 1. Proposition 11 held across all
experiments. Of note is the fact that a two-price spot service
was found to generate a higher revenue even in some config-
urations with negative correlation. This is somewhat intuitive
as under D1 (k,t), small jobs with high delay sensitivity are
essentially similar to small jobs with 0 delay sensitivity.

2) Concave Delay Sensitivity: A job’s delay sensitivity is
of the form:

Dy(k,t) = min{k(T(t) — t), max{0, k(T* —t)}},

In other words, the delay penalty initially increases linearly
with slope k, and then stays constant after 7.

We ran experiments for the same configurations as D1 (k, t),
and in most cases Proposition 11 still held. There were,
however, a few counterexamples. In particular, v; = 0.1, vy =
0.4,k1 = 0.1,k = 04,r = 0.8, and T* = 2 with both
marginals set to 0.8, resulted in an optimal two-price spot
service for p = —0.25, while a one-price spot service was

optimal for p = 0.375. This may due to the fact that the
initial expected delay penalty is scaled by the relatively large
job length (80% of jobs have length 5), which complicates the
optimal bidding strategies. Investigating this behavior further
is of interest and the topic of future work. We also found that
as T increases, the number of counterexamples decreases.
This is expected since for large 7%, Dy(k,t) is increasingly
similar to a linear function.

C. Continuous Distributions

Our investigation has been limited to four job types with
binary distributions for v and . We test the results for a larger
number of job types using uniform distributions. Marginals
are kept fixed and correlation between job value and delay
sensitivity is varied using a Gaussian copula.

Characterizing the optimal pricing strategy for continuous
distributions is complex. For simplicity, we limit pricing to two
prices, which is sufficient to test Proposition 11. We fix the
minimum job valuation and delay sensitivity to vy, = 0.1,
and Kpin = 0, respectively, and vary the maximum valuation
and delay sensitivity, Umaz, Kmaz, from 0.1 to 1.5.

Fig. 1 reports results for vy = 0.9 and different values of
kmax. Similar results were obtained for other values of v ax.
The figure shows that Proposition 11 still holds, with p* a
decreasing function of ky,,x. This is intuitive as a higher kax
corresponds to a larger number of delay sensitive jobs.
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Fig. 1. p* for continuous distributions and vmaz = 0.9

VII. CONCLUSION

The paper explored the potential benefits (to users and cloud
providers) of a spot service. It characterized optimal bidding
and pricing strategies when jobs are heterogeneous in both
valuation and sensitivity to execution delay. More importantly,
it highlighted the role of correlation between job valuation and
sensitivity to delay in determining whether a spot service is of
value over an on-demand only service. In particular, it showed
that a minimum level of correlation between job valuation
and sensitivity to delay is necessary for a spot service to
be valuable. An initial assessment of the results’ robustness
showed that they remain valid under more general conditions,
though a complete investigation of the solution space remains
a topic for future work.
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