Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2002-37

2002-10-28

A Multiple Hypothesis Markov Location Approach to Tracking
Moving Targets with Distributed Sensors

Weihong Zhang and Weixiong Zhang

Tracking or localizing a moving target is a difficult task in a distributed sensor network, due to
the lack of knowledge of the target's motion and signal noises. Most existing approaches to the
problem use only sensory information and may require accurate target's motion models. In this
paper, we present a Markovian approach that combines dynamically estimated target's motion
models with received sensory information. Without a given motion model, this approach
localizes a target in two steps, a location prediction step using dynamically generated motion
models and a location correction step integrating sensory readings. Our experimental analysis
shows that... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Zhang, Weihong and Zhang, Weixiong, "A Multiple Hypothesis Markov Location Approach to Tracking
Moving Targets with Distributed Sensors" Report Number: WUCSE-2002-37 (2002). All Computer Science
and Engineering Research.

https://openscholarship.wustl.edu/cse_research/1153

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1153?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1153

A Multiple Hypothesis Markov Location Approach to Tracking Moving Targets
with Distributed Sensors

Weihong Zhang and Weixiong Zhang

Complete Abstract:

Tracking or localizing a moving target is a difficult task in a distributed sensor network, due to the lack of
knowledge of the target's motion and signal noises. Most existing approaches to the problem use only
sensory information and may require accurate target's motion models. In this paper, we present a
Markovian approach that combines dynamically estimated target's motion models with received sensory
information. Without a given motion model, this approach localizes a target in two steps, a location
prediction step using dynamically generated motion models and a location correction step integrating
sensory readings. Our experimental analysis shows that our approach leads to substantially more
accurate and robust location estimations than the previous approaches using only sensory information.
In addition, we characterize probabilistic conditions under which the estimation accuracy increases if
more sensors are used, and the estimations converge to the target's real position asymptotically. We
show an interesting relationship between the steps of location prediction and location correction, i.e., as
more sensors are used, belief correction guarantees the estimations to converge to the target's real
position at each step, and belief prediction accelerates the convergence.


https://openscholarship.wustl.edu/cse_research/1153?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1153?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2002-37

A Multiple Hypothesis Markov Localization Approach to Tracking Moving
Targets with Distributed Sensors

Authors: Zhang, Weihong and Zhang, Weixiong

October 28, 2002

Abstract: Tracking or localizing a moving target is a difficult task in a
distributed sensor network, due to the lack of knowledge of the

target's motion and signal noises. Most existing approaches to the
problem use only sensory information and may require accurate target's
motion models. In this paper, we present a Markovian approach that
combines dynamically estimated target's motion models with received
sensory information. Without a given motion model, this approach
localizes a target in two steps, a location prediction step using
dynamically generated motion models and a location correction step
integrating sensory readings. Our experimental analysis shows that our
approach leads to substantially more accurate and robust location
estimations than the previous approaches using only sensory
information. In addition, we characterize probabilistic conditions

under which the estimation accuracy increases if more sensors are

used, and the estimations converge to the target's real position
acumntnticallhy  \We chnw an interectinn relatinnehin hehaneen the ctena

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Technical Report No: WUCS-2002-37

A Multiple Hypothesis Markov Localization Approach
to Tracking Moving Targets with Distributed Sensors

Weihong Zhang and Weixiong Zhang
{wzhang,zhang} @cs.wustl.edu
Department of Computer Science
Washington University
Saint Louis, MO 63130

Date: 10/28/2002

Abstract

Tracking or localizing a moving target is a difficult task in a distributed sensor net-
work, due to the lack of knowledge of the target’s motion and signal noises. Most existing
approaches to the problem use only sensory information and may require accurate target’s
motion models. In this paper, we present a Markovian approach that combines dynami-
cally estimated target’s motion models with received sensory information. Without a given
motion model, this approach localizes a target in two steps, a location prediction step
using dynamically generated motion models and a location correction step integrating sen-
sory readings. Qur experimental analysis shows that our approach leads to substantially
more accurate and robust location estimations than the previous approaches using only
sensory information. In addition, we characterize probabilistic conditions under which the
estimation accuracy increases if more sensors are used, and the estimations converge to
the target’s real position asymptotically. We show an interesting relationship between the
steps of location prediction and location correction, i.e., as more sensors are used, belief
correction guarantees the estimations to converge to the target’s real position at each step,
and belief prediction accelerates the convergence.



1. Introduction

Localization, i.e. determining the physical position of certain objects, is a fundamental
function for many autonomous systems. The general localization problem has attracted
much interest in diverse areas such as automatic control (Bar-Shalom, 1989; Blackman,
1989), robot navigation (Smith, Self, & Cheeseman, 1990; Moutarlier & Chatila, 1989;
Fox, Burgard, & Thrun, 1999), military surveillance, context-aware systems (Chen & Kotz,
2000; Klemmer, Whitehouse, & Waterson, 2000; Bahl & Padmanabhan, 2000; Hightower &
Borriello, 2001; Schmitt, Beetz, Hanek, & Buck, 2002; Want, Hopper, Falcao, & Gibbons,
1992), mobile computation and networking (Reichl, 2001; Takeda, 2001), and MEMS-related
applications (Bulusu, Estrin, Girod, & Heidemann, 2001; Perkins, 2001; Toh, 2001; Deng &
Zhang, 2002). Different application domains set forth different assumptions on sensoring or
perceptual models for receiving feedback from the world and motion models of the objects
defining their behaviors.

We are interested in estimating the locations of constantly moving targets in a wireless
sensor network (Zhang, Deng, Wang, Wittenburg, & Xing, 2002; Deng & Zhang, 2002).
Deployed in such a network are small, low-powered micro-sensors with limited information
processing capability. A set of sensors are grouped to detect a moving target. Localization
refers to the procedure of estimating the position of a target with received sensor readings
(e.g. signal strengths). Successful localization in this context has to overcome several
technical difficulties. The system has restricted computational resources. For instance,
the CPU speed and memory size are limited for micro-sensors. Another difficulty is the
unreliability of the communication. Although wireless communication provides flexibility
and mobility and extends significantly the applicability of sensor networks, the radio signals
are typically unreliable and erroneous. Finally, maybe most importantly, the knowledge of
a target’s motion is unavailable or limited. Its frequent changes in velocity and direction
make the localization task very difficult.

Several localization approaches have been proposed to estimate the locations of targets
in such an environment (Klemmer et al., 2000; Bahl & Padmanabhan, 2000). Almost all
approaches consider a discretization of the environment, called a grid hereafter. Broadly
speaking, these approaches can be divided into two classes — approaches using only the sen-
sory information and approaches using information from both sensor readings and a target’s
motion. In approaches using only sensory information, a sensoring model provides a deter-
ministic correspondence from a distance (between a sensor and a target) to a signal reading.
These approaches combine sensor readings with sensoring models. Thanks to the simplicity
of the sensoring models, the main advantage of these approaches is their computational
efficiency. However, ignoring the target’s behavior and the inadequate assumptions made
in a sensoring model lead to poor tracking results (Bahl & Padmanabhan, 2000; Klemmer
et al., 2000).

The Kalman Filter(KF) approach has been successfully applied to estimating locations
in a wide-range problem domains (Maybeck, 1979). KI's combine information from both
a target’s motion and sensor readings. KF's represent a sensoring model as a Gaussian
(normal) probability distribution for a distance between a sensor and a target. KI's also
use a Gaussian to represent the estimations of a target’s positions. Generally, linearity
assumptions are made in the target’s motion models and sensoring models, although variants



and extensions on these assumptions exist. KI' approaches are efficient and yield highly
accurate estimations if motion models are adequate.

Unfortunately, the assumptions of KFs are not met in the domain of a distributed
sensor network (Klemmer et al., 2000). First, no motion model is available for a target’s
behavior. Targets move at various speeds and arbitrary directions. The alteration in speed
and arbitrariness in direction add difficulties to the localization task. Second, because of
the volatility of sensor readings, a sensoring model cannot be described as a deterministic
correspondence from distances to signal readings. It may not be necessarily described as a
normal distribution either.

In this paper, we propose a new approach, which we call multiple hypothesis Markov
localization (MHML) approach, to the problem of localizing moving targets using distributed
sensors. One of the prominent features of this approach is that it does not require a motion
model of a target. When a motion model is provided, the new method is able to incorporate
it to improve the quality of localization. When the knowledge of a target’s motion is
limited, as in most practical cases, our approach is also able to provide accurate estimations.
Therefore, the new approach significantly extends a popular Markov localization approach
in robot research (Fox et al., 1999) to deal with the important issue facing almost all
localization methods, i.e., the lack of sufficient knowledge of a target.

MHML uses a probability distribution over a grid, which is referred to as a belief,
to represent its estimation of a target’s position. MHML computes the next belief from
the current one in two steps: belief prediction predicts an intermediate belief based on the
target’s historical behavior, and then belief correction computes a new belief by using sensor
readings to correct the intermediate belief. This new belief is the estimation of the target’s
next position. In other words, belief prediction addresses the problem caused by the lack of
knowledge about the target’s motion. At each step, MHML dynamically generates a set of
hypotheses, each of which is an estimated motion model. MHML uses a maximum likelihood
technique to select a hypothesis to apply. The selected hypothesis is used to predict a belief
about the target. The predicted belief is then provided to the belief correction step.

MHML has several advantages over the approaches using only sensory information and
KF-based approaches. First, the estimation of a target’s position is represented as a belief.
This representation schema takes other schemas, for example those using only sensory in-
formation and KF's, as special cases. Second, the new approach has no restriction on the
number and positions of sensors that can be used to localize a target. Third, the approach
can apply to a problem domain where the knowledge of a target’s motion is unavailable or
limited. If a priori knowledge of a target’s behavior is provided, MHML is able to exploit
such knowledge to improve its efficiency and accuracy. Fourth, MHML can globally localize
a target because it is not sensitive to the knowledge of a target’s initial position (Fox et al.,
1999). Finally, the approach provides more accurate tracking results than approaches using
only sensory information.

MHML also has some features that may be of theoretical interest. The belief prediction
and belief correction steps in MHML enhance each other. Under some gentle statistical
conditions to be detailed later, the belief correction step guarantees that the accuracy
of position estimation monotonously increases with the number of sensors used, and the
estimation asymptotically approaches to the target’s real position. Meanwhile, the belief



prediction step, which creates hypotheses on the target’s motion, is able to significantly
accelerate the convergence of correct estimation.

However, MHML also has some drawbacks. The main weakness is its high computational
cost. MHML is computationally expensive in our current straightforward implementation.
Fortunately, many techniques have been proposed to improve the efficiency of probabilistic
localization algorithms similar to the one in this paper (Fox et al., 1999; Zhou & Hansen,
2001). In addition, a rich set of particle filters techniques have been proven to be valuable
tools to strike a balance between the solution quality and computational cost (Thrun, Fox,
Burgard, & Dellaert, 2001; Arulampalam, Maskell, Gordon, & Clapp, 2002).

The rest of the paper is organized as follows. In the next section, we discuss two
representational schemas of sensoring models. In Section 3, we give an overview of the
existing, related localization approaches. We then describe in detail our multiple hypotheses
Markov localization approach in Section 4, and empirically compare it directly with the
approaches using only sensory information in Section 5. We also investigate the robustness
of the approach and empirically show that it is not sensitive to the knowledge of a target’s
initial location. In Section 6, we theoretically analyze some features of the new approach.
We show how its performance improves when sensor readings are integrated and when
more sensors are used. Based on the theoretical results, we further examine how the belief
prediction and belief correction steps interact and enhance each other in each step. We
provide experimental evidence supporting our analysis in Section 7. In this section, we also
show that a degenerate version of our algorithm is able to localiza a target without using
any knowledge of its motion. We discuss related work in Section 8, and finally conclude
with a discussion of possible future directions in Section 9.

2. Representations of Sensoring Models

A sensoring model is an essential ingredient of a localization algorithm. Most sensoring
models are represented either in a sample-mean form or in a probabilistic form. These
representations are the topics of this section.

2.1 Example sensor

We will describe these two representations based on our own experience on a radio sensor,
which has a 4MHz 8-bit CPU with 512 bytes of flash memory (Deng & Zhang, 2002). We
will also use this simple radio sensor throughout the paper, especially in our experimen-
tal analysis sections, to evaluate our new approach and compare it against many existing
methods. Note that although the experiments are carried out on this particular sensor,
our new localization algorithm is general and applicable to other types of sensors such as
temperature, barometric and magnetic sensors.

Sensoring models are usually determined by experiments. For example, to determine
how radio signal strengths vary with distances, we carried out experiments of collecting
signal strengths at different distances between sensors. We begin with Omm in which two
sensors are completely overlapped, and then sample the distances with the increment of
25bmm. For each sampled distance, we repetitively collect the tested sensor’s readings 10
times. The results are plotted in Figure 1. The vertical axis denotes signal strengths and
the horizontal axis denotes distances in millimeters. The middle curve plots the mean of



sampled signal strengths. For reference, we also plot the upper bound curve and lower bound
curve. The strength in the upper (lower) bound curve is the maximum (minimum) among
those collected at the same distance.
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Figure 1: Signal strengths of a micro-radio-sensor vary with distances

The main curve in Figure 1 is typical as reported in the literature (e.g. see (Bahl &
Padmanabhan, 2000)). It also provides some clue to the difficulty inherent in the localization
problem using such sensors. The main source of difficulty is that signal strengths do not
reflect the true distance between a sensor and a target. For this reason, it is not a surprise
that distance estimation is not accurate using such a sensor. This is sometimes referred
to as the distance inference problem (Klemmer et al., 2000). It can be seen from Figure 1
that the signals are almost indistinguishable for distances in the interval of [0mm,300mm].
For a signal reading of 665, for example, there are potentially infinite number of possible
distances. Another example is signal reading of 630, to which at least 6 possible distances
can be inferred.

2.2 Sample-mean Representation

Many localization approaches represent a sensoring model by the mean of sampled signal
strengths with respect to distances. Despite that the signal strength is the average of
sampled readings, this representation actually assumes that given one distance the sensor
produces only one signal strength. It ignores other possible readings between the lower
bound and upper bound curves.

A sensoring model can be represented as a piecewise linear function. The mean values
are kept only for the end points corresponding to sampled distances. However, since distance
is continuous, we need a procedure to generate signal strengths for every possible distance.
Linear interpolation can serve this need well. If a distance d lies in the middle of two
sampled distances d; and ds and their signal strengths are p;, the mean signal strength p
for distance d can be generated as (1 — A)uq + Aug, where A (= (d — dy)/(dy — dy)) denotes
the closeness of d to dj.

2.3 Probabilistic Representation

The sample-mean representation is deterministic, in that implicitly for each distance there
is only one signal strength corresponding to it. This is obviously insufficient in reality. For



example, Figure 1 shows that there may be multiple signal strengths for one distance, which
lie between the two dashed curves.

A probabilistic representation takes possible signal strengths into account. It assumes
that for a distance the signal strengths can be depicted by a probability distribution. Such
a representation discriminates different signal strengths by assigning them with different
probabilities measuring the likelihoods by which they are produced.

Figure 2 presents such a probabilistic sensoring model. In the left chart, the x-axis is for
distance. For each distance, it is possible to receive any signal strengths, but each of them
is produced with a specific probability. A thick solid curve in the left chart thus represents
a probability density function (p.d.f.) of signal strength for a given distance. The right
chart, for instance, further demonstrates a p.d.f. for distance d;.
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Figure 2: An example probabilistic sensoring model

Determining the p.d.f. of signal strength for a distance is a matter of experimentation.
In our empirical studies, we assume that the p.d.f. for a distance is Gaussian. Its mean
and variance are determined as follows. For a distance d, if the measured signal strengths
are ri, rg, - - - and r, after n experiments, the Gaussian N4(u, o) conditional on d is defined
by its mean p (= Y%, r;/n) and variance o (= /3%, (r; — p)?). A linear interpolation
procedure of generating a p.d.f. Ny(u, o) for any distance d follows. Let dy and dy be two
sampled distances most closely to d and their p.d.f. be Ny (y;,0;). The p.d.f. Ng(u,o)

can be defined by p = (1 — A)ps + Apz and o = \/((1— A1) + (Aoy)? where \ (=
(d—dy)/(dg —dy)) is the coefficient denoting the closeness of d to d;. As such, by the p.d.fs
for sampled distances, one can produce a p.d.f. for any distance.

In the rest of the paper, a probabilistic sensoring model is denoted by p4(r), which is the
probability of a sensor producing r if its distance from a target is d'. To explicitly indicate
a target’s position and the identity of a sensor, we will use p;;(r) to denote the sensoring
model of sensor ¢, which gives the probability that sensor ¢ collects strength r if the target
is at location [. The two notations pg and p; are equivalent. One form can be converted
to the other because sensor i is stationary and the distance d can be determined by the
position of sensor ¢ and the target’s location /.

1. Mathematically, this is correct if the range of signal strengths is a discrete space. However, if the range
is continuous, it is known that for any r the probability of sensor ¢ producing r is 0.0. In this paper, we
use the value p4(r) to mean the probability (likelihood) as in many papers because these values serve
similar purposes as the discrete case.



3. Previous Approaches

We will compare our new method to three existing localization approaches in sensor net-
works. The triangulation approach and nearest neighbor in signal space use the sample-
mean representation of sensoring models?. Kalman filter approach uses a probabilistic
model and exploits a target’s motion information. To put our comparison in perspective,
we describe these existing methods in turn in this section.

3.1 Triangulation Approach

The triangulation approach uses the geometric properties of a triangle to determine the
location of a target. In the localization phase, a set of readings from detecting sensors
are received. By the sample-mean representation, each reading is used to infer a distance
between the target and a sensor. This results in a set of distances. Since sensors are
stationary and their locations are known, the distances can be used to determine a location.
This location is the estimation of the target’s position.

Figure 3 shows how this approach works in a 2D case. A target is detected by three
sensors Sp, Sy and S3. At one step, three sensor readings r; are received. By reading r;
and the model of sensor 7, a distance d; between S; and the target is inferred. The target
should lie on the circle centering at S; with a radius of dy. Similarly, the reading ry can
be used to constrain the target’s position to one of the two intersections A and B. Finally
the reading r3 can be used to further constrain the candidate location to B, which is the
estimation of the target’s position.

Figure 3: An illustration of the triangulation approach

The triangulation approach imposes requirements on both the number and the locations
of detecting sensors (Harter, Hopper, Steggles, Ward, & Webster, 1999). In 2D case three
sensors are needed and they must be non-collinear. In 3D case four sensors are needed
and they must be non-coplanar. This is one of the main drawbacks of the this approach.
Additionally, the approach has to confront the distance inference problem. Due to the
lack of effective inference techniques, the triangulation approach typically provides very
inaccurate position estimations. The major merit of this approach is its efficiency. The

2. We choose these two approaches because they are representatives of two principal techniques — triangu-
lation and proximity — for automatic location-sensoring (Hightower & Borriello, 2001).



computation simply includes inferring distances and determining the intersections of circles
in the 2D case.

3.2 Nearest Neighbor in Signal Space

Another approach only using sensoring models is nearest neighbor in signal space (NNSS)
(Bahl & Padmanabhan, 2000). This approach typically uses sensoring models in sample-
mean form. The main idea of this method is to differentiate, for each location [, the received
sensor reading and the possible reading that can be generated if a target is at location [.
The location with the minimum signal differentiating value is then the nearest neighbor of
a target’s position, which is the estimation of the target’s position.

Given a sensoring reading r;, the signal differentiating value at a location [ can be
computed as follows. Denote d; the distance between [ and the position of sensor :. NNSS
uses d; to determine the mean signal strength p; based on the sensoring model (cf. Figure
1) if the target is assumed to be at location /. The total differentiating value is then the
overall difference of r; and pu; for all ¢, which can be computed using a metric function such

as the Euclid distance, i.e. 1/3; (r; — p:)?, where the sum is over all detecting sensors. The
location [ with the minimum value is the estimation of the target’s position.

NNSS has no restriction on the number and the locations of detecting sensors. In
addition, NNSS avoids the distance inference problem by using a metric function. When
the received sensor readings center around the sampled mean in the model, NNSS yields
more accurate estimations than the triangulation approach. However, since NNSS needs
to measure every location at each step, it is computationally more expensive than the
triangulation approach on problems with large location spaces.

3.3 Kalman Filtering

Kalman Filter (KF) based approaches have been used for localization in sensor network
(Klemmer et al., 2000). KI uses probabilistic sensoring models and also requires a target’s
motion model. It takes two steps in localization. The location projection (or time update)
step projects an estimation of the target’s position at next step. The location correction
(or measurement update) step corrects the estimation with sensor readings.

The generic KI's assume that both motion and perceptual models are linear, and the
noise of perceptions is Gaussian. It is not surprising that existing work such as (Klemmer
et al., 2000) devoted much effort to linearly approximating the sensoring model and deter-
mining a target’s motion model. The main advantage of KI's is that if the assumptions are
appropriate for the problems at hand, they are able to efficiently provide accurate solutions.
However, KF's have a few disadvantages. Iirst, KI's use a uni-modal Gaussian to represent
the estimation of a target’s position. This representing schema is insufficient in some cases.
For example, it is unable to represent a target’s position if one has no idea about the posi-
tion. Second, KF algorithms can barely recover from an estimation error, as noted by some
authors (e.g., (Fox et al., 1999)).



4. Multiple Hypothesis Markov Localization

In this section, we give a detailed description of our multiple hypothesis Markov localization
(MHML) approach and compare it with the algorithms in the preceding section. We also
discuss efficient implementations of MHML at the end of this section.

4.1 The Algorithm

MHML combines the received sensoring readings and the motion information of moving
targets, which can be given or estimated dynamically. Therefore, this approach does not
require a motion model. In the following, we first outline the algorithm and then describe
its steps in detail. For simplicity, we focus on the problem of localizing one target, but the
algorithm can be extended to multiple targets straightforwardly.

4.1.1 OUTLINE OF THE ALGORITHM

MHML uses a grid to denote the discretization of the area within which a target moves. At
any step, the estimation of the target’s position is a probability distribution over the grid.
Such a distribution is referred to as a belief about the target. Localization is a procedure to
compute the next belief about the target from the current belief using a set of (estimated)
motion models and perceived sensor signal.

MHML computes the new belief in two steps. The belief prediction step predicts an
intermediate belief according to the target’s historical behavior. The belief correction step
computes a new belief using the sensor readings to correct the intermediate belief. The
resulting belief is the estimation of the target’s position at the next step. The belief also
serves as the current belief in the next localization step, and the algorithm repeats.

More specifically, the belief prediction step addresses the problem of the lack of knowl-
edge about the target’s movement. Based on the beliefs of the target’s current and previous
positions, MHML dynamically generates a set of hypotheses about the target’s possible
movements at the next step, each of which is then used to project a possible next belief.
To choose one from these projected beliefs, MHML evaluates them and selects the best one
according to certain criteria. The selected belief is then the input to the belief correction
step. The corrected belief is the estimation of the target’s next position.

To facilitate our discussion, we introduce the following notations. The discretized grid
is denoted by G. A belief about the target is denoted by b. For any location [ in G, b(/) is
the probability of the target being at location /. Note that > ;.5 b(/) = 1.0. The notation
b and by represent the beliefs about the target respectively at the current and next step.
The central part of MHML is to compute by from b.

Table 1 outlines one-step localization Localize of MHML to compute an updated belief
by from b. It makes use of sensoring models {p;|i = 1,...,m;l € G} and senor readings
{rili =1,...,m}, where m is the number of detecting sensors and r; the reading of sensor
1. In the table, the procedure HypothesisGeneration generates a set H of hypotheses of
the target’s possible movements. The procedure BeliefProjection projects next beliefs
from the current belief b by using the generated hypotheses. Its output is a set {bi} of
beliefs, each of which corresponds to a hypothesis A. The beliefs are then evaluated in the
procedure Belie fScoring. According to the evaluation results, Belie fSelection selects the



winning belief. The procedure Belie fC'orrection corrects the selected belief. The corrected
belief is then the estimation of the target’s position.

Localize
input : b, {py} and {r;}
output : by
. H < HypothesisGeneration()
. {bh} « BeliefProjection(b, H)
. {}lzi} — B.eliefSCorjing({z}i} {pa}, {ri})
. b « BeliefSelection({b} })
. by « BeliefCorrection(b®, {pi}, {ri})
. Return b,

Sy O = W N =

Belief Projection
input : b, H
output : {bh|h € H}
1. For each hin H
2. compute bi by Equation (1) where p(/|l') is specified by A
3. Return {b"}

BeliefScoring
input : {b}—ll—}v {p’il}7 {7“2}
output : {b}_f_}
1. For each h
2. compute p({r;}|b"%) by Equation (2)
3. Return {b}}

Belie fSelection
input : {04}
output : b}_f_

Return b% with largest p({r;}|b")

BeliefCorrection
input = b, {pa}, {r:}
output : by

1. compute by by Equation (3)
2. Return b,

Table 1: Multiple hypothesis Markov localization

It is important to note that MHML can start with a known initial belief (initial target
position), if it is given, or no initial belief at all, which can be represented by a uniform
distribution.



4.1.2 HyPOTHESIS (GENERATION

This step generates a set of hypotheses characterizing the target’s movements at one point.
Since we do not assume a priori motion model, generating perfect hypotheses is infeasible.
We propose a simple heuristic approach.

A target’s motion can be defined by two key elements, moving direction and velocity.
If they are known, a good hypothesis can be generated provided that one has an accurate
estimation of its current position. However, neither the direction nor the velocity is directly
available in most problem domains, including our distributed sensor networks. We thus
propose to enumerate the possible directions and to update the velocity by a small increment
for the purpose of generating motion hypotheses.

e Generally speaking, there is an infinite number of moving directions. A rough approx-
imation is to consider 360 directions, each of which corresponds to 1 degree in angle.
To further simplify the approximation, we can consider only four nominal directions
(east, south, west and north).

e Velocity is a more complicated element to estimate. Fortunately, in general, targets
move smoothly. When changing speed, they seldom make the change abruptly. This
allows us to estimate the velocity at the next step as an additive form of the cur-
rent velocity and a base increment, reflecting small changes. Note that this speed
estimation assumes that a target’s initial speed is known. In our experiments, the
base increment is set to the difference between a target’s estimated positions at the
previous two steps. To deal with more complex behavior of a target, we may add
multiple increments. Some of them may be larger or smaller than the base increment.

Each combination of enumerated directions and estimated velocities forms a hypothesis.
Combined with the estimation of a target’s current position, a hypothesis determines a
unique location for the target at the next step. This location is referred to as the projected
location generated from the hypothesis.

To reduce the potential error of the projected location, we use a probabilistic transi-
tion model. The idea is that locations nearby the projected one take more weight, if the
directions from the target’s current estimated location to them are consistent with that in
the hypothesis. As a result, a hypothesis determines a probabilistic motion model. We
denote such a model by p(/|I"), where I’ and [ are any locations in the grid, and p(I|l') is
the transition probability from location {’ to location [. This model is Markovian since the
target’s next location depends only on its current location. Due to this dependent relation-
ship between an estimated motion model and a hypothesis, from now on we use these two
terms interchangeably.

All possible hypotheses thus generated constitute a hypothesis space. Its size is the
multiplication of the number of enumerated directions and the number of considered velocity
increments.

We note that on-line learning techniques can be used to construct the hypothesis space
(e.g. (Sutton, 1984; Simmons & Koenig, 1995; Thrun, Burgard, & Fox, 1998)). We also
note that a priori knowledge on a target’s motion, if any, can be used to reduce the size
of hypothesis space and therefore to effectively accelerate the procedure of hypothesis gen-
eration. An important case is that if a (probabilistic) motion model is given, a space of
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only one hypothesis determined by the given model is generated. In another case, if we
know that a target moves in a constant speed, a hypothesis space of size 360, in which only
directions are considered, could serve as a good approximation to the target’s behavior.

4.1.3 BELIEF PROJECTION

Given a belief state and a hypothesis space, the belief projection step calculates a set of
beliefs. The set is obtained by considering each hypothesis in the space. We now consider
how to compute the projected belief for one hypothesis.

Let the motion model determined by a hypothesis A be p(/|/’) and the current belief be
b. The projected belief, denoted by b+, is computed by the total probability theorem. For
each [ in G,

X p()b(1)
221 22w pUNb(I)
In the above, the denominator is a normalizer ensuring 3=, 6% ({) = 1.0.
The pseudocode for belief projection is shown as the procedure Belief Projection in
Table 1. Line 1 considers each hypothesis and line 2 calculates a projected belief state for
the hypothesis. Line 3 returns the union of the projected beliefs.

bh(l) = (1)

4.1.4 BELIEF SCORING

The belief scoring step evaluates each projected belief and assigns to it the evaluation
result as a belief score. Belief scoring uses sensoring models {p;;} and sensor readings {r;}.
More specifically, for a belief b}_f_, it computes p({m}|b}_f_), i.e. the probability of the sensors
receiving readings {r;} conditional on the belief bi. In the derivations below, we assume
that individual sensors receive their readings independently.

p({ri}|bh) =3, p({r:}|target is at location {)b% (1)
= ¥, ;p(r;|target is at location [)b% (1)

Here the first step uses the total probability theorem and the second step uses the indepen-
dence assumption. Therefore,

{rl}lb Z Hzpzl ) (2)

The pseudocode for belief scoring is included in Belie fScoring in Table 1. Its input
includes a set {b%} of predicted beliefs, sensoring models {p;}, and a set {r;} of sensor
readings. The output is the same set of beliefs, each of them associated with a probability.

4.1.5 BELIEF SELECTION

This step selects the belief 6% with the largest p({r;}|6%) or based on some other criterion.
In our study, we use the largest probability criterion for simplicity. If the probability p(. bi)
is viewed as a likelihood function, the selection criterion implies that the selected belief is
the maximum likelihood estimation of the belief about a target among all the projected
beliefs. Since every projected belief corresponds to a hypothesis, we can also talk about the
maximum likelihood hypothesis.

The pseudocode for belief selection is given in Belie fSelection in Table 1.
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4.1.6 BELIEF CORRECTION

This step makes a correction to the selected belief b}_f_ in belief selection using sensoring
models {p;;} and sensor readings {r;}. The probability of the target being at location [
conditional on bi and {r;} can be obtained from basic probability theory as follows.

oy = PArSL P

p(IH{rd}, b%) = P
p({ri }U)bh

p({ri}|b} l

(
)

_ Hipa(r)bli (1)
)

p({ri} b}

The probability p(I|{r;},b%) is the corrected belief at location {. We use by to denote the
corrected belief p({|{r},b"%). The above equation can be written as follows.

b 1) = (Tapa(r bl 1) )

where ¢ is the normalizer p({r;}|b%). The formula indicates that the corrected belief at a
location is proportional to the input belief at that location and the probability of receiving
the set of readings.

The step is implemented as Belie fCorrection in the table. It computes a new belief
using the formula, which is the estimation of the target’s real position.

4.2 Characteristics and Comparison

MHML provides a framework to localize a target by integrating information from two
resources, the estimated motion models and sensor readings. To tackle the problem of
lack of motion model, MHML dynamically generates a set of hypothetical motion models.
It then uses a maximum likelihood method to choose the best among all generated motion
models. The chosen motion model is used to predict a belief. The predicted belief is
then corrected so as to be consistent with the perceived signal readings. The corrected
belief is the estimation to the target’s position. The algorithm has several advantages when
compared with the triangulation, NNSS and KF approaches.

MHML uses a belief over a grid to represent the estimation of a target’s location. This
representational scheme is general and takes other schemas as special cases. A belief can
be specialized to be a unique location when probability mass concentrates on the location
in the triangulation and NNSS approaches. It can also be specialized to a Gaussian in the
KF approach.

MHML has no restriction on the number and the positions of the detecting sensors.
Also, it does not directly address the distance inference problem. This is similar to NNSS
but different from the triangulation approach. In a sensor network, it is important for a
localization algorithm to use whatever available sensors to detect a target. When resources
are scarce, MHML is able to detect a target with even one sensor. On the other hand,
when resources are plentiful, the algorithm is able to make use of all the available sensors
in order to improve tracking quality. Following this, one important associated question is
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whether more sensors will indeed give rise to more accurate localization results. We will
address this question later in the paper. We will show that this is true for MHML under
some circumstances.

MHML is applicable regardless whether the knowledge of a target’s initial position is
available. It is able to use the knowledge of the target’s initial position, if available, to
improve the accuracy of position estimations. If a target’s initial position is known, MHML
sets the initial belief to that position. Otherwise, it sets the initial belief to a uniform
distribution. This differs from the triangulation and NNSS approaches, which do not make
use of the target’s initial position, even if it is available.

Furthermore, MHML is applicable regardless whether a target’s motion model is given.
If there is no knowledge of a target’s motion at all, later on in this paper, we will show
that a degenerate version of MHML can be used to localize it. If the knowledge of a
target’s motion is limited, MHML will generate a set of hypothetical motion models at each
step. If a motion model is given, MHML generates a singleton hypothesis space and the
algorithm degenerates to the usual Markov localization. Again, the triangulation and NNSS
approaches do not make use of a target’s motion knowledge.

However, there are also disadvantages of MHML. The main problem is its high com-
putational cost. The first expensive step is belief projection. It takes (|G|)2 operations
since for each location MHML needs to consider the reachability from any other locations.
The second expensive step is belief correction. It takes |G| operations since MHML has to
update the belief at each location. Finally and more prominently, the hypothesis space can
be huge, and MHML needs to deal with every hypothesis in belief projection.

4.3 Efficient Implementation

To curtail its high computational cost, we outline some of the measures we can take to
develop an efficient implementation of MHML.

The first one is concerned with motion models. For one hypothesis, storing a model
p(I|l') takes |G|* memory units. Since the hypothesis space could be huge and the grid size
is exponential in the dimension of location space, it is infeasible to keep motion models in
memory especially for micro devices. One method is to generate them dynamically. For
a location [, computing b% (/) in Equation (1) needs only those locations with non-zero
transition probabilities p(/|l'). In our current implementation, we never generate and keep
those locations I” if p(I|l') are zero or negligible. This greatly saves space for the motion
model. Meanwhile, this representation makes belief projection efficient. For a location /,
we do not need to consider the entire grid in belief projection as in Equation (1). Instead,
we can consider the locations " with nonzero p(I|l').

The second measure is concerned with belief projection. For one hypothesis, belief
projection computes a belief by updating the belief at each location. Techniques have
been proposed to accelerate the procedure. One method is to restrict the updates to a
selective set of locations in regular grid approach. In (Fox et al., 1999) for example, the
grid is divided into regions, each of which is a subset of the grid. Belief projection is then
updated over locations in selected regions. The authors of (Fox et al., 1999) show that this
subdivision technique not only produces approximately good results but also makes belief
update feasible for real time applications. Another applicable technique uses a variable-
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resolution grid instead of a fixed-resolution grid. (Zhou & Hansen, 2001) develops techniques
to optimize the tradeoff between the approximation quality and computational time. These
techniques can be combined to speed up belief projection.

5. Empirical Studies

We experimentally analyzed the performance of MHMIL. We now report our results from
three experiments. We show in the first experiment that in terms of accuracy, MHML
performs significantly better than both the triangulation approach and the NNSS approach.
We excluded the Kalman filter approach from our comparison here because no target’s
motion models are assumed. In the second experiment, we show MHML’s robustness when
no target’s initial position is provided. Finally, we show in the third experiment how a noisy
sensoring model affects the performance of MHML.

5.1 Experiment Setups

Our experiments were carried out in a 1000mm x800mm simulation environment, as shown
in Figure 4. 50 stationary sensors are scattered around the environment. Sensors are evenly
distributed in an array of 5 rows by 10 columns. In the figure, the upper (lower) dotted
line is the Ist (10th) row and the left (right) dotted line is the 1st (5th) column. The
positions of the left-down and right-top sensors are respectively (175,100) and (900, 520).
When detecting targets, we randomly picked as many sensors as needed.

To test the performances of algorithms for different (unknown) motion behaviors, we
design two classes of targets: directed targets and random targets. A directed target follows
a designated path that is characterized by a set of anchoring locations. If a directed target
reaches the end of the designated path, it is reset to its initial position. Examples of directed
paths are shown as solid lines in Figure 4. A random target starts at a location and randomly
moves along one of four nominal directions with a predefined probability. The direction
along which a target moves with the largest probability is the dominant direction. Dominant
directions are marked by E(ast), S(outh), W(est), N(orth) or R(andom) in the figure, where
R(andom) means that a target moves along four directions with equal probability. All
targets move in the environment with a constant or variable speed to be specified later. In
addition, no target is allowed to move out of the environment, i.e., a movement that may
push a target out of the environment will have no effect.

We used two sensoring models in our experiments, drawn in Figure 5, and assume that
these models are accessible to every sensor. Unless explicitly specified, the default model
of most of our experiments is the one in the left chart of the figure. In both charts, the
middle curves plot the mean of sampled signal readings along distances. We represent the
p.d.f. at any distance as a Gaussian. We use methods in Subsection 2.3 to determine p.d.f.s
at sampled distances and extrapolate p.d.f.s at any other distances. Obviously, the right
chart corresponds to a noisier model than the left. First, we note that the set of sampled
distances (end points) in the left is a subset of that in the right. Second, due to the piecewise
representation of a model, the “pieces” in the right chart split the “pieces” in the left chart.
For instance, the piece in distance interval [450,725] of the left chart are broken into 2 pieces
in the right chart, i.e. pieces in [450,600] and [600,725]. In terms of the mean of p.d.f.s,
the left model is linear in [450,725] but the right model is non-linear in the same interval.
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Figure 4: Simulation environment

For simplicity, we refer to these two models as 5-piece and 10-piece models throughout the
discussions below.
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Figure 5: Sensoring models used in experiments

A target can move in a constant or variable speed. A random target is free to choose
one of the four nominal directions at any step. If a target moves with a constant speed, its
speed is set to the base speed, i.e. 5mm per step. If a target moves with a variable speed,
its speed at any step is generated from the base speed and an increment that is uniformly
distributed in [0mm,5mm]. Specifically, if the increment is §, a target’s speed is generated
as (1.0=X) -5+ X -4, where A is set to 0.1. Thus, a target’s speed will not grow to infinity.
To facilitate hypothesis generation, an estimated speed is maintained for each target at any
step. For a constant-speed target, the estimation of its speed at the first step is set to the
base speed, and the estimation at any other step is set to be the distance of the estimated
locations at the previous two steps. For a variable-speed target, the estimation of its speed
at the first step is set to the base speed, and the estimation at any other step is set as:
(1.0—X)-(the current estimated speed)+ A-(the distance of the estimated locations at the
previous two steps). As such, the speed estimation of a directed target does not assume
any knowledge about its motion except at the first step, and the estimation of a random
target uses limited knowledge, i.e., A. (For the case that there is no a priori knowledge,
we will discuss a degenerate version of MHML later in this paper.) For a target, at any
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step hypothesis generation generates a space of 4 hypotheses, each of which is formed by a
nominal direction and the estimated speed.

The performances of a localization algorithm are evaluated by two measures. The pri-
mary measure is trajectory accuracy, representing the closeness of an overall estimated
trajectory to an overall real trajectory. The secondary measure is distance error, measuring
the distance between the estimated and the actual locations. To compare average perfor-
mances, each algorithm takes 50 trials, each of which runs 300 steps. The reported results
are the average estimations over all trials across individual steps.

5.2 Comparison of Algorithms

In this experiment, we compare MHML with triangulation and NNSS algorithms for tracking
a moving target using only 3 sensors. We report results on a directed target with constant
speed and a random target with variable speed.

We present the results on a directed target with a constant speed in Figure 6. It plots
the target’s true trajectory and the trajectories tracked by the three algorithms. It is
evident that MHML is able to trace the shape of the real path, while neither triangulation
nor NNSS is able to do so. The triangulation approach gives a shape far from the real
trajectory. The trajectory by the NNSS approach does move out of the cloud near the
target’s initial location. However, NNSS is still not able to find a path roughly reflecting
the shape of the real trajectory.

8oo real —— 8oo real 8oo real
700 triangulation 700 NNSS 700 MHML
600 600 600
500 |:| 500 500
400 S —T— 400 400
300 . 300 300
200 200 200
100 100 100
0 0 0

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 6: Tracked trajectories by triangulation, NNSS and MHML on a directed target

We conduct similar comparisons on a random target with variable speed. The real and
tracked trajectories are drawn in Figure 7. The results on the random target are similar to
those from directed targets. Again, the triangulation approach yields the worst accuracy.
NNSS performs better than the triangulation method in that the tracked trajectory is able
to move out of the vicinity of the target’s initial position. MHML is clearly the best one
for this target. Its tracked trajectory almost traces the real one.

From these results, we see that MHML performs significantly better than triangulation
and NNSS approaches. The reason is that MHML exploits information from both sensor
readings and estimated target’s behavior, and the other two approaches only make use of
sensory information. Even if the motion information is generated dynamically, the esti-
mation accuracy of MHML implies that the multiple-hypothesis technique is effective in
estimating targets’ motions.
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Figure 7: Tracked trajectories by triangulation, NNSS and MHML on a random target

5.3 Robustness of MHML

This experiment is designed to test the robustness of MHML, i.e. how a noisy sensoring
model degrades the performance of MHML. We tested MHML by two sensoring models,
shown in Figure 5. We plot the results in Figure 8. The figure presents a directed target’s
real trajectory and trajectories tracked by MHML using the 5-piece and 10-piece sensoring
models. The results are obtained using 5 sensors. As shown in the figure, the trajectory by
the noisier 10-piece model is farther away from the true trajectory. Hence, a noisier model
degenerates the performance of MHML. Fortunately, the trajectory tracked by MHML using
the noisier model has almost the same shape of the real trajectory.
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Figure 8: Tracked trajectories by MHML using a noisier sensoring model

Late in this paper, we will show that the performance degradation of MHML with noisy
sensoring models can be compensated by increasing the number of detecting sensors.

5.4 Knowledge of Initial Position

This experiment is designed to analyze the sensitiveness of MHML to a target’s initial
position. To this end, we run the algorithm in two versions. In one version the initial belief
about a target in MHML is set to the target’s real location, while in the other version it is
set to a uniform distribution over the entire grid.

The tracked trajectories by MHML using 5 sensors are shown in Figure 9. The left
and right charts are respectively for MHML starting with the target’s real position and
a uniform distribution. As the result shows, the overall performance of MHML without
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knowing the initial target position is comparable to that of MHML with an initial position.
This means that in a long run, MHML is almost insensitive to the initial belief of target’s
position.

800 800

real real
700 known initial -~ 700 unknown initial ~————
600 600

300 300
200 200
100 100
0 ; ; ; ; 0 ; ; ; ;
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 9: Tracked trajectories by MHML with and without initial position

However, it is expected that the knowledge of a target’s initial position can help improve
the estimation accuracy at least at the first steps. To shed light on this, we plot the distance
errors along steps in Figure 10. The left chart is for the tested 300 steps, and the right chart
is especially for the first 7 steps. The left chart shows that the overall distance errors are
almost the same for MHML with and without the initial position. The right chart shows
that the initial position is very useful in improving the estimation accuracy at the first 3
steps.

6. Analysis

Despite its superior performance over that of the two existing methods, the properties of
MHML remain to be analyzed, which are the subject of this section. We start with a
summary of our results.

6.1 Summary of Results

To put our results in perspective, let us re-examine the algorithmic structure of MHML.
To reiterate, MHML computes an estimation (a belief) about a target’s position in two
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Figure 10: Distance errors by MHML with and without initial location
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steps. First, the belief prediction step predicts the best possible belief from the current
belief through a sequence of hypotheses generation, belief projection, belief scoring and
belief selection. Second, belief correction step corrects the predicted belief using perceived
sensor readings. The corrected belief is then the estimation of the target’s position at the
next step. We specifically show that these two steps interact with each other in a supportive
way. Specifically, under some conditions, as the number of detecting sensors increases, the
belief correction step guarantees the convergence of estimations to a target’s real position
and the belief prediction step accelerates this convergence.

For belief correction, we will examine the following issues: how sensor reading informa-
tion will affect the beliefs about a target, how the beliefs will change when more sensors
are used, and how the beliefs will evolve when a large number of sensors are used. Our
answers are the following. Under some conditions, to be specified later, integrating a sensor
reading increases the belief at the target’s real position, more sensors lead to more accurate
estimations, and asymptotically as an infinite number of sensors are used the estimations
converge to the target’s real position. We shall present the conditions under which these
results are true for any p.d.f.s representing sensoring models. Then we illustrate the results
in the Gaussian case.

The belief prediction step plays the role of accelerating the convergence of estimations to
a target’s real position as more sensors are used to detect the target. It does so by predicting
an estimation that is close to the target’s real position. However, our theoretical results
also indicate that it is also possible that belief prediction may decelerate the convergence if
the estimation provided by belief prediction is too far from the target’s real position.

We note that our results can be directly applied to the original Markov location approach
where a target’s motion model is given since MHML is a generalization of it. In the rest of
this section we present these results in detail. We examine the belief correction step first
and then move on to the belief prediction step.

6.2 Belief Correction

We are interested in how the belief at a target’s real position will change after the belief
correction step. Our results rest on an average-case analysis.

6.2.1 AVERAGE-CASE ANALYSIS

Given a set of sensor readings {r;} and sensoring models {p;}, the belief correction step
computes the next belief by about a target from the current belief b using Equation (3).
Due to the probabilistic nature of sensor readings, even if both detecting sensors’ locations
and the target’s location [* are fixed, the set of received sensor readings varies from time to
time.

To facilitate our analysis, we consider how beliefs evolve in the average sense. Specifi-
cally, we consider how by evolves from b as sensor readings {y;«} are collected where g«
is the mean of the p.d.f. determined by the location of sensor ¢ and the target’s location
I*. To support this average case analysis, we use b, and b to respectively denote beliefs b
and b. With these notations, we rewrite Equation (3) as

= o gpa(pas)b(l)
b= > ipia (parw ) b(1)

(4)
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where p;i(pir»), specified by the sensoring model of sensor 7, is the probability of sensor i
collecting reading p;« if the target’s position is [. In the rest of the paper, when we talk
about belief change (increase or decrease), we mean it in the average sense.

For obvious reasons, we represent beliefs by vectors, all of which have the same dimension
as the size of the grid. The beliefs by and b are related by a vector transformation. To
simplify our analysis, we first define the transformation and study its properties.

6.2.2 k-TRANSFORMATION

Definition 1 Let u and k be nonnegative vectors. The k-transformation of u is a vector v
whose component is defined as follows.

(5)

By definition, each component v(7) of the k-transformation of a vector u is proportional to
vector u(7) and k(7), or u is rescaled to v according to k. The following lemma shows how
vector u changes its components after a k-transformation.

Lemma 1 Letu and k be nonnegative vectors and y_; u(1) = 1.0. Ifv is the k-transformation

of u,
(1) The ratio v(i)/u(i) is constant for each i if and only if k(i) is constant.
(2) If k(i) # k(j) for a pair (i, ), then there exists an | such that v(l) > u(l).

(3) If k(%) # k(j) for a pair (i,7) and u(I*) # 0 for I* = argmax;k(7), then v(l*) > u(l*).

Proof: See Appendix A. a

This lemma is useful in comparing the k-transformed vector v and the original vector u
if the sum of u(¢) is 1.0. The first conclusion means that none of the components of vector
u increases if and only if k(7) is a constant for each ¢. If k is not a constant vector, the
second conclusion means that some components increase after the transformation, which
also implies that some other components must decrease, and the third means that such an
increasing component is the one with the largest k(7).

6.2.3 EFFECT OF INTEGRATING SENSOR READINGS

In belief correction, the belief by is a k-transformation of belief b, where k(/) is a multiplica-
tion of a series of probabilities, i.e. II;p;(i). The following theorem presents a condition
under which the belief at the target’s real position will be raised after belief correction. It
is a direct application of Lemma 1.

Theorem 1 If (1) b(I*) > 0, and (2) W;pys(pa) > Wipi(par) for each | and the strict
inequality holds for at least one [, then by (I*) > b(I*).
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Proof: See Appendix A. a

This theorem specifies a sufficient condition ensuring belief increase at a target’s real
position. It can be paraphrased as follows. If (1) belief b has a nonzero belief at the target’s
real position, and (2) the probability that sensors collect readings {p;»} at [* is greater
than that at any other location, then the belief at [* will increase after belief correction.
We note that the first condition is necessary to ensure belief increase. If belief b has a zero
belief at the target’s real position, so does the corrected belief by. This follows from the
belief correction equation. Verbally, belief correction can never increase (change) the belief
at a location if the belief at that location is zero.

The second condition of Theorem 1 is collective in the sense that it is given with respect
to all detecting sensors. A stronger condition with respect to individual sensors is that
pirs (pir=) > pir(pi=) for each sensor ¢ and any location [, i.e. the probability of sensor ¢
collecting p;;» at [* is greater than that at any other locations. For convenience, if sensor
¢ has this property for any [*, it is called a legitimate sensor. Therefore, if all detecting
sensors are legitimate, belief increase at [* is guaranteed after belief correction.

Corollary 1 If (1) b(I*) > 0, and (2)pi=(par+) > pir(pir+) for each (i,1) pair and the strict
inequality holds for at least one pair, then by (I*) > b(I*).

We give a few remarks on belief change after belief correction. First, as a special case of
the above corollary, we note that if a legitimate sensor is used to detect a target, on average
the belief at the target’s position will increase. Second, it is also interesting to know when
the belief at the target’s position will decrease. We can give the following corollary, which
is parallel to Corollary 1. It specifies a condition ensuring belief decrease at a target’s
real position. If (1) belief b has a nonzero belief at the target’s real position, and (2)the
probability that each sensor ¢ collects reading p;;« at [* is smaller than that at any other
location, then the belief at [* will decrease after belief correction.

Corollary 2 If (1) b(I*) > 0, and (2)pi=(pirx) < pa(pa) for each (i,1) pair and the strict
inequality holds for at least one pair, then by (I*) < b(I*).

6.2.4 MoNOTONICITY AND CONVERGENCE

We now turn to the monotonicity and convergence of MHML. The monotonicity is concerned
with whether the estimations become more accurate when the number of detecting sensors
increases. The convergence is concerned with whether the estimations converge to a target’s
real position as the number of sensors goes to infinity.

For monotonicity, we consider the case in which new sensors are added to the current
group of detecting sensors. We prove that if a sensor is legitimate, i.e. the mean of all
its possible readings has the largest probability to appear at the target’s real position
among all locations, adding it will increase the belief at the target’s real position. We use
{pe, . ooy i+ and {pare, .., g1+ to denote two sets of sensor readings. Note that
the first set is produced by sensors from 1 to m and the second is by the same m sensors
plus sensor m+1. Therefore the first group of sensors is a subset of the second.

Theorem 2 Let i)f{f and BTH be updated beliefs from b by Equation (4), respectively,
using the readings {pys, ..., pmir} and {pys, ooy fmgrgrt. If (1) b(1*) > 0, and (2)
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Prt1,0* (Pms1,0*) > Pmt1,1(fmt1,#) for each location | and the strict inequality holds for
at least one I, then b7 (1*) > b7 (1%).

Proof: See Appendix A. a

For convergence, our conclusion is that the estimation converge to a target’s real position
if the difference between pj;;(p+) and p;«(pi») for each sensor 7 and location [ is greater
than a predetermined nonnegative number e.

Theorem 3 Let BT be updated belief from b by using Equation (4) for the set of sensor
readings {frpx, ..., = }. If (1) b(I*) > 0, (2) there exists a positive number ¢ such that
pit(pirx) < pirx (=) — € for any i and any location | other than I*, then BT(I*) approaches
1.0 as m goes to infinity.

Proof: See Appendix A. a

It is worthwhile to mention that Condition (2) of the above theorem can be relaxed
as follows. If there is a finite number of sensors such that p;(pii=) > pax(pi=)—e¢, the
conclusion is still true. By limit theory, altering finite items in a sequence does not change
its convergence. After the relaxation, the conclusion becomes more general.

6.2.5 DiscussioNs WITH (GAUSSIAN CASE

We have proven some theoretical results for belief correction, which hold for p.d.f.s in
any form. In this subsection, we illustrate the results in the Gaussian case. That is, we
assume that sensoring models for sensors and locations in the grid are represented by a
Gaussian. We choose normal distribution in our discussion for several reasons. First of all,
normal distribution is popular in approximating noise. Second, the property that a normal
distribution is characterized by its mean and variance eases our discussions. Third, our
experimental results are based on the normal distribution case.

For sensor ¢ and location [/, we denote the sensoring model by p;;. In the Gaussian case,
it is defined by the mean p;; and the variance o;. The probability that sensor ¢ receives a

e—(r—na)*/(203)
2moy

Theorem 1 presents the following collective condition ensuring that the belief at a tar-
get’s actual position increases after belief correction.

reading r, is p;(r), i.e.,

L pirs (prir=) > Wipir(par+) for any [ € G.

If the p.d.f.s are replaced by Gaussians, the condition is instantiated as

2
e —egy)

m 1 m 1 202

= arom > 11z, Vomon i (6)
We are interested in finding when the above inequality is true. We consider two cases. First,
if all p.d.f.s have the same variance, obviously the inequality is true for any sensor ¢ and
location [. Consequently, if the p.d.f.s for all sensors and all locations are Gaussian and
they have the same variance, belief correction will never reduce the belief about the target
at its real position. Moreover, if the variance is non-zero, the belief at the real position will
strictly increase. Second, if the p.d.f.s have different variances, we need to compute both
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sides of the above inequality. If the inequality is true, the belief at the real position will
increase.

The left chart of Figure 11 illustrates the case in which only one sensor is used to detect a
target. The thick curve is the p.d.f. determined by the sensor and the target’s real position
[*, whereas other curves correspond to other locations. We assume that all p.d.f.s in the
chart have the same variance. Under this assumption, it can be proven that Inequality (6)
is true. Therefore, belief correction increases the belief at location [*.

probability
probability

sensor readings sensor readings

Figure 11: Illustrations for monotonicity and convergence theorems in Gaussian case

By the above analysis, if the p.d.f.s determined by a sensor and any locations are Gaus-
sians and have the same variance for any [*, the sensor is legitimate. In the multiple sensors
case, if each sensor is legitimate, Corollary 1 means that belief correction will never reduce
the belief about a target at its real position. Theorem 2 claims that adding a legitimate
sensor leads to more accurate estimations on average.

Theorem 3 sets a more restrictive condition for convergence. It shows that the estimated
belief converges to the real position when a large number of sensors are used. For sensor
i, the theorem requires not only that it is legitimate, but also that probability p;x(si+)
differs from the probabilities at other locations by at least a nonnegative quantity e, i.e.,
pirs (pir=) > pir(pi=) + €. This is shown in the right chart of Figure 11, which is similar to
the left one. To ensure the convergence, a large number of such sensors are needed.

6.3 Belief Prediction

We now consider the role of belief prediction, the other important step in MHML. This
step is to predict the next belief of a target based on the current belief using a sequence
of hypothesis generation, belief projection, belief scoring and belief selection. Its role is in
fact complementary to that of belief correction under the conditions given in the preceding
subsection. As the number of sensors increases, belief prediction accelerates the convergence
of the estimations to a target’s real position, and meanwhile belief correction guarantees
the convergence.

One important question related to convergence is the convergent rate. In essence, if
belief correction starts with a belief closer to the target’s real position, the corrected belief
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approaches to the real position faster as the number of sensors increases®. On the other
hand, if the same number of legitimate sensors are used, the estimation from a starting
location closer to the real position will be more accurate than that from a starting location
farther away from the real position. In MHML, the starting location is provided by belief
prediction. Therefore, the quality of belief prediction directly affects the performance of
MHML. If the predicted belief is closer to the real position, belief correction should be able
to compute a belief closer to the real position.

Figure 12 shows how belief prediction affects the performance of MHML. Suppose that
the estimation of the target’s current position is I’. We compare two cases. First, if there is
no belief prediction, belief correction takes I’ as input. Second, if belief prediction predicts
a belief and its induced location is [, belief correction takes /3 as input. Since [y is closer
to the real {* than !’, the corrected belief based on /5 should be more accurate than that
based on [’ if the same set of sensors are used. On the other hand, if the predicted belief is
l1, a location farther from [*, the corrected belief based on [; should be less accurate than
that based on /'

Figure 12: Role of belief prediction

In summary, the role of belief prediction can be twofold. A more accurate prediction
will accelerate the convergence of estimated beliefs to a target’s real position when more
sensors are used, whereas a less accurate prediction would decelerate the convergence. In
this regard, a known motion model of a target can help improve the performance of MHML
by providing belief correction with accurate predicted beliefs. In the case that there is no
motion model, using more legitimate sensors can help improve the performance of MHML by
calculating more accurate corrected beliefs. Thus, more sensors can be used to compensate
for the lack of a priori knowledge, as we discussed in the previous subsection. Therefore,
there exists a tradeoff between the knowledge of a target’s behavior and the resources of a
tracking system.

7. Role of Motion Information

In this section, we provide empirical evidence to support our analysis on the relationship
between belief prediction and belief correction in MHML. To this end, we will describe a
degenerate MHML by removing its belief prediction part. For convenience, we refer to the
degenerate MHML as MHMLO. We will use MHMLO for three purposes. The first purpose
is to demonstrate that as a degenerate version of MHML, MHMLO is able to localize a
target without any knowledge of its motion. The second purpose is to demonstrate the
monotonicity and convergence of belief correction in number of sensors used. This purpose

3. A belief b can be used to induce a location ! in a few ways. One popular way is to take the average,
ie. I=3",b(")-1I'. Another way is to take the location with the largest belief, i.e., I = argmaxy b(l').

When we say “a belief is closer to or farther away from ...”, we mean the location induced by the belief.
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is fulfilled by showing these properties in MHMLO and using the fact that MHMLO and
MHML have the belief correction steps in common. The third purpose is to demonstrate
the critical importance of the dynamically generated motion information in MHMIL. This
purpose is fulfilled by showing the better performance of MHML than that of MHMLO and
using the fact that only MHML has belief prediction.

7.1 MHML without Belief Prediction

MHMLO is a very simple algorithm of its own for localization. Its input and output are
the same as in MHML. MHMLO corrects the input belief using only Equation (3). The
corrected belief is used as the estimation of a target’s position. The pseudocode of one step
localization Localize0O for MHMLO is given in Table 2. At any step, the algorithm takes a
belief b, a set {p;;} of sensoring models, and a set {r;} of sensor readings. It computes a
new belief by by belief correction. Belief by is the estimated belief of a target position.

Localizel
input : b, {py} and {r;}
output : by
1. by « BeliefCorrection(b,{pu},{ri})
2. Return b4

Table 2: MHML without belief prediction

A key question to MHMLO is how to choose the input belief, i.e., belief b in Table 2, at
a step. Following MHML, a simple way for MHMLO is to choose the estimated belief from
the previous step. In the following, we show that this is not appropriate for MHML0. We
specifically show that very often this choosing method renders the estimated belief to be
zero at a target’s real position. Let [* and [ be the target’s real positions at the current
and next steps, which may be different since the target is moving. Let the estimated belief
at the current step be b. If b(/7) = 0.0, which is true if the previous estimation is accurate,
then by (1%) = 0.0 by belief correction equation®. The belief by cannot be a good estimation
of [ since its belief is zero at the actual real position /3. To avoid this problem, in our
experiments, we set the input belief in MHMLO to be a uniform distribution at any step.

Before presenting empirical results, we note that as a degenerate version of MHML,
MHMLO itself is able to localize a target. The prominent feature of MHMLO is that it never
uses any motion information, just like the triangulation and NNSS algorithms. This also
makes MHMLO able to localize a target even without any knowledge of the target’s motion.

4. b(I13) = 0.0 implies b4 (I3 ) = 0.0. Note that this has nothing to do with the number of sensors. Therefore,
using more sensors cannot improve the accuracy of the estimations. There is no convergence guarantee
even if sensors are legitimate. In fact, that b(I}) = 0.0 violates the first condition of theorems and
corollaries in Subsection 6.2.
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7.2 Performances of MHMUL without Belief Prediction

To demonstrate the performance of MHMLO, we run it by adding more sensors. We report
the results from a directed target with a variable speed and sensors using a 10-piece model
(the right chart in Figure 5). The other experimental conditions remain the same as before.

Figure 13 shows the tracked and the real trajectories when 3, 5, 10 and 20 sensors are
used. When 3 sensors are used, the tracked trajectory is completely out of the area of the
real trajectory. When 5 sensors are used, the tracked trajectory partially intersects with
the real, but with a very low estimation accuracy. The tracked trajectory forms a sketch
of the real when 10 sensors are used. As the number of sensors increases to 20, the tracked
trajectory is very close to the real, i.e., the estimated trajectory converges to the real.

800 - 800 .
real trajectory real trajectory

700 3sensors - 700 5 SeNnsors

600 600

500
400
300

200 200
100 100

0 0

0 200 400 600 800 1000 0 200 400 600 800 1000
800 n 800 "
real trajectory real trajectory

700 10 sensors - 700 20 sensors -
600 600

500
400
300

200 200
100 100
0 0

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 13: Tracked trajectories by MHML without belief prediction

From these results, it is evident that as more sensors are used, the tracked trajectory
becomes very close to the real trajectory. Combined with the fact that MHMLO begins
with a uniform belief at each step, it is clear that belief correction has the monotonicity
and convergence properties. Since MHML and MHMLO have belief correction in common,
this implies that belief correction in HMML has these two properties.

Due to the monotonous and convergent property, MHMLO has a value of interest of its
own. As a degenerate version of MHML, MHMLO is able to localize a target without using
any knowledge of its motion. Moreover, as more legitimate sensors are used, the estimation
accuracy increases. Compared to MHML, MHMLO is computationally efficient since there is
no belief prediction. If a tracking system has plentiful resources and is required to respond
in real time at each step, MHMLO is an attractive choice.
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7.3 Role of Motion Information

To understand the role of a target’s motion information, we further compare MHML and
MHMLO using the same target and the same setups as in previous subsection. We run
MHML with 3, 5, 10 and 20 sensors. The tracked trajectories are drawn in Figure 14.
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Figure 14: Tracked trajectories by MHML with belief prediction

Comparing the tracked trajectories in Figure 14 with those in Figure 13, we find that
the trajectory tracked by MHML is closer to the real trajectory than that by MHMILO
when the same number of sensors are used. This is especially true when the number of
sensors is less than 10. This shows that (estimated) motion information in belief prediction
is able to improve the estimation accuracy of MHML. As discussed earlier, belief prediction
achieves this improvement by predicting a belief closer to the target’s real position and
using the improved belief to drive the belief correction step. Additionally, we find that
the improvements by belief prediction become insignificant when the number of sensors
is greater than 10. The explanation follows. When the number of sensors is sufficiently
large, MHMLO itself is able to accurately localize a target. There is not much room for
improvements from belief prediction.

It is also of interest to observe the interactions between belief prediction and belief
correction. If the multiple-hypotheses method is effective in predicting a target’s position,
the improved estimation accuracy is “propagated” to the next localization step through
belief correction. Consequently, it is expected that the overall estimation error of MHML
should become smaller over steps. This can be seen from the plotted distance errors of
MHML in Figure 15. In comparison, MHMLO does not have this property since at any step
the input belief is set to a uniform distribution. Even if the estimation at the current step
is very accurate, it cannot affect the estimation at the next step.

Finally, as mentioned in Subsection 5.3, noisy sensoring models degrade the performance
of MHMIL.. Here we observe that the performance degradation of MHML using a noisy 10
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Figure 15: Distance errors of MHML when varying the sensor numbers

pieces model can be compensated by using more sensors, and that there exists a tradeoff
between estimation quality and the amount of available resources.

8. Related Work

Many previous works are related to and have influenced this research. We now discuss
them under the categories of localization problems, localization approaches, localization
and motion models, and sensory information integration.

8.1 Localization Problems

The general localization problem has attracted a great deal of interest in diverse areas such
as automatic control, robot navigation, military surveillance, context-aware systems, mobile
computation, networking and MEMS-related applications. Different application domains
make different assumptions on sensoring or perceptual models as well as motion models of
targets.

Most papers in automatic control consider state estimations in multi-sensor/multi-target
environments (Bar-Shalom, 1978; Reid, 1979), where motion models, which are often re-
ferred to as process models, and sensoring models are stochastic. However, the correspon-
dence between collected observations and targets is unknown, which has been noticeably
the main focus of a rich body of papers (Bar-Shalom, 1978; Reid, 1979).

In mobile robotics domains, one fundamental goal is to make a robot be capable of
self-localizing, i.e., determining its own location in an environment. In one version of the
problem, the robot has a probabilistic action model and a probabilistic perceptual model
(Fox et al., 1999). The action model describes how the odometry readings reflect the robot’s
real behavior. The perceptual model describes how the robot receives the landmark-based
information such as junctions and crosses. A more challenging version of the mobile robot
localization problem is called simultaneous localization and mapping (SLAM), where the
knowledge of maps such as the landmark information is unknown (Thrun et al., 1998;
Dissanayake, Newman, Clark, Durrant-Whyte, & Csorba, 2001; Montemerlo, Thrun, Koller,
& Wegbreit, 2002). The map need to be established as the robot navigates within an
environment.

Our research is motivated by multi-sensor/multi-target application domains where the
knowledge of targets’ behaviors is unknown or limited, and sensors are erroneous and unre-
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liable (Hill, 2000; Klemmer et al., 2000). Our problem differs from problems in automatic
control in that (1) the correspondence is known between sensor readings and targets, and
(2) no explicit motion model is given or required. This latter difference is also where our
problem differs from the problems in robot navigation domain and the SLAM problem,
since the effects of a robot’s control action are known a prior and can be used to derive a
(stochastic) motion model. Additionally, our problem assumes a sensoring model as in the
navigation problem.

8.2 Localization Approaches

The existing localization approaches can be roughly categorized into three classes. The
first class includes estimation-theoretical approaches such as Kalman filtering (KF') and its
extensions and variants (Maybeck, 1979). This class has been surveyed in Subsection 3.3.

The second class of localization approaches includes Markov localization (ML) and its
variants (Fox et al., 1999; Simmons & Koenig, 1995; Kaelbling, Littman, & Cassandra,
1998). ML approaches use a probability distribution to represent a target’s position esti-
mation. This representation also makes robots be able to recover from localization errors.
ML approaches require both motion models and sensoring models. A localization proce-
dure consists of belief projection, which projects beliefs using given motion models, and
belief correction, which corrects the projected beliefs using sensor readings and a sensoring
model. In principle, ML approaches do not impose the linearity requirements on motion
and sensoring models. This feature renders ML approaches applicable to some problems
unsuitable for KFs. For these problems, if KFs are used, targets’ motional and sensors’
perceptual models need to be linearized.

Finally, the third class of localization approaches do not stick to the rigorous statistical
formalism but instead focus on pursuing numerical and computational solutions. A typical
one is sample-based approach, also called particle filter (Arulampalam & Ristic, 2000; Thrun
et al., 2001; Arulampalam et al., 2002). This class of approaches has gained increasing
attention lately, because they provide a valuable and powerful tool for making tradeoffs
between overall system performance and required computational cost.

8.3 Localization and Motion Models

To tackle the problem of no motion model, we adopt a multiple-hypothesis (motion model)
approach. We dynamically generate a set of estimated motion models, each of which is a
“guess” of a target’s next position. A likelihood function is used to choose the winning
motion model. In the current form of our algorithm, only one hypothesis is the final
winner. From step to step, the algorithm may switch one motion model to another. This is
called a model-switch approach. In contrast to this strategy, other multi-model approaches,
called model-mizture approaches, maintain a filter for each motion model and combine the
individual results into an estimation of a target’s position. Model-mixture approaches differ
from one another in the way they maintain certain filters and how they combine the results
from individual filters. In (Blom & Bar-Shalom, 1988; Gustafsson, 2000), the authors
consider maneuvering targets, whose behavior is described by a set of motion models. It is
required that transition probabilities between these motion models be specified. Methods
have been proposed to update the weights of estimations from individual filters when they
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are combined. The approach in (Andersson, 1985; Bergman, 1999) keeps N models for
localization and M models for possible maneuvers. The number of filters is kept constant
by splitting the most probable filter and terminating the M —1 least probable filters. The
N results from filters are combined to form a final estimation (Karlsson, 2002). The range-
parameterized-extended-KI approach considers the estimation of range and velocity using
only passive sensors (Peach, 1995; Arulampalam & Ristic, 2000; Karlsson & Gustafsson,
2001). Each filter is associated with a probability. If the probability associated with a filter
is below a predefined level, it is removed from further computation.

One problem that our approach has to address is a potentially huge hypothesis space,
especially in the case where the target’s behavior is irregular and abrupt. This can be
alleviated by cutting less likely hypotheses or constraining the size of hypothesis space.
A number of techniques have been proposed to cut less likely hypotheses. (Reid, 1979)
uses a clustering technique to group sets of correspondences between targets and measure-
ments. In visual tracking research, (Cox & Hingorani, 1996) follows (Reid, 1979) and uses a
polynomial-time algorithm to determine the best n hypotheses for a constant n. Recently,
(Schmitt et al., 2002) proposes techniques to ignore unlikely hypotheses and successfully
applies a multiple-hypothesis approach in a robot soccer game. Another way to restrict
a hypothesis space is to generate the space as small as possible. For this purpose, a pri-
ori knowledge or on-line learning and navigation techniques may be used (Sutton, 1984;
Simmons & Koenig, 1995; Thrun et al., 1998).

8.4 Localization and Sensor Integration

Belief correction in MHML is essentially a sensor integration step in the sense that all
sensor readings are incorporated to update the belief about a target’s location. It has been
recognized that sensor integration is a prerequisite for advanced and complex applications
of multi-sensor systems (Mutambara, 1998; Durrant-Whyte, 1988; Mutambara, 1998) and
probabilistic approaches have been widely used in sensor integration. (Durrant-Whyte,
1988) discusses how individual sensors and a sensor system dynamically find a consistent
consensus estimation of the environment. If individual sensors have inconsistent estimations
from the sensor system, they allow their estimations to be changed. (Mutambara, 1998)
contains sensor integration approaches based on Kalman filters. (Gustafsson, 2000) shows
how to handle biased errors from individual sensors when multiple sensor readings are
combined. (Faugeras & Ayache, 1986) employs a probabilistic model to fuse noisy line
segment descriptions extracted from stereo visual images. Similar statistical models have
been employed to estimate objects’ locations in (Porril, Pollard, & Mayhew, 1987).

In spite of much effort on developing sensor integration approaches, relatively little work
analyzed the performance of integration approaches in terms of the number of sensors. In
this paper, we show that if a sensor is legitimate, its addition to the detecting group statis-
tically increases the estimation accuracy. We also mention another theoretical possibility,
although we do not give a running example. Given a target’s real location, if a sensor picks
the mean reading (of the p.d.f. determined by the sensor and the target’s position) with
the smallest probability among all locations, it can be proven that adding it never increases
the belief at a target’s real location.
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9. Conclusions and Directions

In this paper, we proposed and studied a probabilistic approach to tracking moving tar-
gets in a distributed sensor network. The approach combines two sources of information,
estimated target’s motion and perceived sensor readings. This approach does not assume
a motion model for targets. Rather, a target’s motion is dynamically estimated. Empirical
studies show that it works significantly better than previous approaches using only sen-
sory information. We examined at a one-step basis how integrating sensoring information
changes the belief about a target on its real position, how the algorithm performance varies
with the number of detecting sensors, and asymptotic behavior of the algorithm in number
of sensors. We presented conditions under which integrating sensors’ readings increases the
belief about a target at its real position, more detecting sensors lead to more accurate results
and the estimations converge to a target’s real location as more sensors are used. Based
on these results, we demonstrated that belief prediction and belief correction play different
but complementary roles in the algorithm. Belief correction guarantees the convergence of
estimated beliefs to the target’s real position as more sensors are used, and meanwhile belief
prediction accelerates the convergence by providing belief correction with a predicted belief
close to the target’s real position.

Several directions deserve further investigation in the future. Firstly, in this paper we
consider the monotonicity and convergence issues at the basis of one step localization. One
important question is whether these properties preserve over multiple steps. The difficulty
is again the unavailability of motion models. If the motion model of a target is known
in some nondeterministic form, it is possible to study the monotonicity and convergence
issues in a statistical sense. Secondly, we assume that the sensors are stationary. One inter-
esting direction would be to analyze the performance of the algorithm if detecting sensors
themselves can move or follow the target. Thirdly, how to reduce the size of a hypothesis
space is an important issue. In its current form, the hypotheses were generated through an
enumeration. How to adaptively generate hypotheses is of theoretical interest and practical
importance. By generating hypotheses adaptively, we expect the size of the space to be
reduced and computation to be more focused on the most relevant hypotheses. In this re-
gard, online learning algorithms in navigation research are useful. Finally, in a distributed
sensor network, the localization task often needs to be real-time. This requirement is contra-
dictory to the fact that micro-sensors have only limited information processing capability.
The probabilistic algorithm described in this paper is computationally intensive, though in
the text we have suggested steps for efficient implementations. Fortunately, the algorithm
can be readily implemented in a particle-filter version (Arulampalam et al., 2002). This
implementation is expected to be computationally cheap and obtain good-quality tracking
results, as it suggested in similar studies (Thrun et al., 2001).
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Appendix A. Proofs

Lemma 1 Letu and k be nonnegative vectors and y_; u(i) = 1.0. Ifv is the k-transformation

of u,
(1) The ratio v(z)/u(i) is constant for each i if and only if k(i) is constant.
(2) If k(i) # k(j) for a pair (i, j), then there exists an | such that v(l) > u(l).
(3) If k(i) # k(j) for a pair (i, j) and u(l*) # 0 for I* = argmax;k(i), then v(l*) > u(l*).

roof: is follows from tha v(i)/uli) = k(i)
P f: (1) This foll f that oG a) ~ RG)

(2) If k(7) # k(7), then % # % Thus either v(7) # u(7) or v(j) # u(j). Without loss

of generality, let v(i) # u(7). There are two cases.
(i) v(7) > u(?). Let I = 4. The conclusion is true.

(ii) v(#) < u(?). By condition, }>"; u(¢) = 1.0. On the other hand, it can be verified that
> v(2) = 1.0 by the definition of k-transformation. Therefore 3, v(z) = 3=, u(7). The

decrease of v’s component ¢ implies the increase of other components. Such an [ exists.

(3) By condition, component [* gains the largest increase. By (2), there exists at least one
component [ such that v(l) > u(l). Therefore v(I*) > u(l*). O

Theorem 1 If (1) b(I*) > 0, and (2) Wipi»(pir=) > Wipir(pi=) for each | and the strict
inequality holds for at least one [, then by (I*) > b(I*).

Proof: The belief I;+ is a k-transformation of belief b where k(l) is substituted by I1;p;(pei+).
By the condition I1;p;=(pi=) > Ilipi(pi=) for each location [, and the inequality holds for
at least one location [, the component [* gets the largest increase. By (3) of Lemma 1,

by (1) > b(1¥). =

Theorem 2 Let BT and BTH be updated beliefs from b by Equation (4), respectively,
using the readings {pys, ..., pmir} and {pys, ooy fmgrg=t- If (1) b(I*) > 0, and (2)
Prt1,0* (ms1,0*) > Pmt1,0(fmt1,#) for each location | and the strict inequality holds for
at least one I, then b7 (1*) > b7 (1%).

Proof: Since b7 (1) = L1 piy (i )b(1) and b7+ (1) = LT pyy (pive ) b(1)
where ¢y =37 Hi:lpzz(uzz*)b(l) and ¢o = 32 T2 pia (e )5(1)7

m C1 m
bEH (1) = gpm-}—l,l(ﬂm-l—l,l*)b_}_ (1).

It can be verified that

cy = Z Clpm+17l(ﬂm+1,l*)l;$ (l)
{

Hence, Bff"'l is the k-transformation of Bfﬁiwhere k(l) is c1ppm+1,1(pim+1,+). By the given
condition and (3) of Lemma 1, b7+ (1*) > b7(1%). ]
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Theorem 3 Let Bﬂf be updated belief from b by using Equation (4) for the set of sensor
readings {frx, ..., = }. If (1) b(1*) > 0, and (2) there exists a positive number ¢ such
that pir(pix) < pax(pix) —e€ for any i and any location | other than I*, then Bf(l*) approaches
1.0 as m goes to infinity.

Proof: Since b7 (1) = LM;pir(pir=)b(1) for I # 1* and b7 (I*) == L11;pji= (=) b(1*) where c is

c k3
a normalizer, the following steps are derived.

b7 (1) _ pir(parr) bl - MS(LO—q)m

bT() T pas (i) b(1%) T pas (pare)
where
€
6 =——.
pare (pir+)

As m goes to infinity, (1.0 — €)™ approaches zero. On the other hand, 37, I;ff(l) = 1.0.
Consequently, b7(/*) approaches 1.0 as m increases. a
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