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Abstract. LimeLite is a new coordination model and middleware de-
signed to support rapid development of applications entailing logical mo-
bility of agents and physical mobility of hosts. Designed to function in
open environments, LimeLite performs automatic agent discovery but
filters the results to define for each agent an individualized acquaintance
list in accordance with run-time policies specified at the application level.
This asymmetry among participants in the coordination process is dic-
tated by the need to accommodate settings involving large numbers of
agents and hosts that come and go freely. It represents an important de-
parture from coordination research in general. The coordination context
is limited to the specific needs of the individual agent and its coordina-
tion activities are restricted to tuple spaces owned by peers present in
the acquaintance list. Linda-like primitives typically used in coordination
middleware are tailored in LimeLite to address the challenges of mobile
environments. Among other things, this entails the elimination of remote
blocking and data pushing operations since the affected agents may no
longer be within communication range. It also entails the addition of
reactions that are triggered by the presence of information of interest on
agents listed in the acquaintance list and not by events that could have
occurred prior to discovery. Finally, to ensure both performance and ease
of deployment on small devices the granularity of atomic operations and
the reliance on transport layer guarantees have been minimized. This
paper introduces LimeLite, explains its key features, illustrates its usage
in application development, and explores its effectiveness as a software
engineering tool.

1 Introduction

Mobile computing devices having wireless capabilities have experienced rapid
growth in recent years due to advances in technology and social pressures from
a highly dynamic society. Many of these devices are beginning to allow for the
formation of ad hoc networks in which connected communities are formed with-
out the aid of a wired network infrastructure. Applications for ad hoc networks
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are expected to grow quickly in importance because they address challenges set
forth by several important application domains. By eliminating the reliance on
the wired infrastructure, ad hoc networks can be rapidly deployed in disaster
situations where the infrastructure has been destroyed or in military applica-
tions where the infrastructure may belong to the enemy. Ad hoc networks are
also convenient in day-to-day scenarios where the duration of the activity is
simply too brisk and too localized to warrant the establishment of a permanent
infrastructure.

The salient properties of ad hoc networks create significant new challenges
for the application developer. The inherent unreliability of wireless signals and
the mobility of nodes result in frequent unannounced disconnections. Mobile
applications must be robust enough to handle the possibility of disconnection at
any point in time. The physical size and power consumption of mobile devices
limits their functionality and further exacerbates the difficulties associated with
meeting application demands. The limited functionality of mobile devices often
leads to strong mutual dependencies. Devices may not be able to function fully
in isolation, resulting in a greater need for coordination support. For example,
in a planetary exploration setting ad hoc networking enables miniature rovers
each equipped with only a few specialized sensors to carry out experiments that
demand data from an arbitrary combinations of sensors.

Mechanisms that address the complexities introduced by mobility include
enhancements to the operating system, specialized languages, and middleware.
Among these approaches, middleware has emerged as the most popular. Oper-
ating systems are often tightly integrated with low-level communication services
(e.g., TCP sockets) and, as such, they are likely to expose too many details in the
design of distributed applications. The development and use of new program-
ming languages typically require too great an investment and thus entail too
high a risk. Middleware, on the other hand, provides higher level abstractions
while minimizing risk by taking advantage of existing software infrastructure.
Within the context of established languages, middleware provides higher levels
of abstraction than that of the operating system. When designed properly, it can
free developers from dealing with mundane areas that have already been well
investigated such as the protocol layer and allow them to focus on more fruitful
topics like models, algorithms, and applications.

Several coordination models for mobile environments have been developed.
These models include Lime [1, 2], MARS [3], and PeerWare [4]. To the best
of our knowledge, Lime is the only model to support ad hoc mobility. It is
a coordination model that uses distributed transactions to process configura-
tion changes and assumes all unannounced disconnections are fully masked. The
heavy-weight nature of Lime makes it unsuitable for devices with limited re-
sources. Fortunately, many applications for ad hoc networks do not require the
level of atomicity guarantees that Lime provides. It is this particular observation
that motivated this research effort.

In this paper we introduce LimeLite, a new lightweight coordination model
and middleware for mobile environments supporting logical mobility of agents
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and physical mobility of hosts. LimeLite agents are software processes that rep-
resent the unit of modularity, execution, and mobility. In a significant departure
from existing coordination research, the individuality of each agent is emphasized
by focusing on asymmetric interactions among agents. The acquaintance list is
introduced as a new abstraction which defines a personalized view of the opera-
tion context. For each agent, LimeLite automatically performs remote agent dis-
covery and maintains an acquaintance list of agents within communication range
by using policies specified at the application level and subject to continuous re-
vision. As in most coordination models, traditional Linda-like primitives over tu-
ple spaces [5] facilitate the coordination of agent activities. However, LimeLite
provides advanced pattern matching capabilities, allows agents to restrict the
scope of their operations solely to agents satisfying specific application-defined
eligibility criteria, and offers a powerful repertoire of reactive programming con-
structs. The autonomy of each agent is maintained by the explicit exclusion of
remote blocking operations, group transactions, and data pushing primitives.
Furthermore, LimeLite ensures that all remote operations are done between two
agents with built-in mechanisms to address the possibility of data loss or dis-
connection. By emphasizing minimality of concepts, simplicity and feasibility
of implementation, LimeLite operations are (by and large) resilient to message
loss and unexpected disconnection. This allows LimeLite to function in ad hoc
environments where existing models cannot.

The paper starts with an overview of the LimeLite model in Section 2.
Section 3 presents a motivational example that describes how an application
providing spatially-directed multicasting can be implemented using LimeLite.
Following the example, Section 4 presents the run-time environment provided
by LimeLite. This section describes the functionality of the constructs provided
to the application. We then proceed with a discussion in Section 5 of the as-
sumptions and vulnerabilities in LimeLite, and elaborate on the design of the
LimeLite middleware. We end with a section on related work (Section 6) that
describes how LimeLite can be used to implement existing coordination models,
and draw conclusions in Section 7.

2 Model Overview

LimeLite assumes a computational model consisting of mobile devices (hosts)
that form ad hoc networks; mobile agents that reside on hosts and may migrate
from one host to another; and data owned by agents that is shared through a
distributed Linda-like tuple space [5]. The relationship between hosts and agents
is shown in Figure 1. Secure transmission, agent and host authentication, and
data transport mechanics are assumed to be available to the implementation
layer and thus absent from the logical view of the model.

The features of LimeLite can be broadly divided into four general categories:
context management, explicit data access, reactive programming and code mo-
bility. Central to the notion of context management is an agent’s ability to dis-
cover neighbors and to selectively decide on their relevance to the current task.
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Fig. 1. An overview of the LimeLite model. Agents are represented as ovals. Each agent
owns a local tuple space (LTS) and an acquaintance list (AQL). In this example, agent
C is shown as migrating to host Y without a change in its acquaintance list, which
consists of B and D. The dotted rectangle surrounding the tuples spaces of agents B,
C, and D highlight the tuples spaces that are accessible from C.

LimeLite provides a discovery protocol that informs each agent of the arrival and
departure of other agents. It notifies each agent of its relevant neighbors by stor-
ing them in individualized acquaintance lists, where the relevance is determined
using a filter (known as an engagement policy) specified at the application level.
Since each agent has different neighbors and individualized engagement policies,
the context perceived by each agent is generally different from that of its peers.
This asymmetry among agents was first introduced in EgoSpaces [6]. It increases
the level of decoupling among agents and results in a more robust coordination
model that requires fewer assumptions about the underlying transport layer.

Existing coordination models for mobility in ad hoc environments such as
Lime presume a symmetric and transitive coordination relation among agents
that is not scalable. If every node must coordinate with every other node, the
computation required is the square of the number of nodes. Furthermore, as the
number of nodes increases, the likelihood that some nodes move out of range
also increases, generating frequent configuration changes. By allowing an agent
to restrict coordination only to agents it is interested in, LimeLite is better
able to scale to dense ad hoc networks as well as to devices with limited memory
resources. For example, if an agent is surrounded by hundreds of other agents but
is interested only in two remote agents, it can concentrate on these two agents
by ignoring the rest, thus minimizing wasted memory and other resources.

LimeLite accomplishes explicit data access in a manner similar to that em-
ployed by most other coordination models. Each agent owns a tuple space which
offers operations for placing tuples into it and for retrieving tuples through a
pattern-matching mechanism related to that used in Linda. The use of a sep-
arate tuple space within each agent is not limiting; LimeLite can mimic the
behavior of multiple tuple spaces á la Lime by utilizing special fields within
each tuple, and can mimic a single shared tuple space per host á la MARS by
setting the engagement policy to consider only agents on the local host.

Explicit data access spans at most two agents. The agent initiating the data
access, referred to as the reference agent, must have the other agent in its ac-
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quaintance list. LimeLite adopts a pull-only paradigm where the reference agent
can read or remove data from other agents in its acquaintance list, but cannot
push data onto them. The rationale is that most mobile applications involve
agents pulling resources from their environment as needed. This design philoso-
phy also protects valuable local resources (e.g., memories) from being consumed
by the careless behavior of other agents. Finally, since disconnection may occur
at any time, the probability of data loss is minimized.

Reactive programming constructs enable an agent to automatically respond
to the appearance of particular tuples within the tuple spaces of agents in its
acquaintance list. Two state variables within each agent, the reaction registry

and reaction list, support this behavior. A reference agent registers a reaction
by placing the reaction into its reaction registry. Once registered, LimeLite au-
tomatically propagates the reaction to all agents in the acquaintance list that
satisfy certain properties specified by the application (e.g., agent location). At
the receiving end, the reaction list monitors which reactions are registered on
the local tuple space. When a tuple in the tuple space satisfies the trigger for
a reaction in the reaction list, the agent that registered the reaction is notified
and a copy of the tuple is sent. If this agent is still within range and receives
the notification, it executes the code associated with the reaction locally. This
mechanism, originally introduced in Mobile UNITY [7], is distinct from that
employed in traditional publish/subscribe systems. It is designed to react to
state properties rather than to data operations. For instance, when a new agent
is added to the acquaintance list, its tuples may trigger reactions regardless of
whether the new agent performed any operations.

Code mobility is supported in LimeLite by allowing agents to migrate from
one host to another. When an agent migrates, LimeLite automatically updates
its context and reactions. There are many benefits to allowing an agent to mi-
grate. For instance, if a particular host has a large amount of data which it is
not willing to give up, an agent that needs to operate on it over an extended
period of time can relocate to the host holding the data and thus have reliable
and efficient access to it despite frequent disconnection among hosts. As another
example of agent mobility, suppose one agent is performing a certain task and a
developer creates a new agent that can perform the task more efficiently. The old
agent can be designed to shutdown when the new agent arrives. Thus, having the
new agent migrate to the same host as the old agent updates the application. To
date, such updates are common practice on the web. However, agent migration
promises to be even more beneficial in the mobile setting.

3 Motivating Example

In this section we illustrate some of the capabilities of LimeLite by focusing on
a simple problem involving a geocast [8]. Consider a source agent and a group of
agents as shown in Figure 2. Each dot is an agent on a separate host physically
distributed in space as shown in the figure. The lines connecting two agents in-
dicate the existence of a communication link between them. In this example, the
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Delivery Zone

Fig. 2. This figure shows the topology of an ad hoc network and an example geocast
application. For illustration purposes, the topology is fixed. Each dot is an agent. In
this example, the circled agent sends a message to all agents encompassed within the
rectangle. The arrows depict the path by which agents along the way pull the message
until it reaches the delivery zone, at which point the message is propagated to all nodes
in the zone using a reaction mechanism.

distinctively marked agent in the lower-left corner needs to multicast a message
to all agents located in the rectangle appearing in the upper-right corner of the
figure. The dotted arrows indicate the path the message takes in reaching the
destination agents.

The scenario just described can be easily implemented using LimeLite through
a combination of reactions and explicit data accesses. Suppose the initiating
agent places a message in the form of a tuple containing a destination location
and data into its own tuple space. Special “delivery” agents that have been
deployed on each host have reactions sensitive to this message tuple. As the
delivery agents move, they engage with neighboring agents. If the neighboring
agent has a message tuple, the delivery agent’s reaction will fire. When this oc-
curs the delivery agent will consider its present location, the message’s present
location, and its destination location. If the delivery agent is located closer to
the destination than the message is, it will pull the tuple containing the message
from its current location and place it into its own tuple space. In Figure 2, the
dotted arrows depict the path of the message from the origin to the destination
agents (under a simplified scenario in which no movement occurs during mes-
sage delivery). Assuming agents move randomly and eventually encounter other
agents, the message will gradually move closer to its destination and eventually
reach it. While the message is in transit, multiple remote agents may react to
the tuple at each step. This is not a problem because tuple removal is done
atomically, meaning only one agent will successfully grab the tuple. When the
message reaches a destination agent, it can place the tuple into its own tuple
space, resulting in the reactions of other destination agents to fire. These desti-
nation agents can repeat the process causing more destination agents to react to
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the message. Eventually, all of the destination agents will receive a copy of the
message.

The success of this implementation depends upon essential features of the
mobile system, including movement patterns and the probability of certain en-
counters among agents. The entire geocast implementation entails only one repli-
cated delivery agent whose code consists of essentially one reaction, one input
operation, and one output operation. The reaction is used to notify the agent
of a message tuple; the input operation is used to pull the message towards the
correct region in space; and the output operation is used to further transmit or
propagate the message. An example implementation is given in Section 4. An
analysis of its performance is by far more complex than its coding and is outside
the scope of this section. This is exactly what we should expect in an unpre-
dictable ad hoc setting when the right resources are provided to the application
programmer. At this point, the message we want to leave the reader with is
that LimeLite has the potential to significantly reduce development efforts in a
mobile setting.

4 Run-Time Environment

LimeLite provides an environment for agents to operate via the LimeLite Server,
a software layer between the agent and the underlying network transport layer.
By using different ports, multiple LimeLite servers may operate on a single host.
However, for the sake of simplicity, we will talk as if each host was restricted to
have a single LimeLite server.

An application uses LimeLite by interacting with an agent, or by creating
agents that perform the duties of the application. Each agent contains a tuple
space, acquaintance list, reaction registry, and reaction list. The overall structure
of LimeLite is shown in Figure 3. An agent allows the application to customize its
profile and engagement policy. An agent’s profile is a set of objects that describe
its properties. Its engagement policy specifies which agents are of interest based
on their profiles. This section describes how LimeLite fulfills its responsibilities
and is organized around the key elements of the run-time environment, i.e., agent
discovery, management, reactions, and agent mobility.

Discovery Mechanism. Since network connectivity between hosts in ad
hoc networks can form and break at any time, LimeLite provides a discovery

protocol based on beacons to allow an agent to discover the arrival and departure
of other agents.

The beaconing mechanism is the most costly construct in LimeLite because
it requires periodic broadcasts, consuming a significant amount of network band-
width, processor resources, and battery power. Each beacon contains a profile

for each agent running on top of the particular LimeLite server. A profile is a
collection of triples each consisting of a property name, type, and value. Each
profile always contains two system-defined entries indicating the agent location
and identifier in addition to entries reflecting various application-defined char-
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Fig. 3. The overall structure of LimeLite.

acteristics. When the LimeLite server receives a beacon, it forwards a copy to
each agent running on top of it.

Upon receiving a beacon, an agent passes the profiles within it to its ac-

quaintance handler, which enforces the engagement policy (a user-definable set
of restrictions over profiles). For example, an engagement policy may contain no
restrictions at all, or restrict engagement to agents located within a particular
area. The acquaintance handler determines whether any new agents have either
entered or left communication range. When the acquaintance handler receives
a set of profiles, it determines whether any of the profiles represent agents not
in the reference agent’s acquaintance list. If some do, the engagement policy
decides whether to include them in the acquaintance list. The reference agent is
engaged with all agents in its acquaintance list.

It is also possible for an agent to be removed from the acquaintance list when
its profile no longer satisfies the engagement policy. This is called a disengage-
ment. To handle network disconnections, the acquaintance handler keeps track
of the most recent update for all known agent profiles. Profiles that are too old,
according to some application-defined threshold are dropped and removed from
the acquaintance list.

The acquaintance list, shown in Figure 4, contains a set of agent profiles rep-
resenting the agents within range that have satisfied the engagement policy. The
addition of a profile into the acquaintance list signifies an engagement between
the reference agent and the agent represented by the profile. Once the reference
agent has engaged with another agent, it gradually propagates its relevant reac-
tive patterns (the non-callback function portion of the reaction) to the remote
agent. While the addition of the profile to the acquaintance list is done atomi-
cally, the propagation of reactive patterns is not. The removal of a remote agent’s
profile from the acquaintance list signifies disengagement between the reference
agent and the remote agent. When this occurs, the reference agent removes all
the remote agent’s reactive patterns from its reaction list. The removal of the
profile from the acquaintance list and the reactive patterns from the reaction list
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ABSTRACT STATE:

— A set of profiles, {p1, p2, . . .}

INTERFACE SPECIFICATION:

boolean add(Profile profile)
— Adds an agent’s profile into the list.

void clear()
— Removes all profiles from the acquaintance list.

boolean contains(AgentID aID)
— Returns true if the list contains a profile that has the specified AgentID.

Profile[] getApplicableAgents(Profile[] profiles)
— Returns all of the profiles within the list that match any of the specified profiles.

void remove(Profile profile)
— Removes the specified profile from the list.

Fig. 4. Acquaintance list.

is performed as a single atomic transaction, which is possible to do inexpensively
because it is performed locally.

Tuple Space Management. Any data available for coordination among
agents is stored in individually owned tuple spaces. Each contains a set of tuples
each having a unique identifier. LimeLite tuples contain data fields distinguished
by name and store user-defined objects and their types. The ordered list of fields
characterizing tuples in Linda is replaced in LimeLite by unordered collections
of named fields. This results in a more powerful pattern matching mechanism
that can handle situations in which a tuple’s arity is not known in advance. In
open systems, this is a highly desirable feature. For example, the following tuple
may represent a message tuple used in the earlier example:

tuple{〈“type”, String, “Directed Multicast”〉,
〈“message”, String, “TAKE COVER!”〉,
〈“destination”, GPSCoord, (90.45N, 34.23W)〉,
〈“deadline”, T ime, 14:15:30Z〉}

Agents use templates to specify tuples of interest in the tuple space. A tem-
plate consists of a collection of named constraints, each defined in terms of the
field name to which it applies and a predicate over the field type and value. Be-
cause of the manner by which the predicate is supplied, it is called the constraint
function. A template matches a tuple if each constraint within the template has
a matching field in the tuple, i.e., a field having the same name is present in the
tuple and the value and type stored in the field satisfy the constraint function.
For example, the following template matches the message tuple give above:

template{〈“type”, String, valEql(“Directed Multicast′′)〉,
〈“message”, String, defaultConst(true)〉}
〈“destination”, GPSCoord, defaultConst(true)〉}1

1 Both valEql(p) and defaultConst(p) are constraint functions that determine
whether a tuple’s field satisfies the template’s constraint. In this case, valEql(p)
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INTERFACE SPECIFICATION:

void out(Tuple t)
— Places a tuple, t, into the tuple space.

Tuple rd(Template template)
— Blocks until a tuple matching the template is found within the tuple space.

Returns a copy when found.

Tuple rdp(Template template)
— Returns a tuple from within the tuple space that matches the template, or ε if

none is found.

Tuple[] rdg(Template template)
— Blocks until a tuple matching the template is found within the tuple space.

When this occurs, a copy of all matching tuples are returned.

Tuple[] rdgp(Template template)
— Returns all tuples from within the tuple space that match the template, or ε if

none is found.

Tuple in(Template template)
— Blocks until a tuple matching the template is found within the tuple space.

When this occurs, the tuple is removed and returned.

Tuple inp(Template template)
— Removes and returns a tuple from within the tuple space that matches the

template, or ε if none is found.

Tuple[] ing(Template template)
— Blocks until a tuple matching the template is found within the tuple space.

When this occurs, all matching tuples are removed and returned.

Tuple[] ingp(Template template)
— Removes and returns all tuples from within the tuple space that match the

template, or ε if none is found.

Fig. 5. Operations on the local tuple space.

The bottom two constraints with default constraint functions that always return
true specifies that all matching tuples must contain fields with the specified
names and types (i.e., it must have a field named “message” with a value of
type String and a field named “destination” with a value of type GPSCoord).
Since this template did not contain a constraint named “deadline,” a tuple need
not have this field to match the template. Notice that the tuple may contain
more fields than the template has constraints. As long as each constraint in the
template is satisfied by a field in the tuple, the tuple matches the template.
This powerful style of pattern matching does not require prior knowledge of the
ordering of fields within a tuple nor its arity to create a template for it.

Local Tuple Space Operations. The operations allowed on the local tu-
ple space are shown in Figure 5. The out operation places a tuple into the tuple
space. The operations in and rd block until a tuple matching the template ap-
pears in the tuple space. When this occurs, in removes and returns the tuple,
while rd returns a copy without removing it. The operations inp and rdp are
the same as in and rd except they do not block. If no matching tuple exists
within the tuple space, ε is returned. The operations ing and rdg are similar

returns true if the value within f is equal to p while defaultConst(p) always re-
turns p.
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INTERFACE SPECIFICATION:

Tuple rdp(AgentLocation loc, Template template)
— Returns a tuple matching the template from within the tuple space of the

agent located at loc, or ε if none is found or the operation times out.

Tuple[] rdgp(AgentLocation loc, Template template)
— Returns all tuples matching the template from within the tuple space of the

agent located at loc, or ε if none is found or the operation times out.

Tuple inp(AgentLocation loc, Template template)
— Removes and returns a tuple matching the template from within the tuple

space of the agent located at loc, or ε if none is found or the operation

times out.

Tuple[] ingp(AgentLocation loc, Template template)
— Removes and returns all tuples matching the template from within the tuple

space of the agent located at loc, or ε if none is found or the operation

times out.

Fig. 6. Operations on a remote tuple space.

to in and rd except they find and return all matching tuples within the tuple
space. Similarly, ingp and rdgp are identical to ing and rdg except they do not
block. If they do not find a matching tuple, ε is returned. All of these operations
are performed atomically, which can be guaranteed without a costly transaction
because they are performed locally on a single agent.

Remote LTS Operations. To allow for inter-agent coordination, agents
share the contents of their tuple spaces with other agents. To share the contents
of the tuple space, LimeLite provides operations inp, rdp, ingp, and rdgp, as
shown in Figure 6, that operate on the tuple spaces of remote agents. These
methods differ from the local operations in that they require an AgentLocation
parameter that specifies on which agent’s tuple space the operation should be
performed. Despite the distributed nature of these operations, the actual query-
ing of the tuple space is still performed atomically. All of these operations are
implemented using message passing, which is hidden from the agent. Due to
the possibility of message loss, these operations are not guaranteed to return a
matching tuple even if one exists. To prevent deadlock due to lost messages, all
of these operations will time-out and return ε if results are not received after a
certain system-defined period of time.

No operations on remote tuple spaces can block because the system could
deadlock if the network connection were to break in the middle of the operation.
A drawback of not having blocking operations on remote agents is the need
for polling to detect the presence or absence of a tuple in the remote agent’s
tuple space. Given the bandwidth limitations of wireless networks and battery
constraints of mobile devices, polling should be avoided. LimeLite avoids this
by providing a reaction mechanism.

Reaction Mechanism. LimeLite reactions enable an agent to inform other
agents within its acquaintance list that it is interested in tuples that match a
particular template. Reactions are registered and deregistered on tuple spaces.
A reaction contains a user-defined call-back function that is executed by the
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agent that created it when a tuple of interest appears in a tuple space it is
registered on. Reactions fit particularly well with ad hoc networks because they
provide an asynchronous form of communication between agents by transferring
the responsibility of searching for a tuple from one agent to another.

A reaction consists of a reactive pattern and a call-back function. The reactive
pattern contains a template that indicates which tuples trigger it and a list of
profile selectors that determine which agent’s tuple spaces it should be registered
on. The call-back function executes when the reaction fires in response to the
existence of a tuple matching its template within the LTS it is registered on. The
firing of a reaction consists of sending back to the issuing agent a copy of the
tuple that triggered the reaction, followed by the execution of the reaction’s call-
back function on the issuing agent. To prevent deadlock, the call-back function
cannot perform blocking operations. If the call-back function were allowed to
block on the local tuple space, it will remain blocked forever because the call-
back function is atomic meaning no matching tuple can be placed into the tuple
space to un-block it.

The list of profile selectors within the reactive pattern determines where to
register (i.e., propagate) the reactive pattern. Implementation-wise, a profile se-
lector is a template while a profile is a tuple. They share the same pattern match-
ing mechanism but are functionally different because profiles are not placed in
tuple spaces. A reaction’s reactive pattern propagates to a remote agent if the
remote agent’s profile matches any of the reactive pattern’s profile selectors.
Multiple profile selectors are used to lend the developer greater flexibility in
specifying a reaction’s domain. Returning to our example scenario, a delivery
agent would have the following profile:

profile{〈“type”, String, “Delivery Agent”〉,
〈“location”, GPSCoord, (90.45N, 34.23W)〉}

and its reactive pattern would contain the following profile selector to restrict
its propagation to delivery agents:

profile selector{〈“type”, String, valEql(“Delivery Agent”)〉}

In this case the reactive pattern will propagate to any agent whose profile
contains a property called “type,” with a String value equal to “Delivery Agent”.
Notice that the profile selector did not consider the agent’s location. This is
because restrictions on the location of an agent is done using the engagement
policy. For example, if an agent wants to restrict reaction propagation to agents
within 50m, it will set its engagement policy such that all agents within its
acquaintance list are located within 50m.

Reactions may be of two types: ONCE or ONCE PER TUPLE. The type of
the reaction determines how long it remains active once registered on a tuple
space. A ONCE reaction fires a single time on each tuple space it is registered on
and automatically deregisters itself after firing. When a ONCE reaction fires and
the reference agent receives the resulting tuple(s), it deregisters the reaction from
all other agents, preventing the reaction from firing later. If a ONCE reaction
fires several times simultaneously on different tuple spaces, the reference agent
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ABSTRACT STATE:

— A set of reactions, {r, . . .}

INTERFACE SPECIFICATION:

ReactionID addReaction(Reaction rxn)
— Adds a reaction to the reaction registry and returns the reaction’s ReactionID.

Reaction removeReaction(ReactionID rID)
— Removes and returns the reaction with the specified ReactionID from the

reaction registry or ε if no reaction matching the ReactionID exists in

the reaction registry.

Reaction get(ReactionID rID)
— Retrieves the reaction with the specified ReactionID from the reaction registry

or ε if no reaction matching the ReactionID exists in the reaction registry.

Reaction get(Profile profile)
— Retrieves all reactions containing profiles that match the given profile or ε

if no reaction matches.

Fig. 7. Reaction Registry.

chooses one of the results non-deterministically and discards the rest. This does
not result in data loss because no tuples were removed from any tuple space. In
contrast to ONCE reactions, ONCE PER TUPLE reactions remain registered
after firing, thus firing once for each matching tuple found in each tuple space it
is registered on. ONCE PER TUPLE reactions are deregistered when the agent
requests it or when network connectivity to the agent is lost. To keep LimeLite
as lightweight as possible, no history is maintained on where reactions were
registered. Thus, if network connectivity breaks and later reforms, the formerly
registered reactions will be re-registered and will fire again.

Two additional state components, the reaction registry and reaction list, are
required for the reaction mechanism. The reaction registry, shown in Figure 7,
holds all reactions created and registered by the reference agent. An agent uses
its reaction registry to determine which reactions should be propagated following
an engagement and to obtain a reaction’s call-back function when it fires.

The reaction list, shown in Figure 8, contains the reactive patterns registered
on the reference agent’s tuple space. The reactive patterns within this list may
come from any agent within communication range, including agents not in the
acquaintance list. Thus to maintain the validity of the reaction list, the acquain-
tance handler notifies its agent when any agent moves out of communication
range (not just the agents within its acquaintance list). The reaction list de-
termines which reactions should fire when a tuple is placed into the local tuple
space or when a reactive pattern is added to it.

A simple illustration of how the geocast example could be implemented is
given in Figure 9. The agent’s constructor creates and registers a reaction that
is sensitive to message tuples. Since the reaction is created using an empty
ProfileSelector, it is propagated to all agents in the acquaintance list, which
the engagement policy limits to other delivery agents. The call-back function of
the reaction is defined in the reactsTo method. It determines whether to pull
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ABSTRACT STATE:

— A set of reactive patterns, {rp1, rp2, . . .}

INTERFACE SPECIFICATION:

boolean addReactivePattern(ReactivePattern rp)
— Adds a reactive pattern to the reaction list, returns true if it was successfully

added.

void clear()
— Clears the reaction list by removing all reactive patterns within it.

ReactivePattern[] getApplicablePatterns(Tuple tuple)
— Retrieves all of the reactive patterns within the list that should fire on the

specified tuple.

void removeReactivePattern(ReactivePattern rp)
— Removes the specified reactive pattern from the list if it is in the list.

void removeReactivePatterns(AgentID aID)
— Removes all reactive patterns from the list that were registered by the agent with

the specified AgentID.

Fig. 8. Reaction List.

or place the tuple into its tuple space based on the destination of the message
as specified within the tuple.

Agent Mobility. Coordination within LimeLite is based on the logical mo-
bility of agents and physical mobility of hosts. Agents are logically mobile in
that they can migrate from one host to another throughout their lifetime. Agent
mobility is accomplished using a package called µCode [9]. µCode provides prim-
itives to support light-weight mobility preserving code and state. Of particular
interest is the µCodeServer and mobile agent. A mobile agent maintains a ref-
erence to a µCodeServer and provides a go(String destination) method that
moves the agent’s code and variable state to the destination. The thread state
of the agent is not preserved because doing so would require modification to the
Java virtual machine, limiting LimeLite to proprietary interpreters. Thus, after
an agent migrates to a new host, it will start fresh with its variables initialized
to the values they were prior to migration.

LimeLite cooperates with µCode by running a µCodeServer alongside each
LimeLite Server and having the LimeLite agent extend µAgent. By extending
µAgent, the LimeLite agent inherits the go(String destination) method. How-
ever, LimeLite abstracts this into a migrate(HostID hID) method that moves
the agent to the destination host by translating the HostID to the string ac-
cepted by µCode. Just prior to migration, the agent first deregisters all of its
reactive patterns from remote agents, and stops its beaconing. By not broad-
casting beacons, neighboring agents will assume the migrating agent has moved
out of range and thus disengage with it. Once on the new host, the agent is
passed to the LimeLite Server which restarts it and resumes the broadcasting of
its beacons.
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public class DeliveryAgent extends Agent implements ReactionListener {

public DeliveryAgent (AgentID aID) {

EConstraint c1 = new EConstraint("type", String.class,

new EquivalencyConstraintFunction("Directed Multicast"));

EConstraint c2 = new EConstraint("message", String.class,

new DefaultConstraintFunction());

EConstraint c3 = new EConstraint("destination", GPSCoord,

new DefaultConstraintFunction());

ETemplate template = new ETemplate();

template.addConstraint(c1).addConstraint(c2).addConstraint(c3);

ReactivePattern rPat = new ReactivePattern(new ProfileSelector(),

Reaction.ONCE_PER_TUPLE, template);

Reaction rxn = new Reaction(rPat, this); // create the reaction

ReactionID rID = null;

try {

tupleSpace.registerReaction(rxn); // register the reaction

} catch(TupleSpaceException e) { e.printStackTrace(); }

}

public void reactsTo(ReactionEvent e) { // the call-back function

Tuple msg = e.getTuple();

GPSCoord dest = (GPSCoord)msg.getField("Destination").getValue();

if (isToMe(dest)) tupleSpace.out(msg);

else{

AgentLocation cLoc

= getLoc(msg.getField("AgentID").getValue());

if (iAmCloser(dest, cLoc)) {

Tuple grabbed = tupleSpace.inp(aLoc,msg.getTemplate());

if (grabbed != null) tupleSpace.out(grabbed);

}

}

}

}

Fig. 9. Example implementation of a delivery agent. Due to space constraints,
the setting of the engagement policy is not shown. In the actual implementation,
a ProfileSelector would be created and used to limit engagement only with
other DeliveryAgents.

5 Discussion

A prototype implementation of LimeLite has been developed using Java. The
prototype attempts to adhere to the model given in Section 2. The implemen-
tation defines the LimeLite Server, Agent, Tuple Space, Acquaintance List, Ac-
quaintance Handler, Reaction List, Reaction Registry, Tuples, Templates, Pro-
files, and Profile Selectors as distinct objects. Each of these objects implement
the interface and behavior as described in Section 4.
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For a host to participate in LimeLite, it must create and activate a LimeLite
Server. When a LimeLite Server is created it is initially inactive and does not
open any ports nor support any agents. The application activates the LimeLite
Server by calling boot() on it. Prior to booting the server, the application may
customize various parameters of the server such as the ports used, its multicast
group address, beacon broadcast period, and even the single-cast protocol used
(either TCP or UDP). Allowing the LimeLite Server to use either protocol makes
it more scalable to small devices that cannot support the overhead of TCP or
applications that do not require the additional delivery guarantees that TCP
provides. The limitation is that a LimeLite Server can only communicate with
other LimeLite Servers that use the same single-cast protocol. When booted,
the LimeLite Server opens and listens to a single cast port for incoming mes-
sages and starts broadcasting beacons from the multicast port. For efficiency
purposes, broadcasting of beacons is relegated to the LimeLite Server instead of
to individual agents. A beacon contains a profile for each agent residing on the
server. Even if no agents are on the server, it must still broadcast beacons for
its presence to be known to agents residing on neighboring servers. To allow for
agent migration, the LimeLite Server allows an agent to indicate that it should
no longer be included in the beacons. When the agent’s profile is no longer in-
cluded in the beacons, remote agents will assume the agent longer exists and
disengage with it.

Once a LimeLite Server has been created and booted, the application can
load agents onto the server. This can either be done by calling a loadAgent(...)
method on the LimeLite Server, or by using a special Launcher object that
communicates to the server through its single-cast port. The Launcher allows
new agents to be loaded onto the LimeLite Server at any time.

LimeLite provides a default implementation of an Agent that holds an ac-
quaintance handler, acquaintance list, tuple space, reaction registry, and reac-
tion list. An application can interact with an agent either directly by passing the
agent a reference to it upon creation, or by subclassing the agent and overriding
the agent’s methods to include the behavior it desires.

The LimeLite JAR file is only 52.7KB in size. However, it uses several exter-
nal packages that makes the total code size 111.7KB which may be too high con-
sidering current mobile devices are often limited to 300KB of memory. However,
we believe this is not a problem because continuous improvements in technology
will result in increasing memory capacity.

To analyze the performance of LimeLite, we calculated the round trip time
for a tuple to be pulled onto a remote agent and back using reactions as triggers.
Given two agents, A and B, A has a global reaction registered for red tuples,
while B has a global reaction registered for green tuples. Whenever agent B reacts
to a green tuple, it places a red tuple into its tuple space. Both types of tuples
carry eight bytes of data. The actual time measured begins at the insertion of
the green tuple by A to the firing of the reaction sensitive to the red tuple on
A. The test was performed on two 750MHz SONY laptops running Java 1.4.1 in
802.11b ad hoc mode with a beaconing period of 1000ms. To judge the efficiency
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of LimeLite, we compared the round-trip time of simple message passing using
eight byte messages and TCP sockets on the same machines. Averaged over 100
rounds, the round trip time of LimeLite is 50.348ms while the plain sockets is
44.58ms. The amount of LimeLite code required was 250 lines totalling 8.18KB
whereas the regular message passing took 695 lines and 19.19KB.

Although LimeLite as been designed with robustness and simplicity in mind,
it, like all other coordination models, has certain vulnerabilities that arise in rare
network situations. While none of these vulnerabilities will result in system fail-
ure, they may result in individual operations failing to deliver the expected re-
sults. These vulnerabilities are worth pointing out so that application developers
will be aware of their possibility when designing LimeLite applications.

LimeLite makes two assumptions about the underlying network. The first
assumption is that the rate of configuration changes is small relative to the net-
work latencies. If configuration changes are so rapid that they exceed message
latencies, then the majority of messages will be lost, making coordination im-
possible. If this occurs, LimeLite will not function correctly because the results
of a remote inp or ingp may be lost during transmission.

LimeLite also assumes that the broadcast range of all devices is the same. If
this is not the case, then it is possible for messages to be sent in one direction
but not the other. Although this will not cause LimeLite to crash, it may result
in inconsistencies between agents regarding the registration of reactions. The
consequences can be minimized by assuming the range of all devices in the
network to be a fraction of the shortest transmission range among all the devices.

Finally, other than the pull-only principle, LimeLite does not address the
issue of access control. There is no policy for an agent to control who accesses its
tuple space, or for which tuples can be removed. We believe that such measures
can be readily introduced into LimeLite at a later date.

6 Related Work

This section explores the expressive power of LimeLite by comparing it to several
other coordination models and, when possible, demonstrating how LimeLite can
provide their basic concepts. The models considered include JEDI [10], Lime [1],
MARS [3], and PeerWare [4].

JEDI. JEDI is a model based on the event subscription paradigm where
components create and subscribe to events. JEDI consists of active objects that
interact with each other through a logically centralized event dispatcher. Active
objects subscribe to, or unsubscribe from, events on the event dispatcher. When
an active object registers an event on the event dispatcher, it gives the event
dispatcher an event that it passes to all active objects to which it subscribes.
This provides a powerful decoupling among the active objects (i.e., the active
object that created the event need not know which active objects received it).
Logical mobility is possible in JEDI since active objects can unsubscribe from
an event dispatcher on one host, and resubscribe to another one on another host.
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The behavior of JEDI’s event subscription mechanism can be captured in
LimeLite through reactions that apply to all agents in the acquaintance list.
These reactions would be sensitive to special event tuples. JEDI events can be
represented in LimeLite using these event tuples.

Lime. Lime is another coordination model implemented as middleware for
mobile environments. Like LimeLite, Lime supports ad hoc networks, utilizes
logically mobile agents running on physically mobile hosts, and coordinates
through Linda-like tuple spaces enhanced with reactive programming. Unlike
LimeLite which was designed to be as light-weight as possible, Lime is relatively
heavy-weight providing strong atomicity and functional guarantees. LimeLite
follows an incremental paradigm where engagements between two groups of
agents are performed gradually by each agent independently. Once an agent en-
gages with another agent, reaction propagation follows suit in a similar gradual
manner. In contrast, Lime follows a transactional paradigm where operations
often occur as a single atomic transaction. For example, when two groups of
hosts merge, the engagement and reaction propagation is done between all hosts
as a single atomic step through a distributed transaction. This level of atomicity
comes at a cost. Since it requires every host to send a message to every other
host, the amount of unnecessary message-passing is higher. It also requires all
hosts to remain in contact with each other throughout the transaction, which
may be difficult to guarantee, particularly in highly dynamic environments with
a high density of hosts.

A key difference between Lime and LimeLite is the engagement policy and
the number of tuple spaces used. Lime’s engagement policy is symmetric and
built into the model. LimeLite’s policy is variable and asymmetric. In LimeLite
each agent has an individual tuple space whereas in Lime all agents on a host
share multiple host-level tuple spaces that are differentiated by name. When a
group of hosts forms in Lime, their identically named tuple spaces merge into
one in a single atomic step. LimeLite does not provide multiple tuple spaces.
Using a single tuple space simplifies the model without reducing its functionality
since multiple tuple spaces can be simulated using a field within each tuple to
identify which simulated tuple space it belongs to.

Due to fundamental differences between the two models, LimeLite cannot
easily provide the level of atomicity guarantees that Lime provides. However,
it can provide the general functionality of Lime’s distributed operations with
relaxed atomicity guarantees. For example, Lime provides a global in operation
that atomically searches the tuple space on all hosts within a group. It guarantees
that if a matching tuple exists, it will be found. Although LimeLite cannot
provide such a guarantee, it can sequentially perform an inp operation on each
acquaintance until it finds a match. While this does not guarantee the match
will be found, the probability of success is high.

MARS. MARS consists of a multiplicity of nodes each containing a pro-
grammable tuple space. Agents located on a node maintain a private reference
to a tuple space that is bound to the tuple space of the node they are located
on. As the agents migrate from one node to another, their tuple space reference
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is automatically updated to point to the new tuple space of the new node. This
is in contrast to LimeLite where each agent maintains its own tuple space and
carries it as it migrates. Coordination between agents in MARS is done through
placing and removing tuples in and out of the tuple space and a reaction mech-
anism sensitive to actions performed by an agent. Since agents can only access
their node’s tuple space, they can only coordinate with other agents located
on same node. Migration is required for inter-node communication. MARS was
initially designed to operate in a wired network environment. As such, it did
not contain a discovery protocol. However, recent versions of MARS have been
adapted to mobility by allowing mobile agents to “catch” connection events that
occur when they come into range of a node. When this occurs, they may migrate
to the newly discovered node.

The general behavior of a MARS node can be achieved in LimeLite by
restricting each agent to only engage with agents on the same host. In this case,
a MARS node is essentially a LimeLite host. The difference is that the tuples
stored at a particular host remain associated with a particular agent, and move
with the agent when it migrates to another host. LimeLite’s reaction mechanism
can also be arranged to behave like those in MARS. In MARS, a reaction fires
due to an operation being performed. A LimeLite reaction that is sensitive to
tuple space state can behave like a MARS reaction by having the agent insert
special “event tuples” each time it performs an operation on the tuple space and
configuring the reaction to fire on these tuples.

PeerWare. PeerWare is primarily concerned with the creation and main-
tenance of a virtual tree data structure that is built by virtual superimposition
of numerous local trees. The use of a tree helps PeerWare scale to large data
sets, since when looking for data in a particular branch, not all of the data has
to be searched. Each data object (or node) in a local tree is named. Multiple
nodes within a tree can have the same name as long as they are not part of
the same branch and are not roots. The local trees are superimposed upon each
other based on the names of the nodes. Changes in network configuration are
represented as changes in the global tree’s content. The operations that can be
performed on the global tree are similar to those allowed on the tuple space (e.g.,
data insertion and extraction). Like LimeLite, PeerWare does not provide any
atomicity guarantees on distributed operations but does guarantee that they will
execute atomically at the local level. PeerWare provides an execute function
that performs a user-defined operation on a projection of the tree. This is useful
especially when the operation is relatively small and accesses large data sets
since the data does not need to be sent over the network.

The behavior of PeerWare can be accomplished using LimeLite by adding
special application-defined fields into each tuple to indicate where it belongs in
the tree. The fields could then be used by an application to simulate the scoping
properties of a tree. Although this is less efficient, specialized implementations
of a specific data structure will always be more efficient. PeerWare’s execute

function is provided in LimeLite by creating an agent that performs the desired
operation, and migrating it to the remote host to perform the operation.
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7 Conclusions

LimeLite is a lightweight but highly expressive coordination model and middle-
ware tailored to meet the needs of developers concerned with mobile applica-
tions over ad hoc networks. Central to LimeLite’s function is the management
of context-awareness in a highly dynamic setting. At first glance, an agent’s con-
text is a subset of the agents in direct contact as they appear in the acquaintance
list. At this level, the context is transparently managed and subject to policies
imposed by each agent in response to its own needs at a particular point in time.
Explicit manipulation of the context is provided by operations that access data
owned by agents in the acquaintance list. The agent retains full control of what
is placed in its tuple space since all operations are designed to pull data to the
agent. Because data cannot be pushed to others, a collaborative type of interac-
tion is dictated by the model. An innovative adaptation of the reaction construct
facilitates rapid response to environmental changes. As supported by evidence
to date, the result of this unique combination of context management features is
a coordination model and middleware that promise to reduce development time
for mobile applications.

References

1. Murphy, A., Picco, G., Roman, G.C.: Lime: A middleware for physical and logical
mobility. In: Proc. of the 21st Int’l. Conf. on Distributed Computing Systems.
(2001) 524–533

2. Picco, G., Murphy, A., Roman, G.C.: Lime: Linda meets mobility. In: Proc. of the
21st Int’l. Conf. on Software Engineering. (1999)

3. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4 (2000) 26–35

4. Cugola, G., Picco, G.: Peerware: Core middleware support for peer-to-peer and
mobile systems. Technical report, Politecnico di Milano (2001)

5. Gelernter, D.: Generative communication in Linda. ACM Trans. on Prog. Lan-
guages and Systems 7 (1985) 80–112

6. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mo-
bile environments. In: Proc. of the 10th Int’l. Symp. on Foundations of Software
Engineering. (2002)

7. Roman, G.C., McCann, P.J., Plun, J.Y.: Mobile UNITY: reasoning and speci-
fication in mobile computing. ACM Transactions on Software Engineering and
Methodology 6 (1997) 250–282

8. Navas, J.C., Imielinski, T.: Geocast - geographic addressing and routing. In:
Proceedings of the Third Annual International Conference on Mobile Computing
and Networking. (1997) 66–76

9. Picco, G.P.: code: A lightweight and flexible mobile code toolkit. In Rothermel, K.,
Hohl, F., eds.: Proceedings of the 2nd International Workshop on Mobile Agents.
Lecture Notes in Computer Science, Berlin, Germany, Springer-Verlag (1998) 160–
171

10. Cugola, G., Nitto, E.D., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering 27 (2001) 827–850


	A Lightweight Coordination Model and Middleware for Mobile Computing **Please see WUCSE-03-12**
	Recommended Citation
	A Lightweight Coordination Model and Middleware for Mobile Computing **Please see WUCSE-03-12**

	tmp.1472055847.pdf.a979g

	Abstract: Abstract: LIMELite is a new coordination model and middleware designed to
support rapid development of applications entailing logical
mobility of agents and physical mobility of hosts. Designed to
function in open environments, LIMELite performs automatic agent
discovery but filters the results to define for each agent an
individualized acquaintance list in accordance with run-time
policies specified at the application level. This asymmetry among
participants in the coordination process is dictated by the need
to accommodate settings involving large numbers of agents and
hosts that come and go freely.  It represents an important
departure from coordination research in general. The coordination
context is limited to the specific needs of the individual agent
and its coordination activities are restricted to tuple spaces
owned by peers present in the acquaintance list. Linda-like
primitives typically used in coordination middleware are tailored
in LIMELite to address the challenges of mobile environments. Among
other things, this entails the elimination of remote blocking and
data pushing operations since the affected agents may no longer be
within communication range.  It also entails the addition of
reactions that are triggered by the presence of information of
interest on agents listed in the acquaintance list and not by
events that could have occurred prior to discovery. Finally, to
ensure both performance and ease of deployment on small devices
the granularity of atomic operations and the reliance on transport
layer guarantees have been minimized. This paper introduces LIMELite,
explains its key features, illustrates its usage in application
development, and explores its effectiveness as a software
engineering tool.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: December 30, 2002
	Author: Authors: Roman, Gruia-Catalin; Fok, Chien-Liang
	Title: A Lightweight Coordination Model and Middleware for Mobile Computing **PLEASE SEE WUCSE-03-12**
	ReportNumber: 2002-47
	DepartmentName: Department of Computer Science & Engineering


