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ABSTRACT

Physics of Resonating Valence Bond Spin Liquids

by

Julia Saskia Wildeboer

Doctor of Philosophy in Physics

Washington University in St. Louis, 2013.

Professor Alexander Seidel, Chairperson

This thesis will investigate various aspects of the physics of resonating valence

bond spin liquids. After giving an introduction to the world that lies beyond Lan-

dau’s priciple of symmetry breaking, e.g. giving an overview of exotic magnetic

phases and how they can be described and (possibly) found, we will study a spin-

rotationally invariant model system with a known parent Hamiltonian, and argue its

ground state to lie within a highly sought after exotic phase, namely the Z2 quantum

spin liquid phase. A newly developed numerical procedure –Pfaffian Monte Carlo–

will be introduced to amass evidence that our model Hamiltonian indeed exhibits a

Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical

property of the resonating valence bond states: these states are shown to be lin-

early independent. Various lattices are investigated concerning this property, and

its applications and usefullness are discussed. Eventually, we present a simplified

xi



model system describing the interplay of the well known Heisenberg interaction and

the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The

effect of the interplay between the two interaction couplings on the phase diagram

is investigated. To do so, we employ modern techniques such as the density matrix

renormalization group (DMRG) scheme. We find that for weak DM interaction the

system exhibits valence bond order. However, a strong enough DM coupling destroys

this order.

xii



1. Introduction

We begin with an introduction divided into several sections. All of the single sections

present important facts necessary for an understanding of the physics of resonating

valence bond (RVB) states [1] and resonating valence bond spin liquids. Such a

valence bond state is pictorially described as a state that has all (valence) electrons

forming singlet bonds with each other. This grouping of the electrons into pairs of two

forming the singlets is not unique and under certain conditions the system switches

back and forth (resonates) between different singlet configurations. If this is the case,

we speak of a resonating valence bond state.

Before discussing these states in more detail, we will recall the history of a new

kind of order –topological order– that is found in the resonating valence bond states

and point out the thereby resulting failure –or rather the limitations– of Landau’s

principle of symmetry breaking.

We will then discuss a simplified approach, namely the so-called quantum dimer

model (QDM), that has shed light on issues concerning whether a resonating valence

bond liquid state exists and in which model system it can be expected. Eventually, we

close the introductory chapter by describing several attractive features and properties

that have been found or are expected to be found in exotic quantum states such as

the resonating valence bond spin liquids. Additionally, to make connection with the

1



experimental side, we recall and discuss some new exciting experimental discoveries

and comment on the state of the art concerning the challenging experimental search

for a quantum spin liquid in an experimental compound.

1.1 Landau’s principle of symmetry breaking and topological order

One of the most important concepts in condensed matter theory is the concept

of order. Different orders in a material lead to different properties exhibited by the

material. The particles that order can be protons, neutrons, or electrons. Landau’s

symmetry breaking [2, 3] provides an understanding and a way to classify and dis-

tinguish different states (phases) of matter. The fundamental principle of Landau’s

theory is that different orders correspond to different symmetries that are respected

by the particles that order. A phase transition is a change in the system which sees a

change in the way that the particles are arranged; thus, the symmetry of the system

changes. In the case of temperature T = 0, this is called a quantum phase transition.

A feature of Landau’s principle guarantees that one can always find a so-called order

parameter which distinguishes different phases from each other; a local parameter be-

ing zero in one phase and having a finite value in the other one. A standard example

for this is the two dimensional Ising model on the square lattice:

H = −
∑

〈ij〉

Jijσiσj . (1.1)

Here, σi, σj ∈ {−1;+1} ∀ i (j) = 1, . . . , Lx (Ly) with Lx(y) is the dimension of the

lattice in x(y)-dimension. The system can exist in two different phases depending

2



on the temperature T . At low enough temperatures, the system is permanently

magnetized. At sufficiently high temperatures, the magnetization of the system is

zero. There is a critical value of the temperature Tc called the Curie temperature

at which a phase transition between the ferromagnetic (permanently magnetized)

and paramagnetic phases occurs. For this system, a proper order parameter would

be the magnetization m with m being finite in the ferromagnetic phase and m = 0

in the disordered phase. For a long time, it was generally accepted that Landau’s

theory of symmetry breaking would capture all possible kinds of order and all possible

(continuous) phase transitions that can occur in a material/system.

The first cracks in the theory surfaced in the late eighties after the discovery of high

Tc superconductors [4]. Various quantum spin liquids were introduced in an attempt

to gain an understanding of the mechanism that governs the Tc superconductors

[5–10]. Landau’s theory neither explains nor allows for the existence of spin liquids

since they can not be distinguished by a local order parameter. We note that one

type of spin liquid used in an attempt to get a better understanding of the high

Tc superconductors was a so-called chiral spin liquid [11, 12]. The chiral spin liquid

state breaks time reversal and parity symmetries, but not spin rotation symmetry

[12]. However, it was quickly realized that there are indeed many kinds of chiral

spin liquids with the same symmetry. Thus, they are indistinguishable within the

framework of Landau’s symmetry breaking theory [13]. Their new kind of order was

called topological order [14]. The motivation behind this choice of name is the low

3



energy effective theory for the chiral spin states, which is a topological quantum field

theory.

In order to identify and classify topologically ordered phases, it is unavoidable

to go beyond local order parameters and long range correlations. In the case of

the chiral spin liquids, one introduces a range of new quantum numbers such as for

example ground state degenerancy [13] and edge excitations [15]. A fairly new way of

characterizing topological order is characterization through topological entanglement

entropy [16, 17].

However, experimental progress soon found evidence that high Tc superconductors

to not break time reversal and parity symmetry. This brought the idea that the chiral

spin liquid states are suitable candidates to describe the superconductors to an abrupt

end. But the idea that there are states beyond Landau’s symmetry breaking principle

survived Consequently, Laughlin proposed a set of wave functions for the fractional

quantum Hall effect [18]. Just like the chiral liquids, the FQH states all have the same

symmetry and therefore are beyond Landau’s theory of symmetry breaking. They

have a ground state degeneracy [19] that depends on the topology of the space [14,18].

This property is stable under any local perturbation. Subsequently, it was noted that

different orders in the fractional quantum Hall states can be described by topological

orders. This was a significant milestone in the (still young) history of topological

order since it had just become a theory with experimental realizations. Apart from

the FQH states which exhibit topological order, another important “class” of states

to be topologically ordered are different types of quantum spin liquids such as the

4



already mentioned chiral spin liquid states. In the late eighties, researchers started

to introduce several symmetric spin liquids [6–10, 20–23], some having excitations

with a finite energy gap, others gapless. However, all liquid states do not break any

symmetry and are thus beyond the description of Landau’s symmetry breaking. The

concept of topological order is only applicable to the case of gapped spin liquids which

are described by a topological quantum field theory at low energy. An example for

this is the Z2 quantum spin liquid. It is described by the Z2 gauge theory and it –or

the search for it– will be our main concern in this thesis. Indeed, the Z2 quantum spin

liquid first appeared in the literature in 1991 [21, 22]. Here it was the short-ranged

flavor of Anderson’s resonating valence bond (RVB) type state. Interesting properties

arise from such a state, such as spin-charge separation [22], fractional statistics [22],

and topologically protected ground state degeneracy [8, 21].

The next two sections will provide more information concerning the spin liquid

phase, and we will comment on the challenging search for spin liquid states on the

theoretical side and on the experimental one.

1.2 From quantum dimer models to spin models

Pioneering work to answer the question if quantum spin liquids do exist in

nature has been done on the experimental and the theoretical side. On both sides,

the researchers faced great challenge. We will first turn our attention to the theoretical

progress. In 1988, the so-called Rokhsar-Kivelson quantum dimer model (QDM) was

introduced [8]. The original motivation behind the quantum dimer model was the

5



high Tc superconductivity problem mentioned in the preceding section. The task was

to find a suitable non-magnetic state for the undoped Mott insulator phase. Upon

doping, the system is expected to change into a superconductor. This was achieved

by allowing all spins to form singlets that minimize the antiferromagnetic exchange

energy. Systems that are dominated by valence bonds are of interest because they

are a simple stating point for describing phases of magnets dominated by local singlet

formation. This thesis will focus on singlets formed by spins on nearest neighbor

sites, so-called short-range valence bonds. Longer bonds between sites that are not

nearest neighbors will not be discussed in the following. To summarize the obstacles

and the accomplishments/achievements on the theoretical side, we go back to the

year 1988. In 1988, Rokhsar and Kivelson published a seminal paper [8] in which

they presented the above mentioned quantum dimer model. Here, a dimer represents

the SU(2) singlet between the two spins at its endpoints. The frustration is captured

by the hardcore constraint, e.g. every site is touched by one and only one dimer.

Quantum dimer models can be used as a simplified starting point to describe how

exotic phases such as a quantum spin liquid phase can arise from the competition of

the dimers at various potential energy.

Before discussing the general structure of the phase diagram of the QDMs and de-

scribing its tremendous success at finding a quantum liquid phase, we will first discuss

the basic features and properties of a dimer model and point out it simplifications

compared to a spin model. A more detailed review of the properties of dimer models

can be found for example in Ref. [24].
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The quantum dimer models were introduced to model the physics of the resonat-

ing valence bonds and a simplified way, that is, the original spin Hilbert space gets

heavily truncated and the only degrees of freedom kept of the original spin systems

are the valence bonds (singlets), represented as dimers which live on the lattice bonds.

Typically, the dimers must not overlap (“hardcore constraint”). Generally, any two

sites can form a dimer, but in the simplest case –the short ranged-flavor version–

only sites that are nearest neighbors to each other are allowed to form a dimer. The

resulting dimer covering of the underlying lattice form a complete orthonormal set of

basis states:

〈D|D′〉 =















0 if D 6= D′

1 D = D′

(1.2)

Herein lies an important difference between dimer coverings and the original singlet

coverings of the lattice, namely the difference in their scalar products. In contrast

to the dimer covering scalar product given above, the scalar product (overlap) of

any two singlet product states is never zero. In an influential paper, Sutherland [25]

pointed out that if all overlaps are either positive or negative, the system corresponds

to a classical loop gas model. We will come to this point later in Section 2.2 when

presenting a novel Monte Carlo scheme especially derived to calculate correlation

functions on nonbipartite lattices.
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Figure 1.1. a) and b) show two different dimer coverings on the square
lattice. c) shows the transition graph (the overlap 〈a|b〉) of the two
coverings when both coverings |a〉 and |b〉 are laid on top of each other.

To explain the (simplest) Hamiltonian that describes the energetics of the dimers,

we first resort to the QDM on the square lattice and then point out how the following

carries over to other lattices.

The original QDM of Rokhsar and Kivelson was defined on the square lattice as

follows:

=   ∑-t(   〉〈    +h.c.)+v(   〉〈   +   〉〈    )
QDM

H

(1.3)

The first and second term with the tunable parameters t and v respectively flip

and count the dimers if the plaqette has parallel dimers, otherwise the state gets

annihilated, the sum goes over all 4-site plaquettes. The flipping of the dimers on a

single plaquette is the simplest way to endow the system with dynamics.
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The first term in equation (1.3), the kinetic one, describes the resonance between

two different dimerizations of the 4-site plaquette of the square lattice.

In other lattices of general interest, the flippable plaquettes may correspond to

minimal resonance loops, resonance loops being closed lines of links of even length

that are alternatingly occupied/unoccupied by dimers. In the triangular lattice, the

elementary flippable units are still of length four, since the triangular lattice is topo-

logically equivalent to the square lattice with an additional diagonal. (The horizontal,

vertical, and diagonal bonds are defined to have the same length, hence, the triangu-

lar lattice has coordination number z = 6.) In the case of the kagome lattice which

we will mainly focus on in this thesis, the flippable plaquettes are no longer of length

four, but at least of length six and at most of length twelve. All closed loops along

which the dimers can resonate are embedded on the 12-site star (see Fig. (1.2)).

Requiring that all sites that form the internal hexagon are touch by one and only

dimer, the shortest loop goes around the hexagon and shifts its three dimers along

the hexagon by one link. The longest loop is the loop formed by all links that form

the outer boundary/border with six dimers living on it (see Fig. (1.2)b)). All possible

loop configurations (up to rotations) are shown in Fig. (1.2). From Fig. (1.2) it is

clear that there are a total of 32 different loop coverings, each goes over into a new

configuration by shifting the dimers along the green paths by one lattice link. Thus,

we eventually have 64 possibilities for a loop covering. In the case that we assume a

system with periodic boundary conditions, we have the so-called topological degener-

acy. Topological (ground state) degeneracy is a phenomenon of quantum many-body
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systems; the ground state of a gapped system becomes degenerate in the large system

size limit. Such a topological degeneracy cannot be lifted by any local perturbations

as long as the system size is large. [13, 18, 26, 27] The topological degeneracy for a

given system is different for different topologies of the space. [19] For example, for

the Z2 topologically ordered state in two dimensions [12], the topological degeneracy

Figure 1.2. a) - d) show all possible loop coverings up to rotations for
the kagome lattice. a) and b) contain three and six dimers, respec-
tively. c) shows the possibilities how four dimers can cover the loop
and d) shows the case of five dimers occupying the loop.
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Figure 1.3. The topological degeneracy of topologically ordered states
depends on the topology of the space, such as the genus g of two
dimensional closed surfaces. Shown are three examples: the sphere
has g = 0, the torus has g = 1, and a generalized torus with holes in
it has g = 2 (n holes generalize to g = n).

is Dg = 4g on a Riemann surface of genus g (see Fig. (1.3)). Topological degeneracy,

being robust against any local perturbations, is not due to a symmetry of the sys-

tem. Thus, the very existence of topological degeneracy is a surprising and amazing

phenomenon.

Going back to the Hamiltonian (1.3) and its analogue on the respective lattice,

a natural question is its ground state phase diagram depending on the choice of the

two couplings strengths t and v. We will see that another important factor when it

comes to the phase diagram is the above mentioned lattice topology. However, before

specifying a particular lattice, we will now discuss an attractive feature of the RK

Hamiltonian (1.3). At this point, for reasons of completeness, we recall the origin

of the name “resonating valence bond” (RVB). The term “resonating valence bond”

(RVB) stems from the analogy of the resonance between the two dimerizations of the

11



Figure 1.4. The benzene molecule C6H6. The central hexagon, also
called aromatic ring in chemistry, has three “double bonds”. Since
there are two configurations that the additional bonds can assume in
the hexagon and since both configurations are equally energetically
favored, it is understood that the system fluctuates (resonates) back
and forth between the two configurations.

benzene ring C6H6 (see Fig. (1.4)). Again, we point out that the QDM/RVB approach

is not only an important approach to the high Tc problem as already described,

the QDM/RVB approach has found applications and interest in other corners of

condensed matter physics, e.g. it has been shown that the QDM can be used to

shed light on issues such as topological order, and unusual (resonons and visons) and

fractionalized (spinons and holons) excitations.

1.2.1 The Rokhsar-Kivelson (RK) point

Before specifying a particular lattice, we will now discuss an attractive feature

of the QDM Hamiltonian Eq. (1.3). Assuming the Rokhsar-Kivelson (RK) point

12



t/v = 1, we note that in this case the (unique) ground state wave function is the

equal amplitude superposition of all dimer coverings:

|ψGS〉 =
∑

D

|D〉 . (1.4)

To see that this is indeed the unique ground state, we point out that for every flippable

plaquette, the second term in 1.3 gives a penalty v while the first term gives at most

a benefit of t. Nonflippable plaquettes have zero energy. This gives the lower bound

for the ground state energy to be

EGS ≥ min{0, Nplaq(v − t)} , (1.5)

where Nplaq is the number of plaquettes in the lattice. The equal amplitude state ψGS

has energy nflip× (v− t), where nflip is the average number of flippable plaquettes in

the state. Choosing t = v saturates the lower bound and, since the equal amplitude

state is an eigenstate of the QDM (at v = t), we may conclude that it is a ground

state when v = t. In the case of periodic boundary conditions, there is the previously

mentioned ground state degeneracy according to the number of topological sectors.1

In this case, the sum in (2.9) may be restricted to one specific topological sector.

Dimer coverings contained in one sector will always lead to an equal amplitude wave

function without any local order. Nonetheless, a nonlocal measurement will be able to

tell the different sectors apart, e.g. will determine to which sector the wave function

belongs. The RK point was investigated for numerous lattices in two dimensions. On

1A topological sector is defined as a set of all dimer coverings that can be connected through local
dimer resonance moves. Starting from one state (dimer covering), one can get into any other state
with a sequence of local resonance moves as long as the two states belong to the same topological
sector.
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the square lattice (as well as other bipartite lattices such as the honeycomb lattice),

the RK point corresponds to a liquid ground state, however this turned out to be a

critical point separating “valence bond solid” phases with broken translational sym-

metry. [28–31] In the bipartite case, the liquid is of type U(1). In 2001, Moessner

and Sondhi showed that the QDM on the triangular lattice at the RK point lies in

a stable quantum liquid phase. [32] Subsequently, similar findings were also made for

the kagome lattice in 2002. [33] In these two cases, the quantum liquid was argued

to be in the Z2 universality class. For numerous bipartite lattices in three dimensions

such as the cubic lattice, the RK point is part of a Coulomb phase. The Coulomb

phase is also a liquid phase but with a different type of quantum order. The present

understanding in the condensed matter community is that this type of behavior is

generic. We will now devote a subsection to the description of the different phases

mentioned above.Z2 and U(1).

1.3 QDM phase diagrams

The detailed structure of the quantum phase diagram depends on several param-

eters: the ratio of the two parameters v/t, the dimensionality of the lattice, and the

lattice geometry. We have just previously highlighted the existence of the RK point

v = t. Here, the ground state of the model is the equal amplitude superposition of

all dimer coverings. Depending on the lattice type, the RK point is part of different

topological phases.
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For the triangular lattice, Moessner and Sondhi showed in a seminal paper that

the RK point of the QDM on the triangular lattice has ground states describing a

Z2 topological quantum liquid [32]. Subsequently, Misguich et al. [33] generalized

these findings to the kagome lattice, which was found to have an additional feature:

a crucial difference between the triangular and the kagome lattice is the fact that the

kagome RK-point lies in the interior of the Z2 liquid phase for the kagome. This is in

contrast to the triangular case: here, the RK point of the QDM lies at a (apparently

first order) phase boundary.

We now will discuss the properties of different exotic phases in the next sections.

1.4 Z2 quantum spin liquid and other topological phases

This section shall provide an overview of the richness of the QDM phase diagrams.

The simplest QDM Hamiltonians provide one parameter v/t. Of course, the choice of

this parameter ratio has a fundamental effect on the phase that the Hamiltonian lies

in. But apart from the v/t ratio2 the phase diagram is also strongly dependent on

the lattice geometry and on the dimensionality d of the lattice. The general structure

of the phase diagram is expected to be further enriched with novel phases upon

including additional (more complicated) interactions which make the Hamiltonian

more complicated. However, we point out that there are a number of features common

2In contrast to the square lattice, the v term is trivial in the case of the kagome lattice, since all
configurations are flippable.
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to most models and describe a few phases which frequently are discussed in the

literature.

1.4.1 Z2 RVB liquid

The Z2 quantum liquid spin phase belongs to the Z2 universality class and, conse-

quently, has Z2 topological order [32]. In the case of a triangular and a kagome lattice

with periodic boundary conditions, the ground state space consists of four degenerate

gapped states. The ground states do not break any symmetry of the system and all

correlations decay exponentially. The first time a phase of this type was proven to be

the ground state was on the triangular lattice in 2001 [32] with numerical evidence

supporting that the phase survives in the parameter range from 0.8 < v/t < 1 [34].

Here, the RK point of the QDM lies at a (apparently first order) phase boundary.

Shortly afterwards, it was also found on the kagome lattice. The QDM on the kagome

lattice differs from the triangular counterpart insofar that the RK point lies in the

interior of the Z2 liquid phase. The general opinion on this matter is that this phase

is a generic feature of nonbipartite QDMs in two and higher dimensions. Concerning

nontrivial excitations of this model, it is known that monomer excitations are decon-

fined throughout the complete phase. A second type of excitation are the so-called

Ising vortices or visons [35]. At the RK point, a variational wave function describing

the vison state in a periodic system in sector a is given by

|ψvison〉 =
∑

D ∈ sector a

(−1)nD |D〉 . (1.6)
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Figure 1.5. (a) Visons live on the dual lattice. (b) Taking a monomer
around a vison causes the number of dimers intersecting the dashed
line, and hence, the wave function, to change sign. Figure taken from
Ref. [36].

nD is the number of dimers crossing the dashed line (Fig. (1.5)a)). The excited

state |ψvison〉 is orthogonal3 to the ground state |ψGS〉. Current numerical data give

evidence that the lowest lying excitation above the triangular lattice ground state is

indeed vison-like [37].

1.4.2 U(1) critical RVB liquid

The U(1) RVB liquid phase cannot be characterized by a local order parameter just

as its Z2 counterpart cannot. However, the two phases differ by multiple properties.

The Z2 RVB liquid is a gapped phase with exponential correlations having a ground

state degeneracy that depends on the lattice topology, this degeneracy is present

throughout the entire phase. In contrast, the U(1) liquid is a gapless phase with

correlations obeying a power law. The topological ground state degeneracy does exist

3This is only true if all configurations are flippable like it is in the case of the kagome lattice.
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at the RK point, but is lifted upon entering the phase. Similar to the Z2 flavor, the

U(1) liquid also has deconfined monomers. However, the monomers do not interact

via a force that is limited by a few lattice spacings as it is in the case of the Z2 variant,

but the monomers interact via a long-ranged inverse square force [38]. The gapped

excitation in U(1) liquid that serves as the counterpart to the vison in the Z2 case, is

the monopole. Monopoles interact with each other through an inverse square force. 4

1.4.3 Crystalline phases

Another important class of phases of the QDM are crystalline phase, so-called

valence bond crystals. Here, in this kind of order, the dimer order in a specific man-

ner. In this phase, still as in the liquid phase, all correlations decay exponentially.

However, the important difference in contrast to the liquid is that translational sym-

metry is broken now. A model system which is believed to have such a ground state

is the antiferromagnetic spin-1/2 Heisenberg model on the three dimensional highly

frustrated hyperkagome lattice [39].

Going back to the QDM on the square lattice, it is noteworthy to discuss the

plaquette phase.

This phase is shown together with the columnar and the staggered phase in

Fig. 1.6. The choice of names becomes clear when looking at picture Fig. 1.6. The

thick bonds indicate that the probability to find a dimer on this link is comparatively

4Another name for the U(1) liquid phase is Coulomb phase. The name stems from the matter of
fact that the U(1) phase has a continuum description that resembles the Maxwell action of the free
electromagnetic field.
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Figure 1.6. Shown are three examples of valence bond solids: a) the
columnar state. (b) the staggered state. (c) the plaquette state.

high to the probability to find a dimer on a “thin” link. The square lattice plaquette

state is symmetric under rotation and translation by two lattice spacings in x- and

y-direction. The plaquette state is expected to be found (in a generalized form) on

other two dimensional lattices and higher lattices. Today known is that the square

[28, 29, 40] and honeycomb [30] lattice exhibit this phase with numerical evidence

backing the picture that it starts immediately to the left of the RK point.
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Apart from the here discussed columnar, staggered and plaquette state, there are

more (complicated) ways to “freeze” the dimers on certain links in order to create a

pattern. Theoretically there is no limit to the size of the unit cell. As an example

we refer to the triangular lattice QDM where a crystalline state with a unit cell of 12

sites has been found. This phase is named “
√
12×

√
12” phase and is thought to be

the only phase between the columnar phase and the Z2 liquid phase [34].

After the successful demonstration that exotic phases such as spin liquids and

valence bond crystal do arise in QDM models, the next logical step is to ask about

possible consequences for the corresponding spin models. Recalling the mismatch of

the respective scalar products of the dimer coverings and the valence bond product

states, it remains a non-trivial question if well established phases in the dimer model

“carry over” to a corresponding spin model. Is it possible to find or construct a

local SU(2)-invariant spin-1/2 Hamiltonian that has a Z2 quantum spin liquid phase

after Moessner and Sondhi [32] and Misguich et al. [33] proved the existence of a Z2

quantum lattice liquid on the triangular and the kagome lattice roughly a decade ago

? The purpose of this thesis is to give a positive answer to this question. We note

that in 2009, a local, SU(2)-invariant spin 1/2 Hamiltonian on the kagome lattice was

constructed in Ref. [51]. To the best of our knowledge, this is the only Hamiltonian

of its kind in the literature. However, it is still necessary to further investigate this

Hamiltonian [51] and its properties. Before we do so, we will provide for reasons of

completeness the contributions of other researchers to this question. A well known

work that decorates the links of the lattice with additional degrees of freedom and
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thereby make the lattice more complicated, lead to the construction of a SU(2)-

invariant parent Hamiltonian [41]. More significant work in order to find parent

Hamiltonians that have exotic ground states was also done in Ref. [42] and in Ref.

[43]. However, Refs. [42] and [43] do not consider the case of a parent Hamiltonian

on the kagome lattice.

1.5 Fractionalization

One striking feature of topological order is the concept of fractionalization. The

fractional quantum Hall effect [18], the first experimental system from which evidence

of topological order was retrieved, exhibits fascinating behavior: an electron gas can

organize itself in such a way that its elementary excitations carry a fraction of the

electron charge e and obey fractional statistics [44]. Another way of interpreting

this is saying that the electron behaves as if had split into more basic constituents.

We will provide a simple picture for the sake of understanding this phenomenon.

An interesting modification of the system is provided by inserting monomers in the

system. In the simplest case, we remove a dimer from the system and are then left

with two unoccupied sites. They monomers can move through the system by shifting

dimers neighboring the monomers in such a way that the shifted dimer occupies the

sites of the monomers. For the dimer model, it is known that this type of excitations

are deconfined, 5 since the monomers can be separated to large distance at a finite

5The word confine is chosen/borrowed from the field of quantum chromodynamics: however, here
the situation is reverse, e.g. it is not possible to separate a pair of isolated quarks at a finite cost
of energy. The quarks are confined.
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cost of energy. Therefore, the removal of one dimer has given rise to two independent

quasiparticles 6 [45]. Going back to the spin model, the dimers get replaced by a

singlet. In the spin case, an elementary magnetic excitation refers to replacing a

singlet with a triplet state. Upon breaking a triplet -fractionalizing a triplet- two

spin-1/2 excitations called spinons can move independently through the system. The

elementary excitations of conventional symmetry-broken (anti)-ferromagnets are spin

waves (magnons) that always carry spin 1. Another scenario evolves from removing

a single electron. Since this electron was just part of a singlet bond, we are left with

a an unpaired electron. If these two defects –the lone electron and the hole from

the removed electron– can move apart at a finite cost of energy, the electron has

fractionalized into the spinon carrying a spin 1/2 and charged (+e), spinless holon.

This variation of fractionalization is commonly called spin-charge separation [5].

1.6 Experimental search for quantum spin liquids

The experimental situation when it comes to the challenging search for the quan-

tum spin liquid phase is similar to the theoretical situation: although proposed 40

years ago [1], experimental evidence emerged only in the last few years. Maybe the

most prominent candidate compound for a spin liquid is the herbertsmithite, a nat-

urally occurring mineral, 7 whose chemical formula is ZnCu3(OH)6Cl2. The spin

6All the constituent particles of the system, e.g. all dimers, are associated with charge 2, then these
elementary monomer excitations carry a charge of -1, thus, they are “fractionalized”.
7It is named after the mineralogist Herbert Smith and was first found in 1972 in Chile. The com-
pound is a polymorph of kapellasite and closely related to paratacamite; herbertsmithite is generally
found in and around Anarak, Iran, hence its other name, anarakite.
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Figure 1.7. (a) Shown is the structure of ZnCu3(OH)6Cl2 with only
Cu2+ (large brown spheres) and Zn2+ (small red spheres) displayed.
The Cu-Cu bonds (thick black solid lines) are all equivalent as are the
Cu-Zn bonds (thin green dotted lines). (b) A single-crystal sample of
ZnCu3(OH)6Cl2. Figure taken from Ref. [49].

1/2 compound has a kagome lattice of corner-sharing triangles. Until now, there is

no data showing any kind of order in this material down to very low temperatures.

[46–48] Furthermore, just recently, MIT researchers employed the method of neutron

scattering and found strong evidence of fractional excitation which is a signature of

the exotic spin liquid state. [49] Nonetheless, researchers keep on adding other com-

pounds to the pool of candidates. Very recently in 2011, chemists synthesized a new

kagome antiferromagnet [50], designated DQVOF, which is different from herbert-

smithite and other similar compounds in that its magnetic properties stem from ions

of spin 1/2 vanadium, rather than copper. To get a better understanding of the mate-
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rial, samples of this compound were studied with muon spin relaxation experiments.

The data show an absence of spin freezing down to 40 mK, which is considered a

clear spin liquid signature. However, in order to make a more rigorous statement on

a possible spin liquid ground state, it is necessary to further investigate the magnetic

excitation spectrum. [50]

1.7 Outline of the thesis

The thesis is organized as follows. After the presented brief summary and

overview of the matter of topological phases, Chapter 2 will review a Hamiltonian

that was constructed/claimed to realize a special topological phase, namely the Z2

quantum spin liquid. Then, we will investigate the properties of the ground state of

this Hamiltonian, thereby focusing on the behavior of local correlation functions. In

order to be able to do so, we employed a newly developed (classical) Monte Carlo

scheme, which we call Pfaffian Monte Carlo. We explore and discuss further issues of

the uniqueness of the ground state of this Hamiltonian and the existence of a gap.

In chapter 3, we will solve a long standing problem of the physics of resonat-

ing valence bond physics: a proof that the nearest neighbor valence bond states on

several 2D lattices are indeed linearly independent is shown and the possible appli-

cation/usefulness of the linear independence (LI) property are discussed.

Chapter 4 introduces another Hamiltonian which is made of two types of inter-

actions, the Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction,

living on the sawtooth chain. We discuss this model in the context of being an approx-
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imation to the same Hamiltonian on the kagome lattice. The effect of the interplay

between the two interaction couplings on the phase diagram is investigated. To do

so, we employ modern techniques such as the density matrix renormalization group

(DMRG) scheme. We find that for weak DM interaction the system exhibits valence

bond order. However, a strong enough DM coupling destroys this order.
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2. Existence of a Z2 quantum spin liquid

This chapter is devoted to present the necessary steps in order to provide (sufficient)

evidence that indeed the Z2 quantum spin liquid does exist in a spin system. Here,

we focus on the case of spin 1/2 and we require the system -in other words our

Hamiltonian- to be local and SU(2) invariant. We will mainly focus on the case that

has the Hamiltonian living on the kagome lattice. Nonetheless, we will also show some

results on the second nonbipartite lattice that frequently appears in the literature:

the triangular lattice. The above mentioned Hamiltonian was already published [51]

in 2009. Nonetheless, an investigation of its properties, more precisely the properties

of its ground state wave function, was still missing. The ground state wave function

is the equal amplitude superposition of all valence bond coverings. A valence bond

state being a product state of nearest neighbor singlets:

|ψGS〉 =
∑

D

|D〉 . (2.1)

Here, D stands for a valence bond covering. Especially the question if the ground

state wave function Eq. (2.11) indeed lies in the Z2 quantum spin liquid ground state

as claimed and conjectured in Ref. [51] is of interest. In order to investigate the

properties of the ground state wave function of the Hamiltonian, it was necessary to

derive a new Monte Carlo scheme since another previously in the literature appearing

MC scheme -valence bond Monte Carlo- suffers from a sign problem on nonbipartite
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lattice and is therefore inapplicable to our kagome lattice system. If the lattice is

bipartite, valence bond Monte Carlo is applicable [54,55]. The results of this chapter

have been published in

Julia Wildeboer and Alexander Seidel, Phys. Rev. Lett. 109, 147208 (2012) .

2.1 A local, SU(2) invariant spin-1/2 Hamiltonian and its ground state

This section is devoted to the presentation of a local, SU(2) invariant spin-1/2

Hamiltonian. This Hamiltonian is constructed in such a way that its ground state

is a Z2 quantum spin liquid. To be more precise, Eq. (2.11) is per construction

the ground state of the Hamiltonian. What is left to do at this point is provide

evidence that Eq. (2.11) is indeed capable of describing a Z2 spin liquid state. In

order to motivate our choice of wave function, we recall the quantum dimer model

on the kagome lattice. A well known work by Misguich et al. [33] showed that the

RK point of the QDM lies in the interior of a Z2 quantum spin liquid phase on the

kagome lattice. The Hamiltonian of the QDM on the kagome lattice is a sum of

operators acting on 12-site cells as depicted in Fig. 2.2). Any possible dimer covering

of this cell defines a loop [52] around the central hexagon, given by the (shortest) line

connecting all points touched by a dimer, see Fig. (2.3). Each loop is associated with

with two possible dimer coverings of the 12-site cell. The two coverings are related

to each other by a shift by one lattice link along the respective green line. Such a

shift is called “resonance move”. Every dimer covering D of the lattice imposes a
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covering DC of every 12-site cell C, and a corresponding loop. The Hamiltonian of

the QDM of this lattice is a sum of operators acting on any 12-site cell of the lattice,

where each operator performs a resonance move on the loop of dimers present on the

cell it acts on [33]. The ground states of this Hamiltonian is the equal amplitude

superpositions of all dimer states within a topological sector. In this case, there

exists four degenerate ground states. The system being in one specific topological

sector, stays in the same sector if the dynamics are governed by the above described

“resonance moves”. These four ground states, the equal amplitude superposition of

all dimer coverings in a respective topological sector, were shown [33, 53] to be Z2

quantum liquids.

In order to make connection with the spin model, we need to replace the dimers by

singets. In order to properly define a singlet on a link, the link must be endowed with

an orientation. This is so, since the singlet is of antisymmetric nature. In other words,

to make a one-to-one correspondence between dimer covering and singlet covering,

the overall phases of the valence bond states now matter and must be addressed. A

convention for the overall phase of a valence bond state can be given by choosing an

orientation for each link of the lattice. Thus, the sign of each valence bond singlet

([ij] = −[ji]) on the link (i, j), and thus of the full valence bond product state, which is

fixed. A suitable way to orient links is to do so counterclockwise around each hexagon,

Fig. (2.1). A resonance move can now be interpreted as a cyclic permutation of the

spins long a loop of dimers. With the chosen orientation of links, the sign associated

with the state is preserved by such moves. This is so since for any given 12-site cell
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of the lattice, flipping the orientation of the links touching boundary sites does not

change the sign of any valence bond state. The reason for this lies in the matter of

fact that any possible dimer coverings of the 12-site cell shown in Fig. (2.3) covers an

even number of such links. With this new orientation shown in Fig. (2.2), all links

of the 12-site cell are oriented counterclockwise around the central hexagon. Thus,

clearly a cyclic permutation of spins around a dimer loop preserves the overall sign

belonging to the state. Consequently, if the basis of valence bond states is defined

using the sign convention derived from this link orientation, resonance moves on

dimer states will translate into cyclic permutations of spins in the associated valence

bond states. Armed with this knowledge, we now recall the construction of the local,

SU(2)-invariant spin-1/2 Hamiltonian that has the equal amplitude superposition of

all singlet coverings as its ground state from Ref. [51]. The Hamiltonian will be

written in form of projection operators. These projection operators act on certain

states living on the 12-site star. The nature of these states and subsequently the

nature of the projection operators will be explained in the following. The following

Hamiltonian is considered in Ref. [51]

HRV B = −
∑

C

RC . (2.2)

Here, the sum goes over all 12-site “star-shaped” cells (as defined above, Fig.2.2a) )

of the lattice, and the RC are specific Hermitian projection operators that enforce a

“resonance” condition. We assume that we work with periodic boundary conditions.

All we need to do now is to specify how the projection operators RC are defined.

To make progress, we note that the projection operators have two eigenvalues —1

30



and 0—, thus they either let a state that they act on survive or they kill the state.

Consequently, we will now introduce that states that the RC act on. We note that

every dimer pattern D on C corresponds to one of two realizations of a certain loop

around the central hexagon, Fig. (2.3). D∗ denotes the other realization, related to

D by a resonance move. We can now define a set of ”resonant states” R(C) via:

R(C) = { (|D〉+ |D∗〉) ⊗ |ψD,j〉 : D ∈ D(C), j = 1 . . . nD}. (2.3)

Form the elements ofR(C), we can linearly generate any state consisting of a resonant

dimer loop, with the free sites not touched by the loop in an arbitrary state. Note that

free(D) = free(D∗), and we may without loss of generality assume that ψD,j = ψD∗,j.

Figure 2.1. Shown is an orientation of links on the kagome lattice
used to fix the sign of valence bond states. All links are oriented
counterclockwise around the hexagon they belong to. Figure is taken
from Ref. [51].

31



Now we are in the position to define the space RL(C) of ”resonance loop” states on

C, via

RL(C) =
∑

D∈D(C)

H(|D〉+ |D∗〉) . (2.4)

The set R(C) linearly generates the space RL(C), and in fact turns out to be a basis of

RL(C).It is now only natural to define the operator RC to be the orthogonal projection

onto the subspace RL(C). At this point it should be pointed out that the Hamiltonian

Eq. (2.2) then has all the symmetries of the underlying lattice. In addition, it is

invariant under SU(2) rotations, since the space RL(C) is SU(2)-invariant for each C.

Now we turn our attention to spin-1/2 realizations of wave functions of the fol-

lowing form

|ψ〉Ω =
∑

D∈Ω

|D〉 , (2.5)

Figure 2.2. Shown is the 12-site “star” that serves as the minimal unit
of the lattice that the Hamiltonian acts on. Also shown is the chosen
link orientation for this cell. All links are oriented counterclockwise
around the central hexagon. Figure is taken from Ref. [51].
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where Ω ⊂ D(C) contains all dimer coverings in a topological sector as described

above.

Figure 2.3. Eight different types of dimer loops around a central
hexagon. [52] Loops may be formed by three (a), six (b), four (c),
or five (d) dimers. Each loop can be realized by two different dimer
configurations related by a resonance move. Dashed lines indicate
dimer configurations after a resonance move. The loops should be
regarded as the transition graphs between the original and the res-
onated configuration, i.e. the set of all links carrying either a dimer
or a dashed line. Using rotational symmetry, there are 32 different
loops corresponding to 64 dimer configurations.
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Eq. (2.5) is a ground state of Eq. (2.2) and of every operator −RC . Every state

of the form

(|DC〉+ |D∗
C〉)⊗ |S〉 , (2.6)

is invariant under the action of RC, where again DC is a dimer covering of the cell

C, and |S〉 is any state on the “rest” of the lattice, e.g. all sites except for the ones

on the 12-star forming the dimer covering that has two spin realizations as discussed

above. Eq. (2.6) can be thought of as having a “resonance loop” on the cell C. Since

the eigenvalues of RC are 0 and 1, Eq. (2.6) is thus a ground state of −RC. To clarify

it even more, we write Eq. (2.5) as a double sum

|ψ〉Ω =
∑

DC

∑

DC

|DC〉 ⊗ |DC〉 (2.7)

The outer sum goes over all dimer coverings of the cell C, whereas the inner sum goes

over all possible complements DC of DC such that DC ∪DC =: D is a dimer covering

of the full lattice in the topological sector Ω. Note that for D∗
C instead of DC, the

possible choices for DC are exactly the same, since D∗
C and DC live in the same sites

and the dimer coverings DC ∪DC and D∗
C ∪DC are in the same topological sector by

definition, since they differ only by a local resonance move. Consequently, we can

rewrite Eq. (2.7) as

|ψ〉Ω =
∑

(DC ,D
∗

C
)

∑

DC

(|DC〉+ |D∗
C〉)⊗ |DC〉 (2.8)

where the first sum now goes over (unordered) pairs (DC, D
∗
C). Since Eq. (2.8) is a

sum over states of the form Eq. (2.6), it is invariant under the action of RC. This

proves that |ψ〉Ω is a ground state of −RC for each C. Hence |ψ〉Ω is a ground state
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of the Hamiltonian Eq. (2.2). The interested reader may turn to Ref. [51] for more

details describing how this Hamiltonian is brought to life.

2.2 Pfaffian Monte Carlo

After the presentation of the Hamiltonian and its ground state wave function

|ψGS〉 =
∑

D

|D〉 . (2.9)

we now want to amass evidence that this wave function indeed is capable of describing

a Z2 quantum spin liquid state. To make progress on this task, it is necessary to

investigate the behavior of local correlation functions. We note at this point that the

analogos wave function from above has been studied on the square lattice. This was

done by using valence bond Monte Carlo. [54,55] We will now see how the investigation

of observables can be expressed is a simple statistical mechanics problem. A general

correlator between two local operators O1 and O2 takes on the form:

〈RV B|O1O2|RV B〉
〈RV B|RV B〉 =

∑

D,D′〈D|O1O2|D′〉
∑

D,D′〈D|D′〉 (2.10)

Here the sum is over pairs of dimer coverings D, D′. Any such pair describes a

close packed loop configuration on the lattice. For this reason, as observed long

ago by Sutherland [25], the problem of evaluating the correlation function (2.10)

maps onto that of evaluating a correlation function of a classical loop gas model,

provided that all the overlaps 〈D|D′〉 in the denominator (which plays the role of a
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partition function) are positive. At this it shall be pointed out that Marshall’s sign

rule guarantees the existence of a link orientation that satisfies the condition that all

overlaps 〈D|D′〉 are positive for all bipartite lattices. This is the reason why valence

bond Monte Carlo is a sign problem free algorithm for the square lattice from Refs.

[54] and [55]. Unfortunately, the last condition is not satisfied for the sign convention

chosen in Fig. (2.2), or for any sign convention for valence bond states on the kagome

lattice. This means that the analogy with classical loop models is not perfect, and

the evaluation of the correlator (2.10) using Monte Carlo methods would suffer from a

sign problem. Subsequently, we note that valence bond Monte Carlo is not applicable

to the kagome lattice.

The question now after understanding that the valence bond basis is not a suitable

basis for a Monte Carlo scheme is: Is it possible to find a basis and recast the wave

function in the new basis so that all overlap of valence bond configurations is positive

? The answer is yes. The idea now to overcome this sign problem is to write the

correlator of (2.10) as a sum of an entirely different sort, not over dimer coverings

but in fact over the Ising-basis of the full spin-1/2 Hilbert space. By ”Ising-basis”,

we mean the basis |{σ}〉 of states where each spin on the lattice has a well defined

z-projection given by 1
2
σi, σi = ±1. Certainly, we can expand the wave function (2.9)

in this basis:

|RV B〉 =
∑

{σ}

a{σ}|{σ}〉 . (2.11)

We will soon see that expressing the wave function in this way will solve the sign

problem, since now there are only diagonal overlaps contributing to the partition func-
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tion (the Ising basis is orthogonal), and hence there are no negative signs. However,

the big issue is whether the coefficients a{σ} are easily available. We will now show

that they can be expressed through a Pfaffian, and should thus be computable in

polynomial time. This may make the problem similarly hard (or perhaps slightly less

so due to its discrete nature) as calculating correlation functions in Pfaffian quantum

Hall wave functions.

We proceed in two steps. We first show that the coefficients in (2.11) can be

written in terms of a Haffnian. The Haffnian relates to the Pfaffian like the permanent

related to the determinant, i.e. it has the same definition without the negative signs

from characters of permutations. Unfortunately, the Haffnian, like the permanent,

cannot be calculated in polynomial time. Only the determinant and the Pfaffian can.

Luckily, however, it turns out that the same trick due to Kasteleyn [57] that allows

the calculation of correlation functions in classical dimer models through Pfaffian

methods also works in this case, and allows us to recast our Haffnian as a Pfaffian.

We begin by writing the coefficients a{σ} in (2.11) as the Haffnian of a matrix

defined in terms of the Ising configuration {σ}. To this end, we first define a matrix

Θij that encodes the link orientation of the lattice

Θij =































0, i = j or i, j not nearest neighbors

−1, i < j

+1, i > j

(2.12)
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Here, the statements i < j and i > j just refer to the orientation of the arrow on

the link between the nearest neighbors i and j in the orientation of Fig. (2.2). We

also define the wave function of a singlet pair on sites i and j:

χ(σi, σj) = δσi,↑δσj ,↓ − δσi,↓δσj ,↑ . (2.13)

With these definitions, we introduce a symmetric matrix Mij({σ}), where i, j are site

indices, as

Mij({σ}) = Θijχ(σi, σj) . (2.14)

In terms of this matrix, it turns out that the coefficients a{σ} can be written as:

a{σ} = Haff(Mij) (2.15)

≡ 1

2N/2(N
2
!)

∑

λ∈SN

Mλ1λ2
({σ})Mλ3λ4

({σ})× · · · ×MλN−1λN
({σ})

Here, N is the dimension of Mij , i.e. the number of spins or lattice sites. It is not

difficult to see that the sum over permutations λ effectively runs over all possible

dimer coverings, modulo re-arrangements of dimers and modulo exchanges of the two

sites of any pair. Specifically, any λ that gives a non-zero contribution is such that

the pairing induced by (λ2n−1, λ2n) corresponds to a dimerization of the lattice. All

λ’s corresponding to the same pairing enter with the same amplitude, and the overall

factor 2N/2(N
2
!) which is divided out just is the multiplicity with which each dimer

covering is represented by such permutations. It is thus clear that the expression
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Figure 2.4. A Kasteleyn orientation for the kagome lattice taken from Ref. [56].

on the right hand side is just a wave function equal to the sum over all products of

admissible singlet configurations, evaluated for the Ising configuration {σ}.

We have thus succeeded in writing the coefficients a{σ} as a Haffnian. This is not

quite good enough yet for efficient evaluation, as discussed above. To make progress,

we define a ”Kasteleyn orientation” of the lattice, as shown in Fig. (2.4).

For this orientation, we also define a matrix ΘK
ij exactly as in Eq. (2.12), but with

respect to the different orientation shown in Fig. (2.4). With this we can now define

a new anti-symmetric matrix M̃ij :

M̃ij =MijΘ
K
ij . (2.16)

It turns out that in terms of M̃ij , the coefficients a{σ} can be expressed as a Pfaffian:

a|σ1...σN 〉 = Pfaff(M̃ij) (2.17)

≡ 1

2N/2(N
2
!)

∑

λ∈SN

(−1)λM̃λ1λ2
({σ})M̃λ3λ4

({σ})× · · · × M̃λN−1λN
({σ}).
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The reason why this works is that for all λ’s corresponding to dimer coverings, the

additional sign (−1)λ is precisely canceled by the additional signs coming from the

ΘK
ij factors (possibly up to a constant factor −1 which does not depend on {σ} and is

thus irrelevant). This was shown by Kasteleyn [57], who was facing almost the exact

same technical problem. (If Mij is replaced by its modulus, Haff(Mij)=Pfaff(M̃ij) is

just the partition function of the classical hard core dimer gas).

We are now in a position to cast the problem of evaluating the correlation functions

(2.10) as a classical statistical mechanics problem. To ease the notation, we will now

write I ≡ {σ} for Ising configurations. We then have:

〈RV B|OiOj|RV B〉
〈RV B|RV B〉 =

∑

I

∑

I′ aIaI′〈I ′|OiOj |I〉
∑

I |aI |2

=

∑

I |aI |2
∑

I′
aI′
aI
〈I ′|OiOj |I〉

∑

I |aI |2
(2.18)

This may now be interpreted as the classical expectation value 〈f〉 of a quantity f :

〈f〉 =
∑

I fIe
−EI

∑

I e
−EI

. (2.19)

Here,

e−EI = |aI |2 , (2.20)

and the value fI of the quantity f in the Ising configuration I is given by

fI =
∑

I′

〈I ′|OiOj|I〉
aI′

aI
(2.21)

It is important to note that for given local operators Oi, Oj , the sum over I ′ in (2.21)

can be restricted to a very few terms which are a priori known. Specifically, if O = Sz

40



is the z-component of a local spin, the product OiOj is diagonal in the Ising basis,

and only I ′ = I contributes, so the sum has only one term.

We have now solved the sign problem in principle, by casting the correlator (2.18)

as a classical expectation value, with “Boltzmann factors” that can be evaluated in

polynomial time, the evaluation of correlation functions can be cast in terms of a

partition function, whose weights are positive. For reasons of numerical efficiency,

one should make use of the matter of fact that the structure of our Pfaffian allows a

reduction to the determinant of an N/2×N/2 matrix. Returning to our earlier caveat,

we moreover found that once we have an initial Ising configuration I with aI 6= 0,

performing updates by exchanging neighboring spins has a high chance of leading to a

new configuration I ′ with aI′ 6= 0, The basic requirements for Monte Carlo evaluation

are thus met. To close this chapter, we note that in the case of periodic boundary

conditions, we have a fourfold ground state degeneracy. Our method allows to access

each ground state wave function for itself, we can restrict us to a single sector. Another

newly developed method applied to investigation short-ranged RVB wave functions is

the “Projected Entangled Pair States” (PEPS) method. [58] However, using PEPS,

it not possible to employ PBC and subsequently it is not possible to investigate the

topological degeneracy.
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2.3 Results

In order to execute our Pfaffian Monte Carlo scheme, 1 we start by choosing a

sign convention for the links of the lattice for the kagome and the triangular lattice.

For both lattice types, it is not possible to employ VB Monte Carlo because of a

sign problem. However, the equal amplitude superposition of valence bond states has

never been investigated before. Therefore, we now investigate this wave function with

our new Pfaffian Monte Carlo method. For the kagome lattice, we orientate all links

counterclockwise along the hexagons. Simulations are now performed for differnt

lattices sizes. For the kagome lattice, we have chosen (m,n) as defined in Fig. (2.5)

1The code was partially based on the ALPS code. [65, 66]

Figure 2.5. a) Shape of the kagome lattice used in the calculations.
The lattice consists of m unit cells in the a direction and n unit
cells in the b direction, for a total of 3mn sites. Periodic boundary
conditions may or may not be introduced with periodsma and nb. b)
The orientation used in the sign convention for the triangular lattice.
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Figure 2.6. The dimer-dimer correlation function shown for kagome
lattices with PBCs and OBCs. Insensitivity to system size and short
correlation length are evident. The PBC case has been calculated
within a fixed topological sector. The inset shows a logarithmic plot
including a linear fit, yielding a correlation length of 1.12(3).

to be (10,5) for periodic boundary conditions (PBCs) and to be (20,8) and (20,10) for

open boundary conditions (OBCs), resulting in a total number of N = 150, 480, and

600 sites, respectively, (and in lattices with roughly unit perpendicular aspect ratio).

For the triangular lattice, we show data belonging to a 20×20 “square” with diag-

onals (see Fig. (2.5)) giving a lattice of 400 sites. In one Monte Carlo sweep through

the lattice, we attempt to do a number of N exchanges of two neighboring spins. All

expectation values were calculated by making about 1,500,000 measurements on the

configurations produced by the Monte Carlo process, allowing the system to equili-

43



Figure 2.7. The dimer-dimer and spin-spin correlation functions for a
400 sites triangular lattice with OBCs. The inset shows logarithmic
plot with fits, giving a correlation length of 1.15(2) for the dimer-
dimer decay. The spin-spin correlations display stronger even/odd
effects at short distance. Fitting only odd distances in the spin-spin
case gives a correlation length of 1.61(2).

brate for 8000 sweeps. Autocorrelation times are generally quite low, on the order of

1.

Fig. (2.6) presents the connected correlation function of the “dimer” or valence

bond operator ~Si · ~Si+x, where i and i+ x are nearest neighbors, for different lattice

sizes and boundary conditions. It is evident that there is a finite and very short cor-

relation length. From the inset it is clear that the absolute values of the correlation

functions follow a simple exponential law already at short distance, from which we

obtain a correlation length of ξ = 1.12(3). Moreover, the plot for 600 sites and OBCs
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Figure 2.8. The spin-spin correlation functions 〈~Si
~Si+κ〉 and 〈Sz

i S
z
i+κ〉

for different kagome lattices (PBC and OBC). Again, the topological
sector was fixed in the PBC case. The inset shows a logarithmic plot
with linear fit yielding a correlation length of 2.08(2).

coincides very well with that for 150 sites and PBCs. We note that for the case of

PBCs, the method used to treat the classical dimer case [56] can again be adapted to

the present situation, and yields an expression of the amplitude aI as a superposition

of four Pfaffians. Different such superpositions can be used to project onto different

topological sectors of the toroidal system. While only one topological sector is shown,

we have also convinced ourselves that results for different topological sectors agree

within error bars. The fact that the dimer-dimer correlations are apparently insensi-

tive to both lattice size and boundary conditions, already for a relatively small size of
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Figure 2.9. The expectation value of the dimer operator for links of
the three possible directions and various lattice sizes. The average
for one system size is shown as horizontal bar. A topological sector
has been fixed. The discrepancy between nonequivalent links rapidly
decreases with system size, restoring the lattice symmetry.

150 sites, is consistent with the hypothesis of a gapped state. We note moreover that

the decay is very reminiscent of the quantum dimer model case, where dimer-dimer

correlations have been shown to decay super-exponentially, with correlations being

exactly zero beyond distance 2 [53]. While this is clearly not the case for the RVB

state, a very short correlation length of order 1 still mimics this behavior fairly closely.

The qualitative agreement between the quantum dimer model and the RVB state is

thus quite striking.
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Fig. (2.7) shows the dimer-dimer correlations for a 400 site triangular lattice, dis-

playing similarly short ranged correlations. Subdominant corrections to the dominant

exponential decay are clearly somewhat more important than for the kagome, as one

would generically expect; however a correlation length close to 1.6 is still clearly vis-

ible in the inset. All linear fits are obtained from a weighted least square regression,

where the weights have been chosen as the inverse squares of the error bars. Note

that although the value at distance zero has not been included into any fit, even this

shortest distance data point tends to follow the exponential trend very well.

We also computed spin-spin correlation functions 〈~Si · ~Sj〉. Results are shown for

the kagome in Fig. (2.8) and for the triangular lattice in Fig. (2.7). Spin-spin correla-

tions decay exponentially even in the critical square-lattice case [61], and by theoret-

ical prejudice should decay exponentially for all short ranged RVB states. Moreover,

even on the kagome, DMRG work has predicted a spin liquid phase with gapped spin

but gapless singlet excitations [62]. This might render the singlet sector more crucial

in the present context. Nonetheless, direct demonstration of the exponential decay

of spin-spin correlations is not straightforward, especially in the presence of the sign

problem discussed initially. Again, the short-ranged nature of the correlations is ap-

parent in both cases. As a consistency check, both 〈~Si · ~Sj〉 and 3〈Sz
i S

z
j 〉 are shown,

which must agree by SU(2) symmetry. This symmetry is, however, not manifest in

the Ising-basis we are working with. 2

2We note that SzSz correlations for the kagome were also calculated very recently using a PEPS
representation [58]. However, we find a direct comparison of our results not straightforward, due to
the blocking procedure carried out in [58].
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Up to now we have demonstrated that connected correlations for the RVB states

on the kagome and triangular lattice are short-ranged. This does, however, by itself

not guarantee the liquid property of these states. In particular, the four degenerate

RVB ground states on the torus transform nontrivially under the space group of the

lattice, and to demonstrate the liquid property and rule out the possibility of a valence

bond solid [63], it is essential to show that the full lattice symmetry is restored in the

thermodynamic limit, for each individual ground state (within each topological sec-

tor). We restrict ourselves to the kagome lattice here. In the following, we will refer to

lattice links as “symmetry inequivalent” if they are not related by a symmetry of the

wave function (even though they may be related by a symmetry of the lattice). For

lattices of the shape shown in (Fig. (2.5)a), with m, n both even, any three links along

different directions will always exhaust all possible classes of nonequivalent links. In

Fig. (2.9), we plot the expectation values of the dimer operator for three such links,

evaluated in one topological sector, for various “even/even” lattices. One observes

that the discrepancy between nonequivalent links rapidly decreases, by a factor of at

least 60 between 24 sites and 48 sites, taking into account error bars. (The consis-

tency between symmetry equivalent links suggests that the error is much smaller than

shown, and the factor is really on the order of 100). For larger lattice size, the calcu-

lation becomes increasingly demanding, since, presumably, increasingly smaller error

bars are needed to resolve the discrepancy in expectation values, while even maintain-

ing the size of the error bars is more costly (Fig. (2.9)). It is worth noting, though,

that the average of the three expectation values for 72 and 96 sites appears to have
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converged, and we are thus approaching the thermodynamic limit. In all, these find-

ings are highly consistent with the general expectation that the RVB-states describe

a topological spin liquid: not only correlations decay exponentially as expected, but

also lattice symmetry remains unbroken in the thermodynamic limit for the kagome

lattice. For the kagome, this greatly adds to the amassed evidence that local SU(2)

invariant Hamiltonians stabilizing a topological spin liquid state are possible [51,58].

Further possible applications of our method include the investigation of short-ranged

RVB wave functions on other nonbipartite lattices. In particular, certain next nearest

neighbor links may be introduced in standard lattice geometries such as the square

lattice [64], as long as the planarity of the lattice is maintained. This makes it natural

to introduce different weights for different types of valence bonds. Furthermore, our

method allows for the introduction of any number of mobile (delocalized) holes and

thus the study of monomer correlations and the related confinement/deconfinement

issue.

2.4 Discussion

In order to further strenghten the claim that our Hamiltonian Eq. (1.3) indeed

is the parent Hamiltonian to a Z2 quantum liquid phase, we still need to rule out

other ground states; we want the equal amplitude superpositions of singlet coverings

to be the only ground state(s). This uniqueness issue is work in progress [59]. After

obtaining all numerical data, we noticed that the data –the exponential decay of

the correlations– is not very system size sensitive. This, together with the observed
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exponential decay, indicates that the system indeed should have a gap. Still, however,

one might desire a strict proof to show the gap. This is left for future work.
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3. Linear independence of nearest neighbor valence bond

states

This chapter is devoted to the question whether the nearest neighbor valence bond

(NNVB) states are linearly independent on various two dimensional lattices. To

answer this question, we utilize and generalize a method that was recently introduced

and applied to the kagome lattice [51]. The key point of the procedure derived in

Ref. [51] lies in finding an appropriate (possibly small) cell for the respective lattice,

for which a certain local linear independence (LI) property can be demonstrated.

Whenever this is achieved, linear independence follows for arbitrarily large lattices

that can be covered by such cells, for both open and periodic boundary conditions.

We find that this method is applicable to the kagome, honeycomb, square, squagome,

two types of pentagonal, square-octagon, the star lattice, two types of archimedean

lattices, three types of “martini” lattices, and to fullerene-type lattices, e.g., the well

known “Buckyball”. Also, we present an example that proves that our method does

not only apply to NNVB states that are constructed out of spin 1/2 electrons, but

also to a group of states called “resonating valence loop” (RVL) states made out of

spin 1 electrons.
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The above briefly summarized results of this chapter have been published in

Julia Wildeboer and Alexander Seidel, Phys. Rev. B 83, 184430 (2011) .

3.1 Applications and usefullness of linear independent valence bond states

At this point, we will make an effort to justify why the linear independence

property is such a crucial property. The linear independence issue of the short-

ranged resonating valence bond (RVB) states on several two dimensional lattices

was considered a hard problem; the only results previously obtained on this matter

were published in 1989 by Chayes, Chayes, and Kivelson [67]. Unfortunately, Ref.

[67] only gives the linear independence on three different types of two dimensional

lattices, namely the square, the honeycomb, and the square-octagonal lattice. In all

three cases, the result is only obtained for open boundary conditions. Thus, until Ref.

[68] appeared in 2011, there was no information available on the linear independence

property of valence bond states living on lattices with periodic boundary conditions.

We will now describe the usefulness of the linear independence property. Moreover,

we will start with an a very important application of the LI property, namely the role

it plays when it comes to finding exotic magnetic quantum states such as the quantum

spin liquid state. As described in the introductory chapter 1, Rokhsar and Kivelson

invented an ingenious scheme to explore the non-magnetic part of the phase diagram

of quantum spin-1/2 systems through effective “quantum dimer” models (QDMs)

[8]. They focused on the case where a gap in the system renders all correlations
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Figure 3.1. A square lattice a with dimer covering. Dimers are indicated by ovals.

short ranged. In this case, the RVB spin liquid ground state can be thought of as

superposition of states where spins pair up into short range valence bonds. A quantum

dimer model is obtained by first truncating the Hilbert space to include only states

where each spin participates in a nearest neighbor valence bond (NNVB). The second

simplification is to regard the NNVB states that generate the Hilbert space as an

orthogonal basis. In reality, no two different NNVB states on a finite lattice are

orthogonal. The overlap (scalar product) between two different RVB states is always

finite. Thus, it is more appropriate to think of the degrees of freedom of these new

effective theories not as valence bonds, but as hardcore bosons or “dimers” living on

the links of the original lattice. As sets, however, both the hard core dimer states and
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the NNVB states are in one-to-one correspondence with dimerizations of the lattice

into nearest neighbor pairs, see Fig. 3.1.

The exploration of QDMs has given rise to profound insights into possible real-

izations of short range RVB spin liquid physics, in particular on nonbipartite lattices

[33, 70]. It has remained challenging, however, to rigorously establish the status of

simple QDMs as viable effective theories for quantum spin-1/2 systems within a cer-

tain parameter regime. The lack of orthogonality of the NNVB states that QDMs

seek to describe makes it difficult to establish a direct mapping between QDMs and

the low energy sector of quantum spin-1/2 models. This difficulty can be dealt with

by treating the non-orthogonality as a “small parameter”, and setting up a system-

atic expansion in this parameter. This notion already played a central role in the

original literature, [8, 25, 69] and was recently explored in great detail in a series of

insightful papers [71, 72]. Within this scheme, one can thus get the issue of the non-

orthogonality of the NNVB states under control.

However, the validity of this perturbative scheme depends crucially on the fact that

the NNVB states, while not orthogonal, are at least linearly independent, like their

counterparts in QDMs. In technical terms, the overlap matrix obtained from the

NNVB states must be invertible. The need for an invertible overlap matrix was

noticed early on, [69] and from thereon linear independence of NNVB states was

routinely quoted as an assumption in the literature, e.g. in estimates of the low

temperature entropy of highly frustrated quantum magnets [73,74]. Furthermore, ex-

actly solvable, SU(2)-invariant spin-1/2 models with RVB and/or spin liquid ground
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states on simple lattices have only been constructed quite recently, [42, 43, 51, 75]

in addition to work on decorated lattices [41]. In Ref. [51], rigorous (albeit partial)

statements on the uniqueness of the RVB-type ground states of the model constructed

there were intimately tied to the linear independence of NNVB states on the kagome

lattice. Subsequently, from a purist point of view, there is a need to demonstrate

that superpositions of NNVB wave functions, which may be considered as variational

[25,73,74,76,77] or exact [42,43,51] solutions to various problems, do not vanish iden-

tically, whenever the overlaps between the NNVB states forming these wave functions

do not have a uniform sign. Also, the normalizability of such wave functions is an

obvious byproduct of the linear independence of NNVB states (on the respective lat-

tice). The explicit or implicit assumption of the linear independence of the NNVB

states is thus a prevalent theme in the literature on short range RVB physics, and in

some cases has been studied extensively on finite clusters. [78, 79]

As mentioned above, rigorous proofs of the LI property have been available since

1989, through a seminal work of Chayes, Chayes, and Kivelson [67]. The proof, how-

ever, has been limited to three different types of planar lattices, the square, honey-

comb, and square-octagon lattice, and only for the case of open boundary conditions.

Now with the publication of Ref. [68] a more general method is available, that can,

in principle, be applied to any lattice, in the presence of both open and periodic

boundary conditions. While we usually have Born–von Karman periodic boundary

conditions in mind which give a rectangular (or parallelogram) lattice strip the topol-

ogy of a torus, our method applies to other lattice topologies as well. To demonstrate
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this, we also apply our method to the C60 lattice and other fulleren-type lattices,

where the linear independence of NNVB (or “Kekulé”) states has direct applications

in chemistry [76]. Though, we will restrict our results in the following to two dimen-

sional lattices and the C60 “Buckyball” lattice, we also point out that our approach

should, in principle, also be applicable to dimensions higher than two, as there are

some three dimensional lattices in the literature such as the hyperkagome or the three

different cubic lattices that would be of interest when it comes to the question if their

NNVB coverings are indeed linearly independent. Also, we first restrict ourselves to

spin-1/2 systems, however, in the final Section 3.4 of this chapter, we show that our

proof is so powerful that it can be generalized to the case of spin 1. The spin-1 state

analogous to the spin-1/2 NNVB states are call resonating valence loop states; they

will be introduced in Section 3.4 and their linear independence on the honeycomb

and on the star lattice will be proven.

Although there is no guarantee that our proof strategy works for every lattice

where the linear independence holds, we do demonstrate its applicability to many new

two-dimensional (2D) lattices, for which the linear independence of NNVB states is

first established in this work. At the same time, we generalize the aforementioned pre-

vious results on linear independence of NNVB states to the case of periodic boundary

conditions. It is well known that the physics of short range RVB states becomes en-

riched in subtle ways when periodic boundary conditions are imposed. On a toroidal

square lattice, e.g., NNVB states come in a large number of topological sectors char-

acterized by two integer winding numbers (nx, ny). (For a review, see e.g. Ref. [80]).
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When the same lattice is viewed as a rectangle with open boundary conditions, the

remaining allowed NNVB state all belong to a subset of just the (0, 0) sectors. In

the thermodynamic limit, the number of NNVB states for open boundary conditions

thus becomes a vanishing fraction of the corresponding number for periodic bound-

ary conditions. It is thus clear that the statement of linear independence becomes

considerably stronger for periodic boundary conditions, and is often desirable in ap-

plications.

We proceed by applying and refining a method that has recently been developed

for the kagome lattice, [51] making it amenable to more general lattice structures. In

Section 3.2.1 we review this method. In Section 3.2.2, we report that this method

can be applied without much alteration to the honeycomb lattice, the star lattice,

the square-octagon lattice, the squagome lattice, two types of pentagonal lattices

(studied in a magnetic context, e.g., in Refs. [81] and [41]), three types of “martini”

lattices, [82] and two types of archimedean lattices. In Section 3.2.3, we apply the

same method to fulleren-type lattices. We find that the case of the square lattice

requires a generalization of this method, which is introduced and applied in Section

3.2.4. In Section 3.3 we summarize our results and discuss possible further applica-

tions. Eventually, a further modification/application of our proof is provided through

the above mentioned RVL states, whose LI property is proven on the star and the

honeycomb lattice.
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3.2 Proof for linear independence and results

This section is subdivided into four parts. First, we will derive the general

proof scheme without referring to any specific lattice, dimension of the lattice, or its

topology. We do so in order to make it clear how applicable our proof is when it

comes to multiple systems to be distinguished by the above mentioned properties.

Then we will move on to the results. Here, we distinguish between several cases:

first, we will prove the LI property of twelve planar lattices in Section 3.2.2 that

frequently appear in the literature. Afterwards, we turn our attention to a different

type of lattice topology; we discuss and show results concerning fullerene-type lattice

stuctures, e.g. the most prominent example here is the famous C60 “Buckeyball”

frequently appearing in the (chemistry) literature. The LI of the NNVB states of the

square lattice harbors a speciality that requires a modification of our above mentioned

proof scheme. This will be discussed in Section 3.2.4.

3.2.1 Derivation of the linear independence condition

In this section we review the method used in Ref. [51] to prove the linear inde-

pendence of the nearest neighbor valence bond states on the kagome lattice. We find

that this method can be extended straightforwardly to most other lattices to be con-

sidered here. A refinement necessary to study the case of the square lattice will be

given further below.
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The general starting point of this method is the identification of a suitable (ideally,

smallest) cell for which a rather strong local linear independence property holds true.

This local linear independence property can conveniently be verified numerically, al-

though in many cases an analytic proof seems feasible as well. As shown in Ref. [51],

this local property then implies the linear independence of nearest neighbor valence

bond states on arbitrarily large lattices that can, in a certain sense, be covered by

such cells.1 We will present the proof in the following now. For the kagome lattice,

the smallest possible cell that satisfies these requirements is the 19-site “double star”

shown in Fig. (3.2).

For any given cell of a lattice, we define as interior or inner sites of the cell those

sites for which all nearest neighbors are also contained within the cell. Here, the

nearest neighbors of a site are all sites connected to it through a link of the lattice.

Sites that are not interior are called the boundary sites of the cell. For the kagome

cell depicted in Fig. (3.2), all sites belonging to one of the internal hexagons are

interior, while the remaining ones are boundary sites, unless the cell happens to be at

a boundary of the lattice itself. In this work we will, however, mostly consider lattices

without boundary. Statements about lattices with boundary can then be obtained

as simple corollaries. Therefore, the distinction between interior and boundary sites

within a cell such as shown in Fig. (3.2) will not depend on the position of the cell

within the lattice.

1While here we will usually consider the case where a single type of cell suffices, one may in some
cases want to identify several types of cells that satisfy the local linear independence property, such
that the lattice can be conveniently covered by this family of cells.
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Figure 3.2. (Color online.) The kagome lattice. a) shows the structure
of the kagome lattice, while b) shows the minimal (smallest) cell for
which the local independence property defined in the text was proven.
[51] Different dots are used to label the sites which are defined as inner
and outer sites, respectively.

To proceed, we will now define a certain class of states living on the local cells.

We will refer to these states as “local valence bond states”. This does, however, not

imply that these states completely dimerize the cell, i.e. that every site of the cell

must participate in a valence bond within the cell. Rather, we think of these states as

local “snapshots” of a lattice that is in a (globally defined) nearest neighbor valence

bond state. In such a snapshot, every internal site of the cell must certainly form a

valence bond with one of its nearest neighbors within the cell. A boundary site of the

cell, however, may or may not participate in a valence bond with a site within the

cell under consideration. In particular, it may participate in a valence bond with a

site outside that cell. In the latter case, the local density matrix describing the state
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of the cell contains no information about the state of the spin of such a boundary

site. This motivates the following definition of local valence bond “snapshot” states

on the cell C. Let us consider states of the form

|D〉 × |ψf〉 . (3.1)

Here, D represents a dimer covering of the cell C. By this we mean a pairing of the

sites of the cell C into nearest neighbor pairs, where each internal site is a member

of a pair, but not necessarily each boundary site. An example for such a pairing is

given for the cell of the star lattice shown in Fig. (3.3d), and that of the square

lattice shown in Fig. (3.10c). By |D〉 we denote a state where each pair of D forms a

singlet, with an arbitrary phase convention. In Eq. (3.1), the state |ψf〉 then denotes

any state of the “free” sites that are left untouched by the dimer covering D. This

can again be seen in Figs. (3.3d), (3.10c). In (3.10c), every dimer covering D leaves

behind at least one free site, because of the odd number of sites in this cell. For cells

of even size, we leave it understood that the factor |ψf〉 in Eq. (3.1) is absent if D

covers all sites of the cell.

We find it convenient to denote by H(D, C) the linear space formed by all local

states of the form (3.1), for a fixed dimer covering D, and will also write H(D) instead

of H(D, C) whenever it is clear what cell is being referred to. The space spanned by

all states of this form, without fixing D, is called the local valence bond space of the

cell C, V B(C):

V B(C) =
∑

D

H(D, C) . (3.2)
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Here, the sum denotes the linear span. For a given cell C, we will now ask whether

the sum in Eq. (3.2) is direct. This means that the expansion of any state in V B(C)

into members of the various spaces H(D) is possible in one and only one unique way.

Whenever this property holds for some cell C, we will say that the NNVB states are

“locally independent” on the cell C, or satisfy the “local independence property” on

the cell C.

The local independence property, whenever it can be established for some cell C,

extends to arbitrarily large lattices that can be covered by cells of this topology. Said

more precisely, we require that every link of the lattice belongs to a cell that has

the topology of C.2 The linear independence of NNVB states defined on the entire

lattice can then be seen as follows [51]. If the sum in Eq. (3.2) is direct, then linear

projection operators PD acting on the cell C are well defined, which project onto the

subspaces H(D). Said differently, the defining properties of these operators are

PD |D′〉 ⊗ |ψf〉 = δD,D′ |D′〉 ⊗ |ψf 〉 ,

hence PDPD′ = δD,D′PD .

(3.3)

We note that since the spacesH(D) are not orthogonal, the linear projection operators

thus defined are not Hermitian. We also mention that to define these operators in

within the full 2|C| dimensional Hilbert space of the cell C, we need to specify their

action on a suitably chosen complement of the local valence bond space V B(C), which
2In general, one should exclude by definition any link between two boundary sites of C from the
topology of C. This is not an issue for most cells considered here, except for the martini-B and the
archimedean-B lattice, see Fig. (3.7) (a),(c), Fig. (3.8) (b),(d). It would also be relevant, e.g., to
cells of the triangular lattice.
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can be done in an arbitrary way. In the following, we will only need to know the action

of these operators within the subspace V B(C).

The operators PD can now be defined for any cell C of some lattice L, for which

the nearest neighbor valence bond states are locally independent in the sense defined

above. We may write P C
D to explicitly refer to the cell C on which these operators

act, but will continue to write PD instead whenever no confusion is possible. Armed

with these operators, we may consider a general linear relation of the form

∑

D′

λD′|D′〉 = 0 . (3.4)

Here, D′ now represents a full dimerization of the entire lattice, and for simplicity,

we assume that the lattice has no boundary, and can be covered by a single type

of cell, as defined above. We will comment on the (simpler) case where the lattice

has a boundary below. The states |D′〉 are thus NNVB states of the lattice L. For

definiteness, we may think of, e.g., a honeycomb lattice with periodic boundary con-

ditions. The honeycomb lattice and its smallest cell for which the local independence

property holds are shown in Fig. (3.4). We want to show that Eq. (3.4) implies that

all coefficients λD′ are zero. For this we first focus on a single cell C of the lattice that

has the topology shown in Fig. (3.4b), and a fixed dimer covering D of the entire

lattice.

The dimer covering D determines a dimer covering DC of the cell C, consisting of

those dimers of D that are fully contained in C. Consider the action of the operator

PDC
defined for the cell C on any of the states |D′〉 in Eq. (3.4). Clearly, the dimer
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covering D′ determines a local dimer covering of C, D′
C, defined analogous to DC.

From the definition of the projection operators, Eq. (3.3), we see that

PDC
|D′〉 = δDC ,D

′

C
|D′〉 . (3.5)

This is so since the state |D′〉 is contained in the tensor product H(D′
C, C)⊗H(L\C),

where the second factor denotes the Hilbert space associated with all lattice sites not

contained in C. PDC
only acts on the first factor, and does so according to Eq. (3.3).

Some further (but trivial) details are explicitly written in Ref. [51]. Hence, when

PDC
acts on Eq. (3.4), one obtains a similar linear combination on the left hand side,

but with all dimer coverings D′ omitted for which the cell C does not contain exactly

the same dimers as for D. We can proceed by successively acting on this new linear

relation with the operators PD
C′
, where D is the same as before, but C′ now runs over

all cells of the lattice with the same topology as C. Since by assumption, these cells

cover the lattice in the sense defined above, only those states |D′〉 in Eq. (3.4) survive

this procedure whose underlying dimer covering D′ looks the same as D everywhere,

i.e., only the term with D′ = D survives. The resulting equation is thus λD|D〉 = 0,

which implies λD = 0. Hence λD′ = 0 for each dimer covering D′, since D was

arbitrary. This then proves the linear independence of the nearest neighbor valence

bond states on the lattice L.

So far we have considered lattices with periodic boundary conditions.

The above result, however, immediately carries over to lattices with a boundary.

Let us consider any lattice L′ with an edge that can be obtained from a lattice L with

periodic boundary conditions, for which the linear independence of NNVB states has
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Figure 3.3. (Color online.) The star lattice (a), and its minimal cell
(c) for which the local independence property could be established.
(b) shows the martini-A lattice, with the same minimal cell (c). Dif-
ferent shades (colors) of dots identify internal and boundary sites. (d)
shows a possible dimer covering: the internal sites must be touched
by a dimer, boundary sites may or may not form a dimer (valence
bond) with an internal site. In a local valence bond state, boundary
sites not participating in valence bonds may be in an arbitrary spin
configuration.

been proven, by means of the removal of certain boundary links. Then the set of full

dimerizations D of L′ is just a subset of those of L, and likewise the corresponding

set of NNVB states. Hence, if the linear independence of NNVB states holds for L,

it must also hold for L′. More generally, it is easy to see that our result applies to

any sublattice L′ of L, such that L = L′ ∪L′′ is a disjoint union, and both L′ and L′′

are fully dimerizable.
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3.2.2 Twelve different 2D lattices

We now discuss the applicability of this method to various two-dimensional lat-

tices. As discussed in Section 3.2.1, this merely requires the identification of a cell of

the lattice, for which the local independence property holds, and which can cover the

entire lattice in the sense defined there. Such cells have also been dubbed “bricks of

linear independence” in Ref. [51]. For brevity, we will refer to the cells identified by

us as “minimal cells”, since there are presumably (in some case obviously) no smaller

cells with this property on the respective lattices. We have, however, not carefully

ruled out the existence of smaller cells in all cases, since this is of limited interest

once sufficiently small “bricks of linear independence” have been identified. For the

cell C in question, we pick an appropriate basis |D〉⊗|ψi〉 for each space H(D), where

i = 1 . . . 2nD , and nD is the number of sites of the cell C that do not participate in

the local dimer recovering D. The local independence property introduced in the

preceding section is then equivalent to the statement that the overlap matrix

MD′,j;D,i = (〈D′| ⊗ 〈ψj|) (|D〉 ⊗ |ψi〉) (3.6)

has full rank. It is clear that for a suitable choice of the factors |ψi〉, e.g. “Ising”-type

basis states with well-defined local Sz, and suitable overall normalization factors, the

matrix elementsMD′,j;D,i are integer. The question of the rank of this matrix can then

be addressed using integer arithmetic free of numerical errors. We did this by using

the LinBox package. [83] By choosing the ψi from an Ising-Sz basis, the matrix in
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Figure 3.4. (Color online.) Honeycomb and related structures. (a)
The honeycomb lattice. (b) its minimal cell with internal and bound-
ary sites identified. (c) The minimal cell of the buckyball lattice
(Fig. (3.9)). (d) A similar heptagonal cell that also satisfied the local
independence property.

Eq. (3.6) is also block diagonal with blocks of definite total Sz. This let to manageable

matrix sizes in all the cases discussed in this section.

We present twelve different 2D lattices which we successfully studied using the

method described above, and their respective minimal cells C, for which the local

independence has been found to hold, Figs. 3.2-3.8.

These are, in order, the kagome lattice (treated in Ref. [51]), the star lattice, the

martini-A lattice, the honeycomb lattice, the square-octagon lattice, the squagome

lattice, the pentagonal and the “Cairo” pentagonal lattice, 2 more types of the“martini”

67



Figure 3.5. (Color online.) The square-octagon lattice (a) and the
squagome lattice (b). (c) and (d) show the respective minimal cells.

lattice (martini-B and martini-C), and two types of so called archimedean lattices,

denoted archimedean-A and archimedean-B. As proven above, for all these lattices,

the identification proper “bricks of linear independence” implies the linear indepen-

dence NNVB states for arbitrarily large lattices of this type (which must also be large

enough to contain the minimal cell), for both open and periodic boundary conditions.

For the square-octagon and the honeycomb lattices, the case of open boundary con-

ditions had already been treated in Ref. [67] by a different method. It is interesting
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Figure 3.6. (Color online.) Two types of pentagonal lattices. (a)
shows the pentagonal lattice and (b) shows the “Cairo” pentagonal
lattice structure, (c) and (d) the respective minimal cells.

to note that the size of the matrix in Eq. (3.6) differs quite significantly for the 2D

lattices discussed here: for the star and the martini-A lattice, which share the same

minimal cell (Fig. (3.3)), the total matrix dimension (over all Sz-blocks) is only 13.

For others, the matrix dimension is on the order of a few thousand, and for the square

lattice cell treated separately in Section 3.2.4, the set of “local valence bond” states

|D〉 ⊗ |ψi〉 defining the matrix has more than half a million elements.
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Figure 3.7. (Color online.) Two more types of martini lattices. (a)
and (b) show the lattice structures of the martini-B lattice and the
martini-C lattice, respectively, (c) and (d) the respective minimal
cells.

3.2.3 Fullerene-type lattices

We now consider fullerene-type lattices, where each site has three nearest neigh-

bors, and belongs to at least one hexagonal plaquette, where no two members of

the same hexagonal plaquette share a nearest neighbor outside that plaquette. Such

lattices can be covered, in the sense defined in Section 3.2.1, by the minimal cell

of the honeycomb lattice, Fig. (3.4b). A famous example is the “Buckyball” lattice,
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Figure 3.8. (Color online.) Two types of archimedean lattices. (a)
shows the archimedean-A lattice and (b) shows the archimedean-B
lattice structures, (c) and (d) the respective minimal cells. Note that
the minimal cell in (d) is the same as that of the honeycomb lattice,
Fig. (3.4b).

Fig. (3.9). By the results of the preceding sections, the NNVB states on these types of

lattices are are linearly independent. This also demonstrates that our method, being

essentially local, can be applied to general lattice topologies. 3 The Heisenberg model

on fulleren-type lattices has been extensively studied within the NNVB subspace in

Ref. [76] (there called Kekulé subspace). Good agreement with exact diagonalization

results within the full Hilbert space was found. The authors also point out the central

3Strictly speaking, since we define a lattice only through its vertices and edges, while faces play no
role, we can equally well regard the C60 lattice as having the topology of a sphere, or, through its
Schlegel diagram, of a planar graph. This does not affect the general validity of this statement.
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Figure 3.9. The lattice of the C60 molecule, or “buckyball”. The
lattice can be covered by the minimal cell of the honeycomb lattice,
Fig. (3.4b). The actual minimal cell of this lattice is the pentagonal
cell shown in Fig. (3.4c).

importance of the linear independence of the NNVB states to their approach. Since

the fullerene lattices are finite in size, conventional brute-force numerics may in prin-

ciple be used to establish this, although the feasibility of this depends, of course, on

the actual lattice size. In contrast, the result derived here holds for arbitrarily large

systems, and, given the small size of the minimal cells involved, could be obtained

purely analytically. In this regard, it is worth noting that the actual minimal cell of

the C60 molecule is not that of the honeycomb lattice, Fig. (3.4b), but the smaller

pentagonal cell of Fig. (3.4c). We have verified that it likewise satisfies the local

independence property, and each link of the Buckyball lattice belongs to such a cell.
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For this rather small cell, an analytic proof of the local independence property seems

feasible using the Rumer-Pauling method [84–87] referred to in the next section.

Based on the observations made thus far, we conjecture that all cells where the

n inner sites form a single polygon, and each inner site is linked to exactly one of

n boundary sites, have the local independence property. Examples of such cells, for

which we have verified this, are given in Figs. (3.3c), (3.5c), and (3.4b-d), correspond-

ing to n = 3, 4, 5, 6, 7. For all lattices that can be covered by any combination of such

cells, we thus have the linear independence of NNVB states.

3.2.4 The square lattice

We find that the method presented in Sec. 3.2.1 cannot immediately be applied to

the square lattice. The problem can be traced back to the fact that any local cell on

this lattice necessarily that 90 degree corners. It turns out that by using the degrees

of freedom near these corners, one can always form non-trivial relations between the

states in different subspaces H(D). The projection operators in Eq. (3.3) are then ill-

defined. We thus have to modify our method in order to deal with this case. Luckily,

the local independence property introduced in Sec. 3.2.1, while it is found to hold for

many lattice types, is overly restrictive. In fact, whenever this property holds, it can

be literally extended to arbitrarily large lattices with an edge [51]. That is, for an

arbitrarily large lattice L, not only states |D〉 corresponding to full dimerizations of

L are then linearly independent, but in fact all states of the form |D〉⊗ |ψi〉, where D

does not necessarily cover all boundary sites of L, and the factors |ψi〉 form a basis of
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Figure 3.10. (Color online.) The square lattice. The general lattice
structure is shown in Fig. (3.1). (a) The minimal cell for which the
refined local independence property of Section 3.2.4 holds. (b) A local
valence bond state with the central site forming a bond with its upper
neighbor, corresponding to σ =↑ as defined in the text.

the space associated with “free” boundary sites. Clearly, this is a stronger statement

than just the linear independence of NNVB states corresponding to full dimerizations

of the lattice. However, for the square lattice this stronger property simply does not

hold. On the other hand, this “strong” linear independence property is not of primary

interest. We are still interested in the linear independence of NNVB states associated

with full dimerizations of the lattice, for which the stronger property is not necessary.

It turns out that a weaker version of the local independence property is sufficient

to construct suitable projection operators for our purpose. To see this, note that

the operators PD defined in Eq. (3.3) are sensitive to the entire configuration of
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valence bonds fully contained within the cell on which they act. To prove the linear

independence of NNVB states, it is sufficient to work with operators that are sensitive,

say, to the bonding state of any given site, as determined by which nearest neighbor

this central site is bonding with. To accomplish this, we consider a square lattice

L satisfying periodic boundary conditions, which is large enough to contain the cell

C depicted in Fig. (3.10b). For this cell, we consider four subspaces of V B(C),

according to the bonding state of the central site. We define local dimer coverings D

of C as before, where boundary sites of C need not be covered. By σ(D) we denote

the bonding state of the central site, i.e., σ(D) =↑, ↓,←,→, depending on whether

this site is paired with its upper, lower, left, or right neighbor in the covering D,

respectively. As mentioned initially, the sum Eq. (3.2) defining the space of local

valence bond states, V B(C), is not direct for the present cell. However, we may also

write the space V B(C) as a “courser” sum of fewer spaces, each of which is formed

by all valence bond states that have the central site in a certain bonding state:

V B(C) =
∑

σ′

V Bσ′(C) , (3.7)

where

V Bσ′(C) =
∑

D
σ(D)=σ′

H(D, C) , (3.8)

and σ′ runs over all possible values ↑, ↓,←,→.

The key observation that renders the square lattice amenable to our method is that

the sum in Eq. (3.7) is still direct. To show this, one must show that the dimensions

of the spaces on the right hand side add up to the dimension of the space V B(C). For
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this it is sufficient to consider the matrix M defined in Eq. (3.6), together with the

matrices Mσ′ that are the submatrices ofM corresponding to the subspaces V Bσ′(C),

and show that the ranks of the Mσ′ ’s add up to that of M . Intuitively speaking, this

means that while the states |D〉 ⊗ |ψi〉, as defined below Eq. (3.6), satisfy non-trivial

linear relations, all these linear relations can be restricted to involve members of the

same subspace V Bσ′(C); there are then no further linear relation between members

of different subspaces. If the sum in Eq. (3.7) is indeed direct, we may introduce

projection operators Pσ′ onto the components on the right hand side. The defining

property of these operators is

Pσ′ |D〉 ⊗ |ψi〉 = δσ′,σ(D) |D〉 ⊗ |ψi〉 . (3.9)

When acting on local valence bond states |D〉⊗ |ψi〉 living on the cell C, the operator

Pσ will thus annihilate the state if the bonding state of the central site in the dimer

covering D is different from σ, and otherwise leave the state invariant. It is clear that

any site i of the periodic (and sufficiently large) lattice L can be made the central

site of a cell that has the topology of C, Fig. (3.10b). The operators Pσ defined

above can then be extended to the full Hilbert space of the large lattice, and there is

an operator P i
σ for any cell of the type C with central site i. The defining property

(3.9) then extends to valence bond states |D〉 corresponding to full dimerizations D

of the lattice: |D〉 survives the action of P i
σ unchanged if the bonding state of site

i in the dimer covering D is σ, otherwise it is annihilated. Detailed arguments for

this are identical to those referred to in Sec. 3.2.1. It is then clear that by successive

action with the operators P i
σ, one can single out any dimer covering D in the linear
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combination Eq. (3.4), just as carried out in Section 3.2.1, and thus prove that the

states |D〉 are linearly independent.

We have verified that for the cell in Fig. (3.10b), the sum in Eq. (3.7) is indeed

direct. The numerics were somewhat more challenging, due to size of the 25-site cell

under consideration. To wit, this cell admits a total of 5376 different dimer coverings.

Each of the dimer coverings has seven “free” outer sites not touched by a dimer, thus

the total dimension of the M-matrix is a staggering 5376 x 27 = 688128. To reduce

the problem to blocks of manageable size, we use the full rotational invariance of

the spaces appearing in Eq. (3.7). That is, we chose the basis |ψi〉 for the seven free

sites to have a well-defined total spin S, in addition to a well-defined Sz. A suitable

choice for a basis is obtained by choosing states corresponding to Rumer-Pauling

diagrams [84–87]. The advantage of this is that for appropriate normalization, the

matrix elements of the M-matrix then remain integer, and we may again make use

of exact integer arithmetic [83]. We further used the mirror symmetry of the cell C

along one of its diagonals. The largest blocks occurring then had dimensions on the

order of 30,000.

The above then establishes that for any sufficiently large square lattice with pe-

riodic boundary conditions, the set of all NNVB states is linearly independent. The

same statement then follows for lattices with an edge as discussed at the end of Sec-

tion 3.2.1. The case of general open boundaries conditions has also been treated

previously with different methods in Ref. [67].
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3.3 Summary and discussion

In the preceding sections, we have described a method for proving linear indepen-

dence of nearest neighbor valence bond states on certain 2D lattices with and without

periodic boundary conditions. This method, originally designed for the kagome lat-

tice, [51] was successfully extended here to the following lattice types: honeycomb,

squagome, pentagonal and Cairo pentagonal, square-octagon, martini-A, -B, and -

C, archimedean-A and archimedean-B, and to the star lattice, and furthermore to

fullerene-type lattices. Subsequently, a refined method has been developed, which is

applicable even in some cases where the original method is inadequate. Specifically,

this was found to be the case for the square lattice.

Our method is based on the identification of a certain local independence prop-

erty for finite clusters, which, when established, implies the linear independence of

NNVB states for arbitrarily large lattices. Though here we prefer to validate the local

independence property using exact numerical schemes, in those cases where smaller

clusters are sufficient, a fully analytic approach is certainly feasible. Further remarks

on this for the kagome case, where the cluster size is fairly large, can be found in Ref.

[51].

We note again that the linear independence of the NNVB states for the square,

the honeycomb, and the square-octagon lattice was already established in a paper

by Chayes, Chayes, and Kivelson [67] in 1989. Their result, however, applies only

to the case of open boundary conditions. For these lattices, our result extends the
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one by Chayes et al. to the case of periodic boundary conditions, using a different

approach. We have also discussed various applications of these results in RVB inspired

approaches to quantum spin-1/2 systems.

A case of much interest, which we have not studied here, is that of the triangular

lattice. We remark that since the square lattice can be thought of as a triangular

lattice endowed with a coarser topology, obtained by removing certain nearest neigh-

bor links, a candidate cell for the triangular lattice would have to be at least as large

as our square lattice cell, Fig. (3.10b), with many more links included. This ren-

ders the M-matrix so large that we did not find this problem tractable at present.

We currently see, however, no fundamental reason why the refined method of the

preceding section should not be applicable to this case as well. In all cases thus far

studied, we have found that local cells large enough to have more internal sites than

boundary sites generally have a sufficiently strong local independence property, which

then implies the desired linear independence of globally defined NNVB states. The

only exception to this rule seem to be lattices where this “global” linear independence

does not hold, for obvious, “local” reasons: These include the checkerboard and the

pyrochlore lattice, or any lattice featuring tetrahedral units. By looking at the three

dimerizations of a single tetrahedron, it is easy to see that for such lattices, linear

independence of NNVB states does not hold. (That is, as long as there is any dimer

covering of the lattice with two dimers on the same tetrahedron.)

Thus far, we are not aware of rigorous results on the problem studied here for any

three-dimensional lattices (except for finite clusters). We are optimistic, however,
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that our method is at least applicable to the hyperkagome case, which has recently

enjoyed much attention in the study of frustrated quantum magnets [39, 88–92].

3.4 Extensions of the proof: Linear independence of Resonating Valence

Loops (RVL) on the honeycomb and star lattices

This section will provide a proof that the valence loop states on the star lattice

and on the honeycomb lattice are linearly independent. We will start by recalling the

definition of the resonant valence loop states given in Ref. [93]. In the following, we

consider a spin-1 system on the star and on the honeycomb lattice. On each site i,

Sα
i = 1

2
b†iµσ

α
µνbiν , where σ

α are Pauli matrices and biµ are Schwinger bosons with the

constraint b†i↑bi↑ + b†i↓bi↓ = 2. As explained in Ref. [93], each of the two bosons on

every site can form a singlet bond with another boson on its nearest neighbor site,

thus, each spin-1 can participate in two singlet bonds. A spin singlet bond on the

link 〈ij〉 is created by B†
ij = ǫµνb†iµb

†
jν (ǫµν is the Levi-Civita symbol). With this we

can come up with the following states:

|Ψ〉RVL =
∑

c

|c〉; |c〉 = (−1)nc

∏

〈ij〉∈c

B†
ij|0〉,

where c is a loop-covering configuration which consists of non-intercepting loops

and which touches every site by one and only one loop, and nc counts the number

of singlet bonds of the loop configuration c on those vertical links with upper site in

sublattice A (see Ref. [93]).

|Ψ〉RVL is an equal weight superposition of all loop-covering configurations, which are
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called “resonating valence loop” (RVL) states (see Ref. [93]). For the honeycomb or

any other trivalent lattice like the star lattice, there exists a one-to-one correspondence

between loop-covering and dimer-covering configurations: for any loop-covering c, a

corresponding dimer configuration is obtained by occupying a virtual dimer on any

link not covered by the loop. Here we are interested in the linear independence of

the associated valence loop (VL) states |c〉. We found that a method used earlier

to show the linear independence of nearest neighbor valence bond (NNVB) states

can be successfully applied to this problem. This method was first published in Ref.

[51]. Subsequently, the method was successfully applied to numerous two dimensional

lattices in Ref. [68]. The strategy presented there was that it has to be shown that

certain local generalizations of NNVB states - so-called snapshot states- are indeed

linearly independent for a small cluster which we will call “basic cell” in the following.

If linear independence can be established for the snapshot states “living” on the basic

cell, it directly follows that all NNVB states on a larger lattice, which can be covered

by the basic cell, are also linearly independent. We can use this strategy again when

dealing now with the VL states. We first identify the basic cells for the star and

the honeycomb lattice, which turn out to be the same ones that they were in the

RVB case (see Fig. (3.11)). We now define the snapshot states for the VL states. We

require that all “inner” sites of the basic cell, which have their three nearest neighbor

sites also present in the basic cell, must participate in a loop, whereas the outer sites

may or may not participate in a loop within the basic cell. If not, we can imagine that

they belong to a loop which only “touches” the basic cell at this point, and lives on
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Figure 3.11. (a) shows the minimal cell of the star lattice for which
the linear independence of both the RVB and the RVL states could be
established. Red dots indicate inner sites that have all their 3 nearest
neighbors also present in the cell, while blue dots label outer sites that
do not all neighbor sites contained in the cell. (b) shows the minimal
cell for the honeycomb lattice.

the larger lattice into which the basic cell is embedded. This leaves the spins at such

boundary sites undetermined, and allows the site to be in an arbitrary spin state,

that is, Sz = -1, 0, and +1. At the same time, loops may close within the basic

cell, or they may be open, leading from one boundary site to another (Fig. (3.12) and

Fig. (3.13)). In this case, a spin 1/2 degree of freedom can be chosen freely at each

open end. The set of snapshot states is the set of all states associated with the loop

coverings of the of the basic cell defined above, including all possible configurations

of the free spin 1/2 or spin 1 degrees of freedom at boundary sites. The significance

of these snapshot states is that in any VL state, the local density matrix on a basic
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Figure 3.12. a) all inner sites participate in the loop while the three
outer sites are in an arbitrary eigenstate of Sz = -1, 0, +1. b) all inner
sites and two outer sites form the loop, apart from the configuration
shown, there exists two rotated versions, thus, the total number for
this kind of covering is three.

cell is given by a weighted sum over projections operators onto linear combinations

of snapshot states. Said, differently, the range of such a density matrix (the linear

span of its column vectors), is contained within the snapshot-subspace. A sufficient

criterion for linear independence of VL states is that the overlap matrix between these

snapshot states has maximum rank.

We thus have to generate all the snapshot states. To this end, we used the

representation of the AKLT-states in terms of virtual spin 1/2-degrees of freedom, as

developed in Ref. [94]. (This was, of course, the representation to which our old RVB

code was most straightforwardly adapted.) General VL snapshot states naturally

come as tensor products of open and closed AKLT-strings (the former carrying two

free spin-1/2 degrees of freedom), and free sites (each carrying a spin 1). We have

verified that the overlap matrix between all such snapshot states (which is of course

block-diagonal within each sector of total Sz) does have maximum rank. This then
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Figure 3.13. a) - e) show all possible loop coverings up to rotations
for the honeycomb lattice.

allows one to define local projection operators, in complete analogy with Refs. [51,68].

The consecutive application of such operators allows one to single out any given VL
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state in a generic linear combination of VL states. This then shows that VL states

are linearly independent, on any lattice that can be covered (in the precise sense of

Refs. [51, 68]) by the basic cells of Fig. (3.11).
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4. Destruction of valence-bond order in a S=1/2 sawtooth

chain with a Dzyaloshinskii-Moriya term

The final chapter is devoted to the investigation of the effect of a Dzyaloshinskii-

Moriya (DM) interaction term on the valence bond order in a spin 1/2 Heisenberg

sawtooth chain. This is an interesting and nontrivial question since, a small value of

the spin gap in quantum antiferromagnets with strong frustration makes them sus-

ceptible to nominally small deviations from the ideal Heisenberg model. One of such

perturbations worth an investigation is the anisotropic Dzyaloshinskii-Moriya inter-

action. The DM interaction is an important perturbation for the S = 1/2 kagome

antiferromagnet, one of the current candidates for a quantum-disordered ground state.

Here, we study the influence of the DM term in a related one-dimensional system,

the sawtooth chain that has valence-bond order in its ground state. In the follow-

ing, employing a combination of analytical and numerical methods, we show that a

relatively weak DM coupling, 0.115J, is sufficient to destroy the valence-bond order,

close the spin gap, and turn the system into a Luttinger liquid with algebraic spin
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correlations. A similar mechanism may be at work in the kagome antiferromagnet.

The results of this chapter have been published in

Zhihao Hao, Yuan Wan, I. Rousochatzakis, Julia Wildeboer, A. Seidel,

F. Mila, and O. Tchernyshyov, Phys. Rev. B 84, 094452 (2011) .

4.1 Introduction

When it comes to finding or proposing a promising candidate system for an ex-

otic ground state such as the quantum spin liquid state, one has to consider multiple

circumstances that are considered supportive for such a quantum state. A promising

system would be an S = 1/2 antiferromagnet on a nonbipartite lattice, since geo-

metrical frustration and strong quantum fluctuations have a tendency to suppress

long-range magnetic order. The resulting ground state does not break the symmetry

of global spin rotations. However, there are still several scenarios possible concerning

the behavior of the system, e.g. the system could be a valence-bond crystal that

breaks some lattice symmetries [95–97] or it could indeed be a valence-bond liquid as

mentioned above that fully preserves the symmetry of the Hamiltonian. [51, 98–100]

In the very recent past, several antiferromagnetic materials without long-range mag-

netic order well below the characteristic Curie-Weiss temperature scale have been

discovered. A prominent example here is the herbertsmithite Cu3Zn(OH)6Cl2, [101];

no magnetic order has been detected down to 50 mK, [47, 48, 102–104] even though

the exchange interaction is estimated to be J = 180 K. The compound is a “struc-
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(c)(b)

(a)

Figure 4.1. (a) The Kagome lattice. (b) and (c) In-plane and out-
of-plane components of the DM vector Dij shown for directed links
(i→ j) on the lattice.

turally perfect” [48, 105] realization of the S = 1/2 Heisenberg antiferromagnet on

the kagome lattice (Fig. 4.1(a)). Although it remains a challenging question what

the ground state of the nearest neighbor Heisenberg interaction on the kagome lat-

tice is,1 it is an equally interesting question to ask what happens upon turning on

1At this point, the tendency in the condensed matter community is to believe the ground state to
be a quantum spin liquid [106, 107].
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an additional interaction as real systems inevitably deviate from this idealization.

Frustrated magnets tend to be sensitive to various nominally weak perturbations.

This chapter deals with the additional term being the Dzyaloshinskii-Moryia (DM)

interaction, [108, 109] the antisymmetric version of the Heisenberg exchange induced

by the spin-orbit coupling. In this case, the Hamiltonian is

H =
∑

〈ij〉

[J Si · Sj +Dij · (Si × Sj)]. (4.1)

In herbertsmithite, the DM term is allowed by the crystal symmetry. The in-plane

and out-of-plane components of the DM vector Dij on the kagome lattice are shown

in Fig. 4.1(b) and (c). The DM vector has the magnitude D = 0.08J [110] with its

stronger component being the out-of-plane component, whereas the in-plane compo-

nent is relatively small, Din = 0.01J ± 0.02J . The DM term can be gauged away by

an appropriate rotation of the local spin axes, [111,112] if its “line integral” vanishes

for any closed loop abc . . . yza:

Dab +Dbc + . . .+Dyz +Dza = 0. (4.2)

It can be seen from Fig. 4.1(b) that the in-plane component satisfies Eq. (4.2) and

subsequetly can be gauged away. The out-of-plane component cannot be removed in

this way and thus represents the actual physical perturbation, which we will focus on

in this chapter.

Recent numerical studies [106,113–116] indicate that the pure Heisenberg model,

D = 0, has a S = 0 ground state with a small but finite energy gap for S = 1

excitations, with estimates ranging from ∆ = 0.05J to 0.15J . Since these values are
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of the same order of magnitude in strength as the DM term, it is plausible that the

low-energy properties of herbertsmithite are influenced by the DM interaction.

At this point, we just mention that there exist numerous studies on the effects of

the DM interaction on the kagome antiferromagnet. Important results were obtained

for example in Refs. [117], [118], [119], [120], [121], [122], [123], [124], and in Ref. [124].

The results of this chapter follow the findings of Ref. [125]. Here, it was demon-

strated that the S = 1/2 Heisenberg antiferromagnet on a kagome lattice can be

viewed as a collection of fermionic spinons—topological defects with S = 1/2—moving

in an otherwise inert vacuum of valence bonds. These spinons interact with an emerg-

ing compact U(1) gauge field whose quantized electric flux is related to the valence-

bond configuration through Elser’s arrow representation [126] and the spinons carry

one unit of the U(1) charge against a negatively charged background. Furthermore

it was explained that strong, exchange-mediated attraction binds spinons into small

and heavy S = 0 pairs and that low-energy S = 1 excitations result from breaking

up a pair into “free” spinons. Subsequently, the spin gap is determined mostly by the

binding energy of a pair, which was estimated to be 0.06J .

With this knowledge, it seems plausible that one potential route to closing of spin

gap could be via the destruction of the two-spinon bound state in the presence of a

sufficiently strong DM coupling term. However, this appears an unlikely scenario for

two reasons. First, the factors setting the pair binding energy—the spinon hopping

amplitude and the strength of exchange-mediated attraction–are both of order J , thus

it is unrealistic to have a fairly weak coupling D = 0.05J to 0.10J disrupt the pairing.
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Second, a quantum phase transition to a state with long-range magnetic order can

be viewed as Bose condensation of magnons, [128] quasiparticles with Sz = 1 and

there are no low-energy excitations of this kind in the pure Heisenberg model. Here

a way out, could be thinking of condensing pairs of spinons with Sz = 1. However,

such an object would carry a double U(1) charge, whereas a magnon is expected to

be neutral.

Another possible way out is to postulate that the condensing objects are pairs

consisting of a spinon and its antiparticle. In this case, the composite object would

have zero U(1) charge and be topologically trivial, like a magnon. In the pure Heisen-

berg model, the energy cost of creating a spinon and its antiparticle is approximately

0.25J . [129] We will see shortly that the DM term lowers the kinetic energy of both

spinons and their antiparticles. Thus, it is reasonable to expect that at a critical

coupling strength Dc, the energy cost of adding a pair vanishes.

In order to subject this hypothese to a test, we have studied a toy version of

the kagome antiferromagnet known as the sawtooth spin chain, [130, 131] a one-

dimensional lattice of corner-sharing triangles, Fig. 4.2(a). To make a connection with

kagome, exchange couplings are set equal for all bonds. Without the DM coupling

(D = 0), the chain has two valence-bond ground states, Fig. 4.2(b) and (c), that

spontaneously break the mirror reflection symmetry. Spin excitations are topological

defects, namely domain walls with spin S = 1/2, Fig. 4.2(d). The domain walls come

in two flavors: kinks have zero energy and are localized, antikinks, on the contrary,

are mobile and have a minimum energy of 0.215J . [130] These excitations can only be
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Figure 4.2. (a) The sawtooth chain. (b) and (c) Its valence-bond
ground states. (d) Spin-1/2 excitations: kink (left) and antikink
(right). (e) Orientation of the DM vectors Dij . (f) The ground state
of the classical model has a commensurate magnetic order with the
wave number q/2π = −1/3.

created in pairs by a local perturbation acting in the bulk. As discussed in Ref. [132],

spinons of the kagome antiferromagnet have similar properties. However, the ground

state of the sawtooth chain is free from the defects, whereas the kagome lattice has a

finite concentration of antikinks (1/3 per site) bound into S = 0 pairs. This chapter
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provides data on the sawtooth spin chain with exchange and Dzyaloshinskii-Moriya

interactions, Eq. (4.1). The Dij vectors have the same length and a uniform out-

of-plane orientation preserving the translational symmetry of the chain (Fig. 4.2(e)).

Upon turning on the DM term, the mirror symmetry of the Hamiltonian is preserved

, so that the notion of a valence-bond order that spontaneously breaks this symmetry

is still valid. The key result is that the valence-bond order survives to a finite value

of the DM coupling.

Section 4.2 provides a calculation of the spinon spectrum in the presence of a

nonzero D. From this data, an estimate for the critical DM coupling is Dc = 0.087J .

For D > Dc, spontaneous creation of kink-antikink pairs leads to a finite concentra-

tion of topological defects, which obliterates the valence-bond order and restores the

reflection symmetry of the lattice.

4.2 Spinon dispersions

4.2.1 D = 0

We start by briefly reviewing the physics of the sawtooth chain in the pure Heisen-

berg model without the DM term [130–132]. The Hamiltonian of the system is

H = J
∑

〈ij〉

Si · Sj =
J

2

∑

∆

(

S2
∆ − 9/4

)

, (4.3)

where the S∆ is the total spin of triangle ∆. The energy is minimized when S∆ = 1/2

for every triangle. This can be achieved by putting a singlet bond on every triangle.
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The ground state degeneracy is two and both ground states (shown in Fig. 4.2(b) and

(c)) violate the symmetry of reflection.

Two types of domain walls interpolate between the ground states: the kink and

the antikink (see Fig.4.2(d)). A kink is an excitation with zero energy and it is

also an exact eigenstate of the Hamiltonian (4.3). Thus, kinks are localized in the

exchange-only model. The two degenerate states with Sz=1/2 have spin current going

clockwise or counter clockwise around the triangle. The states also carry electric

currents of opposite directions [135]. An alternative set of basis states would have

distinct valence-bond averages 〈Si·Sj〉 on the three bonds, which translates to nonzero

electric charge on the three sites [135].

An antikink is mobile and while moving it is accompanied by the emission and

absorption of kink-antikink pairs. The existence of a finite spin gap guarantees that

these excitations are virtual. Polarization effects can be taken into account by using

a variational approach. At the crudest level, the Hamiltonian (4.3) is projected onto

the Hilbert space with a single antikink to obtain an effective hopping Hamiltonian

for an antikink:

H(1)|x〉 = 5J

4
|x〉 − J

2
|x+ 1〉 − J

2
|x− 1〉. (4.4)

where |x〉 is a state with an antikink on triangle x. The energy dispersion of the

antikink is

Ea(k) = 5J/4− J cos k, (4.5)

with the minimum energy ∆ = 0.25J . In view of the zero energy of a kink, this value

is the spin gap.
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From the previous discussion, it seems plausible that the variational approach

provides a reliable description of the low-energy spin excitations in the pure Heisen-

berg model. Thus, we will use the lowest-order approximation for D 6= 0, without

correcting for the vacuum polarization, to obtain a rough estimate for the critical

coupling Dc.

4.2.2 D 6= 0

When the DM term becomes finite, kinks become mobile. For a single triangle, this

means the splitting of the accidental degeneracy mentioned previously: the energy

of a state with Sz = +1/2 now depends on the orbital momentum, reflecting the

spin-orbit origin of the DM term.

We follow the variational method described above for a finite chain and work in

the Hilbert space spanned by states |x〉 with a single kink located between triangles

x and x + 1. These states are not orthogonal to each other because they are not

eigenstates of the same Hermitian operator; their overlap is

〈x1|x2〉 = 2−|x1−x2|. (4.6)

As with antikinks, [132] a simple rotation can be made to obtain an orthonormal

basis {|x̃〉}:

|x̃〉 = 2√
3
|x〉 − 2√

3
|x− 1〉. (4.7)

The matrix elements of the effective Hamiltonian in this subspace are

〈x̃1|H|x̃2〉 = −
3iD

2
2−|x1−x2| sgn(x1 − x2), (4.8)
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where the sign function is defined in such a way that sgn(0) = 0. A Fourier transform

of the matrix element yields the energy dispersion of the kink:

Ek(k) =
6D sin k

5− 4 cos k
. (4.9)

The bottom of the band is at Emin
k = −2|D|. For D > 0, it is reached for an

incommensurate wave number k/2π = −acos(4/5)/2π ≈ −0.10.

Turning our attention now to the antikink case, we note that the basis states

{|x〉}, with an antikink located at triangle x, can be orthogonalized in the same way

to yield an orthonormal basis {|x̃〉}. The DM term matrix element is

〈x̃1|HDM |x̃2〉 = −iD 2−|x1−x2| sgn(x1 − x2)
[

3

2
− 2

3
(δx1,x2+1 + δx1,x2−1)

]

(4.10)

with an antikink dispersion of

Ea(k) = 5J/4− J cos k +
5D

6
sin k +

3D(4 cos k − 1) sin k

10− 8 cos k
. (4.11)

For D ≪ J , the lowest energy of an antkink is Emin
a = J/4 − 14D2/J + O(D4/J3)

and the bottom of the band is located at k/2π = −8D/3πJ +O(D3/J2).

The above energy dispersions were computed for spinons with Sz = +1/2. For

spinons Sz = −1/2, the dispersions can be obtained by changing k 7→ −k.

The bottom edge of the two-particle continuum as a function of total momentum

is shown as solid lines in Fig. 4.3 for Sz = 0 and in Fig. 4.4 for Sz = +1. The

edge dispersion mostly tracks the dispersion of the heavier kink particle (4.9). The

minimum energy of a kink-antikink pair

Emin = J/4− 2|D| − 14D2/J +O(D4/J3) (4.12)
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vanishes when the DM coupling reaches the critical strength Dc = 0.09J . The total

momentum of a Sz = +1 spinon pair with the lowest energy is k/2π ≈ −0.15.

The gapless state arising at this critical point is expected to have transverse spin

fluctuations with this wave number. The wavenumber of longitudinal spin fluctuations

is determined by the bottom of the two-spinon continuum with Sz = 0, which occurs

at k/2π ≈ ±0.06.

4.3 Exact diagonalization

This section shows data obtained via an exact diagonalization study of the saw-

tooth chain with exchange and DM interactions. Finite chains containing 2L sites

in a system with L triangles with periodic boundary conditions were under investi-

gation. The length varied from L = 5 to 15, the DM interaction was chosen to be

uniform. The Lanczos algorithm was used which provides convergent results for the

ground state energy and a limited number of low-lying excitations. The symmetry

of translations along the chain and the O(2) symmetry of spin rotations around the

z-axis allow an reduction of the Hilbert space.

Figure 4.3 shows the low-energy portions of the spectra in the Sz = 0 sector for a

chain with length L = 15 (30 sites), several values of DM coupling D are presented.

Time reversal of the Hamiltonian (4.1) (Sz 7→ −Sz , k → −k) guarantees that the

Sz = 0 spectra are symmetric under mirror reflection (k → −k). The lowest-energy

excitations in the Sz = 0 sector are expected to be spinon pairs in two channels: a kink

with Sz = −1/2 and an antikink with Sz = +1/2 or vice versa. The calculated edges
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of the two-particle continua reproduce the shape of the dispersing bottom reasonably

well. However, the calculated edge shifts downward with D faster than the numerical

data do.

In the Sz = +1 sector, the spectra are not symmetric under the mirror symmetry

(the Sz = 1 spectrum maps onto that of the Sz = −1 sector), Fig. 4.4. The lowest-

energy excitations are expected to be spinon pairs consisting of a kink and an antikink,

both with Sz = +1/2. Again, the calculated bottom edge of the excitation continuum

has the right shape but advances downward with D somewhat too fast. In the two-

spinon approximation, both the Sz = 0 and Sz = 1 continua touch zero energy at

Dc = 0.09J . However, the numerical energy spectra appear to still have a gap at that

point, see Fig. 4.3.

To locate the critical point, we turned to a scaling analysis of the ground state

splitting. In the phase with valence-bond order, the ground state is doubly degenerate

in the limit L → ∞. In finite systems, the ground-state doublet is split thanks to

quantum tunneling. Both members of the doublet have momentum k = 0 because

the valence-bond order preserves translational symmetry. The tunneling amplitude

decays exponentially with the system length L and so does the splitting.

Fig. 4.5(a) shows the splitting of the ground state for D ≤ 0.11J . All of the data

sets, with the exception of the largest coupling, are well fit by the scaling expression

∆E = AL−5/4e−L/ξ cos (kL) (4.13)

with the same prefactor A. The dependence of the tunneling length ξ and the

wavenumber k is shown in Fig. 4.5(c). The tunneling length greatly exceeds the
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maximum attainable system length L = 15, for D > Dc = 0.115J , it might even di-

verge. For 0.11J ≤ D ≤ 0.15J , the finite-size dependence of the splitting was best fit

by Eq. (4.13) with ξ =∞ and a D-dependent amplitude A, Fig. 4.5(b). Apart from

the oscillating factor, Eq. (4.13) suggests a scale-invariant ground state for D ≥ Dc.

For D > Dc, a gapless phase with quasi-long-range incommensurate spin correla-

tions decaying as a power of the distance is expected. Making D larger and larger,

we move more and more into the classical model. Here, in the classical limit, the

sawtooth chain has a spiral order for any nonzero value of D, Fig. 4.2(f). Low-energy

excitations are spin waves with a speed

v ≈ 2.7S
√
JD. (4.14)

Quantum fluctuations disrupt the long-range spin order, thus, translational invariance

and O(2) symmetry are restored. Such a phase would be a Luttinger liquid, whose

lowest-energy Sz = +1 excitations are spin waves with a sound-like spectrum at

k0/2π = −1/3. The numerically determined Sz = +1 spectra for D ≥ 0.15J are

consistent with spin waves. At D = 0.19J , the soft spot is located at k0/2π ≈ −0.25,

not far from the classical value. The speed of sound can be estimated from the slope

of the dashed lines in Fig. 4.3 and 4.4: v = 0.36J is reasonable close to the classical

estimate (4.14) obtained below.
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4.4 Spin correlations in the ground state

In order to verify the location of the quantum critical point Dc and to confirm

the critical nature of the ground state for D > Dc, the long-distance behavior of spin

correlations was investigated, (Gαβ(r) = 〈Sα(0)Sβ(r)〉) in the ground state. In the

Luttinger-liquid regime, transverse spin correlations are expected to decay as a power

of the distance, [136]

|G+−(r)| ∼ C

r1/2K
. (4.15)

The stiffness constant K varies between 1 (gas of dilute magnons) and 1/4 (gas of

dilute spinons) [134, 137].

In a finite system of length L with periodic boundary conditions, the Green’s

function depends in the same way on the chord distance [138]

d(r) = (L/π) sin (πr/L). (4.16)

In a system with 2L spins, this distance varies from d ≈ 1 to L/π. Therefore, the

range of distances in a system with 2L = 30 spins is not sufficient to reliably observe

the critical behavior of the spin correlation function.

In order to obtain data from larger system sizes and to finally observe the crit-

ical behavior, we used the density-matrix renormalization group (DMRG) method

implemented through the Matrix Product Toolkit [139] to obtain the ground state

wave function in a periodic chain with up to 2L = 100 spins. The system has a U(1)

symmetry which we took into account to reduce CPU time. The number m of states

kept was of order 1000 states. Indeed, our results for the ground state energy per site
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for all values of DM coupling D investigated are consistent with the energy per site

obtained from the ED calculations.

The resulting transverse spin correlations |G+−(r)| in a system of length L = 50 are

shown in Fig. 4.6 as a function of the chord distance (4.16). The data for D = 0.12J

follow a power law C/d2 at large distances d. This is consistent with the valueK = 1/4

at the spinon condensation point. For D > 0.12J , spin correlations follow power laws

with smaller slopes, indicating K > 1/4. Finally, for D < 0.12J , the power-law

scaling breaks down at large d and we observe an exponential decay. The estimated

critical point, Dc = 0.12J , is in reasonable agreement with the value Dc = 0.115J

obtained from the splitting of the ground-state doublet.

4.5 Discussion

Without the Dzyaloshinskii-Moriya term, the sawtooth chain has a doubly de-

generate ground state with valence-bond order spontaneously breaking the reflection

symmetry of the lattice. Elementary excitations are spinons namely localized kinks

and mobile antikinks. The gap to spin-1 excitations, ∆ = 0.215J is determined by

the edge of the two-spinon continuum. The introduction of a DM term with the D

vector pointing along the same axis for all bonds, Fig. 4.2, lowers the spin-rotation

symmetry down to an O(2). Several key observations can be obtained. First, at weak

coupling D, the lattice reflection symmetry remains spontaneously broken. However,

a finite D lowers the excitation energies of both kinks and antikinks and the spin

gap (understood as the lowest energy of Sz = 1 excitations) begins to close. The
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gap closes roughly when the minimum kink energy equals the initial gap in absolute

terms, |D| = Dc ≈ ∆/2 ≈ 0.1J . This is confirmed by numerical work involving exact

diagonalization of finite chains, with the result Dc = 0.115J . Beyond the critical cou-

pling, the valence-bond order is destroyed and the lattice symmetry is fully restored.

The resulting state is likely a Luttinger liquid with incommensurate spin correlations

and spin-wave excitations.

An open question is whether a similar transition may occur in the S = 1/2 Heisen-

berg model on kagome with a DM coupling. The bare existence of the transition is

not in doubt, since it is understood that at a large enough D the system should de-

velop magnetic order [121–124]. However, the nature of the transition still remains

subject to speculations.

In the kagome antiferromagnet, spinon excitations are very similar to those of

the sawtooth chain. [132] With D = 0, kinks are localized and have zero energy,

whereas antikinks follow one-dimensional trajectories with the same energetics as on

the sawtooth chain. Turning on the DM term has similar consequences; delocalization

of kinks is the main factor lowering the edge of the kink-antikink continuum. If

anything, the gap may close even faster than on the sawtooth chain because on kagome

kinks move in two dimensions and thus can lower their energy through delocalization

more effectively than on a one-dimensional chain. Therefore, the critical DM coupling

for the kagome case can be conjectured to be even lower than for the sawtooth chain.

However an important difference between the kagome antiferromagnet and the

sawtooth chain is that it has a finite concentration of antikinks in the ground state.
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The antikinks form tightly bound S = 0 pairs, whose binding energy ∆aa ≈ 0.06J

is lower than the threshold energy of kink-antikink creation ∆ka ≈ 0.25J . Thus, the

spin gap in the Heisenberg antiferromagnet on the kagome lattice is determined by

the binding energy of an antikink pair. Although the binding energy ∆aa is no doubt

influenced by the introduction of the DM term, it is unlikely that this energy is very

sensitive to the presence of a small perturbation like D as ∆aa is determined by a

competition of two high-energy processes: the antikink hopping amplitude and the

antikink attraction in the singlet channel, both with a strength of order J . It seems

more likely that the larger gap ∆ka will be quickly driven to zero as it is on the

sawtooth chain.
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Figure 4.3. Low-energy spectra of the sawtooth chain with a uniform
DM term in the Sz = 0 sector. Energy levels, measured relative to
the ground state, are shown as a function of total momentum. Circles
are the results of exact diagonalization for a periodic chain of length
L = 15. Solid curves show the bottoms of the two-spinon continua
computed analytically. Dashed straight lines show a linear dispersion
with the speed v = 0.36J .
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Figure 4.4. Low-energy spectra in the Sz = +1 sector. Notations are
the same as in Fig. 4.3.
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Figure 4.5. The splitting of the ground state doublet as a function
of the system length L for (a) D < Dc = 0.115J and (b) for D >
Dc. (c) The dependence of the inverse tunneling length 1/ξ and the
wavenumber k in the scaling form (4.13) on the DM coupling strength
D.
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[121] O. Cépas, C.M. Fong, P.W. Leung, and C. Lhuillie, Phys. Rev. B 78, 140405

(2008).



118
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