
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2002-34

2002-09-19

Using EgoSpaces for Scalable, Proactive Coordination in Ad Hoc Using EgoSpaces for Scalable, Proactive Coordination in Ad Hoc

Networks **PLEASE SEE WUCSE-03-11** Networks **PLEASE SEE WUCSE-03-11**

Gruia-Catalin Roman and Christine Julien

The increasing ubiquity of mobile devices has led to an explosion in the development of

applications tailored to the particular needs of individual users. As the research community

gains experience in the development of these applications, the need for middleware to simplify

such software development is rapidly expanding. Vastly different needs of these various

applications, however, have led to the emergence of many different middleware models, each of

which approaches the dissemination of contextual information in a distinct way. The EgoSpaces

model consists of logically mobile agents that operate over physically mobile hosts. EgoSpaces

addresses the specific needs of... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Roman, Gruia-Catalin and Julien, Christine, "Using EgoSpaces for Scalable, Proactive Coordination in Ad
Hoc Networks **PLEASE SEE WUCSE-03-11**" Report Number: WUCSE-2002-34 (2002). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1150

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1150?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1150

Using EgoSpaces for Scalable, Proactive Coordination in Ad Hoc Networks Using EgoSpaces for Scalable, Proactive Coordination in Ad Hoc Networks
PLEASE SEE WUCSE-03-11 **PLEASE SEE WUCSE-03-11**

Gruia-Catalin Roman and Christine Julien

Complete Abstract: Complete Abstract:

The increasing ubiquity of mobile devices has led to an explosion in the development of applications
tailored to the particular needs of individual users. As the research community gains experience in the
development of these applications, the need for middleware to simplify such software development is
rapidly expanding. Vastly different needs of these various applications, however, have led to the
emergence of many different middleware models, each of which approaches the dissemination of
contextual information in a distinct way. The EgoSpaces model consists of logically mobile agents that
operate over physically mobile hosts. EgoSpaces addresses the specific needs of individual agents,
allowing them to define what data is to be included in their operating context by means of declarative
specifications constraining properties of the data items, the agents that own the data, the hosts on which
those agents are running, and attributes of the ad hoc network. The resulting model is one in which
agents interact with a dynamically changing environment through a set of views, custom defined
projections of the set of data objects present in the surrounding ad hoc network. This paper builds on
EgoSpaces by allowing agents to assign automatic behaviors to the agent-defined views. Behaviors
consist of actions which are automatically performed in response to specified changes in the view.
Behaviors discussed in this paper encompass reactive programming, transparent data migration,
automatic data duplication, and event capture. Formal semantic definitions are given for each behavior.
Since performance is a real concern in the ad hoc environment, this paper also presents protocol
implementations tailored to each behavior type.

https://openscholarship.wustl.edu/cse_research/1150?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1150?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages

Using EgoSpaces for Scalable, Proactive Coordination
in Ad Hoc Networks

Gruia-Catalin Roman and Christine Julien
Department of Computer Science and Engineering

Washington University
Saint Louis, MO 63130

{roman, julien}@cse.wustl.edu

Abstract

The increasing ubiquity of mobile devices has led to an explosion in the development of applications tailored

to the particular needs of individual users. As the research community gains experience in the development of

these applications, the need for middleware to simplify such software development is rapidly expanding. Vastly

different needs of these various applications, however, have led to the emergence of many different middleware

models, each of which approaches the dissemination of contextual information in a distinct way. The EgoSpaces

model consists of logically mobile agents that operate over physically mobile hosts. EgoSpaces addresses the specific

needs of individual agents, allowing them to define what data is to be included in their operating context by means

of declarative specifications constraining properties of the data items, the agents that own the data, the hosts on

which those agents are running, and attributes of the ad hoc network. The resulting model is one in which agents

interact with a dynamically changing environment through a set of views, custom defined projections of the set of

data objects present in the surrounding ad hoc network. This paper builds on EgoSpaces by allowing agents to assign

automatic behaviors to the agent-defined views. Behaviors consist of actions which are automatically performed

in response to specified changes in the view. Behaviors discussed in this paper encompass reactive programming,

transparent data migration, automatic data duplication, and event capture. Formal semantic definitions are given

for each behavior. Since performance is a real concern in the ad hoc environment, this paper also presents protocol

implementations tailored to each behavior type.

Keywords

Ad Hoc Mobility, Context-Aware, Coordination, Middleware, Software Engineering

1

1 Introduction

The unique combination of ad hoc networks, context-aware computing, and the need for personal-

ization in such environments drives the work presented in this paper. Mobile ad hoc networks form

opportunistically and change rapidly in response to host movement. This constantly changing network

necessitates the ability for applications running in it to adapt their behavior to their environment, a

style of computing referred to as context-aware computing. Ad hoc routing protocols [1, 8, 11, 14], how-

ever, have expanded connectivity outside the immediately accessible wireless broadcast region, providing

applications access to unmanageable amounts of data. Ad hoc context-aware applications, therefore,

could benefit from the ability to define personalized contexts that include only the pieces of this maximal

context that interest them.

Notions of context-awareness have been explored for both static and nomadic mobile networks [5, 16,

6, 15]. The radically different properties of ad hoc networks, however, require new context-awareness

models tailored to the environment’s specific complexities. While applications in static networks may

optionally use context information, applications in ad hoc networks often require such knowledge. Because

the nature of context-aware computing causes various applications to need access to different context

information relative to each other and over time, such applications desire personalized operating contexts.

The EgoSpaces model and middleware [7] introduces the novel notion of asymmetric coordination, giving

each application direct control over the size and scope of its personalized context, an approach essential

to accommodating programming for large, dense ad hoc networks.

As the demand for new context-aware applications tailored to the ad hoc environment grows, pro-

ducing these applications places an increasingly heavy burden on programmers. There is a need for

middleware providing high-level coordination abstractions that allow programmers to efficiently develop

unique applications. This paper extends EgoSpaces to provide a variety of such mechanisms. Previous

work has explored, among other things, tuple spaces [10], reactive programming [2], data hoarding [9],

and event-based interactions [3]. We revisit these coordination mechanisms, injecting them with our focus

on context-awareness, ad hoc networks, and personalization. The EgoSpaces extensions generalize these

coordination mechanisms and provide several programming options without sacrificing the simplicity of

2

the high-level abstractions. Of particular interest was our ability to reduce the specialized behaviors to

a single construct, the reaction.

Finally, in the resource constrained environment in which we operate, increased application responsive-

ness and decreased communication overhead are key concerns In providing programmers with powerful

higher-level of abstractions, we target opportunities for optimization, and allow these issues to drive our

protocol development.

The next section reviews EgoSpaces. Section 3 adds some advanced constructs, transactions and

reactions, to the basic model. Section 4 presents the behavioral extensions and shows that they can be

reduced to EgoSpaces’ reactions. Section 5 directly addresses performance considerations in presenting

the behaviors’ implementations. Conclusions appear in Section 6.

2 EgoSpaces Review

EgoSpaces, presented in [7], introduces an agent-centered notion of context whose scope extends beyond

the local host to contain data and resources associated with hosts and agents surrounding the agent of

interest. This asymmetric relation among participants is new to coordination research and is motivated

by our desire to accommodate high-density and wide-coverage ad hoc networks. This section reviews

EgoSpaces and highlights its key components.

2.1 Computational Model

EgoSpaces considers systems entailing both physical and logical mobility that consist of logically mobile

agents (units of modularity and execution) executing over physically mobile hosts (simple containers for

agents). Communication among agents and agent migration can occur whenever the hosts involved are

connected. A closed set of these connected hosts defines an ad hoc network. Each agent manages its own

data items, stored in a local tuple space.

2.2 View Concept

In principle, an agent’s context includes all data available in the entire ad hoc network. As discussed

previously, providing access to this vast amount of information proves costly. For this and other reasons,

3

EgoSpaces structures data access in terms of views, projections of the data in the network. Since one’s

context is relative, we use the term reference agent to denote the agent whose context we are considering,

and reference host refers to the reference agent’s host. Each agent defines individualized views by

providing declarative specifications constraining properties of the network, hosts, agents, and data. As an

example, imagine a building with a fixed infrastructure of sensors and information appliances providing

contextual information. Sensors provide information regarding the building’s structural integrity, the

frequency of sounds, the movement of occupants, etc. Engineers and inspectors carry PDAs or laptops

that provide additional context and assimilate context information. Different people have specific tasks

and will therefore use information from different sensors. As an engineer moves through the building,

he wishes to see structural information not for the whole building, but for his quadrant on the floors

adjacent to his current floor. An agent running on his PDA declares the following view:

Data from the past hour (reference to data) gathered by structural agents (reference to agents)

on sensors in quadrant A (reference to hosts) within one floor of my current location (property

of reference host).

Figure 1 depicts this example, the shaded circle represents the view of the engineer (in the hard hat). As

shown, this view contains sensors embedded in the building and the PDA of an inspector on the adjacent

floor.

EgoSpaces transparently maintains all defined views. As hosts and agents move, the view’s contents

automatically reflect these changes without the reference agent’s explicit action. As the engineer changes

floors, his view automatically updates to include different sensors.

EgoSpaces employs an agent-specified access control function to limit the ability of other agents to

access an agent’s local data. When a reference agent defines a view, it attaches a set of credentials

verifying itself to other agents. Additionally, the reference agent declares the operations it intends to

perform on the view. When determining the contents of a view, EgoSpaces evaluates, for each tuple

that meets the view specification, the contributing agent’s access control function with respect to the

specified list of credentials and operations. This provides EgoSpaces with a very fine grained access

control mechanism. More details on view specifications, transparent maintenance, and access control can

4

Figure 1. Example view definition.

be found in [7] and [13].

2.3 Basic Data Access Operations

EgoSpaces bases its coordination on the Linda [4] model, in which components coordinate through

a global tuple space. However, like Lime [10], EgoSpaces partitions Linda’s global tuple space into

individual spaces distributed among mobile agents. When agents move within communication range of

each other, their tuple spaces logically merge to form a single, “global” tuple space. Agents interact with

tuple spaces by matching a pattern against a tuple’s contents. Standard operations provided in Linda

include tuple creation (out), tuple reading (rd), and tuple removal (in). EgoSpaces provides similar

operations, but the scope of each operation is constrained to a single view.

Agents create tuples using out operations. A new tuple is available in any view whose constraints it

satisfies. To read and remove tuples, agents use variations of rd and in operations restricted to individual

views. Because in operations remove tuples from the tuple space, they may affect other views if the tuple

5

removed is contained in multiple views. The rd and in operations block until a matching tuple exists and

then return the match. If more than one tuple matches, the one returned is chosen non-deterministically.

Variations of these operations include aggregate operations (rdg and ing) that block until a match

exists and then return all matches and probing versions of both single (rdp and inp) and aggregate

operations (rdgp and ingp) which return ε if no match exists immediately. All operations listed thus

far act over the view atomically, requiring a transaction over all view participants. Because this can

become costly, EgoSpaces offers scattered probes for both single (rdsp and insp) and aggregate (rdgsp

and ingsp) operations. They provide a weaker consistency because they check the tuple spaces one at

a time without locking the entire view, thus they may miss a matching tuple. All operations and their

semantics are provided in [7].

In our example, sensors use out operations to generate sensed information. Engineers or inspectors

use rd and in operations to access data. More complicated sensors might access data, assimilate it, and

generate work orders representing problems needing immediate attention. Workers can then access these

work orders to obtain their tasks.

3 Advanced Constructs

All the constructs previously described involve explicit data access. If a mobile component needs

to wait for a piece of data to appear before performing additional actions, it must poll. This costly

and inefficient mechanism prevents the component from performing other work in the meantime. For

example, all building occupants want to react to exceptional conditions (e.g., a tuple indicating a fire)

so they can act accordingly. Furthermore, as described so far, EgoSpaces provides no mechanism for

grouping operations in a transactional fashion. For example, a sensor may want to remove a piece of

data and replace it with an update. If this piece of data is critical, the sensor needs a transaction to

ensure the data’s constant availability. This section introduces reactions to address the former concern

and transactions to address the latter. We then combine the two constructs to build an even more

powerful reactive construct.

6

3.1 Reactions

EgoSpaces provides reactive programming constructs that allow agents to adapt their behavior in

response to the presence of particular tuples. Similar abstractions have proven useful in other mobile

systems including Lime [10] and MARS [2]. An EgoSpaces reaction associates a trigger (i.e., a pattern)

with a set of operations. When a tuple matches the pattern the operations to execute. A reaction can

read its trigger, remove its trigger from the tuple space, and output an arbitrary tuple in the reference

agent’s tuple space. A reaction has one of two scheduling modalities, eager or lazy, indicating when they

should fire. Reactions with eager modalities occur immediately following the insertion of a matching tuple

into the view. Only other eager reactions can preempt them. A lazy modality brings a much weaker

guarantee—eventual triggering of the reaction is guaranteed if the tuple remains in the view long enough.

Other operations may occur in the meantime, possibly removing the tuple before the lazy reaction fires.

Finally, reactions have a priority that arranges a hierarchy of firing within each scheduling modality.

Priorities are integers; within each modality, reactions with higher priorities fire before reactions with

lower priorities (the highest priority being 1). A reaction is registered on all agents contributing to the

view and fires once for every tuple in the view matching its pattern. Disabling and re-enabling a reaction

causes it to fire again for all matching tuples. Similarly, disconnection followed by reconnection causes

reactions to fire repeatedly. The burden of handling these cases falls on the application programmer.

Reactions take the form:

ρ = react to p [remove] [and out(tuple modifiers(τ))]

where the local name τ is bound to the trigger; p is the reactive pattern; the keyword remove causes

tuple removal; and the optional out(tuple modifiers(τ)) places a tuple into the reference agent’s tuple

space. The tuple modifiers may be applied to a copy of the trigger to allow the reaction to add or remove

fields in the tuple. A reference agent enables and disables a reaction using:

enable ρ with sched modality , priority over ν

disable ρ over ν

7

where sched modality is either eager or lazy, and priority is an integer. As with other operations, reactions

affect the contributing agents’ access controls. When specifying a view, the reference agent must indicate

if it intends to register reactions on it.

Triggering the reaction and executing the associated statements occur as a single atomic step. If

used, the out places a tuple in the reference agent’s local tuple space at the completion of the reaction’s

execution. This tuple can trigger other reactions registered on the same view or different ones.

3.2 Transactions

An EgoSpaces transaction is a named sequence of simple actions that can include plain code, atomic

or scattered probing operations, and tuple creation. Because transactions must complete, they cannot

include blocking operations that could halt the transaction indefinitely. EgoSpaces prevents out op-

erations from affecting the transaction by delaying them until just after the transaction’s completion.

Transactions are individual atomic actions; their results are not visible from the outside.

When creating a transaction, the reference agent provides a view restriction listing the involved views

and serving as a contract between the reference agent and EgoSpaces. Any attempt inside the transaction

to perform operations outside the view restriction generates an exception. The view restriction makes a

deadlock-free implementation of the transaction mechanism possible (see Section 5).

A transaction takes the form:

T = transaction over v1, v2, . . . begin op1, op2, . . . end

where T is the transaction’s name; v1, v2 . . . is the view restriction; and op1, op2, . . . is the sequence of

operations. An agent executes a transaction using:

execute T

3.3 Augmenting Reactions

Transactions can extend reactions to allow them to operate over any of the reference agents’ views. The

reaction’s triggering, optional trigger removal, optional out, and transaction are performed as a single

atomic action. To prevent deadlock, the trigger for this reaction must be located in the reference agent’s

8

local tuple space so that the agents involved in the transaction can be locked in order. To ensure this,

EgoSpaces introduces local views that are restricted in scope to only the reference agent. An extended

reaction has the form:

ρ = react to p [remove] [and out(tuple modifiers(τ))] extended by T (τ)

where T is the transaction that executes in response to the trigger. An agent enables an extended

transaction using:

enable ρ with sched modality , priority over νl

Upon enabling, EgoSpaces verifies that νl is a local view.

An agent may desire the same style of interaction in response to remote agents’ tuples. Any tuple can

trigger these more generalized reactions. In this case, however, trigger, removal, and notification are a

single atomic action, while the execution of the associated transaction is a separate atomic action. The

most important ramification of this subtle difference is that the trigger might not be available to the

transaction when it executes because other operations can interleave with the reaction’s triggering and

the transaction. The transaction receives a copy (τ) of the tuple, but if the transaction attempts to read

or remove it directly from the tuple space, it may not succeed. This more generalized reaction has the

form:

ρ = react to p [remove] [and out(tuple modifiers(τ))] followed by T (τ)

The enabling mechanism for generalized reactions is identical to basic reactions.

4 Extending EgoSpaces with Behaviors

Many ad hoc and context-aware applications benefit from proactive coordination. A common paradigm

in distributed programming involves data transfer from producers to consumers. In ad hoc environments,

however, producers and consumers may communicate for only brief instants. Reliance on polling proves

inefficient and, worse, may cause consumers to miss data. Such applications benefit from the ability

to specify data items to be implicitly moved to the local repository whenever encountered. As another

example, the operations covered in the previous section all focus on state. Some applications, however,

9

require knowledge about events. In investigating application needs, we identified the following as use-

ful coordination styles: data migration, data duplication, and event capture, and we provide them as

behavioral extensions to EgoSpaces. We also leave EgoSpaces open to extension.

A reference agent attaches behaviors to views. As long as the behavior is enabled, encountering certain

conditions triggers an automatic action. In general, behaviors share several key components. First, a

behavior responds to a trigger—either a regular data tuple or a special tuple used for the particular

behavior— identified via a pattern. Once enabled, EgoSpaces monitors both the behavior’s pattern

and tuples in the view and triggers the behavior whenever the pattern is matched. Like basic reactions,

behaviors respond once to each matching tuple. Again, if tuples leave the view and return or the behavior

is disabled and re-enabled, the behavior executes again.

Like reactions, behaviors have scheduling modalities of either eager or lazy indicating when the behav-

iors occur. Eager behaviors execute as soon as the trigger is matched, and only other eager constructs

can preempt them. Lazy behaviors carry a different guarantee. If the behavior remains enabled and the

trigger stays present, a lazy behavior will eventually execute.

Behaviors can include tuple modifiers, which allow the reference agent to insert or remove fields

in resulting local tuples. Finally, behaviors have an optional transaction executed at the behavior’s

completion.

In general, behaviors take the form:

β = act(p) [out(tuple modifiers(τ))] [followed by T (τ)]

where act is the name of the behavior (e.g., “migrate” or “duplicate”). Names are integral to the system

and must be agreed upon to allow access control implementation. Reference agents enable and disable

behaviors using:

enable β with sched modality over ν

disable β over ν

Again, access controls must be considered. A reference agent must identify which behaviors it might

attach to a view. Contributing agents consider the set of potential behaviors when evaluating access

control functions.

10

We discuss each behavior individually, providing a brief description and syntax. We then show the

behaviors’ semantics by reducing them to reactions and transactions.

4.1 Data Migration

Mobile agents encounter a lot of data, but both data and agents are constantly moving. A particular

agent may want to implicitly pull data towards it, without having to explicitly read each piece. Many

applications require data consistency. Agents cannot make duplicates of data items and operate on

them because other agents might operate on the original. A common solution is replica management,

but this solution is undesirable in ad hoc environments because agents carrying originals and duplicates

meet sporadically and may never be in contact again. Transparent data migration offers a solution. For

example, building engineers might respond to work orders generated by distributed components sensing

particular needs. A single engineer should take responsibility for each work order because if multiple

engineers pick up the same job, work will be wasted. When an engineer encounters a work order he

should perform, the work order should move from the component generating it to the engineer.

When a migration is enabled, all tuples in the view matching the pattern automatically move from

their current location to the reference agent’s local tuple space. Because EgoSpaces evaluates contributing

agents’ access control functions before determining which tuples belong to the view, contributing agents

implicitly allow tuple transfer. Once migrated, the tuples become subject to the reference agent’s access

controls. This may affect the contents of other views defined by the reference agent or other agents. If

desired, a migration uses tuple modifiers to change migrated tuples.

Semantics. A migration reduces to a basic reaction that removes the trigger and generates a new tuple

in the reference agent’s tuple space:

M = migrate p out(tuple modifiers(τ))
, ρm = react to p remove and out(tuple modifiers(τ)))

The tuple generated is identical to the trigger tuple with the tuple modifiers applied and a new tuple id.

Tuple migration may trigger reactions in the new location that have already fired for the tuple in the

previous location.

11

Enabling a migration with a particular scheduling modality reduces to enabling the above reaction

using the same scheduling modality and a low priority (e.g., 10):

enableMwith sched modality over ν

, enable ρm with sched modality , 10 over ν

In providing behaviors, EgoSpaces uses a scheduling scheme that maximizes the number of behaviors

that execute, i.e., the system ensures that duplicates are made before tuples migrate. A migration’s low

priority allows other reactions and behaviors of the same modality to trigger first. If any of these actions

remove the tuple, however, the migration will not occur.

4.2 Data Duplication

When agents want to continue to access particular pieces of data but do not want control of the

originals, data duplication offers the correct solution. A duplication behavior copies tuples matching

some pattern, and the copies are placed in the reference agent’s local tuple space, leaving the originals

unaffected. The building engineer may collect sensor data for processing off-site. The engineer does not,

however, want to remove the data because others may need it.

Duplicated tuples may match the original view specification and be infinitely duplicated. An applica-

tion’s reference agent can prevent this using tuple modifiers, e.g., by tagging all duplicates with a new

field. Also, duplicated tuples may satisfy view specifications of other agents. While some applications

might desire this behavior, others may not. Again, applications can deal with these concerns individ-

ually. Copies become the responsibility of the owning agent. Before these tuples appear in any views,

EgoSpaces evaluates the owning agent’s access control function. Again, because replica management

proves too costly, duplicates do not remain consistent with originals, even if both persist in the view.

Notice that a reference agent can also use tuple modifiers to generate entirely new tuples by removing

all the fields and adding new ones.

Semantics. Duplication reduces to a reaction that does not remove the trigger and generates a new

tuple in the reference agent’s local tuple space:

12

D = duplicate p out(tuple modifiers(τ))
, ρd = react to p and out(tuple modifiers(τ)))

A behavior with no tuple modifiers creates an exact copy (with a new tuple id), while one that adds a

field “copied” marks all duplicates.

Enabling a duplication reduces to enabling the above reaction with the provided scheduling modality

and a high priority (e.g., 1):

enableD with sched modality over ν

, enable ρd with sched modality , 1 over ν

We use a high priority to ensure that duplication occurs before migration.

4.3 Event Capture

Many coordination systems allow applications to adapt their behavior to events occurring in the

system. In our system, events include the arrival of a new view contributer or another agent’s data

access operations. For example, the engineer might adapt his behavior in response to the arrival of a

building inspector.

EgoSpaces events are special tuples. An agent registers its interest in an event by providing a pattern

over event tuples. Once registered, event notifications for events matching the pattern propagate to

the reference agent. To prevent superfluous event generation, EgoSpaces generates event tuples only for

specific registrations. The event’s callback execution consumes the event tuple created for it, allowing

multiple registrations for the same event, even by multiple agents. When a matching event occurs, all

parties registered for it receive notification. A reference agent uses a transaction to specify the event’s

callback, which executes agent after the reference agent receives the notification.

Semantics. The event behavior reduces to a pair of reactions. The first generates a copy of the event

tuple augmented with the id of this event registration and places it in the reference agent’s local tuple

space. The second reacts to the generated tuple and executes the event registration’s callback:

13

E = event(p) followed by Te(τ)
, eid = newevent id

ρe1 = react to p and out(τ ⊕ {(eID, event id , eid)})
ρe2 = react to (p⊕ {(eID, event id ,= eid)} remove extended by Te(τ)

The ⊕ symbol indicates the tuple or template is augmented with the provided field, in this case the new

event id. The generation of the event copy and the callback execution are not a single atomic action.

However, as long as the reference agent prevents other agents from stealing its event tuples (by using its

access control function), this should not pose a problem.

Enabling an event behavior reduces to enabling the two reactions defined above:

enable E with sched modality over ν

, enable ρe1 with eager, 1 over ν
enable ρe2 with sched modality , 1 over νl

The first reaction (that generates a personal copy of the event) is enabled with eager modality and high

priority. This guarantees the reference agent receives notification of the event regardless of whether

the behavior is eager or lazy. The second reaction’s scheduling modality corresponds to the behavior’s

provided modality and also executes at high priority. This reaction is enabled on a local view (νl) defined

specifically for this behavior whose constraints cause it to contain only tuples local to the reference agent

matching p augmented with an eID field.

This reduction assumes mechanisms exist to generate events and clean up event tuples. The latter is

accomplished by a reaction that removes event tuples:

ρgc = react to p remove

where p matches any event tuple (e.g., p = 〈(event tuple tag , string ,= event)〉). This reaction is enabled

with eager modality and a priority of at least 2, guaranteeing all event copies have been generated (at

priority 1):

enable ρgc with sched modality , 2 over νe

5 Protocols and Implementation

View construction and maintenance protocols directly influence the implementations for the opera-

tions. Inefficient view building limits performance. Our initial efforts led to the development of network

14

abstractions [13] that, given neighborhood restrictions requested by the reference agent, provide a list of

qualifying agents.

The list corresponds to a tree constructed for the reference agent over its operating context. In any

network, both hosts and links between them have attributes affecting network communication, including

link bandwidth, battery power, and signal strength. A reference agent specifies which of these properties

contribute to a weight for each link. Once a weight has been calculated for each link, an application-

specified cost function over these weights determines the cost of network paths. We build a tree rooted

at the reference host including only the lowest cost path to each host in the network. Because we aim

to restrict the scope of a reference agent’s view, calculating the cost to every host in the network is

unreasonable. To limit the view to some manageable region, the application specifies a bound for its cost

function. Agents on hosts to which the cost is less than the bound are included in the view. Once the

computation reaches a host outside the bound, all hosts farther on the same path must also lie outside

the bound. To guarantee this, we require the cost of a given path strictly increase with the number

of hops from the reference host. As an example, an entire specification for restricting agents within a

certain number of hops would be written as: all nodes which can be reached in fewer than five hops.

We developed a protocol that builds this tree, and an additional protocol maintains the tree in the

face of mobility. This maintenance is required for views over which the reference agent registers persis-

tent operations (e.g., reactions and behaviors). We also have under development a mesh-based protocol

which maintains multiple qualifying paths for certain hosts and should provide more reliable communica-

tion. Other view maintenance protocols may provide some uncertainty regarding the view participants,

allowing us to implement very similar operations with slightly weaker semantics.

5.1 Blocking Operations

Blocking tuple space operations are implemented as reactions to prevent expensive polling. For exam-

ple, an ing operation entails a (low priority) eager reaction that does not remove its trigger. When this

reaction fires, a transaction follows and attempts an inpg. If this operation returns anything other than

ε, the operation returns, and disables its associated reaction. If the operation is unsuccessful, another

reaction (or another in operation) removed the tuple first. This is within the operation’s semantics.

15

Other blocking operations can be implemented using similar techniques.

5.2 Atomic Probe Operations

Atomic probes equate to transactions performed over a single view. They require locking all view

participants, performing the operation, and unlocking the participants. This locking mechanism is dis-

cussed below in the description of transaction implementation. Once the agents are locked, the query

is sent to all participants, who return copies of all matches. For single operations, a tuple is chosen

non-deterministically and returned; in operations also remove the tuple from the tuple space. Group

operations return all matches found, and ingp also removes the matches. It becomes obvious that a

reference agent benefits from the intelligent definition of its views, as this type of operation becomes

costly on views involving large numbers of agents.

5.3 Scattered Probe Operations

A variety of possible implementations for scattered probes exist. As described before, scattered probes

perform a best effort search for a matching tuple. The simplest implementation polls the view’s partic-

ipants in order (by id) for a matching tuple. When one is found, it is removed if the operation is an in

and returned. If all participants have been queried and no match found, the operation returns ε. Group

operations query all participants and return all matches. More sophisticated implementations of the

single operations can take advantage of the environment. For example, one might query the physically

closest agents or the agents with the highest bandwidth connections first.

5.4 Transactions

A transaction must operate over several views with explicit guarantees that its internal state is not

visible from outside. As such, transactions are inherently costly. EgoSpaces reduces this cost by requiring

a reference agent to explicitly declare what other agents need to be blocked for the duration of the

transaction by providing a list of views over which to execute the transaction. Because of the underlying

view maintenance, the agents contributing to each view are known, and EgoSpaces can create an ordered

list of them. EgoSpaces then locks the transaction’s participants (including the reference agent) in order.

16

If any other agent also performs a transaction, they will lock agents in the same order, avoiding deadlock.

If, while an agent is locking agents for a transaction, a contributing agent moves out of the view, it must

be unlocked before departing. If the transaction’s operations are already executing, the agent’s departure

must be delayed until the transaction’s completion. We assume there is enough time to complete the

transaction before the agent disappears entirely from communication range. Such a guarantee can be

provided using the notion of safe distance [12]. If a new agent moves into the view while the reference

agent is in the process of locking hosts or in the middle of executing the transaction, the arrival of the

agent must be delayed until the transaction completes. During its execution, the transaction’s operations

execute in sequence, according to the operation implementations.

5.5 Reactions

To implement reactions, each agent keeps a reaction registry (containing all reactions it has registered)

and a reaction list (containing all reactions this agent should fire on behalf of other agents, including

itself). A reaction registry entry contains a reaction’s id and the tuple that should be inserted in the

tuple space when the reaction fires (if any) and the transaction that should extend or follow this reaction

(if any). A reaction list entry contains the reaction’s id, the owning agent’s id, the reaction’s pattern, the

data pattern for the view, and a boolean indicating whether or not to remove the trigger. Upon reaction

registration, the message propagates to all view participants (as discussed below) and is inserted in each

participant’s reaction list. Upon registration, all tuples in the view are checked against the pattern.

For all tuples that match, the reaction fires. This firing sends a notification (containing a copy of the

trigger tuple) to the registering agent. If specified, the tuple is removed from the tuple space. While the

reaction remains enabled, new tuples appearing that satisfy the view specification are checked against

the pattern. For each match, the registering agent receives a notification and locates the reaction in the

reaction registry. If necessary, it performs the appropriate out operation and either executes or schedules

any associated transaction.

Figure 2 shows the reaction mechanism. Agents B and C register reactions on agent A, and the

patterns of both happen to match t. The reaction with the highest priority (B’s reaction) fires first,

generating notification n for B. Because this reaction removes the trigger, C’s lower priority reaction will

17

BA

lower priority
reaction

reaction that
removes trigger

extended by

followed by

t n
(only possible if A=B)

(always possible)

transaction 2

transaction 1

C

Figure 2. The Reaction Mechanism

not fire. B’s reaction can be extended or followed by a transaction. The former is only allowed when the

reaction is triggered by a local tuple (i.e., A=B).

Reactions are treated as persistent operations by the view building and maintenance protocols. During

the view’s construction, agents added to it receive the reaction registration and add it to their reaction

list. As new agents move into the view’s scope, they receive any registered reactions. As agents move

out of the view, they remove any information regarding the reference agent’s registered reactions. If

these agents later move back, they will receive the registrations and fire the associated reactions again if

matching tuples exist.

6 Conclusion

The success of a coordination middleware for ad hoc mobile environments lies in its ability to address

the key issues of this constrained environment. First, the vast amount of information available necessi-

tates mechanisms to easily and abstractly limit one’s operating context. Second, the immense variety

among applications forces the middleware to provide programming abstractions tailored to specific appli-

cation domains while remaining general enough to maintain a small footprint on devices with constrained

memory requirements. Finally, the communication restrictions and responsiveness requirements inherent

in wireless applications directs our middleware design. The original EgoSpaces model begins to directly

address the first of these three concerns. The additional constructs and behavioral extensions introduced

in this paper complete this task and provide the needed high-level coordination mechanisms. The reduc-

tion of the behaviors into a unifying construct, the reaction, decreases the required middleware support.

Finally, our approach to protocol development and implementation focuses on limiting communication

overhead and increasing the operations’ responsiveness. With such a direct attack on complexities specific

18

to ad hoc mobile networks, EgoSpaces and its extensions promise to transform application development

in our target environment.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation under Grant No. CCR-

9970939 and by the Office of Naval Research MURI Research Contract No. N00014-02-1-0715. Any

opinions, findings, and conclusions or recommendations expressed in this paper are those of the au-

thors and do not necessarily reflect the views of the National Science Foundation or the Office of Naval

Research.

References

[1] J. Broch, D. B. Johnson, and D. A. Maltz. The dynamic source routing protocol for mobile ad hoc networks.
Internet Draft, March 1998. IETF Mobile Ad Hoc Networking Working Group.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable coordination architecture for mobile
agents. Internet Computing, 4(4):26–35, 2000.

[3] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions on Software Engineering, 27(9):827–850, 2001.

[4] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[5] A. Harter and A. Hopper. A distributed location system for the active office. IEEE Networks, 8(1):62–70,
1994.

[6] J. Hong and J. Landay. An infrastructure approach to context-aware computing. Human Computer Interac-
tion, 16, 2001.

[7] C. Julien and G.-C. Roman. Egocentric context-aware programming in ad hoc mobile environments. In
Proceedings of the 10th International Symposium on the Foundations of Software Engineering, November
2002. (to appear).

[8] Y. Ko and N. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks. In Proceedings of MobiCom,
pages 66–75, 1998.

[9] G. H. Kuenning and G. J. Popek. Automated hoarding for mobile computers. In Proceedings of the 16th

Symposium on Operating Systems Principles, pages 264–275, October 1997.
[10] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A middleware for physical and logical mobility. In

Proceedings of the 21st International Conference on Distributed Computing Systems, pages 524–533, 2001.
[11] V. Park. and M. S. Corson. Temporally-ordered routing algorithm (TORA) version 1: functional specification.

Internet Draft, August 1998. IETF Mobile Ad Hoc Networking Working Group.
[12] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent group membership in ad hoc networks. In Proceedings

of the 23rd International Conference on Software Engineering, May 2001.
[13] G.-C. Roman, C. Julien, and Q. Huang. Network abstractions for context-aware mobile computing. In

Proceedings of the 24th International Conference on Software Engineering, pages 363–373, May 2002.
[14] E. Royer and C.-K. Toh. A review of current routing protocols for ad hoc mobile wireless networks. IEEE

Personal Communications, pages 46–55, April 1999.
[15] D. Salber, A. Dey, and G. Abowd. The Context Toolkit: Aiding the development of context-enabled appli-

cations. In Proceedings of CHI’99, pages 434–441, 1999.
[16] R. Want et al. An overview of the PARCTab ubiquitous computing environment. IEEE Personal Communi-

cations, 2(6):28–33, 1995.

19

	Using EgoSpaces for Scalable, Proactive Coordination in Ad Hoc Networks **PLEASE SEE WUCSE-03-11**
	Recommended Citation
	Using EgoSpaces for Scalable, Proactive Coordination in Ad Hoc Networks **PLEASE SEE WUCSE-03-11**

	tmp.1472055847.pdf.y7U3c

	Abstract: Abstract: The increasing ubiquity of mobile devices has led to an explosion in the development of applications tailored to the particular needs of individual users. As the research community gains experience in the development of these applications, the need for middleware to simplify such software development is rapidly expanding. Vastly different needs of these various applications, however, have led to the emergence of many different middleware models, each of which approaches the dissemination of contextual information in a distinct way. The EgoSpaces model consists of logically mobile agents that operate over physically mobile hosts. EgoSpaces addresses the specific needs of individual agents, allowing them to define what data is to be included in their operating context by means of declarative specifications constraining properties of the data items, the agents that own the data, the hosts on which those agents are running, and attributes of the ad hoc network. The resulting model is one in which agents interact with a dynamically changing environment through a set of views, custom defined projections of the set of data objects present in the surrounding ad hoc network. This paper builds on EgoSpaces by allowing agents to assign automatic behaviors to the agent-defined views. Behaviors consist of actions which are automatically performed in response to specified changes in the view. Behaviors discussed in this paper encompass reactive programming, transparent data migration, automatic data duplication, and event capture. Formal semantic definitions are given for each behavior. Since performance is a real concern in the ad hoc environment, this paper also presents protocol implementations tailored to each behavior type.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: September 19, 2002
	Author: Authors: Roman, G.-C.; Julien, C.
	Title: Using EgoSpaces for Scalable, Proactive Coordination in Ad Hoc Networks **PLEASE SEE WUCSE-03-11**
	ReportNumber: 2002-34
	DepartmentName: Department of Computer Science & Engineering

