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Chapter 1:  Introduction

Carbon dioxide (CO2) probably does not need any introduction as it is one of the most 

discussed chemicals of this century. It has been blamed for recent global warming trends1 and 

acidification of the oceans,2 and is continuing to be produced at record and still growing rates 

worldwide. Energy production, automobile exhaust, concrete manufacturing, and land use 

change are the primary producers of CO2. Modern civilization simply cannot do without the 

processes that produce CO2; nevertheless, the ever-increasing CO2 levels are becoming a cause 

for concern.

There is no question that CO2 levels are rising in the world today. The measured atmospheric 

CO2 levels at the NOAA's Mauna Loa Observatory in Hawaii just surpassed a monthly average 

of 400 ppm, up from 310 ppm in 1958, when the observatory first started taking measurements.3 

The measurements at Mauna Loa are significant because the gas in the world's atmosphere is 

well-mixed. Increased CO2 levels at the top of a mountain in the middle of the Pacific Ocean—

far from power plants and continents of vegetation—indicate an increase in the average CO2 

levels in the world's atmosphere.

The rising atmospheric CO2 concentration is thought to generate a number of different 

problems. While there may be some difficulty in ascertaining the global warming potential of 

CO2 gas,4 there are many other better understood negative effects of increasing CO2 levels. These

include ocean acidification5,6 and probably most importantly, the effect on agriculture and 

plants.7,8 These studies indicate that some crop plants are already beginning to show signs of 
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decreased crop yields due to the high levels of CO2 and that if levels continue to rise crop 

production could be seriously affected.

A good question to ask is whether mankind is entirely responsible for this rise of CO2 level in

the atmosphere. The answer is mostly yes. Most researchers agree that one of the primary 

contributors of this increase is anthropogenic emissions and the amount of increase of CO2 in the

atmosphere does correlate with the amount of CO2 released, minus the CO2 that gets sequestered 

in land biomass and oceans. CO2 is produced in massive quantities by mankind. Recent estimates

state that some 8.6 Gt Carbon/yr is released into the atmosphere worldwide from energy 

production alone.9 

The obvious problem is that there is no way CO2 emissions are going to decrease globally in 

the near or even distant future. Its not going to end because modern civilization relies on energy 

sources that produce CO2. In fact, there is a direct correlation between GDP growth and CO2 

production.10 Economists systematically refer to charts of U.S. CO2 emissions and show that dips

in CO2 emissions correspond to “dips” in the GDP. The better the economy the more CO2 emitted

into the atmosphere. This is why it is so hard to decrease CO2 emissions and why no one has 

done it voluntarily: because the economy suffers when CO2 production suffers.

Nevertheless, the worldwide concern over the longterm effects of high CO2 emissions has led

to a number of proposals that would at least curb an increase of CO2 emissions in the future.11 

One such proposal is that of CO2 geological sequestration.12,13 Geological sequestration aims to 

take CO2 and pressurize it and send it deep underground into deep saline reservoirs and aqueous 

mineral deposits where it will become trapped. Many different types of entrapment of CO2 can 

occur under these conditions including simple physical entrapment (called stratigraphic 
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trapping), solubility entrapment (where CO2 dissolves in the geological brine), residual 

entrapment (trapped in pore spaces and kept there by capillary pressure), and/or chemical 

entrapment (where it reacts with the rocks underground and turns into solid carbonates). 

Chemical trapping of CO2 is widely considered the storage option with the most long-term 

security as the CO2 is chemically changed into a thermodynamically stable solid carbonate. The 

process of chemical conversion of CO2 into a metal carbonate also called mineralization or 

carbonation, is what the research described here addresses.

 Mineralization of CO2 occurs when CO2 dissolves into and reacts with water to form aqueous

bicarbonates and carbonates. This process is enhanced at high pressures (> 50 bar) and 

temperatures ( > 50 °C). If there is a source of divalent metals (such as Mg2+, Ca2+, or Fe2+) in the

solution, these divalent metals will react with the bicarbonate and carbonate in the solution to 

form solid metal carbonates in the form of MCO3(s) where M is a divalent metal. In an aqueous 

environment formation of solid carbonates from CO2 is one of the few thermodynamically 

favorable (spontaneous) reactions of CO2. 

Geological sequestration is a tantalizing option for mitigating CO2 output as it has been 

preliminarily tested to be economically feasible (current estimates indicate that CO2-sequestered 

power sources would increase electricity costs as little as 30%14) and possess a storage potential 

that could easily store the entirety of global CO2 production be it that the infrastructure for 

capturing and transporting the CO2 to these locations existed. Worldwide estimates for geological

storage of CO2 place current known global storage capacity at 100 trillion tons of CO2, assuming 

complete mineralization.15,16 This is enough for at least several hundred years of CO2 

sequestration at current global production.
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Geological sequestration needs to be rigorously tested and shown to be safe before it is 

employed as large-scale method for CO2 emission reduction. Because current geological 

sequestration proposals plan to put so much CO2 underground, researchers need to make sure 

that the sequestered CO2 will never make its way back up to the surface of the earth again. One 

need only read about the about the limnic eruption of Lake Nyos in Africa in 1986 to understand 

the destruction that could be caused by even moderate amounts of CO2 leakage in a short amount

of time from the earth.

The study of mineralization reactions of CO2 has other benefits in addition to helping to 

evaluate the safety of geological sequestration proposals. Some researchers have proposed to 

sequester CO2 above ground in chemical reaction chambers where solid carbonates are produced 

and subsequently used as building materials.17 If this can be shown to work on a production level

it could have very large implications for CO2 sequestration. 

Herein, I will describe the development of a novel tool and methodology for study of CO2 

mineralization reactions that will help researchers to better understand the chemistry of CO2 

carbonation reactions. As the mineralization reactions occur at high pressures (up to 250 bar) and

high temperatures (up to 250 °C), studying these reactions can present certain challenges. 

Standard laboratory analytical instrumentation is not designed to study reactions under these 

conditions.

Here I will show that in situ 13C nuclear magnetic resonance (NMR) can monitor progress of 

CO2 mineralization reactions (Chapter 3) and that pH and other important experimental 

measurements can be obtained from this data (Chapter 4). I will further describe and demonstrate

the ability to image pH during the progress of these reactions using 13C NMR (Chapter 5). Lastly,
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I will develop a methodology for identification of the solid carbonate products using various 

solid state NMR methods (Chapter 6).

It is my hope that the new tools and methodology developed here will be used in the future to

help those in the field better understand and create new and efficient applications for the 

sequestration of CO2 into metal carbonates. 
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Chapter 2:  Experimental techniques

A.  Introduction

Today there is a stunning number of analytical techniques available for chemists to use for 

product  identification and quantification. Long gone are the days where the chemists had to 

make their identification based on what the compound was reactive with and what color and 

texture it had. With so many types of analytical techniques, scientific journals have begun 

requiring new compounds to be identified via two or more techniques. Each technique has a 

particular strength and/or weakness. Complementary techniques must be chosen where the 

strengths of one overcome the weaknesses of the other to not miss any key components of the 

sample.

In this research I have chosen to use three complementary analytical techniques: NMR 

(nuclear magnetic resonance spectroscopy), pXRD (powder X-ray diffraction), and Raman 
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Figure 2.1: A sketch of the 13C  NMR probe and the high pressure zirconia 
reaction vessel designed in this project. It is has been used to measure 13C 
NMR data up to 250 bar and 120 °C for up to 31 days at a time in the 
cryogenic magnet.



spectroscopy. These three techniques all have strengths and weaknesses that are quite 

complementary. I will demonstrate in the upcoming chapters how they can be utilized together to

provide in-depth insight into the physical and chemical dynamics of the products from high 

pressure and temperature reactions as well as provide full identification and quantification of 

those products.

In particular, the experiments described in this paper will also demonstrate the usefulness of 

in situ measurement. Most of the time scientists utilize analytical instruments to measure 

products after  the reaction but, especially in highly complex reactions, it can be very difficult to 

piece together a story of what happened during the reaction based merely on the products after 

the fact. Not every detective is Sherlock Holmes. So in situ spectroscopy is born, where the 

chosen analytical device is modified so as to be able to make measurements under the conditions 

that the reaction needs. Sometimes this involves creating an elaborate and highly complicated 

instrumental setup. That is somewhat the case here.

The reactions I will be describing are high pressure and temperature carbonation reactions of 

CO2. The conditions of such experiments are hardly amenable to conventional bench-top analysis

methods (>50 bar and > 70 °C). And while ex situ methods have provided some valuable 

chemical insight into net products formed, they have failed in providing direct evidence for how 

the products form. So, many research groups have recently been working to develop new in situ 

analysis methods that can monitor high pressure and temperature carbonation reactions. These 

various groups have made much progress in modifying their instrumentation and acquiring data 

on these reactions using pXRD,18–20 NMR,21–26 spectrophotometry,27,28 IR,29 and Raman.30,31 As 

expected, these in situ methods have provided much useful information about the mechanisms, 
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rates, and direct effects of changing reaction variables like pressure, temperature, and reactant 

concentrations. 

After introducing pXRD and Raman and solid state MAS (magic angle spinning) NMR 

bench-top spectroscopic methods in this chapter, I will also introduce and describe the methods 

by which we have obtained high pressure and temperature 13C NMR of carbonation reactions in 

situ at pressures as high as 250 bar and temperatures up to 120 °C.

B.  Powder X­ray diffraction

X-rays are very high frequency electromagnetic waves and can be diffracted by any “grating”

that has particles a few angstroms apart, i.e. on the order of the λ of the incoming radiation. Solid

crystalline materials can act as such gratings, where the three dimensional structures of the 

materials diffract the X-rays according to how the crystals are organized. 

pXRD was first discovered in in 1912 by Max von Laue when he realized that X-rays were 

diffracted by solid materials in a reproducible way that was unique to each solid sample exposed 

to the X-rays. It was only later that year that William Henry Bragg and William Lawrence Bragg 

(father and son) developed Bragg's law, which described in very basic terms how the perceived 

XRD peaks from a diffraction experiment resulted from the constructive interference of X-rays 

(Equation 2.1). They received the 1915 Nobel Prize in Physics for their accomplishment and 

remain the only father and son pair to have received the prize for the same work.
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2d sin(θ) = nλ     (2.1)

where,

n is the order and is always an integer value

θ is the angle of incidence, which also equals the scattering angle

d is the interplanar distance between two identical crystalline planes

λ is the wavelength of the X-ray

The Bragg equation states that the constructive interference of X-rays by a crystalline sample 

occurs only under interdependent conditions of the angle of incidence of the X-ray beam with 

respect to specific atomic planes in the sample, the distance between the atomic planes, and the 

wavelength of the X-ray. The measurement requirements for a pXRD instrument are to be able to

measure the angle of diffraction off of the sample, an X-ray detector capable of measuring 

numbers of photons of X-rays, and a highly filtered and monochromatic X-ray source (an array 

of X-ray wavelengths would blur the experiment and provide multiple simultaneous sets of 

pXRD patterns).

The basic sample requirement for pXRD analysis using instrument employed for all analyses 

in this paper, is that it be a powder with a particle size on the order of 5-20 μm. Typically about 

0.1 grams of carbonate sample are needed to fill the pXRD slide for proper analysis. It is very 

important that each sample slide be loaded to the full and that the top surface of the powder be 

smoothed level with the top of the glass pXRD slide. Differences in levels or an uneven surface 

can cause error in the reported measurement of the angle of diffraction.

In cases where there is not enough powder to fill the XRD slide and it is acceptable to mix 

the experimental powder with another crystalline powder, co-mixing becomes a way to provide 

internal calibration of the sample peaks while also filling the volume of the slide. In cases where 
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I co-mixed powders, I typically added CaF2 powder or Mg2SiO4 powders. The advantage to 

co-mixing with these powders is that neither has 13C, 23Na, or 1H, so they do not interfere with the

NMR spectra obtained from the samples. To reduce the amount of signal from the co-mixed 

powder in the spectrum, the slide can be filled halfway with the powder you do not want in the 

pXRD spectrum, and the last layer can be the sample you are most interested in. pXRD is most 

sensitive to the powder on the top of the slide. In most cases of co-mixing, the pXRD experiment

did not detect the co-mixed powder.

In addition, to ensure that all pXRD patterns were accurately referenced, a standard of 

powdered silicon was run before each pXRD session and the instrument's angles were calibrated 

to the Si(111) reflection defined as 28.443 degrees 2θ. It takes 5 minutes to run this experiment, 

but it is very worthwhile. The instrument is used by many people and gets out of calibration 

easily.

pXRD spectrum analysis was completed using Jade Plus software and the combination of the 

PDF-4 and American Mineralogist XRD crystal databases. All pXRD figures were generated 

using the scientific plotting software Gnuplot. Where possible, the pXRD standard spectra were 

generated from published crystal .cif files using a crystallography program, Mercury v2.4.

All of the pXRD patterns in this paper and project were obtained on a Rigaku Geigerflex 

D-MAX/A diffractometer with Cu−Kα radiation at 35 kV and 35 mA. Typical pXRD 

experiments were obtained from 6°-60° degrees 2θ with 0.04 degree steps of 1 second intervals.

C.  Raman spectroscopy

In 1923 Adolf Smekal first predicted that a small percentage of photons would scattered by 
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molecules would do so inelastically even though the only known scatter at the time was elastic.32 

It was some five years later that C.V. Raman was able to observe this scattering effect, for which 

he was given the 1930 Nobel Prize in Physics. It was a sensational discovery and had taken so 

long to be discovered because the effect occurs for only about 1 photon in every 105 to106 –or 

quite literally “one in a million.” In fact, its quite amazing C.V. Raman ever saw the effect at all 

given the poor nature of the optical equipment he had to use. But he did—and he was able to 

accomplish this feat by focusing sunlight into an intense beam and shining it through a dust-free 

solution. Using this setup, he was able to measure the Raman scattering from some 60 different 

liquids which he reported in his original Nature article in 1928 on the matter.33 

The Raman effect is a light scattering phenomenon that occurs when a photon collides with 

the electron cloud of a molecule, exciting it to a so-called “virtual state.” The term “virtual state”

is fancy language for a very short-lived (10-12 s) unstable energy state. This “virtual state” arises 

from a distortion of the electron cloud of the molecule due to the impinging electromagnetic field

of the photon. The extent to which the molecular orbital can be distorted is referred to as its 

“polarizability,” and the more polarizable a molecular is the stronger the photon's interaction 

with it. When the molecule relaxes back from its virtual energy state, it either returns to its 

original ground state (no change to the photon energy, elastic scatter, called Rayleigh scatter) or 

it relaxes to an energy level higher or lower than the original state (change in the photon energy, 

inelastic scatter). The specific difference in frequency between the higher or lower frequency 

scattered photon and the monochromatic source of light depends on the normal vibrational and 

rotational modes of the molecule scattering the light. The change in energy of the photon is 

always a function of the normal modes of the molecule scattering the light.
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For the effect to be observable within a short time of gathering the signal, a large number of 

photons (intense light) of a highly-specific frequency (monochromatic) must be sent into the 

sample. The high intensity has greater success at distorting the electron clouds and also increases

the small number of inelastic scattering events by mere feature of increasing the number of 

photons altogether. 

Lasers are excellent sources of light for Raman experiments as they provide an intense and 

highly monochromatic light source. Mercury Arc lamps used to be the the light source of choice 

before the invention of the laser...but since the laser became available, Raman spectra can be 

collected in just a few seconds to a few minutes of time. Compare this to the original Raman 

spectra recorded which took hours to days to get any appreciable signal.

Raman spectroscopy is used here because Raman scattering is particularly efficient for 

crystalline carbonate solids34 and because Raman works well in aqueous systems (water is a very 

weak Raman scattering medium and thus provides minimal distortion to spectral acquisition).35 

The study here is of both wet and dry carbonates so Raman spectroscopy is nicely fitted for these

experiments.

Finally, in general, the Raman signal is stronger for symmetric stretches in a molecule than 

asymmetric ones (due to nuances in the selection rules). This means the asymmetric stretches 

that occur in a carbonate solid are typically very weak. As just mentioned, however, the 

symmetric CO3 stretch is by far the strongest Raman signal in Raman spectra of 

carbonate-containing solids. The CO3 symmetric stretch is also highly sensitive to its 

environment and has been shown to be highly indicative of the type of carbonate in a system.34,36 

The CO3 symmetric stretch is also unaffected by the 50-100% 13C labeling (because the carbon 
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atom is stationary during this stretching mode) allowing the Raman symmetric stretch 

wavenumber of the experimental sample to be directly compared to literature values from 

unlabeled compounds. The 13C isotopic influence on the asymmetric Raman stretches is not 

easily calculated and therefore the experimental asymmetric stretches from 13C-labeled samples 

cannot be easily compared to literature values.  The CO3 symmetric stretch is the primary peak 

utilized for Raman identification in this thesis for these reasons.

In nearly all cases in this paper, Raman analysis was done on 50-100% 13C-labeled minerals 

and thus only the  CO3 symmetric stretches will be shown in the Raman data. In general, the 

other peaks in the spectrum were analyzed to ensure consistency with the crystalline assignment. 

In all cases (except where noted) Raman spectra were acquired using 20 scans of 1 second each. 

The Raman instrument used to make the measurements in this paper is a HoloLab Series 

5000 Laser Raman Microprobe (Kaiser Optical). The microprobe delivered a 532-nm laser beam 

from a frequency-doubled Nd:YAG laser through a 20× (except where noted) Leitz microscope 

objective ( long-working-distance) with a 0.4 numerical aperture. This configuration delivered a 

maximum of 11 mW of laser power onto the sample; each spectrum had a resolution of about 3 

cm−1 and was recorded from 100 to 4000 cm−1 with a reproducibility in peak position of 0.1 cm−1.

The sampled regions were about 5 μm in diameter and produced a penetration depth of a similar 

magnitude due to the highly scattering nature of the product crystals.

D.  Nuclear magnetic resonance

NMR is a relatively young analytical technique. The first successful  detection of magnetic 

moment didn occur until 1933 with the Stern and Gerlach experiment. Rabi was the first to 
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experimentally observe nuclear magnetic resonance four years later in 1937. But it was not until 

1945 that the first NMR experiment was observed on bulk material by Purcell, Torey, and 

Pound37–39 and the first 13C NMR experiment didn't happen until 1957!40,41

Here I will describe NMR in more detail than Raman and pXRD but will still gloss over 

many very important aspects of NMR. The purpose of this section is to provide basic definitions 

for the NMR terms I use throughout the rest of this thesis and to provide some basic 

fundamentals of the technique. If the reader is interested in a more detailed approach to learning 

basic NMR, I recommend Malcolm H. Levitt's book, Spin Dynamics.42

a.  Introduction to NMR

All nuclei are made of particles that possess four important physical properties: mass, electric

charge, magnetism, and spin.42 Mass and electric charge are easy to understand because we see 

their direct effects in the macroscopic world. Objects with more mass are harder to pick up; drag 

your slippers across the carpet and touch a metal doorknob and you get shocked. But the other 

two properties, nuclear magnetism and spin, are harder to understand because they lack direct 

macroscopic analogues. 

Both nuclear magnetism and spin are considered properties intrinsic to a nuclear particle. 

They are both also closely linked together through the magnetogyric ratio (Equation 2.2), which 

is unique for each element in the periodic table. 
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     (2.2)

where,

 = quantum mechanical operator for magnetic moment

 = quantum mechanical operator for nuclear spin

 = the constant that relates the magnetic moment and nuclear spin called the magnetogyric ratio

The consequence of Equation 2.2 is that the vectors representing spin and nuclear magnetic 

moments are either parallel (γ>0) or antiparallel (γ<0) meaning that as “as spin goes so does the 

magnetic moment.” Their behaviors are closely intertwined and as such we often refer to either 

spin or magnetic moment almost interchangeably when describing aspects of NMR experiments 

(but they are not the same thing!).

The Pauli exclusion principle states that no two fermions (these include protons and 

neutrons) can have the same quantum state (includes spin state). The result is that a nucleus such 

as helium, which has two protons and neutrons, must have the spin states of each proton and 

neutron paired (and thus their magnet moments). A single helium atom, therefore, has no net 

magnetic moment or spin state because they are all paired, canceling each other out. The nuclear 

spin of the helium nucleus is then I = 0. However, in the case of hydrogen, where the nucleus 

consists of a single proton, there is no pairing and there can be a net magnetic moment and spin 

state for the hydrogen. The nuclear spin state is I = ½. The general rule is that a nucleus has net 

spin if it has an odd number of protons and/or an odd number of neutrons. 

The hydrogen nucleus has net spin and therefore net magnetic moment but bulk hydrogen gas

is not noticeably magnetic. Nor does it possess any net observable “spin” (whatever that would 

look like!). This is because spin and magnetic moment are vector quantities that are randomly 
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oriented in the absence of any external influences. A bulk set of randomly oriented vectors has 

no net vector magnitude, meaning that in bulk the net magnetic and spin effects are more-or-less 

canceled out. 

Another way to think about this is that a nucleus of spin I has 2(I)+1 degenerate energy levels

(in the hydrogen case for example, there are two degenerate energy states: 2(½) + 1 = 2). In bulk 

hydrogen, all of the energy levels are equally populated (because they are degenerate) and thus 

no net effect can be perceived in bulk because no one state has been “preferred.” So the bulk 

effect of having a nonzero spin state and magnetic moment is still virtually zero unless there is 

something to induce spin orientation/lift the degeneracy of the energy levels. 

As it turns out, there is a way to induce spin orientation/lift the degeneracy of the energy 

levels, but only partially. If a nucleus with a nonzero spin state is put in a magnetic field, its spin 

magnetic moment will precess around the axis of the magnetic field at a frequency linearly 

dependent on the strength of the magnetic field. This behavior only occurs because the spin 

angular momentum and the magnetic moment are so closely linked (Equation 2.2). The 

degeneracy of the energy states are also lifted when the nucleus is placed in a magnetic field. The

difference between the new energy states is called the “Zeeman splitting” and is also linearly 

proportional to the strength of the magnetic field. 

The frequency of spin precession in rad/s (ω) is the same number as the energy in rad/s (ω) 

separating the two energy states from Zeeman splitting and is defined in Equation 2.3. This 

frequency is called the “Larmor precession frequency.”
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     (2.3)

where,

ω = Larmor precession frequency

γ = magnetogyric ratio

B0 = magnetic field strength

Because the energy states are split, the lower energy level becomes selectively populated, but 

only by very little. The amount of preference for the lower energy state (i.e. spin polarization) is 

dependent upon the Boltzmann equation (Equation 2.4):

     (2.4)

where,

nground is the number of nuclei in the ground state

nexcited is the number of nuclei in the excited state

γ is the magnetogyric ratio of the atom

 is the reduced Planck constant (h), h/2π

B0 is the strength of the magnetic field

k is the Boltzmann constant

T is the temperature

For hydrogen atoms in a magnetic field of 2.3 T and at room temperature spin polarization 

[polarization defined as (nground-nexcited)/(ngrou d+nexcited) ratio] is only about 1.0000085 or just 8.5 

ppm. For other nuclei, like carbon, the polarization is much, much worse as γC/γH = 0.25. The 

spin polarization in a 2.3 T magnet for 13C is only 2.1 ppm (it's a wonder we see it at all!). The 

NMR experiment detects only the spins that are polarized, thus the vast majority of spins in the 

sample do nothing in an NMR experiment.
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b.  The NMR experiment 

The NMR experiment is the process of detecting the polarized spins in the sample. This is 

usually accomplished by pulsing the sample with a radio frequency (RF) pulse at the same 

frequency as the Larmor frequency. Matching the frequency of the RF pulse with the Zeeman 

splitting energy allows energy to be transferred to the nuclei from the RF. The transferred energy 

“adjusts” or “flips” the net spin state in the sample on the basis of how much energy is 

transferred (power of the pulse). Once the spin states have been flipped, they will relax back to 

their original state by releasing the specific RF signal that they absorbed.  

Another way of describing the NMR experiment is using the spin precession vector model. 

The RF pulse is an electromagnetic pulse that creates an oscillating magnetic field (called B1) 

that “nutates” the net magnetic moment of the sample into a position perpendicular (90°) to the 

applied magnetic field (B0). The magnitude of the pulse to position the net magnetic moment of 

the sample perpendicular to B0 is called a 90° pulse. Once in the X-Y plane, the spins still 

precess around B0, but the bulk magnetic moment vector is pointed perpendicular to the B0. This 

creates a “massive” (compared to what they were generating before) oscillating magnetic field. 

The oscillatory components of the alternating magnetic field from the sample are specific to the 

exact frequencies of precession of each proton nucleus in the sample. The oscillating magnetic 

fields generate an oscillating electric current in a copper coil carefully placed nearby. This 

oscillating electrical current can be detected and recorded and processed as frequency spectra. 

The results of the NMR experiment are called “NMR spectra.”

The NMR experiment is bound by two time limits: how often you can pulse the sample and 

how long you can perceive the NMR signal. These two time limits are dictated by the physical 

18



dynamics of the sample (such as types of molecular motion and vibrations). 

The first time limit, how often you can pulse, depends on how long it takes the sample to 

polarize. The rate constant of a sample's polarization is 1/T1 where T1 is called the longitudinal 

relaxation time constant or spin-lattice relaxation time constant. T1 is the time it takes for 63% of 

the polarization to be achieved by the spins and is the exponential time constant for the 

polarization process. 

The second time limit, how long you can perceive the NMR signal, depends on how long the 

spins stay in synchronization after they are put 90° relative to B0. It too has a rate constant which 

is 1/T2, where T2 is called the transverse relaxation time constant. The time T2 is the time it takes 

for 63% of the NMR signal to decay. In practice, however, field homogeneity of the magnet and 

other processes make the observable NMR signal die more quickly. This effect has another time 

constant that we use called T2
* which is the “effective T2

” for the sample given the sample 

conditions. 

T2 is almost always shorter than T1 because spins in the X-Y plane are sensitive to static and 

oscillating fields along any of the three cartesian coordinate axes and T1 is not (T1 is only 

sensitive to magnetic oscillation along X and Y axes). The absolute rule for T2, however, is T2 < 

2T1.

The signal that we observe from the NMR experiment is an oscillatory one that exponentially

decays with time contant T2
*. The NMR signal we collect is called the FID or free induction 

decay. Within that decaying signal are various frequency components based on the exact Larmor 

frequencies of types of hydrogen (for example) in the sample. The absolute frequencies of 

hydrogens vary from hydrogen to hydrogen type because of chemical shielding.
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Shielding of the B0 field occurs by the induced field from the electron clouds around the 

nucleus of the individual hydrogens. The more electron density around the nucleus, the greater 

the induced field is around the nucleus. The induced field is in the opposite direction of B0, so the

shielding partially (only slightly) cancels out B0's effect at the nucleus. Thus, via Equation 2.2, 

the observed frequency is decreased as the net B0 effect on the nucleus is decreased by the 

shielding. The change in frequency from the shielding of the electrons is called chemical shift 

and it is a very, very small effect relative to the Larmor frequency. The chemical shift is typically

on the order of 10-6 of the Larmor frequency, which is why it is always written as ppm or parts 

per million. The ppm term is literally referring to “parts per million of the Larmor frequency”.

Chemical shift is one of the reasons why the NMR experiment is so powerful. Specific 

frequencies in 1H NMR data correlate to specific types of hydrogen atoms...so a CH2 hydrogen 

has a different frequency or chemical shift than a CH3 hydrogen and can be differentiated on that 

basis.

The specific frequencies are obtained by processing the time-domain FID into a 

frequency-domain spectrum. The FID is digitally collected in 2n number of points so a fast 

fourier transform algorithm can be used to quickly separate the frequency components of the 

spectrum. 

As the strength of the NMR signal is directly proportional to the number of polarized spins in

the sample, NMR spectra are quantitative. The strength of an NMR signal in time is the initial 

height of the FID. In the transformed frequency spectrum, the strength of the NMR signal is the 

area of the peak. So quantitative data is obtained from NMR data by integrating the peaks in 

NMR spectra. Additionally, as long as all of the spins in a spectrum have fully recovered 
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between acquisition pulses, the peak-to-peak ratios obtained in a spectrum are fully quantitative. 

Relative integrations are often easier to obtain in an NMR experiment as the only restriction to 

obtain them is that the spins in the sample fully relax before pulsing them again. Correlating 

absolute concentration to NMR peak area can only be done with the use of a standard sample 

where the concentration of spins is known. Often, coil effects from changing the sample must 

also be taken into account when using NMR to quantitatively measure a sample.

c.  Solid state NMR

Most NMR experiments, even to this day, are still done on a liquid. This is because the NMR 

of liquid species is easier to acquire and interpret than on solids. There are many reasons liquids 

are much easier to interpret. In short, the primary reason liquid spectra are fundamentally easier 

to obtain is because of the fast motion (short correlation time) of the molecules in the solution 

phase.  The effect of this motion is to average out many complicating effects such as 

dipole-dipole interactions, where the dipole of one spin is able to couple with the dipole of 

another atom. Fast motion in solution also increases the length of T2 such that T2=T1. This allows 

signal to be observed for longer period of time thus making the peaks in the frequency spectrum 

very narrow and easy to distinguish from others. Yet another effect from fast motion is that the 

chemical shift of a given type of nucleus is averaged. In general everything about solution-phase 

NMR narrows the lines and makes signals easier to interpret and understand.

But not everything is a liquid or can be observed in the liquid state. So if NMR data is needed

on a solid sample the added effects of running NMR on a solid must be dealt with. Just as 

everything about a liquid solution narrows NMR lines, just about everything of a solid-state 

experiment broadens the lines.  Solids have dipole-dipole interactions, short T2 values, and 
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chemical shift anisotropies, and quite often have very long T1's. (one of the solid carbonate 

samples I worked on had a T1 value over 24 h!).

Some ways have been developed to get around the shortcomings of solid state NMR. 

Probably the biggest contribution to the field was the development of Magic Angle Spinning 

(MAS) where the solid sample is packed into a rotor and spun around an axis that is 54.74° 

relative to the B0 axis (this angle is called the “magic angle” and is the angle of a  body diagonal 

of a cube relative to any cube edge). Spinning around this axis at high frequencies (generally 

1-15 kHz) “ averages” all three cartesian coordinates of the solid sample and causes a number of 

wonderful things to happen. The chemical shift and dipole-dipole interactions are averaged, like 

in solution NMR, so CSA and dipole-dipole line broadening disappear, thereby significantly 

narrowing the lines. True T2 does not necessarily change but T2
* improves considerably as the 

physical rotation of the sample contributes to the perceived magnetic oscillation of the sample, 

artificially extending T2
*. Spinning the sample essentially averages all anisotropic interactions in 

the sample. Finally, magnetic susceptibility effects go away when the sample is being spun at the

magic angle.

So MAS solid state NMR enables the precise measurement of isotropic chemical shift and the

ability to distinguish specific sites in a solid that in a static experiment are all blurred together. 

Considerable discussion and examples of these types of experiments will be discussed in Chapter

6.

E.  High pressure in situ nuclear magnetic resonance

Typical NMR experiments are accomplished at room temperature and room pressure. Among
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the key contributions of this thesis, however, are 13C NMR measurements attained on a reacting 

system at high pressures and temperatures. In order to make these measurements a special NMR 

probe had to be designed and built to obtain NMR under these conditions. Some of the design 

requirements were that it had to fit in a widebore 354 MHz magnet (89 mm) whose magnetic 

field sweetspot is 64.39 cm from the top rim of the magnet. It also needed to be able to heat the 

sample to a temperature of 250 °C and pressurize it to 250 bar for up to several weeks. The 

pressure and temperature needed to be measured inside the reaction chamber and the sample 

needed to be easily removed, if needed, while still pressurized.

a.  Probe design

The high pressure NMR probe, is a top-loading NMR probe which means it is loaded from 

the top of the magnet and rests on the top rim of the bore of the magnet. The probe is constructed

primarily from brass, but also contains stainless steel, aluminum, and copper. The NMR circuit is

of a tank circuit design with an Alderman-Grant coil (more details below) specifically tuned to 
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Figure 2.2: The phase diagram of CO2. The dashed box indicates the 
pressure and temperature of the operating window of the probe (up to 250 
bar and 250 °C).



89.066745 MHz (the frequency of the 13C CO2(g) resonance in this magnet). Tuning of the circuit 

is accomplished by two non-magnetic  0.8-10 pF variable Polyflon capacitors connected in 

parallel. Matching of the circuit is accomplished by changing the impedance through tapping the 

circuit along a wire until it is matched to 50 Ω. The match cannot be changed once the circuit is 

assembled. Without further circuit modifications, the probe is capable of being tuned as low as 

88.175 MHz and as high as 101.50 MHz. The 13C resonance is purposely not in the middle of the 

tuning range so that other nuclei (such as  27Al and 23Na) are easily accessible.

The probe design makes use of both ends of the magnet's bore. The top of the magnet is 

where the probe is loaded and rests. The high pressure tubing and associated valves, tuning rods 

for the capacitors, thermocouple access, RF cables, and cooling tubes run through the top of the 

probe and down into the magnet. The heater, heating tube, and vent tube from the probe are at 

the bottom of the magnet. Heating and cooling are both accomplished by blowing heated and 

cooled air into the probe. The cool air is blown over the temperature-sensitive tuning capacitors 

in the NMR circuit and the hot air is blown into the “hotbox,” the heated portion of the probe, 

discussed in greater detail below.

The temperature of the probe is monitored in two locations via two Type K thermocouple 

wires. The first location is the hotbox, the heated zone of the probe. It was found in testing that 

monitoring the temperature of the hotbox was as good as monitoring the temperature within the 

high pressure vessel next to it (this was tested by heating the hotbox and monitoring its 

temperature with a thermocouple wire at the same time as monitoring the temperature inside of 

the high pressure vessel with another thermocouple wire). The second thermocouple wire 

monitors the temperature of the NMR circuitry in the cool zone of the probe. This is to make sure

24



the probe is properly cooling itself during operation and does not overheat or damage the 

Polyflon tuning capacitors (max operating temperature of 125 °C).

The pressure of the probe is monitored by a MSP-300 pressure transducer (0-2500 psig, 1-5 

V, Measurement Specialties Inc.). It monitors the pressure seven feet away from the magnet and 

probe, at the other end of the small-volume (1/16” OD), high-pressure stainless steel tubing (HiP,

Erie, Pennsylvania). The pressure transducer was calibrated using a glycerin-filled 0-2000 psi 

needle pressure gauge. This particular type of pressure transducer changes its output voltage 

linearly with respect to the pressure applied to it. A chart was made that converts the output 

voltage to pressure in bar.

The high pressures in the probe are created by cryogenic pressurization, where CO2(g) is 

frozen using liquid nitrogen in a stainless steel low-volume, thick-walled recollection vessel that 

can be completely submerged in LN2 (see below figure). The low-volume recollection vessel is 

then closed off to the CO2(g) source and opened to the probe. The low volume recollection vessel 

is then heated with a hand-held hair dryer, and this causes the CO2 to sublimate into gas. The 

restricted volume of the container causes the pressure to increase significantly. The pressure will 

rise until the CO2 either liquefies (59.9 bar at 22 °C) or reaches equilibrium. 
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The probe has several key components to its design: the high-pressure reaction vessel, the 

Alderman-Grant coil, and the hotbox region. The schematic drawings for these detailed portions 

of the probe are included in Appendix B.

High­pressure reaction vessel
It was decided that the NMR coil would reside outside of the high pressure region of the 

probe to prevent the use of high pressure feedthroughs for the RF cable. The high-pressure 

reaction vessel then had to be built of a material that is non-conductive, has high tensile strength 

across a range of temperatures, contains no carbon, is unreactive to most chemicals, is 

impermeable to gas with 0% water retention, has virtually no thermal expansion, yet is 

moderately thermally conductive. The material we chose that meets all of these criteria is an 
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Figure 2.3: High pressures can be cryogenically achieved. Here, CO2 is 
first frozen in a small-volume, thick-walled recollection vessel (a). Then 
valve (b) is closed and the recollection vessel is heated to sublimate the 
CO2. Because of the now restricted volume, the pressure of the CO2 
increases dramatically. The vacuum pump (c) allows for pumping out of 
the system between uses and allows for cleaning of the probe of gas if 
necessary.



yttria-stabilized zirconia called AmZirOx 86 sold by AstroMet Inc. (Cincinnati, Ohio). AmZirOx

86 is 95% zirconia and 5% yttria and is ivory in color. It has the feel and weight of ivory as well. 

AstroMet not only made the material, but they also cast it to to approximate designed 

dimensions, grinding it to the final designed dimensions. A total of two high pressure vessels 

were designed and made, differing only in their lengths. A short one of 4” length was the first 

one to be designed and built. It is the piece that was used for all of the high pressure reaction data

in this thesis. The long one is 5.5” in length and was designed for increased sample size and 

distancing of the RF coil region from the other metal portions of the probe. The long one has not 

yet been used in the project, but was designed with a zirconia filler plug (made of AmZirOx 86) 

to take up some of the headspace volume in the tube. The use of the same material allows its 

susceptibility to be matched to that of the vessel material, thereby decreasing its susceptibility 

effect on the magnetic homogeneity of the coil region. The design of these zirconia high pressure

vessels allows them theoretically to be taken up to 400 °C at 400 bar—although the short one has

only ever been taken as high as 150 °C and 250 bar (and not simultaneously).

RF coil
Several saddle coil designs were experimented with this probe. None of them had good RF 

homogeneities nor good B1 field strength. The final design that had the best performance was a 

coil of a modified Alderman-Grant design.43 The coil itself has a 0.7” inner diameter and is 1” in 

length (top to bottom) with two flat vertical copper strips (cut 1/4” wide) that connect a loop of 

thin copper strips (also cut 1/4” wide) at the bottom and two copper strips forming wings at the 

top. The bottom loop of the coil is a complete loop with no capacitors. The top wings of the coil 

are connected with high temperature non-magnetic capacitors which tune the coil to 89.066745 
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MHz. These capacitors do the job of the chip capacitors in Grant and Alderman's design. Also, 

there are two other differences with this design and the Grant and Alderman design. First, there 

is no inner ring on the inside the coil (so there is no e-field shielding). Second, the hot wire 

connects to the top of one of the vertical strips and the ground wire connects to the top of the 

other vertical strip. The hot and ground wires are the only form of support the coil has in the 

probe. Consult Appendix B for a drawing of the coil in the probe.

Heating the probe
The probe is heated and cooled with forced air. The cooling air is run through the hollow 

support rods of the probe, from the top down into the tank circuit of the probe. The heating is 

accomplished by running air through a glass tube with a heating filament in it. The heating 

filament is controlled through a platinum resistance thermometer and an Omega temperature 

controller. There are two  safety features to the heater: there is a pressure switch attached to a “T”

in the tubing just before the heater. When the air is on full flow through the probe a small back 

pressure is created by the air resistance of the probe. If the heating tubes were to pop off 

internally within the probe or anywhere between the heater and the probe or the heater and the 

air source in the wall, the back pressure would drop and the pressure switch would disengage the 

heater. This was tested multiple times by disconnecting the tube from the probe, the air source 

from the heater, etc, with the heater and air still running. The heater turned off each time. The 

pressure switch was calibrated for 1 psi. Any back pressure below that would cause the heater to 

be turned off. This safety feature is critical for long term experiments and has proven to be useful

a number of different times. 

Another pressure switch is connected to the building air system so that if the pressure in the 

28



building air system drops below 60 psi the heater will turn off due to insufficient air flow through

the probe. These safety features are essential to protect the heater, probe, and magnet. And they 

have been very useful multiple times due to building air failures and/or tube failures.

b.  Probe performance

The Alderman-Grant coil design is very efficient. It has a Q-factor of 54 (FWHM of 

resonance is 89.825 MHz – 88.175 MHz). When it is run with 1 kW pulses it has a 90-time of 

17.9 μs measured on CO2(g). The 90-times will fluctuate throughout a high pressure reaction due 

to changing ionic strength of the solution within the coil, but always stays less than 25 μs. Figure

2.4 shows the 90-time calibration curve.

As will be discussed a number of times in this thesis, the sheer size of the coil (1” in length) 

means that there is signal loss the more selective the pulse sequence. Comparing the absolute 

value of the amplitude of the 90° pulse to the 270° pulse shows that about 40% of the signal is 

lost. This is not necessarily spins within the coil, but the spins on the edge of the coil and just 
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Figure 2.4: 90-time experiment curve showing the performance of the 
Alderman-Grant coil design in the high pressure probe. Each point is the 
integrated CO2(g) gas peak. (Data: 20130422).

Figure 2.4: 90-time experiment nutation curve showing the performance 
of the Alderman-Grant coil design in the high pressure probe. Each point 
is the integrated CO2(g) gas peak. (Data: 20130422).



outside of the coil. The selectivity of the coil can actually be an advantage in that the pulse 

sequences used can be tuned for location specificity within the sample as well as to avoid 

background signals in the probe.

As will be described in great detail in Chapter 5 of this thesis, some of the reactions studied 

in this probe can have very large pH gradients. The large pH gradients also mean a huge gradient

of solution ionic strength—how many ions are in the solution. As the performance of the coil is 

only slightly affected by ionic strength, it does not matter much, except that the 90-time across 

the coil can vary. So care must be taken when measuring the 90-time in situ.

Early in the probe testing process I was trying to get the 90-time as short as possible by using

different coil designs and amplifier powers. The record I obtained was on a brand new 

Alderman-Grant coil, on which I was able to measure a 90-time of 14.5 μs at 1 kW. The reported 

90-time above is for a coil that is about two years old. Perpetual use in moist St. Louis air has 

caused the copper coil to oxidize, and the thin layer of oxidation does degrade the coil 

performance. After two years of use (and about 4800 h of reaction time) the 90-time has 

increased by 3.5 μs.

Pulsing at 1 kW can be very hard on the probe: arcing was actually a huge issue at the 

beginning. The coil was carefully built such that there were no sharp points in it (all solder was 

smooth). The biggest issue with arcing, however, was in the “hot wire” coming through its hole 

into the hotbox (see Appendix B). Three layers of teflon tubing were not enough to keep it from 

arcing into the grounded hotbox. So the hole was made much large than the wire (3/8”), and the 

wire was carefully covered in about 8 layers of carbon-free silicone tape to ensure that it was 

placed in the center of the hole and that the heat could not leave the hotbox. After this fix, the 
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probe no longer arced at 1 kW power.

c.  Probe calibration and testing using 13CO2

A series of experiments on the simple systems of CO2(g) and CO2(aq) at different temperatures 

and pressures were run to calibrate the probe's sensitivity and resolution as well as to understand 

its abilities to monitor long-term reactions and measure different aspects of the dynamics of the 

CO2. These are reported briefly in this section. 

T1 of CO2(g) vs. pressure

The T1 relaxation time constant of CO2(g) was measured at a variety of pressures at room 

temperature and compared to previously measured values by Kobayashi et. al.44 

The trend of increasing T1 with increasing pressures indicates that the T1 relaxation 

mechanism for CO2(g) is spin-rotation. The line is curved because of the Van der Waals 

(non-ideal) interactions of the CO2 molecules. A plot of T1 vs. density of the gas is a straight line.
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Figure 2.5: CO2(g) T1 at various pressures at room temperature. The black 
squares with error bars are the results  measured in the high pressure 
probe at 89.06 MHz. The pink diamonds are the values measured by 
Kobayashi et al. at 22.65 MHz.



Additionally, there is excellent agreement between the experimental measurement here at 89.06 

MHz  and those of Kobayashi et al. at 22.65 MHz (as seen in the figure above). This agreement 

is to be expected for a gas (which has a very short correlation time). The short correlation time 

gives the gas a nearly constant spectral density across a wide range of observation frequencies, 

meaning there is little observed field dependence of the T1 relaxation time constant.

The dynamics of the CO2(g) can be probed by turning it into a liquid in the probe and 

observing what happens to its T1 relaxation time constant. As the spin rotation mechanism for T1 

relaxation states, increased rate of molecular collisions increases T1. Turning the gas into a liquid 

should therefore drastically increase the T1 as the liquid is denser and has many more collisions 

per unit time. The condensing pressure of CO2 at 22 °C is 60 bar (dashed line in following 

figure).
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Figure 2.6: Condensation of CO2 at 22 °C (60 bar, dashed line) is 
indicated in the T1 relaxation time constant by a large discontinuity. The 
T1 value continues to increase after condensing as the density of the CO2(l) 
increases. T1 of CO2 is actually a very good indicator of density.



Dissolution of CO2 into water
If water is added to fill the coil, CO2 dissolution can be monitored by watching the CO2(aq) 

signal increase in the solution with time. The following figure is from a CO2 dissolution 

experiment and illustrates how the probe can deliver relatively exact measurements of absolute 

concentration. A spin counting technique was used to calibrate the probe's sensitivity to spins by 

measuring the signal from of CO2(g) known densities (calculated via the van der Waal's equation) 

at different pressures. The calibration was then used to estimate [CO2] in water vs. time. The 

final concentration of [CO2] in water at 48.9 bar was measured to be 0.86 M and the calculated 

equilibrium [CO2] value in pure water for this pressure at 22 °C is 1.25 M (using Duan's model 

of CO2 solubility, see Chapter 4). The difference between the calculated and experimental values 

is probably due to impurities in the water (St. Louis tap water was used) and changing of coil 

sensitivity due to the change of pH in the solution within the coil (the Alderman-Grant coil was 

not used in this experiment). The small vertical oscillations between experiments can be 

attributed to temperature changes in the room.

The dissolution rate is much faster than what would be expected via a diffusion-only 
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Figure 2.7: Dissolution of CO2 in water vs. time.



mechanism (~24 h to reach equilibrium). The fast dissolution rate indicates that there is come 

kind of convection mechanism that occurs when CO2 dissolves with H2O. Perhaps a more dense 

phase of CO2 is formed at the top of the H2O and it then sinks, creating a convection current. 13C 

NMR images of the dissolution event (using the imaging techniques discussed in Chapter 5) 

indicate that CO2(aq) fills up from the bottom of the vessel...something that could only appear to 

happen if there were dense layers “sinking” to the bottom of the tube.

The chemical shift of CO2 and magnetic susceptibility effects
Throughout this thesis in situ 13C NMR spectra will be referenced to the chemical shift of 

CO2(aq) as 126 ppm. This is well-documented in the literature22,45,46 but has also been measured in 

two additional ways using the probe. The first way was to reference the CO2(aq) peak relative to 

acetone's 13C CH3 peak at 30.89 ppm, a reference that is nearly solvent-independent.47  The 

second was to measure the difference in ppm between CO2(aq) and HCO3
- in solution. The 

chemical shift of HCO3
- is well documented and known to be 161.5 ppm.46,48,49 In both cases the 

chemical shift of CO2 was found to be 126 ppm. In addition, experiments in the probe where 

aqueous solutions containing CO2(aq) were heated up to 100 °C, the chemical shift of CO2(aq) did 

not change relative to the spectrometer frequency.

Using CO2(aq) as a chemical shift reference for the in situ high pressure 13C NMR experiments 

is important because it does not involve the the addition of a chemical shift standard to the 

solution, thereby changing the chemistry of the reaction. Additionally, it makes referencing much

easier in that magnetic susceptibility affects do not have to be taken into account, because the 

reference is in the same phase as the other species in the solution.

I found that the observed chemical shift of CO2 in this probe changes by -2.6 ppm from CO2(g)
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to CO2(aq). This has been observed in a separate set of experiments. The first experiment 

measured the 13C NMR frequency of  neat CO2(g) in the high pressure probe. The second 

experiment measure the 13C NMR frequency of CO2(aq) in a system of H2O+CO2. The observed 

difference between the frequencies of CO2(g) and CO2(aq) was -234 Hz and can be seen in Figure 

2.8. Another experiment demonstrated tha the absolute 13C NMR frequency of neat CO2(g) and 

sc-CO2 does not change. These effects must be taken into account when referencing in situ 

spectra, as the sc-CO2 peak (or CO2(g), depending on pressure and temperature) is present in 

addition to CO2(aq). 

The T1 relaxation time constants of the CO2(g)/sc-CO2 peak and the CO2(aq) peak are further 

evidence that the peak assignments have been made correctly.  The T1 is quite short in the 

gaseous phase (1-3 s) while the T1 is quite long in aqueous phases (20-40 s). The reason why the 

T1 is longer in solution is because CO2's dominant relaxation mechanism is spin rotation. The 

longer correlation time of the liquid makes spin rotation less efficient, thereby increasing T1.

The chemical shift experiments and the T1 experiments support the peak assignments made in

35

Figure 2.8: In situ spectrum of a carbonation reaction (a) vs. the spectrum
of neat CO2(g) (b). The magnetic susceptibility effect of water is not small 
and care must be taken to avoid referencing to the wrong peak in situ. 



this work, but they fail to explain the cause of the -2.6 ppm difference in chemical shift. At least 

in part, magnetic susceptibility differences between the gas and the aqueous solution are 

probably a contributing factor. The negative change in frequency from the gaseous to the liquid 

state supports the magnetic susceptibility explanation. Nevertheless, in a 13C NMR experiment 

where the coil is half-filled with water and pressurized with CO2, the chemical shift difference 

between the CO2(g) and CO2(aq) still exists even though the geometry of CO2(g) on top of the CO2(aq)

solution would not cause the susceptibility effect of increasing the CO2(g) frequency. In the end, I 

was never able to come up with a satisfying explanation for the differences in chemical shift 

observed between CO2(g) and CO2(aq). 

Comments on S/N of the probe
It was found in practice that obtaining 13C NMR spectra from any natural abundance 

13C-containing compound was quite difficult except in cases of very high density such as a pure 

solution of a carbon-containing material like ethanol. The probe does have a weak carbon 

background, however. If one were to do several thousand scans (tests were done at 4000) without

the use of an echo, the carbon background would be quite visible. The background could not be 

eliminated even with thorough cleaning. To avoid background effects, and to decrease phase 

effects, Hahn echoes were used throughout this thesis. In addition 99% 13C-labelled CO2 was also

used.

As you cannot alter the magnetogyric ratio to improve S/N of 13C NMR spectra, the only way

to  improve S/N is to use 100 % labeled compounds. This provides ~100x more signal and also 

has the added benefit of shortening the T1 relaxation times in carbonate solids (because of spin 

diffusion—this effect was measured, although it will not be discussed in this thesis). Labeling 
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improves the S/N considerably: you can see 13CO2 gas shot-to-shot at just a few bar pressure in 

the high pressure probe described here. With the labeling you can also obtain a 13C MAS NMR 

spectrum of a carbonate in one shot with a S/N greater than 500/1,  and even see a complete 

static carbonate powder pattern in a single scan. Most of the spectra shown in this thesis are of 

partially (50-90%) or 99% labeled 13C samples.

Other uses for the high pressure probe
The high pressure probe described here can be used any desired reaction at high pressure and 

temperature. If one were to exchange the coil, other types of NMR could be done. Although not 

described here, 27Al, 1H, and 69Ga experiments have been done on this probe in addition to 13C.

The probe has also been used to study high pressure and temperature reactions of methane 

(CH4). While none of these work will be discussed here, the following figure shows a 13C 

spectrum of methane gas at 65.29 bar. The 1JH-C couplings of 125 Hz can be clearly seen. This 

spectrum was taken with 13C-natural abundant gas, so it also provides a benchmark for the 

probe's sensitivity. The T1 of methane is very short (in the ms range), so the chosen recycle delay 

of 1 s was more than sufficient for attaining the following spectrum, which was acquired in 1000 

scans.
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Figure 2.9: 13C NMR spectrum of methane (CH4) gas at 64.29 bar. 



Chapter 3:  In situ measurement of magnesium 
carbonate formation

A.  Introduction

13C NMR is a powerful technique for determining carbonate structure and can provide as 

much or more structural and phase information than either pXRD or Raman spectroscopy. 13C 

MAS NMR is equally sensitive to both amorphous and highly crystalline compounds, unlike 

pXRD, which can only be used to analyze crystalline compounds. 13C MAS NMR is also 

sensitive to all carbonates within a sample whereas back-scattered Raman can only detect species

on the surface of carbonate particles. 13C MAS NMR is also quantitative: one can determine 

relative amounts of carbonates in a sample by integrating the NMR peaks relative to each other, 

determining relative carbonate composition of a sample. All of these strengths make 13C NMR an

incredibly useful technique for studying solid carbonates.

13C NMR carbonate analysis is not without its difficulties, however. Pure carbonate phases 

have very little physical motion at the frequencies we study them (the NMR frequencies we are 

able to use to study 13C range from 50 to 150 MHz for 13C), and as such have very poor spin 

relaxation properties.21,50–52 As has already been discussed in Chapters 1 and 2, these poor 
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Figure 3.1: In situ 13C NMR can monitor formation of magnesium 
carbonates in high pressure and temperature reactions.



relaxation properties mean the samples can have excessive T1 relaxation time constants and long 

T1's mean the samples take a long time to polarize in the magnet, making it difficult to obtain 

quantitative spectra. To further complicate matters, 13C is only 1.108% abundant. With a 

magnetogyric ratio that is roughly ¼ of hydrogen's, it has an NMR receptivity 1.7×10-4 that of 

hydrogen (receptivity ∝ γ3 I(I+1), where I is the spin of the nucleus53). Thus, long relaxation 

times and poor polarization can make obtaining 13C NMR spectra with good S/N very difficult.

Nevertheless, 13C NMR has been shown to be useful in a number of ways to measure 

carbonate formation in situ21,24 as well as to identify carbonate solids ex situ (see chapter 

5).21,25,50,51,54–56 Solid carbonates have a 13C isotropic chemical shifts that range between 162 ppm 

and 175 ppm, where the lower range (162-167 ppm) is indicative of carbonate groups weakly 

associated with hydrogens (the hydrogens increase the chemical shielding of the carbon). 

Chemical shifts greater about 167 ppm or so are typically pure metal carbonates and are 

hydrogen-free (save a few exceptions, see Chapter 6 for more details). The differences in 

chemical shift from one pure metal carbonate to another are entirely due to the symmetry of the 

carbon site in the crystalline structure and the metal ion with which the carbonate group is 

associated. 

In this chapter I will discuss the various in situ 13C NMR measurements that I made on high 

pressure and temperature magnesium-containing mineral systems. Magnesium-containing 

minerals [periclase, MgO; brucite, Mg(OH)2; and forsterite, Mg2SiO4] were chosen as the first 

mineral reactants to be studied because magnesium-containing minerals make up the bulk of 

sequestration minerals.24,29,30,57–60 In particular, forsterite, the magnesium end-member of the 

mineral olivine (MgXFe2-XSiO4), has been studied extensively because olivine is the most 
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abundant mineral in the earth's upper mantle, has the fastest-reaction with CO2 of any bulk 

mineral in the earth's upper mantle, and has the highest magnesium fraction of any 

naturally-occurring bulk sequestration target mineral.61   

Forsterite has several complicating factors in its reaction with CO2, however. First, it is a 

silicate-containing mineral, so its dissolution produces a concomitant release of silica into the 

surrounding solution, which ultimately precipitates as amorphous silica.20,24,25,29,58 This silica can 

slow the kinetics of the dissolution of forsterite and even reprecipitate on the surface of the 

forsterite as passivating layers inhibiting its further dissolution.59,62,63 Additionally, while 

forsterite does have the highest Mg content of any natural sequestration target mineral, it is still 

only 34.5% Mg by weight. Presumably higher Mg content in a mineral would speed the CO2 

sequestration process, as each gram dissolved would contain more Mg and thereby increase 

[Mg2+] in the solution at a faster rate. So two other minerals, periclase (MgO) and brucite 

[Mg(OH)2], were considered first. MgO is 60% Mg by weight and Mg(OH)2 is 42% Mg by 

weight, both considerably higher in Mg than Mg2SiO4.

Sequestration reactions work best at elevated pressures and temperatures because the 

dissolution of the target minerals is enhanced by high temperatures and pressures (the higher the 

pressure of CO2, the lower the pH of the solution; the lower the pH, the faster the dissolution of 

the mineral).59,64 The dissolution of the mineral results in release of a large number of ions from 

the mineral (in the case of Mg(OH)2, Mg2+ and OH-, see Equation 3.2). These ions act to increase

the pH of the solution, and the higher temperatures enhance diffusion and mixing of the 

reactants. Typical pressures and temperatures of proposed sequestration conditions range 

between 50 and 250 bar and 50-250 °C.58,65,66 Most reactions above pressures and temperatures of
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120 bar and 100 °C are not geologically relevant, as most candidate sequestration sites and 

reaction chambers have maximum pressures less than 120 bar and temperatures between 50 and 

100 °C.12,67–69

a.  Sequestration chemical reactions

The following chemical equations describe the generalized chemical reactions that occur on 

the minerals I consider in this chapter. Equation 3.1 shows the dissolution of CO2(g) into water. 

Though seemingly trivial, this step is very important and is often the most difficult portion to 

model in the chemical reactions, because knowing [CO2] is very important to calculating the 

reactions correctly. 

Additionally, as already experimentally shown in the previous chapter and described here in 

Equation 3.1, the dissolved CO2 is in fact still CO2–it does not become carbonic acid, H2CO3. 

Many, particularly in the biological community, like to refer to CO2(aq) as H2CO3. It is not.70–73 

Only about 0.4% of the CO2 reacts with the water to form H2CO3 in solution, which is extremely 

unstable in solution and prefers to exist as CO2(aq) rather than H2CO3(aq).70,71,74 Some have 

attempted to find spectroscopic evidence for the existence of H2CO3 in solution, but no 

conclusive observations have ever been made that show H2CO3's presence in water.45,46 However,

attempts have been made using highly acidic and superacid solutions by me (unsuccessful) and 

others (also unsuccessful) to observe H2CO3.74,75 Many theoretical papers have been written to 

calculate the most stable conformations of H2CO3 in solution,  its vibrational properties, and its 

theoretical chemical shifts, but they don't necessarily agree on what the H2CO3's 13C 

spectroscopic signature should look like.73,74 Another generalized way of writing CO2(aq) that 

many chemists have adopted is H2CO3
*. This convention assumes that H2CO3

* = CO2(aq) + H2O 
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and is a nice way of showing that CO2(aq) has different reactivity than free CO2. Here I use the 

term CO2(aq) because the 13C chemical shift observed in situ is more closely related to CO2(g) than 

H2CO3's theoretical 13C chemical shift.74,75

Finally, CO2(aq) also reacts with H2O in a second way that is also pH-controlled. In the 

presence of enough alkalinity to consume the product H+ (Equation 3.2), the reaction can produce

a considerable amount of HCO3
-, bicarbonate, or CO3

2-, carbonate.  

CO2(g)  ⇌ CO2(aq)     (3.1)

CO2(aq) + H2O  HCO⇌ 3
– + H+  CO⇌ 3

2– + 2 H+     (3.2)

MgO(s) + 2H+
(aq) → Mg2+

(aq) + H2O     (3.3a)

Mg(OH)2(s) + 2 H+ → Mg2+
(aq) + 2 H2O     (3.3b)

Mg2SiO4 + 4 H+ → 2 Mg2+
(aq) + H4SiO4°     (3.3c)

The dissolution of the minerals, shown in Equations 3.3a-3.3c, raises the pH of the solution 

and competes with the dissolution of the CO2 for control of the pH of the solution (dissolution of 

CO2 lowers pH, while dissolution of mineral raises pH, as can be seen in Equations 3.1-3.3 by 

noting where H+ is being produced or consumed). Once the [Mg2+] concentration is high enough 

and the right nucleation conditions exist, the Mg2+ ions will bond/react with the HCO3
- ions to 

make MgCO3-containing minerals (Equation 3.4). 

Mg2+
(aq) + HCO3

-
(aq)  ⇌ MgCO3(s) + H+

(aq)    (3.4)

Precipitation of the new magnesium carbonate mineral lowers the pH as mineral precipitation

removes alkalinity from the solution. Precipitation happens only when the conditions are just 

right—that is, when conditions favor initial nucleation of the mineral and subsequent 

precipitation on that surface. Little is still understood about the minute details of the precipitation
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process, and much of what we do “know” is from theory. Studies have shown that precipitation is

a thermodynamically-driven process that can be manipulated by ionic strength, pressure, and the 

preexisting mineralogical surfaces.57 They also show that the precipitation process can be very 

complicated and involve multiple precursor phases that form in solution before nucleation.76 

Here, I will not discuss any more details about precipitation mechanisms other than to note that 

the use of a measurement called “saturation index” (described in Chapter 4) helps to predict the 

probability of precipitation using the ion activity product (also described in Chapter 4).

As can be seen in Equations 3.1-3.4, there are two things that are needed for CO2 

sequestration reactions to occur: (1) a divalent cation source (such as Ca2+, Fe2+, or Mg2+) and (2) 

lots of water. This chapter specifically deals with Mg2+ divalent cations, and all reactions are 

done with excess water. Carbonation reactions do occur, in a limited way, with minimal water 

(enough to have one or two monolayers of water on the mineral particles or in a humid 

environment), but they are typically slower and very inefficient. Several studies have attempted 

to understand the full relevance of water by pressurizing different minerals with CO2 and varying

amounts of water.20,29,62,77,78 While they are interesting, they all more or less conclude the same 

thing: water is imperative for efficient carbon sequestration. And such results should not be 

surprising—CO2 has only two oxygens, and carbonates have three. The third oxygen needs to 

come from somewhere, and in most cases it comes from water.62 

b.  Experimental details

Here we react three different minerals [MgO, Mg(OH)2, and Mg2SiO4] with CO2 at pressures 

and temperatures ranging from 80 to 120 bar and 70 to 100 °C within a high pressure 

yttria-stabilized zirconia vessel (see Chapter 2). The reactions range in length of time from 4 
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days to 31 days and are summarized in the reaction table at the end of this thesis, just before 

Appendix A. In total, 22 different high pressure reactions were run in the high pressure zirconia 

probe, only five of which will be discussed here. 

 Pressures and temperatures were carefully monitored throughout the duration of each 

experiment, and various in situ 13C NMR experiments were obtained throughout the entire 

reaction time. 13C NMR experiments ranged from simple Bloch decays (90-acquire experiments) 

to more complicated 16-step phase cycled Hahn echo sequences and saturation recovery T1 

sequences. The goals here were to watch the 13C NMR signal evolve with time by monitoring the

growth of the MgCO3(s) powder pattern and the ratio [CO2]/[HCO3
-] by taking the ratio of the 

integrals of both the CO2 and HCO3
- 13C NMR peaks.

The samples were prepared by filling a glass tube with water and a powdered mineral 

(usually in that order to ensure mineral pore space was saturated with water), and allowed to sit 

in the vessel overnight. Porosity of the mineral powders in the experiments described here 

ranged between 40 and 55% and were measured using a 13C NMR spin counting technique. The 

amount of mineral added was typically just enough to fill the coil of the NMR probe, but 

occasionally only to partially fill the coil (to study the interface between the solution and the 

mineral). The water was always filled to the height of the coil or higher to ensure that the CO2(g) 

signal in the headspace of the pressure vessel was not detected by the coil. Figure 3.2 shows the 

different possible sample/coil configurations.
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In Figure 3.2, position (a) was was tried at first because it used the least amount of mineral 

reactant. It was found that the bottom of the zirconia tube caused susceptibility issues that 

distorted the 13C NMR lines in the spectrum that could not be corrected by shimming. Adjusting 

the RF coil to 1/2” above the bottom of the tube (b) reduced the susceptibility inhomogeneities 

caused by position of the  the bottom of the tube within the “fixing range” of the shims. The 

downside is that almost twice the sample is required to completely fill the coil in position (b), but

if the interface between the powdered solid and solution is to be studied, a half filled coil 

[position (c)] allows you to use less mineral reactant. 

Additionally, a glass liner tube was added in position (b) and position (c) in Figure 3.2. The 

glass liner allowed for easy removal of the mineral product, as the glass liner prevented 

carbonate mineralization from occurring on the inside surface of the zirconia tube, which proved 

difficult to remove after the first reaction without the glass liner. The glass liner did not change 
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Figure 3.2: Three different coil/sample configurations for high pressure 
and temperature experiments. The brown ovals represent the two sides of 
the RF coil and the gray striped region between them represents the RF 
region of the coil. The coil is 1" tall. The blue region at top represents the 
solution on top of the sample, which is the gray matter in the bottom of the
tube.



the 13C linewidths by introducing any field inhomogeneities within detectable limits (25 Hz) so 

long as the RF coil was at least 1/2” above the bottom of the tube. 

The height of water on top of the sample in Figure 3.2 was found to contribute greatly to the 

length of the reaction. This was because the sample was unstirred and the CO2 had to diffuse and 

convect through the water layer to reach the mineral. The more water, the longer it took to see a 

CO2(aq) signal using the 13C NMR coil. The length of diffusion time also affected the mineral 

products in that the [CO2]/[HCO3
-] ratio slowly increased rather than suddenly increased, as 

occurred in the case of minimal water. Because the amount of water present matters in terms of 

pH and reaction rates, the molar ratio of mineral/H2O will be provided for each reaction 

discussed.

In most cases, the particle sizes of the reactant minerals were 15 microns in their shortest 

dimension (determined by sieving and visibly confirmed through a microscope). A fine powder 

should increase the surface area of the reactant mineral and enable carbonate precipitation with 

less reaction time. The study of surface area and particle size effects on the CO2 sequestration 

reactions will not be considered here.

Additionally, as mentioned earlier, the effects of water content can be very important. Here I 

use the convention of grams of mineral/liter of water to express the mineral/water ratio.

Finally, it is worth noting that both magnetic field strength79 and extent of 13C labeling80 can 

affect the mineralization rates of different carbonate minerals. In the entirety of this thesis I 

assume that these effects are small and do not appreciably change the results presented.
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B.  MgO, Periclase

MgO, periclase, was chosen as the first reactant mineral to investigate because of its high 

magnesium content. Whereas several reactions were completed, here I will only show one called 

“R13”, where 0.962 g of MgO was added to 3.240 g of H2O (296.9 g mineral/L H2O) in a glass 

liner tube that was then placed into the high pressure vessel and allowed to sit overnight so that it

would settle. Once settled, the mineral filled the first 2.5 cm of the tube (from bottom, upwards) 

and the water level was 1 cm above the mineral/water surface. The reaction was run for 8 days at

95 °C. The pressure started at 96.0 bar and fell to 89.8 bar after 8 days of time. The pressure drop

is due to the consumption of CO2 during the reaction. A bolus of CO2 is put on top of the solution

at the beginning, as described in Chapter 2, and then the container is valved closed so that no 

more CO2 is added through the duration of the experiment.

a.  In situ 13C NMR

The reaction was begun and 13C NMR acquisition began immediately thereafter. The first 

spectrum obtained, shown in Figure 3.3, shows two solution-phase peaks: CO2(aq) at 126 ppm and
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Figure 3.3: In situ 13C NMR 1 h into reaction. 32 scans, 60s recycle delay. 
The HCO3

- peak is at 161.5 ppm, and the CO2(aq) peak is at 126 ppm. A 
small sc-CO2 peak can be seen at ~128 ppm.(Data: 642a, 20120320).



HCO3
- at 161.5 ppm. The [CO2]/[HCO3

-] ratio here is 2.13, meaning that at the beginning of the 

reaction there is twice as much CO2 as HCO3
-. The appreciable bicarbonate this early in the 

reaction is indicative of somewhat fast mineral dissolution. The H+ ions in the solution are being 

consumed by the very basic mineral, MgO (Equation 3.3a). Le Chatelier's principle states that if 

you remove one of the products, then the reaction will shift to make more, consuming more 

reactants. As HCO3
- is not being consumed (at least not at the rate of H+), there is still much of it 

in the solution. The rate of exchange between CO2 and HCO3
- is very fast (although slower than 

the NMR time regime (~10-3 s), which is why we see two peaks), such that any HCO3
- lost is 

replaced within a few seconds (per known reaction rates at these temperatures45,70,71,81–83), because

the loss of H+ is driving the reaction. In other words, dissolution of the mineral is driving the 

reaction.

The ratios of [CO2]/[HCO3
-], obtained by integrating the in situ 13C NMR spectra during the 8

days during which the mineral was allowed to react with the CO2, can be seen in Figure 3.4.
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Figure 3.4: [CO2]/[HCO3
-] ratios, obtained from in situ 13C NMR data, for

the reaction of MgO with CO2 for the first 8 days of the reaction. (Data: 
R13).



The initial drop of the [CO2]/[HCO3
-] ratio in the first three hours of the experiment indicates 

the pH of the solution is rising (so H+ ions are being consumed). The drop is caused by the 

dissolution of the mineral. The trend, however, quickly reverses after the first 20 hours, wherein 

the [CO2]/[HCO3
-] ratio begins to increase. The increase in the ratio does not mean that the MgO 

dissolution is finished, just that the carbonate precipitation is beginning to play a real role in 

removing the alkalinity of the solution and releasing H+ ions into solution (Equation 3.4). 

Another important but smaller contributor to the increase of the ratio is a slowing of the mineral 

dissolution, such that the CO2 dissolution rate is able to catch up with the mineral dissolution 

rate. As the solution is not being stirred, typical equilibration time for the CO2 gas is around 12 h.

The drop in ratio is much faster than that, however, indicating the speed with which the MgO 

dissolves at these high pressures and temperatures.

To show that carbonate precipitation is occurring during the later time periods (and 

contributing to the rise in the [CO2]/[HCO3
-] ratio), the in situ 13C NMR spectra are plotted in 

Figure 3.5 at four time intervals. The spectra shown in Figure 3.5 are focused on the baseline 

around the CO2(aq) and HCO3
- signals to show the formation of the 13C carbonate NMR powder 

pattern over time. The solid carbonate signal presents itself in a powder pattern because it 

represents a stationary solid, and represents a very large number of spins (because of the breadth 

of the pattern, the signal is spread out leading to less intensity than the narrow resonances). T1 is 

very long for the mineral, so the area of the powder pattern relative to the narrower, 

solution-state resonances of the CO2(aq) and HCO3
- is much smaller than it should be (spectra 

were not recorded at 5*T1, as required for quantitative comparisons).
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Because the spectra in Figure 3.5 were acquired with a Bloch decay pulse sequence, there are

some first order phase distortions evident in the powder pattern of the spectrum from leftshifting 

of the time domain of the spectrum due to the long 90° acquisition pulse (30 μs) and about 7 μs 

of probe dead-time (“ring-down” time). Phase-cycled Hahn echoes are the best way to get rid of 

these problems and are used exclusively in later experiments.

After 8 days of reacting, the pressure vessel was cooled down to room temperature, and the 

CO2 gas pressure was slowly decreased to atmospheric pressure (a process typically lasting two 

hours). The glass sample tube containing the product of the reaction was removed from the high 

pressure vessel, and a microspatula was inserted into the tube to ascertain the softness of the 

product material. It was found that about 1 cm into the sample was hard rock and the top portion 

was still viscous and liquid-like. The sample was then put into a vacuum chamber overnight for 

drying. No heat was used during this drying process as vacuum and heat combined can cause 
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Figure 3.5: Formation of carbonate powder pattern in the sequestration 
reaction of CO2 with MgO. The CO2(aq) signal is visible at 126 ppm and the
HCO3

- signal is at 161.5 ppm. The time at which each spectrum was 
obtained during the reaction is listed in the legend in the plot. These were 
acquired with a Bloch decay pulse sequence with a 60 s recycle delay and 
32 scans each. (Data: R13 642a, 642f, 648a, 658a).



some carbonate phases to convert to other carbonate phases.

b.  Ex situ Raman analysis

The dried sample was removed from the tube by wrapping the tube in a paper towel and 

smashing it with a hammer. The glass shards were carefully removed from the sample. The 

bottom-half of the sample that was rock-like stayed intact during the glass breaking process, but 

the top portion of the sample was loose white powder. Several Raman spectra were run on both 

the bottom and top portions of the sample to confirm that the two reported spectra were 

indicative of the bulk of the sample. Figure 3.6(a) shows the spectrum from the top portion of the

sample and 3.6(b) from the bottom of the sample. One clever portion to this experiment is that 

MgO is not Raman active; so any Raman signal indicates products formed as a result of the 

reaction.

The very strong peak at 1118.8 cm-1 in Figure 3.6(a) is indicative of the symmetric stretch of 

the CO3
2- group in the mineral hydromagnesite [4 MgCO3·Mg(OH)2·4H2O] and the small 
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Figure 3.6: Raman spectra from the top (a) and bottom (b) of the sample 
tube. The divot at 2260 cm-1 in both spectra are an artifact from the 
instrument detector. The symmetric carbonate stretch can be seen in (a) at
1118.8 cm-1 but not in (b), indicating that carbonate formed in (a) and not 
in (b). (Data: R13 04122019, 04122022).



shoulder at 1093.6 is indicative of the same symmetric stretch in the mineral magnesite 

(MgCO3). Additionally, the two broad peaks between 3350 and 3550 cm-1 are indicative of 

mineral-bound water, and the very strong peak at ~3645 cm-1 is actually two peaks very close 

together, 3643.5 and 3647.5 cm-1, which correspond to two different O-H stretches in the sample.

The spectrum in Figure 3.6(b) lacks the hydromagnesite and magnesite peaks, but contains peaks

consistent with the mineral brucite, Mg(OH)2,84 which formed under pressure.85 The two peaks at

277.4 and 443.9 cm-1 correspond to the Raman-active Eg(T) and A1g(T) modes, respectively, and 

match the reported peaks85 of Mg(OH)2 formed under pressure. Additionally, in the O-H stretch 

region there are two peaks: one shown very strong at 3648.2 cm-1 and another, a shoulder on that 

peak, that extends to 3698.3 cm-1. Both are O-H stretches of Mg(OH)2 and occur as multiple 

peaks because of effects on the mineral structure from being formed under pressure.85 The very 

broad peak at ~1000 cm-1 is probably aqueous HCO3
-.30 Even though the sample was dried in a 

vacuum overnight, sample in the bottom of the tube was still quite moist (although not a slurry) 

and probably contained residual bicarbonate from trapped CO2 that was not able to leave the 

solution due to the rise in pH from depressurization of the solution. The extra width of the peak 

is probably due to the HCO3
- being in a thin layer of water on the mineral product (it is broader 

than aqueous HCO3
- reported elsewhere30,45).

The results from the Raman spectra explain why the mineral reaction seemed to stabilize so 

quickly (after ~100 h) in Figure 3.4. It also explained the hardness of the mineral in the bottom 

portion of the reaction tube. MgO when heated in water converts to the mineral brucite (Equation

3.5):

MgO + H2O → Mg(OH)2     (3.5)
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During the conversion into Mg(OH)2, the individual particles fused together to become one 

solid “chunk” of Mg(OH)2. The probable impermeability of this material prevented the CO2 from

reaching the rest of the mineral reactant below, and therefore only allowed carbonate mineral 

product to form in the top portion of the reaction tube.

c.  Ex situ pXRD

The top and bottom portions of the sample were dry-ground using a mortar and pestle and 

loaded onto a slide for pXRD analysis to confirm the previous Raman assignments.
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The pXRD results demonstrate that the top product is predominantly 

4MgCO3·Mg(OH)2·4H2O (with no MgCO3 detected). These reaction results are also supported in 

literature.86 The pXRD results also confirm that the MgO is reacting to form pure Mg(OH)2 in the

bottom of the tube.
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Figure 3.7: pXRD of the top and bottom of the sample as indicated. The 
mineral hydromagnesite, 4MgCO3·Mg(OH)2·4H2O, is the dominant phase 
in the top and brucite, Mg(OH)2, is the dominant phase in the bottom. In 
the middle of the figure, the hydromagnesite standard 
(PDF#00-025-0513(RDB)) only includes hydromagnesite peaks to 46 
degrees 2θ. The brucite standard is PDF#00-007-0239(RDB). The y-axes 
are in arbitrary units, counts from the x-ray detector. (Data: R13 
041212a, 041212b). 



d.  Ex situ 13C MAS NMR

A portion of the top of the sample was packed into a MAS rotor, and a 13C MAS NMR 

spectrum was obtained. This sample, like most of the samples discussed in this thesis, is 99% 

13C-labelled, which provides a factor of 100 S/N improvement over unlabeled compounds. This 

sample was spun at a rotational frequency of 5 kHz and allowed to magnetize for 30 minutes 

before a one-scan Bloch decay pulse sequence (with a 60° pulse) was recorded while 

simultaneously decoupling the 1H channel with 15 kHz decoupling (only during signal 

acquisition).

Figure 3.8 shows the 13C{1H} MAS NMR spectrum obtained on the top product of the 

sample. There is no MgCO3 in this sample—just 4MgCO3·Mg(OH)2·4H2O. While 

4MgCO3·Mg(OH)2·4H2O will be discussed in greater detail in Chapter 6, it is important to note 

that two peaks of equal area are expected for 4MgCO3·Mg(OH)2·4H2O based on how many 

inequivalent C's there are in the crystal structure. If the sample were fully relaxed, the peaks 
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Figure 3.8: 13C{1H} MAS NMR spectrum (νr = 5 kHz) showing two 
well-defined peaks at 163.2 ppm (48.71 % area) and 165.4 ppm (51.29 % 
area). These two peaks are indicative of 4MgCO3·Mg(OH)2·4H2O, the 
mineral hydromagnesite. Spinning sidebands can be seen on both sides of 
the spectrum. The inset shows a close-up of the two peaks. (Data: 
20130603-R13).



should both have the same area, as they do (within 1%) in Figure 3.8. The peak at 163.16 ppm is 

consistently broader than the peak at 165.38 ppm, no matter where the 1H decoupling frequency 

is in the proton spectrum. The reason is that there are actually two slightly different sites 

contributing to the peak. These two sites are likely the same crystallographically inequivalent site

but are near a water that has some freedom to its position and/or actual motion within the crystal 

structure. More will be discussed about this multi-site description of hydromagnesite when  

4MgCO3·Mg(OH)2·4H2O is fully elucidated in Chapter 6.

e.  Conclusions about CO2 reactions with MgO

Five different high pressure and temperature reactions were run on MgO at varying different 

temperatures, pressures, reaction length, and water content. All of them produced 

hydromagnesite (4MgCO3·Mg(OH)2·4H2O) selectively. Only a few Raman experiments showed 

any indication of MgCO3 formation, and that only in very small amounts on only a few particles. 

Furthermore, these experiments showed CO2 and MgO to have high reactivity together. The 

XRD experiments showed there to be no MgO left in the top of the reaction tube, and on the 

basis of the in situ [CO2]/[HCO3
-] ratios, the reaction progressed very rapidly. The rate observed 

here must be due to the high temperatures and pressures, as others have reported that MgO has 

essentially no reactivity with CO2 at low partial pressures and low temperatures.87–92 

These experiments demonstrate that MgO has apparent product selectivity for the mineral 

hydromagnesite (4MgCO3·Mg(OH)2·4H2O), at a wide array of temperatures (several experiments

were run from 65 to 100 °C, and all products were selectively hydromagnesite). Nevertheless, 

use of MgO is not very practical for the sequestration of CO2 in bulk, because it converts to 

impermeable blocks of Mg(OH)2 that inhibit CO2 from diffusing to the rest of the sample in any 
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reasonable amount of time. 

C.  Mg(OH)2, Brucite

The second mineral studied was brucite, Mg(OH)2.  It was slated as an excellent candidate 

reaction mineral because it is so alkaline; when mixed with water, the pH of the resultant 

solution is >11, which is why a slurry of Mg(OH)2 and water was sold under the name of Milk of

Magnesia through the mid-20th century. Its high pH helped to ease heartburn by neutralizing the 

acid in the stomach (Milk of Magnesia is also a laxative—working as such because the osmotic 

force of the slurry solution draws fluids from your body into your intestine). The high pH of the 

solution was expected to convert most of the dissolved CO2 into CO3
2-, enhancing the rate of 

production of MgCO3-containing minerals because of the high availability of CO3
2-.

Furthermore, a great deal about the reaction of CO2 with the mineral brucite, Mg(OH)2, has 

been published.21,64,77,88,91,93–97 This is largely because of its fast reaction rates, making it an ideal 

system for studying CO2 sequestration. Whereas it is not present in any significant 

concentrations in the Earth's outer mantle for natural CO2 sequestration, it has been proposed as a

potential CO2-scrubbing agent in an industrial setting.93 It, like MgO, will likely not have any 

bulk CO2 sequestration relevance, but understanding the fundamentals of its reaction with CO2 is 

important for understanding CO2 sequestration reactions because the reactive  constituents of the 

mineral are the same as other target sequestration minerals. In addition, because of its fast 

reaction rates,93 it makes an excellent test system for watching solid carbonate formation in situ. 

As this system is so fast to react, it was used to explore a vast array of temperatures and 

pressures as well as water content. In total, nine high pressure and temperature experiments on 
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Mg(OH)2, ranging in temperatures from 60 to 100 °C and pressures from 70 to 126 bar (see the 

reaction list at the end of this thesis, just before Appendix A). The shortest reaction probed was 

only 1 day and the longest one 31 days. I also probed several mineral/water ratios. The lowest 

ratio was 140.9 g Mg(OH)2/L H2O and the highest ratio was 742.1 g Mg(OH)2/L H2O. The 

different mineral/H2O ratios were important to explore because the depth of water on top of the 

mineral affects rates of reaction and types of carbonate products. It controls the rates of reaction 

essentially by controlling how long it takes to diffuse the CO2 through the solution to the 

mineral. It also appears to control the carbonate products by controlling how much water is 

actually available during the reaction—that is, if there is not much water at the top of the 

mineral, the dissolution of CO2 into the solution can dehydrate the mineral, significantly 

lowering the pH. 

Here I will show results from three different experiments of CO2 with Mg(OH)2. The first two

will compare low water content (742.1 g Mg(OH)2/L H2O, ~0.1 cm of water on top of the 

mineral) to high water content (481.8 g Mg(OH)2/L H2O, 0.64 cm of water on top of the 

mineral). The small difference in water content does make a difference in the reaction rate and 

progress. I will refer to them as the “low water content” reaction, called “R15”; and “high water 

content” reaction, called “R19”; respectively. The third experiment, called R9, is a second high 

water content reaction that was performed to study the chemical products ex situ in great detail. 

Its mineral/water ratio was 281.53 g Mg(OH)2/L H2O.

a.  In situ 13C NMR

Figure 3.9 (a) and (b) shows a comparison of the low water content reaction system, R15, 

versus the high water content reaction, R19, respectively. Each reaction has two spectra taken at 
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two different time intervals: early in the reaction (pre-carbonate mineral formation, black lines) 

and later in the reaction (post-carbonate mineral formation, red lines). 

The spectra in Figure 3.9 outline the wealth of information that can be obtained by 

monitoring in situ 13C NMR during carbonation reactions. For that reason the next couple of 

pages are devoted to fully explaining how they are interpreted. 

First, the spectra in Figure 3.9a were both obtained in 128 scans with a 60 s recycle delay 

while the spectra in Figure 3.9b were both obtained using 256 scans and a 20 s recycle delay. 

Both sets of experiments used the same pulse sequence, a 16-step phase-cycled Hahn echo with a

100 μs τ delay. Both sets of experiments also are quantitative as the longest T1 of the 

solution-phase species is on the order of just ~5 s at the temperature of these two reactions (81 

°C). I used the Hahn echo sequence here and in the rest of the thesis because it selects for spins 

specifically within the NMR coil (it is more RF-selective than a 90-acquire sequence) and  

because it also allows acquisition of NMR FID's (free induction decays) that are free of the 

first-order phase effects from probe “ring down”.
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Figure 3.9: In situ static 13C NMR of reaction with CO2 and Mg(OH)2 with
low water content (a), R15, and high water content (b), R19. Early-time, 
before carbonate precipitation (black) is compared to late-time, after 
carbonate precipitation (red) during the reaction. For (a), black is 5 h and
red is 105 h. For (b), black is 43 h and red is 234 h. (Data: (a)R15 
661e,675c; (b)R19 1021b,1037b).



The first observations to make about R15 and R19 in Figure 5.9 (a) and (b) are the noticeable

differences between their early-time spectra. The CO2(aq) peak (126 ppm) is off-scale in (a) while 

in (b) it is very small, in comparison. Their [CO2]/[HCO3
-] ratios are therefore very different, i.e.,

being ~25/1 in (a) and ~3.5/1 in (b).  Also, despite the drastically different times into the reaction

that the spectra were acquired [5 h into the reaction for (a) and 43 h for (b)], (a) at just 5 h 

already has mineral forming (see baseline distortion) and (b) still has a flat baseline at 43 h! 

Clearly, when there is less water to diffuse the CO2 through as in (a), it takes less time to get 

large amounts of CO2(aq) into mineral. That resultant glut of CO2(aq) causes a huge drop in the pH 

and results in a higher [CO2]/[HCO3
-] ratio at earlier times in the reaction. The rapid drop in pH 

also increases the rate of mineral dissolution, which in turn increases the rate of carbonate 

precipitation because the dissolution releases Mg2+. Thus, intuitively, less H2O bulk volume 

means faster carbonation because it takes less time for the overhead slug of CO2 to get to the 

mineral and begin dissolving it.

You will also note that the difference in the way the two samples change with time. The 

sc-CO2 peak at ~128 ppm in (a) decreases in area with time, whereas the sc-CO2 peak in (b) 

appears to roughly stay the same or possibly even increase a little. This is a little more 

complicated to explain, because the sc-CO2 peak is being detected from both the solution and the

region between the glass insert tube and the high pressure zirconia vessel. Presumably in (a), the 

reaction with less water on top of the sample (R15), the slug of sc-CO2 that entered the system 

caused an early-time dehydration of the top mineral region, meaning there were portions of the 

sample within the coil that experienced more CO2 than water. A CO2-rich zone often occurs 

when the two fluids (sc-CO2 and H2O) meet and have to mix together by diffusion and 
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convection.20,62,78,98 Once the water and CO2 remixed, causing the CO2 within the coil to be fully 

hydrated, the chemical shift would return to 126 ppm. This, and the fact that some water is lost to

the outside of the glass insert (decreasing the sc-CO2 signal from between the glass tube and high

pressure zirconia vessel), explains the loss of sc-CO2 signal over time in (a). In (b), however, the 

situation shows that by the time the CO2 reaches the mineral it is already CO2(aq). The mineral is 

probably never exposed to a solution phase that is more CO2 than H2O. In fact, the apparent 

slight increase in sc-CO2 is attributable to the difference in match of the probe between the two 

times. This example illustrates why relative integrations between peaks in quantitative 

acquisitions is a more accurate measurement than direct quantitative integrations from 

acquisition to acquisition (see Chapter 2 for more details on the probe performance).

Other important points to make about R15 and R19, Figure 3.9 (a) and (b), are that the shapes

of the HCO3
- peaks are different as well in both their early-time acquisition and their late-time 

acquisition. Note the asymmetry of the HCO3
- resonance in the early-time spectra (black) in (a) 

and (b). Both HCO3
- resonances in (a) and (b) are noticeably broader (400 Hz and 200 Hz, 

respectively) in comparison to the HCO3
- peaks at later times (90 Hz) and the concurrent CO2(aq) 

peaks at both early and late times (all 90 Hz as well). The fact that the CO2(aq) line is consistently 

90 Hz in linewidth indicates that the line broadening of the HCO3
- peak is not due to a magnetic 

field inhomogeneity but instead to an initial pH gradient caused by the mineral slowing the 

diffusion and convection of CO2(aq) from the top of the mineral to the bottom. 

The HCO3
- line broadens because the chemical shift of the HCO3

- line is dependent on the 

relative amounts of HCO3
- to CO3

2- because of a very fast (much faster than the NMR time 

regime) equilibrium between them. If the pH shifts to values above 7, the chemical shift of the 
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observed HCO3
- resonance will change with respect to the relative amount of the two species (see

Chapter 4 for greater discussion on this). The Mg(OH)2 solution had a pH > 11 before being 

pressurizing with CO2. Therefore the first CO2 molecules to make it into the powdered mineral 

domain would be converted into HCO3
- and CO3

2- and would stay in that state until more CO2 

gets there. The fact that there is a gradient in CO2(aq) across the sample caused by the obstructing 

mineral means that there is a gradient in pH, and the gradient in pH causes a series of chemical 

shifts (the line broadening) to appear for the HCO3
- line. As will be described in great detail later,

the dispersion of chemical shifts here indicate that the gradient could be as large as 4 or 5 units of

pH across the short sample: ranging from 5 or 6 pH in the top of the tube to 10 pH in the bottom 

of the tube. Finally, that the line narrows with time indicates that the early gradient is only 

short-lived: eventually the [CO2] value equilibrates through the whole system and the initial pH 

gradient goes away.

While much has been said about Figure 3.9, there is still one more important point to be 

made about it.  The spectra in Figure 3.9 indicate that both reactions are both precipitating 

similar carbonate product(s) (the lineshapes are both very similar between R15 and R19, Figure 

3.9 (a) and (b)) and they also show that even the high water content system (b) is not free of the 

CO2-saturation effect. In R19, Figure 3.9(b), the apparent chemical shift of CO2(aq) changes to a 

lower value between the early-time and late-time spectra (it shifts about -1 ppm). This is 

attributable to the mixing of the CO2 and H2O causing an initially less-dense CO2-dominant 

phase, like in R15 (a), only to a lesser extent in R19 (b).

The [CO2]/[HCO3
-] ratios were monitored using the in situ 13C NMR for both high and low 

water content reactions (Figure 3.10). The ratios were measured taking the ratio of the integrals 
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of CO2(aq) and HCO3
- peaks in each spectrum. The low water content reaction was only run for 

four days, whereas the high water content reaction was run for 31 days. The low water content 

reaction was meant to explore the early-time [CO2]/[HCO3
-] ratios of the Mg(OH)2 reaction (that 

is, before and during carbonate precipitation) with CO2 in the limit, where CO2 dissolution is as 

fast or faster than the mineral dissolution. The high water content reaction was meant to probe 

the long-term portion of the reaction, where the [CO2]/[HCO3
-] ratio was observed after 

carbonate precipitation, that is, after most of (or even the entire) sample had reacted.

b.  In situ [CO2]/[HCO3
­] ratios

In Figure 3.10(a), the [CO2]/[HCO3
-] ratio increases in the first 15 h as the CO2 is dissolving 

into the solution. At about 18 h, the ratio starts to decrease rapidly. This is due to the mineral 

dissolution raising the pH of the solution. After 25 h, the rate of decrease of the [CO2]/[HCO3
-] 

ratio began to slow considerably. The decrase in the rate of change implies approaching 

equilibrium of the dissolution of CO2, dissolution of the mineral, and carbonate precipitation. 

Presumably for long reaction times the ratio would begin to increase again as mineral dissolution

63

Figure 3.10: [CO2]/[HCO3
-] ratio vs. time determined by 13C NMR peak 

integration in low water content R15 (a) and high water content R19 (b) 
reactions of CO2 with Mg(OH)2. (Data: R15, R19).



would be stopping and carbonate precipitation would be acting to remove the alkalinity from the 

solution, decreasing the pH and increasing the [CO2]/[HCO3
-] ratio. 

Figure 3.10(b) shows what happens with the mineral reaction over a long period of time. As 

(b) is the high water content reaction, [CO2]/[HCO3
-] ratios could not be measured early in the 

experiment because the CO2 and HCO3
- signals were not strong enough to be integrable. From 20

h to 95 h the [CO2]/[HCO3
-] ratio is decreasing similarly to (a). At 95 h, the ratio bottoms out and

then the ratio stays relatively constant for the next 100 h. At 200 h, it slowly starts to increase, 

with some up and down fluctuations, for the next 400 h. The reaction was quenched at 600 h, but

eventually the ratio should have leveled out at whatever the equilibrium value is for the system 

based on the headspace pressure of CO2. Eventually no more carbonate mineral would be able to 

precipitate and the solution would just come to equilibrium with the CO2 headspace gas pressure.

The resulting ratio would be expected to be high (the pH should be low).

The fluctuations between 300 and 500 h could be caused by one or both of two possible 

mechanisms: (1) mineral regions/pores getting blocked/unblocked from CO2 by carbonate 

precipitation and/or (2) the conversion of the carbonate precipitate converting into another phase 

that has different alkalinity. (1) is probable as Mg(OH)2 is reacting so fast,93 and it has already 

been shown that the CO2 reaction can cause the mineral powder to fuse together by the 

precipitates in the MgO example. Clogs, afterall, are not uncommon in these types of 

reactions.99–101 But (2) is also likely, where the precipitated carbonate converts into another type 

of carbonate. Carbonate conversions into other carbonates have been observed in situ by Kwak et

al.24 (using MAS NMR) in the Mg2SiO4 reacting system and by many others using various 

techniques (mostly XRD and Raman) in the form of pure mineral carbonates converting into 
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other mineral carbonates.30,102–105 The transformation can  happen by a process called “shrinkage 

transformation,” where OH-f and H2O's are ejected from the crystal solid and the crystal changes 

its structure, or by another mechanism called “dissolution-precipitation solvent mediated 

transformation,” where the carbonate mineral dissolves and reprecipitates as something else.30 

Here, the most likely mechanism is dissolution-precipitation given the relevant pressures and 

temperatures, but that is not to say that shrinkage cannot or does not play a role. 

Figure 3.11 shows in situ 13C NMR evidence of these carbonate conversions. The 13C NMR 

spectra are probably best understood after reading Chapter 6. Essentially, each unique carbonate 

mineral has its own unique 13C powder pattern that is contributed to by one or more 

magnetically-inequivalent 13C spins within its unit cell. Each spin has its own isotropic chemical 

shift, chemical shift anisotropy, and biaxiality, all of which contribute to the overall observed 

powder pattern. As long as the composition of the carbonate product remains the same, the 

powder pattern will stay the same. Yet, when the composition changes, the powder pattern 

changes. Figure 3.11 shows how the carbonate pattern changed in the high water content reaction

between 200 h and 300 h. While the observed changes in the powder patterns do not rigorously 

correspond to the fluctuations of the [CO2]/[HCO3
-] ratios in Figure 3.10(b), the ratios are not 

likely to immediately respond to crystalline changes. This is because the ratios are the measured 

average of the whole sample—and not one specific region or another. Also, the ratios are still 

being affected by other carbonate precipitation and mineral dissolution processes in the rest of 

the sample.
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Clearly carbonate mineral content (the peak area) is increasing with time in Figure 3.11, but 

the powder pattern shape is also changing with time. The change represents a conversion from 

one carbonate mineral to another {probably 4MgCO3·Mg(OH)2·(4,5,6,7,8)H2O, 

hydromagnesite/dypingite, to  MgCO3, magnesite} which occurs only after the 

4MgCO3·Mg(OH)2·4H2O has first precipitated. The effect on the pH of the whole sample will not

be realized until the majority of the carbonate has converted, affecting the entire mixture.

In conclusion, careful monitoring of peak linewidths, position (chemical shift), and relative 

and absolute integrals, gives the observer many details about the reacting system. Here, we have 

seen that the careful analysis yielded detailed results about the progress of the chemical reaction 

as well as dissolution of the CO2(aq) throughout the sample.

c.  Ex situ Raman spectroscopy

 The ex situ Raman experiments were meant to confirm the solid carbonate phases in the 

product. In these experiments I carefully removed the glass liner from the high pressure zirconia 
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Figure 3.11: In situ 13C NMR showing the powder pattern as it changes 
with time during the high water content mineral reaction. These spectra 
were taken between 198.9 and 303.2 h of the static reaction. (Data: 
1036b, 1037b, 1038b, 1039b, 1040b).



vessel just after depressurizing it, and took it over to the Raman instrument in Earth and 

Planetary Sciences where Raman data were obtained on the product by focusing the laser 

through the glass liner. The advantage to obtaining the Raman spectrum through the glass liner is

that the products are able to be analyzed without disturbing them, in their original location of 

precipitation, before being dried. A disadvantage, however, is that the tube and product/tube 

interface sometimes fluoresce. It is also difficult to get the same focus from location to location 

making it difficult to obtain quantitative spectra of the carbonate precipitation on the surface of 

the mineral from one superficial location to another in the tube. Therefore the spectra here are 

compared on the basis of whether a peak exists or not and on the relative areas of those peaks in 

each spectrum.

Figure 3.12 shows the Raman data from the high water content reaction of CO2 with 

Mg(OH)2. Each Raman spectrum was taken at a different location along the length of the tube, 

beginning with the top of the mineral. Only the C-O symmetric stretch region is shown in Figure 

3.12 because the location of the symmetric stretch is indicative of the different type of carbonate 

mineral in the sample, and the position of the C-O symmetric stretch is independent of the 13C 

isotope (these samples are 99% 13C; the carbon atom remains at rest in the symmetric stretching 

mode, making the C-O stretch frequency isotope independent).21,30,34 
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Figure 3.12 demonstrates that there is spatial dependence of the carbonate precipitate in the 

sample.  The peak at 1094 cm-1 is indicative of MgCO3,30,34
 and the absence of other peaks in 

Figure 3.12(a) implies that the dominant mineral in the top of the sample is MgCO3. Deeper into 

the sample, beginning around -1.6 cm into the sample, another peak at 1119 cm-1 (corresponding 

to the mineral hydromagnesite) appears concomitantly with the MgCO3 peak, decreasing and 

then disappearing. At deeper locations (< -1.6 cm) within the sample the peak begins to shift to 

higher values, to 1120-1124 cm-1. Figure 3.12(b) shows the Raman spectrum from -1.7 cm deep 

into the  sample, and the MgCO3 peak at 1094 cm-1 is completely gone. The new peak that was 

first seen at -1.6 cm deep into the sample has grown in and slightly shifted just above 1119 cm-1. 

Literature indicates that 1119 cm-1 is indicative of the mineral  4MgCO3·Mg(OH)2·4H2O, 

hydromagnesite,30,31,34,102 and values just above that (1120-1124 cm-1) for  another mineral, 

4MgCO3·Mg(OH)2·(5-8)H2O, dypingite.36,95,106,107

I first reported the spatial dependence of carbonate formation in the Journal of Environmental

Sciences and Technology in the summer of 2012.21 The article described an additional Mg(OH)2 

reaction (R9) that was also run with high water content (281.53 g Mg(OH)2/L H2O) but for only 
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Figure 3.12: Raman spectra from (a) top of the sample (0.0 cm) and (b) 
deeper into the sample (-1.7 cm). Both y-axes have different scales so as 
to better compare the peaks. The dotted lines are indicative of the peak 
positions of the symmetric stretches of the minerals MgCO3 (magnesite, 
1094 cm-1) and  4MgCO3·Mg(OH)2·4H2O (hydromagnesite, 1119 cm-1), 
respectively.(Data: (a) 05223029 & (b) 05223032, R19).



2 days at 80 °C and 92-88 bar instead of the 31 days at 81 °C and 113-72 bar shown in Figure 

3.12. The Raman data of this reaction, collected in a similar fashion as R19 in Figure 3.12, was 

the first to show this spatial dependence of carbonate precipitation. It is reproduced in Figure 

3.13 and shows that the MgCO3/4MgCO3·Mg(OH)2·4H2O conversion region occurs at 

considerably shorter distances into the sample (-0.25 cm) due to the much shorter reaction time. 

Figure 3.13 also shows the shifting of the  4MgCO3·Mg(OH)2·4H2O, hydromagnesite peak (1119 

cm-1) to higher values indicating the presence of 4MgCO3·Mg(OH)2·(5-8)H2O, dypingite.
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Figure 3.13: Raman spectra of the reaction products in the range of the 
characteristic CO3

2− symmetric stretches, each taken at different points 
along the length of the sample tube: (a) at the solution/solid interface (0.0 
cm), (b) -0.25 cm below the interface, (c) -0.5 cm, and (d) -0.6 cm. 
Spectra (b)−(d) were acquired using a 5× microscope objective, whereas 
spectrum (a) was acquired using a 20× objective. In addition, the y-axis 
in spectrum (d) has been expanded so as to better see the peaks. The lines 
at 1094 and 1119 cm−1 are guides to the eye for the locations of the 
magnesite and hydromagnesite/dypingite peaks, respectively.(Figure 
adapted with permission from Surface et. al. Copyright © 2013 American 
Chemical Society).



d.  Ex situ pXRD

pXRD has been repeatedly used throughout this project to confirm Raman shift assignments 

and 13C NMR chemical shift assignments. It is the one unambiguous method to confirm a crystal 

structure as no two crystal structures have the same pXRD patterns (likewise with Raman 

spectra). It is, however, only sensitive to moderately to well crystalline materials. 

Mesocrystalline and amorphous materials cannot be detected unambiguously by pXRD, unlike 

Raman and 13C NMR. Raman spectra are sensitive to vibrations, that change to some degree 

based on the phase (for instance in CO3
2-). 13C NMR is sensitive to 13C spins, which are there 

whether or not there is crystalline structure in the sample. pXRD, on the other hand, is only 

sensitive to crystalline structures. In the absence of crystal structure, there is no pXRD pattern. 

Figure 3.14 shows a representative pXRD spectrum that confirms the existence of the 

different Mg-carbonate phases from the in situ reactions with Mg(OH)2. This particular sample is

the same material discussed in Figure 3.13, and is the product of the reaction of CO2 with 

Mg(OH)2 for 2 days at 80 °C and 92-88 bar. 
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The pXRD results in Figure 3.14 indicate that within the limit of detection of pXRD, there is 

no reactant, Mg(OH)2, remaining. Additionally, the reflections from MgCO3 are slightly 

left-shifted (~1° 2θ) suggesting that some of the MgCO3 unit cells have expanded. As pXRD is a 

time- and space-averaged measurement,108 only some of the MgCO3 crystals need be expanded to

affect the pXRD pattern. The unit cell expansion in MgCO3 is likely due to incomplete removal 

of water during the 4MgCO3·Mg(OH)2·4H2O to MgCO3 transition30 leading to partial hydration 

of some of the MgCO3 unit cells. Lastly it is important to note that no Mg(HCO3)(OH)·2H2O,31 

nesquehonite, formed during the reaction, probably because the reaction temperature was too 

high.102

e.  Ex situ 13C MAS NMR

The products from the top of the mineral in the low and high water content reactions were 
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Figure 3.14: Powder X-ray diffraction pattern from the reaction product 
of CO2 reacting with Mg(OH)2, brucite. There are no detectable 
reflections remaining from the reactant Mg(OH)2, indicating that it has all
reacted. (Figure adapted with permission from Surface et. al. Copyright ©
2013 American Chemical Society; Data: R9).



packed into rotors and spun at 5 kHz so that 1H-decoupled 13C MAS NMR spectra could be 

obtained. Both are shown in Figure 3.15.

The differences between Figure 3.15 (a) and (b) do not say much about the differences 

between the water content as the reaction times are so different. Nevertheless, both spectra 

suggest that the dominant product in the top layer of the product mineral is MgCO3(s) (169.74 

ppm), in agreement with the Raman data. The two small peaks at 165.25 and 162.91 ppm [Figure

3.15(a)] are indicative of  4MgCO3·Mg(OH)2·4H2O, hydromagnesite.

It can be very challenging to get high quality 13C MAS NMR data from carbonate minerals. 

As the T1's can be so long, I have found that single-shot experiments after long polarization times

(> 30 m) for the 99% 13C-labelled samples have been adequate to get quantitative spectra. I have 

also found that high precision shimming by adjusting the RT-shims while observing an aqueous 

solution of ethylene glycol using 13C NMR allows high resolution spectra to be obtained with 

linewidths < 1 ppm. In most cases I was able to get the resolution of the MAS probe to be less 

than 50 Hz and on some days better than 20 Hz. When analyzing the 13C MAS data, the lineshape

of the adamantane line should always be taken into account. If it is very narrow and symmetric, 
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Figure 3.15: 1H-decoupled 13C MAS NMR of the top mineral layer of R15 
(a) and R19 (b), low- and high-water content reactions respectively. The 
reaction is CO2 with Mg(OH)2 in an aqueous environment. (a) reacted for 
4 days and (b) reacted for 31 days. (Data: 20130604-(a)R15,(b)R19)



its linewidth can be considered as the field homogeneity of the magnet. As the sample is 

spinning at the magic angle, changes in susceptibility have no effect on the chemical shift. 

Therefore any line-broadening or line-splitting in the sample down to 20 Hz or so resolution 

must be a result of multiple chemical shifts or dynamics causing the line to broaden in the solid. 

In the following Figure 3.16, the 13C linewidth measured from the 1H-decoupled 13C adamantane 

reference is 18 hz and is totally symmetric—so the lineshapes observed in Figure 3.15 are the 

result of actual chemical shift dispersion and not magnetic field inhomogeneities. A closer look 

at the magnesite peaks in Figure 3.15 reveals that the magnesite peak is composed of three 

unique lines as seen in Figure 3.16. 

Multiple lines for metal carbonate solids are not uncommon in 13C MAS NMR as NMR is 

sensitive to both amorphous/mesocrystalline and crystalline compounds. As the pXRD 

suggested, various amounts of water can get caught in the crystal structure. The expanded crystal

unit cell from partial removal of water  probably causes a slightly higher chemical shift21 and has 
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Figure 3.16: The MgCO3(s) line (black) and the sum of the three different 
lines composing it (red). The three comprising lines (blue, purple, and 
green) have chemical shifts of 169.3, 169.7, and 170.1 ppm, respectively. 
This particular data comes from Reaction (b), high water content.(Data: 
20130603: R19)



been observed in the singly-hydrated version of calcite, monohydrocalcite (CaCO3·H2O).54 

Additionally, mesocrystalline MgCO3(s) phases (partially crystalline) are also likely and would 

still be detected via 13C NMR and would account for the small differences in chemical shift of 

the line. Analogous to amorphous versions of CaCO3,54 amorphous versions of MgCO3 probably 

have a slightly lower chemical shift and a broader line. Thus, the narrow, smaller component of 

the MgCO3(s) line at 170.1 ppm in Figure 3.16 is probably from the partially-hydrated MgCO3(s) 

and the broader line at 169.3 ppm is probably from a mesocrystalline/amorphous phase of 

MgCO3(s). The peak at 169.7 ppm is the peak of crystalline MgCO3(s). Further analysis of the 

MgCO3 MAS NMR will be discussed in Chapter 6.

The third reaction, reaction (c), that had similar ex situ 13C MAS NMR results as reactions (a)

and (b), just described. In the case of this reaction, I was able to obtain 13C{1H} MAS NMR data 

from two different vertical positions of the sample: the top layer of the reaction and the 

middle/bottom layer (from about 2 cm deep within sample). Figure 3.17 shows the results from 

the top and middle/bottom layer of the reaction.
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Figure 3.17: 1H-decoupled 13C MAS NMR that shows the differences between 
the top and bottom of the CO2 reaction with Mg(OH)2. There is a spatial 
dependence of the carbonates that are precipitated.(Figure adapted with 
permission from Surface et. al. Copyright © 2013 American Chemical Society; 
Data: R9).



In this case, the 13C MAS NMR experiment was run soon enough after the sample was 

depressurized that some residual CO2 could still be seen (Figure 3.17, “Top”). The top layer of 

this reaction showed similar results to the top layer of reaction (a), with the exception that the 

4MgCO3·Mg(OH)2·(5-8)H2O peaks (seen between 161 and 168 ppm in Figure 3.17) were 

stronger than the MgCO3 peaks (~169.7 ppm ). As this reaction, (c), was run for only 2 days, 

reaction (a) for 4 days, and reaction (b) for 31 days, it seems that the amount of MgCO3(s) product

is dependent on length of reaction (i.e., more is made with more time). This is not surprising as 

MgCO3(s) here forms by first precipitating 4MgCO3·Mg(OH)2·(5-8)H2O which then converts to 

MgCO3(s). One would also expect more    4MgCO3·Mg(OH)2·(5-8)H2O at early times in the 

reaction and less at later times. 

The “middle/bottom” spectrum in Figure 3.17 indicates that there is no detectable MgCO3(s) 

at layers deeper within the sample. The two peaks indicate that the  4MgCO3·Mg(OH)2·(5-8)H2O 

crystals are both less crystalline (they are broader than in the “top” spectrum) as well as being 

the dominant phase deeper in the sample (there are no other peaks visible).

f.  Conclusions about Mg(OH)2 reactions with CO2

The reaction of CO2 with Mg(OH)2 is both vigorous and rapid compared to literature-reported

values of reactions of CO2 with other minerals.88,91,95 Mg(OH)2 is a great system in which to study

the carbonation reactions of CO2 and has demonstrated several interesting facts about the system.

First,  free water content (the amount of water sitting on top of the mineral) affects the rate of 

mineralization and the magnitude and rate at which the [CO2]/[HCO3
-] ratios change over time in

the sample during the reaction. Second, the identity of the solid carbonate products of the 

reaction is spatially dependent on the depth relative to the mineral/solution interface. Third, the 
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longer the reaction is allowed to continue, the more MgCO3(s) is made and the greater the 

penetration depth of the carbonate precipitation within the mineral powder. Finally, three 

different analytical techniques (Raman, pXRD, and 13C MAS NMR) are shown to be 

complementary as all agree on the identities of carbonate products as well as their relative ratios 

to each other, and to some extent, the depths these solid carbonates occur at in the sample. 

The three complementary analytical techniques all have their strengths and weaknesses, 

however, which is why all three were applied instead of just one. Raman's small sampling size (a 

few grains of powder) allows high spatial resolution of the products within the sample using the 

symmetric carbonate stretch to identify different carbonate phases. pXRD's high sensitivity to 

crystal structure allows all of the pure mineral phases that are present in bulk to be detected 

unambiguously as each unique crystal makes a unique pXRD pattern. Finally, solid state 13C 

MAS NMR is able to unambiguously detect the different carbonate minerals in all of their phases

—amorphous as well as crystalline—in addition to quantitatively detecting the relative ratios of 

these carbonate solids in the sample. 

D.  Mg2SiO4, Forsterite

Here I will show some data from the reaction of CO2 with synthetic Mg2SiO4, purchased from

Alfa-Aesar. Like Mg(OH)2, there is much previous work on the reaction of Mg2SiO4 with 

CO2.20,24–26,29,57–59,109 Here I will show the results of two different reactions, R20 and R14. The first

reaction, R20, was meant to probe primarily in situ dynamics of the aqueous reaction of Mg2SiO4

with CO2. [CO2]/[HCO3
-] ratios were carefully probed during the reaction as was in situ 

formation of solid carbonates. This reaction had a mineral/H2O ratio of 1338 g Mg2SiO4/L H2O 
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and was allowed to react for 21 days from 120-105 bar at 80 °C (the pressure decreased with 

time due to consumption of CO2). The second, R14, was meant to analyze the spatial dependence

of the carbonate products, ex situ, in great detail. Ex situ data from R20 will be shown as well, 

but it was not taken with as detailed spatial resolution as R14. The ex situ analysis of R20 was 

merely meant to confirm that MgCO3 was the only product. R14 was run for 10 days from 

118-104 bar at 100 °C, thus 20 °C hotter than R20 and for only half the time. 

a.  In situ 13C NMR

As in previous reactions, the [CO2]/[HCO3
-] ratio was monitored for the entire length of the 

reaction to monitor the progress of the reaction. Figure 3.18 shows the [CO2]/[HCO3
-] ratio 

determined by integrated the 13C NMR peaks for the entire duration of R20, a reaction of 

Mg2SiO4 with CO2.

Early in the reaction there is a marked increase of CO2 indicating that CO2 is dissolving into 

the solution containing the mineral. After 20 hours, the [CO2]/[HCO3
-] ratio begins to decrease 

slowly, then rapidly. This indicates that the Mg2SiO4 dissolution rate overtook the CO2 

dissolution rate and the pH began to increase. The increased pH would also lead to solid 
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Figure 3.18: [CO2]/[HCO3
-] ratios vs. time from static 13C NMR in R20, a 

reaction of CO2 with Mg2SiO4.(Data: R20).



carbonate formation as it would increase the amount of [CO3
2-] in solution. Once the combined 

rate of CO2 dissolution and carbonate mineral formation surpassed the rate of Mg2SiO4 mineral 

dissolution, the [CO2]/[HCO3
-] ratio should begin to increase again, seen at about 100 h. From 

100 h onwards, the rate of formation of solid carbonate appears to be relatively constant as the 

[CO2]/[HCO3
-] ratio is steadily increasing and only appears to begin to level off at ~350 h.

The in situ 13C NMR data of R20 at early times also indicates that there is a CO2-rich aqueous

phase (where H2O is dissolved in CO2 rather than CO2 dissolved in H2O) that forms in the sample

as the initial plug of sc-CO2 dissolves and reacts with the system. Figure 3.19 shows that the 

sc-CO2 signal at ~128 ppm is very strong at 2.5 h and all but gone by 13 h. The remaining 

sc-CO2 signal is from the sc-CO2 that is stuck between the glass liner and high pressure vessel. 

The time lapse seen in Figure 3.19 also demonstrates that there is a concomitant increase of 

CO2(aq) and HCO3
- as would be expected.

After a significant amount of time (403 h), the solid carbonate signal grows in similarly to 
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Figure 3.19: In situ 13C NMR spectra acquired at 2.5 h (black) and 13 h 
(red) into reaction of CO2 with Mg2SiO4 at 110 bar and 80 °C. (Data: 
R20- 1145,1150, 16-pc Hahn echo, 128 scans, 45s RD).



previous experiments with the exception that the lineshape of the solid carbonate did not change 

with time as it did in the Mg(OH)2 reaction (see Figure 3.20). The lineshape grew in to the 

spectrum as a symmetric MgCO3 powder pattern (see Chapter 6). This indicates that if the solid 

precipitate does form first as  4MgCO3·Mg(OH)2·(5-8)H2O, its subsequent conversion to MgCO3 

must be quick enough that its powder pattern is never able to be observed. This observation 

agrees with the lifetime of  4MgCO3·Mg(OH)2·(5-8)H2O observed by Kwak et al. using 13C 

HP-MAS NMR.24 By the time the signal of the  4MgCO3·Mg(OH)2·(5-8)H2O pattern could be 

observed, it already would have converted to MgCO3(s).

b.  Ex situ Raman Spectroscopy

Ex situ Raman spectroscopic data was acquired on the sample R20 and was found to be 

consistent with the more spatially-detailed analysis of another Mg2SiO4 reaction, R14, which will
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Figure 3.20: In situ 13C NMR of R20, the reaction Mg2SiO4 + CO2 at 141.3
h (red), 270.3 h (green), 352.7 h (blue), and 403.1 h (black). The solid 
carbonate powder pattern becomes the dominant signal in the sample, but
does not change lineshape during the process, unlike the reaction of CO2 
with Mg(OH)2. (Data: R20- 1194_c, 1215_c, 1228_c, 1236_c, 16-pc Hahn
echo, 128 scans, 60 s RD).



be discussed here. The data from R14, the second reaction meant to probe the ex situ results of 

Mg2SiO4 reacting with CO2, showed a dominant symmetric stretch for MgCO3 at 1094 cm-1. The 

point at which it was strongest was in the middle of the sample. And at no point was there a 

hydroxide peak in the ~3600 cm-1 region observed, indicating that no 

4MgCO3·Mg(OH)2·(5-8)H2O (hydromagnesite/dypingite mixtures) were formed. Figure 3.21 

shows the region of 700-1150 cm-1, where five Mg2SiO4 stretching and bending modes can be 

seen along with the single symmetric stretch of MgCO3. The five Mg2SiO4 peaks are located at 

825, 859, 883, 920, and 966 cm-1, all of which are different Raman stretching and bending 

vibrations of the Si-O bonds where the three peaks at 825, 859, and 965 cm-1 correspond to the 

Ag stretches, 883 cm-1 to B2g(xz), and 920 cm-1 to B3g(yz).110 The relative ratios are dependent on the 

average orientation of the Mg2SiO4 crystals in the laser beam of the Raman instrument. In some 

cases, considerable spectrum-to-spectrum differences in the Mg2SiO4 peaks can occur depending 

on where in the sample one is looking. Thus, the peaks cannot be usefully integrated unless the 

average orientation of the crystals are known.110 
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Figure 3.21: Raman spectrum showing the presence of both Mg2SiO4 and 
MgCO3. (Data: 04122009, R14).



Many natural minerals are also known to fluoresce considerably, especially at the very high 

Raman wavenumber ranges (>3500 cm-1). These broad peaks can sometimes be hundreds or 

thousands of times greater in amplitude than the sample peaks and can drown out all but the 

strongest Raman vibrations in the sample. Often samples containing Mg2SiO4 must be adjusted 

several times until the fluorescence has been minimized. Here, in Figure 3.21, the background 

fluorescence has been minimized but still can be seen in the strongly-sloping baseline which was

deliberately not removed for the observation of this effect. The unseen portion of the spectrum, at

values > 3000 cm-1, contains discrete fluorescent peaks that are 50x stronger than the MgCO3 

symmetric carbonate stretch at 1094 cm-1 (data not shown).

c.  Ex situ pXRD and 13C MAS NMR

The purpose of the pXRD and 13C MAS NMR experiments here are to confirm the spatial 

location of MgCO3(s) in the sample R14 as well as to confirm that MgCO3 was the only carbonate 

phase formed in the entire sample. The sample R14 was divided into six portions, from top to 

bottom. Each of the six portions were loaded onto XRD slides for pXRD analysis and then MAS 

rotors for 13C MAS NMR analysis. The sample-to-sample signal strength of the MgCO3 phase in 

the sample was each scaled to the layer of sample with the most MgCO3(s) signal. The resultant 

relative signal magnitudes were charted vs. the respective sample depth in the reaction tube. The 

MgCO3 signal strength from pXRD was calculated from the amplitudes obtained by a MgCO3 

pattern fit between 15 and 50° 2θ. The MgCO3 signal strength from 13C MAS NMR was obtained

by numerical integration of the MgCO3 line at 169.7 ppm.
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Figure 3.22 plots the relative quantities of MgCO3 formation versus depth into the mineral 

sample, where 0 cm is the top of the mineral sample. Figure 3.22 also demonstrates that both 

analytical methods, NMR and pXRD, agree that the most MgCO3 forms below the top surface of 

the mineral. In this case, the bulk of the MgCO3 forms ~-1.4 cm below the surface of the mineral.

In fact, the least amount of MgCO3 forms at the surface of the mineral—and this was found to be

the case for R20 also. The pXRD spectrum from -1.4 cm below the surface of the mineral, Figure

3.23, shows that there is still Mg2SiO4 present. It also shows that the MgCO3 phase is very 

prominent and matches with the MgCO3 crystalline standard, unlike in the previous Mg(OH)2 

experiment where crystal cell expansion had occurred leading to an imperfect fit. 
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Figure 3.22: Spatial dependence of MgCO3 precipitation in the reaction 
with Mg2SiO4. The y-axis has been scaled such that the maximum MgCO3 
reported is 1.0. The units are arbitrary as the MAS NMR measurements 
were made by integrating the narrow MgCO3 peak and the XRD 
measurements by fitting the entire pXRD pattern. (Data: R14 XRD + 
NMR).



The 13C MAS NMR results shown in Figure 3.24 are similar to the previously-reported 

MgCO3 peak, Figure 3.16, in that the “pure” MgCO3-crystalline phase is probably a combination 

of three different MgCO3 phases. The three different phases are most likely a pure MgCO3 

crystalline phase, a broad amorphous phase, and a H2O- or OH-containing MgCO3 phase. Unlike 

the Mg(OH)2 reactions, however, Mg2SiO4 does not always yield a MgCO3 line that has many 

phases. This feature will be discussed in greater detail in Chapter 6, where the formation of pure 

MgCO3 (a single 13C MAS NMR peak) was achieved by reacting the Mg2SiO4 sample for over 

20 days.
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Figure 3.23:  pXRD spectrum of the Mg2SiO4 sample from -1.4 cm deep 
into the sample. The dominant cyrstalline phase is MgCO3, but there is 
still some Mg2SiO4 present. The MgCO3 reflections are not shifted in this 
result. (Data: Surface041012a-R14middle(2); standards: AMCSD 
0000389, 0009586).



Here in Figure 3.24, the same three peaks are observed in the MgCO3 peak, indicating that 

multiple phases of MgCO3 must form as the product, some with water/H's still trapped in the unit

cell, and others that are amorphous or mesocrystalline.

d.  Conclusions about Mg2SiO4 reactions with CO2

Reactions with Mg2SiO4 are considerably slower than with Mg(OH)2. They also yield, after 

similar reaction times and temperatures, pure MgCO3 product, unlike the more basic mineral 

Mg(OH)2, which yields a combination of MgCO3 and 4MgCO3·Mg(OH)2·(5-8)H2O 

(hydromagnesite and dypingite). The  formation of the product MgCO3 is also spatially 

dependent, precipitating at greater quantities deeper within the sample and the least at the top 

portion of the sample.
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Figure 3.24: 13C MAS NMR (νr = 5kHz) of the sample from -1.4 cm deep 
into the sample. The only carbonate phase is MgCO3(s) (per pXRD), but 
there are three peaks in the 13C NMR data that represent multiple 
MgCO3-like carbonate phases at 169.35 ppm (green),169.62 ppm 
(purple), and 169.99 ppm (blue). (Data: r14middle2_040212).



E.  Conclusions

The carbonation reactions of CO2 with MgO, Mg(OH)2, and Mg2SiO4, have all been 

examined in great detail. All yielded some form of Mg-containing carbonate. All of the reactions

exhibited spatial dependence in the formation of the carbonate products. The rates of the three 

reactions were all considerably different, and the use of in situ, high pressure and temperature 13C

NMR was successfully used to observe the progress of the reactions and the fate of CO2 by 

examining the [CO2]/[HCO3
-] ratios throughout the duration of the reactions. Finally, the use of 

three different ex situ spectroscopic techniques (Raman, pXRD, and 13C MAS NMR), was 

demonstrated as an invaluable approach to identifying the products formed during the reaction.

An interesting comparison of the Mg(OH)2 and Mg2SiO4 reactions can be found in their 

average [CO2]/[HCO3
-] ratios. Surprisingly, the Mg(OH)2 reactions exhibited an average [CO2]/

[HCO3
-] ratio (4 to 8) that was, in general, 3 to 4 times larger than the Mg2SiO4 reactions (2 to 4). 

This result is surprising because Mg(OH)2 is the more basic and soluble of the two reactant 

minerals and would be expected to drive the pH of the reaction to higher values, thereby 

decreasing the average [CO2]/[HCO3
-] ratio compared to the more acidic mineral, Mg2SiO4. 

However, the fact that the Mg2SiO4 reaction is more basic than the Mg(OH)2 reaction shows how

dependent the final reaction rate is on the combination of the rates of CO2 dissolution, mineral 

dissolution, and carbonate precipitation. These three processes are what control the overall pH of

the reaction. Where CO2 dissolution is slowed, the net effect is for the pH to be higher. Where 

mineral dissolution is slowed, the net effect is for the pH to be lower. Where carbonate 

precipitation is slowed, the net effect is for the pH to be higher. Of course, it is probably 

impossible to attribute which process is primarily contributing to the change in a pH value as the 
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observed pH trend is a combination of all three processes occurring simultaneously. 

Nevertheless, if something is known about the progress of the reaction, one of the three 

processes will likely dominate: CO2 dissolution should drive pH change early in a reaction while 

mineral dissolution and carbonate precipitation should drive the pH change later in a reaction.

Thus evaluating pH changes at different durations of the reaction can provide a method of 

understanding the progress of the reaction. Here, in the comparison of Mg(OH)2 to Mg2SiO4, the 

pH is possibly lower in the Mg(OH)2 reaction because of fast CO2 dissolution and carbonate 

precipitation. The stronger base increases the [CO3
2-] value in the solution increasing the rate of 

the carbonate precipitation, keeping the pH high. In the case of Mg2SiO4, the slower carbonate 

precipitation must increase the pH of the reaction system because the alkalinity (CO3
2-) cannot 

leave the solution. That there is amorphous SiO2 forming in the system is one of the likely 

culprits for slowing the carbonate precipitation; but the rate of the mineral dissolution may play 

some part in that as well. If the mineral dissolution is slow, it takes longer to get the 

concentration of Mg2+ high enough to cause precipitation of the carbonate phase which in turn 

increases the pH. 

The spatial dependence of the products is also interesting and was not an entirely expected 

result. In any solid-state reaction, some spatial inhomogeneity is to be expected due to the 

restricted mobility of the solvent because of the solid phase, but here I have demonstrated a 

repeatable pattern in two different reaction systems. The spatial dependence of the products is 

likely due to a pH gradient being formed across the sample due to the mineral dissolution starting

at the top of the mineral before the bottom because that is where the CO2 arrives first. Particle 

size, porosity, and mineral permeability also likely play a role in this process and would be 
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interesting to explore in other additional reactions.

Altogether, the data presented here demonstrate the amount of insight in situ  13C NMR can 

provide into CO2 sequestration reactions with minerals. NMR provides a window into the 

reaction for rate analysis, product analysis, and the pH analysis (as I will demonstrate more fully 

in the next chapter). The fact that the reaction conditions are static (i.e. unmixed) is important 

because, as shown here, a non-mobile, unmixed system makes the products spatially dependent. I

will explore the reasons for the spatial dependence in Chapter 5.
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Chapter 4:  In situ measurement of pH using 13C NMR

A.  Introduction to measuring pH using 13C NMR

pH is probably the most important variable that can be measured in CO2 sequestration 

reactions. This is because pH is a measurement of the activity of the hydrogen ion in solution 

(Equation 4.1). The activity of H+ affects the solubility of CO2 in water, CO2's reactivity with 

water,98,111–113 the solid carbonate phases that are thermodynamically accessible for 

precipitation,21,114,115 and the rates of almost every chemical reaction that takes place during the 

mineral sequestration of CO2 including mineral dissolution96 and carbonate precipitation.64 In 

short, pH is an excellent handle for interpreting the progress, reactivity, and fate of CO2 in a high 

pressure reacting CO2 sequestration system.28,116

     (4.1)

where, 

{H+} = γH[H+]

Traditional benchtop pH meters measure the activity, {}, of H+ through direct potentiometry, 

where the activity of the H+ ions change the electrical potential of a glass electrode.  This highly 

accurate method works well only for specific conditions which are prescribed on the basis of the 
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Figure 4.1: Measuring pH is possible by combining 13C NMR data and 
output from a carefully constructed model.



type of glass cell and reference elements being used. Some common limitations of glass cells, 

however, include an inability to work at non-standard conditions (the glass electrodes are not 

able to withstand high pressures and provide erroneous readings at high and low temperatures) 

and the need to be standardized (tested on a solution of known pH) using several standard buffer 

solutions before making a reading. High pressure and temperature pH probes have been designed

to circumvent some of the common issues with measuring pH at high pressures and 

temperatures, but use of these meter solutions remain tricky at best in day-to-day lab work and 

are so expensive as to discourage their use.28,117,118 Rapid pressure changes can also break the high

pressure pH probe element and instrument drift cannot be easily corrected with a standard buffer 

solution without depressurizing the sample (which changes the pH). Finally, there is also the 

issue that all pH measurement using an electrode requires physical contact with the system—

which is a problem if one wants to measure the pH inside of a porous rock or a slurry without 

disturbing it.

 Recently, Shao et al. described an approach to measure pH indirectly using pH sensitive 

chromophores that could be monitored using spectrophotometry.28 This method is also very 

accurate but requires the presence of chromophores (in their case, bromophenol blue, or BPB) in 

the reaction solution to observe the changes in pH and is limited in its pH range. An additional 

difficulty with this method is that it requires optical access to the sample—so one is limited to 

measuring pH to portions of the sample that the instrument can “see”. Using a so-called 

“simplified absorbance ratio method,” they were able to generate [H+] values from their 

technique, from which they were able to calculate pH (or more exactly, pHm, where “m” is molal,

a way of calculating pH in terms of [H+] not {H+}...see Equation 4.5). While they did not 
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calculate {H+} values from their measurements, their paper is still very important because they 

introduce the concept of using an indirect method (measurement of a pH-sensitive chromophore)

to calculate pH in high temperature and pressure sequestration reactions. Their paper also 

introduces the concept of combining multiple, already-existing geochemical calculation packages

into one model to check experimental pH measurements and provide supporting calculations. 

Another research paper that provided inspiration and a starting point for measuring pH from 

CO2 dissolution into aqueous systems is a 1992 paper by Meyssami et al.113 This paper played a 

crucial role in the development of the pH measurement method I describe here. In their paper, 

Meyssami et al. develop a simple model for calculating pH in terms of {H+} during CO2 

dissolution into aqueous solutions. This was the first paper I came across that presented a 

working pH model for CO2 dissolution into aqueous solutions in as simple a way as it does. And 

this paper, coupled with Shao et. al.'s paper, are the single two most important papers that 

inspired the research I present in this chapter.

The approach I have taken to solve the pH-measurement problem at high CO2 pressures and 

reaction temperatures is built upon the ideas that Shao et al. described in their paper. However, 

instead of using a chromophore with light as the indirect method of calculating [H+] like Shao et 

al., I use 13C NMR to detect the CO2(aq) and bicarbonate that already exist in the reacting system 

from which [H+] can be calculated. This method works because the concentrations of CO2 and 

HCO3
- are pH dependent (Figure 4.2 and Equation 4.3). Using [CO2]/[HCO3

-] ratios to calculate 

pH is an elegant solution to measuring pH because both CO2 and HCO3
- are already part of the 

reaction. No additional chemicals need be added to measure pH. 

I have also used Shao et al.'s second major contribution, the concept of combining 
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pre-existing computational packages to create a model that provides supporting pH calculations. 

I constructed a model that combines several freely available computational packages to calculate 

activity coefficients and solve the equilibrium equations associated with the sequestration 

reaction(s). I also took this idea one step further. Rather than just comparing the calculations to 

experiment, i.e. using the calculations to “support” experimental results, I combined the 

calculations with the experiment in such a way that real pH (that is pH calculated using {H+} and

not [H+]) could be calculated from the experimental data. 

To best understand how this works, it is good to have a picture of the reactions that are going 

on in a CO2 sequestration reaction. Equations 4.2-4.4 describe the three major reaction steps in a 

typical sequestration reaction. The Mg2+ metal ions are representative of metal ions that would 

come from the dissolution of some mineral reactant, such as brucite or forsterite (see Chapter 3). 

Reactions (4.2)–(4.4) have been studied in high temperature and pressure vessels using various 

minerals as the magnesium source extensively by others.58,65,88,93,95,119  

CO2(g)  CO⇌ 2(aq)      (4.2) 

CO2(aq) + H2O  HCO⇌ 3
– + H+  CO⇌ 3

2– + 2H+      (4.3) 

Mg2+ + CO3
2– → MgCO3      (4.4) 

As described in Reaction 4.3, there are three aqueous carbon species that form in solution 

after CO2(g) dissolves in water: CO2(aq), HCO3
-, and CO3

2-. These three species have distinct 13C 

NMR chemical shifts and spin relaxation properties.23,45,46,74,120,121 Using the first equilibrium step 

(CO2  HCO⇌ 3
-) in Reaction 4.3, the pHm under standard and ideal conditions can be calculated 

using the [CO2]/[HCO3
-] ratio (obtained from the quantitative 13C NMR intensities) and the 

standard pKa1 of 6.3557 using Equation 4.5 (the subscript “1” in pKa1 refers to the first equilibrium
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step, CO2(aq) + H2O  HCO⇌ 3
- + H+). If the solution is dilute such that the ideal approximation can 

be made (where activity coefficients, γ, are equal to 1), [CO2]=[HCO3
-] at pH of 6.35. (Note: here

I have simplified this first equilibrium step and pKa1 as the combination of two reactions CO2+ 

H2O  H⇌ 2CO3 and H2CO3  HCO⇌ 3
- + H+. The concentration of H2CO3 is negligible, allowing the

two reactions to be combined70,71). At pH values decreasing from 6.35, CO2 increasingly becomes

the dominant species. Likewise, at increasing pH values above 6.35 (pKa1), HCO3
- increasingly 

dominates. As the pH further increases, CO3
2- grows in relative concentration; at pH = 10.33 

(pKa2), [HCO3
-]=[CO3

2-].

The first of the two equilibrium steps in Equation 4.3 (CO2(aq) + H2O  HCO⇌ 3
- + H+) is the 

most relevant equilibrium step to use for calculating pH as sequestration reactions almost always 

have a pH less than 8 (making [CO3
2-] vanishingly small). Under ideal conditions, one would 

calculate pH using Equation 4.5, where pHm ≈ pH. As high pressure, sequestration reactions 
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Figure 4.2: pH controls the ratios of CO2/HCO3
- and HCO3

-/CO3
2-. The 

points 6.3 and 10.3 are pKa1 and pKa2, respectively.



deviate considerably from ideal conditions (concentrations of ions can exceed 1 M, and much 

greater than that in high salinity sequestration environments), another equation (Equation 4.6) 

needs to be used to account for the CO2 and HCO3
- activity coefficients not being equal to 1. 

Equation 4.6 differs from 4.5 in that it includes the activity coefficients. These activity 

coefficients are obtained from the calculation packages, which will be discussed in greater detail 

later in this chapter. 

     (4.5)

     (4.6)

The high pressure NMR probe (described in Chapter 2), used to obtain the experimental 

[CO2]/[HCO3
-] ratios, has been specifically designed to measure the ratios with great precision. It

can detect  any 13C-containing gaseous, aqueous, or solid phases in its reaction chamber. The 

chamber is large enough to incorporate several grams of solid mineral reactant and can operate at

temperatures up to 250 °C and pressures up to 400 bar. When properly shimmed, the probe has a 

spectral resolution on the order of 1 ppm or better, even with solid phases present, and can easily 

distinguish 13C NMR signals of sc-CO2 (~128 ppm), CO2(aq) (126 ppm), and HCO3
- (161.5 ppm). 

If the T1 relaxation times of the different 13C-containing chemical species are known, the 

experiment can be set up to ensure the 13C NMR spectra are quantitative. If one is very careful 

and uses a spin-counting technique, [CO2] and [HCO3
-] values can be calculated directly from the

integrated 13C NMR peaks. However, I have found it easier in practice to rely on calculations to 

provide [CO2] and use the quantitative 13C NMR data to calculate [CO2]/[HCO3
-] from which 

[HCO3
-] can be derived using the calculated value of [CO2].
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The work discussed here is not the first to utilize 13C NMR to measure [CO2]/[HCO3
-] and 

[HCO3
-]/[CO3

2-] ratios. Nor is it the first to extract pH values from the 13C NMR data. Many other

researchers have used 13C NMR to monitor CO2 dissolution and chemical equilibration with 

water,23,45 CO2 interaction with alkanolamine CO2-sorbent solutions,46  CO2 production and 

consumption during formic acid dehydrogenation reactions for H2 storage,121 imaging of in vivo 

pH,48 and exchange between CO2 and HCO3
- catalyzed by carbonic anhydrase in vivo.122,123 13C 

NMR has proven very useful in a number of different research problems involving CO2. And this

research continues that tradition.

The work I describe here contributes to the CO2 reaction and NMR communities by 

establishing a method to extract pH values from 13C NMR experiments based on {H+}, not [H+] 

like previous work. This is accomplished by combining 13C NMR experimental data with a 

specially-constructed model (made of a combination of various freely-available, robust 

calculation packages). The calculated activity coefficients and solutions to the equilibrium 

equations based on the experimental conditions, make the calculation of {H+}, and thus pH, 

possible from 13C NMR data. 

B.  Development of a pH model

Equation 4.6 describes how the model and experimental data work together to derive the final

pH of the solution. The model calculates Ka1 and γCO2/ γHCO3- and the 13C NMR measures [CO2]/

[HCO3
-]. These values combined enable the measurement of pH. The model is made of a 

combination of freely-available computational packages namely, Duan and Sun's solubility 

equations (D&S equations),112,124–127 SUPCRT92,128 and PHREEQC.129 The D&S equations are 
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used to calculate [CO2] in reaction solution, given a certain amount of [Na+] and [Mg2+] in the 

solution. SUPCRT92 calculates equilibrium constant (K) values for all equilibrium reactions in a 

sequestration reaction based on temperature and pressure of the system. The calculated [CO2] 

and K values are then passed to PHREEQC which simultaneously and recursively solve the 

equilibrium equations based on the constraining experimental [CO2]/[HCO3
-] ratios obtained 

from the 13C NMR data. The model is pictorially presented in Figure 4.3.

The D&S equations solve for [CO2] in a way unlike most other programs, including default 

settings of PHREEQC. In the D&S equations, [CO2] is determined by first solving for the 

chemical potential of CO2 in the vapor phase (μv
CO2) above the solution by solving its equation of

state (EOS).130,131 The μv
CO2  from the CO2 EOS is set as the solution to the chemical potential of 

CO2 in the aqueous phase (μv
CO2  = μl

CO2), from which [CO2] is calculated using the specific 

interaction model of Pitzer.132 D&S have written their equations into a Windows executable 

program (co2-solubility.exe) which can be downloaded from their research group's website.133 

The executable is based directly on the equations they describe in their 2003 and 2006 

papers.112,127 Yanzhe Zhu, an undergraduate researcher in the Hayes group, and I checked the 
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Figure 4.3: The model is comprised of several freely-available, robust 
calculation packages that recursively work together to solve the 
equilibrium equations, [CO2], [Mg2+], and [Na+]. Yellow boxes represent 
the calculation packages and blue boxes represent values that are 
produced/used by the model. The gray box is what the combination of 
programs ultimately produce.



output of the executable to make sure they were consistent with their papers by building the 

equations from their papers in MATLAB. The D&S CO2 solubility equations are accurate within 

experimental limitations, which they describe in their 2003 paper as 7% for CO2 solubility 

values.

SUPCRT92 solves for equilibrium constant (K) values at different temperatures and pressures

for the the equilibrium equations in the reaction system (see Equations 4.2 and 4.3). SUPCRT92 

also solves for the K values of the reactant mineral, such as Mg(OH)2. SUPCRT92 is a software 

package written in 1992 and is only as good as the database (.dat file) of mineral data that is 

loaded in it. The program was written for geochemical modelers who needed quick access to 

thermodynamic data on different minerals and other geochemical reaction data on different 

systems. SUPCRT92 is designed “to calculate standard molal Gibbs free energies, enthalpies, 

entropies, volumes, and heat capacities of minerals, gases, aqueous species, and reactions as a 

function of temperature and pressure.”128 In our specific case, we chose the database dslop98.dat 

which was built in 1998 by the GEOPIG project (led by Dr. Everett Schock) while it was still at 

Washington University in St. Louis (GEOPIG is now at ASU). The database is assembled from 

data from ~30 different thermodynamic data publications on various minerals and chemicals 

related to geochemical reactions. The database is formulated by mineral name, chemical formula,

reference, and a series of thermodynamic data including but not limited to ΔG°f,  ΔH°f, S°P,T, 

V°P,T, and a series of P/T-independent coefficients for various analytical expressions describing 

how these values change as a function of temperature and pressure. The equations used within 

the program are described in great detail in the original SUPCRT92 paper.128 And even though 

the dslop98.dat database was never published in a paper, it is an updated version of the 
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SPRONS92.dat database described in the paper and contains much of the same data but with 

additional minerals.

In the model presented here, I use PHREEQC (version 2.18.3) as the core calculation base for

the model, taking inputs from D&S equations and SUPCRT92. PHREEQC is a geochemical 

modeling package capable of many functions including calculation of chemical speciation, 

saturation indices, kinetic modeling, and transport modeling. It has been designed for 

geochemical applications where gases/liquids are mixed together at high pressures and 

temperatures and react with solid minerals precipitating new minerals. Here I utilize its ability to 

solve multiple equilibrium problems simultaneously. I also use it for its ability to calculate 

activity coefficients using Pitzer's equations.132 Here we use PHREEQC for a very specific set of 

functions (equilibrium calculation and activity coefficient calculation) leaving unused much of 

its capabilities. For instance, PHREEQC is capable of calculating [CO2] and K values at different

temperatures and pressures. I have not utilized these aspects of PHREEQC, however, because 

D&S equations are more accurate than PHREEQC for calculating [CO2] and SUPCRT92 

provides a more extensive database that works over a larger P/T range than PHREEQC. As 

described earlier, Shao et al. did an excellent job describing the advantages to combining 

different calculation packages to get better calculation results.28 The idea is each calculation 

package has a strength and if you combine the strengths of different packages you get better 

calculation results. 

Nevertheless, I think it is appropriate to provide more detailed  justifications for using D&S 

and SUPCRT92 with PHREEQC here. The D&S equations use chemical potential matching 

(μv
CO2  = μl

CO2), Pitzer's equations,132 and an EOS127,130,131 that incorporates non-ideal interactions of

97



gases at high pressures and temperatures (D&S uses fugacity of CO2 when calculating chemical 

potential). PHREEQC uses the ideal gas equation (in version 2.18.3, the version I use here) and 

partial pressures instead of fugacities. It also does not use activity matching to determine [CO2]. 

However, PHREEQC 3, the newest version as of this writing, uses the Peng-Robinson EOS134 to 

calculate fugacity coefficients of CO2 from the critical pressure and temperature of the gas. And 

even though I do not evaluate PHREEQC 3 here, D&S have already shown that their solubility 

model works better than the Peng-Robinson equations for calculating [CO2] across a large range 

of temperatures, pressures, and ion concentrations.112 So D&S equations would still be needed 

with use of PHREEQC 3.

In addition to using D&S equations and SUPCRT92 with PHREEQC, I used the pitzer.dat 

thermodynamic database file for PHREEQC calculations instead of the default phreeqc.dat. This 

database file uses thermodynamic data derived from the Pitzer equations, which are more 

accurate at determining the energy of interaction between ions in a solution of elevated ion 

concentrations (> 0.5 M).

The model I develop here, comprised of these three different software packages, only works 

because the different software packages are allowed to communicate with each other recursively.

For example, imagine trying to calculate how much CO2 will dissolve in a solution of water with 

an unknown value of [Na+]. NMR data can give you [CO2]/[HCO3
-] and D&S can give you [CO2]

(but only if you know [Na+], which you don't know). So the model solves the system by starting 

the D&S equations with the assumption that there is no Na+ in the solution at all. The [CO2] value

that D&S calculates is input into a spreadsheet which includes the charge balance equation, 

Equation 4.7, solving for a [Na+] value. This [Na+] value is then sent back to the D&S equations 
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to recalculate [CO2]. After a new value of [CO2] is found, the new value is sent back to the 

spreadsheet and Equation 4.7 to calculate a new [Na+] value. This back-and-forth, recursive 

communication continues between D&S and the charge balance equation until convergence (the 

same value of [CO2] is calculated two times in a row). The spreadsheet can be replaced with 

PHREEQC calculations, but it was found in practice that doing the charge balance step in a 

spreadsheet and then using PHREEQC to solve for pH after [Na+] had been calculated was 

quicker and produced the same results. As the two software packages (D&S and PHREEQC) do 

not talk to each other by default, keeping track of their exchanged values in a spreadsheet is 

helpful.  The spreadsheet and calculation steps will be described in greater detail later in this 

chapter and in Appendix A.

[Na+] + 2[Mg2+] + [H+] = [HCO3
-] +  2[CO3

2-] + [OH-]     (4.7)

PHREEQC has some unique calculation caveats which are described in detail in Appendix A.

The most important two to mention here are that PHREEQC requires its input values for CO2 to 

be presented in terms of activity, which is not known initially, and the activity values it calculates

are MacInnes activities. The initial input in activities can be overcome by running calculations as

[CO2] initially then substituting with {CO2} once γCO2 is known. PHREEQC's use of MacInnes 

activity coefficients is important because MacInnes activities are scaled values based on the 

assumption that γKCl = γK+ = γCl-. The representation of these activities values only really matters 

in terms of comparing one calculation to another. If an activity coefficient value calculated in this

document were compared to another literature value, one would want to make sure the same 

scaling conventions were used. Plummer et al. have a very helpful and detailed discussion on pg.

11 of a USGS report about justification for using MacInnes scaling factors in activity coefficient 
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calculations.135 

The model I have described here will be used in a number of different ways in this chapter, 

depending on what calculations it is needed to do. Not every package contained within the model

is used within every calculation. 

C.  Experimental validation of the pH model

Three sets of validation experiments will be described here. The first set of experiments 

called “pH meter experiments,” makes solutions with high ionic strength (between 0.8-2.4) and 

tests the model's ability to predict pH values measured by a traditional benchtop pH meter. This 

test is crucially important because it tests the model's ability to calculate accurate activity 

coefficients at high ionic strengths.

The second set of experiments called “Liquids 13C NMR of NaHCO3/Na2CO3 solutions” was 

meant to repeat work done previously by Jakobsen et al.46 and Morrow et al.136 More of the 

NaHCO3/Na2CO3 aqueous solution mixtures, like those used in the “pH meter experiments,” 

were analyzed using high resolution liquids 13C NMR. These experiments were designed to 

acquire a curve of [HCO3
-]/([HCO3

-]+[CO3
2-]) vs. 13C NMR chemical shift of the 

bicarbonate/carbonate peak in 13C NMR (there is only one peak due to fast exchange, but its 

chemical shift is dependent on the ratio of [HCO3
-]/[CO3

2-]).45,46,136 As per the previous research, a

plot of the ratio vs. the chemical shift should be a straight line. This second set of experiments 

was important to complete because it calibrated the measurement of pH at high pH values using 

13C NMR as well as tested the model against systems that are well studied in literature. 

The third and final set of validation experiments called “High pressure 13C NMR experiments
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of CO2 in NaOH solutions,” validate the model's CO2 pressure and solubility calculations. In 

these experiments CO2(g) is pressurized over an NaOH-containing aqueous system. As pH could 

not be directly measured under these conditions, the model predicts [CO2]/[HCO3
-] ratios for 

comparison to experimental [CO2]/[HCO3
-] ratios obtained by 13C NMR. The solutions being 

pressurized also have known amounts of [Na+] to which the model's [Na+] predictions can be 

compared. Accurate [CO2]/[HCO3
-] ratios and [Na+] values indicate that the model can predict 

[Na+] and [CO2] values accurately at ionic strengths up to 1.04 (although the model is probably 

able to work at ionic strengths much higher than this, ionic strengths much higher than this start 

to become a problem for the NMR circuitry. See Chapters 2 & 3 for greater detail on this effect).

a.  pH meter experiments

Eleven different solutions with different pH values were prepared by mixing different ratios 

of NaHCO3 (Sigma-Aldrich) and Na2CO3 (Sigma-Aldrich) with a carbon molality of 0.80 in each

solution at STP. The solutions varied in NaHCO3 concentration from 0 to 0.8 molal in steps of 

0.08 molal while the concentrations of Na2CO3 varied from 0.8 to 0 molal, thus making solutions

with [NaHCO3]/[Na2CO3] ratios of 10/0, 9/1, 8/2, etc., to 0/10 and the ionic strengths vary from 

0.8 to 2.4. The pH values of these solutions were immediately measured with a Fisher Scientific 

Accumet Electrode XL15 pH probe calibrated with standard solutions of  2.0, 4.0, 7.0, and 10.0 

pH. Measurements were sufficiently fast that any exchange of CO2 with the atmosphere would 

have a negligible effect on the measured pH.

The SUPCRT92 and PHREEQC packages were used in these validation calculations as CO2 

solubility was not considered here because of the “closed-system” assumption—that the partial 

pressure of CO2 in the atmosphere is not in equilibrium with the CO2(aq) in the solution. Figure 
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4.4 shows the results of the model predictions based on initial [NaHCO3] and [Na2CO3] 

concentrations with the experimental results. 

Figure 4.4: Comparison of calculated and measured pH vs. the molar
fraction of bicarbonate/carbonate in solution.

The “titration curve” shown in Figure 4.4 is similar to previous experiments on 

bicarbonate/carbonate equilibrium45,46,120,121,137 and Figure 4.1. Solutions with highest [CO3
2-] 

concentration have highest pH values and solutions with highest [HCO3
-] concentration have 

lowest pH values, all as expected. The differences between the experimental values and values 

from the model can be attributed to experimental error and have a difference of 0.1 pH units by 

average. Agreement is much better than the 0.1 pH unit average throughout the graph except for 

both endpoints, where only Na2CO3 or NaHCO3 are added to the water. The reasons for this 

disagreement are unclear but it is interesting to note that the pH is changed towards the pKa2 

value in both cases.

The agreement of the model pH predictions with the experimental values demonstrate that 
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the model is very capable of running accurate calculations at high ionic strengths, in this case, up

to ionic strengths of 2.4. 

Finally, the commercial program Geochemist's Workbench (GWB)78 was used to predict pH 

for these solutions. The GWB results were compared to the model and found to be within 1% 

relative error (by comparing pH values). The similar results between GWB and the model are not

surprising as both use Pitzer's equations132 to calculate activity coefficients. The small differences

between the two computational packages were accounted by comparison of the difference of 

significant digits used by both programs during the calculations.

b.  Liquids 13C NMR of NaHCO3/Na2CO3 solutions

Similar to the previous experiment, a series of solutions were made with varying amounts of 

NaHCO3/Na2CO3 ratios. These solutions were made by adding the solid powder to a liquids 

NMR tube to which a specific amount of water (in this case heavy water, or D2O, was used for 

field locking in the high resolution 13C NMR experiment) was added. The effect of the ionic 

strength of these solutions on the NMR circuit did not matter as the objective was to measure a 

chemical shift. Chemical shift was calculated from an internal reference that was added to the 

solution, Dioxane, set at 67.19 ppm.47,138 

The ratio, [HCO3
-]/([HCO3

-]+[CO3
2-]), was calculated from the experimental 13C NMR 

chemical shift data by Equation 4.8, where δHCO3- = 161.5 and  δCO32- = 169.0. The experimental 

ratios were compared to calculated equilibrium ratios, calculated identically as in the previous 

pH meter experiments, based on the initial amounts of NaHCO3 and Na2CO3. 
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     (4.8)

The experimental ratios are plotted against the modeled ratios in Figure 4.5. 

There is excellent agreement between the model and the experimental data at the ends of the 

graph. In addition, the 13C NMR data (black boxes) present a straight line, which was as 

expected. The modeled data, however, diverges considerably from the experimental data in the 

middle of the plot, in some cases as much as 0.1 ratio units (corresponding, to a pH error close to

1 unit). The uneven sampling spacing was due to several experiments not working. In some tubes

we were unable to obtain 13C NMR signal altogether. In others, the 13C chemical shift had large 

error. These errors were due in part to using contaminated NMR tubes in one case, poor mixing 

in another, and/or aging solutions. As I will show later, these solutions are not stable and 

eventually equilibrate with the atmosphere, causing an increase in pH. While the tubes in these 
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Figure 4.5: Experimental and calculated ratio of carbon as bicarbonate 
vs. 13C chemical shift for several different solutions.



experiments were sealed, they were not airtight. 

At first I thought the deviation of these points in the middle were due to some sort of 

experimental error, but after plotting the 13C chemical shift data vs. calculated pH (Figure 4.6), 

and comparing it to the the literature values of Jakobsen et al.46 it became apparent that the 

D2O-dominant solution was shifting the pKa2 value. This has the affect of increasing the error in 

the middle of the line because that is the region that the NMR chemical shift will have the 

greatest change due to a change in [HCO3
-]/[CO3

2-] ratios. D2O does not change the pure 

chemical shift of HCO3
- or CO3

2-, just the equilibrium values between those two extrema, which 

is why the two lines coalesce at either end in Figure 4.5. In truth, Jakobsen et al. use some D2O 

for field-locking (but sparing amounts) so the measured pKa2 of their curve is relatively 

unaffected by the deuterium from the true value that it should be. 

To confirm that the difference between the experimental values here and Jakobsen's research 

were real, three solutions were made that had different D2O/H2O compositions but identical 
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Figure 4.6: pH of solution vs. 13C chemical shift in H2O-dominant and 
D2O-dominant solutions. H2O curve adapted with permission from 
Jakobsen et. al. Copyright © 2005 American Chemical Society.



chemical composition (9/1, Na2CO3/NaHCO3): 100%, 50%, and 25% D2O by mass. Identical 

solutions showed chemical shift differences of 168.13 ppm (100% D2O), 168.03 ppm (75% 

D2O), and 167.80 ppm (25% D2O). The experiment showed a depression of the observed 

chemical shift for the same chemical composition, showing a depression of pKa2. Deuterium is 

known to have a isotopic effect in reactions across a wide range of pH values.139 This effect 

usually (but not always) decreases the K value as the forward kinetic rate constant is decreased 

relative to the reverse rate constant because the deuterium is roughly twice the mass of hydrogen 

and slows the rate of exchange.140–142 

In addition, several solutions were monitored for chemical shift change over time. In all 

cases, chemical shift increased with time, indicating that CO2(aq) was escaping the system 

(equilibrating with the atmosphere) causing the pH to increase. In general these effects were only

able to be seen in solutions with pH's between 7 and 9, where the composition was mostly 

NaHCO3. Their changes in pH were not equal, which can be attributed to their different handling,

quality of capping, and time spun in the NMR magnet. In the most extreme case, a solution 

starting initially as NaHCO3 and water started at 161.5 ppm (100% NaHCO3, [CO3
2-]/[HCO3

-]=0)

and after one month had drifted to 164.4 ppm ([CO3
2-]/[HCO3

-]=4/6). 

Finally, the pH calculations show that in samples with pH < 8, the [CO2] in the solution 

should be high enough to detect with 13C NMR (~0.01 m for the aqueous solution with only 

NaHCO3 added). However, the CO2(aq) peak was never detected, even when 99% 13C-labelled 

NaHCO3 was dissolved in D2O. This is probably due to the fact that CO2 has a very long T1 in 

room temperature solution (~30 s). Even though the recycle delay was extended up to several 

minutes, the S/N of the bicarbonate peak was high enough to be able to resolve a peak ~2% of its

106



area, as the [CO2] peak should have been. This could also be from the the use of a pulse that was 

shorter than a 90° pulse because the highly ionic solution partially dematched the probe. 

Despite the depressing effect of D2O on the pKa2, these 13C liquids NMR experiments show 

that the pH model and NMR data work well together. It also shows that the model can accurately

predict [HCO3
-]/[CO3

2-] ratios (and from that, pH) for solutions of high ionic strength and at pH 

values from 7 to 12.

c.  High pressure 13C NMR of CO2 in NaOH solutions.

Three different solutions of varying ionic strength were prepared by diluting three aliquots 

from a standard NaOH solution made by mixing NaOH pellets (Alfa Aesar, 98% purity) with 

deionized water. The three diluted solutions were 0.0948, 0.288, and 1.041 molal NaOH. 

Approximately 2 mL of each aliquot was pressurized with 13CO2 in the high pressure NMR 

apparatus described in detail in Chapter 2. Each aliquot was allowed to equilibrate for ~12 hrs at 

each different CO2 pressure before the [CO2]/[HCO3
-] ratios were measured by 13C NMR. These 

experiments were designed to test the model's ability to calculate [CO2] at different pressures by 

predicting [CO2]/[HCO3
-] ratios and [Na+] values at different pressures in the three solutions. 

Before each solution was pressurized with CO2, a modest vacuum was applied to the solution 

(0.1 bar) to allow for removal of most of the air in the headspace of the pressure chamber. Each 

solution was allowed to equilibrate at each pressure reported was allowed to equilibrate 

overnight (~12 hrs) without being stirred. As previously described in Chapter 2, this 

equilibration time is enough to achieve equilibrium for most experiments.

Whereas the alkalinity came from NaHCO3 and Na2CO3 in all previous experiments in this 
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chapter, here the alkalinity comes from the NaOH. Thus, all inorganic carbon in the solution 

comes from CO2 in these experiments—not from any initial NaHCO3 or Na2CO3 in the solution. 

These experiments use 13C NMR to explore the pH range of 3 to 7 and thus the CO2  ⇌  HCO3
- 

equilibrium (first equilibrium in Equation 4.3), unlike the previous liquids 13C NMR experiments

(second set of experiments) that explored the 7-12 pH region. Ionic strengths in these samples 

are as high as 1.04.

As described in the liquids 13C NMR section, the 13C T1 of the carbon in CO2 is quite long in 

solution. As the dominant relaxation mechanism for CO2 is spin rotation relaxation, infusion into

water  considerably lengthens the T1 of the CO2. At room temperature, the T1 of the CO2 at 89.06 

MHz is around 20 seconds.21 So, to ensure that the [CO2]/[HCO3
-] ratios in these pressurized 

solutions were quantitative, a 5 minute recycle delay was used between scans. In addition, 

16-step phase-cycled Hahn echoes with a τ delay time of 100 μs were used for all [CO2]/[HCO3
-] 

ratio acquisitions to separate the 7 μs probe ringdown and the NMR signal to ensure there was no

first-order phase effects in the signal and to limit the spins observed to those entirely within the 

coil (Hahn echoes are more spin selective than a Bloch decay pulse sequence because they only 

refocus spins that are within the coil).

Figure 4.7 shows the [CO2]/[HCO3
-] ratio results (points) obtained at the different pressures 

in the three different samples. The model predictions (curves) are closely aligned with the data 

and were generated using the known [Na+] values as described in Appendix A. The largest 

disagreement is in the 1.041 m data set (at low CO2 pressure, 7.19 bar) and is a [CO2]/[HCO3
-] 

ratio difference of 0.09 (0.19 model ratio vs. 0.10 experimental ratio) which corresponds to 0.3 

pH units in error (using Equation 4.6). The largest disagreement in the 0.0948 m data set (43.21 
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bar data point) was a [CO2]/[HCO3
-] ratio difference of -1.68 (11.99 model ratio – 13.68 

experimental ratio), corresponding to a difference of -0.05 pH units error (using Equation 4.6). 

The average model agreement with the experimental data corresponds to +/- 0.1 pH units overall.

The experimental error of the [CO2]/[HCO3
-] ratios from S/N in the 13C NMR experiments is 

smaller than the size of the data points in the graph.
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Figure 4.7: Experimentally measured [CO2]/[HCO3
-] ratios from high 

pressure 13C NMR (square symbols) and predicted values (curves) at three
concentrations of NaOH as a function of CO2 pressure. 



After testing for agreement between predicted and measured [CO2]/[HCO3
-] ratios, the data 

and model predictions were combined to see if the known [Na+] concentration could be 

calculated accurately. These calculations would demonstrate the feasibility of calculating pH 

values for these solutions in the absence of knowing [Na+] explicitly and were completed using 

recursive calculations between D&S equations, the charge balance equation (Equation 4.7), and 

PHREEQC as described in Appendix A. [Na+] must be known to calculate the correct CO2 

solubility and activity coefficients. The results of these [Na+] calculations are in Figure 4.8. 
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Figure 4.8: [Na+] estimations from 13C NMR data using the 
experimentally-obtained [CO2]/[HCO3

-] ratios and the model. The 
solutions are 1.041 m (blue circles, top), 0.288 m (red triangles, middle), 
and 0.0948 m (black squares, bottom). The solid lines are the actual 
solution concentration of [Na+] in each of the solutions.



The significant deviations of the [Na+] calculations in the first points of the 1.041 m and 

0.288 m data are most likely from the lack of equilibrium between with the CO2 gas above it. 

The solutions were allowed to equilibrate for 12 hrs at each pressure, but CO2 dissolution can 

take as long as 18 hrs depending on the initial pressure of the CO2 gas, the temperature of the 

probe, and whether there is already CO2 in the solution (see information on CO2 dissolution into 

water in Chapter 2). The concentration of NaOH also plays a role in the dissolution kinetics and 

has been described in great detail elsewhere.143 All of the other data points had a [Na+] 

concentration deviation from the real values less than the 7% precision ascribed to the D&S 

solubility equations, which represent the limit of precision for the model.112 

Finally, the calculated pH values of the three NaOH solutions at different equilibrium 

pressures were compared with the experimentally determined [CO2]/[HCO3
-] ratios measured by 

13C NMR. For each solution, the pH results were calculated with and without the addition of the 

activity coefficients. That is, for each set of data, pH was calculated using Equation 4.5 (ideal 

approximation) and then Equation 4.6 (use of activity coefficients). This comparison was to 

show how much of an effect the addition of the activity coefficients was having on the pH 

calculations. The deviation in pH between the two methods becomes greater with increasing 

ionic strength, up to just over a half of a pH unit in the 1.041 m solution, confirming that activity 

coefficients are needed to calculate an accurate pH value at these ionic strengths and conditions.
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Figure 4.9 shows the depression of pH in each solution as the CO2 pressure was increased. It 

also shows the increasing differences between the ideal approximation and incorporation of the 

activity coefficients to calculate pH values as [Na+] concentration is increased (increasing ionic 

strength). The ideal approximation, then, works best at low ionic strengths and therefore cannot 

be used in carbon sequestration-like conditions. At high ionic strengths, it is critical for activity 

to be included.

D.  Application of pH model: measuring pH during a CO2 
sequestration reaction

Now that I have fully validated the pH model and shown how it can be combined with 13C 

NMR data to produce accurate pH values that are based on {H+}, I will apply the model to a real 

reacting sequestration system. Here I will show data from the short reaction of Mg(OH)2 
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Figure 4.9: pH titrations of all three NaOH solution experiments. 
Measured pH results without (filled symbols) and with (hollow symbols) 
the calculated activity coefficient corrections. The three different solutions
are 0.095 m (black triangles), 0.288 m (red circles), and 1.041 m (blue 
squares). The lines are provided as guides to the eye.



discussed in Chapter 3, where CO2 was reacted with Mg(OH)2 in water for 4 days at 107 bar and 

81 °C (Figure 3.10a). 

As described earlier, the measured [CO2]/[HCO3
-] ratios from Figure 3.10a were input into 

the model, and a series of [Mg2+] values were calculated using the recursion technique between 

D&S's CO2 solubility equations and charge balance for each time point. The calculated [Mg2+] 

values vs. time are shown in Figure 4.10. 

The initial decrease in the [Mg2+] is non-intuitive. The [Mg2+] calculation uses recursion 

between the charge balance equation and the D&S equations, and the initial decrease may be an 

artifact of that calculation. The [Mg2+] value is allowed to float freely to fulfill the charge 

balancing needs of the reaction as it progresses. Every CO2 molecule that reacts with water forms

HCO3
- and H+. As H+ is consumed by dissolving the mineral, Mg2+ is released into the solution, 

captured by the calculation to keep the system electrically neutral. It is possible that there are 
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Figure 4.10: Estimated [Mg2+] values vs. time in the sample, obtained by 
charge balance restricted by the [CO2]/[HCO3

–] ratios. The error bars 
represent 7% relative error as estimated from the [Na+] experiments and 
the limitations of D&S's solubility model.



other ways for the solution to stay electrically neutral, keeping the [Mg2+] constant, such as 

impurities in the solution. This model does not consider those other possibilities, however. An 

approximate value of [Mg2+] is all that is needed to calculate an activity coefficient. 

Nevertheless, if the initial decrease of [Mg2+] is real, then [Mg2+] is almost certainly being 

sequestered in a reaction with CO3
2-  or HCO3

- and either precipitating as an amorphous or 

crystalline phase or existing as a polymer precursor76 in the solution. 

When the [CO2]/[HCO3
-] ratios are plugged into the model along with the activity 

coefficients, pH values based on {H+} can be calculated. Figure 4.11 shows the pH results 

generated from the model and data. The figure shows how they are increasingly dependent on the

activity coefficients as the dissolution of the mineral continues and the [Mg2+] value increases. 

The difference between the pH calculated by [H+] (without activity coefficients) and {H+} (with 

activity coefficients) gets larger as the reaction continues and its behavior becomes increasingly 

non-ideal. After ~90 h of reaction, the difference between the two pH values is already 0.5 pH 

units—demonstrating the importance of using this method for measuring pH in the reaction. At 

higher pressures and longer reaction times, the system can become even more non-ideal.
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The model can generate other parameters through PHREEQC other than pH values. It can 

also generate something called saturation indices for different minerals. The saturaction index, a 

metric used to describe and predict mineral dissolution and precipitation, can quantify what is 

thermodynamically favorable to precipitate in the sample. The saturation index is described in 

Equation 4.9 and defines the degree to which a solution is super-saturated with respect to the 

mineral of interest, in this case, MgCO3. 

     (4.9)

where, 

Q = ion activity product

Ksp = solubility product, equilibrium constant for MgCO3 dissolution

Precipitation can only occur when the solution is super-saturated with respect to the mineral 

of interest (i.e. based on thermodynamics) and the extent to which the mineral does precipitate, 

once saturation is reached, is dependent on the precipitation mechanism (kinetics). The kinetics 
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Figure 4.11: pH calculated from measurements made without (red) and 
with (black) activity coefficients as a function of time within the reaction.



can be dependent on pressure, ionic strength of solution, and preexisting mineralogical surfaces 

on the basis of the system being studied.57 

I will not consider any more details of the different possible precipitation mechanisms as they

are beyond the scope of this thesis. I will, however, refer to and use saturation indices as a way 

of understanding the probability of precipitation of minerals. 

In Figure 4.12, the saturation indices for different Mg-containing minerals have been 

calculated using the model during the first 100 hours of the reaction with CO2, based on the 

aforementioned pH and [Mg2+] values. Here the MgCO3 saturation index starts above zero since 

[Mg2+] is high, which is further evidence for early MgCO3 precipitation. The latter would cause 

the decrease in the [Mg2+] values at early times in the reaction, described earlier. 

Figure 4.12 shows that MgCO3 remains the thermodynamically preferred phase for 

precipitation the entire time of reaction, although the saturation index of 

4MgCO3·Mg(OH)2·5H2O (hydromagnesite) dramatically increases throughout the entire reaction.
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Figure 4.12: Calculated saturation index (dimensionless) for three 
different minerals (MgCO3, 4MgCO3·Mg(OH)2·5H2O, Mg(OH)2) vs. 
reaction time.



The reactant mineral, Mg(OH)2 (brucite), keeps a negative saturation index, indicating that 

throughout the entire reaction it will never precipitate out of solution, just dissolve. 

It is important to realize that these 13C NMRmeasurements are made by averaging the 

conditions of the entire NMR coil region of the sample, which represents the first 2.5 cm of 

powdered mineral in the reaction tube. If there is a gradient of conditions (as indicated by the 

spatial dependence of the formed carbonate products in Chapter 3), there will be a gradient of 

saturation indices. Hydromagnesite was detected as a product in this reaction (see Chapter 3), but

only in deeper portions of the sample (towards the bottom and/or outside of the NMR coil 

region). Hydromagnesite could have formed there either because the precipitation of MgCO3 was

kinetically limited (had to form hydromagnesite first, then convert) or because the saturation 

index of hydromagnesite was above 0.0 (or above the critical saturation index value) in the 

deeper portions of the sample (something that the averaging of the first 2.5 cm of the sample 

would not be able to catch). The saturation indices calculated here are consistent with the ex situ 

results, described in Chapter 3. 

E.  Conclusions

Here I have demonstrated how the combination of a pH model and experimental 13C NMR 

data allows the measurement and calculation of a vast array of important experimental variables 

for CO2 sequestration reactions, including pH, [Mg2+], activity coefficients, equilibrium 

constants, and saturation indices applicable to CO2 sequestration reactions. These values would 

not be possible to obtain either empirically from the NMR data alone or by the modeling alone. 

This combination of experimental measurements and calculation provides data that greatly aids 
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the understanding of high pressure, high temperature CO2 sequestration reactions to help 

determine dominant processes in the reacting system.

Through a series of three validation experiments (pH meter experiments, 13C liquids NMR, 

and 13C NMR of CO2-pressurized pressure NaOH solutions), I was able to demonstrate that the 

model works very well to predict the pH and [CO2]/[HCO3
-] values at high ionic strengths (up to 

2.4) given known quantities of ionic species in solution. The pH meter experiments demonstrate 

that the model can accurately calculate activity coefficients in solutions of high ionic strengths, 

which are known to be challenging, as it predicted pH values with a precision better than 0.1 pH 

units. The NaOH solution  experiments show that the model can accurately predict [CO2] values 

and can further use that data to accurately predict [HCO3
-], [Na+], and [Mg2+] values from which 

the model can then calculate activity coefficients. Using the resulting activity coefficients, real 

pH values can then be obtained.

In situ 13C NMR provides the additional tools needed for the measurement of pH in aqueous 

reactions involving CO2, far removed from ideal conditions (low ionic strengths and standard 

temperature and pressure). This methodology is relevant to a wide variety of fields including 

carbonate chemical production and CO2 capture methods. NMR is a readily-available analytical 

tool for these purposes, and the combination of readily-available models and experimental data 

shows promise for researchers across many disciplines to adopt these methods.
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Chapter 5:  In situ 1D pH imaging

A.  Introduction

Chapter 4 describes in great detail the importance of being able to measure pH during a 

sequestration reaction. pH provides a wealth of information on the reaction progress and 

likelihood of carbonate mineral precipitation in terms of the saturation index. In this chapter I 

seek to use pH to further describe the spatial dependence of carbonate products as well as to 

confirm, by direct measurement, the already-proposed existence of a pH gradient in CO2 

sequestration reactions with solid minerals.21,144 

a.  Observed Ex situ spatial dependence

As already described in Chapter 3, when a wet slurry of powdered mineral (such as Mg(OH)2

or Mg2SiO4) is pressurized with CO2 and heated, it reacts with the CO2 to form solid carbonates 

in a spatially dependent manner. The solid carbonate product(s) form in different amounts along 

the length of the sample, exhibiting a reproducible depth dependency given the same 

temperatures, pressures, mineral grain sizes, etc.

The depth dependence of carbonate products was a great puzzle as one would expect the CO2 
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Figure 5.1: In situ 13C NMR can measure the pH gradient across a sample
of a wet slurry of powder mineral reacting with sc-CO2 during a 
sequestration reaction at high pressures and temperatures.



to mix (albeit, rather slowly) with the rest of the sample forming one carbonate product in equal 

amounts along the Z-axis of the sample. Given that the porosity of the powdered mineral is 

around 50% (measured by 13C NMR spin counting),  the CO2 diffusion through the sample 

should not be very limited as the CO2 should be relatively free to mix with the entire powdered 

sample. But that is not what happens. In the case of the Mg(OH)2 reaction system, several 

different carbonate products form: MgCO3 predominantly at the top (0 to -1 cm), with 

4MgCO3·Mg(OH)2·5H2O (hydromagnesite) slightly deeper (-1 to -2 cm), and 

4MgCO3·Mg(OH)2·(6-8)H2O (dypingite) even deeper (-2 to -4 cm). In the case of the Mg2SiO4 

reaction system, only one mineral, MgCO3 (magnesite), forms but its extent of formation is 

extremely dependent on depth. The top layer of the Mg2SiO4 has the least amount of MgCO3 

precipitate in the entire sample, with the middle layers of the mineral powder (1.4 cm deep into 

the sample) having the most MgCO3. 

Almost certainly the reason for the spatial dependence of the mineral is that there is a 

gradient of reaction conditions across the sample. The different reaction conditions across the 

length of the sample probably involve different [Mg2+] values and thus saturation index values—

meaning that different minerals have different likelihoods of precipitating depending on their 

position in the sample. When the CO2 plume initially reaches the mineral sample, the top layer of

the mineral sees the CO2 first, before the rest of the mineral sample, and consequently begins 

reaction with the CO2 before the rest of the mineral. Assuming that the initial dissolution rate is 

close to the rate of CO2 introduction into the powdered mineral, the mineral dissolution will 

cause a [Mg2+] bias across the sample, with a disproportionate amount at the top of the mineral 

slurry. Depending, of course, on the saturation indices and whether the conditions are favorable 
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for carbonate precipitation at the top layer of the mineral, carbonate precipitation can also begin, 

decreasing the [Mg2+] values. 

The point is that the rate of CO2 introduction into the mineral slurry (controlled by diffusion 

and convection currents in the sample), the rate of mineral dissolution, and the rate of carbonate 

precipitation, can, in principle, create a moderate to strong Mg2+ gradient across the sample. The 

gradient of [Mg2+] implies a gradient of other ions in the solution, including H+
, HCO3

-, and 

CO3
2-. An H+ gradient is a pH gradient and could be observed in situ by a depth-dependent [CO2]/

[HCO3
-] ratio. 

b.  Observed in situ spatial dependence

Spatial dependence of carbonate products are not the only evidence for pH gradients. In an 

effort to speed up the mineralization process to observe a carbonate powder pattern, I added a 

pellet of NaOH to an aqueous MgO reaction with CO2  at 104 bar and 90 °C that ran for two 

weeks. I then observed CO3
2-

(aq) and HCO3
-
(aq) simultaneously in the sample via 13C NMR. The 

equilibrium between CO3
2-

(aq) and HCO3
-
(aq) is faster than the NMR time regime and therefore  

should only present one peak with a chemical shift that is based on the [HCO3
-]/[CO3

2-] ratio (see 

Chapter 4). It is impossible to observe both peaks at the same time with 13C NMR unless there 

are two regions of the sample that have two different pH values. Presumably, adding NaOH to 

the MgO reaction with CO2 increased the pH to high enough values in portions of the sample that

CO3
2- could exist. The NaOH changed the overall pH of the system enough so that the gradient's 

effects could be observed in the pH dependent chemical shift of HCO3
-/CO3

2-.

Both the HCO3
- peak (161.5 ppm) and CO3

2- peak (168.8 ppm) were observed early (as the 

CO2 dissolved into the water and immediately converted into CO3
2-) as well as after two weeks 
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time. Figure 5.2 shows three spectra that were acquired a day into the reaction. The three spectra 

were all acquired using 16-step phase cycled Hahn echoes with a 120 s RD (so spectra are 

spatially limited to spins within the coil and are fully quantitative). The coil was positioned so 

that it was focused on the MgO mineral at the top of the sample for the 0 cm position, -0.675 cm 

into the sample for the second experiment, and -1.27 cm deep into the sample for the third 

experiment. The change in the shows a simple image by way of spectra at different locations 

within the sample where there is more CO2(aq) at the top of the sample than CO3
2-

(aq) and more 

CO3
2- at the bottom of the sample than CO2(aq). 

As the coil is moved to observe increasingly deeper portions of the sample, the CO3
2-

(aq) peak 

increases in strength. Likewise both the HCO3
-
(aq) and CO2(aq) peaks decrease in strength, 

indicating a shift in the pH to lower values deeper within the sample. This observed pH gradient 

must be very massive in this sample. Regions where CO2 exists in almost equal amounts to 

HCO3
-
(aq) must have a pH value in the range of 6-7 (black spectrum Figure 5.2). The pH value 

122

Figure 5.2: Three spectra observed from three different locations in the 
MgO + NaOH + CO2(aq) reaction  along the length of the sample tube: top 
(0 cm), middle (-0.635 cm), and bottom (-1.27 cm). (Data: R5 94,96,98).



where CO3
2- is dominant must be greater than 10. The pH gradient here is on the order of 4 units 

of pH across the entire sample tube!

There are two other important notes about Figure 5.2 to be made. First, the powder pattern 

did form during the reaction but was small compared to the solution peaks in the spectra shown.  

Second, the lineshape of the CO2 peaks drastically changes with depth into the sample. Recall 

that the sc-CO2 peak is at ~128 ppm relative to CO2(aq) at 126 ppm because of its difference in 

magnetic susceptibility. When the coil is at 0 cm, the bottom of it is 1.27 cm above the bottom of 

the glass tube and bottom of the zirconia high pressure vessel. As the coil is moved down 

towards the bottom of the vessel, the magnetic homogeneity of the volume between the glass 

liner and high pressure vessel gets worse because of the round bottom of the glass liner. The 

change in homogeneity increasingly distorts the sc-CO2 line (~128 ppm), and the CO2(aq) line (126

ppm) all but vanishes as there is not much in the bottom of the tube (the pH is very high).

The ex situ and in situ evidence all point toward the existence of a pH gradient during 

reactions with CO2 and a mineral. And it appears that the gradient can be driven by a number of 

factors: rate of dissolution of CO2, rate of mineral dissolution, and rate of carbonate precipitation.

The pH gradient will form, change, stretch, and even vanish based on the individual rates and 

progress of all three reaction steps. Herein I develop the methodology for measuring the spatial 

[CO2]/[HCO3
-] ratios (from which spatial pH can be obtained) along the z-axis of the reaction 

tube while the reaction is occurring. 
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B.  Experimental details

a.  Introduction to simple 1D imaging techniques

NMR is extremely well-suited for measuring spatial variations across a sample. The 

principles of using NMR to image a sample is called MRI (magnetic resonance imaging) and is a

highly-developed field being used everyday by medical professionals to image the human body. 

MRI works essentially by applying a known magnetic field gradient across the sample causing 

the observed spin frequency to be a function of space, because the observed NMR spin frequency

depend on the strength of the magnetic field (Equations 5.1 and 5.2).

ν0 = γB0     (5.1)

Δν0 = γΔB0     (5.2)

where, ν0 is the frequency of spin precession

γ is the magnetogyric ratio of the nucleus (fundamental constant)

B0 is the strength of the magnetic field

Per Equation 5.2, the the frequency of the spins will be a dispersion of values if the magnetic 

field is a dispersion of values. And if the dispersion of magnetic field values is linear, the spin 

frequencies will vary linearly in proportion to their position in the magnetic field gradient (or 

space). Thus the location of the spin in space is “encoded” in its frequency. In addition, the 

intensity of the signal at each frequency is proportional to the number of spins precessing at that 

frequency. So a 1D NMR spectrum acquired in the presence of a linear magnetic field gradient 

creates a 1D projection of spin density across the sample.

A simple example of this frequency encoding principle can be seen when I obtain a 13C NMR 

spectrum of free CO2(g) at 50 bar with and without a magnetic field gradient (Figure 5.3). 
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Figure 5.3(a) illustrates that in the absence of purposeful magnetic field gradients, the 

observed CO2(g) linewidth is very narrow (20 hz, 0.22 ppm). It would be a single frequency (see 

dotted line) if there were no magnetic field inhomogeneities in the probe. When the Z1 magnetic 

field gradient is turned on, the line broadens to become a width in the frequency domain that is a 

function of the magnetic field gradient strength and the length of the sample space. The ideal 

shape is a rectangle, but as sample extends outside of the coil and as the coil picks up spins 

outside of itself, there is a “fall off” of signal from the edges of the coil, which is a function of 

how far the B1 field “sees” outside of the coil (and this “fall off” is not necessarily linear with 

distance as the magnetic field homogeneity drops decisively outside of the large 2.5 cm NMR 

coil). In addition, if the sample is situated exactly in the middle of the pivot point of the Z1 field 

gradient, it will broaden symmetrically, as seen in the Figure 5.3. 
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Figure 5.3: CO2(g) (52 bar) without gradient on (a) and with the gradient 
on (b). The image is limited by the size of the coil, and the direction of Z is
dependent on the sign of the gradient. The dashed lines show the ideal 
shapes of the NMR signal given a linear gradient. (Data: 04262011-shim, 
#378).



Stronger Z1 field strengths increase the linewidth of the signal while weaker Z1 field strengths

narrow the signal. Additionally, the strength of the Z1 field is measured in gauss/cm, or more 

practically Hz/cm, and can be tuned to achieve the desired resolution for the image. “Resolution”

here means smallest distinguishable unit of space that can be deciphered in the absence of any 

magnetic field gradient. The resolution is typically the full width at half maximum (FWHM) of a

peak in the absence of a linear Z1 gradient and represents the smallest Hz width observable given

the magnetic inhomogeneties of the probe. Typical in situ FWHM values are on the order of 1 

ppm (~90 Hz), so if the image has, lets say, 10 “distinguishable units of signal” across the length 

of the coil, a linear gradient must be applied that broadens the line 900 Hz. Stronger Z1 field 

strengths increase the resolution of the image because more FWHM values can fit into the 

broader line. Nevertheless, there is a price to pay for increased resolution: stronger Z1 field 

strengths also weaken the S/N as the number of spins per Hz value is less at higher gradient 

strengths. So the Z1 field strength must be tuned to achieve the needed balance of resolution and 

S/N. The maximum Z1 field strength achievable in the setup used for the images in this paper is 

4.0 gauss/cm (4225 hz/cm). Typical gradient strengths used for the experiments reported here are

1.0 gauss/cm (1125 hz/cm). This gradient strength provides the needed balance between 

resolution and S/N for in situ experiments.

One dimensional imaging is relatively simple experiment because it only involves the 

acquisition of signal in the presence of a linear magnetic field gradient. Figure 5.4 (a) shows the 

imaging of the water/air interface (meniscus) using 13CO2 and the imaging of the interface 

between two solutions, cyclooctane and water.
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In Figure 5.4, the x-axis units have been converted into cm from hz, using the gradient field 

strength for each of the images: (a) 2836 Hz/cm (2.6 gauss/cm) and (b) 1549 Hz/cm (1.4 

gauss/cm). The drastic vertical change of signal approximately in the middle of the image in (b) 

is sharper than in (a) because the interface between the cyclooctane and water is virtually flat (no

miniscus) whereas the water/CO2 gas  has a meniscus with much curvature in the glass tube. This

“smooths” the sharp line that would otherwise exist for the interface between the two phases. It 

is worth noting that imaging is a good method for determining solubility of CO2 in any solution 

as the ratio of two heights of either side of the partition in the image is essentially the Ostwald 

solubility coefficient.145 Figure 5.4's spectra are only semi-quantitative, however, as the recycle 

delay was 60 s in both experiments (a) and (b). The T1 constant for CO2(aq) is 25.9  ± 0.77 s at 

room temperature (and is relatively independent of pressure), so the 60 s recycle delay is only 

~2T1 which means we are only recovering about 84% of the signal in the aqueous phase. (The T1 

of CO2 in cyclooctane is the same as in water, within experimental error, so the ratio in (b) is 

actually very close to quantitative because there is no disparity between the T1's of the two sides 
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Figure 5.4: Imaging the miniscus of water (a) and the solution interface 
between two immiscible solutions, cyclooctane and water, (b). These 
images show the approximate 13C spin density along the z-axis and form 
effective 1D images of the samples. (Data: #161-22072011, JS5-999c)



of the image).

b.  Details of Z­storage Imaging pulse sequence

 When running imaging experiments it is important to know two values very well: where you 

are in the sample and the strength of the magnetic field gradient. Without them, an “image” is 

like a map without a legend (no scale) and no city names (no indication of where the objects are 

on the map). Here, the gradient strengths were determined by moving the probe a precise 

distance vertically through the magnetic field gradient through a number of different linear 

gradient strengths. The change in frequency of the 13C NMR signal between the two probe 

positions over the set distance between the two positions provided the gradient strength in units 

of Hz/cm. These were back-calculated to produce the field strength in gauss/cm based on the 

magnetogyric ratio of 13C and the change of frequency. 

Position, on the other hand, typically involves putting a sample of known dimensions into the

coil. This “phantom” sample should be quick and easy to load so as to get a position reference 

quickly, if needed (typically one needs to take a position reference in this setup for each new coil

used: sample-to-sample changes were not found to effect its observed position). One such 

candidate phantom sample is the water meniscus example discussed in the previous paragraphs. 

The location of the meniscus in the H2O meniscus experiment in Figure 5.4(a) unambiguously 

provides a strong location reference mark. The downside to this experiment, however, is the time

it takes for the CO2 to dissolve into the solution (several hours) and the fact that every time CO2 

is dissolved in water, some of it is inevitably lost. So, to determine sample position precisely, a 

small teflon ring was carefully machined to fit inside of a glass liner for the high pressure 

zirconia tube. This was placed at precise locations within the coil and images were attained of the
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sample with the teflon disk in place. The precise width of the teflon disk could be measured 

using this method and its known physical location calibrated the experiments for position. Figure

15.4 shows a sample spectrum containing the teflon disc. The disc had a hole drilled into the 

middle of it which allowed gas to pass through it to the other side, so as to not affect its position. 

The gas within the hole can be seen as the signal density in the middle of the hole. 

When imaging the teflon disk, the higher gradient settings for the Z1 gradients had to be used 

to get rid of the magnetic susceptibility effects (appearing as spikes on the edges of the teflon 

disk) in the 1D image. These are caused in images when two substances of very different 

magnetic susceptibilities interface. The small magnetic field inhomogeneities cause the spins 

near it to all report a similar frequency and “appear” to be very close to the surface of the solid. 

In these experiments, gradients greater than 3 gauss/cm were able to remove the susceptibility 

spikes, providing a smooth image, as seen in Figure 5.5.

The NMR pulse length and type of sequence also affect the shape of the image. As the coil is 

nearly 2.5 cm in vertical length, it is quite large compared to most NMR coils but quite small 
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Figure 5.5: 13C NMR 1D image of the profile of a teflon ring carefully 
fixed in the high pressure vessel. The location of the teflon ring was 
measured so as to be a reference for location in the image. (Data: 
20121002).



compared to virtually any MRI coil. The RF in the coil is quite homogeneous, but the RF 

homogeneity falls off from its edges to its outside (see Figure 5.3). Figure 5.6 (a) demonstrates 

how the shape of the image CO2(g) at 61 bar changes with respect to the length of the pulse in a 

single pulse sequence (a “pulse-and-acquire” sequence). Figure 5.6 (b) shows how the the 

acquired image is “sharper” due to higher selectivity in a Hahn echo pulse sequence over the 

single pulse sequence.

Imaging pH requires imaging both the CO2(aq) and HCO3
- signals. While they do not have to 

be measured simultaneously (one could selectively excite CO2(aq) then HCO3
-), it is preferable to 

measure them simultaneously as in situ imaging experiments can take several hours to obtain a 

good image. If it takes four hours of signal averaging to obtain a good image of CO2(aq), another 

four hours to get the HCO3
- signal is hardly practical and could even introduce experimental error

as the HCO3
- signal could be different in the second four hours than it was in the first due to 

reaction progress. 

Figure 5.7 shows the approach I took to image the CO2(aq) and HCO3
- peaks simultaneously. 

To select both peaks at the same time, gradient strength was chosen that broadens both lines as 
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Figure 5.6: The 1D image of CO2(g) at 62 bar changes with respect to the 
excitation pulse length for single-pulse (SP) aquisitions (a) and choice of 
pulse sequence (b). (Data: (a)20120223-601, (b)20130422-1277,1279).



much as they can be broadened without overlapping. The gradient strength chosen for most in 

situ imaging experiments was 1.0 gauss/cm (1125 Hz/cm). CO2(aq) and HCO3
- are 35.5 ppm apart 

which is 3161 Hz at 89.066 MHz. As the NMR coil is 2.5 cm in length, the signal would be 

~2812 Hz wide, which would bring both signals very close to each other, but not overlapping, as 

simulated in Figure 5.7.

The gradient inhomogeneities due to the mineral/water interface are small (on the order of 1 

ppm or 90 Hz) within the sample, thus the gradient strength is strong enough to be able to ignore 

those effects in the image. It is very convenient that CO2(aq) and HCO3
- are 35.5 ppm apart.

Once the two signals are obtained, they are carefully mathematically overlapped (they are not

visually placed on top of each other) by shifting the HCO3
- image 3161.5 Hz lower. Once 
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Figure 5.7: A simulation of imaging two NMR signals (CO2(aq) and HCO3
-)

simultaneously in a gradient condition. The narrow lines represent the 
NMR signals in the absence of a gradient. The broad lines are, ideally, 
what the image should look like if the gradient strength and number of 
scans are set correctly. (Data: simulation).



overlapped, the 0 Hz frequency location is adjusted to the pre-determined location of the top of 

the sample and then the ratio of the two signals can be obtained spatially across the length of the 

sample, where 0 Hz is defined as the top. The overlapping process is illustrated in Figure 5.8.

Most of the imaging experiments in this project used a 16-step phase-cycled Hahn echo 

acquisition with a 100 μs τ value for acquisition of the signal. The probe has a 7 μs deadtime 

after a pulse, so the echo separates the signal from the ringdown of the probe. As the 90° pulses 

are typically quite long (18 μs), using an echo allows obtaining the full FID rather than only the 

portion following the pulse. Proper leftshifting of the echo so that a complete FID is recovered 

makes an image completely free of first order phase effects. This is very important as first order 

phase effects can institute error into the imaging measurements, especially if the first order 

phasing errors affect one peak unequally from the other.

It is also important to note here that spectral distortions in the image that affect both the 

CO2(aq) and HCO3
- lines equally do not matter. As the ratio of the CO2(aq) and HCO3

- signals along 

the Z-axis are the values being sought, lineshape distortions from B1 inhomogeneities and 

magnetic susceptibilities within the sample change the absolute magnitude of the CO2(aq) and 
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Figure 5.8: A cross section of the high pressure NMR reaction vessel and 
NMR coil region placed on its side to show how the imaging data 
correlates to the physical sample. (Data: simulation).



HCO3
- signals, but not their ratios. This facet of the experiment is particularly nice! 

As has already been shown, reaction progress is made evident by strong solid state NMR 

signals from the solid carbonate products. These signals present themselves weakly at first but 

grow to be the dominant signals in the sample. The simple pulse-and-acquire imaging 

experiments are no longer able to image the CO2(aq) and HCO3
- signals as the carbonate product 

signal is so prominent and will mix with the images, distorting them. The solution to imaging in 

the presence of carbonate solid is a pulse sequence that is able to filter out the solid carbonate 

signal on the basis of its typically longer T1 values and shorter T2 values. By shortening the 

recycle delay to 10-60 s, the solid carbonate NMR signal is truncated because its T1 is typically 

in the 1-10 minute range at high temperatures. Extending the echo time of the echo acquisition 

also selectively kills the solid-state signal because the T2 of the solid carbonate is so short. A 

proof-of-concept experiment shown in Figure 5.9 demonstrates how the T1/T2 filtering works in a

sample that is pressurized with 13CO2 (13 bar) and contains 13C-labelled carbonate mineral. 

The T1 of the particular solid carbonate sample in Figure 5.9 is ~20 s (although some 

13C-labelled samples can be minutes long) and the T1 of the CO2(g) is ~0.5 s at 13 bar and 22 °C. 
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Figure 5.9: CO2(g) pressurized (13 bar) on top of a 13C-labelled 
Mg-Carbonate sample. Both shortening of the recycle delay (a) and of the 
echo time in an echo acquisition (b) decreases the magnitude of the solid 
carbonate signal. (Data: (a) 852c,853; (b) 20120907-T2). 



Shortening the recycle delay in Figure 5.9(a) to 10 s severely but not completely decreases the 

signal. The area of the CO2(g) peak does not appreciably change as the 10 s recycle delay is still 

20×T1.

The T2 value of the CO2(g) should approximately equal its T1 value of 0.5 s. However, when 

measured here using a CPMG echo train it is approximately 3.9 ms due to the rapid diffusion of 

the gas. The T2 of the carbonate solid is 0.24 ms, much shorter than the CO2(g). When the τ value 

for the Hahn echo is extended to 1 ms, the carbonate signal is completely gone but the CO2(g) 

signal is only 76.8% of its original area. The decrease of CO2 signal here is due to the rapid 

diffusion of the gas;44 in solution its diffusion is much slower,146 so the loss of signal is much less

than the 23.2% observed here. 

Finally, application of the T2 filter must be done with the magnetic field gradient off. This 

means the gradient must be able to be “snapped on” after the T2 filter has been applied but before

signal acquisition. This requirement posed a huge problem because the gradient coil is situated 

outside of the high pressure probe which contains much metal (copper and brass, see Chapter 2). 

The fluctuating magnetic field from the gradient pulse generated eddy currents throughout the 

probe. The eddy currents prevented a stable, linear magnetic field gradient from being 

established for 25 ms slowing the effective slew rate ( rate of rise of the gradient) of the probe. 

Generally, one wants the slew rate of the gradient to be on the order of a pulse length, and 

certainly shorter than T2
* of the NMR signal. 25 ms is well out of the range of the solid signal in 

the probe (which is okay) but unfortunately also out of the range of the liquid signals as well. 

To fix the problem of eddy currents I used a method that has long been in use in the Conradi 

group and was suggested by Dr. Conradi: Z-storage. The principle of Z-storage is to first do all 
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the filter/prep pulses on the spins with the gradient off. After the preparatory pulses are over, the 

spins are returned to the Z-axis of the rotating frame by another pulse (the returning of the spins 

to the Z-axis is why it is called “Z-storage”). The gradient can be turned on during the Z-storage 

time, and long after the effects of eddy currents are gone acquisition pulse(s) can be sent to the 

probe like a normal NMR experiment.147 This scheme for magnetization storage allows the spin 

states to have a lifetime on the order of T1.148 As only 25 ms (50 ms for the strongest gradient 

strengths) of storage time was needed, the T1 lifetime limitation (~1s for CO2(g) and 26 s for 

CO2(aq) in this system) was considerably more than needed. Figure 5.10 describes the Z-storage 

imaging pulse sequence.

The three τ values in Figure 5.10, as well as the recycle delay (not shown) together control 

the results of the entire pulse sequence.  τ1,  the length of time of the T2 filter, must be long 

enough to kill the solid carbonate signal. Figure 5.9(b) shows that the T2 of the solid carbonate 

powder pattern is on the order of 0.24 ms, so complete removal of the signal could be 
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Figure 5.10: Illustration of the Z-storage imaging pulse sequence used for
image acquisition. It is a combination of a T1 and T2 filter, Z-storage, and 
Hahn echo readout. The three tau values determine the various properties 
of the sequence: τ1 is the T2 filter time, τ2 is the Z-storage time, and τ3 is 
the echo time for the Hahn echo readout.



accomplished with a 1 ms τ1 time. In practice I have had to use T2 filter times as long as 2 ms to 

completely remove the solid carbonate signal. Some solid carbonate powder patterns have 

surprisingly long T2 values (upwards to 0.5-0.75 ms) probably due to the high order of some of 

the crystals comprising the sample. In truth, the crystal structure's intrinsic 13C-13C distance 

probably factors into the T2 values as well (spin diffusion).

The  τ2 value is the time of Z-storage. This needs to be long enough to outlast any eddy 

currents in the probe. As the eddy currents are dependent on the gradient field strength, the 

strongest gradient strengths (4 gauss/cm) achievable in this setup require about 50 ms of storage 

time. In practice I have successfully used 100-200 ms to completely avoid the eddy current 

problem at all gradient field strengths. But, by experimental validation, any Z-storage time value 

between 40 – 500 ms produce identical results given similar reaction conditions and T1 values 

and accurate pulses.

The τ3 value is the τ-time of the acquisition echo. An echo must be used to avoid first order 

phase effects from loss of the early time of the FID due to pulse length and ring down of the 

probe. The echo must be phase-cycled through a 16-step table to avoid any spurious phase 

effects of FID bleed-through from the original 90-pulse and effects from pulse imperfections and

DC-offset. A 16-step phase-cycled table must be used as anything less (2-step, 4-step, and 8-step,

which were all tried) are all inadequate and result in spurious phase effects in the FID. While the 

T2-filter and Z-storage pulses were not phase-cycled due to spectrometer limitations, phase 

cycling them would likely provide additional S/N enhancement as well as eliminate other 

spurious frequency-dependent phase effects found for certain T2-filter values at certain 

frequencies off-resonance. These spurious frequency-dependent phase effects were noticed to be 
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“dip” and “dampening” effects on the edges of the image lines dependent only on the τ1 value 

and relative location of the carrier frequency to the CO2(aq) and HCO3
- imaging lines. The 

spurious frequency-dependent phase effects were independent of τ2 and τ3 values. To ensure that 

the images shown here were free of these spurious phase effects, the pulse sequence was tested 

on neat CO2(g) at high pressures using the same settings that were used during the in situ 

experiments. 

c.  Quantifying and identifying sources of signal loss in the Z-storage pulse 
sequence

The Z-storage imaging pulse sequence seen in Figure 5.10 is a very robust pulse sequence. If 

proper values for the three τ values, 90° pulse length, and recycle delay are selected based on the 

known parameters of the reaction system, the sequence will effectively filter and image the 

system very accurately. However, with so many variables to adjust, all of which are important, it 

is very easy to have some of the variables set wrong and the sequence to not perform as 

expected. Sometimes the  τ1 value can be too short and solid signal leaks through. The good news

is that if this happens, the primary leakage point is another 1500 Hz higher in frequency than the 

bicarbonate signal, where the portion of the solid carbonate signal powder pattern is strongest. It 

appears as a “hump” that increases with strength the more inefficient the T2-filtering step. 

Because of the way the experiment is setup, small solid carbonate leakage does not cause any 

issues with the imaging, because the solid carbonate signal does not overlap the HCO3
- image 

during minor leaks. In fact, at later reaction times leaks are very difficult to avoid because the 

number of solid carbonate spins can get up to 100x that of the HCO3
- and CO2 spins together. If 

the filtering is only 99% efficient, the 1% leakage can be visible, but again, not overlapping the 
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bicarb image unless the leakage is particularly bad. Additionally, if the T1 filtering step 

(controlled by the recycle delay) is not working as it should, the leaking solid carbonate signal 

can appear out of phase with the rest of the spectrum.

One would think that average T1 recycle delays of 20-60 s and T2 filtering steps of 1-2 ms 

would be more than adequate to filter out all solid carbonate signals. Sometimes it is not. Some 

of the solid carbonate patterns observed in situ have T1 values less than 10 s at 100 °C—which 

means a recycle delay of 20 s has a filtering efficiency of only 14%. τ1 times, too, sometimes 

have to be surprisingly long—in excess of 2.5 ms—to filter out the remaining signal. From 

reaction to reaction the T1 and T2 of the solids can vary considerably. Temperature has been 

found to be a very large determining factor for T1 of the solution and solid phase 13C spins, but a 

direct determination of the relationship of the T1 values has never been made because of random 

sample-to-sample variations (probably because of paramagnetic impurity differences from 

sample to sample). T2 of the solid seems to vary wildly from sample to sample too, and is 

probably determined by the local dynamics of the sample based on the crystallization purity and 

amount of present paramagnetic impurities.

The Z-storage pulse sequence shown in Figure 5.10 is also extremely selective, but it is 

important to understand why it is selective. The fact that there are 5 pulses before the signal is 

acquired, means the spins that are seen in the acquisition FID are only those that are in the 

very-RF-homogeneous portion of the coil. RF inhomogeneity and pulse lengths are the two 

largest source of signal loss in the Z-storage pulse sequence. If the pulses are set correctly, 

diffusion can never play a role in signal loss in this pulse sequence. However, if the pulse length 

is not set correctly the pulse will not fully Z-store the spins. Incorrectly Z-stored spins are subject

138



to signal loss from diffusion when the gradient turns on, and the effect on the signal can be 

disastrous. It is important to have some order-of-magnitude understanding for the different 

sources of signal loss in the Z-storage pulse sequence.

First, lets take the cumulative  effect of incorrectly-set pulse lengths. Imagine, for example, 

that the 90-time is off by 1 us (for a 90-time of 18 us). This inaccuracy corresponds to a little 

over 0.5% signal loss per pulse. Over five pulses that are of incorrect lengths, the 0.5% can 

cumulatively add up and with the addition of RF inhomogeneity and the echo placement shifting 

due to the different pulse lengths, 5-10% of the signal could be lost by the end of the pulse 

sequence. 

Incorrect pulse lengths do more than change the echoes and magnetization on the XY plane 

of the rotating frame, they also incorrectly Z-store the spins, as previously mentioned. 

Essentially, whatever spins are not perfectly returned to the Z-axis before the gradient is turned 

on will be lost to diffusion or mostly lost to diffusion. For neat CO2(g) at room temperature and 52

bar, the diffusion coefficient is about 1.3 × 10-3 cm2/s.44 Using the equation developed by 

Stejskal-Tanner149–153 that defines magnetization loss due to diffusion in a magnetic gradient, any 

spin not returned to the Z-axis in a 1 gauss/cm gradient will have lost 99.7% of its original signal

magnitude after a 50 ms z-storage time. The example of neat CO2(g) here is the worst-case 

scenario in terms of diffusion (CO2 diffuses much slower in aqueous systems). The diffusion 

coefficient of CO2(aq) is essentially that of water,146,154–156 thus water can be used as the 

approximation for the CO2 diffusion coefficient at higher temperatures to get an idea of signal 

loss due to diffusion in the Z-storage sequence. At 100 °C neat water's diffusion coefficient is 8.6

× 10-5 cm2/s,157,158 two orders of magnitude smaller than for CO2(g). In this case, 30% of the signal 
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not correctly Z-stored would be lost during a 50 ms Z-storage time—so diffusion can still play a 

part in the Z-storage sequence if the experiment does not correctly Z-store the spins. 

Loss of CO2(aq) signal due to diffusion in an in situ experiment, can be deciphered from other 

types of signal loss in the changing of the overall [CO2]/[HCO3
-] ratio observed in the image data

compared to the identical pulse sequence results but without the gradient turned on. This is 

because bicarbonate has a diffusion coefficient in water that is just over half that of CO2 in water 

across a large temperature range.146,159 This effect has been observed in some imaging data where 

the spins are allowed to dephase on the X-Y plane too long in the gradient. The CO2 signal is 

selectively killed at twice the rate of the HCO3
- signal.

Experimental results for a the Z-storage sequence with carefully-set pulse lengths, show that 

the overall efficiency from the Z-storage experiment in neat CO2(g) at 52 bar is 58% with the 

gradient on and 59% with the gradient off (compared to 90-acquire data at the same conditions). 

So, little to no signal is lost due to diffusion when the pulse lengths are set. It is all 

RF-homogeneity. Note that the Stejskal-Tanner equation states that the 100 μs acquisition echo 

would have less than 0.1% signal loss in a gradient strength of 1 gauss/cm from diffusion. It is 

experimentally true too: diffusion does not affect the signal strength during the average τ3 values 

used here (50-500 us), even in the worse case diffusion scenario (neat CO2(g)).

The takeaway message from all of this discussion is that the largest single contributor to 

signal loss in Z-storage experiments are RF-selectivity (from the RF inhomogeneities of the coil)

from all of the multiple pulses. Diffusion does not play a role so long as the pulse lengths are set 

correctly. The selectivity decreases the linear field-of-view from 2.5 cm (the length of the coil) to

1.5 cm, which, given the cylindrical nature of the coil, is 60% of the volume of the sample within
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the coil. You will recall that the reported loss of magnetization difference between a 90-acquire 

experiment and Z-storage was 58%.

d.  Z-storage pulse sequence tests to ensure proper function

Finally, I have found that the best way to make sure the Z-storage pulse sequence is working 

correctly in situ is to always run a 16-step phase cycled Hahn echo sequence with a long τ time 

(1-2 ms—which kills the solid signal) with the same number of scans as a Z-storage sequence 

without the gradient turned on. Comparison of the absolute areas of the CO2(aq) and HCO3
- signals

between the Hahn echo and Z-storage sequence should yield an absolute difference in area of no 

more than 30% signal loss and the [CO2]/[HCO3
-] ratios of all three experiments (Hahn echo, 

Z-storage without gradient, and Z-storage with gradient) should all be, within S/N error, the 

same. If these two conditions are not met, the pulse lengths or other settings of the pulse 

sequence are set incorrectly or the probe/spectrometer/gradients are not working correctly.

e.  Other imaging methods

There are several other imaging methods that I tried to use to obtain spatial [CO2]/[HCO3
-] 

ratios apart from the solid carbonate signal. They are important to mention here because I think 

they provide some perspective on how simple yet elegant the Z-storage imaging sequence is. 

These three techniques in principle should all work just as well as Z-storage imaging but have 

added difficulties that prevented their successful use. They also were all more complicated than 

the Z-storage imaging sequence. 

First, we considered traditional imaging methods160 where I made great efforts to increase the 

slew rate of the gradient shim pulses. Modifying a few parts of the probe showed that the only 
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way to accomplish removal of most of the eddy currents would have been to remove as much 

metal as possible from around the sample chamber and move the gradient coil as close to the 

sample as possible. It was determined that it would not be worth the money and effort to get rid 

of the necessary amount of metal in the probe to accomplish this feat, namely because most 

plastics would not have the temperature resilience of the metal and would produce a carbon 

background that the NMR coil would pick up. The NMR coil itself is also a source of the eddy 

current—the Alderman-Grant coil design has the metal/ceramic capacitors that tune it to the right

frequency on the coil as well as large copper strips that form the inductors in the circuit. These 

large strips and capacitors would still act as partial shielding to the gradient pulse—so increasing 

the gradient coil proximity to the sample tube still would not get rid of all of the eddy currents 

without also changing the coil design, which was not an option. This particular coil design is the 

most efficient, high-performance coil I was able to build of the numerous prototypes tested...so 

changing it to a less efficient design to get rid of the eddy currents was not an option.

A second method for imaging is using a pulse sequence similar to Frydman et al.'s VACSY 

(variable-angle correlation spectroscopy in solid-state nuclear magnetic resonance) 

experiment.161–163 This experiment would take multiple 1D 13C NMR spectra at different gradient 

strengths instead of different rotor angles, as in the VACSY experiment. The different 1D spectra

would then be projected onto a grid at different angles determined on the basis of the gradient 

strength. After interpolating the missing data points from the existing ones on the grid, a 2D 

fourier transform of the dataset would produce a 2D plot whose axes are chemical shift and 

position (respectively) within the sample. Such an experiment would have essentially obtained 

different 1D projections along the length of the sample. After a thorough investigation of the 
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method and working through the mathematics behind VACSY, I decided not to pursue this 

method for imaging. The primary reason was the amount of time the experiment would take: 

5-10x longer than the Z-storage technique as an individual 1D spectrum would have to be 

obtained for each spatial point in space. In addition, the interpolation reconstruction methods are 

known to be tricky and often riddled with phase distortion artifacts that can be very difficult to 

get rid of.162,163

Finally, the last imaging option I call “selective inversion imaging” or “spin selection” and 

involved pulsing the sample such that the CO2(aq) and HCO3
- 13C peaks would be 180° out of 

phase and could be stored along the Z-axis in opposite directions (one pointing up and the other 

down). This selective inversion allowed just the narrow solution-phase CO2(aq) and HCO3
- peaks 

to be selected for imaging and would allow the solid carbonate signal to dephase and disappear, 

similar to the T2 filter discussed above. The difference between this experiment and the Z-storage

image sequence is that the CO2(aq) spins and HCO3
- spins would be Z-stored with opposite 

phases. The opposite phases essentially phase encode the signals allowing for stronger gradients 

to be used (yes, gradients of strength that actually cause the signals to mix on the frequency 

spectrum). In the Z-storage imaging sequence, the gradients can never be turned so high that the 

signals run together, but the signals in the spin selection sequence are phase encoded so it does 

not matter. If they mix, they can be extracted. So there is no upper bound on resolution with this 

sequence. But there are bounds to it.

The selective inversion imaging experiment was actually performed extensively on several 

samples but had poor overall performance due to two major issues. First, the experiment's 

selectivity is based on chemical shift not T2, so any solid carbonate spins that had the same 
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chemical shift as the narrow peaks are selected too and cause amplitude bias in the resulting 

image...thus it does not work very well for filtering out carbonate solid signal effects directly on 

the imaged peaks of HCO3
- and CO2. Second, it assumes that the CO2(aq) and HCO3

- spins do not 

exchange within the time limit of T1. Unfortunately they do, so signal is lost to the spin exchange

phenomenon and disables any quantitative [CO2]/[HCO3
-] ratio-determining measurement at high

temperatures (where exchange is faster).   

C.  In situ 1D pH images from 13C NMR

Now that I have worked through most of the important details of the Z-storage imaging 

sequence, I can now describe and show what the Z-storage imaging sequence can do when used 

properly. Here I will show and discuss some in situ 1D pH images obtained on two different 

samples: Mg(OH)2 reacted with CO2 in water at 81 °C and 113 bar; and Mg2SiO4 reacted with 

CO2 in water at 80 °C and 120 bar. The Mg(OH)2 reaction is the same “long” reaction discussed 

in Chapter 3. The in situ pH images were obtained in the data-gaps (between the points) of 

Figure 3.10(b). The Mg2SiO4 reaction is also the same reaction discussed in Chapter 3. The ex 

situ Raman, pXRD, and MAS NMR results that showed spatial dependence for both reactions 

should be recalled and compared to these pH images. The results from these analytical methods 

show that there is carbonate product formation dependence that correlates to the observed in situ 

pH trends. The results demonstrate this correlation inasmuch depth as the imaging method can 

achieve given NMR coil size, RF-selectivity, and magnetic “sweet-spot” size limitations.

a.  Mg(OH)2 reaction 

The reaction of CO2 and Mg(OH)2 is very rapid. Of all of the mineral samples studied, it 

144



forms solid carbonate 13C NMR powder patterns fastest (in 1-2 days time), as described in great 

detail in Chapter 3. The fast carbonate precipitation actually makes it difficult to obtain a pH 

image of the sample—not because the solid carbonate powder pattern is in the way (the T2 filter 

in the Z-storage imaging takes care of that) but because the carbonate formation blocks the 

diffusion of more CO2 and HCO3
- into the sample. The time needed for signal averaging to bring 

the S/N of the image to high enough values for quantitative imaging is too long when the signal 

is too weak.

Figure 5.11 shows two in situ 13C NMR spectra obtained by the Z-storage imaging pulse 

sequence, but one with the gradient off (black) and the other with the gradient on (red). The 

relatively poor S/N of the image gives some indication of how difficult it can be to measure the 

[CO2]/[HCO3
-] spatially using 13C imaging. The spectrum was attained in 4 h with 320 scans after

356 h (14.8 d) of reaction. Earlier images could likely be obtained if the reaction were a 

low-water content reaction where the CO2 dissolution was faster than the mineral dissolution.
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Figure 5.11: Z-storage experiment without (black spectrum) and with (red 
spectrum) a Z1 gradient for imaging the Z-axis profile of the sample. The 
black dotted box indicates the region of CO2 13C spins and the blue dotted 
box indicates the region of HCO3

- 13C spins. (Data: 1043*zstorage).



The dotted boxes in Figure 5.11 indicate the maximum resolution attainable without merging 

the two NMR signals together. The red image data in the background of the figure shows how 

the two spatial images of the two spins are separated by their chemical shift. These two signals 

are mathematically overlapped based on their difference in chemical shift (161.5-126=35.5 ppm),

both of which can be seen in the Z-storage experiment without the gradient pulses, shown as the 

black spectrum. The small sc-CO2 signal is essentially washed out by the turning on of the 

gradient in the Z-storage experiment as it is a gas and has a high diffusion coefficient. 

Finally, there is a strong solid carbonate signal in the sample at the point the spectrum in 

Figure 5.11 was taken. To demonstrate how effective the T1/T2 filtering is at removing the solid 

signal for imaging purposes, Figure 5.12 shows a simple 16-step phase cycle Hahn echo 

acquisition taken just before the Z-storage imaging experiment was acquired (red spectrum). The

exact Z-storage experiment, with the gradients turned off, was run as the black spectrum. There 

is no sign of any solid carbonate signal: the T1/T2 filter combination has removed all of it.
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When the gradient is turned on and the two spatial images of CO2(aq) and HCO3
- from Figure 

5.11 are combined, the spectrum looks like Figure 5.13. The [CO2]/[HCO3
-] ratio is derived by 

dividing the height of the CO2 peak by the height of the HCO3
- peak at each position along the 

axis. Figure 5.13 also shows the “waviness” of the image. This waviness is caused by two 

effects: an oscillation of the magnetic susceptibility throughout the sample due to small density 

differences and the RF B1 inhomogeneity caused by the sample. In a single NMR experiment 

both the CO2 and HCO3
- signals have the same oscillations in the same positions with the same 

phase, indicating that they are not from random noise. They can be smoothed with a boxcar filter 

which changes each point to the average of itself and its nearby points around each individual 

point along the distance of the sample without changing the pH data. The existence of this 

“waviness” does decrease the image's effective resolution to on the order of 0.1 cm. 
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Figure 5.12: The T1/T2 filtering turned off (red spectrum) and turned on 
(black spectrum). It is capable of removing all of the solid carbonate 
signal so that imaging of the solution signals can be performed. (Data: 
1043b, 1043c).



The ratios were taken for each point along the z-axis and, using Equation 4.5, they were 

converted into spatial pHm values using K values calculated by SUPCRT92 at 81 °C. In theory it 

is possible to use the pH model described in Chapter 4 to calculate the real pH at each point 

across the sample, but that would very computationally intensive and would have to calculate the

spatial [Mg2+] values through thousands of computational iterations. It is better, in my opinion, to

use the model to calculate a “pH adjustment factor,” based on the progression of the reaction and 

the difference between the average pHm and pH values across the entire sample. The adjustment 

factor should, according to calculations from Chapter 4, get the measurement within 0.1-0.2 pH 

unit accuracy across the imaged length of the sample. If higher precision is needed than that, the 

heavy computational approach would need to be used to calculate spatial [Mg2+] for the length of

the tube. The pH adjustment factor here is about -.35 pH units.
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Figure 5.13: Z-storage image of CO2(aq) (black) and HCO3
- (blue). The 

x-axis has been converted from Hz to cm. The dashed lines are a guide to 
the eyes to see the spin density trend. (Data: 1043).



Figure 5.14 shows the pH image of the sample. The pH values have also been heatmapped 

into the background of the graph to give a better visual sense of how the pH changes throughout 

the sample. The “bands” in the heatmap are from the susceptibility oscillations just described. 

The first 1.5 cm of the sample show a pH gradient that is approximately 1 pH unit in magnitude. 

Presumably, the pH keeps rising at greater distances into the sample beyond what the imaging 

technique is able to detect.

Furthermore, the ex situ analysis of this reaction from Chapter 3 revealed that the reaction of 

CO2 and Mg(OH)2 form a gradient of carbonate products. MgCO3 is the dominant product at the 

top of the mineral slurry, with 4MgCO3·Mg(OH)2·5H2O  (hydromagnesite) at the middle, and 

4MgCO3·Mg(OH)2·6-8H2O  (dypingite) at the bottom. The spatial trend had been confirmed with

ex situ pXRD, Raman, and 13C MAS NMR, and presumed to exist because of a pH gradient. 

Figure 5.14 confirms the existence of this gradient but also confirms details on the reaction 

mechanism in that the spatial products measured through ex situ techniques do not necessarily 

correlate with the measured pH image.
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Figure 5.14: 1D pH image of Mg(OH)2 reaction with CO2 after 356 h. The
dotted line is a guide to the eyes. (Data: 1043h*zstorage).



MgCO3, for instance, cannot precipitate at low pH values (this will be discussed further in the

next section).116 Yet, the pH measured at the top of the reaction tube where the MgCO3 is found 

to precipitate is low. An explanation for this seeming disagreement is that the gradient recorded 

in the image indicates progress of reaction. That is, as the Mg(OH)2 mineral is so fast to react 

with the CO2 it forms MgCO3 through the known metastable intermediates (dypingite 

(4MgCO3·Mg(OH)2·6-8H2O) → hydromagnesite (4MgCO3·Mg(OH)2·5H2O) → magnesite 

(MgCO3)), and once the final product forms, the pH drops. Ex situ evidence indicates that the top

layer of the mineral is completely reacted (there is no detectable Mg(OH)2 remaining) and the pH

image data supports this observation. Once the mineral is completely reacted, the pH drops. The 

only way to confirm this is to obtain a pH image at earlier times within the Mg(OH)2 reaction 

with CO2...But that has not been possible to date because the Mg(OH)2 mineral is so fast to react 

that there is very little CO2(aq) and HCO3
- signal to image, until the reaction has progressed for a 

considerable amount of time.

b.  Mg2SiO4 reaction

The Mg2SiO4 set of imaging experiments was performed on the reaction of water-saturated 

Mg2SiO4 with CO2 at 80 °C and 120 bar. As Mg2SiO4 reacts with CO2 slower than Mg(OH)2, the 

CO2 does more diffusing through the sample than reacting at early reaction times, increasing the 

observed solution signal at earlier reaction times allowing an image to be obtained as early as a 

few hours into the experiment. Additionally, as there is no solid carbonate formation early in the 

reaction, the Z-storage imaging sequence is not needed to filter it out. So another way to enable 

imaging experiments earlier in the experiment is to use a 16-step phase cycled Hahn echo in the 

presence of a static gradient to acquire the images. The Hahn echo has less RF-selectivity than 

150



the Z-storage pulse sequence and results in more overall signal (Hahn echoes have 86% signal 

efficiency in this coil compared to the 58% efficiency already discussed for the Z-storage 

sequence—the difference is 2-pulse selectivity versus 5-pulse selectivity). Thus increased 

solution signal and choosing a less RF-selective experiment enables imaging at earlier times 

within the sample. Here I will show and discuss images attained at 20.1 h, 47.8 h, 125.2 h, and 

392 h (Figure 5.15a-d). Finally, as mentioned in the introduction to this section, this particular 

Mg2SiO4 reaction is the same long Mg2SiO4 reaction (R20) discussed in Chapter 3—so 

comparison of the average [CO2]/[HCO3
-] ratios with time shown in Figure 3.18 is helpful to 

develop a better understanding of how these reactions work. Additionally, while R14 (discussed 

in Chapter 3) was run at different conditions for a different amount of time, the ex situ spatial 

data shown in Figure 3.22 are helpful to compare to the pH imaging data discussed here.

Figure 5.15 (a) and (b) were acquired using a 16-step phase cycled Hahn echo pulse sequence

in the presence of a static gradient with a recycle delay of (a) 10 s and (b) 20 s (all solution 

species had T1's less than 2 s) in 512 scans. (c) and (d) were acquired using the Z-storage 

imaging pulse sequence. (c) was acquired using τ1= 1500 μs, τ2= 500 ms, and τ3= 100 μs with a 

60 s recycle delay (the T1's of the solution species had increased to about 10 s). (d) was acquired 

using τ1= 2000 μs, τ2= 100 ms, and τ3= 100 μs also with a 60 s recycle delay. The τ1 time had to 

be lengthened between (c) and (d) because of solid carbonate signal leakage. As the recycle 

delays in both (c) and (d) were long to compensate for the lengthened T1's of the solution phase 

species, the T2 filter (controlled by τ1) had to be used to compensate for decreased T1 filtering. 
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In Figure 5.15 (a), 20.2 h into the reaction, the CO2 has already infiltrated most of the mineral

but the “slug” of CO2 that Figure 3.18 indicates entered the mineral appears to be “backing up” at

the top of the mineral. By 47.2 h (b) the “backed up” CO2 signal has mostly dissipated, leaving 

just a small area of decreased pH but having lowered the pH of deeper parts of the sample. (a) 

and (b) appear to be dominated by the dissolution process, where the major changes in the 

system are due to the dissolution physics of CO2. By 125.2 h, the dissolution of the Mg2SiO4 

mineral and precipitation of solid carbonates appear to have taken over controlling the progress 

of the reaction. A pH gradient has begun to form across the sample and the overall pH across the 
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Figure 5.15: Four pH images acquired at (a) 20.2 h, (b) 47.8 h, (c) 125.2 
h, and (d) 392.0 h. (a) and (b) were acquired using a less RF-selective 
16-step phase cycled Hahn echo pulse sequence. (c) and (d) were 
acquired using the Z-storage imaging technique. All were smoothed with a
100 Hz (0.09 cm) boxcar filter. The gradient strength for all four images 
was 1124.8 Hz/cm (1.05 gauss/cm). (Data: 1152, 1162, 1186, 1234).



sample has been increased (due to mineral dissolution). Also, other NMR experiments indicate 

that solid carbonates had already begun to form by 125.2 h, but as the pH is still rising in the 

sample the overall dominating reaction must still be dissolution of the Mg2SiO4 mineral. By 

392.0 h, the gradient has increased in magnitude and the top portion of the mineral shows a large 

decrease in pH. Presumably the carbonate mineral precipitation has begun to control the progress

of the reaction. Figure 3.22 indicates that the most solid carbonate formation happened at -1.5 cm

into the sample. As the carbonate precipitation occurred in the layers between -0.5 and -1.5, the 

pH in that region would begin to drop. But the pH at the very top of the tube should drop even 

more as more CO2 dissolve into the solution to replace that which was consumed making solid 

carbonates. 

The extreme pH oscillations and gradients of this reaction indicate that pH at the top of the 

mineral is always held to a much lower value than the rest of the sample, which should inhibit 

formation of any carbonate mineral. Detailed ex situ analysis from R14, discussed in Chapter 3, 

also indicate that this is the case. It is well known that MgCO3 only forms at higher pH 

values.104,164–166 In fact, the ideal pH value for MgCO3 precipitation is in the high 7's of the pH 

range and at pH values below ~6.5 magnesite is very slow to precipitate (both at PCO2 values in 

the 50-100 bar range), if at all.116 Additionally, Figure 3.22 also shows a decrease in magnesite 

formation at values deeper than -1.5 cm (outside of the imaging region). The decrease is less 

likely due to pH gradients again, as the pH at the bottom of the tube should be very high due to 

Mg2SiO4 dissolution. The decrease is probably due to an inability to get CO2 through the 

powdered mineral and carbonate precipitate making the CO3
2- the limiting reagent in MgCO3 

precipitation at lower portions of the tube. Thus, a tapering off of MgCO3 product in the bottom 
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of the tube is not due to pH limitations—it is most likely due to limited bicarbonate and 

carbonate for precipitation.

The gradient in Figure 5.15(d) has a magnitude of nearly 1.5 pH units across a very short 

distance (1.5 cm). In the interest of being thorough I have included the raw NMR data for this 

gradient so that the reader can see what the NMR data behind the pH image looks like.

Using the method already described, the [CO2] and [HCO3
-] values along the Z-axis are 

extracted from the NMR data and the X-axis is converted from Hz to cm using the gradient 

strength. For the NMR imaging data shown in Figures 5.15(d) and 5.16, the relative [CO2] and 

[HCO3
-] values are shown, form which the [CO2]/[HCO3

-] ratios are extracted.
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Figure 5.16: 13C in situ NMR from the Z-storage pulse sequence with  
gradient off (black) and gradient on (red). The individual concentration 
gradients of [CO2] and [HCO3

-] can be clearly seen in the red data, where
the gradient is turned on. Note that the imaged data was acquired in more 
scans so that the S/N would be the same as the spectrum with the gradient 
off. Also, recall that for each lineshape, higher frequency is higher on the 
Z-axis.  (Data: 1233,1234).



The oscillations seen in Figure 5.17 are from the RF field inhomogeneities. Both images have

oscillations in approximately in the same location. For the most part, the oscillations cancel each 

other out as it is the ratio of the two lines that is extracted from this data to calculate pH. RF field

inhomogeneities and other lineshape effects do not affect the pH image so long as both the CO2 

and HCO3
- images are both equally affected.

D.  Conclusions

Here I have shown the development and application of a new technique, high pressure and 

temperature 13C NMR imaging. A new pulse sequence was developed to accomplish both 

spectral filtering and imaging in the presence of large eddy currents and free of the effects of 

diffusion. In addition I have shown and discussed the pH images that were measured on two 

different reactions of CO2 with Mg(OH)2 and Mg2SiO4. The images have been shown to record 

large pH gradients that were predicted based on ex situ observations of previous reactions. The 

pH images obtained also have been correlated to ex situ observations to show that the pH images 

have practical application in predicting what solid carbonates will form, where they will form in 
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Figure 5.17: pH image acquired with a hahn echo sequence at 47 h into 
the reaction. The image was smoothed with a 100 Hz (0.09 cm) boxcar 
filter. (Data: 1162).

Figure 5.17: The spatial [CO2] (black) and [HCO3
-] (blue) values 

extracted from the image in Figure 5.16. The CO2 is clearly the 
dominating signal at the top of the tube, while bicarb is the dominating 
signal at the bottom.



the sample, and the method by which they form.

The practical applications of these experiments are that during the reaction of CO2 with solid 

minerals in an aqueous solution very large pH gradients form. These pH gradients can indicate 

both the progress of the reaction (as shown in the case of the Mg(OH)2 reaction), as well as 

where the products will form (as shown in the case of the Mg2SiO4 reaction). Overall, these pH 

measurements will be a valuable resource to the community of scientists who are trying to 

understand and model the spatial aspects of high pressure and temperature CO2 reactions with 

minerals in water. The chemistry of the molecules and the physics of their interaction with the 

multiple phases present in the samples make for a very difficult reaction to understand and 

predict the formed products.
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Chapter 6:  Synthesis and characterization of 
metastable hydroxy­hydrated magnesium carbonates 

A.  Introduction

The experiments described in this chapter aim to develop an analytical methodology for 

quantitative analysis of magnesium-containing carbonates using 13C NMR. As has been shown in

Chapter 3, many of the carbonation reactions produce mixtures of magnesium carbonates. In 

principle these mixtures could be quantitatively elucidated using 13C NMR, but to do so requires 

a detailed spectroscopic knowledge of the pure components of the mixture. A great deal of work 

has been published on solid state 13C NMR of metal carbonates,51,54,55,167,168 some of which 

includes specifically the magnesium carbonate species discussed here.24,25,167 However, there is 

little agreement on specific chemical shift values, relative peak areas, and even in some cases, 

the number of peaks. The differences are likely due to purity of the carbonate samples that were 

analyzed by the different research groups and varying NMR experiment parameters or methods. 

Additionally, most of the literature published on the subject neither include static 13C NMR 

lineshapes 50,52,169 nor relaxation properties of the carbonates—two critical pieces of information 
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Figure 6.1: Solid state static 13C NMR can differentiate between different 
magnesium carbonate solids based on the shape of the powder pattern. 
(Data: JS7-2, R12).



needed to identify carbonate products in situ and to measure mixtures of carbonate products 

quantitatively ex situ. 

Therefore, this chapter will discuss the synthesis methods we developed to make the pure 

versions of four target magnesium-containing carbonate phases. This chapter will also discuss 

the subsequent analysis of these pure phases in detail using Raman, pXRD, and 13C NMR to 

confirm the purity and identity of the phases. Finally, a complete solid state 13C NMR workup 

including T1 relaxation data, CP-MAS (cross polarization during magic angle spinning) data, 

chemical shifts, and quantitative peak areas and linewidths will be shown for these phases so that

their identification can be unambiguously achieved exclusively with 13C NMR alone in the 

future. 

a.  Origin of metastable hydroxy­hydrated magnesium carbonates

When CO2 reacts with different magnesium-containing minerals it can form one or more of 

several Mg-containing hydroxy-hydrated carbonate mineral products even though MgCO3 is by 

far the most thermodynamically stable magnesium-containing carbonate.30,164 The reasons these 

other carbonates form is because of the small size of the Mg2+ ion. Magnesium's small size and 

high charge leads to a high charge density which, in turn, attracts the dipole moment of water 

molecules quite strongly. The water molecules form two very tight layers of hydration around the

ion, effectively protecting it from reacting with anything in solution unless something is able to 

remove some of the waters.170,171 

The waters of hydration make it more energetically favorable to precipitate magnesium 

carbonate minerals that contain H2O (hence the term, hydrated) and/or OH's (hence the term, 

hydroxy-hydrated) than to form anhydrous MgCO3. These hydroxy-hydrated magnesium 
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carbonates that form are “kinetically trapped” on the thermodynamically-favorable reaction 

pathway to MgCO3. Their kinetically trapped states can be stable for a very, very long time, 

given that enough energy to eject water from its crystal structure and the kinetic route to be able 

to do it are never available. But because they are not the most stable form and can readily 

convert given the right conditions, they have been given the name “metastable magnesium 

carbonates”.164

In the reaction systems discussed here (> 25 °C and 50-120 bar), the kinetically favorable 

metastable magnesium carbonates are nesquehonite [Mg(OH)(HCO3)·2H2O],172,173 dypingite 

[4MgCO3·Mg(OH)2·5-8H2O],36,106,107 and hydromagnesite [4MgCO3·Mg(OH)2·4H2O],174–176 listed 

in decreasing order of hydration. These minerals have been well characterized via Raman31,34,36,177

and pXRD106,178–180 and all, with the exception of dypingite, have known crystal structures. They 

are also known to convert into one another from more hydrated states (nesquehonite) to less 

hydrated states (hydromagnesite) or from hydromagnesite to magnesite, the dehydrated 

form.31,102,104,181 

The specific magnesium carbonate formed in a sequestration reaction is dependent on the 

conditions of the sample such as pressure, temperature, and local ionic strength of the 

solution.30,57,64,105,115,182 In general, nesquehonite is known to form as the predominant magnesium 

carbonate in any solution with high concentrations of Mg2+ and high HCO3
- and CO3

2- at 

temperatures less than 40 °C.30 At temperatures higher than 40 °C, dypingite and hydromagnesite

are the preferred products.57,104,105 In general, anhydrous MgCO3 will not form directly (that is, 

without first forming hydromagnesite then converting to MgCO3) at temperatures below 120 °C 

and elevated CO2 pressures (>100 bar, meaning high carbon concentration in solution).30,166 The 
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carbonate products are also dependent on the reactant mineral (as has been demonstrated in 

Chapter 3) and the presence of other ions in the solution.57,114,116 

b.  Static 13C NMR of solid carbonates

As I showed in Chapter 3, static in situ 13C NMR data of a solid metal carbonate produces 

broad chemical shift anisotropy (CSA) “powder patterns” that possess a unique shape for each 

unique metal carbonate. Typically the lineshapes are very different from carbonate to carbonate, 

as in the case of the magnesium carbonate “nesquehonite” and the magnesium carbonate 

“magnesite,” pictured at the beginning of this chapter in Figure 6.1. At other times, lineshapes 

can be very similar if the two carbonates have similar electronic environments around the 

carbons. 

The static 13C NMR signals of the solid carbonates are broad because the 13C  atoms are 

locked into a crystalline structure of other atoms and unable to experience isotropic motion. 

Isotropic motion is why liquid and gas NMR resonances are narrow: rapid isotropic motion 

averages the chemical shielding (shielding of the magnetic field by the local electronic 

environment) around each individual carbon spin. Shielding arises from the electrons in the 

molecular orbitals circulating around the nucleus  (being stimulated by the field of the NMR 

magnet) generating another small magnetic field called the “induced field.” This induced field 

alters slightly the strong magnetic field from the NMR magnet and results in a slight deviation 

around the nucleus, changing the net local magnetic field that the nucleus “feels” and thus its 

observed chemical shift. The shielding effect is typically very small compared to the magnetic 

field strength (~10-4·B0) and is measured in units of ppm,  “parts per million,” relative to another 

reference nucleus (chemical shift, δ, where increasing δ means less shielding) or relative to the 
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frequency that a “bare” nucleus would have in that magnetic field (called chemical shielding, σ, 

where increasing σ means increased shielding), free of any electronic perturbation. Here I use the

chemical shift convention (δ) describing the location of resonances in an NMR spectrum.

Chemical shift is a three-dimensional effect on the nucleus which is typically described using

a 3×3 matrix called the chemical shift tensor.  The chemical shift that the nucleus experiences is 

dependent on orientation of the nucleus and tensor with respect to the magnetic field. Isotropic 

motion, as in a liquid, averages the chemical shift to one specific value for each magnetically 

inequivalent carbon (magnetic equivalence is defined as any two spins not related by translation 

or inversion symmetry operations183). This average chemical shift on each magnetically 

inequivalent spin is called, “isotropic chemical shift.” However, in the absence of isotropic 

motion (such as in a crystalline solid), each carbon will experience a chemical shift based on its 

individual orientation with the magnetic field and its chemical shift tensor. The carbons in a 

given amount of solid crystalline powder will have an array of orientations, some orientations 

being more statistically likely than others, meaning that each magnetically inequivalent carbon 

will have an array of interactions with the magnetic field. Thus, the “spread” of chemical shifts 

in a powder pattern is controlled by the properties of the chemical shift tensor, and the height at 

each location in the powder pattern is determined by the number of spins at each orientation that 

produces that specific chemical shift. 

There is a mathematical convention to describing the “spread” of chemical shift values for a 

powder pattern as well as some other notable line characteristics. The mathematical convention 

is based on defining three principal axes X, Y, and Z for each magnetically inequivalent carbon. 

These axes are orthogonal to each other and are defined where the magnetic field is parallel to 
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the induced magnetic field on the nucleus from the chemical shift tensor. Each nucleus has its 

own three unique axes upon which its chemical shift tensor is based. When one of the three 

principal axes is lined up with the magnetic field, it produces a so-called “principal value” 

chemical shift, based on the fact that the B0 field is aligned with the induced field. These 

principal values are called δXX, δYY, and δZZ and the components along the diagonal of the the 3×3

chemical shift tensor (the other off-diagonal tensor elements are equal to zero).

This discussion now leads us to the mathematical formulation of isotropic chemical shift (δiso,

Equation 6.1), chemical shift anisotropy (δaniso, Equation 6.2), and biaxiality (η, Equation 6.3)—

the three components that define the shape of a solid state NMR powder pattern of a spin ½ 

nucleus (like 13C).

       (6.1)

     (6.2)

     (6.3)

Note that the biaxiality, η, by definition will be a value between 0 and 1. Also, the values of  

δXX, δYY, and δZZ correspond to characteristic positions in the lineshape of the pattern (see Figure 

6.2). They are assigned to their positions based on their proximity to the isotropic chemical shift, 

δiso, Equation 6.4:

     (6.4)

In other words, Equation 6.4 states that δZZ is always the farthest away from  δiso, which is just

the center of mass of pattern (Figure 6.2). 
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Figure 6.2 pictorially illustrates the different properties of the powder pattern. Some 

important notes about the values are that biaxiality, η,  is never negative. If  δYY were to flip to the

other side of  δiso in (a), the anisotropy δaniso would change sign, not the biaxiality. Here the 

anisotropies of both patterns are negative by convention of Equation 6.2. Patterns with η = 0, like

(b) in Figure 6.2, are called “axially symmetric” (like the D3h symmetry of the isolated CO3
2- 

anion) or uniaxial patterns because the tensor is symmetric at all orthogonal angles with respect 

to the principal Z-axis. In cases where  η = 1, these patterns are called biaxial patterns and the δZZ

and δXX values  cannot be unambiguously assigned. Patterns ranging between  η = 0 and  η = 1 

are all called “axially assymetric” because none of their principal values are equal (the chemical 

shift tensor is different in every three dimensional direction).

Metal carbonates almost always have η < 0.5, meaning that they are all nearly uniaxial. This 

is because the CO3 in the carbonate structure is trigonal planar. The Z-principal axis of the 13C 

chemical shift tensor runs perpendicular to the plane of the C-O bonds of the carbonate. In cases 

where there is nothing to perturb the symmetry of the X and Y axes, patterns are axially 

symmetric. However, when perturbation does occur of the X and Y principal  axes, the biaxiality 

increases to a non-zero number. Typical perturbations of the X and Y principal axes are 
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Figure 6.2: Simulated powder patterns of two different kinds of 
carbonates. (a) has a biaxiality of 0.7 while (b) has a biaxiality of 0.0. 
(Data: simulation). 



associations of hydrogens with the oxygens on the carbonate structure, such as hydrogen 

bonding. Take the case of Figure 6.1, for instance, where I compare the powder patterns of 

nesquehonite  [Mg(HCO3)(OH)·2H2O] and magnesite (MgCO3). Nesquehonite has a hydrogen 

associated with the carbonate structure, making it asymmetric and no longer uniaxial. MgCO3, on

the other hand, should* have no hydrogens in it and therefore is totally symmetric, or uniaxial.

(*In practice this is not true. See the section on MgCO3 of this chapter).

Here I will describe the synthesis and characterization of each of the metastable 

hydroxy-hydrated magnesium carbonate minerals in the reactions we have studied thus far. They 

have been synthesized in their pure versions by various students that have worked with me in my

time at Washington University, including Allison Brenner, Louis Wang, John Beach, and Yanzhe 

Zhu (see acknowledgements at the beginning of this thesis).

B.  Nesquehonite, Mg(HCO3)(OH)·2H2O

Nesquehonite, known as Mg(HCO3)(OH)·2H2O or MgCO3·3H2O, has been reproducibly 

made through many different synthetic methods.173,184 While it does not form at the high 

temperatures of the in situ reactions discussed in Chapter 3 (the temperature is too high for its 

formation), it can form in the products after the reaction is completed if it is allowed to sit wet at 

room temperature. Nesquehonite occurs in pretty, needle-like crystals (elongated habits), and 

they typically form pointed in multiple directions around a sphere—much like a person with a 

“bad hair day.” Nesquehonite's crystals are very easy to recognize under a microscope.31,173 

Finally it important to note that all of the several published nesuqhonite crystal structures178,185 

(amcsd 0009432, 0014644) agree on its structure. It is a member of the P21/n space group and 

164



has one crystallographically unique carbon. Crystallographically unique atoms are magnetically 

inequivalent as the rule for crystallographically unique atoms is that they cannot be related by 

translation or inversion symmetry operations. This means the 13C MAS NMR spectrum of 

nesquehonite should have one isotropic chemical shift.

a.  Synthesis

Two different samples of nesquehonite were made. The first, Sample A, was made by by 

adding 0.1555 g of 99% 13C-labelled NaHCO3 to a pre-made solution of 0.1889 g MgCl2 in 2.15 

mL of DI water. As MgCl2 exothermically dissolves, the mixture of MgCl2 and DI water was 

allowed to cool for at least 10 minutes before mixing so that the solution was at room 

temperature (21 °C) when the NaHCO3(s) was added. After the NaHCO3 was added to the 

solution, it was stirred for one minute then allowed to sit for 3 days at room temperature in a 

sealed glass beaker. After that time, it was filtered and placed in a vacuum oven overnight at 

room temperature. The product crystals were lightly ground with a mortar and pestle before 

being loaded into a MAS NMR rotor and then a pXRD slide for pXRD and Raman analysis. 

The second sample, Sample B, was designed to be a highly pure sample of nesquehonite by 

minimizing the Na in the reaction and with multiple washings to get rid of excess NaCl 

by-product. It was made by mixing  0.1456 g of 99% 13C-labelled NaHCO3 with a pre-made 

room temperature solution of 0.164 g of MgCl2 in 3.25 mL of DI water. After mixing the 

NaHCO3 while stirring the solution for one minute, the sample was allowed to sit for three days 

at room temperature in a sealed glass beaker. After that time, it was filtered and put into a 

vacuum oven at 40 °C for 10 minutes. The powder was then allowed to air dry overnight. It was 

then re-rinsed with DI water and filtered and replaced in the vacuum oven at 40 °C for ten more 
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minutes and allowed to air dry overnight. 

b.  Analysis

One day after drying, Sample A was analyzed via 13C MAS NMR. As expected from the 

crystal structure there was a single 13C peak representing the one magnetically inequivalent 

carbon (Figure 6.3a). However, after 2 weeks of sitting in the rotor at room temperature, the 13C 

MAS NMR spectra was obtained again and there was a second peak that had appeared in the 

spectrum (Figure 6.3a).

The 13C T1 relaxation time constants was measured using a saturation recovery T1 sequence. 

The T1 of the nesquehonite peak at 165.4 ppm was 32.8 +/- 0.5 s and the T1 of the second 13C 

peak at 164.0 ppm was 87.5 +/- 5.3 s. The large difference between their T1 values indicate a 

large difference in crystalline properties and that the second carbon is probably an additional 

crystalline phase and not part of the nesquehonite crystal structure. 

The sample was unpacked and loaded onto a glass slide for Raman spectroscopic analysis. 

The Raman spectrum showed that there was a second stretch at 1114 cm-1 (Figure 6.4, appears as 

a shoulder on the dominant nesquehonite stretch):
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Figure 6.3: 13C{1H} MAS NMR of Sample A at νr=5 kHz (a) 1 day after 
synthesis and (b) two weeks after synthesis. The nesquehonite peak in both
(a) and (b) is 165.41 ppm. The second peak in (b) is located at 164.01 
ppm. (Data:ALB19 20130213; (b) 201303328).



The new stretch at 1114 cm-1 corresponds is in the CO3 symmetric stretch region, agreeing 

with the 13C NMR data that the new phase is probably an additional carbonate phase. The close 

proximity of the new phase's 13C NMR peak to the nesquehonite 13C NMR peak and the close 

proximity of its Raman symmetric stretch suggest that the phase is an additional carbonate phase.

Other asymmetric stretches in the Raman spectrum were not analyzed as the 13C-labelling adjusts

their positions from reference values. The sample was then loaded onto pXRD slide for 

diffraction analysis.

The pXRD experiment confirmed the presence of nesquehonite, although it was 

preferentially oriented (excessive grinding for pXRD preparation was avoided as it was 

originally thought that this grinding could contribute to a phase change of the nesquehonite—

although we have never found any evidence for this effect since these experiments). The mineral 

halite, or NaCl, was also found to be present in the sample as a by-product of the synthesis. All 

of the remaining peaks matched that of a rare mineral called northupite, Na3Mg(CO3)2Cl, with 

the exceptions of four small peaks located at 15.29°, 18.22°, 24.05°, and 24.37° 2θ. As the 

symmetric stretch at 1114 cm-1 reported in the Raman spectrum agrees with the previously 
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Figure 6.4: Raman of the nesquehonite crystals (Sample A) with an 
additional phase. The strong peak at 1100 cm-1 is the CO3 symmetric 
stretch for nesquehonite, and the peak at 1114 cm-1 is from the additional 
carbonate phase. (Data: ALB19 02273013).



reported symmetric stretch for the mineral northupite,186 the extra pXRD peaks could be from 

extra waters distorting the northupite crystal structure, further supported by the fact that I was 

able to cross polarize (1H-13C) the peak at 164.01 ppm from the broad 1H resonance in the 

sample, suggesting close proximity of a proton, not present in northupite's chemical formula. 

Finally, the mineral northupite is known to have only one crystallographically unique carbon187 

which is consistent with the results of the 13C MAS NMR data in that only one additional 

resonance is seen alongside nesquehonite's single 13C resonance.

To further substantiate the northupite identification assignment to the second crystalline 
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Figure 6.5: pXRD of Sample A. All of the peaks for nesquehonite were in 
the sample (although with preferential orientation). Most of the remaining
peaks matched with halite and another mineral called northupite. (Data: 
ALB19, 02272013).



phase, 23Na MAS NMR was obtained to confirm the existence of an additional 23Na NMR peak, 

distinct from that of NaCl. Figure 6.6a shows that there were two peaks present in Sample A: a 

symmetric peak at 6.65 ppm, in agreement with the known 23Na chemical shift of NaCl,188,189 and 

another symmetric peak at -0.57 ppm. All 23Na NMR were referenced to a 1 M NaCl solution = 0

ppm. According to the solved structure of northupite,187 there is one crystallographically unique 

Na, and the placement of the other atoms around it in its structure is totally symmetric—

suggesting that little to no quadrupolar splitting should be expected of the 23Na NMR lineshape 

from the mineral (in other words, a totally symmetric line could represent the presence of 

northupite). A saturation recovery T1 pulse sequence was also run, and the T1 of NaCl was found 

to be 13.6 s +/-2.6 s, again in agreement with previous literature.190 However, the T1 of the 

second 23Na peak at -0.59 ppm was found to be in the millisecond range, considerably shorter 

than that of NaCl.

23Na NMR was obtained for the crystalline solids NaHCO3 and Na2CO3 to confirm that the 

23Na chemical shift at -0.59 ppm was in the expected chemical shift range of Na-carbonates 

(Figure 6.7).191,192
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Figure 6.6: 23Na MAS NMR (5kHz) of (a) Sample A two weeks after 
synthesis and (b) Sample B. NaCl(s) can be seen at 6.65 ppm in both 
spectra, although considerably less in (b) than in (a) as can be seen by the
S/N comparison of the spectra. Sample A has a second peak at -0.57 ppm 
which is not present in Sample B. (a) had a 1s recycle delay while (b) had 
a 60 s recycle delay. (Data: (a) 20130404 ALB19 1sRD, (b) 20130405 
JS7-2 60s RD).



23Na NMR was also obtained on Sample B, shown in Figure 6.6b, to demonstrate the 

decreased NaCl content from the multiple washings. Sample B was also found by 23Na MAS 

NMR to have none of the northupite phase as there was no peak at -0.59 ppm. A short recycle 

delay was used in Figure 6.6 (a) of one second to selectively decrease the slowly relaxing NaCl(s) 

signal relative to the fast relaxing 23Na signal at -0.59 ppm. The longer recycle delay was used in 

Figure 6.6 b to enhance the sensitivity to  detect the sparing amounts of NaCl(s) expected in the 

sample.

The 23Na MAS NMR of NaHCO3 (nahcolite) obtained from Sigma-Aldrich shows that there 

are minor amounts of NaCl(s) impurity in it. The spectrum also shows that there is one 

magnetically inequivalent 23Na signal and that it is slightly asymmetric in shape. This 

observation agrees with the known details of the nahcolite crystal structure.193  Na2CO3 (natrite) 

has more than one crystallographically unique Na site as previously shown by XRD and 23Na 

MAS NMR.191,192 

As Sample B was shown to be free of the assigned Na-impurity northupite, static and MAS 

13C NMR data were obtained on the pure nesquehonite sample (Figure 6.8). 13C{1H} MAS NMR 
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Figure 6.7: 23Na MAS NMR spectra of (a) NaHCO3 and (b) Na2CO3. The 
23Na NMR northupite peak in the nesquehonite sample is in the chemical 
shift range of sodium carbonates per (a) and (b). (Data: 20130405).



and static NMR of pure nesquehonite are shown in Fig. 6.8: 

The isotropic 13C chemical shift (δiso) for pure nesquehonite was found to be 165.42 ppm, 

relative to adamantane's C-H peak at 29.45 ppm.194 The biaxiality (η) for nesquehonite was 

measured by a powder pattern fit to be 0.51 and the chemical shift anisotropy (δaniso)=-50.64 ppm.

Additionaly pXRD (not shown here) confirmed that Sample B was nesquehonite. Raman 

(data also not shown here) additionally confirmed that Sample B was nesquehonite in that it had 

a strong symmetric C-O stretch for CO3 at 1100 cm-1 and a OH stretch at 3554 cm-1.31,177 The 13C 

T1 of the Sample B nesquehonite peak was 35.67 +/- 0.89 s (about half of the length of the T1 

from Sample A). The peak's cross-polarization properties was also probed using a 1H-13C 

CPMAS experiment to obtain a CPMAS curve in Fig. 6.9. The TIS value was found to be 1.12 +/-

0.04 ms, and the T1ρ to be quite long at 58.0 +/- 5.2 ms. The uncharacteristically-long T1ρ value 

suggests that there is little motion of the closest hydrogen in the crystalline unit cell,195,196 and 
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Figure 6.8: Powder pattern fit (a) for the static 13C{1H} NMR spectrum of 
pure nesquehonite (b). 13C{1H} MAS NMR (νr = 5 kHz) narrowed the 
powder pattern to show a single, well-defined peak at 165.42 ppm (c). The
inset (d) is a closeup of the single peak of nesquehonite. (Data: JS7-2 
20130312).



that supports the suggestion that the more correct molecular formula for nesquehonite is 

Mg(HCO3)(OH)·2H2O and not MgCO3·3H2O.31 A hydrogen bound to a carbonate group is 

expected to have less range of motion than to a crystalline water and would therefore move less.

c.  Conclusions

There are only two known previous reports of 13C NMR of nesquehonite,25,26 and they both 

include the impurity identified here as the mineral northupite. Here I report a complete 13C NMR 

dataset of pure nesquehonite and note that traditional synthesis methods and natural reactions 

that form metastable hydroxy-hydrated magnesium carbonate minerals can also co-precipitate 

phases that include sodium in high salinity environments. These extra Na-phases can be 

identified with 13C and 23Na NMR. Additionally, 23Na MAS NMR is capable of probing the 

amount of NaCl impurity in the sample. 

C.  Dypingite,  4MgCO3∙Mg(OH)2∙(5­8)H2O

Dypingite, 4MgCO3·Mg(OH)2·(5-8)H2O, is a mineral originally discovered in the Dypingdal 

serpentine-magnesite deposit in Snarum, Norway by Gunnar Raade in 1970.106 It was originally 
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Figure 6.9: CP-MAS curve of the 13C peak of nesquehonite. (Data: JS7-2 
20130313).



published as containing either 5 or 6 H2O's in its crystaline structure, but a publication three 

years later claimed that it in fact had 8 H2O's in its crystal structure, based on analysis of 

deposits of the supposedly same mineral found in Yoshikawa, Japan.180 Some eleven years later, 

Canterford et. al wrote a paper analyzing the properties of these minerals and claimed that 

dypingite had 5 H2O's in its crystal structure while noting that there were many other minerals 

with higher hydration values that appeared similar to dypingite in both XRD and visual 

analysis.107 Nevertheless, subsequent research concludes that “dypingite” can have 5 or more 

waters: here I use the convention of many others that dypingite is any hydroxy-hydrated 

magnesium carbonate with 5 or more waters.86,94,95,104,115 Its structure is unsolved but has a unique 

pXRD spectrum (which remains one of the few ways to unambiguously identify it). The pXRD 

of dypingite is only different from the well-known mineral, hydromagnesite, in that its lowest 

pXRD reflection is 5.8° 2θ, and its primary reflection is at 10.6° 2θ, unlike hydromagnesite's. 

Dypingite is most typically found in low temperature environments and probably exists in its 

“pure phase” with a dispersion of waters of crystallization—making it difficult to make in its 

“pure” form as no one seems to know what that is. It is not only found in only a couple of  

mineral deposits around the world, but a research group in Canada just recently found that 

dypingite is preferentially induced biologically by a group of cyanobacteria in Atlin, Canada.197 

Also more recently dypingite has been shown to exist as a phase transformation in the 

Mg-CO2-H2O reaction system.104 Finally, our group and one other have published that it forms as 

one of the several magnesium carbonate products from the reaction of CO2 with Mg(OH)2.21 

Here we design a solution from which dypingite will selectively precipitate for the purposes of 

doing 13C NMR analysis on a pure version of dypingite.
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a.  Synthesis

 As hydromagnesite, a supposed slightly less-hydrated version of dypingite, forms from 

heating nesquehonite in an aqueous solution,102 it was thought that a version of dypingite could 

be kinetically trapped by synthesizing a form of nesquehonite then heating it for a specific 

amount of time. Here we were able to make dypingite by mixing  0.2210 g of 13C-labelled 

NaHCO3 (Aldrich, 98% purity) into a pre-made and room temperature solution of 0.2509 MgCl2 

(Alfa Aesar, 99% purity) dissolved in 3.25 mL of DI water. This solution was allowed to sit 

unstirred at room temperature for 24 h then was heated at 62 °C for 48 h and then 72 °C for 24 h.

The sample was then filtered and dried under vacuum at room temperature for 24h.

b.  Analysis 

pXRD and Raman were acquired on the synthetic product to confirm that it was consistent 

with the published pXRD and Raman data on it. The pXRD and Raman data obtained from this 

sample can be seen in Figure 6.10.

The data in Figure 6.10 indicate good agreement with previously published pXRD data106 and

with previously published Raman data.36 Here, again, only the symmetric stretch region of the 

174

Figure 6.10: pXRD (a) and Raman data from the CO3 symmetric stretch 
region (b) of the dypingite product. The stick pattern superimposed on the 
pXRD data is from Raade's original paper (PDF#00-023-1218). (Data: 
(a) LW26 20130308, (b) LW26 20130227).



Raman spectrum is shown because it is one of the few regions of the Raman spectrum that can be

quantitatively compared to literature results because of the 13C labeling. Here the CO3 symmetric 

stretch is at 1121 cm-1, and the OH stretch (not shown) is at 3645 cm-1 (the OH stretch is 

indicative of hydroxylation in the sample). There is a broad shoulder at ~1094 cm-1 indicating the

possibility of some carbonate impurity in the product. 

Solid state 13C NMR was performed on the product (Figure 6.11). 

The solid state 13C NMR data demonstrates that dypingite has two dominant 13C sites whose 

isotropic chemical shifts are 165.3 and 163.5 ppm. The static 13C NMR spectrum therefore is a 

superposition of two powder patterns, one from each of its two isotropic peaks. The δaniso and η 

values for the 165.3 peak are -47.3 ppm and 0.17, respectively. The δaniso and η values for the 

163.5 ppm peak are -53.9 ppm and 0.57, respectively. Both were measured from the fit in Figure 

6.11b. As can be seen in Figure 6.11d, there is also another peak/shoulder at 166.7 ppm which I 

assign to another carbonate phase impurity as previous reports have well-substantiated claims 

that dypingite's 13C MAS NMR spectrum has two unequal peaks in these approximate 
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Figure 6.11: Solid state 13C NMR of dypingite. (a) static, (b) fit to the 
static powder pattern, and (c) MAS NMR (νr = 5 kHz) and (d) which is a 
close-up view of (c). (Data: LW26, 20130305).



positions.21,25 This NMR spectrum is quantitative so the ratios of the peaks can be measured to 

see the ratio of carbons in each site. Here the peak at 165.3 ppm is 60.7% of the area of the 

dypingite spectrum while the peak at 163.5 ppm is the remaining 39.3% (these areas come from 

fits of Figure 6.11d where the shoulder at 166.7 ppm was not included in the area calculations). 

This spectrum suggests that there are 6 carbons of site 165.3 ppm for every 4 carbons of site 

163.5 ppm, or a 3/2 ratio. Additional samples of dypingite not discussed here but checked by 

pXRD for purity, however, have ratios that range from 75/25 to nearly 60/40 in the 165 ppm/163 

ppm peak ratio. While I was never able to obtain conclusive proof of this, I think the 13C NMR 

MAS data collected on other samples (not shown) demonstrate that the ratio of the two peaks of 

dypingite indicate the hydration state of the dypingite sample. The larger the ratio of the  

165.3/163.5 peaks, the higher the hydration state. 13C NMR data of nesquehonite's conversion 

into dypingite (also not shown here) show that the nesquehonite peak at 165.4 ppm will shift 

slightly to the dypingite peak's location of 165.3 ppm and then the second site at 163.48 ppm will

grow in. Eventually it will be ·5H2O dypingite, which, given more energy, will convert into the 

well-known ·4H2O species, hydromagnesite, where the 165 ppm/163 ppm peak ratio is 1/1.

The shoulder at 166.70 ppm in Figure 6.11d may be an additional carbonate phase that is 

mesocrystalline and therefore does not show up in the pXRD diffraction pattern. The Raman 

spectrum may indicate the presence of another carbonate phase, but it is unclear. 23Na MAS 

NMR (not shown) revealed that there were more sodium phases than just NaCl in the sample. 

There were two additional, small and symmetric 23Na peaks at -0.8 ppm and -7.3 ppm 23Na 

chemical shift range. These chemical shift ranges are consistent with Na-containing carbonates 

and are a strong indication that there was Na-carbonate impurities in the sample. While this was 
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the purest sample we were able to make using this aqueous synthesis method, we are very 

confident based on previous literature that these the dominant peaks at 165.3 and 163.4 ppm are 

the two peaks of the dypingite carbonate species.20,25 Previous work by our group also identified 

these two peaks with a similar 165 ppm/163 ppm ratio in a Na-free high pressure reaction with 

CO2 and Mg(OH)2 in a sample whose Raman and pXRD signatures were also consistent with that

of published dypingite.21

Additional 13C parameters were explored for this dypingite sample. A saturation recovery T1 

experiment measured the T1 relaxation time constants of the two dypingite peaks at 165.31 ppm 

and 163.5 ppm  which were 104.2 +/- 5.8 s and 106.8 +/- 5.4 s, respectively. The longer T1 time 

than the previous nesquehonite sample merely indicates that the crystals are probably of higher 

purity. It is interesting that less hydration per carbonate group in the crystalline unit has led to an 

increase in the T1, perhaps water motion in the molecule contributes to crystalline dynamics that 

favor shorter T1's.

The sample was also 1H-13C cross-polarized in a CPMAS experiment that determined each 

peak's TIS and T1ρ values. The 165.3 ppm peak was found to have a TIS of 0.489 +/- 0.01 ms and a

T1ρ of 4.8  +/- 0.1 ms. The 163.5 ppm peak was found to have a TIS value of 0.6 +/- 0.04 ms and a

T1ρ value of 3.7 +/- 0.2 ms. The shorter T1ρ indicates that there is increased molecular motion 

compared to nesquehonite in the ~3 kHz range (the value of the spin-locking B1 field in this 

CPMAS experiment). Figure 6.12 shows the CP-curve measured for the two dypingite 

resonances. 
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c.  Conclusions

Here we have developed a synthesis method for making the mineral dypingite. The product 

was evaluated by pXRD and Raman to confirm its phase and then fully characterized using 

several solid-state 13C NMR techniques. The results indicate that it is very difficult to make pure 

dypingite and that its amount of hydration probably varies from sample to sample. Dypingite is 

considerably different spectroscopically from the previous mineral nesquehonite. The in-depth 

analysis allows for unambiguous characterization using 13C static or MAS NMR.

D.  Hydromagnesite, 4MgCO3∙Mg(OH)2∙4H2O

Hydromagnesite is a reasonably well-known and chracterized basic magnesium carbonate 

mineral. It is also the least-hydrated of the known metastable hydroxy-hydrated carbonate 

minerals164 and has been experimentally shown to be a product or an intermediate in reactions of 

CO2 with other minerals containing magnesium.21,24,57,86,93,102,104 It is manufactured commercially 

as a fire retardant198,199 and is found naturally all over the world and even on the planet 
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Figure 6.12: 13C NMR CP curves of peak intensity (y-axis) vs. contact time
(x-axis) for the 165.3 ppm peak (solid squares) and 163.4 ppm peak 
(hollow squares) of dypingite. The lines are the fits of the CP-curves. 
(Data: LW26 20121217).



Mars.200–202 Additionally, it is quite stable up to temperatures of 250 °C203 and often forms in the 

place of magnesite (MgCO3), preceding magnesite, or along with magnesite as a mixed 

carbonate precipitate.86,104,204 

a.  Synthesis

0.2450g of MgCl2 was added to 8 mL of DI water. After the solution cooled, 0.1065 g (0.08 g

of which was 99% 13C-labelled) was added to the solution and mixed for 1 minute at room 

temperature before being placed in the oven at 92 °C for 4 days. The sample was filtered and 

placed in a room temperature vacuum for 24 h until completely dry.

b.  Analysis

After the sample was removed from the vacuum chamber, it was lightly dry-ground and 

evaluated with pXRD and Raman. The pXRD peaks (not shown) matched the literature values 

for hydromagnesite and demonstrated that the sample was not preferentially oriented.174,175 

Raman analysis (not shown) was also consistent with hydromagnesite, matching previously 

reported spectra for hydromagnesite (a C-O symmetric stretch for CO3 symmetric stretch at 1118 

cm-1 and an OH stretch at 3646 cm-1).31 

The sample was then packed into a MAS NMR rotor and 23Na MAS NMR was run to see if 

any sodium impurities existed (data not shown). Only some residual NaCl(s) signal was observed 

with no additional 23Na peaks. A full workup of static and MAS 13C NMR was then obtained.
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The solved crystal structure of hydromagnesite indicates that there should be two 

crystallographically unique carbons in the hydromagnesite crystal structure. This means there 

should be two unique 13C peaks of equal area. The 13C MAS NMR data of pure hydromagnesite 

in Figures 6.13e and the previously-discussed Figure 3.8 both indicate that there are two 13C 

NMR peaks: at 165.2 ppm and 163.0 ppm for Figure 6.13; 165.4 ppm and 163.2 ppm for Figure 

3.8. Both peaks are of unequal height, but their fitted integrals indicate that they are both the 

same areas within experimental error. A fit of the spectrum in Figure 6.13e has the peak at 165.2 

ppm being 51.78% of the overall spectral area while the peak at 163.0 ppm is 48.22%. Therefore 

the 13C NMR data is consistent with the quantitative expectation of a 1:1 ratio of the two peaks.

A “slow-spin” 13C{1H} experiment was performed on the sample to map out the CSA of both 

peaks in support of the shapes of the two CSA's already fitted in Figure 6.13b. The “slow spin” 

experiment allows the powder patterns of both peaks to be mapped by their spinning sideband 
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Figure 6.13: Solid state 13C{1H} NMR of hydromagnesite (a) static, (b) 
powder pattern fit, (c) MAS (νr =1.3 kHz), (d) MAS (νr = 5 kHz), and (e) 
closeup of (d). (Data: JB1, (a)20130306, (c) & (d) 20130304).



magnitudes. Such experiments are commonly done to elucidate the shape of two overlapping 

powder patterns.205,206 The two peaks have magnitudes across the spectrum that one would expect

from the two powder patterns fitted for them. The fitted peaks (Figure 6.13b) provided δaniso and 

η values of  0.16 and -47.39 ppm (165.2 ppm) and 0.55 and -49.06 ppm (163.0 ppm), 

respectively. These values are very close to dypingite and indicate that the electronic 

environment around the two carbon sites is very similar for both minerals. Furthermore, the CSA

and biaxiality assignments are consistent with another slow-spin experiment performed on 

hydromagnesite elsewhere, confirming the synthesis.167 

The T1 time constants for both peaks were the same (like dypingite's two peaks), within 

experimental error: 156.56 +/- 7.4 s (165.4 ppm) and 156.0 +/- 5.6 s (163.0 ppm). The T1 trend 

relative to the amount of hydration continues as hydromagnesite's T1's are longer than dypingite's

(a more hydrated species than hydromagnesite). In fact, T1N<T1D<T1H, where N=nesquehonite, 

D=dypingite, and H=hydromagnesite. This trend indicates that water may play a role in the 

dynamics of the crystalline unit cell that helps the 13C nuclei to relax in the magnetic field. 

The CP-curve experiments revealed why the second peak at 163.0 ppm is shorter and broader

than the peak at 165.4 (Figure 6.14): the peak at 163.0 ppm is actually a series of two or more 

chemical shifts.
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The TIS and T1ρ values for the peaks were TIS(165.4 ppm) = 0.59 +/- 0.03 ms, T1ρ (165.4 ppm) 

= 7.05 +/- 0.320 ms, TIS(163.1 ppm) = 0.75 +/- 0.09 ms, T1ρ (163.1 ppm) = 3.54 +/- 0.35 ms, and 

finally TIS(162.5 ppm) = 0.38 +/- 0.04 ms, T1ρ (162.5 ppm) = 8.000 +/- 0.56 ms. Clearly there is a

small chemical shift dispersion due to two slightly different sites of the 163.0 ppm peak. The fact

that the TIS values are so different indicates that about half of the 13C's are closer to a proton than 

the other half. As their 13C T1's are the same, the only way to resolve these two sites was by 

CPMAS.

c.  Conclusions

A simple synthesis for the hydroxy-hydrated magnesium carbonate, hydromagnesite, was 

developed and a thorough 13C NMR analysis was completed for the pure mineral. This mineral 

has two unique sites (as predicted crystallographically) but one of the sites has a dispersion of 

symmetry based on different distance relationships with hydrogens within the crystal. There is 

little spectroscopic difference between hydromagnesite and dypingite except in their relative 

peak areas (hydromagnesite's two peaks are defined as 1:1 but dypingite's is 6:4). Furthermore, 

within experimental error, the chemical shift of hydromagnesite and dypingite were found to be 
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Figure 6.14: 1H-13C CPMAS of the hydromagnesite spectrum with a 250 
μs contact time. The peak at 163.0 ppm splits into two peaks at 163.1 ppm 
and 162.5 ppm. (Data: JB1, 20130220 250u [16 scans, 3 s RD]). 



roughly the same. This differs from previous claims.24,25

E.  Magnesite, MgCO3

Magnesite, MgCO3, is extremely difficult to make in its pure form at temperatures <150 °C 

and pressures <150 bar. As outlined in the beginning of this chapter, it is very difficult to remove

the water molecules that tightly adhere to the Mg2+ ion. In practice, MgCO3 is only known to 

form under high pressure, high alkalinity, and/or high temperatures and usually only after long 

periods of time.21,26,104,114,164–166 There are ways to make it at atmospheric pressure (but this method

involves high temperatures),165 and magnesite has also been reportedly made at low temperatures

(but this method involves high pressures).26 

Here I will discuss a method used to make magnesite and some of the preliminary high 

resolution 13C NMR characterization of the MgCO3(s). 

a.  Synthesis

We have made magnesite for solid state 13C NMR characterization using a high pressure and 

temperature method by reacting CO2 with the mineral forsterite, Mg2SiO4, in an aqueous 

solution. This reaction has already been shown to selectively produce MgCO3 in Chapter 3. Here 

I analyze the products obtained from the reactions R12 and R20 (see table of reactions at end of 

thesis).

Sample R12 was prepared by adding 1.598 g of Mg2SiO4 powder into 2.774 mL of DI water. 

The mineral was reacted with CO2(g) in a static, unstirred environment from 110-102 bar for 8 

days at 90 °C. Likewise, Sample R20 was prepared by adding 2.498 g of Mg2SiO4 powder to 

1.87 mL of DI water. It was reacted at 80 °C for 21 days. After both reactions were depressurized
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and cooled to room temperature, they were removed and dried in a vacuum chamber for 24 h. 

The dried powder from each was then removed and a portion of the samplefrom the top of the 

reactor to  -0.5 cm into the sample was separated and examined via Raman and pXRD before 

being packed into a MAS rotor for solid state 13C NMR analysis.  

b.  Analysis

Figure 6.15 shows the pXRD data obtained from both R12 and R20 samples. They both show

the presence of just two phases: forsterite and magnesite. As forsterite does not have carbon in it,

it is not considered as an impurity in the 13C NMR analysis of MgCO3 as 13C NMR is only 

sensitive to the presence of 13C and thus does not detect the forsterite in the sample. Furthermore,

the presence of silicate mineral has not been found to affect the crystalline structure of MgCO3(s) 

or the resultant relevance of 13C NMR data from it. 

Solid state 13C NMR analysis of the R12 product is shown in Figure 6.16 where the static 

powder pattern for magnesite and fit to the spectrum can be seen. The fitted pattern has a δaniso 
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Figure 6.15: pXRD of R12 and R20 products along with the pXRD 
standards for forsterite and magnesite. (Data: R12-middle,).



value of -54.5 ppm (+/- 0.07) and a η value of 0.135 (+/- 0.001).

A close-up examination of the single peak in Figure 6.16c revealed that it was in fact not a single 

peak, but a combination of two different peaks. The two peaks can be seen in Figure 6.17. 

Analysis of the NMR spectra in Figure 6.17 showed that R12 had two peaks: 169.54 ppm (0.57 

ppm linewidth) and 170.22 ppm (1.08 ppm linewidth). R20 had just one peak at 169.91 ppm (0.46 

ppm linewidth). The R12 results are consistent with ex situ 13C MAS results from previous reactions 
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Figure 6.16: Solid state 13C{1H} NMR of pure magnesite, MgCO3. (a) fit of
powder pattern (b). 13C MAS NMR narrows the line to a single peak in (c).
(Data: R12-middle).

Figure 6.17: 13C{1H} MAS NMR of the magnesite product from R12 (a) 
and R20 (b). (Data: (a)R12middlebottom_040212[];(b)R20-middle 
20130507[1 scan, 30 m RD]).



producing MgCO3 products (see Figures 3.16 and 3.24). There is a very, very small chemical shift 

dispersion (in terms of solid state NMR spectra) of the chemical shift of MgCO3—but a significant 

one: the linewidth of 13C{1H} adamantane is some 18 Hz for these experiments. Raman data indicates

that all of the phases are MgCO3. pXRD data for the MgCO3 phase is occasionally shifted (see Figure

3.14) and occasionally not (see Figure 3.23). Here, the pXRD of R12 and R20 are neither shifted—

both pXRD experiments indicate an unshifted MgCO3 phase. 1H-13C CP data is also seemingly 

ambiguous: both R12 and R20 MgCO3 peaks can be cross polarized. However, the S/N is not very 

good, and the peak shape is heavily distorted. It seems likely that OH, H2O, and/or HCO3
- units are 

trapped in the MgCO3 crystalline lattice, and these species are likely in locations where they playing 

some role in distorting the crystal structure slightly—just enough to cause some chemical shift 

dispersion in the high resolution 13C NMR spectra. The dispersion of peaks seen here explains why 

literature has reported uncertainty in the chemical shift peaks for magnesite somewhere between 169 

and 170.5 ppm.21,24,25,51 

R20, on the other hand, was different from R12, and previous experiments in that it had only 

one peak. Of all of the Mg2SiO4 reactions run, R20 was synthesized the longest. The narrow line 

indicates that a longer reaction caused a more pure product to form—but the small differences in 

pressure and temperature may also have played a role in the synthesis. The powder pattern of 

R20 possessed the same fitted line parameters as R12 with no observed differences in the shape, 

anisotropy, etc. This implies that the different chemical shifts observed in the R12 sample and 

others are all Magnesite signals with just enough electronic environment difference to perturb the

isotropic chemical shift and not the anisotropy.
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c.  Conclusions

MgCO3 is a tricky mineral to make in pure form. The data shown here indicates that it 

probably is not made in its pure form in natural circumstances; MgCO3 likely has some OH-, 

H2O, and/or HCO3
- units trapped in its crystalline structure. Nevertheless, the 13C NMR static and

MAS spectra reveal a unique and highly characteristic lineshape and chemical shift that enable 

its characterization NMR. 

F.  Conclusions

The work presented in this chapter is important in a number ways. First, I have demonstrated 

that pure (or just relatively pure, in the case of dypingite) hydroxy-hydrated minerals can be 

obtained by relatively simple crystallizations in a beaker. The identity of the carbonate products 

can be controlled merely by controlling the concentrations of Mg2+ and CO3
2- in the solution and 

the temperature.

In the case of the mineral nesquehonite, an important correction to literature has been 

made.Where it was previously thought that the mineral nesquehonite had two peaks in its 13C 

NMR spectrum, 24,25 it has been shown that the second peak was an impurity from having too 

high of a concentration of sodium in the reactants and not enough washes at the end of the 

product. The 13C NMR evidence supports the claim that the molecular formula Mg(HCO3)

(OH)·2H2O is more correct than the oft-published formula MgCO3·3H2O.31 The 13C NMR data is 

more consistent with a bicarbonate unit present in the crystalline structure than for a straight 

carbonate. This also makes sense in terms of the conditions that nesquehonite precipitates, 

moderate temperatures and pH.
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Spectroscopically, it has been shown that dypingite is very much like hydromagnesite. The 

only way to distinguish the two apart via 13C NMR is perform quantitative 13C NMR and 

integrate the ratios of the peaks. In reaction products, proof of dypingite's presence can be shown

merely by integrating the two hydromagnesite/dypingite peaks and taking their ratios. If their 

integrals are not 1:1, dypingite is present in the sample. Of the three papers published with 

hydromagnesite 13C MAS NMR spectra, the two hydromagnesite peaks are not equal in area 

indicating that they do not have pure hydromagnesite as their hydromagnesite standard.24,25,167

Furthermore, it was shown that the biaxaility (η) of a powder pattern is indicative of the 

asymmetry around the carbonate unit in a unit cell. The more MgCO3-like the crystal, the smaller

the biaxiality parameter (the more symmetric the CO3 site in the crystal structure). In the case of 

dypingite and hydromagnesite, there are two sites one that are more magnesite-like (CO3) and the

other that is more nesquehonite like (HCO3). The shape of the powder pattern is dictated by how 

strong the perturbation of the CO3 group's chemical shift tensor.

The fact that the MgCO3 powder pattern does not have a biaxiality of 0 actually indicates that

there is likely some of the CO3 groups still weakly associated with an H. Similar results have 

been noted in calcite using 1H-13C CP-MAS NMR.55

Lastly, further evidence to support the idea that there are OH, H2O, and/or HCO3 groups 

stuck in the  MgCO3 crystal lattice is shown in the detailed peak analysis of the 13C MAS NMR 

spectra of R12 and R20. Careful shimming of the probe revealed two different 13C sites in the 

MgCO3 peak indicating that there is at least two types of conditions in which the MgCO3 may 

exist. 

Measurement of the T1 relaxation constants has been important to setting the bounds needed 
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to do quantitative NMR. The T1's presented in this chapter indicate that the combination of 

crystalline purity, H2O content, and amount of 13C-labeling of a sample appear to contribute to 

the sample's relaxation properties. Quantitative 13C NMR can only be obtained on metastable 

hydroxy-hydrated magnesium carbonates if the recycle delays are set to long times (in the range 

of 10 m or longer).

And finally, in conclusion, these experiments demonstrate that Na-content in the reaction 

solution can play a large role in the products that form, despite the high solubility of Na. The Na-

and Mg- containing carbonate species can be detected via 23Na NMR. NaCl(s) content from the 

reaction can also be detected with high sensitivity to determine amount of NaCl impurity. These 

experiments have large application for the concrete industry who often try to minimize NaCl 

content in their carbonate products. Altogether, solid state 13C NMR is a very powerful technique

that can quantitatively determine the relative abundances of different carbonate-bearing phases of

a sample. 
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Chapter 7:  Conclusions and future work

A.  Conclusions

The research I have described in this thesis has demonstrated the diverse capabilities of 

nuclear magnetic resonance as an analytical technique. There is a vast amount of relevant 

information the technique can provide when used to study a reaction in situ and the carbonate 

products from the reaction ex situ. 

Here I have shown in situ 13C NMR measurements of CO2 reacting with three different 

minerals and have shown that the fate of CO2 can be monitored as the reaction progresses by 

observing solid metal carbonates form. I have also shown that 13C NMR can report on the overall

progress of the reaction by tracking [CO2]/[HCO3
-] values over time. The details of these 

experiments were described in Chapter 3.

In addition to using high pressure and temperature 13C NMR to monitor reactions in situ I 

have further showed in Chapter 4 that real pH values can be attained from the NMR data by 

combining the data with a carefully constructed pH model. This overcomes a major problem in 

the field: measuring accurate pH values at high pressures and temperatures during carbonation 

reactions.

Chapter 5 further demonstrated that pH can be imaged in a sample using 13C NMR. There I 

worked through the details of setting up the imaging experiment and then showed some in situ 

imaging results obtained from two different high pressure and temperature reactions. The pH 

images were used to help explain the spatial dependence of product formation in the reaction 

chamber. The pH images also demonstrate that pH gradients do form in reactions of CO2 with 
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minerals and that they can be quite large over short distances. Formation of pH gradients during 

CO2 injection are important to consider in mineralization reactions as the gradients can 

contribute or take away considerably from the mineralization efficiency. 

Finally, in Chapter 6, I reported the synthesis of a set of 99% 13C-labelled metal carbonate 

product minerals made in pure or mostly pure form for full analysis using 13C NMR and other ex 

situ techniques. The resultant 13C NMR data from these pure forms of the minerals can now be 

used as standards for both in situ and ex situ 13C NMR analysis and have solved several 

inaccuracies about 13C NMR of these minerals in literature.

The project has successfully achieved the original goal set out for it: to “develop a unique set 

of spectroscopic tools to study the fate of CO2 via NMR for CCS (Carbon Capture and 

Sequestration),” (2010 CCCU proposal).

B.  Future work

The work I have described in this thesis is almost entirely about development of both a 

technique and a methodology for studying carbonation reactions. In my opinion, one of the most 

exciting portions of the research still lies ahead: applying the tool and methodology to other 

sequestration reactions, using the tool to work with other researchers in the field to solve difficult

mineralization problems. 

There are also a number of interesting questions that this tool and methodology could address

next. One such area is studying the effect of NaCl on these reactions. True geological 

sequestration reactions have high concentrations and it has been shown in Chapter 6 that Na 

plays a large role in the carbonate products that precipitate. There is relatively little to no analysis
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of the Na-containing carbonate precipitation in literature. There is also virtually no data in 

literature on the NMR properties of these minerals. This is an exciting area to explore both in 

situ and ex situ. 23Na NMR is a reasonably sensitive technique and the high pressure NMR probe 

discussed in Chapter 2 has been built to also take 23Na NMR data in situ without any needed 

modifications (one need only turn the tuning rod, adjust the NMR circuit to the 23Na frequency at

93.68 MHz). In situ 23Na NMR data may reveal regions of the sample that are being desalinated 

from mineralization. Ex situ 23Na NMR data will reveal what types of Na-containing carbonates 

are forming and their relative stabilities can be evaluated and considered in the sequestration 

environment.

A further exciting area to explore is the study of CO2 reaction with Al-containing minerals. 

The high pressure probe can also be tuned to obtain 27Al NMR data without any modifications, 

meaning that in a single reaction [Na+], [Al3+], [Al2+], [HCO3
-], and [CO2] could be analyzed in 

situ. Ex situ 27Al analysis may reveal other Al-containing carbonates that are being formed during

the reaction that were previously not thought to be made. The minerals dawsonite 

(NaAlCO3(OH)2) and anorthite (CaAl2Si2O8) may be good candidate minerals for these future 

studies.

Finally, it would be interesting to obtain pH images as a function of both water content and 

mineral powder size to further elucidate the factors that control the formation of the massive pH 

gradients observed in the experiments described in Chapters 3 and 5. 

The future is bright; I am excited to hear about where this project will go next.
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Table of Reactions
This table of reactions specifies reaction details of all of the high pressure reactions that were 

run in the high pressure NMR probe that were discussed in this thesis. The pressure range 

represents the starting pressure and ending pressures. The pressure changed because the closed 

reaction system used CO2 during the reaction.

Rxn Rxn Type Solid Mass Soln Mass Rxn Length T range P range

R9 Mg(OH)2 0.761g 2.703g 2 days 80 °C 92.9-88.1 bar

R12 Mg2SiO4 1.598 g 2.774 g 8 days 90 °C 110-102 bar

R13 MgO 0.962 g 3.240 g 8 days ~95 °C 96-89.8 bar

R14 Mg2SiO4 2.170 g 3.041 g 10 days 100  °C 118-104 bar

R15 Mg(OH)2 1.151 g 1.551 g 4 days 80 °C 107-105 bar

R19 Mg(OH)2 1.02 g 2.117 g 32 days 81 °C 113-72 bar

R20 Mg2SiO4 2.498 g 1.867 g 21 days 80 °C 120-105 bar
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Appendix A. Chemical reaction modeling using Duan 
& Sun's solubility equations, SUPCRT92, and 
PHREEQC.

A.  Duan & Sun CO2 Solubility calculation

The following [CO2] solubility calculation is for the sample JS1 pressurized at 39.35 bar. JS1

contains 1.04 molal NaOH and was at 22 °C=295.15 K. This [CO2] solubility data was calculated

using the known molality of NaOH. D&S can also be used with charge balance equations 

recursively (see Equation 4.7) for calculation of [Na+] when it is not known (for more 

information on this, see Chapter 4 and section b of Appendix A). 

co2-solubility.exe
-------------------CO2SOLUBILITY---------------------- 
    This program is to calculate the solubility of CO2 
    in pure water, aqueous NaCl solution or seawater type 
     of brine  based on the solubility model developed by 
     Duan and Sun (2003, Chemical Geology, 193, p257-271) 
------------------------------------------------------- 
  T-P-X range of this model: 273-533 K, 0-2000 bar, 0-4.5 m NaCl 
  Unit---T: K, P(total): bar, mNaCl: mol/kg, mCO2: mol/kg 
------------------------------------------------------- 
Function 1: Calculate CO2 solubility in pure water or in  aqueous NaCl 
solution 

Function 2: Calculate CO2 solubility in seawater 
Function 3: Calculate CO2 solubility in Brines containing Na+, K+, Mg2+, Ca2+,
Cl-, SO42- 
Please enter 1 or 2 or 3 to select function
3
Please enter temperature(K) and pressure(bar)
295.15 39.35
Please enter the molality of ions in Brines in order: 
  Na+, K+, Mg2+, Ca2+, Cl-, SO42-
1.04 0 0 0 0 0

*********************RESULT**************************** 
      T(K)        P(bar)      mCO2(m)   
     295.150      39.3500        .8622 
Pause - Please enter a blank line (to continue) or a DOS command.
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B.  SUPCRT92 Calculations

Detailed step-by-step directions for using the command line program SUPCRT92 are 

contained on page 927 in Johnson et al.'s original research article.128 As the original SUPCRT92 

program was released before the dslop98 database was written, a few modifications to the 

instructions must be made. The following describes notes on the different steps in the article to 

specify specifics about each step I used in generating the K values.

Step 1.0: A negative response must be used and dSLOP98.dat needs to be input. 
Step 2.0: Specify “3”...forces SUPCRT92 to build a new reaction file.
Step 2.3: Specify “1” as the solution is one-phase.
Step 2.4: Specify “2” forces calculations to be done in terms of temperature 
(°C) and pressure (bar). 
Step 2.7: A negative response should be given, forcing the temperature and 
pressure to be independent variables.
Step 2.8: Specify “2” forces tables to be constructed in an isothermal 
fashion.
Step 2.9: Specify “1” forces calculations to be done in uniform increments.
Step 2.11: Enter min, max, and increment for P or T. Example: T25,100,25 makes
temperature go from 25 to 100 °C in steps of 25 °C. 
Step 2.19: Specify “y” to save parameters as a file. 
Step 2.20: Enter appropriate filename. Write it down elsewhere so you know 
what look for after the calculation is done.
Step   3.0:   Specify “2” to build a new reaction file.
Step 3.2: Specify number of reactions to be processed (if calculation K values
for multiple reactions, specify the number of reactions here).
Step 3.3: Enter an appropriate title for the reaction file. Also write this 
one down so you know what to look for later.
Step 3.4: use “-” signs for reactants and positive numbers for products. Make 
sure reactions are balanced. Specify phase names as per the dSLOP98.dat 
database (you can open dSLOP98.dat in a text editor and search for 
keywords/formulas to find phases that are specified in database).
Step 3.8: Specify “y” so that the reactions you build will be saved to a file 
for later use (so you don't have to type them in again!).
Step 3.9: Enter another filename and write this one down as well.
Step 4.0: Enter another filename and writee this one down as well.
Step 4.1: Specify “1” so that plot files are not generated.

C.  PHREEQC Calculations

PHREEQC takes input files that have a file extension of .pqi. These *.pqi files produce a 

*.pqi.out file that both contains the .pqi input and the output from the calculation when executed 
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in PHREEQC. PHREEQC first calculates information on the initial conditions of the solution at 

reaction time zero. Then it prints the results from the calculation after the reactions have reached 

equilibrium. The following files are the *.pqi.out files for the different experiments. These show 

how the calculations are setup and then how the results are printed. Even though the data shown 

in Chapter 4 were created using PHREEQC 2.18, these scripts have been adapted to be both 

PHREEQC 2.18 and 3.0.4 compatible. These output files were generated using PHREEQC 3.0.4.

The following PHREEQC scripts were written to solve the different activities, pH values, and 

equilibria of the different solutions presented in Chapter 4.

 One unique and very important caveat to PHREEQC calculations are that the solutions are 

solved with inputs that are the activity of the reactants. Since D&S equations calculate [CO2] and

not {CO2}, each  PHREEQC program using [CO2] as an input is run three times. The first time 

with the log10([CO2]) value. The second time with the log10({CO2}) calculated separately by 

taking the MacInnes γ value and multiplying it by [CO2] to get {CO2}. The third time is to check 

the  γ value to make sure it hasn't changed. Where possible, the input values that are to be 

changed are in BOLD and there is a bolded #comment on the following line describing what the

BOLD value is. 

Finally, after every PHREEQC simulation, check [CO2] in the output to make sure it matches 

the D&S input value. If it does not match, the calculations are not being done properly—the 

input activities are being calculated wrong.

To utilize these scripts, a *.pqi file should be written by including all lines between  “Reading

input data for simulation 1.” and “Beginning of initial solution calculations. ” of each of the 

following PHREEQC output files.
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a.  pH meter experiments

These experiments were completed by mixing different amounts of NaHCO3 and Na2CO3 

together to tune the resultant solution to different pH's. These were assumed to be “closed” 

systems, that is, not at equilibrium with the atmosphere. Thus no pressure inputs were used in 

these calculations and [CO2] was constrained in the system to a small value.

pH_  solns  .pqi.  out  
   Input file: pH_solns.pqi 
  Output file: pH_solns.pqi.out 
Database file: pitzer.dat 

------------------ 
Reading data base. 
------------------ 

SOLUTION_MASTER_SPECIES 
SOLUTION_SPECIES 
PHASES 
PITZER 
EXCHANGE_MASTER_SPECIES 
EXCHANGE_SPECIES 
SURFACE_MASTER_SPECIES 
SURFACE_SPECIES 
END 

------------------------------------ 
Reading input data for simulation 1. 
------------------------------------ 

PHASES 
Sodium_Carbonate 
    Na2CO3 = CO3-2 + Na+ + Na+ 
    log_k     1.12 
CO2gas 
    CO2 = CO2 
    log_k     100 
SOLUTION 1 
    temp      25

#if  this temperature changes, the log_k values in the SOLUTION_SPECIES section need to be 
changed accordingly 

    pH        7 
    pe        4 
    redox     pe 
    units     mol/kgw 
    density   1 
    water    1 # kg 
EQUILIBRIUM_PHASES 1 
    Nahcolite 0 0.8322 

#molality of NaHCO3 in solution
    Sodium_Carbonate 0 0 

#molality of Na2CO3 in solution
SOLUTION_SPECIES 
CO2 + H2O = HCO3- + H+ 
    log_k     -6.345 
HCO3- = CO3-2 + H+ 
    log_k     -10.329 
H2O = OH- + H+ 
    log_k     -13.995 

------------------------------------------- 
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Beginning of initial solution calculations. 
------------------------------------------- 

Initial solution 1.  

-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

Pure water     

----------------------------Description of solution---------------------------- 

                                       pH  =   7.000    
                                       pe  =   4.000    
       Specific Conductance (uS/cm, 25 oC) = 0 
                          Density (g/cm3)  =   0.99704 
                               Volume (L)  =   1.00297 
                        Activity of water  =   1.000 
                           Ionic strength  =   1.006e-07 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =   1.158e-09 
                    Total carbon (mol/kg)  =   0.000e+00 
                       Total CO2 (mol/kg)  =   0.000e+00 
                      Temperature (deg C)  =  25.00 
                  Electrical balance (eq)  =  -1.158e-09 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =  -0.58 
                               Iterations  =   3 
                         Gamma iterations  =   2 
                      Osmotic coefficient  =   0.99988 
                         Density of water  =   0.99704 
                                  Total H  = 1.110124e+02 
                                  Total O  = 5.550622e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 

   OH-             1.012e-07   1.012e-07    -6.995    -6.995    -0.000     (0)  
   H+              1.000e-07   1.000e-07    -7.000    -7.000    -0.000      0.00 
   H2O             5.551e+01   1.000e+00     1.744    -0.000     0.000     18.07 

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(298 K,   1 atm) 

H2O(g)           -1.50     -0.00    1.50  H2O 

----------------------------------------- 
Beginning of batch-reaction calculations. 
----------------------------------------- 
 
Reaction step 1. 

Using solution 1.  
Using pure phase assemblage 1.  

-------------------------------Phase assemblage-------------------------------- 

                                                      Moles in assemblage 
Phase               SI  log IAP  log K(T, P)   Initial       Final       Delta 

Nahcolite        -0.28   -11.02    -10.74    8.322e-01           0  -8.322e-01 
Sodium_Carbonate   -4.63    -3.51      1.12    0.000e+00           0   0.000e+00 
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-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

C                 8.320e-01   8.322e-01 
Na                8.320e-01   8.322e-01 

----------------------------Description of solution---------------------------- 

                                       pH  =   7.791      Charge balance 
                                       pe  =   4.000      Adjusted to redox equilibrium 
       Specific Conductance (uS/cm, 25 oC) = 27426 
                          Density (g/cm3)  =   1.06655 
                               Volume (L)  =   1.04139 
                        Activity of water  =   0.975 
                           Ionic strength  =   8.444e-01 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =   8.320e-01 
                       Total CO2 (mol/kg)  =   8.320e-01 
                      Temperature (deg C)  =  25.00 
                  Electrical balance (eq)  =  -3.545e-10 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =  -0.00 
                               Iterations  =  18 
                         Gamma iterations  =   4 
                      Osmotic coefficient  =   0.85666 
                         Density of water  =   0.99704 
                                  Total H  = 1.118446e+02 
                                  Total O  = 5.800282e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 

   OH-             1.017e-06   6.087e-07    -5.993    -6.216    -0.223     (0)  
   H+              2.599e-08   1.620e-08    -7.585    -7.791    -0.205      0.00 
   H2O             5.551e+01   9.746e-01     1.744    -0.011     0.000     18.07 
C(4)          8.320e-01 
   HCO3-           8.072e-01   3.882e-01    -0.093    -0.411    -0.318     (0)  
   CO2             1.239e-02   1.428e-02    -1.907    -1.845     0.061     29.09 
   CO3-2           1.239e-02   1.106e-03    -1.907    -2.956    -1.049     (0)  
Na            8.320e-01 
   Na+             8.320e-01   5.293e-01    -0.080    -0.276    -0.196     -0.48 

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(298 K,   1 atm) 

CO2(g)           -0.38     -1.85   -1.46  CO2 
CO2gas         -101.85     -1.85  100.00  CO2 
H2O(g)           -1.51     -0.01    1.50  H2O 
Nahcolite        -0.28    -11.02  -10.74  NaHCO3 
Natron           -2.80     -3.62   -0.82  Na2CO3:10H2O 
Sodium_Carbonate  -4.63     -3.51    1.12  Na2CO3 
Trona            -3.17    -14.55  -11.38  Na3H(CO3)2:2H2O 

#note how all of the SI values are all negative---this means that the solution is not 
supersaturated with respect to any possible mineral phase.

------------------ 
End of simulation. 
------------------ 

------------------------------------ 
Reading input data for simulation 2. 
------------------------------------ 

------------------------------ 
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End of Run after 0.06 Seconds. 
------------------------------ 

b.  High pressure NaOH solutions

These calculations were completed in two different ways. One, where [Na+] was assumed to 

be known ([NaOH]=[Na+] was assumed and pH.pqi was used for calculations). And two, where 

[Na+] was assumed to not be known. In the case of [Na+] not being known, a spreadsheet was 

constructed that used the charge balance equation (Equation 4.7), [CO2] from D&S, and the 

NMR ratio [CO2]/[HCO3
-] to calculate [Na+] values. Since D&S depends on [Na+], the D&S 

calculation was done in recursion with the spreadsheet with a starting value of [Na+]=0. Once 

charge balance gave a value for [Na+], that value was inputted into D&S which produced a new 

[CO2] value. A new charge balance calculation was completed which produced a new value of 

[Na+]. This value was then put into the the D&S model---and this process repeated until [CO2] 

and [Na+] no longer changed (3-5 iterations). Once [Na+] was found, it was used in the 

activity-Na.pqi phreeqc file to calculate pH for the system, where [Na+] was input as [NaOH] 

with an large K value.

Here pH.pqi.out and activity-Na.pqi.out calculations are shown for the same sample JS1 

([NaOH] = 1.041 molal) at 39.35 bar of CO2. You will notice by comparing their results that 

using D&S equations/charge balance to calculate [Na+] yielded a value of [Na+]=1.083 molal. 

This is very close to the real value of 1.041 molal. In addition, the slight differences between 

knowing and not knowing [Na+] yielded a pH value of 6.029 for [Na+] = 1.041 molal and 6.048 

for [Na+] = 1.083 molal.
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pH.pqi.  out  
   
   Input file: pH.pqi 
  Output file: pH.pqi.out 
Database file: pitzer.dat 

------------------ 
Reading data base. 
------------------ 

SOLUTION_MASTER_SPECIES 
SOLUTION_SPECIES 
PHASES 
PITZER 
EXCHANGE_MASTER_SPECIES 
EXCHANGE_SPECIES 
SURFACE_MASTER_SPECIES 
SURFACE_SPECIES 
END 

------------------------------------ 
Reading input data for simulation 1. 
------------------------------------ 

SOLUTION 1 
    temp      22 

#temperature in C can be changed as needed. Note that if the temperature is changed, the 
equilibrium constants in SOLUTION_SPECIES must be changed accordingly.

    pH        7 
    pe        4 
    redox     pe 
    units     mol/kgw 
    density   1 
    water    1 # kg 
PHASES 
NaOH 
    NaOH = Na+ + OH- 
    analytical_expression 100 0 0 0 0 0 
Fix_CO2 

CO2 = CO2 
log_k 0 

EQUILIBRIUM_PHASES 1 
    Fix_CO2  0.0125 CO2(g) 100 

#0.0125 = log10({CO2}). For the first run of this script, log10([CO2]) can be used, 
substituting log10({CO2}) once the activity coefficient of CO2 is known.

    -force_equality 
    NaOH      0  1.041 

#[Na+] in mol/kg. Here, this is the known value.
SOLUTION_SPECIES 
CO2 + H2O = HCO3- + H+ 
    analytical_expression -6.345 0 0 0 0 0 
HCO3- = CO3-2 + H+ 
    analytical_expression -10.335 0 0 0 0 0 
H2O = OH- + H+ 
    analytical_expression -14.071 0 0 0 0 0 
END 

------------------------------------------- 
Beginning of initial solution calculations. 
------------------------------------------- 

Initial solution 1.  

-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

Pure water     

----------------------------Description of solution---------------------------- 
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                                       pH  =   7.000    
                                       pe  =   4.000    
       Specific Conductance (uS/cm, 22 oC) = 0 
                          Density (g/cm3)  =   0.99777 
                               Volume (L)  =   1.00224 
                        Activity of water  =   1.000 
                           Ionic strength  =   9.249e-08 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =  -1.509e-08 
                    Total carbon (mol/kg)  =   0.000e+00 
                       Total CO2 (mol/kg)  =   0.000e+00 
                      Temperature (deg C)  =  22.00 
                  Electrical balance (eq)  =   1.509e-08 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =   8.16 
                               Iterations  =  44 
                         Gamma iterations  =   2 
                      Osmotic coefficient  =   0.99988 
                         Density of water  =   0.99777 
                                  Total H  = 1.110124e+02 
                                  Total O  = 5.550622e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 
 
   H+              1.000e-07   1.000e-07    -7.000    -7.000    -0.000      0.00 
   OH-             8.495e-08   8.492e-08    -7.071    -7.071    -0.000     (0)  
   H2O             5.551e+01   1.000e+00     1.744    -0.000     0.000     18.06 

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(295 K,   1 atm) 

H2O(g)           -1.58     -0.00    1.58  H2O 

----------------------------------------- 
Beginning of batch-reaction calculations. 
----------------------------------------- 

Reaction step 1. 

Using solution 1.  
Using pure phase assemblage 1.  

-------------------------------Phase assemblage-------------------------------- 

                                                      Moles in assemblage 
Phase               SI  log IAP  log K(T, P)   Initial       Final       Delta 

Fix_CO2           0.01     0.01      0.00 
 CO2                is reactant       1.000e+02   9.810e+01  -1.903e+00 

NaOH           -108.19    -8.19    100.00    1.041e+00           0  -1.041e+00 

-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

C                 1.903e+00   1.903e+00 
Na                1.041e+00   1.041e+00 

----------------------------Description of solution---------------------------- 

                                       pH  =   6.029      Charge balance 
                                       pe  =   4.000      Adjusted to redox equilibrium 
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       Specific Conductance (uS/cm, 22 oC) = 34873 
                          Density (g/cm3)  =   1.09533 
                               Volume (L)  =   1.11259 
                        Activity of water  =   0.951 
                           Ionic strength  =   1.041e+00 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =   1.041e+00 
                       Total CO2 (mol/kg)  =   1.903e+00 
                      Temperature (deg C)  =  22.00 
                  Electrical balance (eq)  =   1.509e-08 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =   0.00 
                               Iterations  =  21 
                         Gamma iterations  =   4 
                      Osmotic coefficient  =   0.94726 
                         Density of water  =   0.99777 
                                  Total H  = 1.120534e+02 
                                  Total O  = 6.035320e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 

   H+              1.497e-06   9.364e-07    -5.825    -6.029    -0.204      0.00 
   OH-             1.466e-08   8.624e-09    -7.834    -8.064    -0.230     (0)  
   H2O             5.551e+01   9.510e-01     1.744    -0.022     0.000     18.06 
C(4)          1.903e+00 
   HCO3-           1.040e+00   4.723e-01     0.017    -0.326    -0.343     (0)  
   CO2             8.623e-01   1.029e+00    -0.064     0.012     0.077     29.83 
#note that the [CO2] concentration is the same as the D&S value.
   CO3-2           2.823e-04   2.101e-05    -3.549    -4.677    -1.128     (0)  
Na            1.041e+00 
   Na+             1.041e+00   7.536e-01     0.017    -0.123    -0.140     -0.50 

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(295 K,   1 atm) 

CO2(g)            1.44      0.01   -1.43  CO2 
Fix_CO2           0.01      0.01    0.00  CO2 
H2O(g)           -1.60     -0.02    1.58  H2O 
Nahcolite        -0.09    -10.83  -10.74  NaHCO3 
NaOH           -108.19     -8.19  100.00  NaOH 
Natron           -4.32     -5.14   -0.82  Na2CO3:10H2O 
Trona            -4.41    -15.80  -11.38  Na3H(CO3)2:2H2O 

------------------ 
End of simulation. 
------------------ 

------------------------------------ 
Reading input data for simulation 2. 
------------------------------------ 

------------------------------ 
End of Run after 0.06 Seconds. 
------------------------------ 

activity-Na  .pqi.  out  
   Input file: activity-Na.pqi 
  Output file: activity-Na.pqi.out 
Database file: pitzer.dat 
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------------------ 
Reading data base. 
------------------ 

SOLUTION_MASTER_SPECIES 
SOLUTION_SPECIES 
PHASES 
PITZER 
EXCHANGE_MASTER_SPECIES 
EXCHANGE_SPECIES 
SURFACE_MASTER_SPECIES 
SURFACE_SPECIES 
END 

------------------------------------ 
Reading input data for simulation 1. 
------------------------------------ 

SOLUTION 1 
    temp      22

#temperature in C can be changed as needed. Note that if the temperature is changed, the 
equilibrium constants in SOLUTION_SPECIES must be changed accordingly.

    pH        7 
    pe        4 
    redox     pe 
    units     mol/kgw 
    density   1 
    water    1 # kg 
PHASES 
NaOH 
    NaOH = Na+ + OH- 
    analytical_expression 100 0 0 0 0 0 
Fix_CO2 

CO2 = CO2 
log_k 0 

EQUILIBRIUM_PHASES 1 
    Fix_CO2  0.01135615 CO2(g) 100 

# 0.01135615 = log10({CO2}). For first run, log10([CO2]) can be used. Once the activity 
coefficient for CO2 is known, replace with log10({CO2}).

    -force_equality 
    NaOH      0  1.0833

#the D&S/charge balance [Na+] value in molality 
SOLUTION_SPECIES 
CO2 + H2O = HCO3- + H+ 
    analytical_expression -6.351 0 0 0 0 0 
HCO3- = CO3-2 + H+ 
    analytical_expression -10.342 0 0 0 0 0 
H2O = OH- + H+ 
    analytical_expression -14.085 0 0 0 0 0 
END 

------------------------------------------- 
Beginning of initial solution calculations. 
------------------------------------------- 

Initial solution 1.  

-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

Pure water     

----------------------------Description of solution---------------------------- 

                                       pH  =   7.000    
                                       pe  =   4.000    
       Specific Conductance (uS/cm, 22 oC) = 0 
                          Density (g/cm3)  =   0.99777 
                               Volume (L)  =   1.00224 
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                        Activity of water  =   1.000 
                           Ionic strength  =   9.114e-08 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =  -1.778e-08 
                    Total carbon (mol/kg)  =   0.000e+00 
                       Total CO2 (mol/kg)  =   0.000e+00 
                      Temperature (deg C)  =  22.00 
                  Electrical balance (eq)  =   1.778e-08 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =   9.75 
                               Iterations  =  44 
                         Gamma iterations  =   2 
                      Osmotic coefficient  =   0.99988 
                         Density of water  =   0.99777 
                                  Total H  = 1.110124e+02 
                                  Total O  = 5.550622e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 

   H+              1.000e-07   1.000e-07    -7.000    -7.000    -0.000      0.00 
   OH-             8.225e-08   8.222e-08    -7.085    -7.085    -0.000     (0)  
   H2O             5.551e+01   1.000e+00     1.744    -0.000     0.000     18.06 

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(295 K,   1 atm) 

H2O(g)           -1.58     -0.00    1.58  H2O 

----------------------------------------- 
Beginning of batch-reaction calculations. 
----------------------------------------- 

Reaction step 1. 

Using solution 1.  
Using pure phase assemblage 1.  

-------------------------------Phase assemblage-------------------------------- 

                                                      Moles in assemblage 
Phase               SI  log IAP  log K(T, P)   Initial       Final       Delta 

Fix_CO2           0.01     0.01      0.00 
 CO2                is reactant       1.000e+02   9.806e+01  -1.937e+00 

NaOH           -108.17    -8.17    100.00    1.083e+00           0  -1.083e+00 
 
-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

C                 1.937e+00   1.937e+00 
Na                1.083e+00   1.083e+00 

----------------------------Description of solution---------------------------- 

                                       pH  =   6.048      Charge balance 
                                       pe  =   4.000      Adjusted to redox equilibrium 
       Specific Conductance (uS/cm, 22 oC) = 35956 
                          Density (g/cm3)  =   1.09868 
                               Volume (L)  =   1.11360 
                        Activity of water  =   0.950 
                           Ionic strength  =   1.084e+00 
                       Mass of water (kg)  =   1.000e+00 
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                 Total alkalinity (eq/kg)  =   1.083e+00 
                       Total CO2 (mol/kg)  =   1.937e+00 
                      Temperature (deg C)  =  22.00 
                  Electrical balance (eq)  =   1.778e-08 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =   0.00 
                               Iterations  =  23 
                         Gamma iterations  =   4 
                      Osmotic coefficient  =   0.94558 
                         Density of water  =   0.99777 
                                  Total H  = 1.120957e+02 
                                  Total O  = 6.046317e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 

   H+              1.431e-06   8.947e-07    -5.844    -6.048    -0.204      0.00 
   OH-             1.490e-08   8.730e-09    -7.827    -8.059    -0.232     (0)  
   H2O             5.551e+01   9.499e-01     1.744    -0.022     0.000     18.06 
C(4)          1.937e+00 
   HCO3-           1.083e+00   4.857e-01     0.034    -0.314    -0.348     (0)  
   CO2             8.538e-01   1.026e+00    -0.069     0.011     0.080     29.83 
#note that the [CO2] value is the same as the D&S value
   CO3-2           3.199e-04   2.293e-05    -3.495    -4.640    -1.145     (0)  
Na            1.083e+00 
   Na+             1.083e+00   7.823e-01     0.035    -0.107    -0.141     -0.47 

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(295 K,   1 atm) 

CO2(g)            1.44      0.01   -1.43  CO2 
Fix_CO2           0.01      0.01    0.00  CO2 
H2O(g)           -1.60     -0.02    1.58  H2O 
Nahcolite        -0.05    -10.79  -10.74  NaHCO3 
NaOH           -108.17     -8.17  100.00  NaOH 
Natron           -4.25     -5.08   -0.82  Na2CO3:10H2O 
Trona            -4.31    -15.69  -11.38  Na3H(CO3)2:2H2O 

------------------ 
End of simulation. 
------------------ 

------------------------------------ 
Reading input data for simulation 2. 
------------------------------------ 

------------------------------ 
End of Run after 0.07 Seconds. 
------------------------------ 

c.  High pressure and temperature pH calculations for Mg(OH)2 reactions

Similarly to the NaOH calculations where [Na+] is not known, these calculations involve 

D&S/charge balance to calculate [Mg2+]. Here we do not know [Mg2+] so there is no way to 

calculate error. Since the previous experiments showed that the D&S/charge balance was 
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accurate with the precision of D&S (7%), we will trust the values it produces. Here we use the in

situ reaction data from sample R15, where Mg(OH)2 is reacting with CO2 in water. This data is 

taken from 18 hrs into the reaction, at 107 bar and 81 °C. The calculations show that  [Mg2+] = 

0.026 molal, [CO2] = 0.891 molal, and pH = 4.905. The output file includes an error, 

“WARNING: Fix_CO2, Pure phase with add formula has not converged.” This error just means 

that the artificial Fix_CO2 phase is not fully converging with the system. This is okay and is 

because of the bulk extra CO2 I added in the model. It does not affect the validity of the pH 

results and only occurs in some of the calculations. PHREEQC often has warnings like this 

because it wants to make sure you don't solve for a local minimum.

activity-Mg.pqi.out

   Input file: activity-Mg.pqi 
  Output file: activity-Mg.pqi.out 
Database file: pitzer.dat 

------------------ 
Reading data base. 
------------------ 
 

SOLUTION_MASTER_SPECIES 
SOLUTION_SPECIES 
PHASES 
PITZER 
EXCHANGE_MASTER_SPECIES 
EXCHANGE_SPECIES 
SURFACE_MASTER_SPECIES 
SURFACE_SPECIES 
END 

------------------------------------ 
Reading input data for simulation 1. 
------------------------------------ 

SOLUTION 1 
    temp      81

#change temperature in C as needed. Note that the equilibrium constants for 
SOLUTION_SPECIES have been altered for this new temperature. In addition, as temperature 
changes, the PHASES log_k need to be changed as well.

    pH        7 
    pe        4 
    redox     pe 
    units     mol/kgw 
    density   1 
    water    1 # kg 
PHASES 
magnesite 
    MgCO3 = Mg+2 + CO3-2 
    log_k -9.017 
Mg(OH)2 
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    Mg(OH)2 = Mg+2 + 2OH- 
    log_k -11.826 
hydromagnesite 
    Mg5(CO3)4(OH)2:4H2O = 5Mg+2 + 4CO3-2 + 2OH- + 4H2O 
    log_k -42.756 
nesquehonite 
    MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O 
    log_k -5.247 
Fix_CO2 

CO2 = CO2 
log_k 0 

EQUILIBRIUM_PHASES 1 
Fix_CO2 -0.04607355633209 CO2(g) 100 

# -0.04607355633209 = log10({CO2}). Use log10([CO2]) for first iteration, replacing with 
log10({CO2}) once the activity coefficient has been calculated.

   Mg(OH)2      0          0.02605755 
#the calculated molality [Mg2+] value from D&S/charge balance.

SOLUTION_SPECIES 
CO2 + H2O = HCO3- + H+ 
    analytical_expression -6.267 0 0 0 0 0 
HCO3- = CO3-2 + H+ 
    analytical_expression -10.033 0 0 0 0 0 
H2O = OH- + H+ 
    analytical_expression -12.55 0 0 0 0 0 
END 

------------------------------------------- 
Beginning of initial solution calculations. 
------------------------------------------- 

Initial solution 1.  

-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

Pure water     

----------------------------Description of solution---------------------------- 

                                       pH  =   7.000    
                                       pe  =   4.000    
       Specific Conductance (uS/cm, 81 oC) = 0 
                          Density (g/cm3)  =   0.97116 
                               Volume (L)  =   1.02970 
                        Activity of water  =   1.000 
                           Ionic strength  =   1.462e-06 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =   2.723e-06 
                    Total carbon (mol/kg)  =   0.000e+00 
                       Total CO2 (mol/kg)  =   0.000e+00 
                      Temperature (deg C)  =  81.00 
                  Electrical balance (eq)  =  -2.723e-06 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  = -93.15 
                               Iterations  =   3 
                         Gamma iterations  =   2 
                      Osmotic coefficient  =   0.99947 
                         Density of water  =   0.97116 
                                  Total H  = 1.110124e+02 
                                  Total O  = 5.550622e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 

   OH-             2.823e-06   2.818e-06    -5.549    -5.550    -0.001     (0)  
   H+              1.002e-07   1.000e-07    -6.999    -7.000    -0.001      0.00 
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   H2O             5.551e+01   1.000e+00     1.744    -0.000     0.000     18.55 

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(354 K,   1 atm) 

H2O(g)           -0.32     -0.00    0.32  H2O 

----------------------------------------- 
Beginning of batch-reaction calculations. 
----------------------------------------- 

Reaction step 1. 

WARNING: Fix_CO2, Pure phase with add formula has not converged. 
 SI may be a local minimum. Residual: 5.755532e+00 

WARNING: Fix_CO2, Pure phase with add formula has not converged. 
 SI may be a local minimum. Residual: 6.473280e+00 

Using solution 1.  
Using pure phase assemblage 1.  

-------------------------------Phase assemblage-------------------------------- 

                                                      Moles in assemblage 
Phase               SI  log IAP  log K(T, P)   Initial       Final       Delta 

Fix_CO2          -0.05    -0.05      0.00 
 CO2                is reactant       1.000e+02   9.906e+01  -9.429e-01 

Mg(OH)2          -5.38   -17.21    -11.83    2.606e-02           0  -2.606e-02 

-----------------------------Solution composition------------------------------ 

Elements           Molality       Moles 

C                 9.429e-01   9.429e-01 
Mg                2.606e-02   2.606e-02 

----------------------------Description of solution---------------------------- 

                                       pH  =   4.905      Charge balance 
                                       pe  =   4.000      Adjusted to redox equilibrium 
       Specific Conductance (uS/cm, 81 oC) = 5139 
                          Density (g/cm3)  =   0.99469 
                               Volume (L)  =   1.09505 
                        Activity of water  =   0.983 
                           Ionic strength  =   7.818e-02 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =   5.212e-02 
                       Total CO2 (mol/kg)  =   9.429e-01 
                      Temperature (deg C)  =  81.00 
                  Electrical balance (eq)  =  -2.723e-06 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =  -0.00 
                               Iterations  =  28 
                         Gamma iterations  =   5 
                      Osmotic coefficient  =   0.99582 
                         Density of water  =   0.97116 
                                  Total H  = 1.110646e+02 
                                  Total O  = 5.744421e+01 

----------------------------Distribution of species---------------------------- 

                                                    MacInnes  MacInnes 
                                MacInnes       Log       Log       Log    mole V 
   Species          Molality    Activity  Molality  Activity     Gamma   cm3/mol 
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   H+              1.660e-05   1.244e-05    -4.780    -4.905    -0.125      0.00 
   OH-             3.141e-08   2.226e-08    -7.503    -7.653    -0.150     (0)  
   H2O             5.551e+01   9.828e-01     1.744    -0.008     0.000     18.55 
C(4)          9.429e-01 
   CO2             8.908e-01   8.993e-01    -0.050    -0.046     0.004     21.89 
   HCO3-           5.212e-02   3.841e-02    -1.283    -1.416    -0.133     (0)  
   MgCO3           4.824e-06   4.824e-06    -5.317    -5.317     0.000    -17.08 
   CO3-2           7.561e-07   1.944e-07    -6.121    -6.711    -0.590     (0)  
Mg            2.606e-02 
   Mg+2            2.605e-02   1.246e-02    -1.584    -1.905    -0.320    -23.17 
   MgCO3           4.824e-06   4.824e-06    -5.317    -5.317     0.000    -17.08 
   MgOH+           1.254e-07   9.354e-08    -6.902    -7.029    -0.127     (0)  

------------------------------Saturation indices------------------------------- 

Phase               SI   log IAP   log K(354 K,   1 atm) 

Brucite          -6.89    -17.21  -10.32  Mg(OH)2 
CO2(g)            1.84     -0.05   -1.89  CO2 
Fix_CO2          -0.05     -0.05    0.00  CO2 
H2O(g)           -0.32     -0.01    0.32  H2O 
hydromagnesite   -8.95    -51.70  -42.76  Mg5(CO3)4(OH)2:4H2O 
magnesite         0.40     -8.62   -9.02  MgCO3 
Mg(OH)2          -5.38    -17.21  -11.83  Mg(OH)2 
nesquehonite     -3.39     -8.64   -5.25  MgCO3:3H2O 

------------------ 
End of simulation. 
------------------ 

------------------------------------ 
Reading input data for simulation 2. 
------------------------------------ 

------------------------------ 
End of Run after 0.07 Seconds. 
------------------------------ 

PHREEQC is a very useful program. Here, as described in great detail in Chapter 4, I only 

utilize some of its functionality. The artificial phase Fix_co2, for example, was created to keep 

the concentration of CO2 in the solution constant, per the value calculated form the D&S 

equations. It is important to note that PHREEQC could calculate a value of [CO2] based on the 

temperature and pressure but is not as accurate as the D&S model because PHREEQC's [CO2] 

calculations have certain limitations (see Chapter 4).

PHREEQC can also calculate [Na+] or [Mg2+] instead of using the D&S/charge balance 

method. I found that the PHREEQC method was more complicated and took more time to 
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calculate [Na+] and [Mg2+] and still had the same accuracy as the D&S/charge balance method as 

[CO2] was from the D&S equations. To make PHREEQC calculate [Na+], for instance, one needs

to know initial values of [CO2] and [HCO3
-] and these must be calculated from D&S.
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Appendix B. High pressure and temperature NMR 
probe design

The following two pages show two detailed designs of the high pressure yttria-stabilized 

zirconia reaction vessel and the supporting NMR probe infrastructure. The high pressure reaction

can theoretically handle pressures up to 400 bar at 400 °C for weeks at a time.
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