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Technological developments in external beam radiation therapy (RT) made in the past

decades have been largely focused on the tight integration of imaging systems and therapy

delivery systems in order to enable the precise delivery of therapeutic doses of radiation

to internal, complexly shaped targets. Along this line, the adoption of x-ray computed

tomography (CT) in the RT workflow and the combination of volumetric cone-beam CT with

linacs in the clinical setting brought the practice of image-guided RT (IGRT) to the forefront.

Practical limitations related to the poor soft tissue contrast of these x-ray imaging modalities

prompted the adoption of magnetic resonance imaging (MRI) as a secondary modality in

the IGRT workflow, allowing for the delineation of targets and critical structures at sites

throughout the body. More recently, the development and growing use of combination MR-

linac platforms has placed a focus on MR-only RT workflows in which MRI is the sole imaging

modality used for treatment guidance and planning. In addition to the improved soft tissue

contrast, the functional imaging capabilities and capacity for real-time image guidance of

MRI have opened the door to adaptive RT (ART) applications enabled by MRI guidance in

which treatments are adapted based on observed changes in anatomy or biology.

These nascent MRI-guided ART workflows face several limitations, however. First, treat-

ment planning in the adaptive setting relies on the representation of anatomy as shown

in simulation scans often acquired weeks prior to treatment delivery. When the anatomy
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observed at treatment differs drastically from that shown at simulation, a time-intensive

re-planning process must be undertaken. Second, the trade-off between spatial resolution

and acquisition time means achieving high-resolution MRI scans requires scanning periods

or breath-holds that may be infeasible, introducing detrimental motion artifacts. Finally,

MRI-guided workflows face a technical hurdle stemming from the requirement for electron

density information for dose calculations, which may be derived directly from CT images.

The inclusion of CT simulation scans in the MRI-guided RT setting brings concerns related

not only to extra imaging dose but also challenges with multi-modality image registration

that can give rise to geometric errors that persist throughout treatment. This dissertation

presents optimizations in the MRI-guided ART workflow with a focus on these challenges.

First, a treatment planning strategy for pancreatic cancer cases that is robust to inter-

fraction variations of primary critical structures is presented as a means of simplifying the

daily adaptive planning workflow and improving target coverage in adapted fractions. Fol-

lowing this, a deep learning (DL)-based approach to MRI super-resolution reconstruction

that enables the use of fast, low-resolution scans for guidance through fourfold upscaling is

presented. Finally, the challenge of achieving electron density information through DL-based

synthetic CT (sCT) reconstruction is explored in three contexts: 1) a parameter-efficient net-

work architecture is explored in the context of sCT reconstruction in the breast for use in

the low-data setting; 2) an approach to paired-data sCT reconstruction in the abdomen that

handles the challenge posed by the variable presence of intestinal gas in corresponding MRI

and CT scans is presented; and 3) two distinct approaches to improving the sCT outputs

of an unpaired-data framework—a cascade ensemble approach and a personalized training

strategy originally designed for use in the paired-data setting—are explored in the context

of the sCT reconstruction task in the male pelvis. Ultimately, the methods presented in this

dissertation represent improvements at three vital stages of the MRI-guided RT workflow

that could potentially enable an effective and practical approach to MR-only ART.
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Chapter 1

Introduction

1



1.1 Radiation Therapy

At the most fundamental level, the goal in the practice of radiation therapy (RT) is to

kill tumor cells through DNA damage caused by the absorption of radiation within the

body.1 The medical uses of ionizing radiation—whether for producing images of internal

tissues and structures or with a therapeutic intent for the treatment of cancer—have been

explored and developed since the early years following the discovery of x-rays at the end of

the 19th century.1,2 With the expanding therapeutic use of radiation also came observations

of radiation-related complications including most notably severe skin reactions.2 These early

experiences highlighted the fact that the direct and indirect action of radiation—energetic

electromagnetic waves like x-rays and gamma rays or charged or uncharged particles like

electrons, protons, and neutrons—does not discriminate between healthy tissues and the

diseased tissues that are the target of treatment. Developing an understanding of the bi-

ological factors that influence the radiosensitivity of different types of cells and structures

prompted the adoption of fractionated treatments in which the total dose is spread over

multiple treatment sessions to allow for repair in healthy tissues while still achieving the

ultimate goal of tumor control.2 This highlights the fundamental challenge in the practice

of RT, which is performing the balancing act of delivering a sufficient amount of radiation

that will destroy a tumor while simultaneously sparing the healthy tissues that surround the

target.2–4

1.2 Modernizing Developments

To this end, the technological developments of the past decades in the field of radiation

oncology have placed the focus on improving the ability of clinicians to localize and delineate

the target of treatment and shape a dose distribution that is highly conformal to that target.2

Central to this goal are the concepts of image-guided RT (IGRT), which relies on anatomical
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imaging techniques to visualize a patient’s internal anatomy prior to treatment delivery, and

intensity-modulated RT (IMRT), which enables the delivery of a dose distribution that is

highly conformal to the boundaries of a complexly shaped target.2–4

1.2.1 IGRT

The primary motivation for the earliest adoption of IGRT was to enable repeatable patient

setup and target localization through the use of treatment simulators that mimicked the

geometry of therapy delivery machines.4 In this setting, the emphasis remained primarily

on external markers and large internal margins were still used as a means of ensuring dose

delivery to a mobile, uncertain target in a large irradiated volume.4 The development of

x-ray computed tomography (CT) and its integration into the RT workflow allowed for the

widespread adoption of the concept of IGRT in the early 1970s, placing the emphasis now

on reducing internal margins and systematic uncertainties in treatment delivery.2,4

1.2.2 IMRT

Visualizing the geometric shape of the target and its position relative to the healthy tissues

surrounding it grants critical insight that aids in the task of maximizing the dose delivered to

the tumor while minimizing the dose received by these surrounding organs at risk (OARs).3,5

Along this line, the development and popularization of the IMRT delivery technique followed

closely behind this improvement in target visualization and is tightly intertwined with the

continued development of IGRT approaches.4,6 IMRT represents a departure from the prior

approaches to planning and delivery—termed forward planning approaches—in which simple

beam arrangements with large margins were selected to deliver dose to designated targets

and avoid critical structures while considering setup variations and motion with relatively

broad strokes.6 IMRT instead relies on an inverse planning approach in which modulated
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beam profiles are optimized to satisfy dose constraints input by the planner.6 The conceptual

basis of IMRT is that the composite dose distribution achieved through the use of multiple

beams with varying intensities across the beam profile at various angles or in a continuous

arc can be sculpted to conform to the contours of targets with highly complex shapes.7 Such

conformal dose distributions that maximize the sparing of healthy tissues surrounding the

target are characterized by high dose gradients, meaning that geometric misses arising from

inaccuracies in patient positioning are a significant clinical concern.4–6,8

1.2.3 Imaging and therapy systems integration

It is these geometric uncertainties in treatment delivery that highlighted the need for a

tight integration of image guidance and radiation delivery systems. Of the various solutions

to this problem proposed at the time, the integration of a kilovoltage x-ray source and

flat-panel detector on an existing linac used for radiation delivery pursued by Jaffray et

al.9 has grown to be widely adopted as the clinical standard for IGRT.10,11 In this setting,

volumetric cone-beam CT (CBCT) data obtained in a single rotation of the linac gantry

represents the patient’s anatomy at the time of treatment that may be used for position

verification.9 CBCT-based IGRT is not without its drawbacks, however. Compared to

magnetic resonance imaging (MRI), another popular volumetric imaging modality adopted

into the field of radiation oncology, both x-ray CT and CBCT exhibit poor soft tissue

contrast that can be limiting in certain anatomical sites.12,13 Additional considerations

including the imaging dose imparted in CT and CBCT examinations and the functional

imaging capabilities of MRI prompted investigations into the integration of an MRI unit

with radiation delivery systems at around the same time the CBCT-based IGRT solutions

were being explored.14–16
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1.3 MRI-guided RT Platforms

Since that time, several distinct MRI-guided RT solutions have been proposed and developed

to various stages ranging from early research and design to commercial availability (Table

1.1).17–21 The first generation ViewRay MRI-guided RT system, which consists of a 0.35 T

magnet paired with three 60Co heads, began treating patients in 2014.17,22 More recently,

linac-based systems including the second generation ViewRay MRIdian system with the

same 0.35 T magnet and the Elekta Unity system with a 1.5 T magnet have been success-

fully adopted in the clinical setting as an alternative to the conventional CBCT-based IGRT

systems.23,24 The superior soft tissue contrast of MRI compared to that of these CBCT

in-room imaging devices offers significant margin reductions and enables online adaptive ra-

diation therapy (ART) treatments using these MRI-guided RT platforms.25 By re-optimizing

treatment plans according to anatomical or positional changes in the target and surround-

ing structures observed using MRI on a daily basis, the accuracy of radiation dose delivery

may be significantly improved while also achieving a substantial reduction in the irradiated

volume of normal tissue or a beneficial escalation of the dose delivered to the target.26–29

1.4 Motivation of the Thesis

Despite these attractive features of MRI-guided ART, the relatively nascent approach faces

several limitations to implementing a practical and effective workflow. First is an issue re-

garding treatment planning itself in an adaptive setting. In the conventional IGRT case,

daily variations in target positioning are handled through the registration of the planning

image and the daily setup image before the original plan is delivered.22 Optimization pa-

rameters assigned at the pre-treatment simulation stage based on the relative positioning of

healthy tissues to the target may not reflect the position of these structures at the time of

treatment, leading to a time-intensive re-planning process in the adaptive setting that must
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Table 1.1. MRI-guided RT platforms and associated details.

Platform
(Mfr./Institution)

Field Magnet Geometry Linac Availability

MRIdian
(ViewRay)17,30

0.35 T Vertically gapped
split-bore whole-body
magnet, 70 cm bore

6 MV Commercially
available. Installed at
clinics in the USA,
Europe, the Middle
East, and Asia

Unity (Elekta)19,23 1.5 T Closed-bore
whole-body magnet
with central
homogenous region
absent of any coils for
transverse beam, 70
cm bore

7 MV Commercially
available. Installed at
clinics in the USA,
Canada, Europe,
Asia, and Australia

Australian MRI-Linac
(Ingham Institute for
Applied Medical
Research)21

1 T 82 cm diameter
open-bore whole-body
magnet, 50 cm gap;
Allows for inline and
perpendicular beam
orientations

6 MV Pre-clinical research &
development

Rotating Biplanar
Linac-MR (Cross
Cancer Institute)20

0.6 T Open-bore
whole-body
high-temperature
superconducting
magnet, 60 cm gap;
Allows for inline and
perpendicular beam
orientations

6 MV Pre-clinical research &
development

Facility for MRgRT
(Princess Margaret
Cancer Centre)18

1.5 T Closed-bore
whole-body mobile
simulator on rails, 70
cm bore; Interfaces
with conventional
linac in dedicated
suite

6 MV Single clinic
deployment
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occur while the patient remains in treatment position.31,32 Second, there is a persistent

problem of limited spatial resolution and long acquisition time. In the MRI-guided setting,

the spatial resolution fundamentally determines the setup uncertainty and the accuracy in

delineating the tumor and surrounding healthy tissues.33–36 Furthermore, motion artifacts

that arise due to long acquisition times render motion management problematic, particularly

when imaging organs within the abdomen.37,38 A final hurdle in the MRI-guided RT setting

is the requirement for electron density information for dose calculations during treatment

planning. This information may be derived directly from CT images, but pixel intensities in

MR images do not correspond to the electron densities of tissues.39 Considering this, many

existing implementations of the MRI-guided RT workflow rely on a secondary CT simulation

scan in addition to the primary MRI simulation scan.22,23,25,28 In this setting, the CT sim-

ulation scan must be registered to the corresponding MRI setup scans from each treatment

fraction, which is particularly challenging in abdominal cases when the anatomy represented

in each scan is incompatible due to changes in the size or position of organs of interest on an

interfraction basis.40,41 Considering these limitations, achieving an effective MRI-guided RT

workflow relies on optimizing the robustness of the treatment planning process, acquiring

fast and high-quality MR images, and producing electron density data without requiring an

additional CT simulation scan.

1.5 Specific Aims

With a focus on these limitations, the specific aims of the dissertation are as follows:

1. Develop a treatment planning approach for the pancreas that is robust to daily anatom-

ical variations observed in MRI-guided ART, leading to improved target coverage in

adapted fractions compared to the conventional approach.

2. Construct a framework for deep learning (DL)-based MRI super-resolution reconstruc-
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tion in the low-data setting to enable the use of fast, low-resolution acquisitions for

treatment guidance through fourfold upsampling.

3. Explore technical challenges in the DL-based synthetic CT (sCT) reconstruction task

to achieve accurate electron density information from MRI simulation and setup scans,

eliminating the requirement for CT simulation scans.

3.1. Demonstrate the training and performance benefits of a parameter-efficient net-

work architecture in the low-data setting using the sCT reconstruction task in the

breast and illustrate the feasibility of sCT-based dose calculations in the breast.

3.2. Develop a preprocessing approach that handles the issue of the variable presence

of intestinal gas to enable a supervised, paired-data DL approach to sCT recon-

struction in the abdomen and demonstrate the dosimetric impact of intestinal gas

in this setting.

3.3. Demonstrate improvements in image quality for unsupervised, unpaired-data sCT

results through the use of a cascade ensemble approach and a personalized training

strategy initially designed for the supervised, paired-data setting.

1.6 Organization of the Dissertation

The body of the dissertation is organized as follows:

Chapter 2 describes the OAR grouping method, an approach to treatment planning for

pancreatic cancer cases that treats the primarily involved OARs as a single structure during

optimization. This approach is compared against the conventional approach in which these

structures are handled separately with a focus on improvements in target coverage in adapted

fractions.

Chapter 3 presents a framework developed for MRI super-resolution reconstruction that
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is designed to operate in a setting in which there is little training data that may be utilized.

The components of the framework including a denoising autoencoder as a front-end pre-

processing unit, a down-sampling network that produces low-resolution images for training,

and the super-resolution generative model that produces the ultimate outputs are described.

Evaluations of image quality demonstrate the importance of each of these constituent net-

works in the overall framework.

Chapter 4 describes a parameter-efficient network architecture for sCT reconstruction in

the context of the breast that utilizes the compact atrous spatial pyramid pooling module

and demonstrates the improved performance of this architecture in terms of training time

and image quality compared to a widely used and comparably parameter-rich architecture.

Outputs of the proposed architecture are also used to demonstrate the feasibility of sCT-

based dose calculations in the breast through comparisons to CT-based clinical plans.

Chapter 5 introduces a preprocessing approach for the supervised sCT reconstruction task

in the abdomen specifically, where the variable presence of intestinal gas in corresponding

MRI and CT scans presents a hurdle to training paired-data architectures. The method for

creating a well-matched, clinically unavailable training data set through the propagation of

air from MR images to the corresponding CT images is described and the dosimetric impact

of these unhandled discrepancies in the presence of intestinal gas is illustrated.

Chapter 6 discusses the inherent gap between supervised, paired-data sCT results and

unsupervised, unpaired-data sCT results observed in the context of sCT reconstruction in

the male pelvis. Two distinct methods for improving the image quality and reconstruction

accuracy of the unpaired-data sCT results are presented: a cascade ensemble approach in

which two networks are applied in sequence to produce the ultimate output and a personal-

ized training approach that produces patient-specific models, an approach that was originally

designed for use in the paired-data setting.

Finally, Chapter 7 summarizes the research contributions made in this work and high-
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lights future directions of interest.
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2.1 Introduction

Magnetic resonance image guided radiation therapy (MR-IGRT) systems (MRIdian System;

ViewRay Inc., Oakwood Village, OH) have been successfully implemented at a number of

institutions in recent years and used to treat a growing group of patients that benefit from the

advantages offered by Magnetic Resonance Imaging (MRI) compared to other conventional

image guiding modalities (e.g. CBCT, x-ray radiography).1,2 Anatomical variations from

simulation to treatment as well as fraction to fraction represent a challenge in the delivery

of radiation therapy, as changes in the size and position of target and critical structures

can affect dose delivery in a clinically significant way.3–12 The improved visualization of soft

tissues gained from an MRI system compared to traditional cone-beam CT (CBCT) systems

allows for the daily management of these inter-fraction anatomical variations, especially in

areas of extensive soft tissue like the abdomen.1,13 It is this improved soft tissue visualization

that makes adaptive radiation therapy (ART) an attractive application of the MR-IGRT

system.1,14,15 The implementation of ART does come at the cost of an increased time

investment for plan re-optimization, however, which reflects the time consuming nature of

inverse treatment planning in radiation therapy.1,16

Inverse planning involves the assignment of weighting parameters to target and critical

structures that control the balance between delivering the prescribed dose to the target

and protecting healthy tissues.17–23 The selection of these parameters is recognized as a

challenging undertaking that involves a “guessing game” of repeated trial and error in a

“human iteration loop.”22–26 This process becomes more complex and time consuming as

the number of important structures and associated parameters involved in a plan grows,

highlighting the need for a simpler treatment planning workflow.25,27

In pancreatic cancer cases specifically, a group of four structures—the stomach, duode-

num, small bowel, and large bowel—represent organs at risk (OARs) of particular impor-
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tance.28,29 The present study proposes the use of a single OAR structure that combines

these four primary OARs, restricting the number of associated weighting parameters by a

factor of four and thereby simplifying the treatment planning process. The aim of the study

is to simplify the daily adaptive treatment planning workflow in the treatment of pancre-

atic cancer using the ViewRay System while maintaining tumor coverage that is robust to

inter-fraction anatomical variations. The conventional daily adaptive treatment planning

workflow is described along with the OAR grouping method, and comparative dosimetric

data for 16 pancreatic cancer patients treated with daily adaptive MR-IGRT is presented.

2.2 Materials and Methods

Sixteen pancreatic cancer patients previously treated with daily adaptive MR-IGRT were

used as test cases, representing 208 adapted fractions. The volumes of the planning tar-

get volume (PTV), the contours of which are held constant throughout treatment for each

patient, ranged from 57.7 cc to 356.3 cc with an average of 160.5 cc. Clinically delivered

treatment plans were used as a baseline for comparison at each fraction. The OAR grouping

method was compared to the baseline in three metrics: 1) Percentage of the PTV covered

by 95% of the prescribed dose (D95), 2) D95 coverage of the PTV OPT, and 3) Percentage

of the PTV covered by 100% of the prescribed dose (D100).

2.2.1 OAR grouping method

In the conventional treatment plan, each OAR is handled separately. Weighting parameters

are assigned to each of these critical structures as well as the target as inputs to the objective

function, which is the aggregate of the cost functions for individual structures involved in

planning. Figure 2.1 illustrates the simple formulation of the cost function f(D|θ) used in

this study for both OARs and the target, where D is the delivered voxel dose and θ is the set
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of weighting parameters assigned to a structure. For OARs (Figure 2.1a), the cost increases

for a given delivered dose D once a selected threshold T is exceeded. The shape of the curve

is controlled using an importance factor ω and power u. Similarly, the cost for a dose D

delivered to the target (Figure 2.1b) increases as the dose deviates from the prescribed dose

D0 plus a selected offset. The curves for doses above and below this threshold are shaped

using importance and power parameters as discussed for the OAR case.

Figure 2.1. Representative cost functions plotted for an OAR (a) and the target structure
(b), along with the associated weighting parameters.

The creation of the initial objective function involves tuning each one of these parameters

in order to achieve a plan of acceptable quality. In a pancreatic cancer treatment plan, each

of the four primary OARs is subject to the same volumetric dose constraint (Table 2.1), so

any variation in the assignment of weighting parameters is likely a reflection of the position

of an OAR relative to the PTV. The OAR grouping method creates a single OAR structure

by combining the portions of the stomach, duodenum, small bowel, and large bowel within
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3 cm of the PTV. Using OAR grouping, the shared dose constraint is maintained, but the

objective function is simplified by restricting the number of parameters used as inputs.

Table 2.1. Volumetric dose constraints observed in pancreatic cancer treatment plans. Each
of the four primary OARs is subject to the same volumetric constraint of less than 0.5 cc
receiving a maximum dose of 45 Gy.

Structure Volume Measure Max Dose (Gy)

Stomach < 0.5 cc 45
Duodenum < 0.5 cc 45
Small Bowel < 0.5 cc 45
Large Bowel < 0.5 cc 45
Spinal Cord = 0 cc 40
Kidneys < 50% 15

2.2.2 Simplification of objective function

The value of the proposed method is derived from a simplification of the dose optimization

function:

ftotal (D|θ) =
k∑

i=1

fci (D|θi) + ft (D|θt) , (2.1)

where the cost f is a function of the delivered dose D and weighting parameters θi =

{ωi, ui, Ti} for all critical structures and θt = {ωlt, ωut, lt, ut, D0, offset} for the target struc-

ture (Figure 2.1). In the conventional pancreas treatment plan, the stomach, duodenum,

small bowel, and large bowel each carry individual weighting parameters including upper

importance ω, upper power u, and threshold T . Additionally, the target carries lower pa-

rameters for importance and power, ωl and l, respectively, as well as a prescribed dose D0

and corresponding offset. In this conventional case, the set of all weighting parameters for

critical structures and the target θ = {ω1, u1, T1, ..., ωk, uk, Tk, ωlt, ωut, lt, ut, D0, offset} is

quite large. The OAR grouping method combines the four primary critical structures, and
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as a result Eq. 2.1 becomes

ftotal (D|θ) = fc (D|θc) + ft (D|θt) +
l∑

j=1

fr−OAR (D|θj) , (2.2)

where θc+t = {ωc, uc, Tc, ωlt, ωut, lt, ut, D0, offset} represents the reduced set of weighting

parameters for the four combined primary critical structures and the target and θj represents

the weighting parameters of any remaining OARs (r-OAR) that may be included in the plan,

such as the spinal cord or kidneys.

2.2.3 Simulation

The conventional workflow for simulation has been previously described in detail.1,15 Briefly,

patients undergo CT and MRI scans on the simulation day using the same setup device.

Then, the MR images are sent to either the ViewRay treatment planning system or third-

party software (e.g. Eclipse) for the structure delineation. The corresponding structure

sets, MR images, and CT scans are then combined and fused into the ViewRay treatment

planning system for plan creation. Treatment isocenter, number of beam entries, and beam

angles are defined by the planners such that the plan is physically deliverable with respect

to the couch position. Finally, the prescribed dose and dose constraints on critical organs

are used to guide the selection of weighting parameters input to the objective function for

the IMRT plan optimization.

In this study, the conventional simulation plan was copied for each patient to keep the

same beam entry and physical setup (treatment isocenter, couch position, etc.) in order

to maintain as fair a comparison as possible. Using the OAR grouping method, portions

of the stomach, duodenum, small bowel, and large bowel within 3 cm of the PTV were

combined into a single OAR structure. This combined structure was then used in place

of the individual critical structures in constructing the simulation objective function. The
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OAR grouping simulation plan was created and optimized such that the target coverage,

OAR doses, and beam-on time were comparable to the conventional plan.

2.2.4 Daily adaptive MR-IGRT

In daily adaptive MR-IGRT, the volumetric MRI of the patient is scanned before each treat-

ment fraction. After critical structures are re-contoured, the plan is re-optimized based on

the patient’s daily anatomy using the same objective function constructed in the pretreat-

ment simulation plan, all while the patient remains on the couch. In the present study,

the conventional plan at each treatment fraction was copied and modified using the OAR

grouping method. For the purposes of comparison, all plans—both conventional and OAR

grouping—were normalized to satisfy one of two scenarios, whichever came first: 1) the pri-

mary OAR receiving the greatest volumetric dose received a dose of 45 Gy to 0.5 cc, or 2)

the dose to the spinal cord or kidneys met the dose constraints as outlined in Table 2.1.

2.3 Results

The percentage of fractions improved in each metric out of 208 total fractions for all patients

is presented in Table 2.2. Generally, the coverage is improved across a majority of fractions

when OAR grouping is utilized over the conventional method. Greater than 70% of frac-

tions showed improvement in PTV OPT coverage, while approximately 80% of all fractions

demonstrated improved PTV coverage using OAR grouping.

Table 2.2. Percentage of fractions in which coverage was improved using OAR grouping.
Total = 208 fractions.

PTV OPT D95 PTV D95 PTV D100

Fractions Improved (%) 73 78 84

In Figure 2.2, PTV and PTV OPT D95 coverage relative to the prescription of 95%
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target volume coverage by D95 is plotted as a cumulative histogram. Figure 2.2 illustrates

that PTV coverage fails to meet the prescription in nearly 100% of the adapted fractions

due to the close proximity of surrounding OARs. The benefits of the proposed method can

be more clearly understood when examining coverage of the PTV OPT, which is comprised

of portions of the PTV not overlapped by OARs. In the conventional case, only 22% of all

fractions exhibited PTV OPT coverage that met the prescription. When the OAR grouping

method is utilized, that ratio increases to 42% of all fractions. It should be noted that

the high ratio of under-covered fractions demonstrates the challenge of treating pancreatic

cancer. In a majority of cases, the PTV is overlapped to some extent by surrounding OARs.

In these cases, target coverage is often compromised in order to satisfy the dose constraints

assigned to these critical structures.

Average coverage across a patient’s total adapted fractions is presented for each patient

in Table 2.3 for both the conventional and OAR grouping plans. Similarly, Table 2.4 contains

the average improvement of OAR grouping plans compared to conventional plans along with

the minimum and maximum observed improvements across all patients. D95 coverage of the

PTV and PTV OPT was improved by an average of approximately 4%, while PTV D100

coverage demonstrated an average improvement of greater than 6%. The relatively large

standard deviations in each case are due to data points well above the mean, which can be

observed for each metric in Figure 2.3.

2.4 Discussion

In the present study, the OAR grouping method was applied to pancreatic cancer cases

with the aim of simplifying the daily adaptive MR-IGRT treatment planning workflow while

maintaining target coverage that is robust to inter-fraction anatomical variations. In this

way, the value of the proposed method is twofold. First, the simplification of the initial
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Figure 2.2. Cumulative histogram that demonstrates the ratio of total fractions receiving
target coverage relative to the prescription of 95% target volume coverage by D95.
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Table 2.3. Average coverage in each metric using the conventional and OAR grouping method
over all adapted fractions for each patient.

Average Coverage (%)

Adapted Fractions Method PTV OPT PTV

D95 D95 D100

Patient 1

14
Conventional 94.00 77.36 66.47
Proposed 95.78 79.64 69.68

Patient 2

13
Conventional 99.91 82.56 77.97
Proposed 99.65 83.26 79.39

Patient 3

13
Conventional 94.88 84.36 78.89
Proposed 96.85 86.40 80.13

Patient 4

15
Conventional 94.59 81.38 72.19
Proposed 99.48 87.88 84.24

Patient 5

14
Conventional 76.44 48.50 40.42
Proposed 78.49 49.99 43.29

Patient 6

15
Conventional 67.46 49.16 39.64
Proposed 72.62 53.08 43.93

Patient 7

14
Conventional 78.52 76.54 63.09
Proposed 82.32 80.37 69.21

Patient 8

10
Conventional 61.22 52.98 42.57
Proposed 59.21 51.30 41.78

Patient 9

13
Conventional 81.40 67.92 51.71
Proposed 91.22 76.20 63.37

Patient 10

14
Conventional 86.66 70.10 53.97
Proposed 95.60 79.10 67.78

Patient 11

14
Conventional 93.75 70.75 60.51
Proposed 95.66 72.79 65.45

Patient 12

11
Conventional 90.12 80.60 61.67
Proposed 97.30 87.89 80.22

Patient 13

6
Conventional 84.32 61.43 45.89
Proposed 97.99 72.68 62.57

Patient 14

13
Conventional 75.07 51.83 44.00
Proposed 72.37 50.12 41.84

Patient 15

14
Conventional 75.01 59.78 49.55
Proposed 74.62 59.49 50.00

Patient 16

15
Conventional 79.60 62.28 52.99
Proposed 82.27 64.54 54.92
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Table 2.4. Average, minimum, and maximum coverage differences between conventional and
OAR grouping plans observed over all patients (n = 16).

Average Minimum Maximum

PTV OPT D95 (%) 3.98 ± 4.97 -2.78 15.87
PTV D95 (%) 3.87 ± 4.29 -1.78 13.07

D100 (%) 6.47 ± 7.16 -2.29 20.19

Figure 2.3. Average change from conventional to OAR grouping plans for each patient
plotted for (a) PTV D95 coverage, (b) PTV D100 coverage, and (c) PTV OPT D95 coverage.
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treatment planning process is easily understood. Reducing the number of OARs involved

in planning restricts the set of weighting parameters that must be tuned iteratively to cre-

ate an acceptable plan. Second and more important, the observed improvements in target

coverage over a majority of fractions demonstrate the benefits of the method. The creation

of the combined OAR structure makes the objective function created at simulation some-

what insensitive to significant changes in a patient’s anatomy from fraction to fraction. In

the conventional plan, the weighting parameters selected at simulation may not accurately

reflect the patient’s anatomy at a later treatment fraction. As a result, surrounding OARs

may be overdosed and target coverage will suffer. In the proposed plan, the combined OAR

structure lessens the impact of large differences in anatomy between simulation and treat-

ment. Although the individual OARs may change position relative to the PTV, the position

of the composite structure relative to the PTV changes less dramatically. As a result, the

weighting parameters assigned at simulation more accurately reflect the present anatomy

and target coverage is improved compared to the conventional case.

A number of general trends were observed for individual patients as well as the cohort

as a whole. Regarding the weighting selections made in conventional plans, two general

situations are relevant. For plans in which an OAR was favored or disregarded by the con-

ventional objective function through higher or lower weighting respectively, OAR grouping

plans generally performed better in terms of coverage. Included as an illustrative example,

Figure 2.4 includes one slice from simulation (Figure 2.4a) and the corresponding slice at

treatment fraction 9 in the conventional and proposed plans for one patient (Figure 2.4b-c).

At simulation, the primary OARs in the conventional case were assigned weighting parame-

ters based largely upon proximity to the PTV. Of the four primary OARs, the large bowel

received the second lowest weighting due to the relatively small fraction of the structure

located near the PTV, which is observable in Figure 2.4a. The situation at fraction 9 is

considerably different, as the large bowel now represents a significant volume in close prox-
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imity to the PTV. In the conventional case, the weighting assigned at simulation does not

reflect the actual anatomy, and the large bowel is overdosed upon plan re-optimization as a

result. Normalizing the delivered dose such that the large bowel receives the prescribed limit

of 45 Gy to 0.5 cc, D100 coverage of the PTV is only 14.29% in the conventional case (Figure

2.4b). In contrast, by applying the OAR grouping method, the optimization function is

made somewhat insensitive to these inter-fractional changes in anatomy and the resulting

coverage demonstrates considerable improvement. As seen in Figure 2.4c, the isodose lines

in the OAR grouping plan are moderately more conformal to the PTV compared to those in

the conventional plan, resulting in PTV D100 coverage of 74.93% without violating any OAR

dose constraints. The dose-volume histogram (DVH) presented in Figure 2.5 demonstrates

improved PTV coverage and OAR doses that are generally comparable between the OAR

grouping and conventional plans, save for the small bowel. The dose to the small bowel in

this case, despite being higher in the OAR grouping plan, is still well below the volumetric

dose limit assigned to the small bowel.

Now, the second scenario of note: for plans in which the OAR grouping method was

approximated by the conventional objective function through the assignment of equal or

similar weighting to each of the primary OARs, coverage for the conventional and proposed

plans was generally comparable. It should be noted that the present study was limited in

scope to cases in which in the volumetric dose constraints assigned to each of the four primary

OARs were the same. Use of the OAR grouping method in cases where this condition is not

maintained should be investigated further. However, it is anticipated that the OAR grouping

method is valid as long as there does not exist any drastic difference between these critical

structures.
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Figure 2.4. OARs and target structures in one slice at simulation (a) and treatment fraction
9 (b-c) for one patient. The large bowel demonstrates a large change in volume and proximity
to the PTV from simulation to treatment. Isodose lines are displayed for the conventional
plan (b) and the OAR grouping plan (c). The OAR grouping plan demonstrates improved
D100 and D95 coverage over the PTV, as well as isodose lines that are moderately more
conformal to the PTV compared to those in the conventional plan.
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Figure 2.5. DVH for one patient comparing the conventional (solid lines) and OAR grouping
(dashed lines) plans. Improved coverage of the PTV can be observed and OAR doses are
generally comparable.

2.5 Conclusions

In this study, the OAR grouping method has been proposed as a means to simplify the daily

adaptive treatment planning workflow and improve target coverage in adapted fractions.

Characterizing the performance of OAR grouping plans reveals two scenarios of note. When

the conventional simulation plan favored or disregarded an OAR through the assignment of

distinct weighting parameters, OAR grouping plans generally demonstrated improved cover-

age compared to the conventional plan due to the decreased sensitivity of the OAR grouping

objective function to inter-fraction anatomical variations. When the OAR grouping method

was approximated by equal weighting in the conventional plan, coverage was generally com-

parable. In any case, the construction of the initial objective function at simulation is

simplified by combining the four primary OARs in a pancreatic cancer case. This simplifica-

tion comes along with an improvement in target coverage over a majority of fractions when

comparing OAR grouping plans to conventional, clinically delivered plans.
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Chapter 3

MRI super resolution reconstruction

for MRI-guided adaptive radiotherapy

using cascaded deep learning: In the

presence of limited training data and

unknown translation model
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3.1 Introduction

Magnetic resonance imaging-guided radiation therapy (MR-IGRT) exploits MRI’s superior

soft tissue contrast and real-time tracking and delineation of the tumor and organs at risk

(OARs) during the course of treatment.1,2 Such unique features enabled online adaptive

radiation therapy (ART).3,4 In online ART, the treatment plan is re-optimized according

to anatomical or positional changes in OARs on a daily basis, significantly improving the

accuracy of radiation dose delivery and a substantial reduction in the irradiated volume of

normal tissue. In this way, online ART facilitates local dose escalation and the reduction of

normal tissue toxicities through real-time, risk-adaptive, and high precision radiotherapy.5–8

Despite the superior features of MRI compared to other image guiding modalities (e.g.

CT or cone beam CT), it faces the persistent problem of limited spatial resolution.9–12 High

spatial resolution in MRI comes at the expense of longer scanning time, reduced field of view

(FOV), and reduced signal to noise ratio (SNR).13,14 In MR-IGRT, the resolution of MRI

fundamentally determines the setup uncertainty, target delineation, and tracking accuracy.

Therefore, exploring methods to minimize the scanning time while maximizing the spatial

resolution of MRI is an important issue. Reducing the scan time while maintaining sufficient

spatial resolution is crucial during breath-hold MRI scans for patients with moving targets

(e.g. lung or liver). The patient must maintain breath-hold at the peak inhale/exhale phase

for the duration of the MRI scanning period (17-24 s), which is often not feasible. Another

example is 4D-MRI, where there is a growing interest to replace real-time cine 2D planar

imaging for online tumor tracking.15,16 4D-MRI uses fast 3D cine MRI sequences with parallel

imaging and echo sharing techniques to minimize the scanning and reconstruction time, and

increase temporal resolution. However, limitations in current hardware and software make

it challenging to acquire high-resolution scans, and such characteristics of 4D-MRI are the

critical factors limiting its implementation during MR-IGRT.
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To resolve such a persistent problem in MRI, the image post-processing technique known

as super-resolution (SR) may be utilized to significantly improve the spatial resolution of MRI

without changing hardware or scanning components.2,17–24 The aim of SR reconstruction is to

reconstruct high-resolution (HR) images from a single or a set of low-resolution (LR) images

to improve the visibility of, or recover, image details. The first application of SR in MRI was

proposed by Peled et al., where multiples of spatially shifted, single-shot, diffusion-weighted

brain images were fused to generate a new image with improved resolution and finer detail.20

Since then, various advanced SR techniques established in MRI have offered the possibility

to efficiently improve the image resolution and increase the diagnostic potential.2,18,21–25

There are generally three methods to achieve image SR in MRI: 1) interpolation-,9,26,27 2)

reconstruction-,28–30 and 3) machine learning-based.31–35 Interpolation-based techniques as-

sume that points/regions in an LR image can be expanded into corresponding points/regions

in the SR reconstruction using polynomial or interpolation functions with some smoothness

priors,9,26,27 which is not valid in inhomogeneous regions.25 Moreover, the actual LR sampled

points represent a non-ideal sampling where the sampled points represent the intermediate

value of the underlying HR points that exist within the LR points. Hence, SR through

interpolation results in a blurred version of the corresponding HR reference images.

Reconstruction approaches, which are based upon image down sampling and a degrada-

tion model, solve an ill-posed inverse recovery problem from LR to HR images.28–30 The

reconstruction-based SR methods solve an optimization problem incorporating two terms:

the fidelity term, which penalizes the difference between a degraded SR image and an ob-

served LR image, and the regularization term, which promotes sparsity and inherent charac-

teristics of recovering the SR signal (e.g. edge gradient). However, the performance of these

techniques becomes suboptimal especially in the high frequency region when the input data

becomes too sparse or the model becomes even slightly inaccurate.25 Such drawbacks limit

the effectiveness of these methods to small magnification factors that are less than 4.
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Machine learning techniques, particularly deep learning (DL)-based SR approaches, have

recently attracted considerable attention for achieving state-of-the-art performance in SR for

natural images.33,34 In contrast to the former approaches, the DL-based method does not

require the construction of a transformation model, but instead learns the direct mapping

based on information from previously scanned data sets. Among these approaches, the

convolutional neural network (CNN) is popular on account of its simple network structure

and high accuracy.35–38

However, conventional DL-based methods have three major limitations. First, since

MRIs have relatively lower image quality and more complex tissue structures than natural

images, it is more challenging to restore high frequency information. The optimization of the

conventional method employs the minimization of a pixel-wise difference (e.g. mean squared

error between SR images and ground truth HR images), that is often limited when attempting

to capture high texture detail. The second major limitation is the availability of sufficient

training data, which in this case are perfectly matched pairs of LR and HR images. Although

HR MRIs from patients previously scanned in the clinic are abundant, the corresponding

LR images are not available. Current approaches in this case include preparing the training

data set from abundant HR images utilizing a simple translation model such as bicubic

interpolation or k-space down sampling.35–38 However, these approaches do not reflect real

LR scans that are directly generated from MRI scanners, as properties of the signal (e.g.

sampling bandwidth or noise) are often not feasible to model with a simple down-sampling

method. The third limitation is the performance of SR reconstruction in the presence of

noise. In general, the SR network cannot distinguish noise from useful features and hence

the noise is amplified in the generated HR images, degrading the resulting image quality.

Intuitively, this issue can be resolved by denoising the LR images prior to feeding them into

the network. However, conventional image denoising techniques (e.g. non-local means filter

(NLM)) can be time consuming, limiting their use in a real-time imaging framework.
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In this study, we present a robust SR MRI reconstruction framework using the novel

cascaded DL framework that resolves such limitations in an efficient and practical manner.

Our DL framework was comprised of three stages: 1) we used a CNN-based denoising au-

toencoder (DAE) at the front end of the SR network as the image processing unit. The DAE

was trained with pairs of noisy and denoised LR MRIs from the author-selected image de-

noising model. 2) The denoised LR MRIs were paired with HR MRIs to train a CNN-based

down-sampling network (DSN) to derive an unknown translation model between the LR and

HR images. The DSN was designed to have a small and simple network structure that can

be sufficiently trained even with a limited amount of paired LR/HR images acquired from

physical phantoms and/or volunteers. The trained DSN was then applied to abundant HR

MRI scans to generate perfectly matched pairs of LR and HR images. 3) Finally, we de-

veloped a deep generative adversarial network (GAN)-based MRI SR network that provides

detail preserving HR MRI for the final output.

3.2 Materials and Methods

3.2.1 Model

In this study, the translation model between LR and HR MRIs was formulated as the fol-

lowing equation:

L̂Rk = Ts (HRk) + ηk, (3.1)

where HRk are the desired HR MRIs to be recovered from the given set of observed LR

MRIs
{
L̂Rk

}
k=1,...,K

, Ts describes the down-sampling operator that decreases the resolution

by a factor of s, and ηk is the additive noise. For under-sampled k-space measurements,

the system of Eq. 3.1 is underdetermined and hence the inversion process is ill-defined.
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Therefore, the goal of the SR problem is to recover a HR image given its down-sampled

version such that:

min
HRk

E
[
HRk, L̂Rk

]
, (3.2)

where E[·] is the energy function that represents the optimization objectives.

Reconstruction-based methods model this energy function as a convex optimization prob-

lem to find a plausible HR solution while balancing regularization and/or a priori terms si-

multaneously, as is the case in total variation reconstruction. On the other hand, DL-based

methods construct the energy function on the basis of mean absolute error (MAE), which is

the measure of data fidelity between generated SR images from the trained neural network

and the corresponding HR images. The DL-based method uses a parametric CNN model

to learn the non-linear mapping function that minimizes the Manhattan norm between SR

images reconstructed from LR images L̂Rk and the corresponding ground truth HR images

HRk. However, as mentioned earlier, there are two unknown variables: the down-sampling

operator Ts and the noise ηk shown in Eq. 3.1, which are both ill-posed inverse problems.

To design a robust SR model with the physical LR MRI scan as an input, it is crucial to

estimate and subtract these unknown terms considering they directly relate to the quality

of the training data.

To overcome this problem, we utilize a novel splitting technique we have named as cas-

caded DL. This algorithm splits the SR reconstruction process into three stages: 1) con-

struction of an image denoising autoencoder (DAE) to subtract noise ηk from a noisy LR

image input, 2) construction of a down-sampling network (DSN) to model the unknown

down-sampling operator Ts from a subset of paired denoised LR and HR MRI data, and 3)

construction of a SR generative (SRG) model using numerous pairs of HR and LR MRIs

generated from the estimated Ts. Mathematically, the proposed cascaded DL model can be
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formulated as:

Step 1. min
θ

{∑
q

∥∥∥DAE
(
L̂Rq; θ

)
− µq

∥∥∥2
2

}
, (3.3)

where DAE
(
L̂Rq

)
is the denoising autoencoder network with input LR MRI data, µq

are denoised LR images from L̂Rq using the author-selected NLM filter,39 DAE
(
L̂Rq; θ

)
is

a CNN parameterized by θ, q = 1, ..., Q is the subset of training data from total number of

training sets k = 1, ..., K that had physical scans of LR MRI data acquired from physical

phantoms and/or volunteers,

Step 2. min
ρ

{∑
p

∥∥∥DSN (HRp; ρ)−DAE
(
L̂Rp

)∥∥∥
1

}
, (3.4)

where DSN (HRp) is the down-sampling network with input HR MRI data that are

equivalent to the first term of Eq. 3.1, p = 1, ..., P is the subset of training data from the

total number of training sets k = 1, ..., K that had close pairs of LR and HR images acquired

from physical phantoms and/or volunteers, and DSN (HRp; ρ) is a CNN parameterized by

ρ, and finally,

Step 3. min
ϑ

E [SRG (DSN (HRk) ;ϑ) , HRk] , (3.5)

where SRG (DSN (HRk)) is the SR generative model with inputDSN (HRk), E [·] is the

GAN energy loss function that will be illustrated in Section 3.2.5, and SRG (DSN (HRk) ;ϑ)

is a GAN parameterized by ϑ.
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3.2.2 Overview of framework

Figure 3.1 illustrates the proposed MRI SR reconstruction framework. In general, the deep

learning process is divided into two parts: training and inferencing. As shown in Eq. 3.3,

the first step in training is to develop a CNN-based DAE as the front end preprocessing unit.

The motivation for using the DL-based DAE is that conventional image denoising techniques

can be time consuming and computationally expensive to implement, and thus it may not

be feasible to fit them into a real-time imaging framework. Since the inferencing step of

the trained network requires only a simple matrix multiplication process, the computation

time required for applying a sophisticated denoising algorithm can be reduced significantly.

In this study, the DAE was trained with pairs of noisy and denoised LR MRIs that were

preprocessed using the non-local means filter (NLM), which is a popular and efficient image

processing technique for denoising MRIs.39

After the DAE was trained from physically scanned LR MRI data in Step 1, we selected

closely paired LR and HR MRIs that were acquired in a phantom and/or volunteers, and

trained the down-sampler. As mentioned earlier, manual down-sampling approaches that

derive LR images from clinical HR MRIs are not capable of generating the realistic LR

images that are directly reconstructed from the MRI system. Therefore, we used a CNN-

based DSN characterized by a relatively small size and simple structure to learn the actual

down-sampling process using a limited amount of paired LR and HR images acquired from a

phantom or volunteers. In this manner, the large set of training data required to sufficiently

train the SRG model can be prepared by applying the trained DSN to abundant clinical HR

MRI scans.

The third step in training was to train the SRG model. During the SRG model training,

the network aims to learn the image prior for inversely mapping the LR image to the reference

HR image. Specifically, an HR image was constructed iteratively to best explain the given

data set of LR images by minimizing the differences between the given HR images and the
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generated HR version of LR images fed into the network through the front end DAE. The

SRG model was based on the high level GAN architecture proposed by Goodfellow et al.40

and trained using image pairs generated by the DSN trained in Step 2. Finally, once the

framework was trained according to the cascaded training model that we have defined, the

inference system inferred SR MRIs based on the noisy LR input data.

3.2.3 Denoising autoencoder (DAE)

The network structure of the DAE used in this study is shown in Figure 3.2. The basic

framework of the DAE consisted of an encoder that maps the noisy input image to some

hidden representation and a decoder that maps this hidden representation back to the re-

constructed version of the denoised input image. The parameters of the DAE were learned

to minimize the construction error measured by the loss function defined in Eq. 3.3.

In this study, we implemented a CNN-based DAE using a cascade of convolutional filters

paired with nonlinear activation functions. The network consisted of six convolutional layers

(encoders) with 4 × 4 filters and six deconvolutional layers (decoders) with 4 × 4 filters.

Each layer consisted of a single convolutional/deconvolutional filter with stride 2. The input

images (64× 64 pixels) were convolved with successive filters until feature reduction is per-

formed to extract 1× 512 features at the deepest layer. These features were processed with

subsequent deconvolutional filters to recover the original dimensions of the input images. At

the end of each convolutional and deconvolutional layer, we used leaky and standard rectified

linear unit (ReLU) nonlinear activation functions of the form Leaky ReLU(x) = max(0.2x, x)

and ReLU(x) = max(0, x) respectively to ensure that the output of a layer is a nonlinear

representation of the input.41

The DAE was trained using 480 LR breath-hold images. We first utilized the NLM filter

to obtain the noise-free LR images noted by µ in Eq. 3.3. Instead of directly training the

CNN based on the noisy observations and the corresponding denoised LR images that is less
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Figure 3.1. Proposed framework for SR MRI reconstruction using cascaded deep learning.

41



Figure 3.2. Denoising autoencoder (DAE) network architecture.
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robust due to the insufficient amount of data, we applied the traditional DAE42,43 training

methodology by generating training samples through adding noise to the preprocessed images

µ. The noise in an MRI is governed by a Rician distribution, and is nearly Gaussian if the

SNR > 2.44 Hence, we utilized Rician noise in the experiment. The noncentrality and scale

parameters describing the Rician distribution were obtained by analyzing the noise removed

by means of the NLM filter, which could be observed by subtracting NLM filtered images from

the original, noisy images. Parameter optimization during training was performed using the

stochastic gradient descent method (Adam Optimizer45) embedded in TensorFlow46 with

a leaning rate starting at 0.0002. The training was performed over 200 epochs using a

GeForce GTX 1080 Ti GPU (NVIDIA, Santa Clara, CA, USA). Five-fold cross-validation

was performed to test and demonstrate the robustness of the DAE.

3.2.4 Down-sampling network (DSN)

The main goal of the DSN was to inference LR MRIs from corresponding, abundant scans

of HR clinical MRIs in order to maximize the number of training sets available to train the

complex structured SRG network. Since the training data sets for the DSN require a perfect

pairing of LR and HR MRIs that are limited in number, it is crucial to design the network

to be as simple as possible while ensuring the resulting images reflect true LR scans acquired

directly from the MRI scanners.

The overview of the structure of the proposed DSN is presented in Figure 3.3. The DSN

was comprised of a simple, single encoder that consists of two down-sampling layers, two

residual blocks, and an output layer. The down-sampling layer consisted of a single 3 × 3

convolutional filter of stride 2 followed by a ReLU activation. In each down-sampling layer,

the dimensions of the output features were reduced by half of the original size. The residual

block consisted of two 3×3 convolutional filters separated by a ReLU activation and followed

by an element-wise sum operator that integrates the extracted features from the preceding
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down-sampling layer.

Figure 3.3. Down-sampling network (DSN) network architecture.

Training data for the DSN was collected from serial LR and HR scans of a phantom and

volunteers acquired in a single breath-hold, resulting ultimately in 480 data pairs. Since the

performance of the SRG model is highly dependent on the robustness of the DSN, we man-

ually selected the data pairs to be used by rejecting or repetitively scanning the volunteers

until the HR and LR scans were perfectly paired. Specifically, the patients were instructed to

breath hold during the HR and LR MRI pair scanning while breathing motion was recorded

with the Physiologic Monitoring Unit (PMU). The acquired respiratory signal from the PMU

was then extracted from the console unit and the global minimum and maximum amplitudes

within the normalized range of the PMU from 0 to 4095 were calculated. The paired scans

were rejected and rescanned when the relative difference between the maximum and mini-

mum (RDMM) signal values was larger than 5% of the mean value. The RDMM is defined

here as

RDMM =
PMUmax − PMUmin

PMUmean

, (3.6)

where PMUmax, PMUmin, and PMUmean are the maximum, minimum, and mean PMU

values recorded during the breath-hold, respectively. The 5% threshold was chosen empiri-

cally based on the series of experiments in order to accommodate variation of the PMU signal
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due to electrical noise and residual motion occurring despite the breath-hold. To ensure the

accepted scans were anatomically compatible, HR and LR images were fused together by

enlarging the LR images with bicubic interpolation and each slice was visually inspected by

checking the overlay of the anatomical features including the diaphragm and liver.

The HR training data sets were cropped to a size of 192× 192 pixels (1.5× 1.5 mm per

pixel) with the corresponding output LR size of 48× 48 pixels (6.0 × 6.0 mm). Uncropped

HR MRIs of 256 × 256 pixels (1.5 × 1.5 mm) and the corresponding LR images of 64 × 64

pixels (6.0 × 6.0 mm) were used in the testing and inferencing steps. The optimization of

parameters during training was performed using the gradient descent method as described

in Section 3.2.3 with the learning rate starting at 0.0002. The MAE L1 loss function defined

in Eq. 3.4 was selected as the energy function to minimize at each epoch. The model was

trained over 200 epochs using the GPU and five-fold cross-validation was performed to test

and demonstrate the robustness of the DSN.

3.2.5 Super-resolution generative (SRG) model

Once the DSN was trained from the small amount of paired LR and HR images acquired

from the phantom/volunteers, this trained network was utilized to generate LR MRIs from

abundant clinical HR MRI data sets to form the full training set for building the SRG model.

As mentioned earlier, the fundamental architecture of the SRG model used in this study is

the GAN. Specifically, we modified the Generative Adversarial Network for Image Super

Resolution (SRGAN) proposed by Ledig et al., who first introduced the GAN framework to

the CNN-based image SR problem for photo-realistic, SR color images.47

The GAN is a framework for generative model estimation that consists of two models:

a generative model G parametrized by θG that generates a sample in the generator’s distri-

bution pg from a sample in a latent space pz, and a discriminative model D parameterized

by θD that determines whether a given sample is drawn from the data distribution pdata or
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generated by G with a certain probability (pg). The two models are trained simultaneously

in an adversarial manner by solving the following minimax problem:

min
θG

max
θD

{Ex∼pdata logDθD(x)

+ Ez∼pz log (1−DθD (GθG (z)))} (3.7)

such that if an equilibrium is achieved during training, we have a global optimum for

pg = pdata, meaning that the discriminatorD is not able to distinguish the differences between

the generated data and the true samples.

In the context of SRGAN, the goal was to train a CNN-based generator G that will

generate HR images based on corresponding LR images. Meanwhile, we utilized another

CNN-based discriminator model D that serves as a binary classifier that helps to train the

generator G such that the HR images generated by G resemble the images drawn from the

true distribution of HR images.

The cost function of the generator G came from two sources. Mathematically, the cost

function of G can be formulated as

lloss = lmae + λladversarial

= ∥G (Ilr)− Ihr∥1 − λ log (D (G (Ilr))) , (3.8)

where l refers to the loss function and Ilr ∼ plr and Ihr ∼ phr are LR and HR images from

the training data set. In Eq. 3.8, the first loss term comes from the reconstruction error, or

content loss, between the generated image and the ground truth image. The mean absolute

error (MAE) was selected as the metric for content loss as it shows better performance
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compared to the conventional L2 norm. The second loss term, denoting adversarial loss

derived from the discriminatorD, drives the generated image to pursue more high frequencies

in order to more closely resemble the real images. Note that to provide a sufficient gradient

we used − log (D (G (Ilr))) instead of log (1−D (G (Ilr))).
40 Based on Eqs. 3.7 and 3.8, the

optimization problem for the SRG network can be formulated as:

θG = argmin
θG

EIlr,Ihr∼plr,hr {∥GθG (Ilr)− Ihr∥1 − λ log (DθD (GθG (Ilr)))} (3.9)

θD = argmin
θD

EIlr,Ihr∼plr,hr {− log (DθD (Ihr))− log (1−DθD (GθG (Ilr)))} , (3.10)

where the problem is solved by alternatingly updating the discriminator D and the gen-

erator G in each sub-problem.

The network structure of our GAN-based SRG model is illustrated in Figure 3.4. The

generator consisted of a total of 12 layers including eight residual blocks, two up-sampling

layers, and two output layers. Each of the residual blocks was comprised of two 3 × 3

convolutional filters separated by a ReLU activation with an element-wise sum operator

attached at the end of the layer. The output block consisted of a 3× 3 convolutional filter,

ReLU activation, and a sub-pixel operator. The sub-pixel operator aggregated the feature

maps from LR space and built the SR image in a single step.48 The discriminator consisted of

six 3× 3 convolution layers and two 1D dense layers separated by a Leaky ReLU activation.

In order to convert 2D residual features into 1D, the flattening operator was attached at the

exit of the convolution layer.

In this study, we tested the validity of the proposed SR MRI in two different applications:

1) 3D LR breath-hold MRI that enables the reconstruction of axial SR MRIs from the set

of axial LR MRIs acquired over a short breath-hold interval (<3 s) and 2) SR 4D-MRI that

enhances the resolution of a LR 4D-MRI volume series acquired at rate of 2 volumes/s.
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Figure 3.4. Network structures of the components of the super-resolution generative (SRG)
model based on the generative adversarial network (GAN) framework.

In each of these applications, the front end DAE and DSN were trained using a common

collection of 480 paired data sets from physical scans of a phantom/volunteers. The SRG

network for each application was then trained with a total of 4,955 or 1,855 data pairs,

respectively, a total that consists of the combination of 1) clinically available HR MRIs and

the corresponding LR MRIs generated by the trained DSN, totaling to 4,475 or 1,375 images,

respectively, and 2) the 480 paired data sets mentioned previously. Like in training, the LR

images were cropped to a size of 48×48 pixels (6.0×6.0 mm per pixel) with a corresponding

output HR size of 192× 192 pixels (1.5× 1.5 mm). The original input sizes of 64× 64 pixels

(6.0× 6.0 mm) for LR images and 256× 256 pixels (1.5× 1.5 mm) for HR images were used

for testing and inferencing.

3.2.6 Data acquisition

All data used in this study were acquired from the first commercially available MR-IGRT

system (ViewRay Inc., Oakwood Village, Ohio, USA) that integrates a split-bore 0.35 T
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whole body MRI system with a three head Co-60 radiation therapy delivery system. MRIs

of the patients and volunteers were acquired using torso phased array receiver coils. Both

breath-hold 3D and free-breathing 3D cine (or 4D) volumetric images in three orientations

(transverse, sagittal, and coronal) were acquired using the 3D true fast imaging with steady-

state precession (TrueFISP) sequence. The generalized auto calibrating partially parallel

acquisition (GRAPPA) technique was used to accelerate image acquisition.

3.3 Results

3.3.1 Validation of denoising autoencoder (DAE)

Figure 3.5 displays the reference denoised LR MRI obtained by applying the NLM filter,

the denoised output of the DAE compared with additional methods (Gaussian and median

filtering), and the noisy input. It is noted here that all test data sets that we present in

Section 3.3 are independent data sets that were excluded from the training data sets. As

can be seen in Figure 3.5, the test output shows that the DAE can reproduce image quality

that is comparable to the reference denoised image without major structural loss, whereas

the results of Gaussian or median filtering are characterized especially by errors at tissue

boundaries.

To evaluate the performance of the DAE more comprehensively, we used the peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM),49 and normalized root mean

square error (RMSE) indexes as quantitative measures. Values of the PSNR, SSIM, and

normalized RMSE calculated for the DAE output over five validation folds and those of

additional denoising filters are included in Table 3.1. The metrics were calculated using the

NLM-denoised images as the reference for each of the 480 images pairs. Values of 32.4 dB

(PSNR), 0.935 (SSIM), and 0.025 (RMSE) were observed for Gaussian filtering. For the

DAE, the results consistently showed more than 96% structural agreement, along with mean
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Figure 3.5. Denoised LR images derived from various denoising methods. Reference LR
image denoised using the NLM filter (a) and noise-added LR image (e), DAE-filtered LR
image (b) and difference map (f), Gaussian-filtered image (c) and difference map (g), median-
filtered image (d) and difference map (h).

values of 36.5 dB for PSNR and 0.015 for RMSE.

3.3.2 Validation of down-sampling network (DSN)

Figure 3.6 shows the down-sampled result of the proposed DSN compared with the manual

down-sampling methods (k-space down-sampling, bicubic interpolation, and nearest neigh-

borhood sampling) used to generate LR and HR image pairs for training the SRG model.

LR images from MRI pairs that were physically scanned during a single breath-hold were

used as the ground truth reference. It is clear to see from the figure that the difference

between the proposed DSN-generated LR and the ground truth reference LR images is much

less than the difference observed for the manual down-sampling methods.

Box plots displayed in Figure 3.7 show the statistics over five-fold cross-validation for the

calculated values of PSNR, SSIM, and normalized RMSE for the proposed DSN-generated
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Table 3.1. Statistics for values of PSNR, SSIM, and RMSE computed over five validation
folds using the proposed DAE, Gaussian filtering, and median filtering. Images denoised
with the NLM filter were used as the reference.

DAE Gaussian Median

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

Mean 36.5 0.963 0.015 32.4 0.935 0.025 25.8 0.849 0.054
Std 1.2 0.01 0.002 2.5 0.016 0.006 2.6 0.018 0.014
Min 34.3 0.918 0.009 28.6 0.848 0.012 22 0.8 0.019
Median 36.3 0.965 0.015 31.7 0.938 0.026 24.9 0.848 0.057
Max 41.1 0.979 0.019 38.6 0.957 0.037 34.3 0.885 0.079

Figure 3.6. Down-sampled LR images derived from various down-sampling methods. Ground
truth LR (a) and HR (f) images acquired from physical scans, DSN-generated synthetic LR
(sLR) image (b) and difference map (g), k-space down-sampled image (c) and difference
map (h), bicubic down-sampled image (d) and difference map (i), and nearest neighbor
down-sampled image (e) and difference map (j).
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LR images compared to the manually down-sampled LR images. Again, LR MRIs acquired

from physical scans were used as the reference. These statistics are also presented in Table

3.2. The values of 24.4 dB (PSNR), 0.826 (SSIM), and 0.062 (RMSE) were observed for k-

space down-sampling—the most accurate method amongst the conventional down-sampling

methods. For the DSN, the results were consistently improved by 19.7%, 7.8%, and 74.7%,

measuring 29.2 dB, 0.891, and 0.036, respectively.

Figure 3.7. Five-fold cross-validation results of PSNR, SSIM, and normalized RMSE for
the 480 outputs of four down-sampling approaches: proposed DSN, k-space down-sampling,
bicubic down-sampling, and nearest neighbor (NN) down-sampling. LR images acquired
from physical scans are used as the reference.
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3.3.3 Validation of proposed super-resolution generative model

(p-SRG)

Figure 3.8 shows the result of the proposed SRG (p-SRG) model trained with pairs of HR

(256 × 256 pixels, 1.5 × 1.5 mm) images and LR (64 × 64 pixels, 6.0 × 6.0 mm) images

generated by the DSN compared to the conventional SRG (c-SRG) model trained with pairs

of HR images and LR images generated through k-space down-sampling. LR and HR MRIs

acquired during a single breath-hold were used as the ground truth reference. As shown in

the figure, the SR image generated by the c-SRG model is generally blurry, exhibiting large

discrepancies compared to the reference ground truth HR image. On the other hand, the

p-SRG does well to preserve the detail and contrast present in the ground truth image since

the training dataset created through the DSN well approximates the down-sampling process

of the physically scanned LR MRI data from the corresponding HR MRI data.

The box plots presented in Figure 3.9 display the values of PSNR, SSIM, and normalized

RMSE calculated over five-fold cross-validation for the p-SRG model compared to the c-SRG

model. HR images acquired from physical scans were used as the reference. Table 3.3 presents

the detailed list of statistics. In the case of the c-SRG, values of 22.1 dB (PSNR), 0.625

(SSIM), and 0.080 (RMSE) were measured. For the p-SRG, the results were consistently

improved by 21.7%, 12.6%, and 73.4%, measuring 26.9 dB, 0.704, and 0.046, respectively.

Table 3.3. Statistics of values of PSNR, SSIM, and RMSE for 480 results of the p-SRG and
c-SRG models calculated over five validation folds.

p-SRG c-SRG

PNSR SSIM RMSE PSNR SSIM RMSE

Mean 26.9 0.704 0.046 22.1 0.625 0.080
Std 2.1 0.078 0.011 2.0 0.093 0.016
Min 21.4 0.592 0.020 18.6 0.484 0.033
Median 26.8 0.684 0.046 21.7 0.605 0.083
Max 34.0 0.892 0.085 29.6 0.853 0.117
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Figure 3.8. SR reconstruction results from the proposed SRG (p-SRG) and k-space down-
sampling-based conventional SRG (c-SRG) models. Input LR image (a) (64 × 64 pixels,
6.0 × 6.0 mm) from a physical scan, SR output of the p-SRG (b) and c-SRG (e) models,
reference HR image (c) (256× 256 pixels, 1.5× 1.5 mm per pixel) from a physical scan, and
difference maps between the p-SRG (d) or c-SRG (f) output and the reference HR image.

Figure 3.9. Five-fold cross-validation results of PSNR, SSIM, and normalized RMSE for the
480 outputs of the DSN-based p-SRG model and the k-space down-sampling-based c-SRG
model. HR images from physical scans were used as the reference.
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3.3.4 SR reconstruction of 3D LR breath-hold MRI

Results for the SR reconstruction of 3D LR breath-hold MRI scans are shown in Figure

3.10 for the p-SRG and c-SRG models. In addition, we included the paired data-only SRG

(po-SRG) model that was trained with 480 data pairs to demonstrate the effectiveness of the

DSN. Visually improvements in image quality are observable for the output of the p-SRG

model and even that of the po-SRG model compared to that of the c-SRG model. Upon

closer inspection, it is also observed that the boundaries of the vertebral body and the right

kidney in the p-SRG output are clearly distinctive, while both structures are severely blurred

in the c-SRG output and are not clear in the po-SRG output.

Figure 3.10. Axial SR reconstruction results for 3D LR breath-hold MRIs. (a) LR input
from physical scan (2.5 s/vol., 64 × 64 pixels, 6.0 × 6.0 mm per pixel), (b) p-SRG output
(256× 256 pixels, 1.5× 1.5 mm per pixel) and (e) magnified ROI, (c) c-SRG output and (f)
magnified ROI, and (d) Paired data-only SRG (po-SRG) output and (g) magnified ROI.

To evaluate the performance of three SRG models in the absence of ground truth reference

HR images, the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)50 metric
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was computed (Figure 3.11). The BRISQUE index uses scene statistics of locally normalized

luminance coefficients to quantify possible losses of “naturalness” in the image due to the

presence of distortions, thereby leading to a holistic measure of quality. A smaller score

indicates better perceptual quality. The c-SRG output scored 42.0± 4.6, while the score for

the p-SRG improved by 42.6%, measuring 24.1± 3.8. The po-SRG output scored 30.9± 3.9.

The statistics of the computed values of the BRISQUE index are presented in Table 3.4.

Figure 3.11. BRISQUE index calculated for 632 SR outputs of p-SRG, c-SRG, and po-SRG
tested on 3D LR breath-hold MRIs.

Table 3.4. Statistics of the computed BRISQUE scores for p-SRG, c-SRG, and po-SRG
outputs for 632 3D LR breath-hold MRIs.

p-SRG 3D sHR c-SRG 3D sHR po-SRG 3D sHR

Mean 24.1 42.0 30.9
Std 3.8 4.6 3.9
Min 15.4 28.9 22.7
Median 23.4 42.5 30.9
Max 35.7 51.6 40.8

Figure 3.12 displays axial slices of the 3D LR breath-hold MRI acquisitions and the

corresponding SR 3D MRIs generated using the full cascaded DL framework. The overall

qualities of the cascaded DL results were equivalent to the physically scanned HR breath-hold

MRIs.
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Figure 3.12. Input (left; 2.5 s/vol., 64×64 pixels, 6.0×6.0 mm per pixel) and output (right;
0.022 s/vol. processing time, 256×256 pixels, 1.5×1.5 mm per pixel) for 3D LR breath-hold
(BH) scans using the proposed cascaded deep learning framework.
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3.3.5 SR reconstruction of LR free-breathing 4D-MRI

Test results for the LR free-breathing 4D-MRI case are shown in Figure 3.13 for both the

p-SRG and c-SRG model. Based on the results of the axial cases, the p-SRG model outper-

formed the c-SRG model. In a magnified view of the marked region of interest (ROI), the

boundaries of diaphragm positions in p-SRG images are clearly distinctive compared to the

c-SRG outputs.

Figure 3.13. Comparison of coronal SR reconstructions using the p-SRG and c-SRG models
tested on a free-breathing 4D-MRI scan. (a) Physically scanned LR free-breathing 4D-MRI
input (0.5 s/vol., 64× 64 pixels, 6.0× 6.0 mm per pixel), (b) p-SRG and (d) c-SRG output
(256× 256 pixels, 1.5× 1.5 mm per pixel), and magnified ROIs (c) and (e).

Figure 3.14 displays the results of the BRISQUE index computed for SR 4D-MRI data

generated by the p-SRG and c-SRG models. In the case of the c-SRG, the images were scored

27.6± 8.1, while for the p-SRG the results were consistently improved by 19.5%, measuring

22.2± 5.7. The associated statistics are presented in Table 3.5.

Reconstruction results for a LR 4D-MRI scan with and without the DAE are displayed
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Figure 3.14. BRISQUE index calculated for 800 SR outputs of p-SRG and c-SRG test on
LR free-breathing 4D-MRI scans.

Table 3.5. Statistics of the computed BRISQUE scores for 800 p-SRG and c-SRG outputs
for LR free-breathing 4D-MRI scans.

p-SRG 4D sHR c-SRG 4D sHR

Mean 22.2 27.6
Std 5.7 8.1
Min 1.1 9.6
Median 23.9 28.8
Max 35.0 41.2
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in Figure 3.15. Without the use of DAE, the noise was amplified in the generated SR images

since the SRG network cannot distinguish the noise features from the input LR data. The

difference was prominent in the magnified view of the vertebral and intervertebral structures

(Figure 3.15c,f), where the boundary became unclear due to the degradation in image quality.

By contrast, no severe degradation was present with the use of DAE. This confirms that the

DAE served an important role in preserving anatomical detail during the SR reconstruction

process.

Figure 3.15. Comparison of coronal SR reconstructions of LR 4D-MRI acquisitions with-
out (top) and with (bottom) the front end DAE. (a) Original, physically scanned LR free-
breathing 4D-MRI acquisition (0.5 s/vol., 64×64 pixels, 6.0×6.0 mm per pixel), (b) p-SRG
output with noisy input (a), (c) magnified ROI from noisy reconstruction (b), (d) de-noised
output of DAE applied to (a), (e) p-SRG output with de-noised input (d), and (f) magnified
ROI from reconstruction (e).

Figure 3.16 displays coronal slices of a LR 4D-MRI scan along with the corresponding

SR reconstruction results using the full cascaded DL framework at 10%, 30%, 50%, 70%,

and 90% breathing phases. Diaphragm motion at each breathing phase is observed relative
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to the dotted yellow line in Figure 3.16. The overall quality of the cascaded DL results was

equivalent to the physically scanned HR MRIs at each phase.

3.4 Discussion

In this study, we presented a robust MRI SR reconstruction method based on our novel

cascaded DL technique and successfully showed that the resolution of physically scanned LR

MRIs can be enhanced four times without compromising image quality.

The main innovation of our cascaded DL-based MRI SR can be summarized in two

points. 1) We introduced a simply structured DSN trained with a limited number of LR and

HR MRI data in pairs and used it to generate perfectly paired LR images from abundant

clinical HR MRI data for the training of the SRG network. Previous studies of DL-based

MRI SR approaches simulated the LR MRIs through known down-sampling methods such as

bicubic or k-space down-sampling. However, as we demonstrated in Section 3.3, the c-SRG

that depends on the accuracy of the assumptions inherent in the use of these approaches

cannot be utilized with physically scanned LR MRI data since the translation models for

the physical scan and the simulations are different. We observed that appropriate model

estimation is the most vital step that can profoundly influence the performance of the DL-

based MRI SR algorithm. 2) We introduced the DAE at the front end of our framework

to suppress noise amplification during the SR reconstruction process. In MRI, the noise

is randomly generated from the measurement process and is typically modeled as a Rician

distribution due to the presence of Gaussian noise in both the real and imaginary parts of

the raw k-space data. In this study, we selected the NLM filter as the de-noising operator

to approximate using the DAE. We chose the NLM method because it provided a powerful

framework for MRI de-noising compared to other state-of-the-art methods. However, the

process is computationally expensive, making it impractical to use the operator directly in
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Figure 3.16. Input (right; 2.5 s/vol., 64×64 pixels, 6.0×6.0 mm per pixel) and output (left;
0.022 s/vol. processing time, 256 × 256 pixels, 1.5 × 1.5 mm per pixel) of coronal 4D-MRI
acquisition shown for two views at five breathing phases using the proposed cascaded deep
learning framework.
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a real-time imaging framework.51,52 During the experiments, it was found that the speed of

the NLM processing was 10.217 seconds per 100 frames on the CPU (Intel® Core™ i7-8700K)

whereas the DAE required 0.044 seconds per 100 frames. Note that GPU implementation

and parallel processing for NLM is currently an active research area that is beyond the scope

of our study. Nonetheless, we observed that the DAE can act as an excellent replacement or

estimate of computationally sophisticated image processing algorithms when the bandwidth

of data processing is time limited.

The main motivation of the method proposed here is to reduce the scanning time required

for HR MR images. True HR MRI images (256× 256 pixels, 1.5× 1.5 mm per pixel) used in

this study were acquired at an average rate of 17 seconds per volume of 100 slices, while LR

MRI (64 × 64 pixels, 6.0 × 6.0 mm per pixel) scans required only 2.5 seconds for the same

volume. The clinical implementation of our SR framework, illustrated in Figure 3.1, would

involve passing clinically scanned, LR MR images through the pre-trained DAE and p-SRG

to generate reconstructed HR MR images. Using a single GPU and the TensorFlow backend,

0.016 seconds per 100 slices are required to pass through the DAE, and 0.029 seconds per

100 slices are required for the p-SRG, meaning processing in the proposed framework can be

achieved in near real-time. Ultimately, time savings of 14.455 seconds in the 3D case can be

achieved by implementing the proposed framework, enabling 4D HR MRI.

The clinical relevance of these savings may be seen in considering breath-hold require-

ments during LR and HR scans. The 2.5 seconds required for a LR acquisition are a rea-

sonably achievable breath-hold period for a vast majority of patients in a radiation oncology

clinic. When that period is extended to 17 seconds, however, a more significant portion

of the patient population may experience trouble in maintaining a breath-hold, giving rise

to image artifacts exemplified by those shown in Figure 3.17. In this way, the acquisition

of LR images in a clinically feasible time frame followed by processing using our proposed

framework allows for HR MR images without the requirement of a potentially strenuous

64



breath-hold.

Figure 3.17. Representative axial slice of an HR scan demonstrating breathing artifacts
arising from a failure to maintain breath-hold in the 17 second scan period.

In this study, we limited our experiments and investigations to a 2D network. Construct-

ing a 3D network requires an extensively larger network structure and a vastly increased

number of parameters. Training such an expanded network would require a much larger

amount of data that is of limited availability in a clinical setting. In this study, the proposed

network aimed to improve in-plane resolution, leaving the slice thickness the same as the

original. Based on our experiments, a 2D network is more efficient and less time consuming

to process in such a scenario since 3D MRI data can be considered as a collection of inde-

pendent 2D image slices stacked orthogonally to the in-plane direction. Despite the inherent

limitations of the 2D network, the method does demonstrate promise in clinically relevant

scenarios. In addition to the impact on breath-hold requirements discussed previously, some

diagnostic tasks may benefit from the proposed method. Figure 3.18 illustrates the SR re-

construction of fine structures in the lung compared to reference HR images of the same

ROI. The output SR images demonstrate the fair ability of the framework to reconstruct

small lung nodules, even when the structures are washed out due to undersampling in LR

acquisitions. Reconstructions in this scenario are challenged by two factors in the present

implementation: 1) the majority of the training data sets are abdominal scans that contain
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little data in the region of the lungs, rendering the training set insufficient to achieve truly

accurate reconstructions in this region, and 2) the inherent limitations of the 2D network

discussed here. By design, a 2D framework does not capture the same rich structural infor-

mation a 3D network does that aids in the reconstruction task. The imperfect reconstruction

of the lung nodules shown in Figure 3.18 highlights the importance of transitioning to a 3D

framework to test the validity of our method in all planar directions. This will require addi-

tional data acquisition from volunteers to construct the 3D DSN as well as collecting more

HR clinical data to train the more sophisticated generative network.

Figure 3.18. Magnified inputs (left; 2.5 s/vol., 6.0 × 6.0 mm per pixel), outputs (middle;
0.029 s/vol. processing time, 1.5× 1.5 mm per pixel) and reference images (right; 17 s/vol.,
1.5× 1.5 mm per pixel) that are focused on small lung nodules for 3D LR breath-hold scans
using the proposed cascaded deep learning framework.

Recently, there was a considerable interest in advancing GAN-based networks into var-

ious image processing problems.53–55 Although the purpose of these works is for different

applications, we anticipate that a similar strategy can be applied to the MRI SR reconstruc-

tion problem as well. The style transfer framework exemplified by CycleGan53 could act

as a replacement for the DSN or SRG to enable HR to LR transformations or vice versa

without necessitating the collection of paired data sets. The issue of data availability re-

mains, however; collecting such a large amount of LR data would require the inclusion of LR
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acquisitions into routine clinical MRI scan protocols, which may not be clinically feasible.

Inversely, as many recent innovations in DL require abundant perfectly matched pairs of

training data that are often not available, it will be an exciting topic to seek an idea that is

similar to our use of the DSN to translate one “mode” of data to another for the purpose of

approximating a translation model like we did here.

The performance of a clinical MRI scan is limited by numerous factors including long

scanning time, poor SNR, and uncontrolled intermittent motion. Validation studies and

experiments showed that our newly developed SR technique is extremely beneficial under

such circumstances. The reconstruction model of our cascaded deep learning is general and

could be effectively applied for all types of MRI (i.e., various field strengths) and pulse

sequences. Therefore, our next step is to test this framework on various clinical sites, not

only limited to MR-IGRT but also to diagnostic applications where resolution is limited

by the aforementioned factors. In MR-IGRT applications, our next study will be to test

the proposed method on clinical patient data cases with moving anatomical sites such as

the lung, liver, or pancreas. It is anticipated that the improved reconstruction capability

of SR MRI enables enhanced tumor visualization and organ delineation while facilitating

further research in the areas of automated tumor tracking, modeling of organ-specific motion,

and dose accumulation. All in all, we anticipate that our proposed cascaded deep learning

algorithm is a promising new technique to reconstruct high quality, high-resolution MRI

images without sacrificing SNR or increasing scanning time.

Finally, we remark that our cascaded DL approach is the first DL-based MRI SR recon-

struction technique that formulates SR MRI as the blind image super-resolution problem.

Our studies have shown that high quality SR reconstruction can be achieved in the absence

of a LR to HR translation model and in the presence of noise. This brings us one step closer

to making MRI SR technology and real-time MRI applications more practical.
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3.5 Conclusions

In this paper, we developed an end-to-end framework to generate detail preserving HR MRI

images from physically scanned LR MRI images using a novel cascaded DL technique. The

results have shown that our proposed technique enables 3D LR breath-hold MRI as well as

4D-MRI within a clinically feasible time frame without sacrificing spatial resolution or image

quality. Such techniques will facilitate the target delineation and tracking process during

MR-IGRT. This makes our technique fully useful in precision MR-IGRT.
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4.1 Introduction

The use of magnetic resonance imaging (MRI) in radiation therapy (RT) has grown in

recent years due to a desire to take advantage of the attractive properties of the modality,

especially with the advent of MRI-based delivery systems.1–7 Compared to x-ray computed

tomography (CT), MRI offers superior soft tissue contrast without exposing the patient to

ionizing radiation.8–12 Taking full advantage of these attractive properties with MRI-based

therapy delivery systems allows for numerous applications including motion tracking and

management as well as online adaptive therapy.1,5, 6, 13 The increasing use of MRI for tissue

and target delineation makes an MRI-only RT workflow, one in which MRI is the sole imaging

modality employed for treatment planning and dose calculations, a favorable option for MR

image-guided RT (MR-IGRT) applications. Presently, however, such a workflow has not

been widely adopted in a clinical setting.

In the conventional MR-IGRT treatment planning workflow, the patient undergoes both

MRI and CT simulation before planning commences.5,8, 14 MRI is the primary imaging

modality used to guide treatment, but the electron density information required for dose

calculations necessitates that CT simulation be a component of the conventional work-

flow.12,14,15 No correlation between the nuclear magnetic properties on which MRI relies and

the radiological properties of tissue used in dose calculations has been demonstrated.16,17 As

such, CT images must be acquired and registered to MR images to provide the necessary

electron density information.

Advancing towards MRI-only RT avoids a number of issues that arise in a multi-modality

workflow. Eliminating CT simulation and setup scans reduces the radiation dose delivered

unnecessarily to the patient throughout the course of their treatment and lessens the cost

of treatment.8,14,15,17,18 Additionally, inter-modality registration errors that can represent

a clinically significant barrier to the accurate delivery of treatment can be avoided in an
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MRI-only workflow.9,19–23

Achieving an MRI-only RT workflow requires the creation of a so-called substitute or

synthetic CT (sCT) image set that provides the electron density information necessary for

dose calculations based on predicted HU values. A number of previous approaches at creating

these sCTs fall generally into two broad categories, briefly covered here but reviewed in

detail elsewhere: atlas-based approaches and voxel-based approaches.17,24–26 In an atlas-

based approach,18,27–33 pairs of co-registered MRI and CT scans from a patient database are

used to create MRI and CT atlases that constitute a typical anatomy as represented by each

imaging modality. Determining the deformation between a patient’s MRI scan and the MRI

atlas allows for the creation of a sCT scan by applying this deformation to the CT atlas.

Atlas-based approaches can involve an average atlas27 for MRI and CT scans composed of the

entire database or a multi-atlas32,33 in which CT numbers are assigned based on a weighted

average of values from multiple deformed CT atlases. Such approaches can quickly become

computationally intense as the number of deformations and atlas complexity increases.17,26

Additionally, atlas-based approaches struggle in cases where the incoming patient’s anatomy

differs from that represented by the atlas due to missing tissues, air cavities, or surgical

implants.26,28,31 Alternatively, voxel-based approaches involve the assignment of CT numbers

through a number of methods, including segmentation with standard or specialized MRI

sequences,34–42 statistical methods,43–46 and learning-based approaches.47 The simplest and

most widely used voxel-based approaches use MRI voxel intensities from standard sequences

to segment general tissue classes (air, fat, soft tissue, etc.) that are then bulk-assigned

corresponding CT numbers. While voxel-based approaches perform better than atlas-based

approaches in the case of atypical anatomy, the ambiguity between regions of bone and air

due to a lack of signal in both regions can present a challenge.17,36

More recently, deep learning (DL)-based approaches using convolutional neural networks

(CNNs) have been proposed to solve the problem of sCT generation for sites in the head and
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pelvis.33,48–51 Han48 employed a pre-trained U-Net architecture52 to generate sCTs for brain

tumor cases. Similarly, Fu et al50 and Chen et al53 generated sCTs of the male pelvis using

2D and 3D U-Nets. Viewing the generation of sCTs from MR images as an image-to-image

translation problem, Maspero et al49 implemented a generative adversarial network54 (GAN)

named pix2pix55 that has demonstrated success in this space to produce sCTs for general

pelvis cases.

In the present study, we evaluate the robustness of this ubiquitous pix2pix framework and

our proposed framework that utilizes a convolutional process termed deep spatial pyramid

pooling. In this novel framework, we exploit atrous convolution to effectively capture and

encode large-scale structural information that aids in the sCT generation task while also

maintaining a compact network architecture that is effectively trained with a limited dataset.

The performance of these GAN architectures was evaluated against the size of the training

data set to determine the time required to train the model as well as the quality of the

resulting image output of a trained model. Additionally, sCT images generated using the

novel deep spatial pyramid convolutional framework were used to perform MRI-based dose

calculations, which were compared to plans calculated based on true CT images using the

gamma index.56

4.2 Materials and Methods

4.2.1 Model and Loss Formulation

The task of sCT generation may be viewed simply using the following formulation of a

forward problem:

g = T (m), (4.1)
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where m is the input MR image data, T is the transformation operator that defines the

mapping from MR to CT images, and g is the observable output of generated CT data.

Considering the one-to-many or many-to-one nature of mapping that arises due to similar

MRI signal intensities in regions of bone and air, for example, determining the form of the

operator T is non-trivial. The task is ill-posed and the goal in applying DL to the problem is

to estimate a suitable operator Te such that a generic cost function C is minimized between

the synthetic output s = Te(m) and the ground truth CT g:

min
s

C[s, g] (4.2)

The GAN frameworks explored here consist of two components, each of which is discussed

in more detail in the following sections: 1) a generative model G that generates a sample in

the data distribution pdata in which true CT image data resides from a sample in a latent

space and 2) a discriminator D that distinguishes whether a given sample is drawn from

the data distribution or generated by G with a certain probability. The generator G and

discriminator D undergo training in alternating minimization steps of their respective loss

functions. In these frameworks, the generic cost minimization presented in Eq. 4.2 is the

driving force of learning during the training process of the generator G. The discussion of

the specific form of C[·] relies on the definition of sigmoid cross entropy loss:57

L = z⃗ ∗ − log (S(x⃗)) + (1− z⃗) ∗ − log (1− S(x⃗))

with S(x⃗) =
1

1 + exp (−x⃗)
simplifies to

= x⃗− x⃗ ∗ z⃗ + log (1 + exp (−x⃗)), (4.3)

where the elements of x⃗ are the true or predicted image logits computed by the discrim-

inator D and z⃗ are the labels corresponding to true (1) or predicted (0).
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The generative models discussed in the later sections share the same loss function gloss

defined by

gloss = Ladv + 100 ∗ lmae, (4.4)

where the adversarial loss Ladv is the sigmoid cross entropy loss (Eq. 4.3) with predicted

image logits x⃗ and labels z⃗ = 1⃗, a ones vector, and the mean absolute error (MAE) loss lmae

is simply the mean of the absolute difference of the predicted images Ipred and true images

Itrue:

lmae = mean (|Ipred − Itrue|) . (4.5)

With this formulation, the complete loss function gloss penalizes predictions that are

not computed as true data distributions by D through the adversarial loss term Ladv and

attempts to ensure pixel-wise agreement between predicted and true images with the MAE

loss term lmae. It should be noted that each term is reduced in dimensions by computing

the mean before summing in Eq. 4.4 to yield a single value. The expressions have been

simplified here for presentation.

The aim of the discriminator D in the GAN framework differs from that of G, resulting

in a loss function as follows:

dloss = Lpred + Ltrue, (4.6)

where predicted loss Lpred and true loss Ltrue are each the sigmoid cross entropy loss

(Eq. 4.3) with predicted image or true image logits x⃗ computed by D and labels z⃗ = 0⃗ or 1⃗,

respectively. The formulation of Lpred and Ltrue in dloss differ from that of Ladv in gloss (Eq.

4.4) in that the labels corresponding to predicted image logits in Ladv are unity, as G strives

to produce sCT outputs that are evaluated as true CT images by D.
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Training G and D involves alternating minimization steps of each loss function, during

which the parameters that define operations within each model are optimized. Optimization

forG was performed using the Adam gradient-based stochastic optimization algorithm58 with

an initial learning rate of 0.0002, β1 = 0.7, β2 = 0.999, and ϵ̂ = 10−8. For D, TensorFlow’s57

gradient descent optimizer was used with an initial learning rate of 0.00002. In each case,

the learning rates decayed according to a staircase exponential function every 100000 steps

with a base decay rate of 0.95.

4.2.2 Network Architectures

As mentioned previously, the GAN framework that is the general subject of this work consists

of two adversarial CNNs: G and D. The focus here is placed on the architecture of the

generative model G. Two network architectures for G are explored: the conventional U-

Net architecture implemented in the pix2pix framework,49,55 referred to as “pix” here and

discussed in Section 4.2.2, and the proposed deep spatial pyramid convolutional framework

we present as an alternative, referred to as “aspp” and discussed in Section 4.2.2. D, the

second half of the GAN framework, is of the same form in both implementations, the details

of which are discussed in Section 4.2.2.

Conventional U-Net: pix

The conventional pix architecture, illustrated in Figure 4.1, consists of a stacked encoder-

decoder U-Net structure (using notation introduced by Isola et al):55

encoder:

C64–C128–C256–C512–C512–C512–C512–C512

decoder:

CD512–CD1024–CD1024–C1024–C1024–C512–C256–C128,

where Ck denotes a convolution-BatchNorm-ReLU layer with k convolutional filters with the
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exception of the first layer in the encoder in which batch normalization is not performed.

ReLUs on the encoder side of the network are leaky with a slope of 0.2. CDk denotes a

convolution-BatchNorm-Dropout-ReLU layer with a dropout rate of 50%.59 The final layer

in the decoder applies a convolution to map to the desired number of output channels (one

here), followed by a hyperbolic tangent function. Each convolution is a 4x4 filter applied with

a stride of 2. At each layer on the encoder side of the network, convolutions downsample by

a factor of 2. On the decoder side, convolutions upsample by a factor of 2. Skip connections

that share activations from a layer in the encoder with a corresponding layer in the decoder

allow for the transfer of shared, underlying structural features like prominent edges from the

input MRI to the generated sCT.55

Figure 4.1. The conventional pix architecture. The input MR image is encoded sequentially
as a feature map of reduced spatial dimension and increased depth as it travels through
the encoder layers on the left side of the network. The process is reversed as the decoder
layers recover spatial information and reconstruct the output sCT image. Skip connections
between corresponding encoder/decoder layers, represented as grey lines at bottom here,
allow shared structural features to move across the network efficiently.

In total, the conventional pix architecture consists of 54,408,832 trainable parameters.

These parameters, which include the weights and biases of the convolutional filters applied

at each layer of the encoder and decoder, are updated at every training step according to

the Adam stochastic optimization algorithm mentioned in Section 4.2.1.

Atrous Spatial Pyramid Pooling: aspp

As an alternative to the conventional pix framework, we explore the application of the

Atrous Spatial Pyramid Pooling (ASPP) method to the U-Net encoder-decoder architecture
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as discussed by Chen et al.51,60 The ASPP method employs atrous or dilated convolution,

illustrated in Figure 4.2, to encode multi-scale contextual information. Pixels included in

the atrous convolution kernel are spaced away from the central pixel based on the rate of

convolution, where larger rates correspond to a larger field of view for the convolution kernel

without changing the size of the kernel.

Figure 4.2. Atrous convolution applied to an input feature map with a 3x3 kernel and
increasing rate. Increasing the rate widens the field of view without changing the size of the
kernel, capturing context at a larger scale than standard convolution (rate = 1).

By performing atrous convolution at multiple rates in parallel, multi-scale features can

be exploited to characterize a single pixel. Shown in Figure 4.3, an example ASPP module

extracts contextual features from multiple fields of view, allowing the encoder to capture

rich multi-scale information that aids in the image-to-image translation task.

Building from the conventional pix framework, we implement the ASPP module in a

similar U-Net architecture to create G. The diagram in Figure 4.4 illustrates the network’s

structure, using the same notation presented in the previous section for direct comparison

and AC to denote atrous convolution:

encoder:

C64–C128–C256–C512

ASPP module:

(C512, AC512 rate 3, AC512 rate 6, AC512 rate 9, average pool–C512)–C512

decoder:
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Figure 4.3. Atrous Spatial Pyramid Pooling.64 Atrous convolution filters of increasing rate,
shown in different colors, are applied in parallel to the input feature map. The resulting
output feature maps that capture contextual features at fields of view of increasing size are
concatenated together. For simplicity, output feature maps are not necessarily to scale and
padding for convolution is not shown.

C512–C512–C256–C128.

Again, all convolutions are 4x4 spatial filters with stride 2 except for convolutions within

the ASPP module. The four encoder layers that precede the ASPP module have an output

stride of 16 compared to 256 in the case of the 8 encoder layers in the pix framework. The

ASPP module implemented here consists of 5 convolution operations performed in parallel,

all with stride 1: 1) 1x1 convolution; 2) 4x4 atrous convolution with rate 3; 3) 4x4 atrous

convolution with rate 6; 4) 4x4 atrous convolution with rate 9; and 5) 1x1 convolution

following an average pooling operation. The feature maps resulting from each of these

operations is then concatenated before another set of 1x1 convolutional filters is applied. The

successive decoder layers upsample the resulting feature maps to recover spatial information

and construct the sCT output. As in the conventional pix framework, skip connections

between corresponding encoder/decoder layers allow for the transfer of underlying structural

features shared by the input and output images.

In contrast to the conventional pix framework, the elimination of 8 filter-dense layers

from the interior of the network in favor of the ASPP module results in a significant reduc-
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Figure 4.4. The proposed aspp architecture. Like in the conventional pix framework, the
input MR image is encoded as richer feature maps as it travels through the encoder side of
the network. The ASPP module then applies five convolution operations in parallel before
concatenation and another convolution. The decoder layers then recover spatial information
as they upsample the resulting feature maps and reconstruct the output sCT image.

tion in the total number of trainable parameters from 54,408,832 for the conventional pix

architecture to 15,080,733 for the proposed aspp architecture. These parameters are updated

during training by the Adam optimizer discussed in Section 4.2.1.

Discriminator

The architecture of the discriminator, illustrated in Figure 4.5, did not change with the

generator architecture in each GAN implementation. Using the same notation introduced

previously, the structure of D is as follows:

C64–C128–C256–C512,

with the exception of the first layer, where no batch normalization is performed. Again, leaky

ReLUs are utilized with slope 0.2. Following the last layer, a final convolution is applied to

map to one channel before applying a sigmoid function. The result is values between zero

and one that denote the probability that the input image is a true CT image.

The total number of trainable parameters in this discriminator architecture is 2,763,520.

In training steps alternating with those of G, the parameters of D are updated using the

gradient descent optimization algorithm discussed in Section 4.2.1.
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Figure 4.5. The discriminator architecture shared in each GAN framework. An input CT
or sCT is encoded as a set of feature maps before being mapped to one channel by the last
convolution operation. The sigmoid function is applied to yield values between zero and one
that denote the probability that the input image is a true CT image.

4.2.3 Training Data

To determine the robustness of each G network architecture against the size of the training

data set, both implementations were trained from scratch in five separate instances using

image data from 10, 20, 30, 40, and 48 breast patients previously treated at our institution

and evaluated after each completed training. 50 paired CT/MR images from a single CT

and MRI scan for each patient were selected for training, yielding a training data set of

500, 1000, 1500, 2000, and 2400 paired images in each case respectively. 0.35T MRI setup

scans (nominally 334 x 334 x 240 or 288 matrix, 1.5 x 1.5 x 1.5 mm3) acquired using the first

generation MRIdian system (ViewRay Inc., Oakwood Village, OH) with a T1w GR sequence

were used in the present study. CT simulation scans (nominally 512 x 512 x 118–154 matrix,

0.977 x 0.977 x 3 mm3) acquired using a dedicated simulation machine (Brilliance CT,

Philips Medical Systems, Andover, MA) were downsampled to match the resolution of the

corresponding MRI scan and deformably registered using the ViewRay treatment planning

system before being exported for training. The 2D images used in each case were padded to

a matrix size of 512 x 512 prior to training. Histogram matching was performed on both sets

of images prior to thresholding images of each modality at specified values and rescaling the

intensities to fill the entire unsigned 16-bit integer range to create a more uniform data set.

For every training set size and network architecture pairing, the framework was trained
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for 2500 epochs using TensorFlow57 v1.7.0 running on a 12 GB Titan Xp GPU (NVIDIA,

Santa Clara, CA). The time required for training is presented in Section 4.3.

4.2.4 Evaluation

We evaluate the performance of both network architectures using a number of metrics. First,

10-fold cross validation was conducted for the aspp architecture to establish the performance

of the network. We utilize three quantitative metrics to evaluate image quality: the root

mean square error (RMSE) to capture voxel-wise agreement (Eq. 4.7), the structural simi-

larity index (SSIM)61 that evaluates structural agreement (Eq. 4.8), and the peak signal-to-

noise ratio (PSNR) to measure the quality of sCT reconstructions (Eq. 4.12). The RMSE

may be calculated as

RMSE =

√∑
N (Ipred − Itrue)

2

N
, (4.7)

using the square of the pixel-wise difference between the predicted and true image over

a region of interest containing N pixels. The SSIM considers comparisons in luminance,

contrast, and structure to compute a similarity score between two images. Briefly, the

metric may be computed between two images x⃗ and y⃗ as61

SSIM(x⃗, y⃗) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (4.8)

where µx is the mean intensity of image x⃗:

µx =
1

N

N∑
i=1

xi, (4.9)

σx is an estimate of the signal contrast:
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σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

)1/2

, (4.10)

σxy is correlation coefficient between x⃗ and y⃗:

σxy =
1

N − 1

N∑
i=1

(xi − µx) (yi − µy), (4.11)

and C1 and C2 are constants. Finally, the PSNR is defined as

PSNR = 10 · log10
(
MAX2

I

MSE

)
, (4.12)

where MAXI is the maximum possible pixel value that depends on the data type of the

image of interest and MSE is the mean square error calculated as the square of the value

obtained using the same steps in Eq. 4.7.

A subsequent comparison between the sCT images generated by both architectures and

true CT images for 12 test patients was performed using the RMSE, SSIM, and PSNR

metrics. Additionally, the time required to complete 2500 training epochs was recorded for

both architectures and each training data set size. Dose distributions calculated based on

the electron density information derived from a full stack of sCT images generated with

the proposed deep spatial convolutional framework were compared to those based on true

CT images for 4 test patients using the 3D gamma index with 2%/2 mm criterion.56 Dose

calculations were performed in each case using the ViewRay treatment planning system

integrated Monte Carlo algorithm without a magnetic field for 2.4 million histories with a

0.3 cm dose resolution.
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4.3 Results

4.3.1 Cross Validation of ASPP

The performance of the deep spatial pyramid convolutional framework was evaluated using

10-fold cross validation. At each iteration, 54 data sets were used to train the architecture

from scratch. The trained model was then applied to 5 data sets – approximately 500 images

per iteration – for evaluation. Over all 10 folds, average values of 27.6 ± 7.2 HU, 0.9985 ±

0.0011, and 67.8 ± 2.2 were observed for the RMSE, SSIM, and PSNR metrics, respectively.

4.3.2 Training Performance Evaluation

The time required to complete 2500 training epochs – consisting of passes over the entire

training set – is plotted for each architecture and training data set size in Figure 4.6, along

with the generator loss (Eq. 4.4) calculated over the validation set at each epoch for the

pix48 and aspp48 models. Shorter training times were observed for the aspp architecture

compared to those of the pix architecture at every training set size, ranging from 21-87 and

37-207 hours, respectively, depending on the size of the data set.

1042 images from 12 test patients were generated using each architecture and training

data set size. Values of the RMSE calculated within the body contour for each architecture

and training data set size are plotted in Figure 4.7. The lowest mean value of 17.7 ± 4.3 HU

is observed for the aspp architecture trained with data from 48 patients. Figure 4.8 displays

the calculated values of the SSIM metric over this test set for each architecture and training

data set size. The aspp48 model again demonstrates the best observed value of 0.9995 ±

0.0003, although relatively stable performance is observed in this metric. Finally, calculated

results for the PSNR metric are presented in Figure 4.9. The highest observed value of 71.7

± 2.3 is achieved by the aspp48 model. Additional statistics for each metric are presented

in Tables 4.1, 4.2, and 4.3.
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Figure 4.6. At left, the time to complete 2500 training epochs for the pix (blue) and aspp
(red) architectures is plotted against the size of the training data set. At right, loss (Eq.
4.4) calculated over the validation set is plotted against training epoch for the pix48 (blue)
and aspp48 (red) models.

Figure 4.7. RMSE values calculated over 1042 test images generated by each architecture
and training data set size. Statistical measures are included in Table 4.1.
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Figure 4.8. Values of the SSIM metric calculated over 1042 test images generated by each
architecture and training data set size. Statistical measures are included in Table 4.2.

Figure 4.9. PSNR values calculated over 1042 test images generated by each architecture
and training data set size. Statistical measures are included in Table 4.3.
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Table 4.1. RMSE statistics accompanying Figure 4.7. Reported measures are in units of
HU.

pix10 aspp10 pix20 aspp20 pix30 aspp30 pix40 aspp40 pix48 aspp48

Mean
29.8
± 8.6

23.9
± 9.7

32.4
± 8.5

23.8
± 9.5

27.8
± 8.1

22.0
± 9.0

25.8
± 5.8

18.6
± 5.2

25.4
± 5.2

17.7
± 4.3

Median 30.1 25.1 33.5 25.1 27.3 19.2 25.9 17.3 26.3 17.1
Min 8.6 5.5 10.2 5.7 7.0 5.1 6.7 5.7 7.1 5.4
Max 70.0 77.0 64.7 77.7 66.5 78.4 41.2 35.7 36.4 34.6
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Table 4.3. PSNR statistics accompanying Figure 4.9.

pix10 aspp10 pix20 aspp20 pix30 aspp30 pix40 aspp40 pix48 aspp48

Mean
67.3
± 2.8

69.5
± 3.6

66.5
± 2.6

69.5
± 3.5

67.9
± 2.9

70.1
± 3.4

68.4
± 2.5

71.3
± 2.6

68.5
± 2.4

71.7
± 2.3

Median 66.8 68.3 65.8 68.3 67.6 70.6 68.1 71.6 67.9 71.7
Min 59.4 58.6 60.1 58.5 59.9 58.4 64.0 65.3 65.1 65.6
Max 77.6 81.6 76.2 81.1 79.4 82.1 79.9 81.2 79.3 81.6

4.3.3 Image Comparison

Image comparisons for a representative axial slice and a central coronal view of the full

image stacks are presented in Figure 4.10. RMSE values of 17.7 HU and 27.3 HU for the

sCT reconstructions of the selected slice for the aspp48 and pix48 results, respectively, are

comparable to the mean values presented in Table 4.1. The input MR image is shown

alongside the sCT reconstruction generated by the aspp48 and pix48 models as well as the

corresponding ground truth CT image. Difference maps illustrate the difference in HU values

in the true CT image and the sCT image for each architecture.

As an additional note, evaluation of the deep spatial pyramid convolutional framework has

been extended to images of other MRI sequences and field strengths. Figure 4.11 presents the

sCT reconstruction for a selected slice from an ASPP-based model trained with 1.5T mDixon

MR images (Ingenia MR, Philips Medical Systems, Andover, MA) and the corresponding

CT images of the breast. Training was performed in the same manner described previously

with 1750 paired images from 35 patients previously treated at our institution.

4.3.4 Dose Calculation

Dose calculations were performed for 4 test patients using optimization parameters selected in

clinical simulation plans and electron density information derived from aspp-generated sCT

images. Dose distributions from the clinical and proposed plans are presented in Figure 4.12
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Figure 4.10. Input MR image (a), sCT image generated by the aspp48 model (RMSE =
17.7 HU) (b), true CT image (c), difference map (d) between (c) and (b) for a representative
axial slice. Similarly, (e) and (f) are results for the same slice based on the pix48 (RMSE
= 27.3 HU) model. Central coronal view of the full MRI stack (g), aspp48-generated sCT
stack (h), true CT stack (i), difference map (j) between (i) and (h). Similarly, (k) and (l)
are results for the same stack based on the pix48 model. Values in the difference maps are
in units of HU.

Figure 4.11. Input MR image (left) acquired in a 1.5T MRI scanner with an mDixon se-
quence, ASPP-based sCT image (center), and corresponding CT image (right) for a breast
case.
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for comparison along with the corresponding dose-volume histograms (DVHs). Calculated

dose metrics including the percentage of the PTV covered by 95% of the prescribed dose

(D95), PTV max and mean dose, left and right lung max and mean dose, percent volume

of the heart receiving 2 Gy or more (V2), and heart max and mean dose for the clinical and

proposed plans are presented in Table 4.4. D95 for the PTV calculated in the proposed plan

varies by less than 1% from that calculated in the clinical plan in each test case. Similar

agreement is observed in the other calculated metrics. Disagreements of greater than 1%

arise from dose differences of less than 1 Gy, where discrepancies are largely inconsequential.

The 3D gamma index comparing the clinical and proposed dose distributions yields passing

rates equal to or greater than 98% for all patients using a 2%/2 mm criterion.

Figure 4.12. Dose distributions for the sCT-based (top left) and clinical (bottom left) plans
alongside the plan DVHs for the proposed (solid lines) and clinical (dashed lines) plans.

4.4 Discussion

The value of our novel deep spatial pyramid framework that uses ASPP in a U-Net ar-

chitecture is readily observed in the training time and image evaluation results. Looking
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Table 4.4. Selected dose metrics compared between clinical (c.) simulation plans and pro-
posed (p.) plans calculated based on aspp-generated sCTs for four test patients. Max and
mean doses are reported in units of Gy.

Pt.
PTV Left Lung Right Lung Heart

D95 (%) Max Mean Max Mean Max Mean V2 (%) Max Mean

1
c. 56.18 22 19.28 1.09 0.23 6.88 0.9 0 1.35 0.21
p. 56.12 22 19.26 1.14 0.24 6.87 0.89 0 1.37 0.2

2
c. 97.88 42.12 39.27 4.15 0.83 21.8 3.85 5 4.32 0.69
p. 98.66 42.59 39.51 4.22 0.85 21.97 3.9 5.09 4.32 0.68

3
c. 95.14 42.89 39.2 4.72 0.6 26.97 4.29 4.36 3.87 0.8
p. 96.05 43.12 39.26 4.86 0.61 27.15 4.35 4.46 4.03 0.8

4
c. 97.27 43.33 39.46 3.1 0.228 29.36 4.16 4.25 4.52 0.9
p. 97.45 43.2 39.48 3.31 0.29 29.45 4.21 4.48 4.54 0.91

specifically at results for networks trained with data from 48 patients, a drastic reduction

in the time required to train the model is observed. The aspp48 network completed 2500

training epochs in 87.5 hours, nearly two-and-a-half times faster than the 207 hours required

for the pix48 architecture to complete the same number of epochs. This reduction in training

time came with nearly a 40% improvement in the MAE computed across all test images when

the ASPP module is used instead of the conventional pix architecture. Ultimately, an MAE

value of 16.1 ± 3.5 HU is observed over 1042 test images. These observed results compare

favorably with those reported in the literature. Kraus et al13 used an atlas-related method to

achieve MAE values ranging from 29.9-66.6 HU in regions of bone, bladder, and soft tissue

within the pelvic region. Other atlas-based techniques report values ranging from 40-200

HU for sites including the pelvis and cranium.17,26 Han48 used a simple U-Net architecture

similar to the pix architecture discussed here consisting of 8 total layers to achieve an MAE

of 84.8 ± 17.3 HU in intracranial cases. More recently, Maspero et al49 used the pix2pix

framework55 in the general pelvis, reporting an MAE value of 61 ± 9 HU. Fu et al50 applied a

3D CNN architecture in the male pelvis to achieve an MAE of 37.6 ± 5.1 HU. The improved

performance of the deep spatial pyramid framework proposed here in image generation and
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training time relative to pix-like frameworks may be explained with two reasons.

First, adopting the ASPP module offers a significant reduction in the total number of

trainable parameters compared to the pix framework. In the clinical environment, where ac-

cess to data for training may be difficult – especially when perfectly paired data is required

– this reduction is crucial to achieving acceptable performance. The entire GAN frame-

work that includes the pix architecture for G is parameterized by 57,172,352 total trainable

parameters, 54,408,832 of which are related to G itself. The encoder layers of the pix archi-

tecture carry 19,536,640 parameters, while the decoder layers require 34,872,192 parameters.

Looking now at the entirety of the proposed deep spatial pyramid framework, a reduction

of nearly 70% in the total number of parameters is observed: from 57,172,352 to 17,844,353.

Encoder layers in the aspp architecture for G require only 2,754,496 parameters. The ASPP

module implemented here is parameterized by 8,915,968 values. Finally, the decoder layers

require 3,410,369 parameters. In total, the aspp generator architecture, parameterized by

15,080,733 parameters, requires less than half of the number of parameters than the decoder

in the pix architecture alone. The elimination of filter-dense layers from the interior layers

of the encoder and decoder in favor of the ASPP module offers a significant reduction in the

number of parameters that in turn drastically reduces the time and amount of data required

to effectively train the model.

Second, employing atrous convolution widens the receptive fields of the convolutional

kernels at a rate that is not possible in the conventional architecture. While the field of

view of a 3x3 standard convolution kernel increase linearly in size as the feature maps are

progressively downsampled in an encoder, applying atrous convolution drastically widens the

receptive field even at low rates. Applying kernels of increasing rate in parallel to feature

maps at the interior-most portion of the network allows for the effective capture of large-

scale structural information in a way that is not possible in a conventional framework of the

same depth. This effective encoding paired with the significant reduction in the number of
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trainable parameters yields a robust architecture that is well suited to applications where

training data is limited, which is often true for problems faced in the clinic.

It is important to note that with the reduction in the total number of trainable parameters

may also come the concern of inaccurate fitting by the trained model. This potential issue

has been monitored in the present study in two ways. First, 10-fold cross validation of the

proposed framework was performed to establish the stable performance of the method with

varied training and testing data sets. Second, prediction error in the validation set was

observed in the course of training. In this way, model performance during training may

be monitored and an appropriate stopping criterion may be established in order to avoid

inaccurate model fitting.

A number of barriers still stand in the way of the full-scale adoption of methods for sCT

generation like the one proposed here. Most notably, learning-based methods that require

paired image data for training face the challenge of multi-modality image registration that is

further complicated by considerations of anatomical changes with time. Anatomical varia-

tions that occur even in short time frames result in acquired images that are notably different

between successive CT and MRI simulation scans.62 This challenge is readily apparent in

abdominal cases in which intestinal gas in the bowel may change size and position relative

to the target frequently. As a result, the corresponding CT and MRI simulation scans are

made largely incompatible, necessitating intensive manual intervention in the form of con-

touring for bulk density overrides for the purpose of dose calculations or image pairing in

this case. Techniques for propagating intestinal gas between modalities may be applied to

mitigate one facet of this problem.41,49 Additionally, style-transfer methods exemplified by

CycleGAN that use unpaired CT and MR images to learn the mapping between CT and

MR “styles” may be applied to the problem of sCT generation in an effort to avoid the re-

quirement of multi-modality image registration and the challenges that come with curating

paired image data.63
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Despite these challenges, the deep spatial pyramid framework proposed here demonstrates

promise in the task of sCT generation for an MR-only RT workflow. Trials using higher

quality 1.5T MR images are ongoing at our institution. Future studies should pursue the

external validation of the proposed architecture in varied settings beyond the scope of the

present study, examining the robustness of the approach against disease site, tumor shape

and size, and an extensive patient population. Success in these endeavors would open the

door to conducting a rigorous clinical validation of the MR-only radiation therapy workflow

enabled by the method proposed here.

4.5 Conclusions

In this study, we have evaluated the robustness of the conventional pix2pix GAN framework

that is ubiquitous in the image-to-image translation task as well as the novel deep spatial

pyramid framework we propose here. The proposed framework demonstrates improved per-

formance in metrics of training time and image quality, even in cases when training data is

limited. The success of the framework in sCT generation is a promising step towards an MR-

only RT workflow that eliminates the need for CT simulation and setup scans while enabling

online adaptive therapy applications that are becoming ever more prevalent in MR-IGRT.
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5.1 Introduction

The proliferation of magnetic resonance imaging (MRI)-based radiotherapy delivery systems

in recent years has pushed applications of MRI-guided radiation therapy (MRgRT) to the

forefront of RT.1–7 The superior soft tissue contrast of MRI compared to that of x-ray

computed tomography (CT) improves target delineation in many sites, enabling near real-

time motion tracking and management during treatment.5,8 The advantages of MRI also lend

themselves well to managing interfractional changes in a patient’s anatomy, as MRI setup

scans acquired in an adaptive radiotherapy (ART) workflow capture the anatomy of the day

without exposing the patient to additional ionizing radiation.4 The need for electron density

information in dose calculations, however, necessitates that these setup scans be registered

to a CT simulation scan that may have been acquired weeks prior to a given treatment

fraction.9 Issues may arise in some cases when the anatomy represented in each scan is

incompatible due to changes in the geometry and position of organs of interest, which is

a challenge that is especially relevant to gastrointestinal (GI) structures and intestinal gas

pockets considered during ART in the abdomen. In these cases, the ideal, unconstrained

MRgRT workflow would involve intensive manual contouring so that density overrides could

be performed in order to approximate in the CT simulation scan the anatomy of the day

captured in the MRI setup scan.

It is this potential for challenge and uncertainty that comes with multi-modal image

registration and intensive contouring that makes an MRI-only workflow—one in which MRI

is the sole imaging modality used for planning and guidance—an attractive alternative to

the conventional MRgRT workflow. The primary challenge in an MRI-only workflow is

generating synthetic CT (sCT) data that yields the electron density information used in

dose calculations. Many existing approaches to this task have been summarized as belonging

to three general classes: atlas-based, voxel-based, and learning-based methods.10,11 Recent
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investigations have focused primarily on approaches belonging to the last category, namely

deep learning (DL)-based approaches in which convolutional neural networks are used to

approximate a mapping between MRI and CT images.12

Studies in this space have primarily been limited to regions of relatively static anatomy,

including the head & neck13 and general pelvis.14–16 More recently, our group has extended

these investigations into the thorax, where registration is challenged by pulmonary and

cardiac motion, by generating sCT data for use in MRI-only breast RT.17 When considering

applications in the more dynamic region of the abdomen, a primary challenge to employing

these deep learning strategies becomes readily apparent: the majority of frameworks require

paired data for training. The presence and hard-to-characterize motion of intestinal gas gives

rise to observable differences in bowel filling and position on numerous time scales: seconds

in the course of a single scan, minutes during treatment delivery, and hours between MRI and

CT scans used for treatment planning.18–22 This challenge is even more relevant clinically

when considering setup scans in MRI-guided adaptive treatments. In these situations, MRI

setup scans acquired the day of treatment are registered to the CT simulation scan that may

have been acquired weeks previously. When large discrepancies in bowel filling and position

exist, the MRI setup scan and simulation CT scan may be rendered largely incompatible.

Corrective measures that could be undertaken in an online adaptive workflow represent a

potentially significant delay to treatment delivery while the patient remains on-table.23 As

an alternative to the paired data approaches, one may consider the application of an unpaired

style-transfer approach exemplified by CycleGAN in settings in which abundant, unpaired

data exists.12,24 However, the authors of the original CycleGAN paper acknowledge a gap

between the paired and unpaired results that is hard or even impossible to close in some

settings, especially those in which there exists some inherent ambiguity.24 This conclusion

is mirrored in other studies of the sCT reconstruction task; Peng et al.25 conclude that the

conditional paired approach was “preferable if high-quality MR-CT pairs were available” in
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the nasopharynx, which is another area challenged by the presence of air, and Fu et al.26

demonstrate no benefit to adopting the CycleGAN in the upper abdomen for liver cancer

patients.

In light of these challenges, many existing studies on sCT reconstruction in the abdomen

have abandoned the DL-based approaches in favor of various classification or thresholding-

based approaches wherein manual steps are taken in the process of generating sCT data to

account for the presence of air. Bredfeldt et al27 and Hsu et al28 utilized a fuzzy c-means

clustering algorithm to classify tissue classes based on multiple MRI volumes captured us-

ing different sequences, taking care to threshold image regions where air is expected to be

found before applying the classification algorithm. Alternatively, Ahunbay et al29 opted

to use deformable image registration between the daily MRI and simulation CT scans to

transfer electron density information while using thresholding operations in manually con-

toured regions to identify the presence of air. Guerreiro et al30 explored a hybrid atlas and

intensity-based conversion algorithm31–33 in which contoured regions of air were transferred

directly from the simulation CT after Hounsfield units (HU) were assigned. Most recently,

both Cusumano et al.34 and Qian et al.35 have reported experiences with DL-based sCT

reconstruction in the abdomen. Neither study, however, deals explicitly with the issue of

air discrepancies between corresponding MRI and CT scans. Cusumano et al.34 instead

employed exclusion criteria to select only MR and CT images with “high correspondence in

terms of air pockets location between the two images” for training and excluded a further

six patients from the test set for the reason of poor correspondence of air between the two

modalities. Similarly, Qian et al.35 do not discuss results for patients with poorly matched

representations of air.

In the present study, we return to paired data-driven DL with a novel hybrid approach

to the abdominal sCT reconstruction task enabled by the creation of a training data set that

is clinically unavailable. As was previously discussed, the primary barrier to the adoption

107



of many DL-based algorithms in this setting is the requirement for paired training data.

Mismatches in the presence of intestinal gas between corresponding MRI and CT scans ren-

der the collection of a training data set of sufficient size an impossible task. Considering

this and the challenges faced with an unpaired approach, we first utilize automated thresh-

olding and morphological reconstruction operations to identify and propagate regions of air

between corresponding MR and CT images to produce a well-matched training data set.

We present here the preliminary evaluation of our paired data DL-based approach to sCT

reconstruction in the abdomen enabled by the novel utilization of the intensity projection

prior with a focus on showcasing the effects of intestinal gas differences on dose calcula-

tions. Dosimetric comparisons are made between two classes of test patients separated by a

qualitative distinction made at the time of data collection prior to any evaluation: Class 1,

consisting of well-matched patients demonstrating little involvement of intestinal gas, and

Class 2, consisting of patients characterized by notable differences in the presence of intesti-

nal gas in corresponding MRI and CT scans. Dosimetric accuracy is established using the

patients of Class 1 while comparisons of target coverage between the sCT-based plans and

the simulation CT-based clinical plans for patients of Class 2 highlight the complications

posed by intestinal gas during MRI-only ART in the abdomen.

5.2 Materials and Methods

5.2.1 Patient population

Data sets used in the present study were retrospectively collected from a population of

pancreatic cancer patients previously treated at our institution using MRgRT. In each case,

patients underwent CT and MRI simulation scans prior to treatment planning. Scans were

acquired in treatment position using an Alpha Cradle (Smithers Medical Products Inc.,

North Canton, OH) with no additional immobilization devices. The nominal prescription in
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the selected population was a total dose of 50 Gy delivered to 95% of the PTV in 5 fractions.

A small number of cases deviated from this prescription with total prescribed doses ranging

from 30–40 Gy delivered in 5 fractions. For the nominal prescription, satisfying dose-volume

constraints of <0.5 cm3 at 36 Gy for notable structures including the duodenum, stomach,

small bowel, and large bowel was prioritized over target coverage. In any case in which

one of these constraints was violated, the calculated dose was normalized to satisfy the

violated constraint. The same normalization applied in the clinical case was also applied

in the evaluation of our proposed method as discussed later. In all patient cases involved

here, dose calculations in the clinical plan were performed using electron density data derived

directly from the simulation CT scan with no additional density overrides included to account

for the presence of air.

5.2.2 Training and testing data

A total of 89 patient data sets (one pair of corresponding MRI and CT scans per patient) were

used in the present study, randomly assigned in the following splits: 53 train / 3 valid / 33

test. Ten-fold validation of the framework in the sCT reconstruction task has been previously

carried out by our group, and an additional 3-holdout validation is performed here.17 The 33

test patients were qualitatively subdivided at the time of data collection prior to testing into

the two classes mentioned previously: 13 well-matched patients in Class 1 and 20 patients

characterized by notable discrepancies in bowel filling in Class 2. CT simulation scans

acquired using a dedicated simulation machine (Brilliance CT, Philips Medical Systems,

Andover, MA) were registered with 0.35 T MRI scans (nominally 276 × 276 × 80 matrix,

1.63 × 1.63 × 3 mm3) acquired using the MRIdian system (ViewRay Inc., Oakwood Village,

OH) with a bSSFP sequence before being exported for pre-processing. Processing yielded

a training data set of 2017 paired images, which were padded to dimensions of 520 × 520

before training via 320 × 320 random crops. The framework was trained for 1500 epochs
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with a batch size of 1 using TensorFlow36 v1.7.0 in Python running on a 12 GB Titan Xp

GPU (NVIDIA, Santa Clara, CA).

5.2.3 Pre-processing

A primary challenge in training a generative model to solve an image-to-image translation

task such as this is constructing a set of training data consisting of well-matched pairs of

images. This process becomes even more complicated in the abdomen when the variable

presence of intestinal gas must be considered. Corresponding MRI and CT scans used in

treatment planning may demonstrate notable mismatches in bowel filling and position that

present a barrier to accurate dose calculations. While these mismatches could be handled

during the treatment planning process in the clinical setting through intensive manual con-

touring to enable electron density overrides, we opt to avoid this entirely through the creation

of an intensity projection prior. Here we adopt a novel approach to data augmentation for

paired data DL applications in which incompatible representations of intestinal gas in corre-

sponding MRI and CT scans are made compatible through the propagation of air from MRI

to CT images. The handling of intestinal gas proceeded in the following steps:

(1) Corresponding MRI and CT scans were rigidly registered in the ViewRay treatment

planning system (ViewRay Inc., Oakwood Village, OH) to achieve a gross alignment, pri-

marily of bony anatomy.

(2) Using automated thresholding and morphological reconstruction operations, regions

of air in each scan were identified. For CT images, Otsu’s method37 was used to compute a

single threshold value with which the image could be quantized to produce a body mask that

excludes most notably the couch. Within this mask, regions of air were thresholded with

a histogram shape-based method by selecting intensities falling within an offset (defined as

7 bin widths here, nominally 140 HU) around the lower mode. Finally, binary erosion and

dilation operations were performed to eliminate small, noisy regions and produce a smoother
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segmentation, respectively. For MR images, a similar approach was taken to produce a body

mask. In identifying regions of air within this mask, extra precautions were required to

avoid selecting low-signal regions not containing air (e.g. vertebral body). To this end, the

erosion of a quantized image based on a five-level thresholding achieved with Otsu’s method

was used as the basis for the morphological reconstruction38 of segmented regions within the

abdominal cavity as defined by the space surrounded by the body wall and excluding the

region around the vertebral body.

(3) These regions in the CT images were infilled with realistic texture via harmonic

inpainting to produce a CT image with no air-containing regions.39,40

(4) Regions of air identified in the MR images in step (2) are then propagated to the

corresponding CT images. As such, regions of air originally represented in the CT image

but not the corresponding MR image maintain the infilled texture from step (3). Finally,

the scans are deformably registered by way of a statistical dependence measure algorithm.41

5.2.4 Model and loss formulation

The task of sCT reconstruction viewed as a forward mapping from MRI to CT has been

previously discussed.17 Briefly, the goal in establishing a generative model is to estimate

a suitable operator that maps from MRI to CT, which is challenged by the many-to-one

correspondence of pixel intensities between the two modalities. We approach the image-to-

image translation task using a generative adversarial network (GAN) framework consisting

of two competing networks: (1) a generative model G that produces sCT samples residing

in the same space as true CT data and (2) a discriminator D that attempts to distinguish

between samples generated by G and true samples. During training, G and D undergo

alternating minimization steps of their respective loss function, each of which depends on

the generalized definition of sigmoid cross entropy loss:36
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L = x⃗− x⃗ ∗ z⃗ + log (1 + exp (−x⃗)), (5.1)

where x⃗ is the true or predicted image logits computed byD and z⃗ is a label corresponding

to true (⃗1) or predicted (⃗0). Using this definition of sigmoid cross entropy loss, the generator

loss function gloss is defined by

gloss = Ladv + lmae, (5.2)

where the adversarial loss Ladv is the sigmoid cross entropy loss (Eq. 5.1) with predicted

image logits x⃗ assigned a true label (z⃗ = 1⃗) and the mean absolute error (MAE) loss lmae is

the mean of the absolute difference between true images Itrue and predicted images Ipred:

lmae = mean (|Ipred − Itrue|) . (5.3)

Minimizing such a loss formulation yields synthetic images that are computed as true

images by the discriminator through the adversarial term Ladv while also maintaining pixel-

wise agreement between the generated and true images through the MAE term lmae.

While true labels are assigned to predicted images in gloss, the discriminator aims to

correctly identify true and predicted images. As such, the discriminator loss function dloss

depends only on the sigmoid cross entropy loss:

dloss = Lpred + Ltrue, (5.4)

where Ltrue and Lpred are the sigmoid cross entropy loss (Eq. 5.1) with true or predicted

image logits x⃗ and corresponding labels z⃗ = 1⃗ or z⃗ = 0⃗, respectively. While G strives to

generate outputs computed as true images by D through the adversarial loss term Ladv with

predicted image logits assigned a true label, the expected true and false labels are instead
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used for the true and predicted CT images in the formulation of dloss.

Trainable paramaters describing the various operations in each of the competing net-

works are optimized through alternating minimization steps of the respective loss functions.

For dloss, TensorFlow’s
36 gradient descent optimizer is used with an initial learning rate of

0.00002. In the following minimization step, gloss is minimized utilizing the Adam gradient-

based stochastic optimization algorithm42 with an initial learning rate of 0.0002, β1 = 0.7,

β2 = 0.999, and ϵ̂ = 10−8. In both cases, learning rates decay every 10000 steps subject to

a staircase exponentional function with a decay rate of 0.95.

5.2.5 Network architecture

Generator

The fully convolutional DenseNet43 employed here, illustrated in Figure 5.1, consists of

individual dense blocks arranged to form a stacked encoder-decoder U-net44 structure. The

constituent dense blocks, which resemble residual blocks45 in that intermediate feature maps

are iteratively concatenated, are built using the following components: Batch Normalization

(BN), ReLU activation, 3× 3 same convolution, and dropout with probability p = 0.2. The

growth rate k of the layer (k = 16 in this case) dictates the number of feature maps computed

by each layer. Feature maps computed by each of these intermediate layers are iteratively

concatenated to form the output of the dense block itself, granting a degree of convergence-

aiding supervision due to the short paths to all feature maps in an architecture that is

ultimately quite parameter efficient.43 Transition down (TD) operations in the encoder

path, which serve to reduce the dimensionality of feature maps, consist of BN, followed by

ReLU activation, 1×1 convolution, dropout with probability p = 0.2, and 2×2 max pooling

with stride 2. To recover the input dimensions on the decoder path, transition up (TU) layers

perform 3× 3 transpose convolution with stride 2. Skip connections between corresponding
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layers of the encoder and decoder sides of the network transfer structural information that

aids in the reconstruction of fine detail as the full input resolution is recovered along the

decoder path.

Figure 5.1. The DenseNet architecture. Individual dense blocks are arranged to form a
stacked encoder-decoder U-net structure. DBn denotes a dense block consisting of n in-
termediate layers. The input MR image is encoded as a set of feature maps that grows
progressively deeper as it travels through the encoder layers. Transpose convolution opera-
tions in the decoder recover the input spatial resolution, reconstructing details in the output
sCT image with the aid of skip connections that transfer structural information from the
encoder.

Discriminator

The architecture of the discriminator is unchanged from the previous application to sCT

generation in the breast.17 D is a straightforward encoder consisting of five convolutional

layers that ultimately applies the sigmoid function to yield the probability of the evaluated

image being a true CT image.
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5.2.6 Evaluation

The proposed approach to sCT reconstruction is evaluated in two primary ways, each with

a focus on the two classes of patients previously discussed. Pixel-wise image comparisons

are made between true CT images and reconstructed sCT images for patients belonging to

each class using the MAE and mean absolute percentage error (MAPE) measured in regions

within the body contour not containing air:

MAE =

∑n
i=1 |CTi − sCTi|

n
, and (5.5)

MAPE =
100

n

n∑
i=1

∣∣∣∣CTi − sCTi

CTi

∣∣∣∣ , (5.6)

where n is the number of pixels not containing air in both the CT reference image and

the generated sCT image. These image comparisons are made for sCT outputs of both the

model proposed here and a “blind” model trained with the same patient data only without

the pre-processing treatment of regions of air, which represents the conventional DL-based

approach to the present problem. Considering the fact that the reference CT image for

patients of Class 2 may be largely incompatible with the corresponding MRI image, we also

evaluate the degree of overlap of regions of air in input MR images and reconstructed sCT

outputs of each model using the Dice similarity coefficient (DSC):

DSC =
2 |X ∩ Y |
|X|+ |Y |

, (5.7)

where X and Y are the sets of pixels in air masks of an MR image and corresponding

sCT image. Additionally, the structural similarity index (SSIM), which assesses similarity

through three distinct luminance, contrast, and structure terms,17 is calculated between the

input MR image and reconstructed sCT output of each model in these air-containing regions.
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A subsequent dosimetric evaluation compares dose distributions calculated at the first

treatment fraction in simulation CT-based clinical plans to those recalculated using sCT-

derived electron density information and the same optimization parameters used in the clini-

cal plans for each of the 33 test patients. Full dose-volume histograms (DVHs) for the target

and surrounding tissues of well-matched patients in Class 1 are used to first establish the

baseline accuracy of the proposed approach to sCT reconstruction. The same comparison is

made for patients in Class 2 demonstrating notable discrepancies in the presence of intestinal

gas between corresponding MRI and CT scans to explore the effect of these discrepancies.

For both patient classes, we examine differences in prescribed dose coverage of the PTV be-

tween the clinical CT-based plans and the proposed sCT-based plans. The 3D gamma index

with a 3%/3 mm criterion is computed to evaluate agreement between the CT-based and

sCT-based dose distributions for patients in each class.46 Additionally, mean DVH differ-

ences for each structure of interest are computed and evaluated for statistical significance in

each patient class. For patients of Class 2, the full width at half maximum (FWHM) of the

profile of the difference in calculated target coverage is used to evaluate the uncertainty in

high-dose coverage of the target due to the involvement of intestinal gas. Dose calculations

in each case were performed using the ViewRay treatment planning system integrated Monte

Carlo algorithm in the presence of a magnetic field with a dose grid resolution of 0.3 cm and

calculation uncertainty of 1%.

5.3 Results

5.3.1 Image comparison

Completing 1500 epochs during training required 126 hours in total. At deployment, infer-

ence requires approximately 0.26 s/slice.

Each of the following comparisons shows an input MR image along with the sCT re-
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construction produced by the blind and proposed models and the corresponding true CT

image. Difference maps illustrate differences in pixel intensities between the true CT image

and sCT image in units of HU. Axial slices for representative patients belonging to Class

1 are displayed in Figure 5.2. Difference maps (Figure 5.2e-f) between the true CT image

and the sCT reconstruction for each patient show a general agreement in the bulk of the

soft tissue represented in each image in the case of the proposed model and a failure to

accurately reproduce HU values in the case of the blind model. This is reflected in the MAE

values computed for patients of Class 1; the blind and proposed approaches achieve values

of 143± 29 HU (MAPE = 14± 3%) and 90± 29 HU (MAPE = 9± 3%), respectively. Also

included in the last row of this comparison is an example of the relatively rare case of a

notable presence of intestinal gas that is well-matched in corresponding MRI and CT scans.

In contrast, Figure 5.3 shows the same comparison made for patients of Class 2 in which

notable discrepancies in the presence of intestinal gas between corresponding MRI and CT

scans are observed. These discrepancies give rise to pixel-wise disagreements of the order of

± 800 HU in the involved gas-containing regions. At the same time, the failure on the part

of the blind model to produce accurate HU values in regions of soft tissue is observed. The

increased likelihood of discrepancies in soft tissue positions between corresponding scans in

patients of Class 2 causes an increase in the MAE computed in regions not containing air in

either image: up to 164± 41 HU (MAPE = 18± 5%) for the blind model and 112± 41 HU

(MAPE = 14± 4%) for the proposed model.

The overlap of regions of air in MR images and the corresponding sCT reconstructions

was evaluated in a total of 158 images from the four patients included in Figure 5.3 using

the DSC. The average DSC improved from 0.56± 0.22 for the blind model to 0.80± 0.21 for

the proposed model. In these air-containing regions, the SSIM computed between the input

MR image and reconstructed sCT image improved from 0.14± 0.06 to 0.34± 0.07 with the

adoption of the proposed model over the blind model.

117



Figure 5.2. Image comparisons for representative slices of well-matched patients of Class 1.
Input MR images (a), output sCT images for the blind model (b) and proposed model (c),
true CT images (d), and difference maps (e-f) between the true CT images and generated
sCT images for the blind and proposed model, respectively. Values in the difference maps
are in units of HU. The final row illustrates the rare case of a relatively well-matched slice
with a notable presence of intestinal gas.
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Figure 5.3. Image comparisons for representative slices of patients in Class 2 characterized
by notable differences in the presence of intestinal gas between corresponding MRI and CT
scans. Input MR images (a), output sCT images for the blind model (b) and proposed model
(c), true CT images (d), and difference maps (e-f) between the true CT images and generated
sCT images for the blind and proposed model, respectively. Values in the difference maps
are in units of HU.
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5.3.2 Dosimetric evaluation

Similarly, the dosimetric evaluation of the proposed approach to sCT reconstruction focused

on the two distinct classes of patients. In both cases, optimization parameters selected in

the CT-based clinical plans were used to recalculate dose distributions based on electron

density information derived from the generated sCT images. Used as a baseline point of

reference to establish the dosimetric accuracy of the proposed reconstructions, the thirteen

well-matched patients of Class 1 demonstrate differences in the prescribed dose coverage of

the PTV (V100) of 1.3±2.1% between CT-based clinical plans and the sCT-based plans with

a gamma pass rate of 98.3 ± 1.3% using 3%/3 mm criterion. The representative DVHs for

patients belonging to Class 1 shown in Figure 5.4 demonstrate close agreement in calculated

target coverage and doses to surrounding tissues between the CT-based clinical plans and

the sCT-based recalculations.

For the twenty poorly-matched patients of Class 2, notable discrepancies in the repre-

sentation of intestinal gas between corresponding MRI and CT scans result in sizeable and

variable differences in PTV V100 coverage: 13.3±11.0% on average. Due to these differences,

the gamma pass rate is reduced to 93.9 ± 9.8% using the same 3%/3 mm criterion. These

differences in target coverage, along with small discrepancies in the dose to closely involved

tissues like the duodenum, are observable in the representative DVHs included in Figure 5.5.

Also plotted in Figure 5.5 is the difference in target coverage at each point, which yields

an approximately Gaussian profile. The FWHM of this profile for all patients in Class 2

covers an average range of 51.4(SD=1.3)–58.2(1.6) Gy. Mean DVH differences between the

CT-based clinical plans and the sCT-based plans for all structures of interest are plotted in

Figure 5.6 for patients of each class. For patients in Class 1, differences between the CT-

based and sCT-based plans are computed to be statistically insignificant (distributed with

a median of zero) using a two-sided Wilcoxon signed rank test47 for each of the duodenum

(p=.34), large bowel (p=.62), liver (p=.52), small bowel (p=.38), spinal cord (p=.91), stom-
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Figure 5.4. Representative DVHs for well-matched test patients of Class 1 comparing the
CT-based clinical plans (dashed) and sCT-based plans (solid) recalculated using the same
plan parameters. The prescribed dose was 50 Gy in all but the last case. The legend at
top-left is applicable to all sub-figures.
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ach (p=.91), and PTV (p=.20). For patients in Class 2, differences were instead shown to be

statistically significant (not distributed with a median of zero) using a two-sided Wilcoxon

signed rank test for each of the duodenum (p=.002), large bowel (p=.007), liver (p<.001),

small bowel (p<.001), spinal cord (p=.01), stomach (p<.001), and PTV (p<.001).

5.4 Discussion

The potential value of generating synthetic CT data for MRI-only ART in the abdomen

is multifaceted. Although therapeutic gains may be achieved, adopting an online adaptive

workflow introduces additional time burdens to the process of treatment delivery including

re-contouring, re-planning, and quality assurance—all of which must occur while the patient

remains on-table. Re-contouring, which must be undertaken to accommodate changes in

normal tissue volumes and—ideally—the variable presence of intestinal gas that is our current

focus, represents a significant portion of the total on-table time per fraction: up to 24 minutes

in the worst case.23 By utilizing the proposed approach to sCT reconstruction explored here

in which the focus was placed on producing a clinically unavailable data set of well-matched

representations of intestinal gas, one is able to rapidly produce (0.26 s/slice) sCT data in

the clinical setting that accurately reflects both the presence of intestinal gas shown in a

patient’s daily MRI scan and HU values present in a true CT scan. In this way, one of the

primary concerns prompting re-contouring in the adaptive setting is potentially eliminated.

When paired with an auto-contouring strategy designed for MRI-guided ART,48 the time

burden associated with re-contouring may become negligible.

Another primary motivation in adopting an adaptive workflow is to achieve dose esca-

lation under shifting anatomic conditions.49 Plan adaptation is often performed to increase

OAR sparing while also increasing target coverage.23 The observed underdosing of the tar-

get for patients of Class 2 characterized by mismatched representations of intestinal gas is

122



Figure 5.5. Representative DVHs for patients of Class 2 characterized by notable differences
in the presence of intestinal gas between corresponding MRI and CT scans comparing the
CT-based clinical plans (dashed) and sCT-based plans (solid) recalculated using the same
plan parameters. Differences in calculated target coverage are plotted at each point (dotted)
to yield an approximately Gaussian curve. The FWHM of these difference profiles for all
patients of Class 2 covers an average range of 51.4–58.2 Gy. The legend at top-left is
applicable to all sub-figures.
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Figure 5.6. Summary of mean DVH differences between CT-based clinical plans and sCT-
based recalculated plans for each structure of interest in well-matched patients of Class 1
(n = 13) and patients of Class 2 (n = 20) characterized by notable differences in the presence
of intestinal gas between corresponding MRI and CT scans.

especially relevant in these scenarios when dose escalation is a specific aim of pursuing plan

adaptation. The higher calculated target coverage in clinical plans in which mismatches

between the planning CT and setup MRI are not accounted for compared to the sCT-based

plans and uncertainty in high-dose regions (Figure 5.5) represent a barrier to any escalation

that is pursued in these scenarios. In the present study, we have explored this effect at the

first treatment fraction for 33 test patients, demonstrating that even at the first fraction,

a non-negligible portion of the patient population may experience uncertainties in simu-

lation CT-based dose calculations due to the involvement of intestinal gas. This concern

becomes even more important when considering the accumulation of dose over the course

of a treatment in which each fraction is adapted and these differences accrue. However, it

is important to note that the DVHs computed for a given treatment fraction and presented

in the ViewRay treatment planning system are full rather than fractional DVHs. Consid-

ering this, the DVHs examined in this study convey the overall effect in the case that the
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magnitude of the discrepancies observed at the first fraction are carried forward through

each subsequent fraction. Considering the hard-to-characterize nature of gas motion, we do

not examine here whether there exists some sort of interplay effect throughout the course of

treatment.

We acknowledge a number of additional limitations to the present study. First and

foremost, the image-to-image translation approach employed here struggles fundamentally

in a situation in which the anatomy represented in corresponding training image pairs differs.

Although we took care in the present study to propagate regions of air, geometric differences

in soft tissues surrounding the target are not always handled sufficiently by multi-modal

deformable image registration. These general effects are observed in image comparisons,

where outputs of the blind model appear to be uniformly lower in intensity compared to

the true CT images. We attribute this to the increased ambiguity in pixel correspondences

in the training image pairs. In effect, more pixel intensities are pushed towards the lower

intensity of air. In the proposed case with the pre-processed training data set, the limiting

ambiguity becomes the difference in soft tissue representation in the corresponding MR

and CT images. The model is reasonably robust to the variations present in the training

data set, but struggles to faithfully reconstruct the most dynamic tissues and structures.

Style-transfer methods that do not rely on matched pairs of training data as exemplified by

CycleGAN24 may be of particular use in this application to overcome the limitations of multi-

modal deformable image registration. The implementation of an unpaired approach may still

benefit from semi-supervised data produced in the manner described here to overcome the

limitations of the unpaired approach in cases with inherent ambiguity, as is the case for

MRI signal intensity. A second limitation of the trained model is reconstruction inaccuracies

at the superior and inferior extremes of a patient’s image stack that stem from the make-

up of the training data set. While every patient data set was roughly centered on the

target and surrounding tissues, slices containing views of the lungs and diaphragm or inferior
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portions of the abdomen were not as equally represented. These reconstruction inaccuracies

may be ameliorated by adopting a more robust 3D network architecture over the relatively

lightweight 2D architecture at the expense of heavily increased memory usage, which may

not be a feasible trade-off in all settings. An additional concern regarding MR image quality

in the abdominal sCT reconstruction task is the issue of susceptibility artifacts in the GI

tract. The effects of these artifacts are lessened due to the lower field strength of the MRgRT

platform utilized here,50 but certain circumstances involving the ingestion of fortified foods

prior to treatment—although not encountered in the present study—have been reported and

are thus an important consideration in this application.51

An inherent challenge in this space is the issue of image evaluation when the underlying

premise is that the “ground truth” simulation CT data is incompatible with the setup MRI

data used due to the involvement of intestinal gas and the motion of GI structures. In

computing both the MAE and MAPE, direct pixel-wise comparisons are made between the

sCT images and the corresponding CT images. In a similar way, the multi-modality image

similarity comparison made between MR images and sCT reconstructions by way of the

SSIM is challenged by modality-specific differences in contrast and luminance. As such, the

image comparisons made here are imperfect comparisons and we instead rely more heavily

on the improvement in the representation of air in our sCT reconstructions as measured

by the DSC considering that is the primary focus of this work. Nonetheless, a comparison

to other methods is warranted. Ahunbay et al.29 achieved an MAE of approximately 25

HU in the abdomen using a method entirely reliant of multiple deformations of true CT

images. Closer to the realm of true image synthesis, multiple atlas-based techniques have

reported values ranging from 40–200 HU for sites including the pelvis, cranium, and general

torso.10,11,30 Finally, results of DL-based approaches at various sites quantified using various

metrics have been collected and reported by Spadea et al.12 for general comparison with

the results achieved here. For abdominal cases demonstrating little involvement of intestinal
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gas, Cusumano et al.34 report an MAE of 78.71 ± 18.46 within the body contour. In a

similar cohort, Qian et al.35 report MAE values ranging from approximately 42–79 HU for

two DL-based methods. In the MAE values we report, we do not distinguish between regions

of soft tissue and bone, but we do compare competitively to existing methods.

Finally, the separation of test patients into two separate classes performed here relied

on the qualitative assessment of the relative involvement of intestinal gas and the degree to

which representations of intestinal gas matched between corresponding MRI and CT scans.

In some cases, the characterization of the patient was clear—there were easily observable

discrepancies or gas was entirely uninvolved—but the categorization was more challenging

in other cases. As such, the furthering of this and related work would benefit from some

quantitative approach to the characterization of the involvement and similarity of repre-

sentations of intestinal gas that would in turn enable the exploration of trends in distinct

patient groups.

5.5 Conclusions

The approach to sCT reconstruction in the abdomen evaluated here highlights the challenges

posed by the presence of intestinal gas throughout the MRI-guided ART workflow. Eliminat-

ing the burden of handling intestinal gas from the clinical setting through the creation of a

clinically unavailable training data set for training a paired data generative model offers the

potential to streamline a time-intensive portion of the adaptive treatment workflow. These

time savings are gained while also enabling accurate dose calculations in adaptive treat-

ments despite the variable presence of intestinal gas at each stage of treatment planning and

delivery during MRI-only ART in the abdomen.
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Chapter 6

Ensemble learning and personalized

training for the improvement of

unsupervised deep learning-based

synthetic CT reconstruction
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6.1 Introduction

The growing adoption of integrated MR-linac systems has placed an increased focus on

the capabilities and practicalities of the MRI-guided radiation (RT) therapy workflow.1–7

Compared to the x-ray CT examinations used in the conventional image-guided RT setting,

MRI demonstrates an improved soft tissue contrast that is useful for the delineation of targets

and organs at risk (OARs) throughout the body.8–10 Additionally, the functional imaging

capabilities of MRI have opened the door to biological adaptation in a way that is not possible

in the conventional CT-based setting.9,10 These expanded and attractive capabilities carry

practical limitations, however. A key limitation in this MRI-guided setting is that these

nascent workflows still rely on a simulation CT scan to provide electron density information

for dose calculations. The inclusion of this CT simulation scan brings concerns related not

only extra imaging dose but also challenges with multi-modality image registration that

can be excessively limiting, particularly for sites in which large anatomical variations are

observed on a regular basis.10–15 In light of these challenges related to a reliance on CT

simulation in this setting, the possibility of adopting an MRI-only RT workflow in which

MRI is the sole image modality used for treatment guidance and planning has attracted a

significant amount of attention.7,16,17

A primary technical hurdle to enabling such a workflow is the creation of synthetic CT

(sCT) data that provides electron density information for dose calculations, thus eliminating

the need for a simulation CT scan. Approaches to this problem of sCT reconstruction have

undergone various stages of development as the MRI-guided workflow has garnered more

interest over time but may be broadly categorized into three groups: bulk density assignment,

atlas-based / hybrid approaches, and learning-based approaches.18–20 The broad strokes bulk

density assignment approaches involve assigning uniform HU values based on drawn tissue

contours and are thus better suited in practice for relatively homogeneous sites with fewer
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tissue types such as the breast.21 The atlas-based or hybrid approaches are relatively more

complex, as tissue contours or HU values directly are achieved through the registration of

an incoming patient’s MRI data with a large patient atlas.19,22 Recent experiences with

the sCT reconstruction task have seen deep learning-based approaches falling into the third

category be the overwhelmingly popular choice in this setting since they were introduced in

2017 in the context of the brain.23 The expressive power of these deep network architectures

makes them well suited for solving the MRI-to-CT image-to-image translation task that

sCT reconstruction may be posed as, leading to the explosion of varying techniques and

approaches to the problem of sCT reconstruction in recent years.20

One notable axis for the categorization of these deep learning-based approaches is the

required structure of the training data set. Considering the straightforward framing of the

sCT reconstruction task as an image-to-image translation problem in which a mapping from

MRI to CT is learned, a training data set consisting of paired MR and CT images showing

the same anatomy as represented by each modality is an intuitive starting point that is

indeed used by many frameworks.20 Naturally, these paired-data approaches rely on image

pairs that demonstrate good agreement in the represented anatomy, which is not always

so easily satisfied. Training data in this sCT reconstruction task is often collected from

corresponding MRI and CT simulation scans performed prior to treatment. The time delay

that often exists between the respective acquisition of each of these simulation scans gives

rise to normal anatomical variations on various timescales due to respiration or OAR filling,

for example.24–31 The discrepancies in corresponding MRI and CT scans resulting from these

anatomical variations have an obvious clinical impact in the MRI-guided setting, but also

represent a technical hurdle to the successful adoption of these paired-data approaches in

some disease sites.32

In order to avoid the data availability challenges presented by these discrepancies, one

may instead adopt highly expressive unpaired-data approaches that do not rely on a struc-
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tured training data set consisting of paired MR and CT images like the paired-data ap-

proaches. In this setting, the image-to-image translation problem is further posed as a

problem of style transfer rather than a simple mapping from MRI to CT based on observed

pixel correspondences in related images. The sCT output of a network that solves this style

transfer problem is an answer to the question “What would this MR image look like if it were

instead ‘painted’ in the style of a CT image?” Instead of relying on pixel-wise differences

between a sCT image and the ground truth CT image during training, an unpaired-data

approach exemplified by CycleGAN33 enforces a cycle consistency loss in an image that has

been transformed in both the forward (MRI-to-CT) and backward (CT-to-MRI) directions,

eliminating the need for a ground truth CT image in the loss formulation. Avoiding this re-

quirement for a structured training data set consisting of well-matched image pairs presents

an obvious advantage of an unpaired-data approach in the low-data radiation oncology set-

ting. These expressive unpaired-data approaches are not without their drawbacks, however.

More so than their paired-data counterparts, unpaired-data approaches fundamentally hal-

lucinate features in the reconstructed output in a way that goes unchecked by any pixel-wise

comparison to a ground truth image.34 Along this line, the authors of the seminal Cycle-

GAN paper acknowledge a gap between the unpaired- and paired-data approaches that may

be difficult to close in practice, a finding that has also been echoed in sCT reconstruction

studies that follow.33,35–37

Considering this gap, our interest in this work is in improving the quality of CycleGAN

outputs in the sCT reconstruction task through two distinct methods. The first approach we

employ involves the well established concept of ensemble learning in which multiple models

are used to ultimately achieve better performance than can be achieved by a lone model.38 In

this case, we adopt a stacking or cascading approach specifically, applying a paired-data ap-

proach to the sCT outputs of the unpaired-data CycleGAN to learn a mapping from sCT to

CT as an additional fine-tuning step. The alternative to this more established ensemble ap-
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proach that we explore here involves a patient-specific training strategy designed to produce

personalized models that demonstrate improved task performance. The approach, termed

Intentional Deep Overfit Learning (IDOL),39 was developed with paired-data approaches in

mind, so the novel question we seek to answer here is whether or not an unpaired-data ap-

proach benefits from some degree of implicit supervision as imparted by such a personalized

training strategy. We explore this question in the context of the sCT reconstruction task in

the male pelvis, comparing the paired-data fully convolutional DenseNet (FCDN)40 with and

without the IDOL strategy to the unpaired-data CycleGAN framework in its unimproved,

ensemble, and IDOL forms.

6.2 Materials and Methods

6.2.1 Training and testing data

Image data in this retrospective study was collected from a total of 25 prostate cancer patients

previously treated at our institution using conventional C-arm linacs. In each case, CT and

MRI simulation scans were acquired prior to treatment delivery for planning and guidance.

1.5 T MRI scans (864 × 864 × 444 matrix, 0.64 × 0.64 × 1.35 mm3) acquired using a

dedicated MR simulation machine (Ingenia Ambition X, Philips Healthcare, Andover, MA)

with a T2w SE sequence were registered to the corresponding CT simulation scans (nominally

512 × 512 × 100-150 matrix, 1.17 × 1.17 × 3 mm3) acquired using a dedicated CT simulator

(Big Bore, Philips Healthcare, Andover, MA). Deformable registration and resampling was

performed using a stand-alone software suite (Velocity, Varian Medical Systems, Palo Alto,

CA) prior to exporting the images for training and testing.

Training and evaluation of the paired-data (described in Section 6.2.3), unpaired-data

(described in Section 6.2.4), and cascade ensemble (described in Section 6.2.5) architectures

was performed using a five-fold cross validation scheme. Models were trained in each case
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for 120 epochs with a batch size of 1 using TensorFlow41 v2.0 in Python running on a 12

GB Titan Xp GPU (NVIDIA, Santa Clara, CA). The personalized IDOL training approach

(described fully in Section 6.2.6) involved a secondary stage of training of 60 additional

epochs for each of the base paired-data and unpaired-data models for the five patients in

fold 3, chosen at random for the validation of this approach.

6.2.2 Model and loss formulation

The fundamental approach to sCT reconstruction as an image-to-image translation task has

been previously described.21 As in that case, the paired- and unpaired-data approaches we

adopt here (Figure 6.1) fall into the category of the generative adversarial network (GAN),

which consists of two networks: a generative model that produces sCT outputs from MRI

inputs and a discriminative model that learns to differentiate between true CT images and

generated sCT images. During training, the loss functions of these competing networks are

optimized through alternating training steps such that as one network performs better at

its respective task it reinforces the training of the other network. In other words, as the

discriminator does a better job of differentiating between true CT images and generated

sCT images, the generator in turn does a better job of producing convincing sCT images,

ultimately resulting in a generative model that provides an adequate solution to the MRI-

to-CT translation task.

The discussion of the loss functions used by the various approaches we explore here relies

in part on the definition of sigmoid cross entropy loss:41

L = x⃗− x⃗ ∗ z⃗ + log (1 + exp (−x⃗)), (6.1)

where x⃗ is the vector of logits computed by the discriminator and z⃗ is a labels vector

containing true (⃗1) or false (⃗0) labels. Using this general definition and starting with the
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Figure 6.1. Conceptual representations of the paired-data and unpaired-data approaches
used in this study. In the paired-data approach (a), a forward translation from MRI to
CT is applied by a generative model (green). Generator loss consists of adversarial loss
computed by the discriminative model DCT and pixel-wise loss between the sCT output
and the ground truth CT. In the unpaired-data approach (b), two sets of generative and
discriminative models perform a similar process in both the forward (MRI-to-CT, green)
and backward (CT-to-MRI, blue) directions. The key distinction is the inclusion of a cycle
consistency loss between real and cycled images rather than a comparison to a ground truth
image. (b) adapted from Zhu et al.33
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relatively more straightforward paired-data approach (Figure 6.1a, described fully in Section

6.2.3), we define the loss function of the generator gloss as

gloss = Ladv + α · lMAE, (6.2)

with adversarial loss Ladv and pixel-wise mean absolute error (MAE) loss lMAE weighted

by factor α = 10 in this case. The adversarial loss term, intended to penalize predictions that

are not observed to be true CT images by the discriminator, is the cross entropy loss (Eq.

6.1) computed with predicted image logits x⃗ paired with the true label of z⃗ = 1. Pixel-wise

agreement between ground truth CT images CTtrue and sCT predictions CTpred is enforced

through the MAE:

lmae = mean (|CTtrue − CTpred|) . (6.3)

The discriminator in turn seeks to correctly distinguish between true CT images and sCT

images produced by the generator. As such, the discriminator loss function dloss relies only

on the cross entropy loss defined in Eq. 6.1:

dloss = Lpred + Ltrue, (6.4)

with separate terms for the predicted sCT images Lpred and true CT images Ltrue. In

contrast to the adversarial loss formulation for the generator in which predicted images

are paired with a contradictory true label, predicted or true image logits are assigned the

“correct” label of false or true, respectively, in the computation of dloss.

In the absence of ground truth CT images in the unpaired-data setting, the unpaired-

data framework utilized here and described fully in Section 6.2.4 extends the GAN concept

to include both a forward translation (MRI-to-CT) and a backward translation (CT-to-

MRI) using two sets of adversarial generators and discriminators (Figure 6.1b). The loss
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formulation for the generators in this setting maintains the cross entropy-based adversarial

loss term Ladv with predicted image logits paired with a true label as previously described,

but implements additional cycle consistency loss lcyc and identity loss lid terms in place of a

pixel-wise comparison between predictions and ground truth images:

gloss = Ladv + lcyc + lid. (6.5)

The concept of cycle consistency loss can perhaps be best understood through the lens of

language: one desires that an English text translated to Spanish and then back to English

be identical to the original English text. In the same way, the cycle consistency loss term

lcyc aims to enforce that completely cycled images that have gone through the forward and

backward translations (i.e. CTreal − sMR−CTcyc or MRreal − sCT −MRcyc) are identical

to the original images:

lcyc = λ · [mean (|CTreal − CTcyc|) + mean (|MRreal −MRcyc|)] , (6.6)

with weighting factor λ = 10 in this case. Finally, the identity loss term lid aims simply

to enforce similarity between a real image Ireal already belonging to the target class of a

given generator and its translation by that generator Isame:

lid = 0.5 · λ ·mean (|Ireal − Isame|) , (6.7)

again with weighting factor λ = 10. In other words, the forward mapping from MRI-to-

CT should not modify a CT image input that already belongs to the destination class.

The identifying true versus fake objective of the CT and MR discriminators in the

unpaired-data framework is identical to that of the CT discriminator in the paired-data

approach; as such, the discriminator loss formulation for these discriminators is unchanged

from the general equation presented in Eq. 6.4.
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6.2.3 Paired-data architecture: FCDN

The paired-data approach employed here is the FCDN architecture previously used by our

group in application to the sCT reconstruction task in the abdomen.32 The primary building

block of the FCDN is the dense block, an example of which is shown in Figure 6.2. Dense

blocks are composed themselves of intermediate convolutional layers consisting of ReLU

activation, same convolution with 3 × 3 kernels computing a total of 16 feature maps per

layer in this case, and dropout with probability p = 0.2. The characteristic feature of the

dense block is the degree of connectivity: the input of the block is concatenated before each

intermediate layer to the output of the preceding layer and the output of the block itself

is formed by the concatenation of the output of each intermediate layer. Ultimately, these

connections provide a short path to each layer in the network, improving its convergence

behavior in the course of training.40

Figure 6.2. Example dense block consisting of three internal ReLU-convolution-dropout
layers. The input of the block is concatenated before each intermediate layer and the output
of the block itself is the concatenation of the output of each layer.

Figure 6.3 illustrates the U-net42 structure constructed with these dense blocks, which

consists of stacked encoder and decoder paths connected by skip connections that transfer

structural features that aid in the reconstruction task from the encoder to the decoder. As

142



the input MR image travels through the encoder path it is represented as an increasingly

rich set of feature maps as computed by the convolutional layers making up the encoding

dense blocks. Transition down (TD) layers in the encoder path progressively reduce the

dimension of these feature maps through ReLU activation, 1× 1 same convolution, dropout,

and 2 × 2 max pooling operations. On the decoder path, the dimensionality of the input

is progressively recovered through transition up (TU) layers consisting of 3 × 3 transpose

convolution operations with stride 2.

Figure 6.3. FCDN architecture. The encoder and decoder paths making up the U-net struc-
ture are connected through skip connections that transfer reconstruction-aiding structural
features from the encoder to the decoder. DBn denotes a dense block with n convolutional
layers in which intermediate outputs are concatenated to form the output of the dense block
itself. Adapted from Olberg et al.32

The adversarial discriminator paired with the FCDN generator is by comparison a rel-

atively simple architecture consisting only of 5 convolution-BatchNorm-ReLU layers that

apply 64, 128, 256, 512, and 1 filters, respectively.21 Layers in the discriminator utilize 4× 4

kernels and leaky ReLU activation with slope 0.2.

Optimization of the trainable parameters describing the computations performed in the

generator and discriminator of the paired-data FCDN architecture is performed in alternating
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steps throughout the course of training. For gloss, the Adam optimizer43 is used with an initial

learning rate of 2 × 10−4 subject to staircase exponential decay of rate 0.95 at intervals

of 10000 steps, β1 = 0.7, β2 = 0.999, and ϵ̂ = 10−8. The optimization of dloss utilizes

TensorFlow’s gradient descent optimizer with an initial learning rate of 2× 10−5 subject to

the same decay described previously.

6.2.4 Unpaired-data architecture: CycleGAN

Due to the increased memory requirements of the CycleGAN architecture that consists of

two sets of generative and discriminative models, the generator architecture44 adopted for

both the forward and backward models in this unpaired-data approach is relatively simple

compared to the FCDN architecture described in Section 6.2.3. The U-net structure with

skip connections between the encoder and decoder paths is maintained, but the constituent

dense blocks on the encoder path are replaced instead with 6 layers consisting of 4× 4 same

convolution with stride 2 followed by instance normalization45 and leaky ReLU activation

with slope 0.3. Layers in this encoder path apply 64, 128, 256, 512, 512, and 512 filters,

respectively. Following a bottleneck layer computing another 512 feature maps, the decoder

path again replaces the dense blocks with 6 layers that perform 4 × 4 same transpose con-

volution with stride 2, instance normalization, dropout with probability p = 0.5 in the first

two layers, and ReLU activation. Similarly, these layers in the decoder path apply 512, 512,

512, 256, 128, and 64 filters, respectively. A final convolutional layer with hyperbolic tangent

activation maps to the desired number of channels to produce the ultimate output.

The discriminator architecture utilized in the unpaired-data approach is comparable to

that of the paired-data approach described in Section 6.2.3 with the key distinction being

the adoption of instance normalization45 rather than batch normalization.46 The batch size

of 1 chosen during training for both the paired- and unpaired-data approaches renders this

distinction moot in practice, but it is an important consideration if a larger batch size is
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chosen.

Similar to the process described in the paired-data case, optimization of the trainable

parameters contained in the generative and discriminative models making up the unpaired-

data CycleGAN architecture is performed in a sequential manner throughout the course

of training. For both gloss and dloss for the forward and backward models, optimization is

performed using the Adam optimizer with learning rate 2× 10−4, β1 = 0.5, β2 = 0.999, and

ϵ̂ = 10−7.

6.2.5 Ensemble

Borrowing from the concept of ensemble learning, the first approach to improving upon the

unpaired-data results we adopt may be categorized broadly as a stacking approach in which

multiple models are used to produce the final output.38 Although stacking approaches have

most often been applied in image classification tasks using the average of predictions made

by multiple models in parallel,47–49 a sequential cascade approach more akin to the one we

adopt here has been applied to an image reconstruction task.50 In a similar way, the ensemble

approach used here utilizes unpaired-data and paired-data models applied sequentially to

produce the final output. The sCT output of the trained CycleGAN model is treated as

an intermediate result that is in turned used along with the ground truth CT image as the

training input for the FCDN architecture applied to learn a secondary sCT-to-CT mapping.

Optimization of the trainable parameters of the secondary paired-data models utilized

in this cascade ensemble approach is performed in the same manner as described for the

MRI-to-CT models in Section 6.2.3.
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6.2.6 IDOL

As an alternative to the more established ensemble approach, the second approach to improv-

ing upon the unpaired-data results we explore here is the IDOL training strategy previously

introduced by our group, which aims to produce patient-specific models by leveraging the

behavior of a model intentionally overfitted to a personalized training data set. The formu-

lation and backing of the IDOL framework has been described in detail elsewhere.39 Briefly,

the approach is motivated by the focus on individual patients characteristic of the idea of

precision medicine, an idea that runs counter to the conventional wisdom in deep learning

settings in which the goal is to produce a model that generalizes well to all future patients.

In the IDOL approach, this conventional generalized model is further fine-tuned through a

secondary training process that utilizes patient- and task-specific prior information as illus-

trated in Figure 6.4. In application to the sCT reconstruction task, this secondary training

data set consists of deformed image pairs achieved through the repeated application of ran-

domized deformations to a patient’s simulation MRI and CT scans.

Evaluation of the IDOL approach in the paired- and unpaired-data settings was performed

for the five patients in fold 3, chosen at random. For both the paired-data and unpaired-data

approaches, the same training data set consisting of 30 deformed image sets derived from

the application of random deformation vector fields to the patient-of-interest’s MRI and CT

simulation scans was used in the second stage of training for each patient. These deformed

image sets were produced as follows:

1. Seed pixels were selected at random from a binary mask of muscle-containing regions

in the source MR image.

2. The sign and magnitude of the deformation vector at each of these seed pixels was

randomized, with x and y components of the magnitude being controlled by user-

defined strength and offset parameters.

146



Figure 6.4. Two stage training process of the IDOL approach. In the first stage, a generalized
model is trained in the conventional manner with data from the first N patients. This
generalized model is fine-tuned to produce a personalized model tailored to patient N + 1
in the second stage of training. The secondary training data set is constructed through the
repeated application of random deformation vector fields (RDVF) to the simulation image
data of the patient of interest. Adapted from Chun et al.39

3. A 41×41 Gaussian filter with σ = 10 was applied to produce a continuous deformation

vector field.

4. Pixel values in the resulting deformed MR and CT images were assigned as the weighted

average of a four pixel neighborhood surrounding the source coordinates.

Personalized models for each of these five patients were produced through 60 epochs of

additional training with this patient-specific training data set, subject to the same opti-

mization processes described in Sections 6.2.3 and 6.2.4 for the paired- and unpaired-data

approaches, respectively.
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6.2.7 Evaluation

Evaluation of the various methods explored here is focused on comparisons of image quality.

Visual comparisons between the sCT outputs of each model are accompanied by difference

maps between the true CT image and sCT outputs. Subsequent quantitative comparisons

make use of the MAE and peak signal-to-noise ratio (PSNR):

MAE =

∑n
i=1 |CTi − sCTi|

n
, (6.8)

where n is the total number of pixels within the region of interest, and

PSNR = 10 · log10
(
MAX2

I

MSE

)
, (6.9)

where MAXI is the maximum possible pixel value governed by the data type of the input

image and the mean square error (MSE) between the ground truth CT and predicted sCT

is calculated as

MSE =

∑n
i=1 (CTi − sCTi)

2

n
, (6.10)

with n being the total number of pixels within the body contour.

Pixel-wise agreement as measured by the MAE is evaluated both within the body contour

and within a binary mask containing only regions of bone (HU > 200). The evaluation of

image quality using the PSNR is performed within the body contour. Finally, the evaluation

of statistical significance between methods is performed with the left- or right-tailed Wilcoxon

signed rank test51 where appropriate.
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6.3 Results

Completing 120 epochs of training for the paired-data and unpaired-data base models re-

quired approximately 13 hours and 30 hours, respectively, on average across the five folds.

An additional 60 epochs of training using the IDOL approach required another 8 hours and

19 hours for the paired- and unpaired-data models, respectively, on average across the five

validation patients. Finally, the 120 epochs of secondary training undertaken for the ensem-

ble approach required an average of 13 hours across the five folds, like in the case of training

the base paired-data models. Considering the time required to train the initial unpaired-data

model in the cascade, the ensemble approach required an average of 43 hours on average to

train. At the time of deployment, inference is performed in a sub-second time frame per slice

in each case.

The visual comparison in Figure 6.5 presents the input MR image, corresponding ground

truth CT image, and sCT outputs of the various approaches explored here at a representative

slice. Difference maps between the ground truth CT and sCT outputs illustrate differences

in pixel intensities in units of HU. These difference maps demonstrate general trends ob-

servable across the validation folds. Stark improvements are seen with the adoption of the

IDOL training strategy in the paired-data setting (Figure 6.5d) and to a lesser extent in

the unpaired-data setting, with the CycleGAN IDOL output (Figure 6.5g) demonstrating

improvements at tissue boundaries and in larger regions of bone. Similarly, Figure 6.5e il-

lustrates the smoothing effect characteristic of the cascade ensemble approach that leads to

improvements in the bulk soft tissue and within regions of bone but also acts to blur certain

boundaries.

Observations from this visual comparison reflect what is shown in the distributions of the

quantitative metrics computed over the data set. MAE values calculated over all five folds

for the paired-data FCDN models, unpaired-data CycleGAN models, and cascade ensemble
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Figure 6.5. Image comparisons for a representative slice showing the input MR image (a)
and true CT image (b) along with sCT outputs and CT − sCT difference maps for the
paired-data FCDN (c), FCDN IDOL (d), cascade ensemble (e), unpaired-data CycleGAN
(f), and CycleGAN IDOL (g) models. Values in the difference maps are in units of HU.
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models are presented in Figure 6.6 alongside the subset of patients in fold 3 for whom the

IDOL approach was performed to produce personalized paired- and unpaired-data models.

Similarly, Figure 6.7 and 6.8 present the same comparison for MAE values calculated within

regions of bone and the PSNR, respectively. Mean values for these three metrics are presented

for each model in Table 6.1 for comparison.

Figure 6.6. MAE values calculated within the body contour. Values over 1369 images for
the base paired-data FCDN, unpaired-data CycleGAN (CG), and cascade ensemble (ES)
models are shown at left in each region, followed by values over 290 images for patients of
fold 3 for whom personalized IDOL models were also produced. Mean values are included
in Table 6.1 for comparison.

Statistical significance between approaches was established as follows, all with p < .001

unless otherwise noted:
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Figure 6.7. MAE values calculated only within regions of bone. Values over 1369 images
for the base paired-data FCDN, unpaired-data CycleGAN (CG), and cascade ensemble (ES)
models are shown at left in each region, followed by values over 290 images for patients of
fold 3 for whom personalized IDOL models were also produced. Mean values are included
in Table 6.1 for comparison.
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Figure 6.8. PSNR values calculated within the body contour. Values over 1369 images for
the base paired-data FCDN, unpaired-data CycleGAN (CG), and cascade ensemble (ES)
models are shown at left in each region, followed by values over 290 images for patients of
fold 3 for whom personalized IDOL models were also produced. Mean values are included
in Table 6.1 for comparison
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1. Adopting the IDOL approach for patients in fold 3 offers significant improvements in

body MAE, bone MAE, and PSNR for both the paired- and unpaired-data approaches.

2. The cascade ensemble offers additional and significant benefits over the unpaired-data

IDOL models in all three metrics for patients in fold 3.

3. Further, the ensemble cascade models demonstrate significant improvements over the

base CycleGAN models in all three metrics.

4. The paired-data approach demonstrates significantly better performance in all metrics

than the unpaired-data approach in the base case and better performance than the

ensemble approach in bone MAE and PSNR, but differences in overall body MAE are

statistically insignificant (p = .06).
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6.4 Discussion

As the MRI-guided RT environment and its horizons have expanded, the technical challenge

of sCT reconstruction has prompted a great deal of development ranging from early explo-

rations of atlas- and classification-based approaches18,19 to the recent focus on deep learning

approaches to the problem.20 A defining characteristic of many previous studies in this space

is the choice of network architecture and the accompanying requirement (or lack thereof) for

paired training data. Surveyed studies present a notable slant towards the paired-data set-

ting, with approximately 84% of approaches falling into this category.20 These paired-data

approaches represent an intuitive entry point to the problem of deep learning-based sCT

reconstruction as the correspondence between images in the training data set enables the

use of direct comparisons between true and predicted images in the choice of loss function,

rendering the training process relatively transparent.52,53 However, the challenge of collect-

ing a training data set of sufficient size and quality under the restriction of this paired-data

requirement can be limiting in the low-data radiation oncology setting, which is a motivating

factor in the adoption of the unpaired-data approaches exemplified by CycleGAN. Despite

this attractive advantage of the unpaired-data approach, the gap between paired-data and

unpaired-data results can be difficult to close, which is an observation that has been re-

ported in the original CycleGAN paper33 and other studies in this space.35–37,54 We have

again demonstrated that gap here, but we also have explored two distinct approaches that

are successful in bridging the gap between the paired- and unpaired-data approaches to some

degree.

First among these approaches is the cascade ensemble approach in which the unpaired-

data CycleGAN and paired-data FCDN architectures are applied in sequence to produce the

ultimate sCT output. Adopting the ensemble approach offers significant improvements in

image quality and reconstruction fidelity in regions of bone over the unpaired-data approach
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alone. It is important to note, however, that the implementation explored here is ultimately

a paired-data approach, which may not always be a feasible design choice considering the

challenges of data availability that we have already discussed. The design of the ensemble

itself is a topic deserving of further study with a focus on determining optimal choices for

the size of the ensemble, the complexity of the constituent networks, and the relationships

between networks in the ensemble. We have adopted a simple sequential structure here as a

point of comparison, but there are certainly a wide array of design choices that could have

been made instead, taking inspiration from other common ensemble learning strategies like

bagging or boosting.38 A final note on the ensemble approach regards the time required for

inference at deployment: although it was still a sub-second process to generate images with

the ensemble implemented here, as the structure of the ensemble becomes more complex

with more constituent models, the latency associated with producing the ultimate output

may become a concern in time-sensitive settings like the online adaptive therapy workflow.

In our exploration of the second approach to improving the unpaired-data results we

sought to answer a novel question: does an unpaired-data approach benefit from a person-

alized training strategy initially designed with paired-data approaches in mind? The IDOL

approach aims to leverage the behavior of a model that has been intentionally overfitted to

a patient-specific data set, taking advantage of the strong supervision granted with paired

training samples. The significant improvements observed in the unpaired-data results with

the adoption of the IDOL training strategy suggest that unpaired-data approaches may in

fact benefit from some degree of implicit supervision that exists in a tailored, patient-specific

training data set. This result echoes the tangentially related finding of previous studies that

even imperfect registration or otherwise pairing data in the training data set is beneficial

in the unpaired-data setting.55–58 In this study, we maintain a similar degree of supervision

with the paired training data set in the unpaired-data setting, but also demonstrate that

the additional implicit supervision granted with the patient-specific IDOL training strategy
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offers the potential for significant improvements in this setting.

Although the IDOL approach as implemented in the present study did utilize paired data,

the approach to its benefit does not strictly require implementing a paired-data architecture

as in the case of the cascade ensemble. In furthering this point, an area of future interest

is the implementation of the IDOL training strategy in the unpaired-data setting without

perfectly corresponding training image pairs. Designed to operate in the conventional early

MRI-guided workflows that still rely on CT simulation, the IDOL approach does however

require MRI and CT data for a given patient, which limits its applicability in a pure MRI-

only setting. Considering this, approaches that may be trained with existing retrospective

databases of MR and CT images may be more beneficial in the MRI-only workflows of the

future. An additional limitation of the IDOL approach as implemented in the present study

is specific and inherent to the treatment setting of patients involved in this study. In contrast

to the MRI-guided setting utilizing a combination MR-linac in which MR setup images are

acquired at each fraction, the treatments in this study were performed with pre-treatment

MRI and CT simulation for guidance but using conventional C-arm linacs with on-board

CBCT imaging capabilities. In the MR-linac case, MR setup images may be used as test

cases for personalized models trained with data sets derived from the simulation image sets.39

Owing to the fact that setup images in this case are CBCT images, the only corresponding

MRI and CT scans available in this study are the simulation images. As such, IDOL training

was performed with deformations of the simulation MR data that was used in testing for

each patient. There is a lesser degree of separation in this case than in the ideal setting in

which IDOL was introduced, but we maintain the principle of testing a network on unseen

data nevertheless.

A final limitation of each of the models implemented here is the single plane 2D archi-

tecture utilized in each case. The loss of through-plane structural information may hinder a

model in the reconstruction task, prompting the adoption of multi-plane 2D approaches at
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the cost of increased computational expense or model complexity.59,60 Even further, fully 3D

architectures may be utilized to completely capture the complexity of a patient’s anatomy,

but these architectures face their own challenges of heavily increased memory usage that

introduce design compromises (e.g. small patch-based reconstruction), leading to trade-offs

that may not be feasible or desirable in all situations.20

6.5 Conclusions

The methods explored here demonstrate the gap between paired- and unpaired-data ap-

proaches to the sCT reconstruction task that can be limiting in the MRI-only RT setting.

The cascade ensemble that combines multiple generative models and the personalized IDOL

training strategy each offer a means of closing this gap to a certain extent, and each method

carries its own benefits and requirements for implementation. Ultimately, these methods

are a step towards enabling the full utilization of powerfully expressive unpaired-data ap-

proaches to sCT reconstruction, avoiding the requirement for paired training data that can

be fundamentally limiting in the low-data radiation oncology setting.
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Chapter 7

Conclusions
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The works detailed in this dissertation address shortcomings of the MRI-guided ART

workflow at three critical stages: 1) the expensive re-planning process that occurs when the

anatomy observed at treatment differs drastically from that represented in the simulation

treatment plan; 2) the acquisition of MR images for treatment guidance, a process limited

by the trade-off between spatial resolution and the time required for a given scan; and 3) the

challenge of synthetic CT (sCT) reconstruction to enable an MR-only RT workflow in which

the requirement for a secondary CT simulation scan is eliminated. An integrated software

suite that seamlessly connects the functionalities of the various approaches discussed here

could represent a means to achieving a streamlined and effective MR-only RT workflow in

a way that has not previously been possible. Investigating these integrated solutions is an

important direction of future interest considering the time-critical nature of the adaptive

setting—reducing the time required at each stage of the adaptive therapy process reduces

the time a patient must remain on the couch in treatment position.

The OAR grouping method discussed in Chapter 2 was applied with the aim of improving

target coverage in adapted fractions during MRI-guided daily ART of pancreatic cancer. The

motivation of the method is to render simulation treatment plans used throughout the course

of treatment more robust to anatomical variations observed daily, especially variations in the

size and position of the primary critical structures relative to the target. In the conventional

approach, these four primary structures—the stomach, duodenum, small bowel, and large

bowel—are considered separately in the optimizer, meaning that the weighting applied to a

structure at simulation may not be applicable at a later treatment fraction. By considering

these four structures as a single combined structure, the OAR grouping method greatly

simplifies the treatment planning process in this setting and ultimately led to improved

prescription dose coverage of the target in 84% of adapted fractions.

Chapter 3 presents a framework for MRI super-resolution (SR) reconstruction that en-

ables the use of fast (∼ 3 s), low-resolution (LR, 64×64 pixels, 6.0×6.0 mm per pixel) scans
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for treatment guidance through fourfold upsampling. Acquiring true high-resolution (HR)

images of the same specifications as the SR outputs required an average scan period of 17

s, meaning an ultimate time savings of over 14 seconds could be achieved. Considering the

detrimental effects of motion artifacts that can arise in even the relatively short 17 s acquisi-

tion time, this time savings translates directly into important clinical impacts of improving

image quality and patient comfort. The primary innovation of the proposed framework is

the focus placed on producing a training data set of paired LR and HR images that reflects

clinical reality through the use of the down-sampling network (DSN). As opposed to a more

conventional approach such as k-space down-sampling that represents an idealized transfor-

mation, the DSN was trained with true LR and HR image pairs from a small number of

volunteers to learn a true mapping from the HR domain to the LR domain. Applying this

mapping to abundant HR data allowed for the creation of a data set of sufficient size and

quality for the training of the ultimate SR generative model that was successfully applied to

the SR reconstruction task for breath-hold 3D scans and free-breathing 4D-MRI acquisitions.

Approaches to the various technical and site-specific challenges encountered in the sCT

reconstruction task discussed in Chapters 4, 5, and 6 represent steps towards achieving an

MR-only RT workflow in which MRI is the sole imaging modality used for treatment planning

and guidance, eliminating the requirement for CT simulation in this setting. Compared to

a ubiquitous and parameter-dense network architecture commonly used in the sCT task,

the parameter-efficient deep spatial pyramid pooling architecture utilized in Chapter 4 offers

considerable improvements in the time required for training while also improving resulting

image quality as measured by the mean absolute error by nearly 40%.

In Chapter 5, the proposed preprocessing approach aimed to enable the use of a super-

vised, paired-data framework for sCT reconstruction in the abdomen, where the primary

barrier is the variable presence of intestinal gas in corresponding MRI and CT scans. These

discrepancies present an obvious clinical impact on the accuracy of dose calculations in this
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setting, giving rise to differences in calculated target coverage of approximately 13% on av-

erage and a degree of uncertainty in the high-dose region when unaccounted for that may

limit the effectiveness of any dose escalation efforts pursued through plan adaptation. An

important point of future interest in the abdomen in particular is gaining an understanding

of any interplay effects that may arise from the complex interactions between anatomical

motion, imaging, and dose delivery on an inter- or intrafractional basis and how these effects

relate to the sCT reconstruction task. The results discussed here grant an incomplete view

of a concept central to the practical challenge of RT but represent an important first step

towards illuminating the bigger picture.

Finally, the exploration of supervised, paired-data and unsupervised, unpaired-data ap-

proaches to sCT reconstruction in Chapter 6 illustrates the gap between the paired- and

unpaired-data results that can be difficult to close. The methods proposed for the improve-

ment of the unpaired-data sCT results offered significant improvements in reconstruction

fidelity and image quality, and each method carries unique benefits and applications. The

cascade ensemble approach in which the unpaired- and paired-data architectures are ap-

plied in sequence to produce the final sCT output is ultimately a paired-data approach as

implemented here, but exploring a variety of ensemble techniques is a promising area for

future studies. Of particular interest was the application of the personalized training strat-

egy originally designed for use in the paired-data setting to the unpaired-data architecture.

The improvements in image quality and accuracy offered by the personalized models demon-

strate that the unpaired-data approach does benefit from some degree of implicit supervision

granted by a tailored, patient-specific training data set, cementing the promise of the train-

ing approach in both the paired- and unpaired-data settings. Ultimately, the contributions

described in this dissertation represent steps towards enabling an MR-only RT workflow that

aims to utilize the attractive capabilities that integrated MRI-guided RT platforms offer to

the fullest extent.
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