
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number:

2016

Locality-Aware Dynamic Task Graph Scheduling Locality-Aware Dynamic Task Graph Scheduling

Jordyn Maglalang, Sriram Krishnamoorthy, and Kunal Agrawal

Dynamic task graph schedulers automatically balance work across processor cores by

scheduling tasks among available threads while preserving dependences. In this paper, we

design NabbitC, a provably efficient dynamic task graph scheduler that accounts for data

locality on NUMA systems. NabbitC allows users to assign a color to each task representing the

location (e.g., a processor core) that has the most efficient access to data needed during that

node’s execution. NabbitC then automatically adjusts the scheduling so as to preferentially

execute each node at the location that matches its color—leading to better locality because the

node is likely to... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Maglalang, Jordyn; Krishnamoorthy, Sriram; and Agrawal, Kunal, "Locality-Aware Dynamic Task Graph
Scheduling" Report Number: (2016). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1167

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1167?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This conference paper is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1167

Locality-Aware Dynamic Task Graph Scheduling Locality-Aware Dynamic Task Graph Scheduling

Jordyn Maglalang, Sriram Krishnamoorthy, and Kunal Agrawal

Complete Abstract: Complete Abstract:

Dynamic task graph schedulers automatically balance work across processor cores by scheduling tasks
among available threads while preserving dependences. In this paper, we design NabbitC, a provably
efficient dynamic task graph scheduler that accounts for data locality on NUMA systems. NabbitC allows
users to assign a color to each task representing the location (e.g., a processor core) that has the most
efficient access to data needed during that node’s execution. NabbitC then automatically adjusts the
scheduling so as to preferentially execute each node at the location that matches its color—leading to
better locality because the node is likely to make local rather than remote accesses. At the same time,
NabbitC tries to optimize load balance and not add too much overhead compared to the vanilla Nabbit
scheduler that does not consider locality. We provide a theoretical analysis that shows that NabbitC does
not asymptotically impact the scalability of Nabbit . We evaluated the performance of NabbitC on a suite
of memory intensive benchmarks. Our experiments indicates that adding locality awareness has a
considerable performance advantage compared to the vanilla Nabbit scheduler. In addition, we also
compared NabbitC to OpenMP programs for both regular and irregular applications. For regular
applications, OpenMP achieves perfect locality and perfect load balance statically. For these benchmarks,
NabbitC has a small performance penalty compared to OpenMP due to its dynamic scheduling strategy.
For irregular applications, where OpenMP can not achieve locality and load balance simultaneously, we
find that NabbitC performs better. Therefore, NabbitC combines the benefits of locality- aware scheduling
for regular applications (the forte of static schedulers such as those in OpenMP) and dynamically
adapting to load imbalance (the forte of dynamic schedulers such as Cilk Plus, TBB, and Nabbit).

https://openscholarship.wustl.edu/cse_research/1167?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1167?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages

Locality-Aware Dynamic Task Graph Scheduling
Jordyn Maglalang∗, Sriram Krishnamoorthy†, Kunal Agrawal∗

∗Washington University in St. Louis †Pacific Northwest National Laboratory
jordyn.maglalang@wustl.edu, sriram@pnnl.gov, kunal@seas.wustl.edu

Abstract—Dynamic task graph schedulers automatically bal-
ance work across processor cores by scheduling tasks among
available threads while preserving dependences. In this paper,
we design NABBITC, a provably efficient dynamic task graph
scheduler that accounts for data locality on NUMA systems.
NABBITC allows users to assign a color to each task representing
the location (e.g., a processor core) that has the most efficient
access to data needed during that node’s execution. NABBITC
then automatically adjusts the scheduling so as to preferentially
execute each node at the location that matches its color—leading
to better locality because the node is likely to make local rather
than remote accesses. At the same time, NABBITC tries to
optimize load balance and not add too much overhead compared
to the vanilla NABBIT scheduler that does not consider locality.
We provide a theoretical analysis that shows that NABBITC does
not asymptotically impact the scalability of NABBIT.

We evaluated the performance of NABBITC on a suite of
memory intensive benchmarks. Our experiments indicates that
adding locality awareness has a considerable performance advan-
tage compared to the vanilla NABBIT scheduler. In addition, we
also compared NABBITC to OpenMP programs for both regular
and irregular applications. For regular applications, OpenMP
achieves perfect locality and perfect load balance statically. For
these benchmarks, NABBITC has a small performance penalty
compared to OpenMP due to its dynamic scheduling strategy. For
irregular applications, where OpenMP can not achieve locality
and load balance simultaneously, we find that NABBITC performs
better. Therefore, NABBITC combines the benefits of locality-
aware scheduling for regular applications (the forte of static
schedulers such as those in OpenMP) and dynamically adapting
to load imbalance (the forte of dynamic schedulers such as Cilk
Plus, TBB, and Nabbit).

I. INTRODUCTION

In recent years, parallel computers have become ubiquitous
and many high-level programming languages and libraries,
such as OpenMP, Cilk Plus, Nabbit, etc. have emerged. These
languages and libraries allow programmers to express the log-
ical parallelism in their programs while the runtime scheduler
schedules the work on the available cores automatically. For
multicores with few cores and uniform access to the memory
hierarchy, these languages and runtime systems provide both
good performance and a relatively simple programming model.

On large multicores with non-uniform memory access
(NUMA), however, locality is an important consideration
since a remote memory access—access to data reachable from
a memory controller that is further away via the on-chip
network—can cost much more than a local memory access.
Regular applications can be structured to implicitly ensure
locality between initialization and subsequent use when using
static schedulers such as in OpenMP. Irregular applications, on
the other hand, require dynamic load balancing which dynamic
schedulers, such as those in OpenMP tasks, TBB, and Cilk
Plus provide. These systems, however, have no notion of the

location of data and often fail to provide good performance
for regular memory-intensive applications.
Ideally, one would like to have a high-level and easy-to-use

programming model which incorporates dynamic scheduling
and locality. We present NABBITC, a locality-aware extension
of a task graph library NABBIT. In the NABBIT programming
model, the programmer expresses computations as a task graph
where each node is a task and edges represent dependences
between tasks. NABBIT is a library built on top of a Cilk
Plus1 and therefore, NABBIT programs are scheduled using
a provably good work-stealing scheduler. This paper makes
NABBIT locality aware by allowing the programmer to give
locality hints to the scheduler using a simple coloring scheme.
In particular, we make the following contributions.

1. We extend the interface so that the programmer can
provide a color to each task; if a task is colored a color
c, then the data used by this task is local to processor with
color c. Multiple nearby cores can have the same color.

2. We modify both the NABBIT library and the Cilk Plus
runtime system to allow processors to preferentially execute
tasks that share the color with them. Therefore, if the
user provides “correct coloring”, then workers preferentially
execute tasks that access local data, thereby reducing the
expensive remote accesses.

3. NABBITC tries to strike a balance between improving
locality and preserving the guarantees of low overhead and
good load balance provided by NABBIT. We prove that
NABBITC, by and large, preserves the asymptotic guaran-
tees provided by NABBIT. In particular, for reasonable task
graphs—those with enough parallelism and where tasks of
all colors appear near the root of the graph—NABBITC
provides nearly asymptotically optimal speedup.

4. We evaluated the performance of NABBITC on a suite
of memory intensive applications and find that it succeeds
in providing both good load balance and good locality. It
consistently out performs vanilla NABBIT due to improve-
ments in locality. In addition, on PageRank, an exemplar
irregular benchmark, NABBITC outperforms OpenMP static
and guided scheduling strategies by combining dynamic
load balancing and locality awareness.

II. BACKGROUND

In this section, we describe NABBIT, a high-level task-graph
scheduling library built on top of the Cilk Plus runtime system.
We outline the NABBIT programming model and show how
NABBIT recursively executes task graphs in parallel. We also

1It was originally designed to be built on top of Cilk++, but it is trivial
to port to Cilk Plus. Indeed, it was designed so that it can be ported to any
programming language that supports fork-join parallelism.

Thread 1 Thread 2

a

a

b

b

c

c

d

d

e

e

f

f

h

h

i

i j

j

a) b) c)

Fig. 1: NABBIT scheduling examples presented in two stages. A
thread surrounding a node denotes that thread is processing that node.
A solid line from a to b denotes that b is a predecessor of a while a
dashed line from b to a denotes that a is in b’s successor list.

provide a brief overview of the GCC Cilk Plus implementation
upon which NABBIT is built.

NABBIT task-graph scheduling. NABBIT schedules task
graphs through static and dynamic exploration of the task
graph. A NABBIT task graph is a directed acyclic graph
with a set of explicit nodes that represent tasks and edges
that represent dependences between tasks. Each node u in
the task graph specifies its predecessors—tasks that have
edges to u and therefore must be executed before u can be
processed. For this paper, we will use the terms node and task
interchangeably.
We summarize the key aspects of the NABBIT dynamic

task graph scheduler (more details in Agrawal et al. [1]). One
interesting property of NABBIT is that it computes nodes on

demand. The scheduler takes an input specified in the form of
a sink node, whose execution completes the execution of the
task graph. Upon creation, this node has a list of predecessors
and no successors. The sink node together with the predecessor
specification transitively identifies all vertices that need to be
executed to compute the sink node. The scheduler actions:

1) To process a node, a thread initializes the node and its list
of predecessors and proceeds to execute them in a recursive
parallel depth-first fashion. Consider the example in Figure
1a. When thread 1 wants to process a and finds that b and
c are its predecessors that have not been initialized, it goes
ahead and tries to process one (b in this case). While b is
being processed, another thread can steal c.

2) When processing a node’s predecessor, if a thread finds that
some predecessor has already been initialized by some other
thread but has not finished executing, the thread adds the
current node to the predecessor’s successor list and moves
on. In Figure1b, thread 1 is processing d while thread 2
is processing e. f is a predecessor of both d and e. Each
thread will try to initialize the predecessor f but only one
will succeed, in this case thread 1. Thread 2 is attaches e
to f ’s successor list and tries to find other work to do.

3) After a node is computed, the thread checks if there are any
enqueued successors and if so, determines if those succes-
sors are ready to execute (i.e., have no other predecessors
on which they are waiting). In the event that a successor
is ready, the thread will recursively execute that node. In

Figure 1c, both nodes i and j have h enqueued in their
successor lists. Thread 1 computes i and checks if h is ready
to execute. Since h still depends on j, thread 1 moves on.
Thread 2, after computing j checks h, sees that it is ready
and proceeds to execute it.

This procedure ensures that a node is computed only after
all its (transitive) predecessors have been computed, ensuring
correctness. In addition until an initialized node u is computed,
it is (a) either in a thread’s stack, (b) in a successor list, or (c)
is a predecessor of an initialized node. This guarantees that
every node u will be inspected and executed eventually. Also,
this ensures that the sink node, and thus whole task graph, is
executed to completion.
Atomicity choices ensure the absence of data races. The

predecessor and successor lists allow threads to execute with-
out blocking/waiting for any action by another thread. The
recursive parallel design allows for the implementation of the
NABBIT’s scheduler as a Cilk Plus program. All vertices in
either the predecessor or successor lists can be executed in par-
allel. In addition, NABBIT ensures that no ordering constraints
other than those implied by the predecessor relationships is
imposed on the execution: a node u is ready to execute
immediately after all its predecessors have been computed
and unless every processor is busy doing other work, some
processor will find and execute u. This ensures that NABBIT

does not alter the task graph’s critical path length, enabling
the scheduler to guarantee asymptotic optimality. Essentially,
if the task graph itself has a parallelism of at least P , then
NABBIT guarantees that it gets Ω(P) speedup on P processors
for most reasonable task graphs. In addition, since it leverages
the Cilk Plus work-stealing scheduler and uses distributed
processing, NABBIT provides low overheads. These properties
of asymptotic optimality and low overheads are not normally
achieved by other task graph schedulers, such as scheduler
currently used in OpenMP’s SMPSs [2], since they do not
process nodes on demand.
GCC Cilk Plus We compile NABBIT using the GCC

implementation of Cilk Plus, an extension to C++. Cilk Plus
is a processor oblivious language—the programmer expresses
the logical parallelism of the program using three keywords
without any reference to how many threads must execute the
program and how. The cilk_spawn keyword indicates that the
succeeding function can execute in parallel with its continua-
tion. The cilk_sync keyword is a local barrier; all previously
spawned functions by current function must complete before
the program execution can move this statement. Cilk Plus also
provides a parallel_for keyword, which indicates that all itera-
tions can be executes in parallel. This keyword is essentially
syntactic sugar and is implemented using spawns and syncs.
The Cilk Plus runtime system uses randomized work steal-

ing to schedule these fork-join programs on P available cores.
The program executes on P worker threads, one for each core
in the target machine. Each worker has a local deque of work.
When a worker p executing function foo spawns a function
bar, the frame corresponding to the caller foo is placed at the
bottom of the p’s deque and p starts executing bar. When p
returns from a function, it pops the function at the bottom of
its deque and continues executing. (If executing on one thread,

1 class DynamicNabbitNode:
2 Key key //this node’s key
3 List<Key> predecessors //List of predecessors’ keys
4 List<DynamicNabbitNode ∗> successors //List of successor

nodes
5 virtual void init() //initialize this code (user−defined)
6 virtual void compute() //compute this task representing this

node (user−defined)
7 int color() = color(node.key) //helper function: this node’s color

9 int color(Key key) //user−defined function mapping a key to its
color

Fig. 2: NABBITC abstract class interface
the program follows the normal depth-first execution followed
by C or C++.) If worker q’s deque is empty, it becomes a
thief, picks a random victim worker, say p, steals the top frame
from p’s deque, and starts executing it. If a steal attempt is
unsuccessful, meaning that the victim had an empty deque,
then the thief continues to steal until it finds work.The Cilk
Plus compiler inserts code at spawns and syncs to ensure that
deques are managed correctly. In addition, when a worker’s
deque is empty, it makes calls into the runtime to make sure
that steals occur correctly.

III. NABBITC DESIGN

In this section, we describe our extensions to NABBIT to
specify colors, propagate this information through the runtime,
and extend the scheduler to be take into account task colors.
Throughout this section, we will present the relevant NABBIT

interface and the NABBITC extensions for color-aware task
graph scheduling.

NABBITC interface

Recall that in NABBIT, users model their computation as
a task graph, where nodes are tasks to be computed and
edges represent data dependencies between computations. Al-
gorithm 2 shows the abstract class interface for defining nodes
and their data dependencies. All nodes in a task graph dynam-
ically scheduled by NABBIT inherit from DynamicNabbitNode

class and implement the member functions shown in Algo-
rithm 2. The init() and compute() functions serve to initialize
node parameters and perform the computation represented by
the node, respectively. Each task (node in the task graph) is
associated with a unique key. The user also specifies the list of
predecessors, identified by their keys, this node depends on in
the predecessors array. In addition to the information on tasks
and their dependencies needed by original NABBIT, NABBITC
requires the user to define a color() function that returns a
node’s color. This function definition serves as the mechanism
for the user to provide locality information to NABBITC and is
the only additional piece of information the user must provide.
We now present extensions to NABBIT and the underlying

Cilk Plus runtime that together constitute the NABBITC infras-
tructure to exploit this color information to optimize locality.

Designing a locality-guided task-graph scheduler

NABBITC attempts to achieve multiple goals during
scheduling: (1) improve data locality by executing nodes of
the same color as the executing processor; (2) achieve good
load-balance for the computation as a whole; and (3) intro-
duce minimal overhead into the original NABBIT scheduling

1 //Recursively spawn colors using morphing continuations
2 void spawn_colors(colors):
3 if len(colors)==1:
4 spawn_nodes(colors[0])
5 else
6 c_p = /∗this worker’s color∗/
7 /∗split available colors into two halves∗/
8 first_half = colors[0:len(colors)/2]
9 second_half = colors[len(colors)/2:]

10 if c_p in second_half.keys():
11 swap(first_half, second_half)
12 cilkrts_set_next_colors(second_half.keys())
13 cilk_spawn spawn_colors(first_half)
14 spawn_colors(second_half)
15 cilk_sync

17 //Recursively spawn nodes of the same color
18 void spawn_nodes(nodes):
19 if len(nodes)==1:
20 if nodes[0] is a successor:
21 if nodes[0] is ready:
22 nodes[0].compute_and_notify()
23 else: /∗predecessor key∗/
24 try_init_compute(this,nodes[0])
25 else:
26 color = nodes[0].color() /∗all nodes have same color∗/
27 first_half = nodes[0:len(nodes)/2]
28 second_half = nodes[len(nodes)/2:len(nodes)]
29 cilkrts_set_next_colors(color)
30 cilk_spawn spawn_nodes(first_half)
31 spawn_nodes(second_half)
32 cilk_sync

Fig. 3: Pseudo-code for color-aware spawning of a set of nodes
in NABBITC using morphing continuations. We use a hybrid
C++/Python syntax to enhance readability.

pathway. Extending the NABBIT task-graph scheduling library
to make use of user-provided locality information involves
altering how Cilk Plus workers find and determine what to
work on. We introduce two specific changes to NABBIT in
order to implement this change in policy: (1) color-aware

scheduling using morphing continuations allow workers to
reorganize work so that they may preferentially execute nodes
that have the same color as theirs and (2) colored steals allow
Cilk Plus workers to find work of their color from the current
set of stealable frames. In order to implement these policies,
we must also change the Cilk Plus runtime system. We now
describe these changes.
Color-aware execution order using morphing continua-

tions. The primary source of concurrency in NABBIT is the
concurrent processing of all predecessors or successors2 of a
given node. As explained in Section II, NABBIT enables this
by spawning the execution of all predecessors (or successors)
in parallel using a parallel for loop. NABBIT is oblivious to the
order in which these nodes are processed. NABBITC, however,
extracts colors from this list of nodes in order to preferentially
process nodes with colors that would improve locality.
The crucial function for this purpose is the function

spawn_colors shown in Algorithm 3. This function is called
on a list of colors colors (and implicitly, a set of nodes which
have these colors). At a high-level, when a processor with
color c_p is executing this function, it tries to execute the
nodes with color c_p by recursively calling spawn_colors on

2As described in Section II, NABBIT implicitly maintains successors array
for each node u and NABBIT may push successor nodes into it when they
must wait for u to complete.

1 /∗Helper functions to obtain colors∗/
2 int color(DynamicNabbitNode node):
3 return node.color()
4 int color(DynamicNabbitNode ∗node):
5 return node−>color()

7 /∗Gather list of spawns based on their color.
8 T = Key (for predecessor list) or
9 T = DynamicNabbitNode (for successor list)∗/

10 auto gather_colors(T nodes):
11 //group nodes based on their colors
12 Map<int,List<T>> colors
13 for n in nodes:
14 colors[color(n)].add(n)
15 return colors

17 /∗Initialize this (already created) node and compute∗/
18 void init_node_and_compute():
19 this.init()
20 colors = gather_colors(this.predecessors)
21 spawn_colors(colors)
22 if all this.predecessors have been computed:
23 this.compute_and_notify()

25 /∗Try to initialize node’s predecessor with key pkey ∗/
26 void try_init_compute(node, pkey):
27 //atomically attempt to create a predecessor with key pkey
28 pred = /∗reference to node for key pkey∗/
29 if /∗creation succeeded∗/:
30 pred.init_node_and_compute()
31 else: /∗already created by this or some other thread∗/
32 atomic pred.successors.add(node) //enqueue

34 /∗compute a node and notify its successors∗/
35 void compute_and_notify():
36 this.compute()
37 while /∗there are new successors in this.successors∗/:
38 colors = gather_colors(this.successors)
39 spawn_colors(colors)

Fig. 4: Key routines to spawn predecessors and successors in
NABBITC.

the half of the list that contains c_p. Once it reaches the base
case (the set colors contains only one color), it then spawns all
the nodes of color c_p using the function spawn_nodes. This
function spawn_nodes is essentially a parallel-for loop over the
nodes of this color.
The function spawn_colors re-organizes the order in which

nodes are spawned so that the nodes of the preferred color
c_p are spawned first, implementing what we call a morphing

continuation. The particular strand that is spawned and the
continuation of the strand depends on the color of the proces-
sor which is doing the spawn. Another important thing to note
about this code is that if the preferred color c_p is not present
in the list, the function will spawn the nodes in the original
ordering of the list — therefore, a worker does not stall even
if it can not find the work of its color.
The function spawn_colors is called in three places in the

NABBITC library. Algorithm 4 shows the actions to initialize
and execute a node. init_and_compute() acquires the colors of
the current node’s predecessors and invokes spawn_colors() if
there exist more than one. Similarly, when spawning the list
of successors, compute_and_notify() collects the set of colors for
the list of successors and invokes spawn_colors() if there are
more than one. Finally, spawn_colors is a recursive function
which is also called by itself.
This morphing continuation design allows us to use the

same mechanism in two scenarios. First, when a processor

spawns the predecessors (or successors) if the node it is
currently working on, it uses spawn_nodes to preferentially
execute the predecessor(s) (or successor(s)) of its own color.
Second, and the more subtle point, is as follows. Note that in
Cilk Plus, when a thief worker steals a task after the spawn
of a function3, it executes the function’s continuation. Since
spawn_colors is recursive, when a worker steals a continuation,
the first statement is executes is spawn_colors. Therefore, the
thief also preferentially executes the nodes of its color using
the same mechanism.
Colored Steals: When a worker has no assigned work,

either because it has run out of local work or is at the start of
execution, we want that worker to acquire work of its preferred
color if possible. In order to do so, we change the stealing
policy of Cilk Plus to allow colored steal where a worker
checks a deque and only steals the work (continuation) at the
top of the deque if that continuation contains some node of this
worker’s preferred color. We will describe the implementation
below — we first describe our policy details about when we
do colored steals vs. random steals.
One of the goals of NABBITC is to strike a reasonable

balance between locality — workers preferentially execute
work of their color — and load balance — workers are not
idle for too long. In order to do so, we make two changes to
the standard Cilk Plus policy of random steals. First, when a
worker p with color cp runs out of work, it does a constant
number of colored steal attempts before attempting a random
steal. That is, it randomly picks a victim worker q and checks
if the frame on the top of q’s deque has any tasks of color cp
— if so, it steals this frame making this a successful colored
steal. If not, it tries again. If it fails on a constant number
of colored steal attempt, it makes a random attempt where it
steals whatever is on the top of the victim worker’s deque
regardless of whether it has a task of color cp or not. This
policy makes sure that p tries to find work of its own color,
but then also maintains provable load balance guarantees (as
shown in Section IV) by greedily doing any work available if
it can not easily find work of its color.
There is an exception to this policy, however, at the begin-

ning of the computation. At the beginning of the computation,
one worker starts out with executing the root node and all
other workers are stealing. At this time, if a worker begins
execution in a region of a task graph with no tasks of its
preferred color, it will continue executing the available non-
preferred tasks until all work is exhausted (as explained in the
morphing continuations section). In addition, often, the first
steal represents a significant amount of work (conceptually
corresponding to nodes higher up in the task graph or compu-
tation tree) and a random first steal can potential to lead poor
locality. Therefore, we enforce that the first steal a worker
performs is a successful colored steal. After the first steal, the
worker follows the policy explained above. This enforcement
does affect Cilk’s time bound, which we explore in Section IV.
In our experiments, we found that if all colors are available at
the root of the task graph, this time to first work (successful
steal) is agnostic to the application, is strictly determined by

3A task is represented at runtime by the task’s stack or activation frame

1 void cilkrts_set_worker_color(int color)
2 void cilkrts_set_next_colors(List<int> colors)

Fig. 5: Extensions to the Cilk Plus RTS API to inform the
runtime of the worker’s preferred color and the colors available
in a continuation.
the number of processors, and, in general, has a small impact
on the overall execution time.
We now describe the changes made to both NABBIT and

Cilk Plus in order to implement the colored steal policy.

Color-aware GCC Cilk Plus runtime

We make the GCC Cilk Plus runtime color aware by making
the following changes. First, we add two additional functions
to the Cilk Plus API, shown in Algorithm 5, that allows
NABBITC to provide color information to the runtime system.
The first function is straight forward and is simply used by
each worker to set the color of this worker. We pin worker
threads and assign them a unique color based on their thread
id. The second one is used to implement colored steals and
requires more explanation. Recall that in order to do colored
steals, a thief worker must be able to tell which color nodes
are available in the frame that is on the top of victim worker’s
deque. This API allows NABBITC to pass this information
to Cilk Plus runtime. In particular, before every cilk_spawn,
NABBITC calls cilkrts_set_next_colors() to inform the Cilk Plus
runtime about which colors are available in the continuation.

The Cilk Plus runtime is also changed with respect to what
it does on spawns. At each spawn, the vanilla Cilk Plus pushes
the frame of the currently executing function into a worker’s
deque — allowing some other worker to steal the continuation
of the spawn. To enable colored steals, we maintain a color
deque alongside the work deque to hold the colors available in
each continuation. When NABBITC calls cilkrts_set_next_colors

with a set of colors before the spawn statement, this set of
colors is pushed at the bottom of the color deque — therefore,
each continuation on the work deque has a corresponding set
of colors on the color deque.
Now it is easy to see how one can implement colored steals.

When a worker p wants to do a colored steal, it simply checks
to see of color cp (p’s preferred color) is in the set of colors
on the top of victim’s color deque. If so, it pops the top of
both the color deque and the work deque and puts them on the
top of its corresponding deques making it a successful colored
steal. Since the number of colors is determined by the number
of workers, we make each entry in the colored deque a fixed
length array of boolean flags indicating colors contained in
the corresponding continuation. This makes the thief’s check
a constant time operation.

Setting continuation colors in NABBITC: As mentioned
above, NABBITC must set colors of continuation at each
spawn using cilkrts_set_next_colors function. This is done on
Lines 12, 29, etc within the code in Figure 3. Note that this fits
in seamlessly with the design of morphing continuations. At
each spawn, we know exactly which colors are available within
the spawn and which are available within the continuation.
Therefore, NABBITC can easily notify Cilk Plus of the colors
available in the continuation by simply telling it which colors
are available in the second call to spawn_colors.

Optimizing locality through coloring

NABBITC requires that the user intentionally distribute data
across their system and provides a coloring that captures
computation locality. We rely on the user knowing how best
to distribute data (but not partitioning work among threads),
although in many cases an even distribution is sufficient. The
coloring the user provides to NABBITC is intended to capture
the locality of work performed, based on their data initializa-
tion. For this we make two assumptions about color: (1) that
data initialized by each individual worker thread is given a
unique color and (2) that each node of the computation task-
graph is assigned a single color. Requiring the user to describe
each node with a single color can lead to some information loss
about a node’s locality. For example, a node (corresponding
to a task) can require data from multiple colored regions and
a single color cannot comprehensively describe the node’s
locality. In these scenarios, the user specifies the node’s color
to be the one that maximizes locality for that node.

IV. ANALYSIS OF COMPLETION TIME

We now present a simple analysis showing that the mod-
ifications made to NABBIT do not negatively effect the
asymptotic runtime—this implies that NABBITC also provides
almost asymptotically optimal load balancing for programs
that have enough parallelism.
Just as in the NABBIT paper [1], say, we are given a task

graph G = (V,E), where each node u has work W (u). Also,
say that s is the unique node with zero in-degree and t is
the unique node with zero out-degree. If these nodes are not
unique, we can trivially add dummy root and final nodes.
Define M as the number of nodes on the longest path in V
from the source s to the sink t.

We can define the work T1 as the time it takes to execute
the task graph on a single processor and span T∞ as the time
it takes to execute it on an infinite number of processors.
Therefore, the work is T1 =

∑
u∈V W (u) + O(|E|). The

second term is due to the fact that each edge needs to be
checked to make sure that it is satisfied. Similarly, we the
span is T∞ = maxp∈paths(s,t){

∑
u∈p W (u) + O(M)} since

nodes along any path through V can not execute in parallel.
By the work and span laws [3, p. 780], the completion time
on P processors for a task graph is at least max{T1/P, T∞}.
We will prove the following theorem—the analysis is a

small extension to the analysis of runtime for NABBIT.

Theorem 1. For task graph G = (V,E) with maximum degree

d, NABBITC executes G in time O(T1/P + T∞ + M lg d +
lg(P/ǫ) + C) time on P processors with probability at least

1 − ǫ where C is the amount of time each worker spends at

startup trying to find a node of its own color.

This theorem is similar to the theorem proved for NAB-
BIT [1] apart from the last term C. The main difference
between NABBIT and NABBITC is the fact of colored steals.
In particular, when a worker runs out of work in NABBIT, it
performs a random steal. On the other hand, when a worker
runs out of work in NABBITC, it first checks a constant
number of deques to see if it can find work of its own color
and only performs a random steal if all these checks fail. In

addition, at the start of the computation, NABBITC forces a
colored steal and each processor may make C checks to find
a node of its own color where C may not be a constant.

Lemma 1. The total number of colored steals performed by

NABBITC is O(W+S+PC) where S is the number of random

steal attempts, W is the number of steps the processors spend

working on computation nodes, and C is the number of checks

each processor performs at the beginning of the computation.

Consequently, the total number of colored steals is bounded

by O(T1 + PT∞ + PM lg d+ P lg(P/ǫ) + PC)

Proof: Trivially, the number of checks at the beginning
of the computation is PC since each processor performs at
most C of them. After this, after a constant number of checks,
a processor has either found work (therefore, these checks
are bounded by O(W)) or the processor performs a random
steal (these checks are bounded by O(S)). Summing these up
gives us the result. The NABBIT analysis proves that the total
number of work steps in the computation is at most T1 and
the total number of steal steps is at most O(PT∞+PM lg d+
P lg(P/ǫ)). This gives us the desired bound.

At any step, a worker is either working, doing a random
steal, or doing a colored steal. Therefore, the total number
of processor steps is bounded by O(T1 + PT∞ + PM lg d+
P lg(P/ǫ) + PC) Since there are a total of P workers, we
can divide by P to get the desired running time.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate NABBITC by comparing it’s
performance against original NABBIT and OPENMP. In par-
ticular, we try to answer the following questions:

• How well does NABBITC address locality deficiencies in
NABBIT? We answer this question using benchmarks in
which locality-optimized and load balanced schedules can
be created using static scheduling of OPENMP and find that
NABBITC provides much better performance than NABBIT

and performance comparable to OPENMP.
• How well can NABBITC improve data locality while pre-
serving the dynamic load balancing benefits from NABBIT?
We answer this question using the PageRank benchmark,
which cannot be easily statically scheduled, using different
data sets. In this case, NABBITC really shines and performs
better than both OPENMP and NABBIT.

• To what extent does NABBITC improve data locality? We
find that NABBIT has significantly fewer remote accesses
compared to NABBIT.

• Does the use of colored steals increase the overall cost
to find work as compared to random stealing? We find
that while the cost of enforcing the first colored steal is
significant, NABBITC makes up for this overhead by having
fewer steal attempts later.

• What is the impact of the choice of colors by the user? We
consider the behavior of NABBITC using two particularly
bad color choices and compare its behavior with NABBIT.

In general, NABBITC shines on benchmarks with irregular
memory access patterns, remains competitive with OPENMP
when memory accesses are more regular, and almost always

outperforms original NABBIT. We observe that our modifica-
tions to NABBIT and Cilk Plus introduce minimal overheads,
affording performance gains due to a reduction in remote
memory accesses when a good coloring is provided.

Experimental Setup: All our experiments were performed
on an 80-core NUMA machine with 8 Intel Xeon E7-8860
2.27GHz 10-core processors and 1TB of collective DRAM.
The machine uses Red Hat Linux 4.4.7-9 configured with 4KB
pages. We use a stable GCC 4.9.0 build from the gcc-cilkplus
branch for compiling our OPENMP and NABBIT benchmarks
and extend this build for NABBITC.

Benchmarks and Baselines: We will compare NABBITC
performance to NABBIT and OPENMP. OPENMP offers mul-
tiple scheduling strategies for parallel for loops. The OPEN-
MPSTATIC policy simply divides up the iteration space evenly
among workers while OPENMPGUIDED dynamically load
balances using adaptive block sizes.
Table I details the benchmarks and input configurations

used. We selected various memory-bound applications to
demonstrate the importance of achieving good locality when
scheduling task-graph computations. The first five benchmarks
exhibit regular memory access patterns. We consider these
benchmarks to demonstrate the limitations of a dynamic task
graph scheduler such as NABBIT that does not account for lo-
cality, and evaluate the potential for NABBITC to address these
limitations. For these benchmarks, OPENMPSTATIC performs
very well if we match the initialization and computation loops;
as explained later, this strategy provides optimal locality to
regular applications even without locality hints. Therefore, we
only compare against this OPENMP strategy since it always
performs better than OPENMPGUIDED.
PageRank iteratively computes the PageRank using the

power method [7]. This benchmark exhibits access patterns de-
pendent on the graph structure, with varying amounts of work
per vertex. We consider three data sets from web crawls [4]
that vary in size and graph structure. Specifically, twitter-2010
shows wider variation in its connectivity (e.g., much larger
maximum out-degree) than the other data sets considered. On
this benchmark, we compare against both OPENMPSTATIC
and OPENMPGUIDED strategies for this benchmark.
The Smith-Waterman dynamic program [8] benchmarks

exhibit highly regular memory access patterns. We have imple-
mented the wavefront computation in OPENMP, which must
synchronize at each diagonal step. In NABBIT and NABBITC,
we model the entire computation as a task-graph, exposing
more parallelism.

Coloring strategy: In all benchmarks, we used OPENMP
to distribute data evenly across the machine, with each proces-
sor core initializing a unique region of the data. Each thread
is pinned to a processor core and given a unique color. During
initialization, each data region is colored based on the color of
the thread that initializes it. For regular benchmarks, we group
the data accessed by each node based on their color, and pick
the color corresponding to the largest fraction of data as the
node’s color. This color function, provided by the user, can be
implemented efficiently for regular benchmarks. Computing
the largest color is expensive for irregular benchmarks such as
PageRank, where the accesses are data-dependent and involve

Benchmark Description Problem size Iterations Task graph Serial OPENMPSTATIC

nodes time (seconds)

cg NAS conjugate gradient NA = 900000, NNZ = 26 1 300 309
mg NAS multigrid n{x, y, z} = 2048, LM = 11 1 16384 690
heat Heat diffusion stencil n = 16384, m = 655360 5 102400 377
fdtd Finite difference time domain n = 16384, m = 655360 5 102400 970
life Conway’s game of life n = 16384, m = 655360 5 102400 275
page-uk-2002 PageRank (power method) uk-2002 dataset nv = 18M, ne = 298M 10 1800 198
page-twitter-2010 PageRank (power method) twitter-2010 dataset nv = 41M, ne = 1468M 10 4100 1025
page-uk-2007-05 PageRank (power method) uk-2007-05 dataset nv = 105M, ne = 3738M 10 10500 900
sw Smith-Waterman (n3) {n,m} = 5120, B = 32x32 1 25600 450
swn2 Smith-Waterman (n2) {n,m} = 131072, B = 1024x1024 1 16384 179

TABLE I: Benchmark configurations and serial OPENMPSTATIC execution time. The PageRank benchmarks use the same
code with three different web crawl datasets [4], [5], [6].

a large number of irregular accesses. In PageRank, each task
takes a block of pages as input, which are accessed regularly,
and updates the ranks of pages linked to them, which are
accessed in an irregular fashion. The irregular accesses while
traversing the links are not avoidable. Therefore, we color each
task based on the block of pages it takes as input.

A. Overall performance

We now demonstrate the effect of locality-guided schedul-
ing on the overall performance. In Figure 6, we present
the speedup achieved by OPENMP, NABBIT, and NABBITC
over serial execution. Error bars show standard deviation
across five runs. In general, NABBITC outperforms NABBIT

when the problem is sufficiently large. NABBITC shines best
with larger irregular PageRank benchmarks, where the impact
of locality is more prominent, while remaining competitive
with OPENMP on the stencils and NAS benchmarks and
outperforming OPENMP for the Smith-Waterman dynamic
programs.
We see that in cg, when there are very few nodes in the

task graph, NABBITC’s benefit over original NABBIT becomes
negligible because processor cores have few nodes to work
with. With mg, heat, fdtd, and life, when there are many nodes
in the task graph, NABBITC is able to continue getting good
performance while original NABBIT suffers due to its locality-
obliviousness. For these benchmarks, we see that OPENMP
consistently performs best. When threads are pinned and the
computation loops are scheduled in the same way as the data
initialization loops, OPENMP achieves the maximum locality
possible despite not having received any explicit locality hints
from the programmer. In addition, it also achieves good load
balance, since each iteration does approximately equal amount
of work. For these benchmarks, NABBITC’s performance
approaches that of OPENMP, whereas NABBIT’s scalability
suffers with increase in core count. For PageRank, OPENMP
is not able to maintain its consistency in performance because
it is no longer able to achieve locality and load balance simul-
taneously due to the irregular nature of this application. We
see that for larger problems (indicated by the problem size and
the larger serial execution time), NABBITC scales better than
original NABBIT, OPENMPSTATIC, or OPENMPGUIDED. For
SmithWaterman we see that with the unavoidable remote
accesses inherent in the algorithms, NABBITC and NABBIT

perform comparably. Both, however, are able to exploit more
parallelism than the wavefront OPENMP implementation and

edge out ahead.

B. Locality impact of NABBITC’s scheduling strategy

We now look closer at the locality achieved by NABBITC
during the execution of these benchmarks. Because counting
each memory reference might be expensive4, we perform this
check at the node level in the task graph. This consists of two
parts. Note that each of our evaluation system consists of eight
NUMA domains, each with 10 cores. First, for each thread,
we count the number of nodes it executes that are not the
same color as any thread in the same NUMA node. Second,
for each thread, we check all predecessors of executed nodes,
and count those that are not the same color as any thread
in the same NUMA node. Sum of these counts across all
threads is reported as the number of remote accesses. For the
regular benchmarks, we can compute this as the benchmarks
execute without perturbing the execution. For PageRank, this
instrumentation can significantly perturb the execution time.
Therefore, we track the nodes executed by each thread to
record the schedule used in the timing runs. This schedule
is replayed to compute the percentage of remote accesses.
Figure 7 shows the percentage of accesses that are remote

for NABBIT, NABBITC, and OPENMPSTATIC, on 20 or more
processor cores (smaller core counts fit in one NUMA domain
and do not incur remote accesses). Because NABBIT relies
on the random steals in Cilk Plus to disseminate work, the
percentage of remote accesses increases with scale, ranging
from 45% to 88%, exhibiting a consistent trend across all
benchmarks. The introduction of colored steals significantly
decreases the percentage of remote accesses. For all bench-
marks except twitter-2010 and the Smith-Waterman bench-
marks, NABBITC incurs 0% to 9% remote accesses. Impor-
tantly, unlike in the case of NABBIT, this percentage does
not strictly increase with scale for the regular benchmarks.
All strategies incur a high percentage of remote accesses for
twitter-2010 and Smith-Waterman.
For regular applications, OPENMPSTATIC incurs almost

no remote accesses, as we expect from how the data is
initialized. For PageRank, OPENMPSTATIC still has fewer
remote accesses than NABBITC; however, as we saw above, it
does not have good performance since it is unable to provide
good load balance. This result indicates the importance of both
locality and load balance—while NABBIT provides great load

4We were limited by OS version and available hardware counters and were
unable to measure remote accesses, stall cycles, etc.

0 1020304050607080

cg

0

5

10

15

20

25

S
p
e
e
d
u
p

0 1020304050607080

mg

0

5

10

15

20

25

30

0 1020304050607080

heat

0

5

10

15

20

25

30

35

40

45

0 1020304050607080

fdtd

0

5

10

15

20

25

30

35

40

0 1020304050607080

life

0

10

20

30

40

50

60

0 1020304050607080

page-uk-2002

0

5

10

15

20

S
p
e
e
d
u
p

0 1020304050607080

page-twitter-2010

0

5

10

15

20

0 1020304050607080

page-uk-2007-05

0

5

10

15

20

25

0 1020304050607080

sw

0

10

20

30

40

50

0 1020304050607080

swn2

0

5

10

15

20

25

30

35

40

OPENMPGUIDED OPENMPSTATIC NABBIT NABBITC

Fig. 6: Speedup for all benchmarks. x-axis: number of threads (processor cores); y-axis: speedup over serial OPENMPSTATIC.

a) NABBITC

0
500

1000
1500
2000
2500
3000
3500
4000

cg

mg

fdtd

heat

life

uk02

twitter

uk07

sw

swn2

0 10 20 30 40 50 60 70 80

b) NABBIT

0

5000

10000

15000

20000

25000

30000

35000

40000

Fig. 8: Average number of successful steals for (a) NABBITC
and (b) NABBIT. x-axis: number of cores; y-axis: Average
number of successful steals

balance and OPENMPSTATIC provides great locality, NAB-
BITC performs better than both on this irregular benchmark
since it simultaneously considers both metrics.

C. Overheads due to colored steals

The two sources of overhead for NABBITC arise from re-
quiring a constant number of colored steals before performing
random steals and forcing the first steal to be a colored steal.

1 2 4 10 20 40 60 80

Processor cores

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

T
im

e
(s

)

Fig. 9: Average idle time per processor core (across all
processor cores and runs) due to forcing the first colored steal
for the heat benchmark. Error bars show standard deviation
across five runs among all processor cores. We observed this
time was the same for all benchmarks.

Effect on total steals: We now look at the comparison
of NABBITC and NABBIT at a more fine-grained level. In
Figure 8 we see that NABBITC, perhaps counter-intuitively,
performs far fewer total successful steals than NABBIT. The
introduction of colored steals, and specifically enforcing the
first colored steal, helps to significantly reduce the total
number steals by ensuring that thieves acquire nodes higher
up in the task graph to start with. Due to the depth-first
nature of the scheduler, nodes higher up in the task graph
have more potential work. Therefore, by ensuring thieves
begin with nodes connected to the root, NABBITC is able to
effectively increase the amount of work each worker begins
with, reducing the total number of steals required.

Overhead due to enforcing first colored steal: To calcu-
late the overhead of ensuring that the first steal is a colored
steal, Fig. 9 shows the average amount of time processor cores

20 40 60 80
mg

20 40 60 80
cg

20 40 60 80
heat

20 40 60 80
life

20 40 60 80
fdtd

20 40 60 80
page-uk-2002

20 40 60 80
page-twitter-2010

20 40 60 80
page-uk-2007-05

20 40 60 80
sw

20 40 60 80
swn2

NABBITC NABBIT OPENMPSTATIC

Fig. 7: Percentage of accesses that are to data in remote NUMA domains. We show percentages for 20–80 cores (1–10 cores
fit in one NUMA domain and do not incur remote accesses). x-axis: core count; y-axis: Percentage of accesses that are remote.

P cg mg heat fdtd life uk-02 twitter uk-07 sw swn2

20 0.96 0.76 0.66 1.08 0.65 0.75 0.83 0.76 0.76 0.66
40 0.97 0.88 0.78 1.10 0.77 0.83 0.55 0.94 0.88 0.78
60 0.96 0.97 0.95 1.08 0.94 0.89 0.49 1.02 0.97 0.95
80 1.02 0.96 0.93 0.94 0.97 0.91 0.41 1.02 0.96 0.93

0.98 0.89 0.83 1.05 0.83 0.85 0.57 0.93 0.89 0.83
0.02 0.08 0.12 0.06 0.13 0.06 0.16 0.11 0.08 0.12

TABLE II: Speedup of NABBITC over NABBIT when all tasks
are assigned bad colors resulting in preferential execution of
non-local tasks. S.D. denotes standard deviation.

P cg mg heat fdtd life uk02 twitter uk07 sw swn2

20 1.03 0.99 0.94 1.06 0.93 1.03 1.12 1.12 0.99 0.94
40 1.02 0.99 0.99 1.04 0.92 0.97 1.09 1.10 0.99 0.99
60 0.99 0.98 0.94 1.03 0.92 0.98 1.01 1.08 0.98 0.94
80 1.06 0.97 0.88 0.91 0.98 0.94 1.07 1.07 0.97 0.88

1.03 0.99 0.94 1.01 0.94 0.98 1.07 1.09 0.99 0.94
0.02 0.01 0.04 0.06 0.03 0.03 0.04 0.02 0.01 0.04

TABLE III: Speedup of NABBITC over NABBIT when all tasks
are assigned invalid colors resulting in failure of all colored
steal attempts. S.D. denotes standard deviation.

spent waiting to acquire work for the heat benchmark. We
observed that the times were very similar for all other bench-
marks and do not present them here due to space limitations.
While this overhead can be substantial, it is agnostic to the
application, provided there is at least one node from each color
connected to the root. This startup cost can be amortized out
with larger, longer running benchmarks. Additionally, recall
that we observed that, in practice, enforcing the first colored
steal results in far fewer total number of steals which makes
up for this overhead.

D. Importance of good coloring

Overheads with invalid coloring: To evaluate this worst
case overhead from attempted colored steals, we assigned all
nodes an invalid color (no worker has this color), ensuring that
all colored steals fail. Therefore, this version of NABBITC be-
haves like original NABBIT apart from incurring the overheads
of colored steals. In Table. III, we see that NABBITC with this
alternative coloring performs comparable to original NABBIT

indicating that the additional work performed by colored steals

introduces minimal overhead. Specifically, we observe that the
mean speedups are within one or two standard deviations,
indicating that, for the benchmarks considered, colored steals
incur no statistically significant overhead.

Behavior under bad coloring: The performance of NAB-
BITC is directly tied to the coloring provided by the user.
NABBITC assumes the user has constructed a “good” coloring
and makes decisions based on this assumption. In the event
that the user has provided a “bad” coloring, NABBITC can
perform as badly, or worse, than original NABBIT. To test
this, we create a coloring where all nodes are given valid
incorrect colors. Therefore, in this implementation, all workers
will preferentially do non-local work. In Table. II, we see
that NABBITC with a bad coloring loses all the performance
benefits achieved due to coloring and performs similar to
NABBIT. Interestingly, we observe that the mean speedups are
within two standard deviations, indicating that NABBIT’s lo-
cality behavior under random stealing is statistically no better
than that of NABBITC under an intentionally bad coloring??.

VI. RELATED WORK

Static task graph schedulers [9], [10], [11] minimize com-
pletion time while maximizing locality [12] by completing
expanding and analyzing a task graph, together with accu-
rate information on computation and communication costs
associated with each task. We consider task graphs that are
dynamically explored and do not require prior knowledge of
task and communication times.
Cilk’s random work stealing is agnostic of locality consider-

ations [13]. Several efforts have incorporated locality consid-
erations by altering the work stealing strategy [14], [15], [16],
[17]. These approaches do not naturally extend to scheduling
data-flow graphs while preserving provably efficiency in terms
of scheduling overheads and effectiveness of load balancing.

Event-driven scheduling strategies map tasks to locality
domains together with efficient identification and tracking of
ready tasks that can be scheduled [18], [19]. In these systems,
data distribution implies a computation partitioning with no
further migration of tasks to tackle load imbalance.
SuperMatrix [20], a runtime scheduling system for algo-

rithms operating on blocks as observed in linear algebra

programs, mimics a superscalar microarchitecture’s scheduling
strategy in software. StarPU [21] is a task-graph scheduler for
heterogeneous multi-core systems. Neither approach accounts
for data locality. Dague [22], a distributed DAG engine, im-
proves locality by working on the local queue when possible.
XKaapi [23] is a work-stealing-based scheduler for task graphs
that pushes tasks to processors that have better locality for
those tasks. It does not preserve the critical path length or
provide provable parallel efficiency.
SMPSs [2] schedules dependent tasks together to improve

locality. Legion [24] exploits user-specified locality infor-
mation and coherence properties to perform locality-aware
scheduling using a software out-of-order processor. CnC [25]
allows the specification of task graphs that are scheduling
using a variety of strategies. Legion and CnC also allow
user-specification to control task mapping and scheduling
(using mappers in Legion and tuners in CnC). Olivier et
al. developed various strategies to schedule OpenMP tasks
including hierarchical scheduling, and work stealing by one
thread on behalf of others in the same chip [26]. None of these
schedulers in these systems attempt to preserve optimality
guarantees. However, the scheduling strategy developed in this
paper can be used to develop provably efficient and locality-
aware scheduling algorithms for these task-graph frameworks.
Bugnion et al. [27] developed compiler-directed page col-

oring techniques to minimize conflict misses. Chilimbi and
Shaham [28] identified hot data streams and then colocated
them to improve spatial locality. Chen at al. studied schedul-
ing threads for constructive cache sharing [29]. Various ap-
proaches have studied the partitioning of shared caches among
threads (e.g., [30], [31], [32]). These approaches cannot be
applied to optimize NUMA locality considered in this paper.

VII. CONCLUSIONS

In this paper, we have presented NABBITC, a flexible and
easy-to-use task graph library that allows the user to provide
locality hints via the use of coloring and provides good load
balance via dynamic scheduling. NABBITC is geared towards
scheduling on NUMA hardware, where remote accesses may
be considerably more expensive than local accesses, but one
must strike a balance between locality and load balance
to get good performance. Experimental results indicate that
this approach is promising, especially for memory intensive
irregular applications running on NUMA machines, where
static scheduling can compromise load balancing and locality-
unaware dynamic scheduling has too many remote accesses.
While NABBITC uses Cilk Plus as the underlying language
and runtime, we believe this approach can be implemented on
other systems such as Intel’s Threading Building Blocks.

REFERENCES

[1] K. Agrawal, C. E. Leiserson, and J. Sukha, “Executing task graphs using
work-stealing,” in IPDPS, 2010, pp. 1–12.

[2] J. M. Perez, R. M. Badia, and J. Labarta, “A dependency-aware
task-based programming environment for multi-core architectures,” in
CLUSTER, 2008, pp. 142–151.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT Press, 2009.

[4] “Laboratory for web algorithmics,” http://law.di.unimi.it/datasets.php.
[5] P. Boldi and S. Vigna, “The WebGraph framework I: Compression

techniques,” in WWW, 2004, pp. 595–601.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in WWW, 2011, pp. 587–596.

[7] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: bringing order to the web,” 1999.

[8] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[9] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406–471, Dec. 1999.

[10] G. Liu, K.-L. Poh, and M. Xie, “Iterative list scheduling for heteroge-
neous computing,” JPDC, vol. 65, no. 5, pp. 654–665, 2005.

[11] T. Yang and A. Gerasoulis, “PYRROS: static task scheduling and code
generation for message passing multiprocessors,” in SC, 1992, pp. 428–
437.

[12] N. Vydyanathan, S. Krishnamoorthy, G. M. Sabin, Ü. V. Çatalyürek,
T. M. Kurç, P. Sadayappan, and J. H. Saltz, “An integrated approach to
locality-conscious processor allocation and scheduling of mixed-parallel
applications,” TPDS, vol. 20, no. 8, pp. 1158–1172, 2009.

[13] M. Frigo, C. Leiserson, and K. Randall, “The implementation of the
Cilk-5 multithreaded language,” in PLDI, 1998, pp. 212–223.

[14] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: a scalable locality-
aware adaptive work-stealing scheduler for multi-core systems,” in
IPDPS, 2010, pp. 341–342.

[15] S.-J. Min, C. Iancu, and K. Yelick, “Hierarchical work stealing on
manycore clusters,” in PGAS, 2011.

[16] J.-N. Quintin and F. Wagner, “Hierarchical work-stealing,” in Euro-Par
2010-Parallel Processing, 2010, pp. 217–229.

[17] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Optimizing data
locality for fork/join programs using constrained work stealing,” in SC,
2014, pp. 857–868.

[18] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cavé, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism
with MPI,” in IPDPS, 2013, pp. 712–725.

[19] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J.
Dongarra, “PaRSEC: Exploiting heterogeneity to enhance scalability,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[20] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. Van De Geijn,
“SuperMatrix out-of-order scheduling of matrix operations for smp and
multi-core architectures,” in SPAA, 2007, pp. 116–125.

[21] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” CCPE, vol. 23, no. 2, pp. 187–198, 2011.

[22] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “Dague: A generic distributed dag engine for high perfor-
mance computing,” ParCo, vol. 38, no. 1, pp. 37–51, 2012.

[23] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “XKaapi: A runtime
system for data-flow task programming on heterogeneous architectures,”
in IPDPS, 2013, pp. 1299–1308.

[24] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: expressing
locality and independence with logical regions,” in SC, 2012, p. 66.

[25] Z. Budimlić, M. Burke, V. Cavé, K. Knobe et al., “Concurrent collec-
tions,” Scientific Programming, vol. 18, no. 3-4, pp. 203–217, 2010.

[26] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins,
“Scheduling task parallelism on multi-socket multicore systems,” in
ROSS, 2011, pp. 49–56.

[27] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S.
Lam, “Compiler-directed page coloring for multiprocessors,” in ACM
SIGPLAN Notices, vol. 31, no. 9. ACM, 1996, pp. 244–255.

[28] T. M. Chilimbi and R. Shaham, “Cache-conscious coallocation of hot
data streams,” in PLDI, 2006, pp. 252–262.

[29] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E.
Blelloch et al., “Scheduling threads for constructive cache sharing on
cmps,” in SPAA, 2007, pp. 105–115.

[30] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006, pp. 423–432.

[31] G. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of shared
cache memory,” Journal of Supercomp., vol. 28, no. 1, pp. 7–26, 2004.

[32] F. Mueller, “Compiler support for software-based cache partitioning,” in
ACM Sigplan Notices, vol. 30, no. 11. ACM, 1995, pp. 125–133.

	Locality-Aware Dynamic Task Graph Scheduling
	Recommended Citation
	Locality-Aware Dynamic Task Graph Scheduling

	nabbit-c.dvi

