Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2002-30

2002-08-29

Economy of Interaction in Program Visualization: Designing
Effective Visualization Tools for Reducing User's Cognitive Effort -
Doctoral Dissertation, August 2002

Mihail-Eduard Tudoreanu

Program visualization has the potential to be an important tool for people who seek to observe
and understand the behavior of a running computation. This thesis focuses on alleviating
barriers to the realization of this potential that pertain to the design of a visualization system
and to insufficient knowledge about how people take advantage of program visualizations. Our
major contribution is the design of a visualization approach capable of improving user’s
performance through the use of economy of information and tasks. We present evidence from
our empirical studies that this type of economy promotes animations capable of significantly
improving... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Tudoreanu, Mihail-Eduard, "Economy of Interaction in Program Visualization: Designing Effective
Visualization Tools for Reducing User's Cognitive Effort - Doctoral Dissertation, August 2002" Report
Number: WUCSE-2002-30 (2002). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1147

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1147?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1147

Economy of Interaction in Program Visualization: Designing Effective
Visualization Tools for Reducing User's Cognitive Effort - Doctoral Dissertation,
August 2002

Mihail-Eduard Tudoreanu

Complete Abstract:

Program visualization has the potential to be an important tool for people who seek to observe and
understand the behavior of a running computation. This thesis focuses on alleviating barriers to the
realization of this potential that pertain to the design of a visualization system and to insufficient
knowledge about how people take advantage of program visualizations. Our major contribution is the
design of a visualization approach capable of improving user’s performance through the use of economy
of information and tasks. We present evidence from our empirical studies that this type of economy
promotes animations capable of significantly improving people’s understanding of the computation. We
apply this knowledge to develop a system for creating application-specific visualizations solely through
interactions with program visualizations and textual views of the computation, thus promoting economy
of interaction. The system is built around the principle that animation viewers are also the creators of
animations and systematically refine the visualizations to suit their momentary goal.

https://openscholarship.wustl.edu/cse_research/1147?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1147?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1147&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2002-30

Economy of Interaction in Program Visualization: Designing Effective
Visualization Tools for Reducing User's Cognitive Effort - Doctoral
Dissertation, August 2002

Authors: Tudoreanu, Mihail Eduard

August 29, 2002

Abstract: Program visualization has the potential to be an important tool for
people who seek to observe and understand the behavior of a running
computation. This thesis focuses on alleviating barriers to the
realization of this potential that pertain to the design of a

visualization system and to insufficient knowledge about how people
take advantage of program visualizations. Our major contribution is
the design of a visualization approach capable of improving user's
performance through the use of economy of information and tasks. We
present evidence from our empirical studies that this type of

economy promotes animations capable of significantly improving
people's understanding of the computation. We apply this knowledge
to develop a system for creating application-specific visualizations
solely through interactions with program visualizations and textual
views of the computation, thus promoting economy of interaction. The

system is built around the principle that animation viewers are also
the rreatnre nf animatinne and cuctematirallv refine the

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

SEVER INSTITUTE OF TECHNOLOGY

DOCTOR OF SCIENCE DEGREE

DISSERTATION ACCEPTANCE

(To be the first page of each copy of the dissertation)

DATE: July 19, 2002

STUDENT’S NAME: Mihail-Eduard Tudoreanu

This student’s dissertation, entitled Economy of Interaction in Program Visualization:

Designing Effective Visualization Tools for Reducing User’s Cognitive Effort has been
examined by the undersigned committee of six faculty members and has received full
approval for acceptance in partial fulfillment of the requirements for the degree Doctor
of Science.

APPROVAL: Chairman

Short Title: Interaction in Program Animation Tudoreanu, D.Sc. 2002

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

ECONOMY OF INTERACTION IN PROGRAM VISUALIZATION: DESIGNING
EFFECTIVE VISUALIZATION TOOLS FOR REDUCING USER’S COGNITIVE
EFFORT
by
Mihail-Eduard Tudoreanu

Prepared under the direction of Profs. Gruia-Catalin Roman and Eileen Kraemer

A dissertation presented to the Sever Institute of
Washington University in partial fulfillment

of the requirements for the degree of
Doctor of Science
August, 2002

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

ECONOMY OF INTERACTION IN PROGRAM VISUALIZATION: DESIGNING
EFFECTIVE VISUALIZATION TOOLS FOR REDUCING USER’S COGNITIVE
EFFORT

by Mihail-Eduard Tudoreanu

ADVISOR: Profs. Gruia-Catalin Roman and Eileen Kraemer

August, 2002

Saint Louis, Missouri

Program visualization has the potential to be an important tool for people
who seek to observe and understand the behavior of a running computation. This
thesis focuses on alleviating barriers to the realization of this potential that pertain to
the design of a visualization system and to insufficient knowledge about how people
take advantage of program visualizations. Our major contribution is the design of a
visualization approach capable of improving user’s performance through the use of
economy of information and tasks. We present evidence from our empirical studies
that this type of economy promotes animations capable of significantly improving

people’s understanding of the computation. We apply this knowledge to develop

a system for creating application-specific visualizations solely through interactions
with program visualizations and textual views of the computation, thus promoting
economy of interaction. The system is built around the principle that animation
viewers are also the creators of animations and systematically refine the visualizations

to suit their momentary goal.

copyright by
Mihail-Eduard Tudoreanu
2002

to my family

Contents

List of Tables ix
List of Figures X
Acknowledgments Xiv
Preface e XV
1 Introduction. 1
1.1 Program Visualization 1
1.2 Barriers to Exploiting the Potential of Algorithm Animation 4

1.3 Contributions: Removing and Reducing Barriers 6
1.4 Dissertation Overview 10

2 Program Visualization Technology 12
2.1 Overview e e e 12
2.2 Obtaining Animations Lo oo 12
2.2.1 Approaches that Involve Indirect Structures 13

2.2.2 Approaches Without Indirect Structures 16

2.3 Evaluations of Program Visualization 19
2.3.1 Measures of the Effectiveness of Animations 20

2.3.2 Observational Studies. 20

2.4 Why Johnny Won’t Visualize 21
2.4.1 User-Related Factors 21

2.4.2 Technology-Related Factors 23

2.5 Concluding Remarks 0 23

3 Empirical Studies of Program Visualization 24

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9

Overview L 24
Introduction 24
Termination Detection Algorithm 26
Experiment A 28
341 Goal 28
3.4.2 Materials 28
3.4.3 Subjects 28
3.44 Procedure 29
345 Designo e 31
346 Results. 32
Experiment B 32
3.5.1 Goal 32
3.5.2 Materials 34
3.5.3 Subjects 34
3.54 Procedure 34
3.5.0 Designo 36
356 Results. o 38
Analysis of the Common Questions in the Two Studies 39
Differences Between the Experiments 40
Discussion oo 42
Concluding Remarks o000 44

4 An Abstract Interaction Model for Reshapeable Visualizations . . 45

4.1
4.2
4.3
4.4

4.5
4.6

OVerview e 45
Introduction 46
Previous Work in Interactions with Visualizations 47
Visualization Model 48
4.4.1 Graphics and Interaction 49
4.4.2 Constructing Visualizations and Exploring the Computation . 50
4.4.3 SCENES e e 51
4.4.4 Temporal Behavior of Animations 55
The Reshapeable Visualization System 28
Sample Visualization Session, 60
4.6.1 Computation 60

vi

4.6.2 Selection Framework 61

4.6.3 Visualization Session 62
4.7 Concluding Remarks 0oL 70
Automatic Presentation of Running Programs 72
5.1 Overview oL 72
5.2 Introduction 73
5.3 Related Work 76
5.4 Input Data 7
5.5 Creation of Graphical Representations 80
5.5.1 Style Gallery oo 83
5.5.2 Choosing Styles oo 84
5.5.3 Selecting Graphical Attributes 87
5.5.4 Choosing Values for Attributes 89
5.5.0 Repainting a Scene oo 91
5.6 Graphical Attribute Overload 92
5.7 User Control e 94
5.8 Concluding Remarks o 00000 94
Interactive Legends 96
6.1 Overview e 96
6.2 Introduction 96
6.3 Related Work oo 98
6.4 Legend Keys as Displays of the Visualization Syntax 99
6.4.1 Basic Legends oo 99
6.4.2 Extensions of Basic Legend Keys 101
6.5 Interaction with Legend Keys 103
6.6 Using Legends oo 105
6.6.1 Queries 105
6.6.2 Focus+context at Graphical Attribute Level 106
6.7 Concluding Remarks o000 107

A Study of the Performance of Steering Tasks under Spatial Trans-

formation of Inputo 109
7.1 Overview 109
7.2 Introduction 110

7.3 Backgroundo oL 113

7.3.1 Steering Law oo oo 113

7.3.2 Distortion via Physical Input Devices 114

7.4 Design Considerations0 116
7.4.1 Hypotheses L oo 117

7.5 Experiment 117
7.5.1 Materials 117

7.5.2 Subjects 118

7.5.3 Procedure o 118

754 Designo 120

755 Results. 121

7.6 Discussion 125
7.7 Applying Spatial Index To Selection Task 127
7.8 Concluding Remarkso o 130

8 Conclusions e 131
Appendix A Questions for Study .A- Termination Detection. 133
Appendix B Questions for Study B 138
References 144
Vita e 154

viii

List of Tables

3.1

3.2

3.3

3.4
3.5

4.1

2.1

9.2

7.1

The number of participants in each of the four situations:termination
detection first and visualization first, termination detection first and
text-only first, routing first and visualization first, and routing first
and text-only first. oo oo 29
Statistics on the number of correctly answered questions for termina-
tion detection.o 32
Statistics on the number of correctly answered questions for distance
vector routing. 32
Statistics on the number of correctly answered questions for each group. 38
The rate of correct answers for visualization and text-only cases in each

experiment. Only the five common questions are considered. 40
Overview of the elements of themodel 93

Three elements of a scene that presents each entity at its position.
The first element also displays the state of the station, while the third
shows the angle of the cart. 79
Two elements of a scene that presents a count of carts and parts that
are moving to a destination. The program entities of a scene element
have the same destination value. count is derived from the number of

entities that exist in a scene element. 80

Regression models: 1D alone, additive and multiplicative. (p < 0.0001,n =
T2) o 125

X

List of Figures

1.1

1.2

1.3

3.1

3.2

3.3

Visualizations are considered to extend cognitive resources because
they are a form of external cognition. More resources improve human
performance in performing a task. 0L
The running program can be observed through a visualization, a form
of external cognition. Existing algorithm visualization tools often re-
quire the user to create and refine indirect structures, which in turn
modify the final animation. To accomplish this, the user must allocate
cognitive resources to the indirect structures (hashed area), reducing
the resources available for processing the program and visualization.
More than one type of indirection may exist between the program and
visualization.
The running program can be observed through a visualization. The

visualization can be customized directly via user interactions..

A snapshot of the termination detection visualization from experiment
A. The tree that spans the distributed network is presented above the
network topology. The offspring of a tree node are always “higher”
than the tree node. Lo
The view of the algorithm pseudocode. In the inset, one of the print
statements is turned off. Also, to the left, rectangles mark the last
executed print statement for each of the nodes. Two rectangles are
visible in the inset (their original color was changed to increase the
contrast on black and white media.
A snapshot of the termination detection visualization. The tree that
spans the distributed network is presented above the network topology.

A legend is displayed on the left.

3.4

4.1

4.2

4.3
4.4

4.5

4.6
4.7
4.8
4.9
4.10

5.1
5.2

2.3

5.4

3.5

The rate of correctly answered questions for each group and question

The same data, a network and the CPU usage of each computer, is
presented in both visualizations. Labels on the left, and height on the
right show the usage. Nodes are grouped in two classes by their type of
OS, which is depicted via shape or fill intensity. Node B and channel
AB are marked and appear bold in both pictures.
A row presents a visualization during three states of a program. Ini-
tially, only A is idle, then only B and then only C. The shading of the
idle nodes is applied in a different mode in each row.
The architecture of the visualization system.
The textual view of the computation state showing only the types of
tuples. . . . L L
The dialog for creating the track scene elements and setting their struc-
tural specifications.o Lo
Assigning correct rotation values to symbolic compass directions. . . .
A snapshot of the visualization after the tracks have been added. . . .
The visualization showing the trains and the railroad.
The property-based selection dialogue.
A snapshot of the visualization that display the trails of the trains.

Types of entities that are manipulated by the transport program.

A presentation of the transport network. Program objects are shown
at their relative physical location. Stations are shown as spheres, carts
as cylinders and parts as cones.
A presentation of the transport network. The number of carts and
parts for each destination is shown. Carts appear as cylinders, and
parts as cones. A graphical object for multiple entities, as shown for
count greater than one, was constructed from the object representing
a single entity, which appears at count=1.
An example of a cart and station scene elements as they go through the
three rendering steps. They have one structural specification named a
and different data specifications.
A simple style gallery. The complete description of the sphere is pre-

sented. For other styles, only excerpts are shown.

xi

38

92

37
29

63

63
64
65
66
67
69

78

79

80

82

2.6

2.7

6.1

6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

To the right, a style for depicting multiple tuples of the same class is
constructed from the style on the left, which was designed to display a
single tuple of that type. oo 86
The presentation of the transport network as seen from a different
viewpoint in the 3D world. The parts that are in the same cart or

station are distinguished on the z-coordinate. 91

A basic legend key is shown together with the graph format that cor-
responds to the same function. A linear function is displayed. 100
A segmented linear function is shown in both legend and graph formats.100
Two legends that present a function with a constant segment, in which
a range of values are mapped to the same graphical feature (left) and a
relation that contains the inverse of a constant function, in which one
value can be depicted through a range of graphical features (right). . 102
A key that presents concurrently the association among three domains. 102
A key extension to be used as a coordinate axis. An arrow is added
at the right end of the graphics thread. A graphics thread marks a
hyperplane with the same position on the axis as the tick. 103
Two snapshots of an interaction with the linear legend of Figure 6.1
by moving the graphics tick of 3.0 to 2.0. The element grabbed by the
user is highlighted. It can be seen that a new graphics tick was created
for 3.0 (top) and that the graphics tick for 2.0 was raised when the
user gesture brought the manipulated tick close to the graphics tick
for 2.0(bottom). 104
Snapshots of an interaction with the linear legend of Figure 6.1 by
moving data tick 2.0 to the right. The top figure shows that a graphics
tick is always maintained for a data tick. The bottom figure shows
both ticks for 3.0 pushed together with 2.0.. 105
A query that selects both objects with propl = prop2 (left) and objects
with propl = prop2 + 1 (right), depending on the range of the property.106
The CPU utilization for the computers of a distributed network is
encoded by height. The same number of height values encode any
interval of CPU values of a given length. Most CPUs are in the range
0-10, while most heights assigned to the CPU range 10-90. Individual

values of low CPU nodes cannot be distinguished among. 107

xii

6.10 The CPU utilization for the computers of a distributed network is

7.1

7.2
7.3
7.4
7.5

7.6
7.7

7.8

encoded by height. The view focuses on low CPU nodes by assigning
most heights to presenting CPUs in the range 0-20. 108

The correspondence between the input device and display: (a) no spa-
tial distortion, (b) translation up, (c¢) counterclockwise rotation around
the center, and (d) scaling. The upper row presents the footprint of
the input device (thick rectangle) and the movement of the control
(dashed line). The lower row superimposes, on the input device, the

display area (thin rectangle) and the effect of the movement (thick line).112

The two shapes in the steering task. 119
Error rate as a function of angle (top) and scale (bottom). 122
Movement time as a function of angle (top) and scale (bottom). . . . 123

Interaction between angle and scale. Trend lines are included for each
scale value.o 124
Interaction between SI and ID for circles. Only data trends are presented.125
The relation between the screen and the reference plane in which the
selection is made. Dashed line is what the user would see on the screen
from the reference plane. Note that a line that is straight up on the
plane appears slanted on the screen. 128
A square is selected using the two interface designs. The picture shows
how the selection appears on the screen and what is selected in the

reference plane.o 129

xiii

Acknowledgments

This thesis is based upon work supported by the National Science Foundation under
Grant No. NSF-CCR 9619831.

My research would have not been possible without the support of my advisors
Eileen Kraemer and Catalin Roman, and the help from Del Hart. Many thanks to
Maggie and Raluca for their patience, especially during late night hours.

Mihail-Eduard Tudoreanu

Washington University in Saint Louis
August 2002

Xiv

Preface

The work presented in this thesis is part of a larger endeavour that began at Wash-
ington University and later extended to the University of Georgia and University of
Alabama Huntsville. The project was funded by NSF and Boeing. The purpose of
the endeavour was to develop an approach for monitoring distributed computations
that permits selective and interactive exploration of the computation’s space. This
entails collecting the relevant portion of the local states of the processes in the com-
putation, and assembling a global state that satisfies certain constraints. The stream
of global states produced by the monitoring system is intended to be made available
for end-users to analyze. One method of analyzing the computation is through the
observation of animated graphics. This thesis elaborates on the techniques through
which an end-user may visually explore the state of the computation by creating and

refining custom animated views of the program.

XV

Chapter 1
Introduction

Program visualization holds great potential for conveying information about the state
and behavior of a running program. However, barriers exist to the realization of this
potential. These barriers include elements of the design of a visualization system that
reduce user’s performance, insufficient knowledge about how people take advantage
of program visualizations, and difficult or unreliable extraction of data from a live
computation. The focus of this thesis is on the elements of the design, but we also rely
on and present our experimental studies which add to the knowledge about how people
use visualizations. Our major contribution is the design of a visualization approach
capable of improving user’s performance through the use of economy of information
and tasks. This type of economy promotes animations that significantly improve
people’s understanding of the computation. We apply this knowledge to develop
a system for creating application-specific visualizations solely through interactions
with program visualizations and textual views of the computation, thus promoting
economy of interaction. The system is built around the principle that animation
viewers are also the creators of animations and systematically refine the visualizations

to suit their momentary goal.

1.1 Program Visualization

Program visualization, also termed algorithm animation!, is a form of presenting the

execution of a running computation through the use of animated graphical displays.

'In some publications, program visualization is considered to denote a research area that is either
different from or inclusive of algorithm animation. For the purpose of this dissertation, the two terms
are regarded as synonys.

2
Such animations visually encode and present how data is processed inside a running
program. For example, an animation of a sorting algorithm might show step by
step how the elements of an array are swapped pairwise until the array is finally
ordered. Program visualization is believed to be conducive to the understanding of
algorithms and programs [84], and consequently, has been applied to solving problems
that require a solid insight into the complexities and abstractions of computations
[71]. For example, graphical displays have been used for monitoring and debugging
of programs [60], for learning about algorithms[87, 4], for communication within a
group of programmers[46], and for the optimization of code [41].

Current trends in software engineering and visualization suggest that a demand
for program understanding techniques exists and that graphics have the potential to
supply significant help. Thus, algorithm animation may become increasingly im-
portant for all categories of users, ranging from novices to seasoned programmers.
Current and future software packages demand new and improved techniques, beyond
traditional software engineering and formal analysis approaches, to cope with the
sheer complexity and size of code while maintaining an acceptable level of reliabil-
ity (see [59] for a mainstream media report on the challenge of developing reliable
software). The behavior of software systems is very often unpredictable and strays
from what developers intended or assumed. Hence, there is a need to make software
analysts more aware and knowledgeable of both the programs they write and the
pre-existing, unfamiliar components included in their product. Program visualiza-
tion can play a role in bridging the gap between human reasoning and computational
processes from the early stages of training when graphics can be used to give students
extra insight, to production settings when visual aids can be used for programmers
and administrators who seek to manage large software, and even to end-users who
must become more and more aware of the high-level mechanics of the software they
employ.

On the supply side, there are encouraging signs that visualization is an effec-
tive conveyor of information. Scientific visualization is gaining ground and popular-
ity among researchers, which can be seen for example in the use of visualization for
analyzing the results of detailed simulations of various natural phenomena on super-
computers [5]. Information visualization, which focuses on the presentation of more
abstract data than does scientific visualization, exhibits an upward trend in signif-

icance, providing help in domains such as marketing and stock market analysis [3],

3
and being envisioned as the future of data analysis in the intelligence community (see
call for proposal [47]).

The benefits of graphics as a presentation medium are two-fold, as Bertin notes
[15] in his book “Semiology of Graphics”, as a tool for conveying large amounts of
information and as an environment for solving logical problems. Scaife and Rogers
[77] view graphical representations as a form of external cognition, in which mental
internal representations are offloaded onto an external medium to relieve the cognitive
burden and speed up processing. A stylized representation of the external cognition
principle is given in Figure 1.1, in which the visualization extends the cognitive re-
sources of the user. Note that these considerations are applicable to graphics in
general, and it is unclear whether users of program visualization take advantage of

animation in this manner.

Visualization Internal cognitive
resources

Figure 1.1: Visualizations are considered to extend cognitive resources because they
are a form of external cognition. More resources improve human performance in
performing a task.

4
1.2 Barriers to Exploiting the Potential of Algo-

rithm Animation

Despite program visualization’s expected potential and the need for richer tools to
connect people with computations, animation is largely underutilized [51]. Since
the introduction of program visualization tools, program visualization technology
has undergone significant advances, though not enough to have shown consistent
advantage to visualization users over non-users. One barrier to effective program
visualization is a poor understanding of how animations improve user’s performance
and, more precisely, of some of the factors that may lead to effective algorithm views.
This might explain the mixed results of empirical studies into the practical importance
of algorithm animation [19, 39, 50, 54, 83]. Consequently, another barrier is that
program visualization tools include only a few elements that enhance the effectiveness
of animation.

This dissertation concentrates on barriers to increased performance for visual-

ization users that relate to cognitive load. More precisely,

A. on the adverse effect of increased cognitive load on the benefits provided by ani-

mations, and

B. on the barriers to promoting reduced cognitive load in program visualization tools.

Animation tools may increase the cognitive load in the following instances:

1. when the animations are created and refined;

2. when the user needs support for a number of unrelated or unforeseen tasks;

or

3. when the user is becoming familiar with and applying the visualization.

A. Algorithm animations and high cognitive load may have opposite effects
on the mental resources. On one hand, animations have the potential to free internal
cognitive resources. On the other hand, increased cognitive load uses more of the
same resources. Thus, program visualization and increased cognitive load may offset
each other’s effects from the point of view of internal resource usage. In other words,
a situation in which both graphics and high cognitive load exist resembles a situation
when neither is present. Hence, a visualization environment that requires users to
handle additional information and tasks, which increases cognitive load, offers sim-

ilar performance advantages to that of a user who has no visualization at all. The

5
problem is aggravated when the additional information and tasks are not related to
the observed computation, leaving fewer resources for analyzing the program.

B.1. The creation and refinement of an application-specific visualization of-
ten relies on indirect structures, such as specialized languages with their compilers,
or dedicated graphics packages and editors [1, 16, 74, 88]. These indirect structures
create a barrier by consuming the cognitive resources that the user devotes to under-
standing and handling the structures and tools. A schematic of such an interactive
visualization process is shown in Figure 1.2. A modification of the animation is of-
ten performed by switching through multiple environments. It often happens that
changes involve some guesswork, as they might not be apparent immediately due to
the delay in updating the visualization or to the placement of the program view out
of sight, obscured by the extra tools. The user must store the associations between
tools in the working memory and must internally process the structure when guessing
whether a change results in the desired view.

B.2. Pre-defined animations are limited in the range of tasks with which they
can efficiently assist the user. Although such views are easy to obtain and quite helpful
for their intended tasks, they can quickly become a burden as the task shifts. The
user’s task is likely to shift due to changes in the user’s goals or understanding of the
computation. An attempt to apply a pre-defined visualization to a different task, even
if derived from the original task, might force the user to devote substantial cognitive
effort to associating the information in the visualization to the information required
by the task. This might have the undesirable effect of increasing the data that has to
be mentally stored and might result in an increase in the time and cognitive burden to
perform the task. In such a situation, the task of understanding the program is shifted
to understanding and applying the relations between the available visualization and
the problem to be solved. The mere existence of an animation does not lead to
reduced cognitive load.

B.3. Algorithm animations might employ numerous concepts and representa-
tions to present the abstract data and mechanics of a computation. To accomplish any
task, the user must expend additional effort for understanding what the animation
is presenting during its execution. The user must learn and recall the visualization
syntax, the mapping between changing entities of the computation and the dynamic

graphical elements. If the syntax is unknown, the visualization is perceived by the

user
manipulation

Indirect
structure

AT,
AN
st
B X R I R D 8 S

o o S e o ot

o O S el ot
(el S

S

2
%!
2
3
o

s
seviititel
e

2

-
e,

(X,
&5
S0

-
M
S0
L H
L

o
e
e

by
5!
o

Program Visualization and cognition

Figure 1.2: The running program can be observed through a visualization, a form of
external cognition. Existing algorithm visualization tools often require the user to
create and refine indirect structures, which in turn modify the final animation. To
accomplish this, the user must allocate cognitive resources to the indirect structures
(hashed area), reducing the resources available for processing the program and vi-
sualization. More than one type of indirection may exist between the program and
visualization.

user as a set of randomly changing shapes and colors. Unfortunately, in classical pro-
gram animation, no provisions are made for reducing the time and cognitive resources

diverted toward learning the syntax.

1.3 Contributions: Removing and Reducing Bar-

riers

Our research is aimed at creating an improved program visualization tool that is
rooted in theoretical and empirical results. The most important design goal of our

tool is toward increasing the performance of animation users as compared to those

7
to whom visualization has not been made available. The secondary goal is to al-
low users to build a wide range of animations for any arbitrary computation. The
target audience includes users who observe the manner in which an already-written
program manipulates its variables and data structures. Our tool is intended for mon-
itoring and detecting errors at programming language and algorithmic levels, and for
communicating the behavior of software components among teams of programmers.

The unifying theme of our approach is the notion of cognitive economy, the
application of the concept of external cognition to program visualization. Cognitive
economy seeks to reduce both the amount of “extraneous” information that the user
must manipulate and store in the working memory, and the number and complexity
of tasks related solely to the animation. “Extraneous” information includes any in-
formation not directly pertaining to the observed computation such as the code that
defines the animation. The goal of cognitive economy is to allow mental resources to
be allocated to understanding the computation rather than to “extraneous” informa-
tion and tasks. On the positive side, the balance of allocation is improved (because
of external cognition) by graphical representations that can be customized to various
computations and tasks. On the negative side, the balance can become unfavorable
to the understanding of computations as “extraneous” tools, including animations,
are added into the user’s environment, and as the user must allocate more resources
to managing the extra tools.

Cognitive economy is supported by an empirical investigation in which we
found that, under conditions of improved cognitive economy, animations promoted
significantly more accurate problem-solving by the user. Poor cognitive economy, on
the other hand, is among the factors that may cancel the benefits of the visualization,
leading to the situation in which users and non-users of graphics register similar
performance.

We developed an algorithm animation tool that is designed for cognitive econ-
omy and eliminates the need for indirect representations to create visualizations.
Cognitive economy is accomplished by simply eliminating information and tasks re-
lated to the indirect structures (compare the new approach in Figure 1.3 with the
traditional one in Figure 1.2). Since cognitive economy is a factor that promotes ef-
fective program visualization, our tool has the potential to significantly help its users.
Our tool is designed to be used with a stream of program states that are collected

from a running computation with a system like PathFinder [40]. Users can create and

8
refine animations solely via interaction with graphical and textual representations of

the computation.

user
manipulation

Program Visualization and cognition

Figure 1.3: The running program can be observed through a visualization. The
visualization can be customized directly via user interactions.

Both practical and theoretical technical contributions make the customization
of visualizations possible in the absence of indirect structures and with cognitive
economy. The technical contributions listed below address the interactions with vi-
sualizations on a spectrum from a high, conceptual level, to the creation of dedicated
widgets for continuous modification of visualizations, and to very basic interaction
with physical and software input devices. The conceptual-level interaction is sup-
ported by an algorithm that involves the computer in the automatic handling of

lower-level graphical details. These contributions include:

e A model of interaction with algorithm animations. The model is based
on the content of the visualization, and it is independent both of the particular
graphical details employed in the animation and of the features of the graphical
user interface. The focus is on discrete operations, on how the animation of

a computation can be changed in discrete steps. Cognitive economy is further

9
supported by the content-oriented model because the user is not required to
specify the graphical details of the animation, which can be quite difficult and
tedious. Additionally, the operations, once learned, can be applied uniformly

across animations and computations.

Automatic presentation of running programs. Algorithms for automation
presentation can create custom graphical representations for the information
content specified and manipulated by the user. Automatic presentation is em-
ployed in conjunction with content-based manipulation of the animations, but
can also be useful for starting a visualization session and for novices with little
experience with computer graphics. The user can still operate at the graphical
level if desired, and the technique is flexible enough to include the graphical
preferences of the user in the final animation. The main advantage is that some

of the user’s tasks are transfered to and handled by the computer.

Interactive legends. These legends, an extension of those found on a road
map, allow continuous adjustment of an animation. They are an integral part
of the visualization serving both display and input functions. As a display,
these legends explicitly convey the visualization syntax, the mapping between
program entities and graphical features. The placement of visualization syntax
in plain sight reduces or eliminates the need to train the user for the visual-
ization. As an input, legends permit the adjustment of the manner in which
the program is encoded as graphics, and provide an intuitive mechanism for
refining the data to graphics mapping. In serving these functions, legends are
important for cognitive economy, for removing barriers in understanding the
animation itself, and for complementing the interaction capabilities of discrete

operations.

Spatial transformation of input. We conducted an empirical study to ana-
lyze the accuracy and speed of interaction when user’s gestures performed on an
input device appear “distorted” on the screen. The results of the study enabled
us to develop a prediction model that can be employed to evaluate the speed
of a user interface that relies on continuous input devices. The model is a the-
oretical contribution, which can be used in practice to choose an interface with
visualizations that reduces the difficulty of basic continuous interaction, such as

moving elements in the visualization. Accurate and fast basic interaction has

10
the potential to reduce the difficulty of the tasks performed on the screen. Spa-
tial transformation of user’s gestures is quite typical and occurs because the user
cannot access objects directly on the screen (except through touchscreens and
electronic pens), but only via input devices such as physical mice or software
scrollbars. The experiment investigated affine transformations, a combination

of rotation, translation and scale.

1.4 Dissertation Overview

The next chapter is an overview of the current state of the program visualization field.
First, an overview of the existing program visualization approaches is given, followed
by a brief description of important empirical studies. An expanded list of barriers,
some of which are beyond the scope of this thesis, is given in “Why Johnny Won’t
Visualize,” which takes a closer look at possible factors that may be responsible for
preventing the wide-spread use of program animations

Chapter 3 presents two controlled experiments, in which we found that algo-
rithm animation under conditions of cognitive economy can significantly improve user
performance.

An abstract model for the content of a program visualization is given in Chap-
ter 4. Later in that chapter, we identify general characteristics of the user operations
on animated graphics, and present an example of an operation set and visualization
session. The abstract model is also used by the automatic presentation algorithm of
Chapter 5. User interactions have the power to modify this abstract model of anima-
tions, and automatic presentation provides the capability to build visualizations that
reflect the changes produced by the user at the high-level of the model.

Legends are presented in Chapter 6. They complete the discrete operations of
Chapter 4 and provide a way to explain the decisions of the automatic presentation
algorithm of Chapter 5. We detail the visual design of interactive legends and describe
the actions available to the user. The chapter also introduces animated legends.

Chapter 7 describes an experiment that assessed what happens when the user
input is spatially transformed through a combination of translation, rotation and
scale. The procedure and results of the study are detailed, and a statistical model of
the interaction speed as a function of spatial transformation is derived. The chapter
contains an example of how the prediction model can be applied to choose between

two basic interfaces to three-dimensional visualizations.

11
Finally, in Chapter 8, we summarize the contributions of the thesis and present

future work.

12

Chapter 2

Program Visualization Technology

2.1 Overview

In this chapter, we provide a picture of the current state of program visualization
research. We begin by elaborating on developments and approaches that permit
users to obtain a program animation. We explicitly state the differences between
these approaches and our approach. Next, we present the results and conclusions
of experimental work that concentrates on the interaction between animations and

users. Finally, we compile a list of open research problems.

2.2 Obtaining Animations

A wide range of tools, each built on different principles and with its own strengths
and weaknesses, can be employed by a user who seeks to observe an animation. A
number of comprehensive taxonomies of program visualization have been compiled by
Myers [61], Price et al. [66], and Roman and Cox [72]. However, from the perspective
of our research, the primary feature of interest in classifying program visualization
systems is their reliance on the user manipulation of indirect structures. The indirect
group contains systems in which the visualization is defined by writing a piece of
code or by constructing a visual program. The direct group allows the users to obtain
a view of the observed computation by manipulating the animation directly. For
completeness, we consider that pre-defined program visualizations are part of the
direct group because such animations do not require the construction or manipulation

of any structure, and that animation authoring belongs to the indirect group. In

13
animation authoring systems, there is no running computation to be monitored, and
the user focuses on the animation itself rather than on an existing program. Authored
animations may or may not present an exact computational process. The main reason
for classifying these approaches under indirect structures is the different paradigm the
animation authoring entails. Moreover, it happens that most authoring tools expose
users to coding.

The results in the indirect group differ fundamentally from our approach. Our
empirical investigations suggest that under some conditions indirect structures may
incur the risk of degrading the performance of the animation users in understanding
a computation. The direct group is closer to our work, but the range of animations
that can be obtained with the help of those systems is more limited than the range

offered by our tool.

2.2.1 Approaches that Involve Indirect Structures
Monitoring Running Programs

A diverse body of research has produced systems and tools that are able to create
graphical representations of running programs. We present both systems that are
specially designed for program visualization and techniques that were intended for
other types of visualization but have been employed for the creation of program
visualizations.

The most versatile program visualization approaches are powerful enough to
produce virtually any animation. However, they require the user to have program-
ming skills, as the visualizations have to be coded, and to be knowledgeable of the
animation packages provided by the tool. Marc Brown’s BALSA [16], one of the ear-
liest algorithm visualization tools, is based on the interesting event paradigm. The
observed program is annotated at certain interesting points with calls to user defined
animation functions. The main role of these calls is to change the picture displayed
on the screen, with the end result that interesting events in the computation are
visually represented. Stasko in Tango [86] introduced the path transition paradigm
which was later adopted by Stasko and Kraemer in Polka [88], a visualization tool for
parallel and distributed computations. The path transition paradigm is also based on
annotations of the observed program and assumes that multiple events may be called
in parallel from the processes of the computation. These calls, which are user-defined,

specify the path of various graphical objects on the screen and the transformations

14
they are to undergo, as opposed to actually moving or changing them. The system
then animates these objects along the path specified by the user and synchronizes
their movement/change. Samba [81] allows the use of a simpler, scripting language
to access the power of Polka. Samba was designed as a simpler method of generating
animations. One Samba application was to support students in building their own
program visualizations [87], which is similar to our goal of empowering viewers to
become creators of animations.

A declarative approach to program visualization emerged in Pavane [74], de-
signed by Roman and Cox. Unlike the other approaches in which the user defines
how the animation is changed when the execution reaches an interesting event, the
declarative paradigm requires the user to specify a mapping from the program state
to a graphical representation. When the program state changes, the mapping is re-
applied by the computer to update the picture. Pavane supports smooth animations
of the transitions from one frame to the next. The mapping is specified by the user
as a program, which is written in a programming language that allows the definition
of arbitrarily complex functions [23]. Demetrescu and Finocchi developed Leonardo
[25], which is also based on the declarative paradigm, but uses a logical language
to create and modify visualizations. One advantage of the logic-based approach is
that the visualization can be modified without recompiling the logical program that
defines it. A virtual CPU is integrated into the visualization system, which allows the
underlying program to be executed in reverse. Leonardo also includes a declarative
method [28] for specifying the path of timing of the transitions from one frame to the
next.

Visual programming can replace the traditional textual code that defines the
visualization. AVS [1], a commercial product developed by Advanced Visual Systems
Inc., has been used to construct program visualizations [27]. It is interesting that AVS
was designed for scientific visualization and was adapted to the building of program
animations. With AVS’ visual programming environment, the picture is produced by
specifying a data flow graph. The main drawback of such an adapted system is the
inability of the user to specify a wide range of animation behaviors solely through
direct interaction. The behavior of the animation may need to be purposely modified
from the behavior of the observed program in order to maintain information from
previous states of the computation and combine it with the data from the current
state. This approach is helpful for tasks that require the user to understand temporal

causal relationships in the computation. A further drawback of AVS is that the user

15
must understand and learn the functions of various modules, which are typically coded
textual programs, and must connect and patch these modules together by making use
of visual programming.

Automatic presentation tools are perhaps the easiest to use, as they can typ-
ically produce a graphical representation of the information in which the user is in-
terested. Their main advantage is that, unlike previously presented systems, the user
has only limited exposure to the graphical details and can operate at the information
level. The two automatic presentation tools discussed here, Boz [20] and VisAD [43]
still require the user to create simple pieces of code (a more comprehensive list of
automatic presentation techniques and their relation to our work is presented in Sec-
tion 2.2.2). Casner in Boz [20] is able to generate a picture of a database that is also
customized for the user’s task. The specification of the task, however, is provided as a
piece of code. VisAD [43] was developed by Hibbard et al. to visualize the data types
that appear in an algorithm. VisAD requires users to specify, in a textual manner,
the correspondence between scalar data types and graphical attributes. Based on this

mapping, the algorithm can present composite data types.

Animation Authoring

Animation authoring, as defined in this thesis, refers to approaches for the creation
of animations that focus on data structures used in algorithms and may illustrate
computational steps, but that are not used to monitor an existing program. They
are employed in situations that entail the explanation of an algorithm and its varia-
tions. The dominant application is the instruction of students in algorithm and data
structures courses, where both normal operations and problems are demonstrated by
an instructor.

The goal of animation authoring is radically different from the goal of the rest
of program visualization research. For the former, the animation can be regarded as
the final product, while for the latter, a computation is the final product and the
animation just a tool in shaping the product. “Traditional” program animation can
supply the animations needed in authoring tasks, but entails a high overhead because
the creator must implement the operations in a programming language, then collect
the data from the running program, and then build the visualization. Animation
authoring systems presented below attempt to combine and, when possible, to skip

some of these steps.

16

Roessling developed a direct interaction system named Animal [69] which sup-
ports the drawing of each frame of an animation and contains a number of transition
effects. Animal can be used to build general animations, not necessarily related to al-
gorithms. Special attention, however, is given to graphical representations of pointers
and linked data structures, as well as to the display of code. Animal is not coupled to
any computation, which provides flexibility to convey erroneous algorithm steps, but
makes it more challenging to create an exact rendering of an algorithm. The visual-
ization can be played both forward and backwards. AnimalScript [70], which uses the
same engine as the direct manipulation tool, is a simple and extensible language with
which animations can be defined via textual scripts and some limited Java coding.

Hundhausen and Douglas developed a language SALSA and an environment
ALVIS [44] for animation authoring. Like our approach, their work is rooted in em-
pirical results (see [46, 53]) rather than solely on the authors’ intuition. The system
provides reversible execution and low fidelity animations. This kind of animations is
based on cut-outs sketched by the user. Spatial logic is employed to assemble cut-
outs, which seems to support our position that computer graphics (based on Cartesian
coordinates) is too complicated to be specified directly by the user. Although ALVIS
provides a friendly interface for building and editing SALSA programs, the user typ-
ically must handle SALSA code. No other code is necessary for the definition of an
underlying algorithm.

SKA [38] is another authoring system designed by Taylor. It supports cloning
of data structures and parallel tracing of the execution of the same algorithm on the
cloned structures. Data structures can be modified at any time by the user. SKA
actually uses an underlying Java program that encodes the steps of the algorithm to
be animated.

Animations can also be authored with common presentation tools such as
HyperCard™ from Apple or PowerPoint™ from Microsoft. Each frame of the ani-

mation and transitions can be defined in a card or a slide respectively.

2.2.2 Approaches Without Indirect Structures

This section is organized in three subsection in the order of the capabilities of these
systems. The order is subjective and takes into account the number of tasks for which

the user can customize the visualization. The tasks that can be covered by a tool

17
is closely related to the general flexibility of the tool in supporting a wide range of

animations and computations.

Direct Interaction with Visualizations

Direct manipulation and visual definition of visualizations was explored as a means of
eliminating the coding requirement. Mukherjea and Stasko integrated into a debugger
a program visualization tool named Lens [60]. The user can click on statements of
the observed program and add visualization requests mainly by filling out various
forms. A graphics editor is integrated in Lens to produce the graphical objects of
the visualization. The values of graphical attributes can be smoothly animated by
choosing among pre-defined transitions. Lens is not designed to construct a large
range of animations, but instead is designed to permit easy creation of most used
types of animations. Lens is further restricted by its dependency on the control
structures of the program such as if or while blocks. Steve Reiss’ BEE/HIVE
[68] is another system for creating program visualizations in a direct manipulation
environment. It consists of a visual query interface that can be used to process the
data collected from a running program, and a number of visualization templates to
convey the processed information. Although the query mechanism can help explore
relations in the program state, the final appearance of the animation must rely on a

pre-existing template.

Automatic presentation

Automatic presentation techniques appeared in the context of structured, static in-
formation such as database systems. An early approach, APT [58] by Mackinlay, was
able to create a picture to present relations from a database. The algorithm ensures
that all and only the data chosen by the user is depicted, and that the relations
between values are shown by an appropriate visual feature such as color, shape or
position. SAGE [76], created by Roth et al., relies on a richer characterization of
information than APT and is capable of creating visualizations that can present data
more clearly.

The University of Washington illustrating compiler (UWPI) [42] can automat-
ically create visualizations for simple programs. UWPI recognizes a set of abstract
data structures and has a built-in representation for these data structures. The visu-

alization for each state is generated through a simple composition of these pre-defined

18
graphical representations. UWPI is limited in the programs it can correctly analyze
(it only recognizes a subset of Pascal and it may fail to recognize the type of data for
programs with bugs), and in the appearance of the final picture.

Automatic presentation techniques, although they require little effort from the

user, are subject to a number of limitations which include:

Continuity of animations Some of these systems (APT [58], SAGE [76], and Boz
[20]) were designed for static information, and for dynamic information may
produce animations that are hard to understand. Specifically, the problem is
that there is no guarantee that an automatic presentation tool will maintain the
same visual encoding for similar information. As program entities appear and
disappear, the algorithm might decide on a different “best representation” of
the same piece of data in each frame of the animation. This may happen in an
attempt to accommodate additional program entities or to simplify the picture

when entities disappear.

Animation behavior The tools that handle dynamic data (VisAD [43], and UWPI
[42]) support only a limited range of animation behaviors. Namely, only the

information from the current state of the computation is displayed.

Types of program entities No automatic presentation technique, except UWPI,
distinguishes between the type of program entities and properties (relations)
of those entities. The state of the program, however, is comprised of various
types of entities, which represent very different concepts such as queues, trees
or scalar integers. Nonetheless, entities of different types might have properties
in common. A good visualization, in our opinion, must convey the information
in a manner that allows the viewer to easily recognize classes of entities, even
when properties that span across several classes are also shown. A strong visual

distinction should be made between types of program entities.

Pre-defined views

Pre-designed visualizations have the main advantage that they are simple to use
and quick to employ. Additionally, such visualizations typically benefit from the
insight of an expert into the problem for which the animation was created. Pre-
defined visualizations tend to be created for common tasks that occur in a certain

programming language, type of computation, or class of problems. Such views might

19
increase cognitive load when applied to solve more specific problems or tasks outside
the intended scope of the visualization.

Tools for enhancing the understanding of programs written in a specific lan-
guage have been developed for Java ™ and Prolog as well as other languages. Jinsight
[49] and VisiVue [2] are commercial tools that present the execution of Java programs.
Jinsight, built by IBM, offers a number of perspectives such as program slices, execu-
tion of threads, and memory allocation. Jinsight has interactive features that allow
the user to organize the wealth of data collected from a program. VisiVue shows a
diagrammatic view of the objects and the references between objects. Eisenstadt and
Brayshaw developed the Transparent Prolog Machine (TPM) [30] with the purpose
of providing insight into the inner workings of a Prolog program. TPM shows the
backtracking process of a Prolog execution through animated trees and can provide
both coarse-grained and fine-grained level of detail.

A specific visualization for distributed computations that employ the PVM [91]
library is provided by PVaniM, developed by Topol et al. [93]. The system provides
a number of visualization that show message passing patterns and statistics. Some
of the views were inspired by Heath and Etheridge’s ParaGraph [41], a pre-defined
system dedicated to the analysis of the performance of parallel programs.

An example of a system created for a particular class of problems is COMIND
[62]. It was designed for understanding and guiding the search algorithms in a con-
straint satisfaction problem [33]. A number of views present how the search explores
the space of possible solutions and how constraints are considered. It is assumed
that, based on these animations, a user can customize the search algorithm to be

more efficient for a given set of constraints.

2.3 Evaluations of Program Visualization

Empirical studies of program animations have concentrated on two main directions. In
the first direction, researchers answered the question of whether program visualization
provides benefits to users. In the second direction, studies analyzed the manner in
which participants in the experiment create or make use of program visualizations.
The studies we conducted are along the first direction and differ from previous work in
the user’s task (problem-solving as opposed to learning) and theoretical background
(cognitive economy). A good survey of program visualization studies can be found in
Hundhausen et al. [45].

20
2.3.1 Measures of the Effectiveness of Animations

Although a reasonable number of techniques exist for obtaining program animations
as described above, little is know about the practical effectiveness of such animations.
Previous user studies of program visualizations have had mixed results. An early
study by Stasko et al. [83] showed a non-significant advantage on a post-test for
participants using an XTango visualization and text description of a pairing heap
algorithm compared to a group which had only the text.

A more comprehensive study by Lawrence et al. [54] looked at students who
attended a lecture, then constructed data sets individually while doing a related
algorithm visualization lab exercise. These students performed significantly better on
a post-test than those who just attended the lecture. Students who were given a data
set did marginally, though not significantly, better than those who only attended the
lecture. However, among students who only attended a lecture, those who viewed
algorithm visualizations performed marginally worse than those who viewed slides
containing static depictions of the algorithm’s execution.

Hansen et al. [39] found that a group of students who used a hypermedia
environment that included algorithm visualizations as well as pseudocode, text, and
illustrations performed significantly better on a post-test than another group that
used a textbook. However, it was not clear which aspects of the environment con-
tributed to that result.

Byrne et al. [19] conducted a series of experiments to measure the effect of
making predictions about the next state of an algorithm, with and without visualiza-
tion. A significant result was obtained for the use of visualization on the conceptual
portion of a post-test for a basic graph search algorithm, but no difference was found

for a more complex binomial heap algorithm.

2.3.2 Observational Studies

To investigate the use of algorithm visualization and other media as a problem-solving
resource, Kehoe et al. [50] conducted an in-depth observational study of students
solving a set of binomial-heap questions, given a textbook section, pseudocode, and
either algorithm visualizations or a series of static figures captured from the algorithm
visualizations. No time limits were set. They found that students using the visual-

izations spent more time comparing and moving between the media types, especially

21
the pseudocode and the visualization, and that the visualization group performed
significantly better on the questions.

Hundhausen conducted a pair of ethnographic field studies [46] to observe how
students in an algorithm course construct visualizations. Various field techniques were
employed. One study required students to use Samba [87] to build visualizations of
the algorithm learned in class. The animations were then presented to other students.
The students spent substantial time both individually and in discussions on low level
coding of graphics. The other study let students use office and art supplies to build low
fidelity visualizations. These students spent less time on creating visualizations and
concentrated more on the underlying algorithm. The students also actively marked
up their paper visualizations and often backtracked the presentation to a previous

point. Note that this field technique is different than a controlled experiment.

2.4 Why Johnny Won’t Visualize

This section is named in the same style as a series of famous articles, such as “Why
Johnny Won’t Read”, that also addressed possible problems. Many potential users
of program visualization have a strong intuitive belief that visualization is a valuable
tool for communicating information about the state and behavior of programs. Yet,
in practice, the use of visualization is less pervasive than the notion that it is use-
ful. Several factors may contribute to this apparent disconnect between belief in the
usefulness of visualization and the extent to which visualization is actually employed.

The factors are related either to the user or the visualization technology.

2.4.1 User-Related Factors

Program visualization may be underutilized because of user misconceptions, lack of
trust, or perceptual limitations. Furthermore, the benefits provided by animations
are not very obvious, and there are few clear guidelines to obtain them.

The manner in which users regard visualizations often prevent users from em-
ploying them. One problem is a lack of trust in the stability of the visualization
system, which might make users suspect that an application error is instead caused
by the visualization. Another problem is the preconception/misconception among

potential users that they must understand the program before beginning to visualize

22
it. Finally, users may have doubts about the relative benefits of visualization given
the perceived effort.

The actual benefits of algorithm animation, independent of users’ opinion, are
not consistently apparent. The studies presented in the previous section found only
infrequently an improvement for visualization users. Further, the exact aspect of the
user performance that is enhanced by program visualization is still not obvious.

Limitations of human perception, especially those particular to algorithm an-
imation, have the potential to make visualizations difficult or impossible to observe

and follow by users. Little is known about a number of perceptual issues including:

e the number of concurrently moving objects that can be tracked and related to

the underlying program by a typical viewer;

e the instances in which the user can map the movement of an object or objects

(an animated action) to the operation the visualization is trying to portray;

e the instances in which the user can assign the correct meaning to a sequence of

actions;

e the effect of the complexity of an algorithm on the ability to track and interpret

individual or group actions;

e the ability of visual and/or audio cues (e.g., arrows, sounds) to signal events we

want to highlight (e.g., exchange completed, end of pass, etc.);

e the manner in which the visibility of representations affect the viewer’s ability

to reason about the algorithm.

A lack of proven guidelines for good animations makes the creation and refine-
ment of program views an art more than a science. This produces a mismatch with
the target audience, primarily engineers and scientists. The guidelines should include
perceptual knowledge, hints of the general format of a visualization based on the cur-
rent, type of task to be performed, and suggestions for organizing the information of
the program in order to solve a type of problems. Steps toward creating guidelines,
such as Roman’s proposal to visualize formal properties (invariant, progress), have

been few and not thoroughly tested in practice.

23
2.4.2 Technology-Related Factors

The wide-spread use of program animation may be hindered by problems in connect-
ing a visualization to a running program, for creating (authoring) animations, and
for navigating through the computation via modifications of the program views.

Linking a visualization system to a live computation is sometimes challenging.
The requirements may include annotation of the original code of the computation,
and data collection/assembly systems that are flexible enough to allow varying levels
of granularity. Sometimes, it is only possible to monitor a restricted class of programs
or executables written in certain programming languages. Further complicating the
process is the use of off-the-shelf and third-party modules that either do not support
monitoring or support other monitoring paradigms. A similar problem arises in the
use of distributed systems that do not fall entirely under the administrative domain
of the visualization user.

The creation of an animation may be considered difficult and time-consuming
by the user. As already pointed out, the user may be required to handle indirect
structures and multiple unrelated tools, that increase mental effort and time, and
provide poor feedback to user changes.

In addition to creation, users and designers of visualizations must perform
the tasks of navigation and refinement, often as a result of the insight gained from
previous graphical representations. These otherwise natural tasks are often difficult
and tedious, or may be limited by poor interaction mechanisms in the visualization
tool. In addition, often the factors impeding easy creation also negatively affect the

refinement of visualizations.

2.5 Concluding Remarks

Program visualization technology and, to a smaller degree, knowledge about the use
of such animations is becoming increasingly advanced. Experience in both subfields
can be used to develop more efficient visualization systems, yet does not seem to
be enough to make animations commonly utilized. Current program visualization
approaches either require indirect structures or have limited capabilities. At the same
time, little is known about the factors that may result in an increased performance
for animation users. Our work focuses on cognitive economy as such a factor, and on

the development of a program visualization tool that supports cognitive economy.

24

Chapter 3

Empirical Studies of Program

Visualization

3.1 Overview

The knowledge of factors that promote beneficial program visualizations is still in
its infancy. Indeed, the question of whether program visualization is beneficial in
helping users to perform certain task has received mixed results. In this chapter,
we present two studies designed to answer the question “Does visualization promote
understanding of distributed computations?” One study failed to show any signif-
icant benefit when visualizations were used to answer questions about distributed
computations. The other study, in which both the animation and the testing envi-
ronment, were designed in light of the concept of cognitive economy, showed a clear
benefit for visualization users. Performance of the users who did not have access to
visualizations was comparable across the studies, providing us with the opportunity
to compare these studies and to postulate possible causes of improved performance

of visualization users.

3.2 Introduction

Despite the high expectations of the visualization community and a warm reception
from users, program visualization has previously failed to demonstrate its usefulness

in most empirical studies. Overall, the results of the studies have been mixed, with

25
slightly better results recorded in situations in which algorithm animation was em-
ployed, and with only a few experiments that reported a significant difference in per-
formance between visualization and non-visualization settings [19, 39, 45, 50, 54, 83].
The variation in the results shows, at the least, that evaluation of algorithm ani-
mation is complex and that not enough is yet known about the factors that affect
the effectiveness of program visualization. Such factors, when properly identified and
understood, may guide the design of more beneficial animations and animation tools.

In the process of conducting and comparing two controlled experiments, we
identified several factors that can critically influence the effectiveness of program
visualization. One of the studies found that visualization significantly improves user’s
performance, while the other did not show any improvement for animation users. The
majority of the factors that were modified from one study to the other fall under the
concept of cognitive economy. Cognitive economy seeks to reduce both the amount
of information handled by the user and to eliminate or reduce the user tasks that do
not pertain to the observed computation.

The two studies are similar in that they employed the same computation, user
profile and type of tasks to be performed by the participants. Moreover, about half of
the tasks, which consisted of answering questions, were identical in the two studies.

The methodology of both experiments allowed users to examine the visualiza-
tion and any other learning material while completing their task (answering ques-
tions). Our studies captured the situation in which users have a problem to solve,
may employ any available materials, and are not focused on remembering the com-
putation afterward. We measured the importance of animations as a problem-solving
tool. This differs from most previous experiments, which focused on learning, and
in which the participants underwent a training session to examine the learning ma-
terials (including visualization), followed by a test session to answer the questions.
Typically, the test session consisted of a number of problems to be solved without the
help of the materials from the training session. In those experiments, user’s attempts
to recall aspects of the visualization may have increased rather than decreased the
cognitive load. We recognize that this is a simplified view, as some learners might
quickly form better internal representations (Craik introduced the notion of “mental
models” [24]) of the algorithm by observing the visualization. In any case, a study
that allows the use of visualization while solving a problem will capture both external

cognition and the creation of internal representations.

26

Distributed computations were employed in both experiments, to the best of
our knowledge, for the first time in algorithm animation evaluations. Such compu-
tations can be less intuitive than sequential code because of the interactions among
multiple concurrent processes. One of the studies, henceforth to be referred to as
study A, included two computations. Only one of the computations was used in the
other study, which is named B.

Experiment B was designed specifically to minimize the amount of information
about the animation and testing environment to be memorized by the participants.
Navigation tasks in the environment and visualization were simplified or eliminated
in an effort to reduce the user’s tasks not related to the computation.

The next section describes the distributed algorithm used in both evaluations.
The two experiments are presented in Section 3.4 and Section 3.5. An analysis of the
results across the studies is the subject of Section 3.6. The list of factors that differed

between the studies is compiled in Section 3.7, followed by a discussion in Section 3.8.

3.3 Termination Detection Algorithm

The algorithm selected for our empirical study is a classical termination detection
algorithm for distributed systems by Dijkstra and Scholten [29]. The algorithm as-
sumes that a computation is performed on multiple nodes of a distributed network.
The purpose of the algorithm is to allow the node that initiated the computation
to determine when the computation has finished, which means that no node in the
network is still working on any part of the computation. The initiator process, named
root, starts the computation by optionally performing some processing and then dis-
tributing the computation among some of the neighboring nodes. Each of the nodes
that receives a request to perform a sub-task might individually fulfill that sub-task
or decide to divide the request further among a subset of its neighbors. As the request
wave continues to propagate in the network, possibly to processes with which the ini-
tiator has no direct contact, it may become challenging for the initiator to determine
when the entire computation has finished.

To better explain the Dijkstra-Scholten algorithm, we make the assumption
that at most one computation takes place in the network at any given time. Thus,
a node is either processing a job for the computation or it is idle. Three variables

are kept by the each node in the computation: idle, count and parent. A boolean

27
variable idle is sufficient to describe whether the node is working or not. The al-
gorithm has each node keep track of the number of requests (messages that are part
of the computation) it sends, and requires a node to send an acknowledgment (new
message type, specific to the termination detection) back for each request. A request
is generally acknowledged when the request is fulfilled. At each node, a variable
named count contains the number of requests sent by that node that are not yet
acknowledged. count is incremented every time a request is sent and decremented
when an acknowledgment is received.

Each node maintains a record of its parent, the neighbor that introduced that
node into the computation. The initiator is the first node involved in the computa-
tion, and becomes the root of a tree that, at any time, spans all and only the nodes
involved in the distributed computation, which includes nodes that are actively com-
puting sub-tasks or waiting in the termination detection. The tree is defined by the
parent variable of each node, and may grow or shrink as nodes become part of the
computation or finish their part in the computation. A node is considered to be
involved in the computation if it is not idle (is still performing a sub-task) or if it
still has children. Each participating node either has a parent or is the root. When
a node finishes the computation (it is idle and it has no offspring), it sends an ac-
knowledgment to its parent and sets its parent variable to null, effectively canceling
its status as a child. Because of the acknowledgment, a node, A, knows that it has no
offspring when count=0, which means that all its requests have been acknowledged,
and consequently any neighbor that might have considered this node a parent has
acknowledged. To show that this is true, consider one request sent from A to N.
Either N already has a parent, or it does not, in which case A becomes the parent of
N. When N exits the computation, N sets its parent to null and sends an acknowl-
edgment to A. Thus, N is no longer a child of A. In the case where N already had
a parent, A was never considered the parent of N. In such a case, N acknowledges
immediately after receiving the request. The parent of N will handle N’s exit out of
the computation.

In this algorithm, when the root is idle and its count variable is zero, the
computation has finished because the root does not have any offspring and all nodes
are out of the computation. This condition can be checked locally at the root without

the need to communicate to other nodes.

28
3.4 Experiment A

3.4.1 Goal

The study examined two distributed computations to obtain a more complete picture
of how algorithm animation can help users to gain insight into such computations. In
addition to Dijkstra and Scholten’s termination detection algorithm [29], the distance
vector routing algorithm was used in the test. Routing algorithms are designed to
facilitate communication between nodes of a distributed network that are not directly
connected to each other. In distance vector routing, nodes directly connected to each
other exchange an array of known reachable nodes and their distances according to
a predefined protocol. A description of the routing protocol can be found in most
networking textbooks such as [92]. For the comparison between our two experiments,
the specifics of distance vector routing are unimportant.

To determine the variations in the results that were due to the use of ani-
mations, participants answered questions both in the presence and in the absence
of a visualization. The individual skills and knowledge of each participant could be
factored out via analytical tools. Note that, for any single participant, it is difficult
to make a comparison between visualization and text-only situations for the same
algorithm because the knowledge about the algorithm that is gained in the first-
encountered situation will improve the results of the second. Switching to another
algorithm when the visualization is added or removed makes both situations begin

with similar user knowledge.

3.4.2 Materials

The experiment took place on four personal computers. Two of them were equiped
with 17”7 monitors and served as hosts for the text-only environment. The computers
used by the visualization group had one 19” monitor each.

The algorithm was rendered in Java 3D'™ [90] and the testing environment
was written in Java™. Parallel simulations of the distributed computations were also

implemented in Java™™,

3.4.3 Subjects

Thirty-nine students enrolled in the “Human Computer Interaction” class (a se-

nior/graduate level course of the Computer Science Department at the University

29
of Georgia) participated in the study to earn class credit and compete for cash prizes.
The same class credit could be obtained by completing an alternative assignment,
so the participants may be regarded as volunteers. The top three performers (tied
performers considered as in the same place) earned cash prizes. Performance was

again measured by the number of correctly answered questions.

3.4.4 Procedure

The experiment took place in a computer science laboratory. Participants were
handed and lead through a print-out describing the testing environment and test
procedure. They were also presented with a hard copy description of one of the algo-
rithms. After they had completed answering questions about that algorithm, subjects
moved to another computer and received the hard copy description of the other al-
gorithm. The participants were asked to answer nine multiple-choice questions for
each algorithm. The participants were allowed to navigate back and forth through
each of the two groups of nine questions and to revise their answers as desired. Once
the subjects moved to the next algorithm (and group of questions), they could not
modify their answers for the first algorithm.

Effectively, the participants completed two consecutive sessions, in each learn-
ing and answering questions about one algorithm. In one of the sessions they had
access to a visualization for the corresponding algorithm. The order in which the
algorithms were presented to each participant varied, as did the order in which the
visualization was made available. Table 3.1 summarizes the number of participants

in each of four possible orderings.

Table 3.1: The number of participants in each of the four situations:termination
detection first and visualization first, termination detection first and text-only first,
routing first and visualization first, and routing first and text-only first.

Visualization first | Text-only first
Term. detection first 11 10
Routing first 10 8

Each participant was required to spend between fifty to seventy-five minutes
in the experiment. Fifty minutes was the minimum to ensure that the participants

took enough time to utilize all the supporting materials. Seventy-five minutes was

30
the maximum participation time to avoid participant fatigue and to comply with the
class schedule.

While answering questions, participants could refer to the:

text: the textual description of the algorithm;

code view: a static, textual presentation of the algorithm’s pseudocode that could

be randomly “executed”;

output view: textual output of a random execution of the algorithm; participants

could run the algorithm again with another set of random inputs and events;

visualization: each subject could observe one of the algorithms through an animated

display;

visualization description: a one page print-out describing how the animation en-

codes the algorithm.

The pseudocode was a stripped-down version of an actual Java implementation
of the algorithm. The code view was not interactive and was formatted in a single
column that could be explored via a scrollbar. The text for the termination detection
was the same in both studies.

The output view could not be filtered and presented the output of a live pro-
gram. The input and events of that program were randomly generated, and as such
the users could see a virtually unlimited number of sample executions of any of the
two algorithms.

The program animation was based on a three-dimensional world as shown in
Figure 3.1. The meaning of the graphical elements employed in the visualization
was explained on a piece of paper handed to the participants at the beginning of
the visualization session. One characteristic of the visualization was that the point
of view in the three-dimensional world could be modified by the user via mouse
controls built into the Java 3D distribution. Changing the point of view helped users
in determining the parent-child relationship, which was encoded on the z-axis; the
position of the parent was below that of its children. A snapshot of the termination
detection visualization is presented in Figure 3.1. A different visualization was used
for distance vector routing.

The visualization could be run continuously or step-by-step. In the continuous
mode, the visualization could show multiple steps being performed in parallel to con-

vey the flavor of the distributed computation. Note that, in study B, the continuous

31

E;"j'Scene 1]

Figure 3.1: A snapshot of the termination detection visualization from experiment A.
The tree that spans the distributed network is presented above the network topology.
The offspring of a tree node are always “higher” than the tree node.

mode presented only one step at a time. There was no difference between the two
experiments in the step-by-step playback feature.

The arrangement of the windows in the testing environment (questions, code,
output, and optionally the visualization) was left to the discretion of the user and

operating system.

3.4.5 Design

The experiment had two independent variables, VISUALIZATION and ALGORITHM,
and measured the rate of correctly answered questions. VISUALIZATION has two
values {vis, nonvis}, and ALGORITHM also has two {termination, routing}. Be-
cause not all possible combinations of visualization and algorithm could be presented
to every participant, the participants were randomly assigned into four groups, as
shown in Table 3.1. The same eighteen questions of Appendix A were given to all
subjects.

One hypothesis was tested:

H1 The use of visualization can significantly improve the rate of correct answers.

32
3.4.6 Results

Oune participant ran out of time before starting the second algorithm (termination
detection). Only the answers from the participant’s first session were considered.
Thus, 39 participants are included in the analysis of distance vector routing and only

38 in that of termination detection.

Table 3.2: Statistics on the number of correctly answered questions for termination
detection.

Group | Num. of Participants | Mean | Std. Deviation
vis 19 3.26 1.95
nonuvLs 19 3.92 1.75

Our preliminary analysis revealed that the experiment failed to prove H1. Ta-
bles 3.2 and 3.3 present statistical values for the number of correct answers individu-
ally for each algorithm. It is apparent in the tables that animations did not help their
users under the conditions of the experiment. The performance of the participants
when using visualizations is slightly worse than when only text is employed. No sig-
nificant difference was found between the two situations (¢ = 1.111, df = 36,p > 0.05
for termination detection; ¢t = 0.358, df = 37, p > 0.05 for routing).

Table 3.3: Statistics on the number of correctly answered questions for distance vector
routing.

Group | Num. of Participants | Mean | Std. Deviation
vis 20 3.26 1.95
nonvLs 19 3.92 1.75

3.5 Experiment B

3.5.1 Goal

To accurately measure the contribution of algorithm animation in performing a task,
our study concentrated on reducing the cognitive noise that the visualization design

and testing environment might impose on the user. Further, we sought to reduce

33
variability in the participants’ experience with the testing environment and with
program visualization in general.

The design of the visualization and of the testing environment can add signif-
icant cognitive noise to the measurements. Remember that our goal is to test the
effectiveness of visualization, not that of the testing environment. Toward this end,
we designed visualizations to contain legends, which relieve the user from remem-
bering the encoding of algorithm properties into graphical features or the relation
between a measure on the screen and a measure in the program (“is this rectangle
supposed to be that long for only two allocated objects?”). Interestingly enough,
classical algorithm animations tend not to include a legend. Rather, the user is typ-
ically trained for the animation. In our study, the visualization was simply given to
the user without any explanation, except of what the algorithm does.

Problems in using a testing environment can also introduce noise into an exper-
iment. One approach to simplifying the user’s task involved the addition of interactive
print statements (see Figure 3.2) that saved, compared with real life, the time and
cognitive effort required for re-compilation and syntax correction. This also provided
the users with a filtering capability to enhance searching through the textual program
output. To further reduce the effects of the testing environment on the user’s perfor-
mance, we also positioned and sized various windows for the user. Note that these
simplifying features applied equally to both the visualization and non-visualization
groups.

Since previous studies raised concerns about variations among individuals we
took several steps to ensure greater uniformity in the participant’s experience. In-
structions for the test were recorded and then replayed for each participant, to be
sure that every participant saw and heard exactly the same information. Part of the
instructions familiarized participants with the testing environment by guiding them
through a sample test that used a very simple problem and algorithm animation, but
that employed each of the navigational and informational features of the environment.
Finally, we prepared in advance the executions of the algorithm that were presented
to all participants. This can be a very important factor since random executions
might go through different parts of the code and expose different users to quite dif-
ferent aspects of the program. This is especially important when using distributed

algorithms, which are intrinsically non-deterministic.

34
3.5.2 Materials

The experiment took place on two Intel® Pentium® personal computers, one of
which had the visualization of the algorithm installed. The computer with the vi-
sualization was equipped with two monitors. For the non-visualization case, it was
possible to display the various windows of our testing environment on a single screen.
For the visualization case, the second screen was used only for the visualization, while
the first screen displayed the same windows as for the non-visualization case.

The visualization of the algorithm made use of Java 3D™ [90] and the rest of
the testing environment was written in Java®™. A PowerPoint® presentation, which
included speech recordings, was created to deliver instructions about the experiment
to the users. The goal of using this type of presentation was to explain the study in

the same manner in each user session.

3.5.3 Subjects

Twenty college students volunteered to participate in the study. Five were female and
fifteen male. To motivate the participants, a cash prize was offered to the person that
showed the “best understanding” of the algorithm. Understanding was measured by
the number of correctly answered questions. In the end, two cash prizes were awarded,

one for the visualization group and one for the non-visualization group.

3.5.4 Procedure

Participants were presented with the PowerPoint@®) instructions about the study en-
vironment and with a textual, hard copy description of the termination detection
algorithm. During the instructions they were presented with a demo algorithm (find-
ing the maximum number in an array), which provided the opportunity to explain
the features of the testing environment and how the algorithm can be examined. The
visualization of the demo algorithm was a simple two-dimensional view. In the actual
study, the participants were asked to answer ten multiple-choice questions about the
algorithm. The questions were presented on the screen and the participants were
allowed to navigate back and forth through the questions and to revise their answers
as desired. Unlike in study A, no time constraints were imposed.

While answering questions, participants could refer to the:

text: the textual description of the algorithm;

35
code view: an interactive presentation of the algorithm’s pseudocode that could be
interactively “executed,” and where the progress of the participating processes

could be observed;

output view: textual output of the program produced by a series of print statements
in the program; output of individual print statements could be toggled on and

off by the participant;

visualization: the visualization group was also able to view an animated display of

the algorithm.

The pseudocode was a stripped-down version of an actual Java implementation
of the algorithm as in 4. The actual implementation had been previously run with
various inputs, and a trace file for each of these executions had been saved. When the
pseudocode was “executed,” one of the trace files was played back. As such, the user
could select and observe simpler or more complex executions. The trace file could
be played continuously or in steps. Moreover, every participant in the study had
the opportunity to see exactly the same algorithm runs, which made the comparison
between subjects more accurate than with random executions of the program.

The presentation of the pseudocode was interactive in the sense that all print
statements, which determine the textual output of the program, could be turned on
and off by simply clicking on them. Turning a statement off had the effect of filtering
out all the print-outs that statement made during the program execution. In the real
world, this would be similar to commenting out the print statement in the program,
re-compiling, and then re-executing the program to produce the filtered output. This
interactive feature allowed the participants to quickly add/remove information in the
output based on whether they considered that information significant for their current
task (answering a particular question).

Another feature of the pseudocode view was the presentation of the last state-
ment executed by each process (more like a pseudo program counter). Remember
that this is a distributed computation, where multiple processes execute the same se-
quential program. The code view marked the last statement executed by each process
in the computation with a colored rectangle at the left of the statement (Figure 3.2).
Each process was assigned a separate color.

The program execution could be observed through a textual output or an
animation. Every participant was presented with the textual output produced as the

result of print statements. Only half of the participants had access to the visualization.

36

[EZ4Program of Termination Detection Algorithm) P = |

Moz STl v Cincs each o crisine pps o rea ooring s cages vt s oo STl ric(rue)(Hibis is 2 dasman, so i runs cortinuously

ﬂ/uummrvg messages. Nan-ract otes have parent. Raot nedes start the threae. farink =0 e e+ ehesk soch possible ink o the nede
Fublc class Node{ it(incomingfi] = nuily{ ithere is a ink from i
int parert = -1; iarent D or -1 for no prent auxsincomingll get(), Jiget the message if any.
intn=0; Jinumber of nodes if(aux = NO_MSG) i thers is 3 message
public Pipef) outgoing; ioLtgeing ik to node | null for o ink Syster.out.printin"HODE “+myic+': message type “+aux:" from node "+);
publc Pipel] incoming; fincoming ik fram node I, Ul fer o ink if(BLe == APP_MSG){ fappication message
publc badlean root = false; frue fthis s aract idle (em.out printin{"NODE +myid-* " "idle is™+ idle}; listart warkin
publc iy =0 e ID of this iy iftparent==-1 && rost==false){

boolean e = truz___ifrue ifthis nade s dle (ot working) pare
£p track of messages not acknowiedged else {

outgoingi] pUi(ACK_MSG);

System.out.printin(” HODE * + {char)(*A’ smyid)+ "t Sending Ack to the pare:

¥

Ihvrite the current valugy Z:plm ;W n\yse:wjz; Oal I may send messages to ather nodes
System.out. primln('ﬂo

; System.out,printinCNODE ™ + myid+": parent is "+ parent); }

"HODE "rmyids™: sentto”

ajmem out.printin("HODE " mylﬂ * counter is "+counter);
Mif(aux == APP_MSG)
if(aue == Pips. Ack){ #imessage is an acknowledgement

System.outprintin{HODE "smyids*: counter is " count};
}
WAt (Buc = NO_MSG)

it incomingi] 1= nuif)
iendt of for loop

() Jicheck it the finisher; this might mocify ide
IN(HODE “+myids*t idle is “+idle};

i{ract 84 idle == true 88 ca
System.outprintin(Hode " task finished");

ff(ract 8 parert = -1 &2 e == true &8 count=0){ Jiacknowedge to parent
ougoingparent] pU(ACK_MSG),
System.out.printin(HODE “+myid+ " "+ “ack sent to parent "+parent);
parent =-1;
System.out.printin(HODE “+myid+ " ™+ "parent is “sparent);

i
Jiend of whietirue)
Jiend of run method
Jiene of class Node

ntis
thi uncissiiser®Fpication may send messages 1o oiher nodes
f(root == true)

Application sendhtsge);

1 R y
Quick ontrol Panel
H ouestion | output | visualization ” :] | mn [sten | coce | Terminate |

| Program Execution Status: Pause |

Figure 3.2: The view of the algorithm pseudocode. In the inset, one of the print
statements is turned off. Also, to the left, rectangles mark the last executed print
statement for each of the nodes. Two rectangles are visible in the inset (their original
color was changed to increase the contrast on black and white media.

Note that the code view, output view, and visualization were all based on the same
trace file, and thus presented the same data. Further, these views were synchronized
to present the same steps at the same time.

The program animation was based on a three-dimensional world as shown in
Figure 3.3. The main difference between this view and traditional program visual-
ization is the addition of a legend. Instead of talking to users or having them read
a description of what the graphical attributes encode, we added the legend to the
visualization. We hoped that the legend would reduce the amount of information the
user must remember. One difference from experiment A was that the point of view
in the three-dimensional world was fixed and the users could not change it, which
reduced the number of tasks to be performed by the user.

The windows in the testing environment (questions, code, output, and option-
ally the visualization) were pre-arranged on the screen in such a way that none of

them was completely obscured.

3.5.5 Design

The experiment had both between-subject and within-subject variables. The par-

ticipants were randomly divided into two groups. One of the groups was presented

37

E%iScene 1]

res View
Opacily .- /

Ideness

Heigh 1
al B

Countl 2

Tree link (i——

Figure 3.3: A snapshot of the termination detection visualization. The tree that
spans the distributed network is presented above the network topology. A legend is
displayed on the left.

with a visualization of the program and the other was not. The between-subject
variable is named VISUALIZATION and has two values {vis, nonvis}. Subjects
in both groups were presented with exactly the same questions (see Appendix B
for sample questions), but the questions themselves were of two types QUESTION
= {execution, general}. Four out of ten questions inquired about a specific execution
of the program, and it is likely that the user had to run and observe that execution
to gather all the information referred to in the question. The other questions were
more general, in the sense that they were referring to properties common to more
than one execution of the program, and could have been answered merely by reading
the question. The dependent variable was the rate of correctly answered questions.

Two hypotheses were to be tested:

H2 The addition of a visualization to the other support materials significantly im-

proves the rate of correct answers.

H3 Questions of type execute have a higher rate of correct answers than more general

questions.

3.5.6 Results

38

The average time required to answer the questions was about the same for both

groups: about 45 minutes for visualization and about 46 for non-visualization.

Table 3.4: Statistics on the number of correctly answered questions for each group.

Group | Num. of Participants | Mean | Std. Deviation
V1S 10 7.2 1.93
nonvis 10 3.7 2.26

An analysis of variance (ANOVA) on the correctness of the answers reveals

that the vis group answered significantly more accurately than the nonwvis group
(Fi1s = 14.54,p = 0.0013). In effect, hypothesis H2 holds. Table 3.4 presents

numerical values for the average number of correctly answered questions.

As illustrated in Figure 3.4, execute-type questions had a higher rate of correct

answers. However, the study did not find a significant difference between execute and
general questions (F 13 = 0.19,p = 0.6676). Thus, hypothesis H3 was rejected. The

analysis also failed to find any interaction between the question type and the use of

visualization (£7 s = 0.10,p = 0.7587). That means that the rate of correct answers

for the two types of questions is nearly constant within each group.

0.8
______ .

0.7 ¢-=-=--"""
4
506
7
e
= 05
° - 4-vis
g 04 2 :
o — ——nonvis
o
“6 0.3
[+F]
T o2
e o

01

0

general

Question type

execute

Figure 3.4: The rate of correctly answered questions for each group and question

type.

39

Random assignment of people to groups resulted in four of the five female
participants being placed into the non-visualization group. Concern about the effects
of this on the validity of our results prompted us to compare the scores of the females
within the non-visualization group to those of the non-visualization group as a whole.
We found that the mean of the females’ scores was above the mean for the overall
group. Thus, gender differences can be excluded as the cause of the difference in

performance between the visualization and non-visualization groups.

3.6 Analysis of the Common Questions in the Two
Studies

Although one of the experiments failed to find an improvement for the situations in
which visualization was employed, the collected data can be analyzed to determine
whether the effect of visualizations was different between the two studies. If such
a difference exists, there is a good probability that the factors that were not the
same in both studies, or a subset of these factors, critically affects the performance
of algorithm animation users. Furthermore, since all changes influenced visualization
sessions while only a few affected text-only sessions, we might find the results from
text-only situations to be comparable.

The data to be analyzed were restricted to the questions that were common to
both studies. Five questions about the termination detection algorithm were exactly
the same in both A and B. The rate of correct answers was computed for each such
question in one experiment and then in the other. This rate was further used in an
analysis of variation.

We found that there is a significant, though not very significant, increase in
performance for the visualization situations in experiment B (F} 4 = 7.87,p = 0.0485).
This suggests that the factors listed in the next section are important for animation
users. For the non-vis groups, no statistical difference was registered between the
two studies (Fj4 = 0.62,p = 0.4745), although in study .A, the performance of the
text-only situations was slightly higher than in study B. Table 3.5 summarizes the

rate of correct answers for each experiment and situation type.

40

Table 3.5: The rate of correct answers for visualization and text-only cases in each
experiment. Only the five common questions are considered.

Study A | Study B
vis 0.3888 0.64
non-vis 0.4108 0.3

3.7 Differences Between the Experiments

The factors that are different in study B from study A are listed below. They are
then assigned to either cognitive economy, perceptual, uniformity in the experiment

design, or probably irrelevant type.

1. Legends were used in B, while a hard copy description of the visualization was
used in A.

2. Navigation in B was improved by pre-arranging windows on the screen, using
two monitors for the visualization group, and adding navigation buttons that

allowed jumping to the desired window.

3. In B, arrows presented the parent-child relationship as opposed to increased

height on the z-axis and capability to change the 3D point of view in A.
4. execute-type questions were only presented in study B.
5. In study B, an interactive code view allowed limited filtering of the output.

6. The continuous play of the animation depicted only one step at a time in B as
opposed to multiple steps being shown at the same time to convey the paral-

lelism in the computation in A.

7. In B, the same traces of the algorithm were viewed by all participants, while A

exposed subjects to random executions.

8. Recorded PowerPoint instructions and a simple computation were used in B as

opposed to oral explanations for each participant in A.

9. No time limit in B as opposed to a minimum and maximum duration for the

experiment in A.

41

10. Ounly one algorithm was used in B compared to two in A.

11. The nodes in the distributed network were labeled with letters in B, not with

numbers as in \A.

12. Physical location was an office in B as opposed to a laboratory in A.

Factors Related to Cognitive Economy

Factors one through five can be regarded as promoting cognitive economy. Legends
free the users from learning and remembering the mapping between abstract concept
in the program and the graphical features of the animation. Navigation, although
typically a trivial task, becomes distracting and consumes cognitive resources because
it is performed frequently (every time the user is interested in another perspective on
the computation or problem). Eliminating the need, and the possibility, to modify
the point of view eliminates a task unrelated to the problem at hand to be solved by
the user.

Factors four and five contribute to reducing the mental processing of the in-
formation learned from the animation and code view. First, execute-type questions
do not require the user to observe a number of computations, infer the general prop-
erties of the algorithm, and then apply them to the particular question. Instead,
the user observes exactly the execution referred to in the question. Second, filtering
tools reduce the task of searching through the information in the code view and of
mentally putting together relevant data that is cluttered with irrelevant information.
Although this feature did not seem to improve the text-only group, it might have
played a role in the success of visualization groups. Participants using visualizations
could take advantage of the searching capability and further reduce the utilization of

mental resources.

Perceptual Factors

The continuous mode of showing the animation (factor number six) exposed the
viewers to a number of simultaneous changes in the program view. It is possible that
the users could not track all these change, especially in random executions with a high
degree of parallelism. The importance of this factor is attenuated by the existence of

a common step by step mode of playing the animation in both studies. It gave users

42
an option to observe the computation at their own pace when they realized that too

many changes occur at the same time.

Factors that Reduce Measurement Noise

Factors seven through ten did not seem to have contributed to the difference in the
results of the two experiments. All these factors targeted the design of the experiment,
not of the visualization or visualization environment. The slightly better performance
of the text-only group in the second experiment suggests that the factors did not have
an effect on the user performance, though they might have helped reduce the noise

in the evaluation.

Factors that May Have Little Significance

We believe that the last two factors, labeling system and physical location, have
an insignificant influence on the results. It might take an extreme variation in the

physical location or the type of labels to offset the results.

3.8 Discussion

Cognitive economy is the most likely cause of significantly increased user perfor-
mance. Thus, it is important to design program animation tools and environments
that reduce the amount of data and the tasks required in a visualization session. In
other words, care needs to be taken to avoid increasing the cognitive load through
the mere introduction of animations in the user’s environment, and to allow the user
to concentrate on the intrinsic data and complexity of the problem and algorithm at
hand.

This chapter also points out important factors for the methodology of con-
trolled program visualization experiments. One group of factors fall under cognitive
economy and the other under improving the uniformity of the participants’ exposure
to the features of the testing environment. These two goals are somewhat conflict-
ing because the information to be memorized during training may lead to increased
cognitive load for the participants. An empirical study should concentrate on reduc-
ing even trivial tasks not related to the algorithm and on making the information

accessible at a glance as to reduce the data that the user feels must be remembered.

43
Moreover, the design of a study should ensure that most participants go through the
same amount of unrelated tasks.

Study B found program visualization beneficial for understanding distributed
computations under conditions that reduced the user’s cognitive load. The usefulness
of animation seems to be manifest in the accuracy rather than speed of the people’s
performance (Table 3.4).

Visualization appears to serve as a more effective cognitive resource than tex-
tual displays in this problem solving context, which is consistent with the observations
of Kehoe et al. [50]. The visualization group must have dedicated part of their time
to observing the animation instead of studying traditional textual materials. The
results of study B show that the visualization group, with additional displays to view
and interact with, required on average about the same time as the non-visualization
group to complete the assigned tasks, and at the same time, the visualization group
obtained higher scores.

We speculate that the rejection of hypothesis H3 is due to a possible relation-
ship between performing execute-type tasks and comprehending the general behavior
of the algorithm. General-type questions, which often require knowledge about prop-
erties that hold on all executions of the observed computation, may be dependent
on an accurate understanding of several individual executions. Knowledge about the
general behavior is derived, from among other sources, from the observations of and
knowledge acquired from sample runs of the algorithm. Thus, the quality of a tool
presenting a running computation affects in a similar manner both how individual
executions are perceived and how the overall behavior is understood.

Planned future work includes performing studies to further isolate the contri-

bution of individual factors to the improvement in user performance, including:
e legends v. no legends
e 2D v. 3D
e simple v. complex algorithms
o effects of different navigation schemes

e attributes of algorithm animations that affect their usefulness

44
3.9 Concluding Remarks

Cognitive economy is a principle to be considered in the development of program
animation tools and in the methodology of user studies. Under cognitive economy,
a three dimensional algorithm animation was found significantly beneficial for an
accurate understanding of distributed computations. An initial study that did not
focus on reducing cognitive load and variations in the user’s experience failed to find
visualizations helpful. Important features of the study include ensuring the visibility
of all windows, limiting unnecessary interactions, and introducing an initial sample
task. Legends attached to the visualizations made explicit the mapping between

graphical elements and aspects of the algorithm.

45

Chapter 4

An Abstract Interaction Model for

Reshapeable Visualizations

4.1 Overview

Over the course of a visualization session a user may employ a wide range of graphical
representations, each appropriate for one of the user’s tasks. Adaptable visualization
displays are needed to meet these diverse interests and applications. This chapter
presents an approach for improving cognitive economy during the creation and re-
finement of visualizations by eliminating indirect structures. Displays are modified
solely via on-screen interactions with existing graphical views of the computation
and textual representations of the program state. To interpret these user actions,
we develop an abstract model for reasoning about visualizations that focuses on the
information that is visually communicated and that is independent of the particular
choices of graphical elements and interface. By acting through visualizations on the
screen, users can control the aspects of the computation and the properties that are
displayed.

These actions by the user modify the visualization in a given program state.
However, users must have a means to define how the visualization will react to changes
in the program state. We provide a way to specify the effect of actions for future
program states. Through this means the user can express the desired animation
behavior. To achieve their effect and update the program representation, actions
are automatically re-applied, in the order they were performed, for each state of the

computation. We define a sample set of operations on the model that allow users to

46
take advantage of the information on the screen and to explore related parts of the

computation.

4.2 Introduction

Visualizations can be categorized on a continuum from being application-independent
to application-specific. Application-independent visualizations are useful because
they present the same information about any computation, thus reducing any learning
curve associated with understanding the visualization. Application-specific visualiza-
tions are useful for seeing properties and behaviors particular to the computation
being studied. The drawback of application-specific visualizations is that they need
to be created specifically for that application. This overhead can prevent them from
being used. Ideally, these visualizations could be created on-the-fly, under cognitive
economy.

We have developed a system to support the creation of application-specific
visualizations and an underlying model upon which the system is based. Our ap-
proach is to allow new custom visualizations to be created from empty views or by
refining existing visualizations. This refinement process occurs directly through the
manipulation of visualizations. Development of the system requires the definition of
a semantic model in which to express the effects of user actions. The model captures
the information being conveyed by a visualization without considering the visual fea-
tures through which the information is communicated. The model is not focused on
the specific graphical attributes used in the visualization, but rather on how these
attributes fit together to represent the computation.

The model includes a dynamic component that defines the manner in which
the animation is updated in response to the evolution of the computation. This is
done by keeping a history of user operations to be re-applied upon each change in
the computation. By defining how the operations are re-executed, users control the
evolution of the visualization based on the evolution of the program. The model allows
the behavior of an operation, and thus of the animation, to be dependent on previous
states of the computation. Rich animations that explicitly depict temporal patterns
extracted from multiple states can be created. The explicit depiction relieves the
user from remembering information from previous states, and thus improves cognitive

economy.

47

This chapter builds upon work done in both information and software visu-
alization. Information visualization studies techniques of visually conveying various
types of data. Specifically, this work builds upon the area of automatic data visualiza-
tion ([20, 58, 76]) and employs the underlying concept of separation of what is being
communicated from how it is communicated. To create an animation, it suffices for
users to specify the information they wish to present. The method of automatically
generating the dynamic graphical representations is presented in Chapter 5.

To apply automatic data visualization techniques to program animation two
issues need to be addressed. First, the state of the program to be visualized is dynamic
and, unlike databases, has no relational structure, making it difficult for the tool to
extract data and relations to be visualized. Moreover, the actual information users
usually wish to communicate is not exactly the program state, but instead needs to be
derived from a subset of the state, or even from multiple states. We address this issue
in the interaction model and the flexible temporal behavior of animations. Second,
an animation of a computation must maintain continuity across frames. Graphical
elements that encoded a program property in one frame cannot be used to encode a
different property in another. For example, if idle nodes of a network are depicted
red at one time, red cannot be used in a later frame even if no idle nodes exist. This
issue is addressed by the automatic presentation technique of Chapter 5.

The next section presents a brief overview of the techniques for interactive
manipulation of visualizations. Section 4.4 details the abstract model of interactive
visualization. The architecture of the system and an example of a visualization session
are presented in Section 4.5 and Section 4.6, respectively. A summary is given in
Section 4.7.

4.3 Previous Work in Interactions with Visualiza-

tions

Interactions with visualizations approaches are presented from the perspective of cre-
ating visual representations for running programs and from the point of view of pre-
senting large information spaces.

In the program visualization field, Lens [60] is most similar to our work. It
allows the creation of visualizations at run-time via direct manipulation. Users inter-

actively specify how the attributes of graphical objects are derived from the program

48
variables or other attributes. Animation annotations are introduced at different points
in the program text. In our approach users work with the state of the program, not
with the program code. This reduces the dependency on the control structures (e.g.,
constructs like if, for) of the program. During the refinement of the program presen-
tation, we also allow users to take advantage of the underlying information associated
with graphical objects because of our data-based abstract model, which is different
from the graphics-driven approach in Lens.

In information visualization, interactive modification of the content and ap-
pearance of a visualization is used as a solution for analyzing and exploring large or
complex collections of data. The user can modify the subset of information that is
presented in the visualization. To maintain context, an overview of the entire data
space is also depicted. The focus subset is presented within this overview. FISHEYE
view [34], Table Lens [67] and Magic Lenses [31] are a few examples of such tech-
niques, termed focus+context. The user can choose what part of the visualization to
focus on, and in some of these systems can also specify the type of details the user
is interested in and even can perform transformations of the raw data. Our system
provides similar capabilities through the use of the same operations that make the
creation of the animation possible.

Multiple displays can also be employed to convey complex information by pre-
senting the data from a different, and often incomplete, point of view in each display.
Generally the windows are linked to each other, which allows the user to infer how
the same information appears in multiple windows via semantic brushing. Semantic
brushing is the technique of highlighting in all visualization the information selected
in any of the views. Visage [75] is a general-purpose tool that support manipula-
tion of multiple heterogeneous visualizations. A specialized system for optimizing
problem solving algorithms, which employs multiple visualizations, is COMIND [62].
Our approach assumes that multiple animations are created and refined by the user
and supports brushing between animations. The abstract model of the content of a
program visualization provides a data-driven approach to relating graphical elements

of multiple views.

4.4 Visualization Model

The goal of the model is to simplify the creation and refinement of algorithm visual-

ization by allowing users to define a program view via specifications of the information

49
to be visualized. The model promotes an information-based approach in which an-
imations can be created without human calculations of the values for the graphical
attributes such as exact position, width, or color. Our approach is based on a static
model that abstracts away from the graphical details and captures the data and re-
lations conveyed in a program visualization, and on a technique for specifying the
behavior of the animation over time.

This section is organized as follows: a discussion about the high cognitive effort
required to calculate graphical details, a short, high-level example of the type of visu-
alization session we consider, the definition of an abstract model for reasoning about
static visualizations that circumvents the need to specify graphics, and techniques for

creating the flexible dynamics of the animation.

4.4.1 Graphics and Interaction

Graphics in an interactive visualization environment are powerful in their roles of
information conveyor and of providing “concrete” objects with which the user can
interact in a direct style. Nonetheless, the creation of a graphical world, which en-
tails the calculation of numerous interrelated graphical attributes, may be a complex
and tedious task that has the potential to lead users away from visualization. The
complexity increases for program visualization because the graphical attributes are
not static, but dependent on and are intended to depict the evolving values and ob-
jects of a program state. Users often have to produce formulas and programs that
take into consideration all possible scenarios that may occur during the execution of
the program. Consider the simple example of displaying the elements of an array as
rectangles arranged horizontally on the screen (depicting the relation defined by the
index of the elements). In a world in which visualizations are created/modified by
computing graphical attributes, typically a number of rectangles equal to the size of
the array are created. Since the size might change, the x-position of each array needs
to be specified as a formula based on the width of each rectangle and on the gap
between them, something such as 10index + 2(index — 1) for a width of 10 and a gap
of 2. The formula may be further complicated by the need to center the graphical ob-
jects around the origin of the coordinate axes: 10index + 2(index — 1) — 6size. In any
event, the mere listing of a number of program variables requires graphical calcula-

tions irrelevant to the observed computation. In a world centered on the information

50
of the visualization, the listing may be accomplish by just adding the program vari-
ables of interest to a view. The computer is typically able to handle the computation
of the graphical details, as presented in Chapter 5.

A further drawback of a world that consists solely of graphical attributes is that
such a world masks the underlying program data in the values of the attributes (note
that this does not imply that the pictorial representation is hard to interpret visually).
It becomes tedious for the user to relate graphical attributes back to the values of
the observed computation. In our previous example, knowing that some rectangle is
positioned at 550 does not directly point to the index of the array element represented
by that rectangle.

We envision a visualization model that does not rely on graphical properties
and, consequently, allows users to specify and modify the information to be conveyed.
The model provides for users that are unable or unwilling to process computer graph-
ics. Nonetheless, graphics provide a “materialization” of the program entities that
can be chosen, dragged or otherwise manipulated directly on the screen. We also rec-
ognize that, as an information conveyor, the choice of graphical elements of a picture
significantly determines how the image is perceived by a viewer as explained by Colin
Ware in [96]. The abstract model, although focused on information, still allows users
to operate at a graphical level (see Chapter 5). Note that the perceptual importance
of graphical elements does not invalidate our choice of abstract visualization model.

Perception and creation/modification are different tasks with different requirements.

4.4.2 Constructing Visualizations and Exploring the Com-

putation

From the user’s perspective, the computation appears as a set of variables whose
values change as the program runs. The values of the variables, the state of the
computation, are assumed to be collected and fed into the visualization tool by a
monitoring system such as PathFinder [40]. The user can observe the state and select
the variables of interest in a pre-defined textual view that presents each variable as a
tuple.

Consider that the user is monitoring a distributed computation in which four
node descriptors exist for nodes A through D. Each node descriptor is initially seen as

a tuple, and the user would like to build a graphical view to observe the computation.

51

The user creates a visualization by instructing the system to depict the first
three descriptors; the fourth one may not be of interest. No graphical feature needs
to be specified because the system can automatically produce a graphical design.The
new visualization shows three objects. Note that no property of the objects nor
relation among objects was specified by the user, and consequently, no property or
relation appears in the animation.

Next, the user refines the existing visualization by requesting that the CPU
utilization, which is a field of the node descriptor, be shown for each of the three nodes.
The inclusion of the CPU utilization relation adds a structure to the visualization that
enables the user to analyze the patterns among the utilization of CPUs. Again, the
system can automatically employ a graphical attribute, such as height, to encode the
CPU relation. Note that a second user might be interested in comparing the CPU of
node A with the number of messages sent by node B, instead of the CPU of B. Such
a user can compute a single relation from the CPU of A and message count of B, or
in effect from any available data. The computed relation is then depicted as in the
case of the first user.

In general, the visualization pipeline starts with the tuples, from which the
user derives the information to appear in the visualization, and is completed by
an automatic presentation technique. The user’s task is to choose the subset of
computation for the objects in the display and the structure (relations and properties)

to be visually shown in the animation.

4.4.3 Scenes

Our goal is to circumvent the use of graphical attributes in the creation and modifi-
cation process and to base the interaction on the information content of a program
view. We have developed an abstract structure termed a scene that captures the data
and relations portrayed in a picture, but does not concentrate on graphical features.
Any program view can be captured as a scene, and a scene can be transparently
transformed into a visualization with the techniques in Chapter 5. As such, the user
can create or refine a scene via interactions with a visualization.

We introduce the scenes from the perspective of a system designer rather than
a visualization user because the former supports a more precise definition. The role
of a scene is to provide an exact description of the information in a static program

visualization. Consider Figure 4.1 which presents two images that convey the same

52
information, but with different graphical features. One observation is that both im-
ages have a number of objects, such as rectangles, lines and bars. These objects
have certain properties, and some of the properties suggest relations between objects.
Moreover, each graphical object has a meaning in that it represents some entity or
entities in a computation. The same picture can be used, in one instance, to present
the utilization of each node in a distributed computation (as in Figure 4.1), or in an-
other instance, to present the utilization of entire sub-networks in a domain of linked
networks. The particular meaning of the objects is the distinguishing feature of a

program visualization compared to other types of visualizations.

Data Structure

node A Name=A; CPU=40; OS=Linux;
Connection=AB,AC.

node B Name=B; CPU=20; OS=lIrix;
Marked=true; Connection=AB.

node C Name=C; CPU=65; OS=lrix;
Connection=AC.

link AB Marked=true; Connection=A,B.

link AC Connection=A,C.

7 Y
\ '

60 1

/ 20

B

(]
A

201

65

- ey N g

Figure 4.1: The same data, a network and the CPU usage of each computer, is
presented in both visualizations. Labels on the left, and height on the right show the
usage. Nodes are grouped in two classes by their type of OS, which is depicted via
shape or fill intensity. Node B and channel AB are marked and appear bold in both
pictures.

Based on the previous observations, a scene is defined as a set of scene elements.
Each of the elements is a pair of structural specifications and data specifications be-
cause it both has a number of properties and represents some subset of the state of

the observed computation. The properties of the elements define a structure among

53
scene elements, and we termed that part structural specification. The subset of the
state that each scene element depicts is termed data specification. Typically, a one-
to-one correspondence exists between scene elements and graphical objects, and each
structural specification is depicted through a graphical feature such as color, width

or adjacency. Table 4.1 is a concise description of the notions mentioned above.

Table 4.1: Overview of the elements of the model

Conceptual Scene Scene Data Structural
Element Element Specification Specification
. graphical meaning of property of

Captures H window ‘ object ‘ an object an object

Rendering Specifications

Structural specifications capture the interrelationships between different parts of the
visualization. The structural specifications of a scene are described as named relations
of the form [< name >=< wvalue >]. There exists a relation among scene elements
that contain a structural specification with the same name. A logical equivalence
is assumed among elements with the same [< name >=< wvalue >] pair, while a
logical distinction is being made between elements with the same name and different
values. Any existing ordering on the domain of the values is extended on the elements.
In Figure 4.1 right, nodes are grouped in two classes by shading. The structural
specifications describing this relation is [OS = Linux] for A and [OS = Iriz] for B
and C.

A scene element can be involved simultaneously in multiple relations (see Fig-
ure 4.1), each of them with a corresponding structural specification name. A scene
element can be logically equivalent, within the same relation, to an arbitrary number
of other elements. The other logically equivalent elements can be distinct, as AB and
AC, which are both related to A, appear in Figure 4.1.

Graphically, a relation between scene elements is shown through at least one
graphical attribute. Within a relation, the objects corresponding to scene elements
that are logically equivalent have identical values for the graphical attribute(s) of the
relation. As such, the graphical objects have some visual characteristics in common.
Graphical objects for logically distinct scene elements have different values for the

attribute(s) depicting that relation.

54

Data Specifications

The state is regarded as a set of tuples (tuple space). This space continuously changes
through atomic steps as the computation runs. Data specifications describe what part
of the state of the computation is represented by a scene element. Note that structural
specifications do not directly express the subset of the program state that is being
visualized because their main role is to express relations; structural specifications may
be derived from the values of the data specifications.

Users may rely on data specifications to identify the program objects repre-
sented by a scene element (graphical object). The same type of object, such as a
circle, may represent one computer node in one visualization or an entire network in
another. Having the explicit portion of the state associated with each scene element
helps in finding the components of the visualization based on properties of the state
(e.g., find all messages sent by this graphical object). It is also useful in the explo-
ration of the computation because it can add to the scene parts of the program state
that are related to existing elements (e.g., show all nodes that are members of the
same group as the target node). Finally, it is useful for changing the level of detail
of a graphical representation (e.g., moving from the representation of Figure 4.1 to a
single circle for the entire network and back).

A tuple has the form < ID,TYPFE, fields, ..., field, >, and typically corre-
sponds to a program variable. The number of fields depends on the tuple type. The
ID and the TYPE are fixed for a tuple. Each field; has a value and a name. Tuples
of the same type differ only in the ID and field values. A tuple space is content-based
accessed, i.e. the tuples are matched by the values of their fields, which are likely
to change over time. The unique ID for each tuple helps to provide continuity in

monitoring the same portion of the state while the program runs.

Using Scenes

Visualizations are created by selecting the subset of the computation state to be rep-
resented, grouping the subset into smaller units based on the desired granularity of the
presentation, and structuring the units by deciding on the individual properties and
relations to be observed. These tasks can be performed naturally in the scene frame-
work as explained below. Refinement of the visualization entails the modification of

the existing scene.

55

In the scene framework, the subset of the computation state that the user is
interested in is wrapped as one or more scene elements via user operations. The data
specification of an element might contain the tuple for a single process, while another
scene element might contain the tuples for an entire network. In effect, the grouping
is performed when the data specification of each scene element is defined. Each scene
element has a graphical entity representing it in the visualization.

The graphical entities (and the scene elements they represent) are structured
by the user’s definition of the structural specifications. Properties of an individual
scene element can be specified simply by adding a structural specification (e.g., mark
node A as busy by adding structural specification [busy = true|) based on the user’s
preference or by computing structural specifications from the data specifications of
that element. A global property, which implies a relation among scene elements, can
also be described by structural specifications. The CPU utilization of the nodes can
be added by [CPU =< z >|, where < x > is copied from the data specification of

each scene element (Figure 4.1).

4.4.4 Temporal Behavior of Animations

The interaction model is designed to allow users to define animations with a rich be-
havior in relation to the evolving program. More precisely, animations are sometimes
richer if they behave slightly differently than the monitored computation. It may be
advantageous to maintain some representation of the previous states of the compu-
tation and to show the current state in the context of the previous states. This may
visually reveal causal relationships and patterns that would otherwise be lost unless
the user memorized old states. Reducing the amount of information to be memorized
promotes cognitive economy.

A scene is just a static description of an animation frame that corresponds to
one state of the computation. In an animation, there exists a scene for each state.
The model does not require the user to specify each scene; an updated scene can be
created automatically by starting with the initial view and re-applying the operations
the user performed to obtain the previous scene. Thus, a history is maintained to
record all operations. The history is a sequence of operations. Note that the history
records all operations, including the ones that refined an old visualization because
we support a scenario in which an animation is created and observed for a period of

time, then it is refined, and the observation resumes.

26

Users have the flexibility to determine how the visualization responds to changes
in the program state by specifying the behavior of individual operations over time. As
such, two users observing the same computation and building the same initial view
can define different animation behaviors. These animations will present the program
differently in the future without the need for further user intervention.

In a static context, for one state of the computation, a user operation on a scene
can be given precise semantics in terms of what scene elements and specifications are
modified and what their new values are. These values are specified as a function of
the current program state and of the current content of the scene. An interesting
observation is that, in the context of an evolving computation, an operation can be
re-applied in multiple ways based on what set of states, current or past, the operation
is considered to depend on. Thus, the user can have the flexibility to choose the states
upon which the operation will depend on in the future.

We propose and develop three basic modes of re-applying an operation: abso-
lute, relative and cumulative. The mode is given by the user at the time the operation
is first executed. For simplicity, only operations that perform selection, i.e., choose
operands for future processing, are allowed to have any mode, all other operations
work in relative mode.

For example, suppose that the user wants to highlight idle nodes in a compu-
tation that has three processes, and they become idle in the order A, B, C with only
one idle at a time. The first time the operation is executed, the marked node is A
in all modes (see Figure 4.2, first column, which corresponds to the static behavior).
After the program state has changed, one possible behavior of interest to the user
might be to keep marking process A as a reference point that A is the one that was
idle. The animation must display the same process that was initially idle, A, even
if it is not idle anymore (first row of the figure). Another possibility would be to
ignore the past and show the process that is idle now, node B (second row). There
is yet another option: to present both processes that were idle and the ones that are
idle. More precisely, processes that were idle in any state between the initial and
the current one. This mode allow easy tracing of momentary properties. Of course,
the user can input the same operation twice in different modes, such as absolute and
relative in order to observe both the node that was initially idle and the current idle
ones.

A selection operation in absolute mode has the same effect regardless of the

current state. The same items are selected as when the operation was first applied.

o7

modes

A
absolute .@

®
5
O

relative

)

cumulative .:

Aidle

®
®
P
® o5 @
®% @ 5

Sates

o
z | (@)
> | @

Cidle

Figure 4.2: A row presents a visualization during three states of a program. Initially,
only A is idle, then only B and then only C. The shading of the idle nodes is applied
in a different mode in each row.

Such an operation is not directly recorded in the history. An operation that specifies
exactly the instances of selected items is recorded instead. In the example above, the
operation being recorded would be: find the scene element for node A (because idle
nodes = {A}) and add the structural specifications [marked = true| to it. When the
history is re-applied in later states, the recorded operation keeps marking node A.
A relative operation does not depend on the previous program states, only on
the current one. Such an operation behaves as if the user executes it for the first
time every time the state is modified. It is added to the history in its original form.
Non-selection operations, the ones that modify scenes, are always in the relative mode.
Finally, a cumulative operation depends on the sequence of states that has
occurred since its first execution. It is similar to having that operation performed
in absolute mode for every state in the sequence. Two operations are added to the

history. One is the operation as if in absolute mode and the other is the operation

58
itself, in cumulative mode. When the history is re-applied, the second operation
causes another operation in absolute mode to be recorded between the first and the
second. The history will contain one absolute operation for each state since the
operation was performed. In the example, before node C becomes idle, the history
will contain an operation ‘mark A idle’ (from the first time the operation was applied
in cumulative mode), ‘mark B idle’ and ‘mark nodes with CPU=0 idle’ (from its
application for the second state of the program).

New operations can be defined by combining a sequence of operations into a
single, atomic one. A sequence that contains selection in cumulative mode is recorded
once for each state of the computation, with the selection operation(s) in absolute
mode for the corresponding state. This ensures that the atomicity of the operation
is preserved. In the example, first idle nodes are selected (operation Sel(idle)), a new
structural specification is added to them (operation Mark). The sequence would be
recorded as < Sel(A), Mark > in absolute mode, as < Sel(idle), Mark > in relative
mode, and as < Sel(A), Mark >< Sel(B), Mark >< Sel(C), Mark > in cumulative
mode.

To reduce the length of the history, only simulated operations that were not
previously recorded are included in the history. It is superfluous to record ‘mark A
idle’ twice in a row since the second operation does not produce any modification to

the scene.

4.5 The Reshapeable Visualization System

The abstract model was implemented in a prototype system. The Reshapeable Vi-
sualization system implements the framework described in the previous section. The
system provides an environment in which users can build graphical representations of
a computation through direct manipulation of scenes. The information and structure
of a visualization is defined by user actions on scenes. Visualizations corresponding
to those scenes are automatically drawn by the system. Users can intervene and
determine entirely or partially the graphical elements to be used.

The architecture, depicted in Figure 4.3, consists of two modules, implementing
a two-step mapping of program state to graphics. The first module generates scenes
based on the user actions and the state of the computation. The second is a rendering

system capable of realizing each scene as an actual image.

99

—user—l
|

operations |

record; B SOENE [— picture

Y hIStOI’y - CSTENE | =ccccc=-"c7"c"======= — piCture

programi

State change .

T GHEE oot — picture

SCENE RENDERING
GENERATOR SYSTEM

Figure 4.3: The architecture of the visualization system.

The functionality of this architecture is twofold. First, it enables the encoding
of the changing program state into a visualization. As the computation runs, the
scenes are updated to reflect the new program state. A scene modification prompts
the rendering system to redraw the image of that scene. Second, the architecture also
allows users to interact with the visualization by performing operations on scenes and
to control the rendering system.

The scene generator processes user operations and records them into a history
as defined in the previous section. The state of the computation is provided by the
monitoring system PathFinder [40]. PathFinder notifies the scene generator when the
computation changes and provides the data describing the state of the computation.
Upon notification, the scene generator re-executes the history.

The rendering system chooses a graphical object for each scene element in
a scene. The system also assigns graphical attributes and values to the rendering
specification such that the final view presents the structure of the scene. Users can
specify the exact graphical elements to be assigned to a scene element or structural
specification, or they can override the decisions of the rendering system. In the former
case, the names and values that appear in the structural specifications can influence
the system decisions. The system interprets a structural specification of the form
[SHAPE =< ObjName >] as a user request to select the graphical object named
< ObjName > to depict that scene element. The system also tries to match the

name or value of a structural specification with the name of an attribute. As such, a

60
specification [width = 3] is assigned to the width attribute if possible (there exists an
unassigned attribute named width).

The prototype currently has a very basic user interface, based mostly on di-
alogues and limited point-and-click features. It is possible to replace some of the
dialogues with more “natural” drag-and-drop techniques, but our main goal is to test
the high-level interaction model. The rendering system uses Java 3D [90] to draw the
graphical objects on a 3D canvas. Navigation capabilities, zooming, translation and
rotation of the point of view in the 3D space, are available to users. The transition
from one picture (state) to another is performed smoothly by interpolating linearly

between old and new values of attributes.

4.6 Sample Visualization Session

An example of constructing and refining an animation provides the opportunity to
describe the use of the abstract interaction model in practice and a set of operations
that take advantage of the model. The set of operations presented here is simple
and was developed for the minimal user interface of our prototype system, which
allows point-and-click and dialog-based interactions. It is conceivable to develop
more complex operations targeted at graphical interfaces that allow richer gestures
such as dragging. We consider the set of operations an implementation issue, rather
than a contribution of our model.

First, the computation chosen in this example is presented, followed by a dis-
cussion about the selection framework, and then by the step-by-step visualization

session.

4.6.1 Computation

A hypothetical user investigates how a railroad system functions. The railroad com-
ponents (trains, signals, and switches) are “smart” devices that communicate with
each other to assure the safe passage of trains to their destinations. The railway is
divided into segments, each guarded by a signal. To enter a segment, a train sends a
request to the corresponding signal. If the request is approved, the train moves onto
that segment. Otherwise, it either waits or tries a different route. The computation

to be monitored is a simulation of this railroad system.

61
The types of tuples in the program state and their corresponding fields are
listed below.

e track(x, y, orientation, status) represents a piece of track starting at
position (x, y) with the given orientation and status. Orientation expresses a
compass direction such as North, North-West, West or South-West.

e train(x, y, orientation, number) describes a train at position (x, y) with

a given orientation. The last field is a unique identifier for the train.

e light(x, y, locked, status) defines a light at the given position. The light
status is either ‘go” or ‘stop’. The train may move to the next track if the light
is ‘go’. The locked field is used by trains to reserve the track guarded by this

light and is employed in deadlock prevention.

e switch(x, y, status) represents a switch at position (x, y). The status field

indicates the direction that the switch is thrown.

4.6.2 Selection Framework

The paradigm on which the operation set was developed relies on selection to de-
termine the information used by most operations that modify the animation. The
user can select the elements to be changed and any additional information from the
visualization or computation. The selection can be performed in multiple steps, and
may be quite complex.

The system maintains three selection sets, one for structural specifications,
one for tuples and one for scene elements. The graphical objects of the selected scene
elements are highlighted in the visualization, in any scene in which they appear.
Similarly, selected tuples and structural specifications are highlighted in the textual
displays in which they appear. A tuple field that is the same as a selected structural
specification is also highlighted. Note that tuple fields and structural specifications
have the same format < name >=< wvalue >, and as such, one can be used instead
of another.

The user has the capability to add and remove elements to any of the selected
sets via a number of selection operations. The selected information is included in the

input for some operations.

62
4.6.3 Visualization Session

The visualization session consists of the following high-level steps:

1. the tracks are first presented in the visualization, followed by the signal and

trains;

2. the trail of each train is included in the animation to permit observation of the

route taken by the trains, as well as their current position;
3. the amount of time spent by a train on each piece of track is encoded visually.

Initially, no visualization exists: only a tools window and a pre-defined view
of the computation state, named State View. The tools window allows the user to
choose operations and to control the system. The State View presents in a textual
form the tuples of the current state of the program. The user has the option of
viewing all individual tuples or only the types of tuples, as captured in Figure 4.4.
When no operation is in the process of being input, this view permits basic selection
to be performed by clicking on a tuple or a tuple field. In the former instance, the
tuple is added to or removed from the selected tuples. In the latter instance, the
tuples with the same field are (de)selected if the name of the field is clicked, or the
field is (de)selected as a structural specification if the value is clicked. Similar views
are used to display the data specifications of scene elements, which are also sets of

tuples.

Creating Elements

The user begins by creating a view of the tracks. The tracks are first selected from
the State View. The Create Scene Element operation is then selected in the tools
window, and a panel (dialogue) as seen in Figure 4.5 appears in the tools window.
The dialogue not only creates scene elements (and consequently graphical objects),
but also provides for adding structural specifications to the newly created elements.
The operation uses the selected tuples and, for each tuple, creates a scene element.
Then, for each created element, the operation adds the structural specifications given
in the dialogue.

When a structural specification is added to a scene element, the value intro-
duced by the user is evaluated. An identifier prefixed by the special symbol ‘$’ is

considered a reference. To evaluate a reference, a name-value pair whose name is the

63

=1
Ing TvPE arientation status kS W =
track
Ing TvPE numher arientation ki W
train
Ing TvPE locked status ki W
light
10y TYPE status s W
awitch |
| || Finisn |

Figure 4.4: The textual view of the computation state showing only the types of
tuples.

f=i Create Scene Element =] E3
Marme Yalue

SHAFE Line

ZRot borientation

¥Pos b

LA By

New Delete Finish

@ Multiple elements

7 Single element
Create

Figure 4.5: The dialog for creating the track scene elements and setting their struc-
tural specifications.

identifier must be located. The prefixed identifier is then replaced by the value of
the found pair. The user can direct the Create Scene Element operation, and any
other operation that recognizes references, to search for a pair in the scene element
to which the structural specification is added, either in the selected specification or

in the selected tuples.

64

In Figure 4.5, the value Line remains the same for all new elements. The
reference $x is replaced by the actual value of the x field of the track tuple. This
is the tuple that was wrapped inside the scene element when it was created. Thus,
scene elements have the specification xPos equal to the x-position of the track they
represent.

The hypothetical user has a clear idea of how the tracks should visually appear
and requested a line as a graphical object. Moreover, the user instructs the automatic
presentation system to use the x-position to encode the field x of the tuple. A speci-
fication named xPos is always assigned to the x-position. Similarly, yPos is assigned
to y-position and zRot to z-rotation.

Two interesting issues arise in the drawing of the tracks: the system has no
knowledge of the semantics of constants like North or South, and neither the sys-
tem nor the user know the length of a track. The user solves the first problem by
“teaching” the system the meaning of direction constants. Either the registry editor
from the tools window or a legend like the ones in Chapter 6 have the capability to
adjust the image. In the registry editor, the user modifies the values assigned by the
system so that the rotation angles correspond to the right directions. This is shown
in Figure 4.6 (angles are in degrees). The second problem can be solved by the user
by tweaking the length value with a legend or trying different length values for the

track segment.

Atiribute (zR ot |

Spec Yalue | Altr Yalue
East 270 i
Morth-ifest |45
South 1180
-]
Hew || Delete | Finish

Figure 4.6: Assigning correct rotation values to symbolic compass directions.

Figure 4.7 shows the visualization containing the tracks. The user adds the
signals and trains to the visualization in a similar manner, via selection and scene
element creation. To ensure that the status of signals and position of trains change
with the computation, the operations are executed in relative mode. Figure 4.8 is a

frame of the current animation.

65
[EiScene 0 =] E3

Figure 4.7: A snapshot of the visualization after the tracks have been added.

Property-Based Selection

Consider that the user in the scenario needs to select all train elements. A possible
approach is to click on each train. Clicking on a graphical object when no operation
was previously activated results in the selection or de-selection of the scene element
that corresponds to that object. This instance-based selection is useful, but it may
become tedious for a large number of elements.

An alternative approach is for the user to specify a property of the elements,
tuples, or structural specifications of interest. Property-based selection is also a pow-
erful instrument that lets the user take advantage of the information and relation
captured by the model.

Property-based selection takes as input a set of name-value pairs and matches
the elements, tuples or structural specifications (the user chooses one of the three)
that have all those pairs. The name-value pairs may contain references. An operand
such as ‘<’ or ‘>’ can be used instead of equality. The matched elements, tuples,
or structural specifications are added to or removed from the selected set chosen by

the user. For scene elements, the user can restrict the match to data specifications

66

= E3

Figure 4.8: The visualization showing the trains and the railroad.

or structural specifications. Figure 4.9 shows how the user replaces the selected set
with the scene elements that contain a tuple of type train.

The user can simply click on the TYPE field of a track tuple instead of writing
the constraint in the dialogue. This feature allows the user to point to one object
that looks interesting and select all other object. After choosing the select operation,
the user can click on one of the train objects with the third mouse button, which will
open a Data Specification View (the second button opens a view of the structural
specifications of any object). While select operation is activated, a click on one of the
fields in the Data Specification View is interpreted as a request to select all tuples
that have the same field and value. Each click automatically updates the selection
dialogue. The user just pushes the select button of the dialog after pointing to the
fields of interest.

More complex queries are defined via struct., tuple., selectedStruct., and
selectedTuple. modifiers. They may be specified before the name or value of a pair

and direct the matching options and the de-referencing for that pair. For example,

67

Elements

Caonstraints

TvPE=train

Hew Delete

Matching Options

[_| Match Structural Specifications
] Match Data Specifications

[¥l Exact Match (all pairs)

ctions
Add to selected set

Remove from selected set

Replace selected set

Select

Figure 4.9: The property-based selection dialogue.

typing tuple.TYPE=train forces the matching of scene elements that have a tuple
of with a TYPE field equal to the value train. The modifier struct. refers to the
structural specifications of an element, while selectedStruct. and selectedTuple.
instruct the operation to search in the already selected tuples or structural specifica-

tions to de-reference a ‘$’-prefixed identifier.

Refining Data and Structural Specifications

The visualization described so far does not offer information about the route followed
by a train. Now we will consider how to modify the visualization to show such
information. For each train, it is enough to add a structural specification [visited =<
x >] to a track that has been visited by that train, where x is the number of the
train. The same structural specification needs to be added to the train object so the
route and the train share a graphical characteristic. No specific graphical elements

need to be given by the user, they are automatically assigned.

68

The operation to add structural specifications to selected tuples was already
discussed with the Create Scene Elements operation, which adds structural specifi-
cations after creating scene elements. Thus, to add [visited =< x >] to all trains, it
is enough to enter visited=$number in a dialogue similar to that in Figure 4.5 after
selecting all train objects. The Add/remove Structural Specifications operation goes
through all selected elements and adds/removes the specifications given by the user.
The specifications are evaluated in the same manner as for scene element creation.

Adding the specification [visited =< x >] to a track, where < z > is the
number of a train, is performed by first adding the train tuple to the track element.
The new element presents information from both the track and train program objects
and should have the data specification updated accordingly. The second step, just
adds a new structural specification visited=$tuple.number to the modified tracks,
which has the effect of copying the value of the number field for each selected track.

An operation named join permits aggregating selected elements. The operation
needs the pairs (tuple fields or structural specifications) that have to be common
across some elements in order to aggregate them. The aggregation entails the union
of the data specifications, structural specifications, or both as determined by the
user. The operation can also join selected elements and selected tuples, which adds
to a scene element the tuples that have the user-specified fields in common with that
element.

In the scenario, the user intends to add a train tuple to the track on which
that train resides. So, the user selects all trains tuples and tracks elements, then
activates the Join operation. Next, the fields x, y and orientation are clicked,
which is interpreted as a specification of the common fields; a train is on the track
that has the same location and orientation. The Join operation is executed for the
tuples only. So, the tracks that have a train, also contain the tuple of that train.
Note that this might be quite difficult to specify using only graphical features, but
the information-based model makes it simpler to choose.

The Join operation is performed in cumulative mode. Join is regarded as a
composite operation that first selects the scene elements and tuples, and then joins
them. The cumulative mode ensures that, in future states, the tracks that were
previously selected will continue to be selected. The visualization thus far is shown
in Figure 4.10.

The visualization, at this point, presents all trains moving on the railroad. As

they move, their trail is marked by a different color, each corresponding to a different

69
IE[=] E3

EiScene 0

Figure 4.10: A snapshot of the visualization that display the trails of the trains.

train. Notice that the trails do not appear in the state of the computation, but they

are computed by the visualization system.

Advanced Behavior

We explore the use of Add/remove Structural Specifications in different modes and the
results that can be obtained through specifying different behavior. The visualization
will compute and display the rate of progress for each train. The trails will show the
time (number of states) passed since the train was on that track. If the width encodes
the time, then the user can compare the relative speed of the trains via the average
width of their trails and can also find places where the train waited longer that show
up as a larger difference in track widths.

In the scenario, the user is interested in determining the progress of the trains.
To accomplish the task, a structural specification named age is used. First, the user
adds the specification age=0 in cumulative mode to all tracks currently visited by a
train. The cumulative mode ensures that the initialization of the age is performed only
once for each track visited by a train. Next the user selects all scene elements that
have a specification age in cumulative mode and replaces it with the specification
age=$struct.age + 1. For each element, the operation de-references the value of

the age specification and increments it. Due to the cumulative mode, age will be

70
incremented in every new state. After observing the visualization for a while, the user
can establish a cutoff value for the age after which the age is not displayed anymore.
In relative mode, the user selects all elements that have a structural specification
age=20 and removes the age specification. The selection can be made by clicking
with the second mouse button on an elements that has reached the cutoff age and

pointing to the age specification.

4.7 Concluding Remarks

Supporting the creation of and interaction with application-specific visualizations
through direct manipulation enables the use of visualizations tools for many who
otherwise may not have the technical expertise to create custom mappings from a
program execution to animations. The Reshapeable Visualization system accom-
plishes this task by using a history list of operations to maintain the user’s current
view of the computation while it runs. The system is based on a conceptual model
that separates the choice of information to be communicated from the graphical rep-

resentations of that information.

Advantages of the Data-Driven Interaction Model

The interaction model presented in this chapter is most appropriate for users who
explore a computation and are interested in discovering and analyzing various rela-
tions among the elements of the computation. In such a scenario, the user might have
no particular visualization in mind, and this model allows such a user to delegate to
the computer the task of determining a visual representation for the information of
interest.

The data-driven interaction allows querying of both the scenes and computa-
tion state. The same information space is present in the animations and the compu-
tation and is independent of the particular values of the graphical attributes. Users
can create visualizations by combining the data already existing in other program
views and in the program state. Cognitive economy is improved because the user is
not required to convert graphical values to and from data values.

Finally, the interaction model does not require users to have knowledge of com-
puter graphics in order to create and refine animations. The automatic presentation

algorithm of the next chapter can automatically manage the graphical design.

71

Disadvantages of the Interaction Model

The interaction model can become tedious when a particular graphical appearance
must be reproduced by the user. Although the appearance of the picture can be
controlled, the need to focus on all graphical details reduces the effectiveness of our
approach and makes the creation and refinement of pictures comparable to that of
other visualization tools such as [60].

Our approach is not intended for the development of arbitrarily complex vi-
sualizations. The interaction model together with the set of operations currently
implemented can produce a range of animations that is a subset of those that can
be created using code-based visualization approaches that have the computational
power of a Turing Machine [25, 74, 88].

72

Chapter 5

Automatic Presentation of

Running Programs

5.1 Overview

This chapter presents a technique for automatically generating graphical presenta-
tions of a program execution. Viewers can customize the presentation and examine
particular aspects of the running computation by interactively creating a specification
of the program’s entities and properties of interest as described in the previous chap-
ter. We identify three goals for visualizations that display consecutive computation
states. First, a visualization must present all of the entities and properties desired by
viewers and no other information. Second, the graphical representations assigned to
various program entities must be sufficiently distinctive to permit viewers to easily
recognize entities of different types, despite similarities in graphical characteristics
denoting common properties of those entities. Third, to maintain continuity of the
animation over time, graphical elements used to present one state of the program
must be reserved and subsequently used to represent the same or similar entities or
properties in other states. Based on these goals, we have developed an algorithm
that assigns graphical objects to each program entity of interest. Attributes of these
objects are chosen to present properties of the entity in a consistent manner. The
algorithm relies on a characterization of the available graphical objects and attributes
to determine the graphical elements that best display the data contained in the en-
tities and their properties. For views that have a greater number of properties than

the available number of graphical elements, we have developed heuristics for deciding

73
which properties can be depicted by overloading the same graphical attribute. The
automatic presentation is flexible and permits viewers to intervene and determine

entirely or partly the graphical design of a visualization.

5.2 Introduction

Visualization, as an efficient medium for conveying complex information, is suitable
for monitoring the execution of running computations. Visualization has the po-
tential to convey complex program behavior to a viewer. Nonetheless, the use of
program visualization is not prevalent in industry and only somewhat more com-
monly used in academia. One possible reason for this state of affairs is that the
process of constructing graphical representations that capture properties particular
to the monitored application is complicated and generally requires a user (i.e., visu-
alization builder) to possess knowledge of computer graphics or to be familiar with a
particular visualization package. Users typically need to specify both what data and
properties they are interested in and how to map them to the particular graphical
elements forming the final animation.

We seek to simplify the visualization-building process by automatically pro-
ducing graphical designs for program visualizations. Users are freed from specifying
and understanding low-level computer graphics. Automatic graphical design not only
promotes cognitive economy by simplifying the user’s tasks and reducing the need to
operate with computer graphics, but also provides important assistance to novices
and viewers that are unwilling to design the animation.

This chapter presents a technique for creating graphical representations of
programs based on data that streams from a running program. Our approach is
customized to handle data that consists of a number of heterogeneous program enti-
ties. These entities are data objects or variables, such as integers or queues, that are
manipulated by the monitored program during its execution.

Our assumption is that the information to be depicted is made available for
each state of the program by the interactive tool presented in the previous chapter.
This information describes both the entities and the relations between them that are
to be shown on the screen. A collection of such data is termed a scene and does not
typically contain graphical information. Instead, in this approach, the content of a
scene is automatically translated into a graphical representation. At a high level, the

translation can be regarded as a constraint satisfaction problem [33], in which each

74
element of a scene is assigned an element from a domain of graphical representations.
From all possible solutions, it is desirable to select one that produces an intuitive
and easily understood visual representation of the scene. The technical contributions
of this chapter reside in identifying the specific constraints that arise in program
visualization and in providing a method of computing corresponding graphical repre-
sentations.

The constraints that must be satisfied by the automatic presentation algorithm
can be described informally as a set of three goals for scene depiction. These goals
appear as common features of classical examples of program visualization, such as
Stasko’s POLKA and TANGO visualizations of sorting and bin-packing algorithms
[89, 85, 82], Pavane visualizations of trains, ATM Networks, and elevator controls [74,
73], Brown and Najork’s animation of a shortest-path algorithm [17], and Baecker’s
depiction of sorting algorithms in his “Sorting Out Sorting” video [11]. We note that
these program visualizations have a different flavor from the ones created for program

optimization. The goals are:

Expressiveness Display all the entities and relations of the scene and nothing else.
Consider the monitoring of a generic distributed computation. For a given state,
a scene describes three computers and one message as entities as well as their
x and y position as relations. According to this goal only the four entities are

to be drawn and they should be placed according to their position.

Visual Classification Distinguish between different kinds of entities. In the pre-
vious example, messages and computers would be drawn differently to permit
a viewer to easily infer the type of each object. The visual appearance of one
data category should be significantly different from the appearance of another’s.
A graphical attribute like color or length is typically insufficient. Consider the
case of a visualization that presents every entity, computers and messages, as
spheres with a different color for each category. Such a visualization fails to
emphasize the category of each object and makes message passing subject to
misinterpretation as computer movement. A better visualization might depict
the two categories as two different types of graphical objects, such as small

spheres for messages and cubes for computers.

Continuity Ensure that consecutive depictions of the same scene present similar
data using common graphical features and unrelated data using different fea-

tures. For example, once a message has been presented as a sphere it will

75
continue to be presented as such at a later time. This also prevents a mo-
bile computer that enters the environment of interest from being depicted as
a sphere even in a state when no messages, and consequently no spheres, are

displayed.

In the case of large, long running computations the display might run out of graphical
attributes available to encode entities and properties. We propose a trade-off that
might degrade the clarity of the view, but allows a user to continue to monitor the
program through the same visualization. The trade-off consists of techniques for the
overloading of attributes and for the re-mapping of program data to graphical values.
We propose a novel heuristic to determine when an attribute may be overloaded to
encode more that one property. The method analyzes the data up to the current state
to establish if two properties are derived from two “unrelated” categories of data. If
so, then it is possible for these unrelated categories to share a common attribute
without confusing the viewer. For example, both the hard disk drive activity of a
computer and the status of a message could be presented using color, with little chance
of confusing the viewer as to whether the message status and hard drive activity were
related.

A version of the automatic presentation technique was implemented in our
program visualization system. With this system, users can interact with the anima-
tions to build program visualizations at runtime, refine existing visualizations, and
explore various aspects of the computation. Users operate in an environment that
permits them to select the program entities of interest and to derive the properties
and relations to be observed over time. No graphical elements are required to be spec-
ified or calculated by the users because the final picture is automatically generated
as described in this chapter. If desired, users can control the automatic presentation
system by specifying the graphical design entirely or in part.

In the remainder of this chapter we seek to explain the details of these auto-
matic presentation techniques and to show how they can be used to produce useful
visualizations of program executions. In Section 5.3 we provide context by re-visiting
related work. In Section 5.4 we define terms and provide detail on the type and form
of information that is available about a program that permits automatic presentation.
A description of the presentation algorithm follows in Section 5.5, and the heuristic
that is used to determine when a graphical attribute can depict multiple relations is

explained in Section 5.6. Section 5.7 relates how the user can control the appearance

76
of the visualization. In Section 5.8 we summarize this work, describe its limitations,

and discus continuing and future work.

5.3 Related Work

Two types of techniques, one designed for information visualization and the other for
scientific algorithms, are closely related to the work presented in this chapter. The
former includes tools, such as APT [58], Boz [20] and SAGE [76], which focus on
the automatic generation of visualizations. APT and SAGE rely on the semantics of
the underlying data to generate an appropriate display. In APT these semantics are
embodied in the functional dependencies in a relational database. Boz focuses on an
analysis of the task which the graphic is intended to support. The Visual Classifi-
cation and Continuity constraints distinguish our approach from these traditional
automatic presentation tools. Although these tools employ expressiveness and effec-
tiveness criteria [58] to determine the best graphical representation for a given set of
data, they are designed mainly for static, relational data. While they can be used
successfully to present the relations between data elements (Expressiveness), the
problem is that no special provisions are made to distinguish the category of infor-
mation (messages or computers) being shown. Even if the category is considered as
an additional dimension of the displayed relations, the distinction between categories
is in most cases illustrated by a single graphical attribute (color, length). This might
be insufficient for some visualizations. For example, it is possible with these other
tools that messages and computers would be depicted as points at the corresponding
locations, with messages distinguished from the computers only by virtue of having
a different color. The resulting visualization would be less than ideally informative.
A further problem with the traditional tools is that if applied to each state of the
program in succession, they can lead to a series of scenes in which the representation
of a particular piece of information can vary drastically from one scene to another.
This drastic change in graphical representation could occur if the range of values asso-
ciated with a variable appears to change during the course of execution. For example,
if all prior message ids had been numerical, one type of attribute would have been
assigned to message. However, if a message id appeared that also contained letters, a
new mapping from message id to graphical attribute would be selected, perhaps even

causing a cascade effect in which other program attributes were also reassigned to

7
new graphical attributes. Such a mid-stream re-mapping from program entities and
their relations to new graphical objects and attributes could easily confuse a viewer.

VisAD [43] is an algorithm visualization system that can present arbitrary data
types as they appear in scientific algorithms. Scalar data types are mapped by the
user to scalar display types. Complex data types, combinations of scalar data, can
be assigned a representation by combining the corresponding scalar display types.
VisAD maintains Continuity in the sense that the representation of the same piece
of information does not vary greatly over time, since it is encoded by the same scalar
display type(s). But, VisAD does not satisfy Visual Classification. For example,
if the scalar data that defines the message type and the computer type are similar,
such as a tuple < ID, TIME > for message and < ID > for computer, then the
appearance of the graphical objects that represent messages and computers might

thus be quite similar.

5.4 Input Data

As stated in the introduction, we assume the existence of a description of the entities
and relations to be depicted. The description necessary for visualization could be
automatically derived from program state alone. However, such an automatically
derived specification is typically not sufficient to produce meaningful visualizations,
as it would include all available entities and relations. More meaningful visualizations
can be produced by permitting the user to specify the particular entities and relations
of interest. Such a specification was introduced under the name scene in the model
of the previous chapter. We will elaborate next on the practical importance of scenes
by showing how different two views of the same computation can be.

Consider as an example a computation that regulates the transport of compo-
nents between various assembly lines in a factory. The transport is performed via carts
that move independently on a network of tracks. Parts are loaded and unloaded at
special stations. The program has a representation of the real world entities (stations,
tracks, carts and parts) as software objects and controls these entities by modifying
the fields of the objects. For example, the program can have a part moved from a
station to the cart by replacing the station name with the cart id. A description of
the object (program entity) types is presented in the form of tuple types in Figure 5.1.
The state of a station or track (busy or ready) determines whether a cart can enter

the station or move over the track. The track is defined by a starting position, the

78
angle at which it is oriented and its length. The angle is also used for carts to define

their moving direction.

station(name, x, y, state, capacity)
track(x, y, angle, length, state)
cart(id, x, y, angle, destination)
part(x, y, location, destination)

Figure 5.1: Types of entities that are manipulated by the transport program.

Users that are interested in understanding the transport computation might
need to observe multiple aspects of the program. In general, the same computation
can be viewed from multiple perspectives. Two views of the transport program are
shown in Figure 5.2 and Figure 5.3. The first view places all entities relative to their
positions. The angle of the tracks and carts as well as the length of the tracks are also
shown in the view. Color is used to indicate state; the topmost stations and tracks
have a darker or lighter color that shows their ready or busy state. Two relations are
presented for each entity: the x and y coordinates. Objects with the same coordinate
value are shown at the same x or y location. These relations are ordered and impose a
distance between its elements. Other relations in the picture are the angle, length and
state of some program entities. The second view presents, for each destination, the
number of carts and parts that are headed to that destination. Note that although
each picture element of Figure 5.2 represents one program entity, in Figure 5.3 an
element of the picture may represent multiple program entities, such as all parts
headed to station a23.

A scene is a description of a program view. It consists of a number of elements,
each specifying an item to be displayed. An element is a pair of data specifications
and structural specifications. The former represents the subset of the program enti-
ties the element stands for, while the latter determines how the element is integrated
with other elements to form the scene, more precisely, what relations and properties
are to be shown. The entities in the data specifications and program state are ex-
pressed as tuples. Structural specifications have the form name = wvalue, and each
name expresses a different logical relation between scene elements. Elements that
have a structural specification with the same name are considered logically related
either similar or distinct depending on their value. The values may also impose an
ordering between distinct elements. For example, two elements that have structural

specifications x=1 and x=3 respectively can be considered ordered because 1 and 3

79

=101

Figure 5.2: A presentation of the transport network. Program objects are shown at
their relative physical location. Stations are shown as spheres, carts as cylinders and
parts as cones.

are ordered as numbers. This is not true for structural specifications such as x=ready
and x=busy. Table 5.1 and Table 5.2 present some of the scene elements describing

the two views of the transport program.

Table 5.1: Three elements of a scene that presents each entity at its position. The
first element also displays the state of the station, while the third shows the angle of
the cart.

Element number | Structural specifications Data specifications
1 x=3, y=4, state=ready | station(a23, 3, 4, ready, 40%)
2 x=7, y=2 station(bl4, 7, 2, ready, 99%)
3 x=15, y=2, angle=90 cart (123, 15, 2, 90, a23)
4 x=15, y=2 part (15, 2, bl4, a23)

80

[scene 0 _ o) x|

A
1t I B

U dest
(-] € © ®
a23 b3 c12 d4

Figure 5.3: A presentation of the transport network. The number of carts and parts
for each destination is shown. Carts appear as cylinders, and parts as cones. A graph-
ical object for multiple entities, as shown for count greater than one, was constructed
from the object representing a single entity, which appears at count=1.

Table 5.2: Two elements of a scene that presents a count of carts and parts that
are moving to a destination. The program entities of a scene element have the same
destination value. count is derived from the number of entities that exist in a scene
element.

Element number | Structural specifications Data specifications

cart (123, 15, 2, 90, a23)
cart(31, 4, 7, 45, a23)
part(2, 2, cart22, b3)

2 dest=b3, count=3 part (15, 2, cart123, b3)

part(2, 2.5, cart23, b3)

1 dest=a23, count=2

5.5 Creation of Graphical Representations

Visual presentations of a scene are obtained from a combination of graphical elements.

The available types of elements and a description of their function are located in a

81
style gallery. The gallery contains definitions for graphical objects whose appearance
was previously designed either as built-in objects of the system or as custom repre-
sentations for a monitored computation. The gallery provides a characterization of
each object type and of the graphical attributes of the objects. A graphical attribute
is a variable visual feature of an object.

Scenes are translated into graphics following a top-down, three-step framework
as shown in Figure 5.4. In the first step, graphical objects are chosen to present
the elements of the scene. The objects are based on the types that exist in the
style gallery. In the second step, graphical attributes of the allocated objects are
assigned to the structural specifications of the scene. Across the entire scene, all
structural specifications with the same name must be depicted by similar attributes,
e.g., color or length. This step is designed to ensure that all relations are shown
distinctly, as required by Expressiveness, and to choose different types of objects
for different types of program entities (Visual Classification). In the third step,
values are generated for the attributes of the graphical objects. The values of the
attributes that present a structural specification must make the relation defined by
the specification visible in the appearance of the corresponding graphical objects. In
some cases, values of the unused attributes, which present no structural specifications,
must also be computed in order to satisfy the presentation goals, specifically to avoid
hiding graphical objects (scene elements) and presenting false relations via object
intersection (required by Expressiveness). A decision made in one step may lead,
in a later step, to a graphical design that does not satisfy the presentation goals, in
which case the process backtracks and an alternate decision is tried.

The framework can produce graphical representations by analyzing the type of
data and relations described by the structural specifications of a scene and by finding
the graphical attribute that is most fit to present those relations, as employed in
other automatic tools ([58],[20] or [76]). Our approach, however, also makes use of
the names present in the scene to build a graphical representation that is more likely
to reflect the viewer’s intentions. The naming of the program objects and their fields
can aid the system in choosing the graphical object for a scene element. The names
given to the structural specifications typically show the viewer’s mental model for the
final visualization. A structural specification that refers to a graphical property, such
as width=4, is most likely intended to be depicted through that attribute, while a

more abstract name, like idleness, might not have a clear visual representation in

82

® Generate
Values

@ Find @ Assign
" Scene Objects Attributes

Data:cart zg — E
a=3 _

Data: statwn O —- @
\.

Figure 5.4: An example of a cart and station scene elements as they go through the
three rendering steps. They have one structural specification named a and different
data specifications.

the viewer’s model and consequently no specific choice for the graphical attribute is
given.

The graphical representation of a scene can be further enhanced by trying to use
as much as possible those objects of the style gallery that can function together to form
a coherent view. Such sets of objects, denoted themes, were either designed to be used
together or were employed in the same past presentation. The sphere and line objects
that display an arbitrary graph layout form a theme. Another theme might consists
of styles, or glyphs, that are designed to present statistical data such as minimum,
maximum, or distribution for a number of variables. Graphical representations should
use as few themes as possible because the existence of multiple themes in a picture
typically leads to aesthetic and perceptual problems. For example, using statistical
styles instead of the spheres of the graph layout raises the question of where a line
should be connected to a statistical object such as a “whisker” object (a bar with

some external markings for the standard deviation). Trying to connect the line object

83
towards the middle of the statistical object, as designed for the sphere, might interfere
with the depiction of the standard deviation.

A registry is employed to record previous assignments of graphical elements
to scene components. When similar components appear in the future, the system
chooses the visual elements recorded in the registry to display those components.
This is the mechanism that maintains consistency over time (Continuity). It also
speeds up the re-drawing of a slightly modified scene for which most of the graphical
elements have already been decided.

The remainder of this section provides more details for each of the frame-
work steps. First, the steps are described under the assumption that a new scene
is displayed. Then, the manner in which the algorithm depicts an updated scene is
discussed in a separate subsection. The transport computation is used as an example

by focusing on the generation of the first view (Figure 5.2).

5.5.1 Style Gallery

The style gallery defines the domain of graphical elements that can appear in a scene
presentation. It consists of a set of descriptions of graphical object types. Each
description provides a characterization of the data specifications that the style was
designed to represent and of the graphical attributes of the object. For the data
specifications, typical names of the preferred program entities together with the name
and type of their most common fields are stored in the gallery. A graphical attribute

has a name and is characterized by one or more of the following.

e The domain of values the attribute can take. This can be an interval as for size,
a hypercube for a multi-dimensional domain such as a (red, green, blue) triple

for color, a list of values for attributes like texture, or textual for labels.

e The recommended minimum distance between two values of the attribute which
are distinguishable by a typical viewer. For textual domains, this value specifies
the maximum length of the label. This is not applicable when the domain is a
list.

e The default value for this attribute.

e The type(s) of data for which the attribute is intended. As in [58], data can be

classified into nominal or unordered, ordinal or ordered, and quantitative or an

84
interval (both order and distance are defined). In addition, the preferred size

or the domain itself might be specified.

e The type of attribute: position, size, color, rotation, texture, transparency,
label, connection or containment. An object designer can add new types if an

attribute does not fall into one of these categories.
e A list of the structural specification names that are preferred to be displayed.

To demonstrate the process of building representations, a style gallery with
four object types is assumed to exist. The possible types are sphere, line, cylinder
and cone. Some of their characteristics are provided in Figure 5.5. A 3D world is

considered because the current implementation of the system is using Java 3D [90].

5.5.2 Choosing Styles

An important role in deciding the graphical object fit to represent a scene element
is played by the data specifications. The gallery is searched for styles that were de-
signed to display the type of program entities described in the signature of the scene
element. In the simplest case, when data specifications consist of one tuple, the sig-
nature of the element is defined by type of the tuple (also referred to as class) and by
the name and type of its tuple fields. For example, the signature for an element de-
picting a track is track(x:integer, y:integer, angle:real, length:integer,
state:string). Elements that represent different classes of tuples have as a signature
the set of individual signatures of each class.

Scene elements can also represent multiple program entities of the same type.
Such objects are depicted by the same style regardless of the actual number of similar
tuples. An object that represents two carts in Figure 5.3 should appear the same as an
object that represents six carts. The signature of the corresponding scene element is
cart+(x:integer, y:integer, angle:real, destination:string). The ‘+’ sign
symbolizes the presence of multiple tuples of the same class, in this case cart. Notice
that this is different from the signature of an element that represents only one cart.

For each type of scene element, the algorithm searches the style gallery to find
graphical objects that match the signature of the type. Styles are filtered by the
requirements listed below. If they do not pass a filter, they are not considered for the
next higher numbered filter. The set of styles that pass the highest-numbered filter

are forwarded to the next step in which only one of them is selected to display all

85

Sphere: Preferred data specifications: vertex(id:integer), node();
Attributes: x, y, z, radius, color;
X, ¥, z: Domain: [—100, 100];
Minimum distance: 0.5;
Default value: 0.0;
Type of attribute: positional;
Type of data: domain with more than 2 values.
radius: Domain: [0.5,15.0];
Minimum distance: 0.5;
Default value: 1.0;
Type of attribute: size.
color: Domain: cube between (0.0,0.0,0.0) and (1.0, 1.0,1.0);
Minimum distance: 0.5 (Euclidean distance);
Default value: (0.2,0.2,0.2);
Type of attribute: color;
Type of data: nominal with less than 10 values.

Line: Preferred data specifications: edge(), 1link();
Attributes: x, y, z, orientation, length, color;
orientation:

Structural specification names: rotation, angle, slope;

Cylinder: Preferred data specifications: none;

Attributes: x, y, z, orientation, length, color.
Cone: Preferred data specifications: none;

Attributes: x, y, z, color.

Figure 5.5: A simple style gallery. The complete description of the sphere is presented.
For other styles, only excerpts are shown.

scene elements of that type (with the same signature). If all styles fail the first two
filters, the algorithm decides that it is not able to show the scene due to the lack of
appropriate graphical objects.

1. Only styles that are not already assigned to other signatures are considered.
Condition Visual Classification requires that different kinds of graphical ob-

jects must represent different types of scene elements.

2. Only styles that can represent all objects with the given signature are chosen.
This is determined by the capacity of a style to depict all the relations present
in the structural specifications of those objects, i.e., there are enough attributes

for all the names in the structural specifications.

86
In the transport visualization, the scene elements for parts are members of the
x and y relations. The stations contain three structural specification names: x,
y and, for some stations elements, state. The carts are involved in x, y and
angle relations. The tracks must present x, y, state, angle and length. In
this case, all styles can display any type of scene element. The only exception
is Cone which has only four attributes and therefore cannot represent some of
the tracks.

3. The algorithm prefers styles that match the signature if the ‘+’ sign is ignored.
An new object type is created by replicating the object of the style as shown
in Figure 5.6. The resulting object has the same graphical attributes as the

original. A “glue” of the same color is placed between the replicated objects.

~

Figure 5.6: To the right, a style for depicting multiple tuples of the same class is
constructed from the style on the left, which was designed to display a single tuple
of that type.

4. Styles that are designed to represent the given signature are given preference.
The signature recorded in the style must be a subset of the signature of the
scene element. The same classes must be present in both signatures, although
the element might have fields that do not exist in the style. In this case, it
is very likely that the style was designed for precisely the kind of program
entities that are to be displayed. Notice that additional fields might be present
in the element signature. These extra fields are allowed for the case of object-
oriented programming when an object of the computation might be a specialized
version of a super-class. For example, “movable station” might be a sub-class
of “station”. A style designed to represent a station may also be used for a

movable stations.

In our example, the signatures of the styles (Figure 5.5) do not match any of

the signatures of station, cart, part or track types of scene elements.

87
5.5.3 Selecting Graphical Attributes

This step of the framework assigns a graphical attribute to each structural specifi-
cation name. The input consists of scene element types and, for each type, of the
set of styles that are possible candidates for displaying the type. Once the graphical
attribute that will be used to show a relation (a structural specification name) is
determined, the algorithm decides on only one style for each type of scene element.

The input in our example is four types of scene elements (cart, part, station
and track), each with its own set of styles. The sets for the first three types are
the same {Cone, Cylinder, Line, Sphere}. The set for track is {Cylinder, Line,
Sphere}. Recall that Cone cannot represent some tracks because it does not have
enough attributes.

One relation (structural specification name) of the scene is displayed through
one type of graphical attribute, such as color or width, regardless of the style used for
presenting individual scene elements that are part of that relation (have a structural
specification with that name). The algorithm examines each possible assignment of
attribute types to the set of structural specification names. The attribute types to
be considered are the ones that belong to one of the input styles. Out of the correct
assignments, the algorithm selects one that can depict the relations most effectively.

The correctness of an assignment is decided by verifying all the factors listed

below.

1. Different attribute types must be assigned to different structural specification
names. This ensures that a viewer can distinguish two separate relations and
therefore that requirement Expressiveness is satisfied. For example, the
length and state relations cannot be encoded by a single type of attribute

such as size.

2. Attributes already assigned to other relations in the current visualization session
are not used (requirement Continuity). The algorithm can be simplified by

considering only unassigned attribute types.

3. For each type of scene element in the input, there must exist an input style
that is capable of depicting all elements of that type. That style must contain
every attribute that is assigned to a structural specification name appearing in

an element of that type.

88
Consider in our example a situation in which the length attribute is assigned to
the length relation, and size to the state relation. In this situation, there is
no style that can depict some of the tracks, because there is no style that has

both length and size types of attributes. Such an assignment is not correct.

4. In order to satisfy the Visual Classification requirement, there must exist a
style solution, a set of distinct styles such that there is one style for each type
of scene element. A style of this set is both associated in the input with a
type of scene element and capable of presenting all elements of that type, as
explained in the previous paragraph. Notice that it is possible to have multiple

style solutions for a single assignment.

A possible assignment for the transport view is z-coordinate to x relation, x-
coordinate to y, y-coordinate to state, length to angle and color to length.
A possible solution is Line, Sphere, Cone and Cylinder for cart, part, station

and track respectively. The other solution is Cylinder, Sphere, Cone and Line.

The effectiveness of an assignment is evaluated separately for each of its style
solutions. This measure estimates how good a solution is by quantifying the fitness
of each attribute, for each solution style, to depict their assigned relation. The fitness
is derived from Mackinlay [58], where, for each kind of data (nominal, ordinal or
quantitative), perceptual tasks (graphical attribute types) are ranked according to
their efficiency in presenting that data. The fitness of a graphical attribute for a
given relation is its ranking in displaying that relation’s data. If the attribute has a
description of the preferred data type in the style gallery, that description is considered
to have the first rank, followed by a default ordering of attributes as in [58].

In the first example, consider the use of length to present the angle relation.
The data in this relation is quantitative, and according to Mackinlay[58] length is
the second choice. Because there is no description for preferred type in the style,
the fitness for this choice is 2. Assuming that there are two styles (one for carts and
one for parts) that use length to depict angle, this adds 4 to the effectiveness of an
assignment. In the second example, let the y-coordinate represent state. The values
of the state are ready and busy, which suggests nominal data. The default ranking for
such data is 1, as positional values are preferred for nominal information. However,
the y-coordinate has a preferred type in the style gallery, for which the values of the

state do not qualify. So, the y-coordinate is actually the second choice for the state

89
relation. Again, this adds 4 to the effectiveness of the assignment when two styles
use y-coordinate to show the state.

In order to reward the use of attributes that have the same name as the encoded
relation, the fitness of such a choice is considered to be zero. Zero fitness is also
awarded to attributes that depict their preferred relation name as described in the
style gallery. So, if the x-coordinate is used to depict relation x, the fitness is zero,
and nothing is added to the effectiveness of the assignment. The same holds for
orientation as a choice for depicting angle because “angle” is listed as a preferred
structural specification name (Figure 5.5).

The solution that has the lowest sum of fitness values is the one chosen in this
step. Note that the sum is adjusted to discourage the use of multiple themes. In
our example, the lowest effectiveness ranking is obtained when the x, y and length
relations are depicted through the attributes with the same names. The use of orien-
tation for angle is also rewarded, adding zero to the effectiveness. The use of color

for state adds only two to the effectiveness. This assignment is shown in Figure 5.2.

5.5.4 Choosing Values for Attributes

The input for this step consists of the mapping of each scene element to a style
as well as a mapping of each relation (structural specification name) to a graphical
attribute type. At this point, the algorithm must decide how to display individual
scene elements, especially their structural specifications. This is the same as setting
the attributes of the graphical objects that form the final visualization. A graphical
object corresponds to a scene element and is an instance of a style associated to that
element.

Some attributes of a graphical object might display structural specifications
that exist in the scene element, while other attributes might be unused, do not have
a related structural specification. For example, in Figure 5.2, color is not used for
the stations on the left, but it presents the state specifications for the ones on the
top. Values are set for all attributes, showing either a structural specification or the
default value. In the former case, values are generated if the data to be conveyed is
nominal or ordinal. For quantitative data, the value of the structural specification is
copied directly to the value of the graphical attribute that displays the specification.

If, however, the structural specification values are not in the domain of the graphical

90
attribute as described in the object’s style, different values for the attribute must be
generated.

Most attributes that do not present a structural specification are set to the de-
fault value specified in the style of their object. Position, size, length and transparency
types of attributes have default values computed based on the overall appearance of
the visualization. If possible, the default values of such attributes can be adjusted
to ensure that all objects (scene elements) are visible and that no unspecified rela-
tions are shown through object intersection as required by Expressiveness (unless
connection or containment type of attributes are assigned). The situations where the

default values are computed are given below.

e Objects with unspecified position must use a layout scheme to be spread out on
the screen. We prefer to show each class of elements in their own region on the
screen, e.g., all un-positioned carts in the upper region and all un-positioned
stations in the lower. Advanced algorithms for the layout, such as those for
graph layout, can be plugged in the automatic presentation. Currently, we only

implemented a random layout scheme.

e An object that completely encircles another and has the position and size al-
ready set can be made more transparent to allow the occluded object to be
viewed. This might have been the case if the cylinders (carts) were smaller
than the tracks. The tracks could have been made transparent so that the carts

looked as if they were moving inside a pipe.

e Objects can be prevented from overlapping by reducing the length or size of
unused attributes. This is not possible when objects lie at the same position,
or more generally when some of their internal axes intersect as it is the case for
carts and tracks. An internal axis is always inside the object regardless of the

values of unused attributes.

In both Figure 5.2 and Figure 5.7, it can be seen that the length of the carts is

set to prevent the two uppermost carts from overlapping.

e Objects lying at the same position can be separated by listing them on an
unassigned dimension such as the z-coordinate. Although this introduces a
false relation among objects, it is still useful and is employed only when multiple
objects hide each other. In Figure 5.7, the z coordinate is employed to list the

parts carried by one cart because they are at the same (x, y) coordinate.

91

Figure 5.7: The presentation of the transport network as seen from a different view-
point in the 3D world. The parts that are in the same cart or station are distinguished
on the z-coordinate.

The system determines values for positional attributes last, preceded by the
value for size attributes, preceded by transparency, preceded by the other types.
Default values for non positional attributes are the same for all objects of one style
(e.g., all carts have the same length), yet different from any values used for displaying
structural specifications. Default values for positional attributes might be particular
to each object if one coordinate is used to distinguish among occluded objects. In

Figure 5.7, cones do not have the same default z-coordinate.

5.5.5 Repainting a Scene

The presentation of the algorithm thus far assumed that the content of the scene
was new, more precisely, that the types of scene elements and names of relations were
encountered for the first time. Typically, a scene is frequently updated to present new
states of the program and to react to changes made by users. The new visualization

frame has a large number of graphical features that are similar to the previous ones.

92
This is because a large portion of the new content of the scene is copied from the
previous content, and according to Continuity common graphical features should
be employed.

A registry is maintained by the system to record the mapping between scene
entities and graphical elements. In effect, the decisions that lead to a successful
visual representation are recorded. The registry keeps the style associated to each
scene element signature, the graphical attributes assigned to a relation, the mapping
of structural specification values to graphical attribute values, and old default values
of unused attributes. For recorded scene element types, the first step of the framework
associates only the style from the registry to that element type. In the second step,
known relation names are automatically assigned the graphical attribute previously
used.

In the third step, the values for already seen nominal data are kept the same,
but it is possible that different graphical attribute values are generated for ordinal
and quantitative data, even if that data is present in the registry. Since ordinal data
has an implicit ordering between values, the insertion of new values invalidates the
previous ordering. This requires the system to re-assign graphical values to display
the new ordering, with the elements at equal distance. For example, let the carts be
qualified by ‘bad’, ‘fair’ and ‘good’ attributes which are shown using width 2, 4 and
6 respectively. If a new qualification ‘so-so’ is added between ‘fair’ and ‘good’, the
system should use width 6 for ‘so-so’ and width 8 for ‘good’ to order carts uniformly.
Quantitative data does not require the elements to be at equal distance, although
values that are out of the attribute’s domain may appear. In that case, all data
values need to be re-encoded, in effect scaled, through different attribute values to
show the relative distance among them. Finally, non-positional default values are kept
the same for the new visualization, while default positional values might be adjusted.
In Figure 5.7, when the number of parts carried by a cart changes, z-coordinates are

updated to allow all parts to be displayed.

5.6 Graphical Attribute Overload

Data overload occurs when the amount of information to be presented exceeds the
available graphical features. Overload can be detected in any of the three steps,
when all styles have been used, when there does not exist a correct assignment of at-

tributes to relations, and when all the values in the domain of an attribute have been

93
exhausted. If data overload occurs, the visualization session may have to stop, or
users might be required to manually design the entire graphical presentation. Heuris-
tics that can alleviate the last two problems, albeit by sacrificing the clarity of the
visualization, are presented next.

If no additional graphical values can be produced in step three, when values
of the structural specifications are encoded, the system can continue displaying the
visualization by showing multiple data values through the same attribute value. For
example, if stations have a large number of states, the same color might need to
encode more than one state. Nominal and ordinal data is evenly distributed across
the values of the attribute. That means that each attribute value encodes about the
same number of data values. In contrast, quantitative data is scaled to fit in the
domain of the attribute. It is possible that one attribute value encodes most of the
data, yet viewers are not able to infer this from the visualization. We are studying
the use of legends, like the ones that appear on road maps, to display the distribution
of the data values. Legends are the subject of the next chapter.

In step two, if no graphical attribute is found for a new structural specification
name, the system looks for an attribute that is assigned to a specification name wun-
related to the new name. Two structural specification names, A and B, are unrelated
if both of the following conditions are true. First, at all times during the current
program execution, the data specifications of any scene element that contained a
structural specification named A had nothing in common with the data specifications
of any elements that contained B. That is, the classes of tuples of such two elements
were distinct. Second, at all times during the execution, no structural specification
named A was derived from the same subset of the program state as a structural
specification named B.

The first condition does not allow two properties of one scene element to be
presented through the same graphical attribute, since the data specifications of the
element are common to both properties. Furthermore, this condition prevents the
same style from showing two relations through the same attribute. In our example,
it is not possible for color to present the state for some stations (spheres) and the
capacity for other stations. It would be impossible for viewers to distinguish when
color represents state and when it represents capacity.

The second condition is aimed at preventing two different relations that are
changing synchronously from being encoded with the same attribute. Because the

two relations are derived from the same program data, a change in the data is likely

94
to modify both relations. If the relations were shown by one graphical attribute, the
synchronized modifications would make it difficult for a viewer to perceive that the
two are different properties.

No two relations encountered in our example can be encoded through a com-
mon attribute. Consider a new relation capacity that shows the percentage of used
capacity of each station. It is possible in Figure 5.2 for capacity and length to be
shown through the same attribute. Under the assumption that spheres have a length,
the resulting visualization depicts stations as ellipsoids whose length varies with the
capacity. This visualization might prove to be clear enough for a viewer to distinguish

the meaning of the track’s length from the meaning of the station’s length.

5.7 User Control

Users can control the presentation through the choice of structural specifications, by
editing the registry and by creating custom styles and themes. The exact name and
value for a graphical attribute can be given in the structural specifications. As de-
scribed in Section 5.5, the algorithm encodes a structural specification by the attribute
with the same name whenever possible. Moreover, the value of the specification is
copied to the value of the attribute when the former is in the domain of the attribute.
Users can also control the style for each scene element. A special structural specifica-
tions named STYLE is interpreted by the system as a request for that particular style.
As such, a scene element that has a specification STYLE=Sphere is shown as a sphere.

To override the decisions of the system, the registry can be edited. Beyond
a textual editor, legends provide a direct manipulation alternative for editing the

registry.

5.8 Concluding Remarks

The technique described in this chapter simplifies the construction of visualizations
that depict the execution of a program. The viewer specifies, via interaction with
animations, the program entities and relations to be observed over time. The presen-
tation technique automatically designs visualizations to depict the sequence of states
of the running computation as specified by the user. The result is an animation that
interpolates smoothly between representations of each state. We introduced three

requirements for such visualizations. First, the pictures must express all and only

95
the entities and relations specified by the viewer. Second, various types of program
entities must be easily classified through their visual appearance. Third, similar in-
formation displayed in multiple frames of the animation should not have a radically
different representation. For large amounts of data, these requirements are relaxed
to permit the viewer to keep using the same program view.

The presentation algorithm relies on a style gallery that defines the graphical
elements available for a visualization. A style provides the algorithm both with a
description of the capabilities of its graphical features and with a characterization of
the type of information the style was designed for. The system produces a graphical
representation by finding the styles that match the information specified by the viewer
and combining them into a picture.

The technique, although fit for presenting relations, has limitations in captur-
ing the semantics of those relations. Generated visualizations might not show the
representation expected by a viewer. The final picture is accurate in presenting all
relations, but due to lack of knowledge or graphical attributes, an unintuitive visual
attribute might be used to encode a property. The interactive legends presented in
the next chapter provide a direct interaction device for users to adjust the visual

representations chosen by the system.

96

Chapter 6

Interactive Legends

6.1 Overview

The benefits of program animations may be increased by adding to the program view
a visual representation of the data-to-graphics encoding employed by the animation.
This chapter focuses on interactive legends that provide both an economical format
for conveying a mapping and a widget through which the mapping can be adjusted
by users. Legend keys promote a continuous style of interaction that allows users to
adjust the appearance of the observed computation according to their understanding
and interest. We show the flexibility of legend keys by using them to query the
information based on the properties of interest and to focus the presentation on the

program objects and properties relevant to the current task.

6.2 Introduction

The effectiveness of program animations may depend on the existence of an explicit
representation of the wvisualization syntax. The syntax refers to the graphical means
through which the information of a running program is visually communicated, and
it can be regarded as a mapping between the abstract data of the underlying pro-
gram and the graphical features of the visualization. In the experiments presented in
Chapter 3, the use of legends to depict the syntax is among the factors that appeared
critical for animations to benefit the user in performing a problem-solving task.
Traditionally, program animations included little explanation of the visual-

ization syntax and did not regard the mapping as part of the program view. The

97
missing syntax representation raises problems related to an increased cognitive effort
and to a reduction in the elements that can be “naturally” manipulated via direct
interaction. First, the increased cognitive load is probably a consequence of the user
storing the data-to-graphics mapping in the working memory. Otherwise, the user
risks not understanding the processes conveyed by the animation because of the in-
ability to relate animated graphics to the abstract concepts in the observed program.
A poor understanding of the syntax may result in overlooking important events in
the program, in identifying false problems, or in overloading the user with questions
such as “is that rectangle supposed to be that wide for a list with two elements?”.
Second, the lack of a syntax representation may restrict the user’s ability to adjust
the data-to-graphics mapping. This mapping is the core of the visualization process
because it enables users to control the appearance of the program view and to query
the subset of the computation that is of current interest. The user may be able to
modify the syntax through slow, discrete widgets, such as textual input for the exact
values of graphical attributes, or through widgets that can specify a single range at
a time, such as sliders.

We introduce legends similar to those commonly employed in cartography as
a means of explicitly conveying the visualization syntax. A legend key is itself a
graphical representation that allows a viewer to find the relations between information
and graphics at a glance by simply examining the picture. Legend keys are familiar,
easy to interpret by most people, and offer a compact representation of a mapping
via linear interpolation. By varying the coarseness of the interpolation, legends can
be naturally scaled to fit into the available space of a visualization.

In our approach, legends are regarded as an integral part of visualizations. As
such, legends have a dual role, as both a presentation mechanism and an interaction
element that can be modified, included or removed as a result of user actions and pro-
gram execution. The main contribution of this chapter is the design of an interactive
widget that is based on traditional legend keys. The widget is expressive enough to
convey the choices of the automatic presentation technique of the previous chapter.
The discussion presented here focuses on continuous adjustment of the visualization
syntax. More discrete operations, such as combining the elements of a key or trans-
ferring keys between different scenes, are the subject of our early work in [94]. They
are not included in this chapter because of their different purpose and appearance.

The versatility of the interactive legends is demonstrated by considering solu-

tions to query and focus+context problems. Legends can be used to specify (query)

98
the elements of interest based on properties of those elements. Focus+context refers
to a range of techniques for handling large quantities of information that cannot be
properly depicted at once (see Figure 6.10 for an example of focus+context). The
visualization shows only a subset of the entire information space in detail. In order
to maintain context, the remaining data is also included in the visualization in an
abbreviated form that can be accommodated with the graphical attributes available.

The legend key widget is general enough to express relations between arbitrary
domains. The legends can present relations concurrently between more than two
domains, although we typically employed the widget with two domains: a graphical
attribute and a data property.

The next section presents related work, followed by a description of the appear-
ance of our legend keys in Section 6.4. Section 6.5 presents the style of interaction with
the key widget. The use of legend keys for querying and focus+context is illustrated

in Section 6.6. Conclusions and future work are presented in Section 6.7.

6.3 Related Work

Legends are commonly used in visualizations and charts in the fields of scientific and
information visualization. Office tools include legends in the charts they produce.
However, the interaction with these legends is limited at best to coarse selection
tasks, such as clicking on a legend key of a chart and highlighting the entire series
depicted in the chart. Our approach emphasizes continuous manipulation of the
legends. Similar continuous flavor appears in dynamic queries, zooming interfaces
and focus+context techniques, all applied to handle large or complex data spaces.
Dynamic queries |9, 80] are a class of interaction widgets that allow the selection
of an interval of values for a data attribute. The user can control the upper and lower
limits for any attribute by grabbing and moving those limits directly on the widget.
In response to the user actions, the visualization promptly presents those elements
whose attributes fall within the specified range. For example, a user can effectively
slice the information space, continuously move the slice, and set its size. Because
of the natural interaction style, many variations and extensions of dynamic queries
were developed, such as the widgets in the Attribute Explorer [95] by Tweedie et
al., where an overview of the data distribution is drawn on the widget itself, or
the Verizon Laboratories’” EZChooser [98], which emphasizes the querying power of

dynamic queries although it sacrifices their continuous nature. We integrate dynamic

99
queries into the design of interactive legends, which provide the ability to adjust not
only an interval, but to adjust the mapping itself.

Zooming interfaces such as Perlin and Fox’s Pad [63], or similar user interfaces
like Pad++ [13] and Jazz [14] developed by Bederson et al., are intended to provide
smooth zooming into the components of a user interface. The continuous nature of
these interfaces is different than the continuous manipulation of legends.

Focus+context techniques include FISHEYE view [34], Table Lens [67], Magic
Lenses [31] and SDM [21]. FISHEYE view, through a spatial distortion, adjusts the
position and size of objects, but does not handle other graphical attributes. Table
Lens, as the name suggests, is designed for tabular data representations. Magic Lenses
are capable of emphasizing various information space ranges, but does not allow the
specification of more complex constraints such as properties that depend on each
other. SDM allows the modification of the parameters of graphical objects via direct
manipulation of those objects. The appearance and positioning of the set of interest
can be modified to allow an easier analysis of the set. Although SDM provides clues
as to the relation between the selected objects and the rest of the picture it does not
convey the data to graphics mapping. SDM does not directly support querying of the
elements based on their properties as well as the encoding of a data attribute through

a segmented function such as the one in Figure 6.2.

6.4 Legend Keys as Displays of the Visualization
Syntax

6.4.1 Basic Legends

Legends consists of a number of keys, each presenting a relation between data and
graphical domains. Basic legend keys, such as the ones in Figure 6.1 and Figure 6.2,
consist of a data thread and a graphics thread. Threads encode a domain of values
and are generally depicted as lines. The threads of a key are parallel, commonly
either horizontal (Figure 6.1) or vertical. Threads can be labeled as in Figure 6.8.
On the thread, a number of discrete values are shown by ticks. A tick is labeled by
the textual value of the discrete point or by a graphical representation. A graphical
representation is always used on the ticks of a graphics thread. Typically such a

thread conveys a graphical attribute. Each tick label visually conveys a value for that

100
graphical attribute. In Figure 6.1, each tick on the graphics thread has a label with
a different height.

Threads encode discrete points or continuous domains. For threads encoding
discrete points, each value of the domain has a corresponding tick, while for continuous
domains, the ticks sample a range in the domain. We concentrate on the continuous

case in the discussion that follows, noting that similar issues apply to discrete domains.

_ m B . I
)))))
©)) © ®©
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 40
Legend format Graph format

Figure 6.1: A basic legend key is shown together with the graph format that corre-
sponds to the same function. A linear function is displayed.

o ©
o ©
00 10 20 30 40 00 10 20 30 40

Legend format Graph format

Figure 6.2: A segmented linear function is shown in both legend and graph formats.

101

A legend key is a brief representation of a mapping. Mappings are also cus-
tomarily illustrated with a graph, but the legends may be better because they reduce
estimation error and occupy a smaller space than the corresponding graph format,
as seen on Figure 6.1 and 6.2. The appearance of the two functions in key and
graph formats is illustrated those figures. For a visualization user, it is important
to establish how certain data is visually encoded, or conversely to estimate the data
value that a graphical object is representing. For this kind of tasks, legends may
reduce the estimation error because of the placement of the two domains next to
each other. In a graph, the domains are displayed on the coordinate axes, and the
estimation is performed by tracking a course parallel to one axis until the function
mark is encountered and then, by tracking another course parallel to the other axis.
The type of functions that can be represented without loss of precision by a

basic key include functions that appear as a segmented line on a graph. The best
depiction is obtained by creating a tick for each point where two segments join.
Alternatively, a legend key can approximate more complex functions and relations
via interpolation. The coarseness of the interpolations is dependent on the display
space available for the key, as more detailed sampling produces keys with more ticks
and is consequently longer. The keys presented in Figure 6.2 can be reduced to only
three ticks by eliminating the data ticks 1.0 and 3.0 with their corresponding graphics
ticks. The representation of the segmented function becomes an approximation of the

actual function, but it may be enough for estimating the visualization syntax.

6.4.2 Extensions of Basic Legend Keys

Basic keys are extended to accommodate constant functions and inverse of constant
functions (appear as horizontal respectively vertical lines in a graph form), to depict
relations among more than two domains, and to provide control over coordinate axes.
Functions that have a constant segment and the inverse of such functions associate
one value to a range of values. The relation is made more apparent in a key by
replacing the spherical representation of a tick with a cylinder that spans the desired
range (Figure 6.3). A cylinder marks only one value on the thread it lies on, but
because of the cylinder’s increased width, the wide tick can show a relation with an
entire range of values on the other thread.

Multiple threads added to the same key are able to concurrently present map-

pings among more than two domains. An example of such a key is given in Figure 6.4.

102

0.0 1.0 2.0 3.0 4.0 0.0 1.0 20

Figure 6.3: Two legends that present a function with a constant segment, in which
a range of values are mapped to the same graphical feature (left) and a relation
that contains the inverse of a constant function, in which one value can be depicted
through a range of graphical features (right).

A viewer can estimate the relations between any of the three domains in that figure.
This type of key extension can be employed for graphical domains with multiple di-
mensions, such as color that has red, green and blue dimensions, and for advanced

querying of the information space.

o @ L
@ @ <
10.0 200 300 40.0 500
@ @ @ @ ®

0.0 1.0 2.0 3.0 4.0

Figure 6.4: A key that presents concurrently the association among three domains.

Coordinate axes can be regarded as a legend key because they depict the
relation between a spatial dimension and a data value. The design of a basic key
is slightly modified to resemble a coordinate axis, as illustrated in Figure 6.5. The
ticks on the graphics thread have no explicit label, yet they mark the location in the
visualization that have the same position as the tick on that axis. Note that the
ticks of the position thread can only mark a single value, therefore they have only a

spherical representation.

Automatic Presentation of the Visualization Syntax

The automatic presentation algorithm of the previous chapter can present the gener-

ated encoding via basic keys and coordinate axes. The algorithm maintains a registry

103
®
|

2.0 30

o @ @ ®
@ - @ ®
0.0 1.0 4.0

Figure 6.5: A key extension to be used as a coordinate axis. An arrow is added at
the right end of the graphics thread. A graphics thread marks a hyperplane with the
same position on the axis as the tick.

in which three types of mappings are recorded: tuple types to graphical objects, struc-
tural specifications to graphical attributes, and values of the specifications to values
of the graphical attributes. The first mapping is discrete and is depicted as a basic
key with textual labels on the data thread and with sample graphical objects on
the graphic thread. For the second mapping both threads have textual labels. Fi-
nally, the third mapping is presented through multiple keys, one for each graphical
object—attribute pair.

The focus of our implementation is on the legend keys for the automatic pre-
sentation algorithm. Basic keys, which are sufficient to present the registry, are fully
implemented, while the extensions of basic keys are provided as an API that can be

programmed into a Java 3D application.

6.5 Interaction with Legend Keys

Keys can be manipulated through discrete operations, such as adding and removing
ticks and threads, or requesting an even spacing for ticks, and through continuous
adjustment of the mapping. The continuous adjustment is performed by sliding the
ticks and threads and by adjusting the range of cylindrical ticks.

We identify the following three goals for the continuous manipulation of leg-

ends.

e to update both the animation and the elements of the keys affected by a user

gesture while the gesture is performed;
e to provide cues as to all elements of a mapping that are being changed;

e to maintain the consistency of key, which include preserving the ordering of a

continuous domain.

During a user gesture, the ticks that lie in the path of the movement are gen-

erally raised above the thread. The user can complete the move without becoming

104
confused with regard to the element being manipulated. In Figure 6.6, which inci-
dentally presents how the linear function in Figure 6.1 can be transformed in the
segmented function of Figure 6.2, the graphics tick that is being dragged appears
highlighted. The dragging caused the graphics tick of data value 1.0 to be raised.
The raising mechanism provides feedback to the user as to what parts of the mapping
are changed and consequently is also employed to show a that a dependency between
two ticks is changed. In Figure 6.7 the graphics tick for 2.0 is raised and moved in
tandem with the data tick. Note that the element grabbed by the user is the data
tick.

_ m BE= l
[®) o ® ¢© @
) ¢ ¢ @)
00 1.0 2.0 3.0 40
— 1 . ® I
< o © ®
< < |) ¢ [+
0.0 1.0 2.0 3.0 4.0

Figure 6.6: Two snapshots of an interaction with the linear legend of Figure 6.1 by
moving the graphics tick of 3.0 to 2.0. The element grabbed by the user is highlighted.
It can be seen that a new graphics tick was created for 3.0 (top) and that the graphics
tick for 2.0 was raised when the user gesture brought the manipulated tick close to
the graphics tick for 2.0(bottom).

The ordering in a domain is maintained by a pushing mechanism. When the
tick being manipulated “touches” another tick of an ordered domain, the other tick
is also moved as if the two ticks were beads on a string. This prevents the two from
switching order, as it would happen if the second tick were raised. Raising is replaced
by pushing for ordered data threads. In Figure 6.7 it can be seen that the data tick
3.0 was pushed by the leftward movement of tick 2.0. Also note the raised graphics
tick which points out the change in the mapping of 2.0 and 3.0 to heights.

The key always has a graphics tick associated to a data tick for ordered graph-

ical domains. This feature permits the user to always observe how data is encoded

105

- o °© !
o [+ ¢ ©
0.0 1.0 20 3.0 40
s ! AL~
@ o (SN -3)
0.0 1.0 2.03.04.0

Figure 6.7: Snapshots of an interaction with the linear legend of Figure 6.1 by moving
data tick 2.0 to the right. The top figure shows that a graphics tick is always main-
tained for a data tick. The bottom figure shows both ticks for 3.0 pushed together
with 2.0.

visually. A graphics tick can be moved away by the user, as illustrated in Figure 6.6.
The widget, however, creates a new graphics tick for the “orphan” data tick, and up-
dates the new tick in a normal fashion. For discrete domains, the tick is not created
because its value (or appearance) cannot be inferred by analyzing the neighboring
ticks.

6.6 Using Legends

The purpose of interactive legends is to allow a mapping to be modified. For program
visualization, the most basic modification is the “tweaking” of the appearance of an
animation. “T'weaking” can have different flavors as part of higher level problems
the user is addressing. Keys are powerful enough to permit users to perform higher
level tasks such as querying of the program state and focusing the picture on certain
elements while displaying the rest of the information in smaller detail. Querying and

focus+context are important especially in the visualization of large amounts of data.

6.6.1 Queries

Legend keys can be regarded not only as defining a mapping, but also as specifying a

query. The mapping, which associates values of a domain with values of another, can

106
be interpreted as a constraint that requires that a value in the first domain be equal
to the associated value in the other domain. The domains can be properties of the
elements in the visualization, in which case the key determines that only elements
that have the properties satisfying the key constraints be depicted. For example, the
legend in Figure 6.1 can be viewed as requesting the system to display, out of all
possible graphical objects, those that are cylinders and have the height and the data
value in the relation shown in the legend.

The queries expressed by a legend key can be as simple as specifying a range,
similar to dynamic queries [9, 80]. A legend whose threads have two ticks is sufficient
to select a range. Nonetheless, legends can specify more complex queries in which
there exist a certain relation between the properties of the objects. In Figure 6.8,
the query selects those elements that have propl = prop2 for propl between 0.0 and
4.0. The query also specifies, via the key on the right, that selected elements should
satisfy the property propl = prop2 — 1 for propl in the range 6.0 to 9.0.

6.0 7.0 8.0 9.0
Poplle 9 @ @ @ e 6 6 @
Y © © © ® © © © ®

Prop2
PoP200 10 20 30 40 P 50 6.0 7.0 8.0

Figure 6.8: A query that selects both objects with propl = prop2 (left) and objects
with propl = prop2 + 1 (right), depending on the range of the property.

6.6.2 Focus+context at Graphical Attribute Level

Focus+context techniques present a subset of the data in more detail than the rest. In
other words, more graphical features, such as color, width or x-position, are assigned
to the focus subset than to the rest of the information. Legend keys allow users to
choose the range of values of a graphical attribute that are assigned to a range of
data. The advantage is that multiple focus sets can be select, each presented through
the graphical features chosen by the user. The choice of data and graphics can be
modified via “natural” and continuous interactions with keys.

Consider a visualization of a distributed system that presents the CPU uti-
lization at each node (Figure 6.9). The user is interested in low utilization nodes,
but it is difficult to perceive the individual differences between those nodes. During
the animation session, it is also difficult to observe small changes in the CPU. The

difficulty is a result of the view assigning only a small number of heights to low CPU

107
values between 0 and 10. The majority of the heights are assigned, in a uniform
manner, to the rest of CPU values (range 10 to 100). There is no focus set in the

visualization with respect to the height attribute.

1 4
1R
_ m B
@ © © [-] % @
CPU [-] (=) e © [-] -]
0.0 20.0 40.0 60.0 80.0 100.0

Figure 6.9: The CPU utilization for the computers of a distributed network is encoded
by height. The same number of height values encode any interval of CPU values of
a given length. Most CPUs are in the range 0-10, while most heights assigned to
the CPU range 10-90. Individual values of low CPU nodes cannot be distinguished
among.

The user can focus the visualization on the low CPU nodes by assigning more
graphical values to the range of interest (CPU between 0 and 10). As such, the key is
manipulated, and a large range of heights is dedicated to the CPU in the range 0 to 20
(Figure 6.10). In the new visualization, the relative difference between low CPU nodes
is clearer because the height difference is larger. At the same time, the utilization
of the other nodes is still visible, which provides the user the overall behavior of the

distributed network.

6.7 Concluding Remarks

Legends can be added to a program view in order to obtain a quick and concise

explanation of the visualization syntax. Interactive legends improve a user’s control

108

o9 ® ®
o9 ® ®

CPU
0.0

20.0 400 600 80.0 100.0

Figure 6.10: The CPU utilization for the computers of a distributed network is en-
coded by height. The view focuses on low CPU nodes by assigning most heights to
presenting CPUs in the range 0-20.

over the visualization process and support visual navigation, via a “natural” manip-
ulation style, in the space of the observed computation and graphical displays. The
continuous interaction is appropriate for exploration and discovery tasks, and com-
plements the discrete, more precise operations of the interactive visualization model
(Chapter 4). Legends also provide a means of visually conveying the the choices of
the system that produced an automatically-generated animation (Chapter 5).
Future work includes empirical studies of the usefulness of legends, a method
of organizing and accessing the legend keys, and the development of an animation
key capable of describing the transitions of the graphical elements from one frame of

the animation to the next.

109

Chapter 7

A Study of the Performance of
Steering Tasks under Spatial

Transformation of Input

7.1 Overview

Indirection exists between the virtual objects that form the computer interface and
the input devices through which the user interacts to manipulate these objects. This
chapter studies the effect of spatial indirection on the speed and accuracy of user
interaction. For continuous input devices, spatial transformation can be decomposed
into translation, rotation, and scale. Translation alone simply shifts a movement from
the device space to a different position in the virtual space, preserving the direction
and size of that motion. Rotation changes the direction, while scale modifies the size.
This study found evidence that rotation and scale are significant factors in interaction
performance. We propose a model based on these factors that can be employed to
predict the time required for a task of tracing and staying inside a non-linear shape.
Contrary to our initial hypothesis, moderate translation changes did not register
significant variations in the required time. The results of this experiment are applied
to the analysis of two competing user interfaces for selection in a three-dimensional
environment. The results of this study are also applicable to the placement and

ergonomics of physical input devices.

110
7.2 Introduction

Direct manipulation interfaces permit users to control some activity through interac-
tion with virtual controls, graphical representations of objects. For example, a user
presented with a visualization of the 3-D structure of a protein might interact with
a mouse or pen to fine-tune the structure by dragging a sub-unit into a preferred
position. A supervising surgeon in a telemedicine setting might interact with a visu-
alization to mark the location of an incision. A student at a remote location might
interact through a touch pen to project annotations on a whiteboard seen on a live
camera feed that includes the classroom, whiteboard and professor.

Despite the name, direct interaction actually involves several layers of indirec-
tion stemming from the representation of the world in which the user interacts and
from the design of input devices. The three-dimensional structure of a molecule is an
example of such a world, which is commonly viewed and manipulated through a two-
dimensional projection on a screen. A user movement, such as dragging an atom of
the molecule straight up (movement only on the vertical axis), is not directly applied
from the two-dimensional screen, but instead must be converted and interpreted as
a motion in three dimensions. In the molecule representation, the atom might also
move along one of the other two coordinates (horizontal or depth), at an angle with
respect to the original user motion. Furthermore, since not all molecule structures
are physically possible and consequently not all locations are possible for the dragged
atom, the straight motion performed by the user may result in a wavy path in which
the atom moves along the edge of feasible locations. To generalize, the world in which
the user interacts may introduce indirection in direct manipulation because, on one
hand, gestures might have to be interpreted into a complex world with a high number
of degrees of freedom, and, on the other hand, user actions might have to be adjusted
to the constraints that govern that world.

Input devices may add an additional layer of indirection to the user interaction.
Although there are devices such as touch screen and pen that permit the user to
directly point at the elements of interest, most other input devices operate by design
in a different space than the controlled objects. For example, a typical mouse resides
at a certain distance from the screen, moves on a horizontal plane, which differs
from the vertical orientation of a typical screen, and travels a different distance than
the controlled objects. Direct interaction with the molecule of the previous example

actually happens by looking in one place, at a vertical screen, and acting in another

111
place, upon a mouse that moves horizontally. Software devices such as graphical user
interface (GUI) widgets can also introduce indirection. Software input devices, as
the physical ones, act as intermediaries in controlling other GUI elements and often
move in a different space than that of the controlled objects. A scrollbar or three-
dimensional handle (see Conner et al. [22] and Ware and Rose [97]), for example, help
in moving other objects whose motion might not be constrained in the same manner
as that of the controls.

The ability of the user to interact efficiently may be confounded by these layers
of indirection that can produce quite complex transformations of the user’s input.
However, the overall spatial indirection can be regarded as a combination of only a
few basic transformations. Three basic transformations are considered in this chapter:
translation, rotation and scale. Translation, defined by an offset, is the distance
between the location of a single action and its effect (Figure 7.1b). Translation
does not change the size or direction of the motion. Rotation is the angle between
the line connecting two actions and the line connecting their effects (Figure 7.1c).
For example, a mouse motion is rotated from a horizontal to a vertical plane. Scale,
related to control-display ratio, expresses the ratio of the distance between two effects
to the distance between their actions (Figure 7.1d). A unit displacement of the thumb
of a scrollbar may be scaled so that a document moves a few lines or a few pages
depending on the size of the document. Scale changes the size of a motion, while
rotation changes its direction.

In this chapter, we attempt to study the impact of these spatial transformations
of input on the effectiveness of interaction. The manner in which the user is affected is
likely dependent both on the type of input transformation and on the task performed
by the user. In the former respect, our study focuses on transformations that involve a
combination of translation, rotation and scale (an affine transformation) that remains
constant during interaction, both over time and over the entire area of the display and
device footprint. The final goal is to quantify the effect of translation offset, rotation
angle and scale on the speed of interaction by paying attention to the interactions
among these three factors. We artificially create various transformations of the user’s
input on a personal digital assistant (PDA), which allows us to compare in the same
environment both direct (not transformed) interaction and various types of spatial
indirection. In the latter respect, we fix the task in the study to be a steering task.
Steering is the action of moving the cursor through a tunnel, or in other words, of

connecting two points while staying inside a predetermined shape.

112

Figure 7.1: The correspondence between the input device and display: (a) no spatial
distortion, (b) translation up, (¢) counterclockwise rotation around the center, and
(d) scaling. The upper row presents the footprint of the input device (thick rectangle)
and the movement of the control (dashed line). The lower row superimposes, on the
input device, the display area (thin rectangle) and the effect of the movement (thick
line).

The result of this chapter can be applied to evaluating the fitness of an input
device for a task, and has the potential to add to the ergonomics of the work space
and increase awareness of the limitations of human-computer interactions. Moreover,
because spatial indirection also occurs at the software level in the graphic interface,
understanding the influence of distortion can guide the design of the GUI and the
manner in which control elements are used.

The next section presents background work about the evaluation of input de-
vices under various conditions. The design considerations and hypothesis of the ex-
periment are the subjects of Section 7.4. The experiment is described in Section 7.5,
followed by a discussion of the results in Section 7.6. The model developed by this
chapter is then applied in the context of a (common) steering task in three-dimensional
space in Section 7.7. A future extension of the prediction model concludes the chapter

in Section 7.8.

113
7.3 Background

7.3.1 Steering Law

An extensive body of literature assesses the performance of continuous input devices
under diverse tasks and conditions [12, 18, 36, 48, 52, 55, 56, 57]. The research is
based on a robust result, Fitts’ law [32] for target acquisition. According to the
law, the movement time to a target, M7T, increases as the distance to the target, A,

increases and as the width of the target, W, decreases. More precisely,

A
MT = a+blogy(— +¢), (7.1)

w
where @ and b are constants determined empirically for each task and input device,
1
) 9
[55] for a discussion of ¢). The logarithm term is referred to as the index of difficulty.

and c is usually selected from one of 0 1 by different researchers (see MacKenzie
This measure of performance (M7T) and the formula above have successfully been used
to model a plethora of pointing, dragging and selection tasks. This chapter focuses
on the results that are pertinent to steering tasks and spatial input transformation
(see MacKenzie [55] for a survey of research related to Fitts’ law).

Tunnel steering [6], the task we focus on in this study, is similar to target acqui-
sition tasks in the sense that the pointer is moved from a starting position to a target.
The path of the pointer, however, is restricted to remain within the boundaries of a
tunnel. Accot and Zhai showed that when the tunnel is a shape with constant width
the movement time depends linearly (in contrast with the logarithmic dependence of
Fitts’ law) on the ratio of the tunnel length and width. The performance measure,

derived from Fitts’ law, is

A
MT = — 2
e+fW, (7.2)

where A and W are the length and width of the shape, and e and f are constant
for particular conditions of the experiment. The index of difficulty for steering (/D)
becomes the fraction %. It is this index of difficulty that we refer to in the remainder
of the chapter. The steering law, which can model even tunnels with variable width,
was obtained through mathematical analysis and verified empirically in [6]. The law
was also successful in modeling the movement time in a follow-up comparison of

pointing devices conducted by Accot and Zhai [7].

114
7.3.2 Distortion via Physical Input Devices

Although no comprehensive analysis of the effects of the transformations induced
by input devices is known to the author of this thesis, research exists on temporal
distortion (i.e., lag) [57] and on spatial scaling, largely related to control-display
gain [8, 10, 18, 35, 48, 99]. Scattered results pertaining to rotation [26, 37, 78] and
translation [37, 56, 65, 78, 79, 97] can be inferred from other work. MacKenzie and
Ware [57] presented a variant of Fitts’ law that quantifies the effects of lag on the
user performance. Their study was conducted for a classical pointing task and is

orthogonal to the spatial effects discussed in this chapter.

Control-Display Ratio

Control-display (C-D) ratio, together with the related control-display gain and move-
ment scale, was the most extensively studied spatial transformation [8, 10, 18, 35,
48, 99]. The C-D ratio is calculated as the controller movement divided by cursor
movement, while the gain is the inverse (for positional control devices). Movement
scale considers only the controller motion by maintaining the same visual perceptual
feedback as explained by Accot and Zhai [8]. Movement scale is still part of C-D ratio
research in that the display size is kept fixed and the ratio is varied only through the
controller size. With all the research however, there is little consensus about the value
of C-D ratio as a predictor of interaction efficiency. On one hand, some findings indi-
cate that the scale can predict human performance, although different functions are
proposed. On the other hand, no correlation seems to exist between C-D measures
alone and movement speed, as found by Buck [18] and Arnaut and Greenstein [10].
In the former category, human performance books [99], as well as Accot and Zhai [§]
for the steering task, determined a U-shaped function of C-D gain versus movement
time. The bottom of the U-form represents an optimal range of C-D gain for which
MT is small. Another formula was reported by Gibbs [35], which yields a U-shaped
function when lag is present in the system and a linear function otherwise. In con-
trast, Jellinek and Card [48] concluded that human performance would be constant
but for the inadequate resolution of input devices and displays, suggesting that the
drop in performance is an effect of quantization.

Our work differs from previous C-D gain research in the manner that scale is

considered. We recognize that scale alone does not completely describe the effects of

115
transformation on the user’s ability to perform tasks, and we concentrate on under-
standing the interactions of scale with translation and rotation. It is possible that the
combination of these three factors, rather than scale alone, better expresses human

performance.

Rotation

Cunningham [26] approached the issue of rotation between the visual and motor space
and reported high error rates for angles ranging from 90° to 135°. At 180°, the error
rates were relatively low. That study concentrated on inferring the internal spatial
representations of human visual-motor processes, and the impact of adaptation to
rotation. The emphasis was on accuracy rather than movement time. In a pilot
study, we also found that the drop in accuracy for the steering task is very steep
for angles of the second quadrant (90° to 180°) rendering steering almost intractable.

Consequently, our study focused on angles in the first quadrant (up to 90°).

Translation

Ware and Rose [97] approached the problem of translation in a virtual reality (VR)
environment. The task of their study was to rotate 3D objects under various condi-
tions. One experiment studied the displacement of the haptic handle from the visual
one. The displacement condition resulted in a degradation of speed, while the ac-
curacy remained approximately the same. The main difference between Ware and
Rose’s study and ours resides in the type of tasks; VR rotation may be different than
a 2D steering (translation) from a motor and cognitive point of view. The applica-
bility of the results of our study to the VR task might be further influenced by the
interaction between spatial transformation factors.

Translation was also studied for remote pointing devices by MacKenzie and
Jusoh [56]. Such devices are handy when the user is at a rather large distance from
the display as in conference presentation settings or interactive television systems.
MacKenzie and Jusoh’s study focused not on translation effects, but on input de-
vices. The study compared the mouse (ball technology), and two types of remote
pointing controllers, one an isometric-type joystick, and the other with both a gyro-
scope that sensed side-to-side and up-down movement and a mouse ball. This last
device was evaluated in both close and remote settings, but in each setting using a

different technology (gyroscope or ball). The results showed that remote pointing is

116
significantly slower than traditional (at the desktop) pointing. However, a conclusion
that translation effects impede performance cannot clearly be made, both because of
the radically different interaction styles of the devices studied and because of the lack
of direct comparison between close and remote conditions for any one technology.

The effect of all three transformation types, though not investigated explicitly,
is evident in studies of devices that permit direct control and in which no angle,
scale or offset exists. The touchscreen and lightpen are representative direct con-
trol devices. Even early work, using pioneering touchscreen technology, found direct
pointing devices faster, although less accurate, than other devices [37, 65]. The prob-
lems cited for touchscreen and lightpen range from user fatigue and occlusion of the
display to lack of precision and screen smudging [65, 79]. We anticipate that most
of these problems will not be evident in the stylus interactions on a PDA, except
perhaps a small degree of occlusion. A later study by Sears and Shneiderman [78] of
high-precision touchscreens concluded that single pixel selection can be achieved with
a stabilized touchscreen whose raw input data is filtered and processed. That study
also confirmed that for large target width the touchscreen is faster than the mouse,
in agreement with earlier experiments [37], but for smaller targets the performance is

about the same as with the mouse.

7.4 Design Considerations

The design of the empirical study was strongly influenced by the findings of an in-
formal pilot study and on the potential problems reported by other researchers. Our
design goal was to reduce noise caused by uncontrolled factors, to avoid known pit-
falls, and to make the experiment manageable. As a result, the angles were restricted
to the first quadrant, and the scale range was chosen around and close to one.

A small scale interval centered around one reduced the quantization effects and
restricted the limbs (arm, fist, and finger) involved in the interaction. Quantization
appears when a continuous movement is mapped into a coarse discrete coordinate
system. This effect is believed by Jellinek and Card [48] to be the cause of perfor-
mance variation caused by C-D gain. Furthermore, the effect was noticed in our
pilot study even for scale values of two. It has been noted by the researchers that
limb segments and combination of limbs involved in the motor action are among
the causes of performance variations with scale. Langolf et al. [52] found the finger

more effective than the wrist, which was better than the arm, but Balakrishnan and

117
MacKenzie [12] expressed skepticism about that result. Zhai et al. [100] found that
fingers significantly helped in a multiple degree of freedom input. In our experiment,
the size of the PDA display and input control limits the classes of muscles and limbs
required for the experiment. Authors such as Guiard et al. [36] may regard this
as contrary to the “spirit of Fitts’ research”, which they maintain was intended to
model human performance independent of the body movement. Nonetheless, limiting
the limbs involved in the motion may also reduce the noise in the experiment and
perhaps produce better results in the controversy regarding C-D ratio. This exper-
iment should provide a good model for the impact of spatial transformation effects
on tasks that require mainly finger and some wrist movement - actually mainstream

human-computer interaction tasks.

7.4.1 Hypotheses
All hypotheses assume a steering task.

1. Translation has an effect on the movement time and error rate of the interaction.

Both movement time and error rate increase as the offset gets larger.

2. Rotation has an effect on the movement time and error rate. For higher values
of the rotation angle, the movement time and error rate are larger than for

smaller angles.

3. Scale has an effect on the movement time and error rates. Movement time

decreases with scale, while error rate increases.

4. Interactions exist among translation, rotation and scale that affect the move-

ment time.

7.5 Experiment

7.5.1 Materials

The experiment made use of a PDA and required subjects to trace through a shape
under various spatial transformations. The PDA was selected for its ability to offer
zero-translation interaction. The PDAs used were two Palm Pilot m505s with 16-bit
color displays. The display had a backlight feature, which was kept on during the

testing. The screen resolution was 160 x 160 pixels, with dimension 5.5 x 5.5cm.

118

Henceforth we will use pixels as a measurement unit. Standard styli shipped with the
Palm Pilots were used for drawing directly on the screen.

The software for the experiment was developed under Java'™ for Palm OS. Lag

was not measured, nor was it apparent during typical operation. For the purposes of

the study, lag can be considered very small and constant.

7.5.2 Subjects

Twenty-four college students volunteered for the study. Sixteen participants were
male, eight were female, and six had previous experience with the stylus. They were
offered a soft drink and competed for a cash prize that was to be awarded to the
fastest and most accurate participant. Note that a trade-off exists between speed and
accuracy. Our goal was to encourage “normal” behavior, in which users are neither

overly meticulous and slow nor overly fast and sloppy.

7.5.3 Procedure

Thick circles and vertical lines were the two types of shapes used in the steering
task. The shapes were red and contained either two or four black control stripes, as
shown in Figure 7.2. The screen background was white. The steering task started by
painting blue ink at the bottom of the shape to be traced, slightly under the thick
line (outside the red shape itself) and in the southern region of the circle (inside the
shape). A black crosshair, 3 x 3 pixels, provided the subjects with a hint at the
starting location for the stylus. This location, when touched with the stylus, caused
ink to be drawn at the bottom of the red shape, as explained above. Note that, in
the presence of spatial transformation, the point where the stylus touches the screen
is not the same point at which the ink is drawn. During a trial the crosshair follows
the stylus on the screen and lies at the tip of the stylus while the stylus is pressed.

Both the line and circle were intentionally displayed off-center of the screen,
which is especially important for the circle. If the circle were displayed on-center, the
rotation would not have any real effect.

The participants were instructed to trace with blue ink a path inside the red
shape so that the following two constraints were satisfied: (1) The blue ink must be
drawn inside the red shape except when starting and ending a line trial. Remember
that a line trial actually starts outside the red line, on the white background. The

participants were also allowed to overshoot the top of the line, and consequently the

119

Figure 7.2: The two shapes in the steering task.

line trials might have ended outside the shape. (2) All black control stripes had to
be touched to force the subjects to follow the main features of the shape. Of course,
this constraint is satisfied automatically by every successful steering task; we made
this constraint explicit to assist subjects in performing the task and to simplify the
analysis of correct results.

To move to the next trial, subjects pushed one of the physical buttons on
the Palm Pilot. No time pressure or constraints were imposed between the trials.
Timing of a trial began when the stylus first touched the screen and ended when the
stylus was last lifted. Lifting the stylus during a trial did not count as an error nor
influence the timing of the trial. This manner of recording the duration of a trial
differs slightly from that employed in similar experiments by Accot and Zhai [6, 7, §].
Those experiments detected when the path of ink exited and entered the tunnel shape
and considered those times as the beginning and end of a trial. However, detecting
whether the shape was entered/exited for each “stylus moved” event was simply
overwhelming for the PDA processor (each event would require costly multiplications
and divisions to determine whether two segments intersect), and the lag incurred by
such computing was unacceptable for our experiment. We correctly predicted that
the intercept (values of e in the steering law) would be higher than in previous studies
due to this difference in methodology. Informally, the intercept can be explained as
the minimum amount of time required for a trial, which is the time the user takes to
start a trial. In our methodology, the intercept included the instant needed to move

inside the shape, while in the previous study this time period was ignored.

120

The trials were recorded on the PDA and analyzed later on a regular computer.
Trials that did not satisfy the two correctness conditions mentioned above, namely
blue ink fully inside the red shape and all along the shape, were counted as errors
and excluded from the analysis of the movement time.

The display of the Palm Pilot conveyed the current transformation of the input
in a manner similar to that of Figure 7.1, bottom row. For the PDA the thick rectangle
represents the physical edge of the screen, which actually defines the footprint of the
stylus input device. The thin rectangle, the drawable area, was translated and rotated
by the current offset and angle of the spatial transformation. To provide a cue as to
the direction of rotation, the top of the rectangle was colored red, while the other
three lines were green. Portions of the thin rectangle that are beyond the edge of the
screen (outside the thick rectangle) were not visible. A number representing scale

was printed at the bottom of the screen.

7.5.4 Design

Conditions included three offsets O = {0,30,60} pixels to the right of stylus, four
angles R = {0°,30°,60°,90°}, three scales S = {0.8,1.0,1.5}, two shape types Sh
= {line, circle}, two shape lengths A = {64,125} pixels, and three shape widths W
= {12,16,20} pixels. The ratio of length to width produced six IDs (indices of diffi-
culty) ranging from 3.2 to 10.42. The experiment may be viewed as being performed
within subjects, but with some empty cells. That is, because of the large number
of combinations (3x4x3x2x2x3=432), the need to perform multiple repetitions (5)
for each combination, and the need to avoid fatigue by limiting the time per sub-
ject to one hour, each subject performed a subset of the 432 possible combinations.
Specifically, the subjects were randomly divided into two groups, with the first two
scales assigned to the first group and the last two scales to the second group. Within
a group, all subjects were tested for all 3x4x2 distortion conditions of offset, angle
and scale. The conditions were presented in a random order to each subject. For
each distortion condition, a shape was randomly chosen out of the 12 Sh-A-W pos-
sible shapes. However, at the end of their sessions all participants encountered each
shape twice, although under different O-R-S conditions. Moreover, within a group all

distortion conditions were fully crossed with all shapes.

121
A training pre-session that consisted of 18 different trials was given to all par-
ticipants. Subjects were allowed to go through the 18 trials multiple times. Subjects

spent about an hour in the experiment, including this training session.

7.5.5 Results

The first two repeats for each combination were excluded from further analysis be-
cause they showed a strong learning trend; the second and third repeats differed
significantly in the error rate (Fj 23 = 6.37,p = 0.0189) and movement time (F} o3 =
6.52,p = 0.0177). Differences in error rate (Fy 4 = 0.97,p = 0.3867) and movement
time (Fh46 = 0.31, p = 0.7349) were not significant among the last three trials.

The overall percentage of incorrect trials is quite high at around 40%, although
for no rotation, R=0, the error percentage is at 25.5%. This is just slightly higher
than previously reported error rates [7], which were computed under fixed scale and
translation conditions. As justified by Accot and Zhai in [7], the steering task offers
the user a “chance” to make a mistake anywhere along the path of the tunnel, not
only at the of the end of the path as in goal passing tasks. This becomes especially
significant when the user input is transformed, as it becomes harder to continually
control the path of a cursor that seems bent on moving outside the tunnel. Angle has
a large impact on the error rate (Fsg9 = 23.49,p < 0.0001). Figure 7.3 shows that,
overall and especially for circles, the number of wrong trials increases almost linearly
with the angle. The lines behave differently from circles, and a possible explanation
for this is given in the next section. Scale is also a significant factor for the error
rate (Fpoo = 37.33,p < 0.0001). In Figure 7.3 bottom, it can be observed that the
error rate increases with the scale. Contrary to our hypothesis, translation does not
change the error rate in a significant manner (F54¢ = 1.52, p = 0.2296). Shape type
is also not a significant factor (F 93 = 0.96,p = 0.3365), as can also be inferred from
Figure 7.3, which shows that the circle outperforms the line for small angles, while the
line is better for larger angles. As expected the ID = % was found to be significant
(F5115 = 23.73,p < 0.0001) for errors.

The dependence of the movement time on distortion and shape factors is
analyzed only for successful trials. Spatial distortion components, except offset,
proved to be significant factors for movement time (Fsgs = 53.37,p < 0.0001).
Again, variations in offset do not entail significant variations in the movement time

(Fy46 = 0.97,p = 0.3853). Figure 7.4 plots the movement time for circles, lines and

122

0.7
N |
0.6 - .~
L~
-
€ -
s e
m h ~ -
S "
i}
——All
—a -Circle
0.1 -# |ine
0 T T T
0 40 60 80 100
Angle
0.7
06 +
0.5 +
3
E 0.4 +
S
=03+
w
——
02 All
- -circle
0.1 1 - & line
0 T T T T
0.5 0.9 1.1 1.3 1.5 1.7

Scale

Figure 7.3: Error rate as a function of angle (top) and scale (bottom).

overall as functions of distortion parameters. Notice on the upper plot how at 90° the
movement time for the circles is higher than at 60°. The lines behave differently in that
the duration of a line trial decreases at R=90°. Figure 7.5 suggests that an interaction
between angle and scale may exist, as does the F-test (Fg 54 = 3.13,p = 0.0105).

It is apparent in Figure 7.4 that the average steering time for circles is higher

than for lines. Statistically, shape is indeed significant (F} 03 = 270.94,p < 0.0001).

123

2000 —& -circle
- & -line
0 T T T T T
0 20 40 60 80 100
Angle
8000
7000 -
6000
5000
£ 4000
3000 -
2000 - ——All
1000 | —a -glrcle
- 4 *line
O T T T T T
05 0.7 0.8 1.1 1.3 15 1.7
Scale

Figure 7.4: Movement time as a function of angle (top) and scale (bottom).

As expected, the index of difficulty, ID, passes the significance test for the steering
time (F5113 = 32.73,p < 0.0001).

We also developed a model for the effects of spatial transformations based on
the steering law. Translation is ignored in the model because the offset component
is clearly not a factor in either efficiency or accuracy for the steering task. Based

on the interaction between angle and scale, a new regressor termed spatial index is

124

= = Linear (Scale 1.5)
1000 - ——Linear (Scale 1)
— Linear (Scale 0.8)

0 20 40 60 80 100
Angle

Figure 7.5: Interaction between angle and scale. Trend lines are included for each
scale value.

introduced:
R+ So

S

The constant sy depends on the conditions of the experiment, and ensures that scale

SI = . (7.3)

is taken into account when there is no rotation (R = 0). Interaction between ID
and SI is marginally significant (Fj5116 = 1.54,p = 0.0261). Figure 7.6 shows the
interaction between SI and ID for circles only.

Table 7.1 summarizes the models and their correlation to the data. I.D alone
cannot explain the variance in the steering time; models based solely on it consistently
have a lower correlation than models that take ST into account. In the next section
we discuss possible reasons for the poor correlation values for the line shape.

We do not favor the additive model (ID + SI) for statistical and semantics
reasons. This model has lower correlation (equal for lines) than the multiplicative
one. Moreover, an interpretation of the additive model cannot easily be given; the
large negative intercept and negative sy cannot be easily assigned a meaning. It is
also unlikely that spatial transformation affects a task independent of the task ID.
The multiplicative model, however, clearly expresses the intuitive notion that the
effects of scale and angle are more pronounced in more difficult tasks than in simpler

tasks. Further, the multiplicative model yields I D coefficients comparable to the

125

25000
Linear (ID=3.2)
Linear (ID=4)
20000 - Linear (ID=5.33)
- - Linear (ID=6.25)
— Linear (ID=7.81)
15000 1| —Linear (ID=10.42)
=
= e
10000 +
5000 -
-
=
O T T
0 50 100 150

SI=(R+23)/S

Figure 7.6: Interaction between SI and ID for circles. Only data trends are presented.

Table 7.1: Regression models: ID alone, additive and multiplicative. (p < 0.0001,n =
72)

ID line MT = 1011 + 3341D = 0.481
circle MT =139 + 10731D r=0.534
ID+ 51| line | MT =458+ 334D + 19(R — 15)/(5) | r = 0.621
circle | MT = 4013 + 10591D + 85(R + 6.2)/(S) | r = 0.860
ID-ST | line MT = 1504+ 3.3ID(R + 35)/(5) = 0.620
circle MT =926 + 141 D(R + 23)/(5) r = 0.904

results reported in [8] for no rotation and scale factor of 1.0. We note, however, that

the intercepts are higher in our experiment as explained in Section 7.5.3.

7.6 Discussion

From discussions with the test participants at the end of the sessions, two main
strategies for steering emerged. In the first strategy, subjects relied on visual feedback
to correct the tendency to move out of the shape, while in the second strategy subjects
made a blind guess as to how the stylus should be moved, with little regard for visual

feedback. The latter entailed only a swift ballistic motion that likely required less

126
time than the visual steering. The lack of visual feedback has a negative effect on
accuracy (Prablanc et al. [64]). We speculate that with circles the second strategy
would produce too many errors to actually influence the steering time of the correct
results. For lines however, this strategy probably worked reasonably well and thus
affected the movement time. This might explain the drop in duration for the 90°
angle, when tracing the vertical line is the same as drawing a horizontal line from the
starting point. Assuming that participants noted that lines can often be guessed and
circles cannot, the ballistic strategy might also provide a reason for the relatively high
rate of errors for lines, which is almost the same as for the circles and contrary to the
findings in [8]. Consequently, the line behavior is different from the circle’s, and might
be the reason for the poor correlation of the regression model for the line shape. We
believe that practical steering tasks, such as navigating through a hierarchical menu,
cannot be performed blindly, and thus will exhibit behavior more similar to that of
the circles than the lines. Note that another exception is likely to occur at 180°, as
observed in Cunningham [26].

The experiment failed to prove hypothesis 1 that translation is significant for
efficiency of interaction. This may explain why there was no degradation of interaction
speed with touchscreens when the cursor was deliberately translated. In effect, as can
be inferred from Sears and Shneiderman [78], the induced translation reduced the
occlusion of the cursor by the hand and resulted in improved interaction accuracy.
In our case, it may be possible that occlusion occurred at the 30-pixel offset and not
at 0 or 60, where the hand is either too far from or close to the stylus to block the
view. Our results show a mean time higher for an offset of 30 than for the others.
Note that the faster interaction for touchscreens observed in [37, 65, 78] is most likely
due to the lack of rotation and scale, rather than lack of translation, in direct input
devices.

The relation between the movement time and scale is almost linear, as revealed
by Figure 7.4. Thus, scale variations are important for steering time, at least when
other spatial distortions also change. The hypothesis that the function is U-shaped is
neither supported nor rejected. The observed shape in Figure 7.4 might well be part
of the left side of the U shape.

The interaction between angle and scale was shown to be significant (almost
at the .01 level) in the experiment. The regression model is also based on the spatial
index, which is mainly the ratio between angle and scale. The implication is that the

effect of spatial transformation is better explained by a combination of its determinant

127
factors than by any single factor. Individually, these factors offer a poor justification

for the performance results.

7.7 Applying Spatial Index To Selection Task

The spatial index introduced in the previous sections, besides its theoretical signifi-
cance as a descriptor of spatial indirection of user input, can also be applied to assess
and choose among multiple designs for a user interface. As a case study, we consider
the problem of selecting a “slice” of a three-dimensional visualization. Examples of
such selection include deciding where to perform an incision on a patient’s body for a
remote/virtual surgery, or choosing, from a visualization of a mountain range, an area
that has certain mineral deposits that are not covered by layers of extremely hard
rock. In both cases, the selection takes place based on a two-dimensional surface such
as the patient’s epidermis or the surface of the Earth at sea level. For simplicity,
we consider that the surface is a plane. To perform the selection, the user must be
able to draw a shape on the reference plane, perhaps relying on information displayed
above or below that plane. Such information might be the organs and blood vessels
that lie beneath the patient’s skin or the deposits and rocks in the mountain. The
selection includes the portion of the visualization that lies directly above and below
the reference plane and that is projected on the inside of the user-drawn shape. If
the shape were a circle, the selection would be a cylinder that is perpendicular to the
reference plane and intersects that plane on the drawn circle.

The point of view of the user cannot be directly above the reference plane
because that would make it difficult for the user to perceive what is directly beneath
and above that plane. It may happen that one of the rock types might obscure another
in the mountain range. Therefore, the point of view of the user would most likely be
at an angle from the plane of reference. Figure 7.7 depicts a reference plane rotated
about 45° around the horizontal axis from the screen plate. The implication of this
angle is that one unit in the reference plane, when projected onto the screen, appears
as approximately 0.7 units!. The area to be selected may not be in the center of
the screen (users’ viewpoint) or may need to be moved off the screen center in order
to permit the user to observe it sideways in addition to the up-down view. For the

mining example, the user might be satisfied if the mineral deposits are reachable from

!Depending on the projection technique, the size might actually be smaller that 0.7 units if the
measurement is taken far from the user’s point of view.

128
one side as long as the rock above does not cave in. As a consequence, a line that is
off center and is vertical in the reference plane does not appear vertical on the screen,

but slanted as illustrated by the angle marked a in Figure 7.7.

Ref. plane 305361’1
\ —
_____________ %
X \v\—!* straight up in ref. plane
?%_(@ v

Figure 7.7: The relation between the screen and the reference plane in which the
selection is made. Dashed line is what the user would see on the screen from the
reference plane. Note that a line that is straight up on the plane appears slanted on
the screen.

Consider two designs for a selection user interface that rely on the same widget
that moves in the reference plane, but interpret the input from a tablet, or any other
input device, differently. An in-plane design moves the widget relative to the reference
plane, in the same manner regardless of the user’s point of view. An upward input
motion would move the widget towards the north side of the reference plane (parallel
to the vertical axis of the reference plane, not of the screen plate). An in-screen
design has the user specify where the widget should move as opposed to steering the
widget. The motion of the widget is now dependent on the point of view of the user,
and an upward motion on the tablet does not necessarily displace the widget toward
the north of the reference plane, but toward the top of the screen plate. Figure 7.8
depicts what happens when a square is selected with each of the two designs.

To compare the two designs, it is useful to note that the selection problem
is in a fact a steering task. The user must maneuver a widget inside a shape in
order to delimit the area of interest of the visualization. For steering tasks, we model
movement time as a function of 1D - SI, the index of difficulty and the spatial index.
The two designs have the same ID because they do not involve any alteration of the
underlying visualization. The user perceives the same width and length for the tunnel

through which it has to maneuver.

129

«— Screen ——

— Ref. plane —

In-screen In-plane
Interaction Interaction

Figure 7.8: A square is selected using the two interface designs. The picture shows
how the selection appears on the screen and what is selected in the reference plane.

The spatial index is dependent on the scale and rotation values between input
and display. In both interfaces, the same input device is used, which is considered to
have scale s. In the in-plane design, when the widget moves one unit in the reference
plane, the user perceives only 0.7 units on the screen. Therefore, the scale of the
input device is further scaled on the screen to a value of 0.7s. In the in-screen design,
the widget appears to move in the screen plate, and the scale remains s.

Rotation appears in the in-plane design because a straight up motion on the
tablet appears slanted on the screen (Figure 7.7 and Figure 7.8). The angle might be
anywhere between 0 and 45 degrees, depending on the placement of the area of interest
on the screen and on the method of projecting the three-dimensional world. We
approximate the angle at around 20°; which is probably common for most projections
and screen positions (including Figure 7.7). The in-screen design does not incur
rotation.

We can now quantify /D - SI for both designs under the assumption that
the interaction is regional, that is does not take place across the entire screen and
leads to large variations of the rotation angle. In the in-plane design, I.D - SIjune =
ID(20+¢)/(0.7s), while in the in-screen design 1D SIseen = ID-c¢/s. The values of
¢ would depend on the particular conditions of the experiment, but if the shape were

a line (such as a surgical cut) and the input a tablet, very similar to a PDA input,

130
then ¢ ~ 35. This makes the spatial index for the in-plane design about twice as large
as the spatial index for the in-screen. Thus, in order to perform the selection in the
same amount of time, the I D for the in-plane design has to be half of the ID for the
in-screen design. In other words, the in-screen design appears more effective because
it takes about the same time for the user to draw shapes that are twice as long or are
within tunnels half wide than with the in-plane design (ID = A/W is dependent on
the tunnel’s amplitude and width). The downside of the in-screen design might be a

higher rate of errors, because there is usually a trade-off between speed and accuracy.

7.8 Concluding Remarks

The model presented in this chapter enabled us to compare different user interfaces
designed for the same task. The model captures one of the simplest forms of input
transformation, a constant affine transformation, and we believe that a simpler model
that excluded rotation or scale would be very limited. The model was developed from
a rather extensive empirical study. A study for modeling the effect of non-constant
transformation, although it may prove useful, may become very complex.

The constant transformation model can be extended in the future to deriving
prediction models for more complex effects, namely transformations that vary with
the position of the cursor in the display space. The variation is negligible for small
enough regions of the display, and the constant model is applicable for these small
regions. A spatial index can be calculated for the entire display by decomposing the
interaction space and computing the local spatial index (similar to the derivation of
the steering law for variable width tunnels [6]). The model obtained through such
analytical means can then be verified empirically. Note that the empirical verification
of a model often requires fewer test cases than the derivation of the prediction model

from empirical observations.

131

Chapter 8
Conclusions

We present an approach to the creation, refinement, and use of program visualiza-
tions that centers on improving cognitive economy. The results of our empirical
studies suggest that such improvements in cognitive economy will result in increased
user understanding of the computations portrayed. The approach supports cognitive
economy by allowing the production of animations customized to the user’s task,
which maximizes the amount of information that can be offloaded from the working
memory onto the visualization, and by applying solutions for reducing the mental
effort allocated to managing and interacting with the visualization.

The main characteristic of this approach is the building and modification of
animations via interactions with graphical and textual views of the observed com-
putation, without the need to learn and manage indirect structures. The solutions
employed for alleviating cognitive effort and increasing the effectiveness of program
animations include a data-driven manipulation of visualizations complemented by an
automatic presentation algorithm and interactive legends for conveying the visualiza-
tion syntax and for manual adjustment of the appearance of animations. The user
specifies and has access to the information in the visualization, which is transformed
into animated graphics by an algorithm customized for presentation of running com-
putations. The choices of the system can be overridden by the user via continuous
interaction with legends.

The effectiveness of this approach is increased for exploratory tasks in which
the user is interested in discovering both the properties of a computation and the
visual manner in which to better analyze the program. The user is not required
to calculate or be knowledgeable of computer graphics and can directly query the

computation state and the visualization based on common properties and relations.

132
The clarity of the notions presented by animations is improved through the use of
legends, which provides for an easier application of program views to a problem and
for a continuous interaction method of adjusting the appearance of the data.

The limitations of this program animation architecture include a tedious task of
reproducing known program views and a possible mismatch between the “real-world”
semantics of some particular data, such as North and South, and the graphical fea-
ture chosen by the automatic presentation system. First, users that already know
the visual appearance of a computation can input the exact values for the graphical
attributes, but the process may become as difficult as with other visualization ar-
chitectures. Second, the automatic presentation algorithm does not have the same
knowledge as the user about the meaning of the information and about the appro-
priate layout for objects with unused positional values. The user has to inform the
system about the right representations and layouts.

Future work will concentrate on evaluating the usability and usefulness of the
visualization system. Particularly, it is important to determine the effectiveness of
animations for users that start with no visualization and create a custom view while
learning about the computation, as well as for users that have an existing program
animation that needs to be refined.

Our plans also include the development of techniques that rely on time multi-
plexing to allow the user to observe multiple program views. The automatic presenta-
tion algorithm can be extended to partition the data streaming from the computation
and to produce visualizations that are presented in turn, for a short period of time, to
the user. An interesting visualization can be selected by the user and further refined.
The system can also detect interesting events, or alarms, in the observed computation
and briefly present them to maintain user’s awareness and ensure that these events

are not overlooked.

Appendix A

Questions for Study A-

Termination Detection

&} usability Study

Question 1
Cuestion 2
Guestion 3
Question 4
Question &
Guestion G
Cuestion 7
Question &
Guestion 9

1

Question 1
»

hich of the following choices hest describes the condition underwhich a node will send an

acknowledgement to its parent node?

i| Answer:

" () The node's count goes to zero;
O) Timeout;

.o {cy The node's status is idle;

{0 () The node's count goes to zero and timeout;

) (e) The node's count goes to zero and status is idle;

2y Mone ofthe above.

=101

| Previous | Hext

133

134

&} usability Study
]

&} usability Study
]

135

&} usability Study
]

&} usability Study
]

136

&} usability Study
]

&} usability Study
]

137

&} usability Study
]

&} usability Study
]

138

Appendix B

Questions for Study B

139

[Efusability Study

FE}usability Study

140

e

Quick Access Control Panel

| Code || Output || visualization ‘ _Select a Pragram Input- v

Program Execution Status:

(SRS : Given below iz a snapshot taken from the visualization and a part:
Question 2~

Question 3
GQuestion 4
Question 5
Question &
Guestion 7
GQuestion 8
Gluestion 8

of the execution output. Is it possible to have such a scenario
according to the Termination Detection Algorithm?
MODE C: parentis E

Guestion 10 =
MODE E: parentis &

-
| Previous | Mext

l0ix

Quick Access Control Panel

| Code || Output || Visualization ‘ -Select a Program Input-

Program Execution Status:

Question 1% :Question 53
Gluestion 2* :
GCluestion 3* " .
et A network has five nedes. What would be the mazimum count wvalus of
Question 5 2 node if all nedes could participate in the task for which the
Question & termination detection 1s being performed?
Question 7
Question 8
Question 9 A .
Question 10 Lo
i@y 5
i 4
D) 1;
i) Hone of the above.

| Previous |M

141

[Efusability Study

FE}usability Study

142

[Efusability Study

FE}usability Study

143

FE}usability Study

144

References

1]
2]

AVS Ezxpress. http://www.avs.com.

VisiVue - Java Software Visualization Tool.

http://www.visicomp.com/product/visivue.html.
Visual Insights. http://www.visualinsights.com.

Software Visualization: Programming as a Multimedia Ezperience, chapter Soft-

ware Visualization in Teaching at Brown University. M.L.'T. Press, 1998.

Computational Science - ICCS 2001, chapter Large-Scale Simulation and Visu-
alization in Medicine: Applications to Cardiology, Neuroscience, and Medical

Imaging. Springer-Verlag, 2001.

Johnny Accot and Shumin Zhai. Beyond Fitts’ law: models for trajectory-based
HCI tasks. In Proceedings of ACM CHI’97 Conference on Human Factors in
Computing Systems, pages 295-302, 1997.

Johnny Accot and Shumin Zhai. Performance evaluation of input devices in
trajectory-based tasks: an application of the steering law. In Proceedings of
ACM CHI’99 Conference on Human Factors in Computing Systems, pages 466—
472, 1999.

Johnny Accot and Shumin Zhai. Scale effects in steering law tasks. In Proceed-
ings of ACM CHI’01 Conference on Human Factors in Computing Systems,
pages 1-8, 2001.

Christopher Ahlberg and Ben Shneiderman. Visual information seeking: Tight
coupling of dynamic query filters with starfield displays. In Proceedings of ACM
CHI'94 Conference on Human Factors in Computing Systems, pages 313-317.
ACM, 1994.

[10]

[11]

[12]

[13]

[20]

145
L. Y. Arnaut and J. S. Greenstein. Is display/control gain a useful metric for
optimizing an interface? Human Factors, 32(6):651-663, 1990.

Ronald M. Baecker and David Sherman. Sorting out sorting. 16mm color sound
film, 1981. Shown at SIGGRAPH ’81, Dallas TX.

R. Balakrishnan and I. S. MacKenzie. Performance differences in the fingers,
wrist, and forearm in computer input control. In Proceedings of ACM CHI’97
Conference on Human Factors in Computing Systems, pages 303-310, 1997.

Benjamin B. Bederson and James D. Hollan. Pad++: A zooming graphical
interface for exploring alternate interface physics. In Proceedings of the ACM

Symposium on User Interface Software and Technology, Visualization I, pages
17-26, 1994.

Benjamin B. Bederson and Britt McAlister. Jazz: An extensible 2D+zooming
graphics toolkit in java. Technical Report CS-TR-4015, University of Maryland,
College Park, May 1999.

J. Bertin. Semiology of Graphics. The University of Wisconsin Press, 1983.

M. H. Brown. Exploring Algorithms using Balsa-II. IEEE Computer, 21(5):14—
36, 1988.

Marc H. Brown and Marc A. Najor. Algorithm animation using interactive
3d graphics. In John Stasko, John Domingue, Marc Brown, and Blaine Price,
editors, Software Visualization, chapter 9, pages 119-136. The MIT Press, Cam-
bridge, 1998.

L. Buck. Motor performance in relation to controldisplay gain and target width.
Ergonomics, 23(6):579-589, 1980.

M. Byrne, R. Catrambone, and J. Stasko. Evaluating animations as student
aids in learning computer algorithms. Computers € Education, 33(4):253-278,
1999.

Stephen M. Casner. A task-analytic approach to the automated design of
graphic presentations. ACM Transactions on Graphics, 10(2):111-151, 1991.

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

146
Mei C. Chuah, Steven F. Roth, Joe Mattis, and John Kolojejchick. SDM:
Selective dynamic manipulation of visualizations. In Proceedings of the ACM

Symposium on User Interface Software and Technology, 3D User Interfaces,
pages 61-70, 1995.

D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Rob-
bins, Robert C. Zeleznik, and Andries van Dam. Three-dimensional widgets. In
Proceedings of the 1992 Symposium on Interactive 3D Graphics, Special Issue
of Computer Graphics, Vol. 26, pages 183-188, 1992.

K.C. Cox and G.-C. Roman. A Characterization of the Computational Power of
Rule-Based Visualization. Journal of Visual Languages and Computing, 5(1):5—
27, 1994.

Kenneth J. W. Craik. The Nature of Explanation. Cambridge University Press,
Cambridge, 1943.

P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi. Reversible execution
and visualization of programs with leonardo. Journal of Visual Languages and
Computing, 11(2):125-150, 2000.

H.A. Cunningham. Aiming error under transformed spatial mappings suggests
a structure for visual-motor maps. Journal of Experimental Psychology: Human
Perception and Performance, 15(3):493-506, 1989.

Brian J. d’Auriol, Claudia V. Casas, Pramod K. Chikkappaiah, L. Susan
Draper, Ammar J. Esper, Jorge Lépez, Rajesh Molakaseema, Seetharami R.
Seelam, René Saenz, Qian Wen, and Zhengjing Yang. Exploratory study of
scientific visualization techniques for program visualization. In International
Conference on Computational Science ICCS 2001, volume II, pages 701-710.
Springer-Verlag, 2001.

C. Demetrescu and I. Finocchi. Smooth animation of algorithms in a declarative

framework. Journal of Visual Languages and Computing, 12(3), 2001.

Edsger W. Dijkstra and C.S.Scholten. Termination detection for diffusing com-
putations. Inf. Proc. Letters, 11(1):1-4, 1980.

[30]

[31]

33]

[34]

[35]

[36]

37]

[38]

[39]

147
M. Eisenstadt and M. Brayshaw. The transparent prolog machine (TPM): An
execution model and graphical debugger for logic programming. Journal of
Logic Programming, 5(4):1-66, 1988.

Ken Fishkin and Maureen C. Stone. Enhanced dynamic queries via movable
filters. In Proceedings of ACM CHI’95 Conference on Human Factors in Com-
puting Systems, volume 1 of Papers: Information Visualization, pages 415-420,
1995.

P.M. Fitts. The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Motor Behavior, 47(6):381-391, June
1954.

Eugene C. Freuder. Partial constraint satisfaction. pages 278-283, Detroit, MI,
1989. Morgan Kaufmann.

G. W. Furnas. Generalized fisheye views. In Proceedings of ACM CHI’86
Conference on Human Factors in Computing Systems, pages 16-23, 1986.

C. Gibbs. Controller design: Interactions of controlling limbs, time-lags, and

gains in positional and velocity systems. Ergonomics, 5:385-402, 1962.

Yves Guiard, Michel Beaudouin-Lafon, and Deni Mottet. Navigation as multi-
scale pointing: Extending fitts’ model to very high precision tasks. In Proceed-
ings of ACM CHI 99 Conference on Human Factors in Computing Systems,
volume 1 of Vision and Fitts’ Law, pages 450-457, 1999.

R. Haller, H. Mutschler, and M. Voss. Comparison of input devices for correction
of errors in office systems. In INTERACT 84, 1984.

Ashley Hamilton-Taylor and Eileen Kraemer. SKA: Supporting algorithm and
data structure discussion. In John Impagliazzo, editor, Proceedings of the
Thirty-third SIGCSE Technical Symposium on Computer Science Education
(SIGCSE-02), volume 34, 1 of SIGCSE Bulletin, pages 5862, New York, Febru-
ary 27— March 3 2002. ACM Press.

S. Hansen, D. Schrimpsher, and N. Narayanan. Learning algorithms by visu-
alization: A novel approach using animation-embedded hypermedia. In Proc.

Third International Conference on The Learning Sciences, Atlanta, GA, 1998.

[40]

[41]

[42]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

148
Delbert Hart, Eileen Kraemer, and Gruia-Catalin Roman. Consistency consid-
erations in the interactive steering of computations. International Journal of
Parallel and Distributed Systems and Networks, 2(3):171-179, 1999.

Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of
parallel programs. IEEE Software, 8(5):29 —39, September 1991.

Robert R. Henry, Kenneth M. Whaley, and Bruce Forstall. The University
of Washington illustrating compiler. ACM SIGPLAN Notices, 25(6):223-233,
June 1990.

William Hibbard, Charles R. Dyer, and Brian Paul. Display of scientific data
structures for algorithm visualization. In Proc. IEEE Visualization, pages 139
146, 1992.

C. D. Hundhausen and S. A. Douglas. Low fidelity algorithm visualization.

Journal of Visual Languages and Computing, 2001. Under review.

C.D. Hundhausen, S.A. Douglas, and J.T. Stasko. A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages and Computing. In

press.

Christopher D. Hundhausen. Integrating algorithm visualization technology
into an undergraduate algorithms course: Ethnographic studies of a social con-

structivist approach. Computers € Education. Under review.

National Imagery and Mapping Agency. Geo-spatial intelligence information

visualization program (GI2Vis). http://www.nima.mil/.

H. Jellinek and S. Card. Powermice and user performance. In Proceedings
of ACM CHI’90 Conference on Human Factors in Computing Systems, pages
213-220, 1990.

Jinsight - Visualisation tools for Java. http://www.research.ibm.com /jinsight/.

Colleen Kehoe, John Stasko, and Ashley Taylor. Rethinking the evaluation of
algorithm animations as learning aids: An observational study. International
Journal of Human-Computer Studies, 54(2):265-284, 2001.

Eileen Kraemer, Mihail E. Tudoreanu, and Ashley Taylor. Why johnny won’t
visualize? In Workshop on Software Visualization at ICSE 2001, 2001.

149
[52] G. Langolf and D. Chaffin. An investigation of fitts’ law using a wide range of
movement amplitudes. Journal of Motor Behavior, 8:113-128, 1976.

[53] J. Lave and E. Wenger. Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press, New York, 1991.

[54] Andrea Lawrence, Albert Badre, and John T. Stasko. Empirically evaluating
the use of animations to teach algorithms. In Proceedings of the 199/ IEEFE
Symposium on Visual Languages, St. Louis, MO, pages 48-54, October 1994.

[55] I. S. MacKenzie. Fitts’ law as a research and design tool in human-computer
interaction. Human-Computer Interaction, 7(1):91-139, 1992.

[56] I. S. MacKenzie and S. Jusoh. An evaluation of two input devices for remote
pointing. In Proceedings of the Eighth IFIP Working Conference on Engineering
for Human Computer Interaction - EHCI. Springer-Verlag, 2001.

[57] I. S. MacKenzie and C. Ware. Lag as a determinant of human performance
in interactive systems. In Proceedings of ACM INTERCHI’93 Conference on
Human Factors in Computing Systems, pages 488-493, 1993.

[58] Jock D. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Transactions on Graphics, 5(2):110 141, 1986.

[59] Charles C. Mann. Why software is so bad. Technology Review, Inc., June 2002.
http://www.msnbc.com /news/768401.asp?0si=-&cpl=1.

[60] Sougata Mukherjea and John T. Stasko. Toward visual debugging: Integrating
algorithm animation capabilities within a source level debugger. ACM Trans-

actions on Computer-Human Interaction, 1(3):215-244, September 1994.

[61] Brad A. Myers. Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, 1(1):97-123, March 1990.

[62] Pu Pearl and Denis Lalanne. Interactive problem solving via algorithm visu-
alization. In Proceedings of IEEE Information Visualization, pages 145-153,
2000.

[63] K. Perlin and D. Fox. Pad: An Alternative Approach to the Computer Interface.
In ACM SIGGRAPH’93, pages 57-64, Anaheim, CA, 1993. ACM press.

[64]

[67]

[69]

[71]

[72]

150
C. Prablanc, J.E. Echallier, M. Jeannerod, and E. Komilis. Optimal response
of eye and hand motor systems in pointing at a visual target ii: Static and

dynamic visual cues in the control of hand movement. Biological Cybernetics,
(35):183-187, 1979.

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey. Human-
Computer Interaction. Addison-Wesley, 1994.

Blaine A. Price, Ronald M. Baecker, and [an S. Small. A principled taxonomy of
software visualization. Journal of Visual Languages and Computing, 4(3):211—
266, September 1993.

Ramana Rao and Stuart K. Card. The table lens: Merging graphical and sym-
bolic representations in an interactive focus+context visualization for tabular
information. In Beth Adelson, Susan Dumais, and Judith Olson, editors, Pro-

ceedings of the Conference on Human Factors in Computing Systems, pages
318-322, New York, NY, USA, April 1994. ACM Press.

S. P. Reiss. Bee/hive: A software visualization back end. In Workshop on Soft-
ware Visualization, International Conference on Software Engineering ICSE
2001, 2001.

Guido Roessling and Bernd Freisleben. The animal algorithm animation tool.
In ACM 5th Annual Conference on Innovation and T echnology in Computer
Science Education (ITiCSE 2000), pages 37-40, New York, 2000. ACMPress.

Guido Roessling and Bernd Freisleben. ANIMALSCRIPT: An extensible script-
ing language for algorithm animation. In Proceeding of the Thirty-second
SIGCSE Technical Symposium on Computer Sciense Education (SIGCSE-01),
volume 33.1 of ACM Sigese Bulletin, pages 70-74, New York, February 2001.
ACMPress.

G.-C. Roman, D. Hart, and C. Calkins. Visual Presentation of Software Spec-
ifications and Designs. In FEighth International Workshop on Software Spec-
ification and Design, pages 115-124. Washington University, Department of

Computer Science, St. Louis, Missouri, 1996.

G.C. Roman and K. Cox. A Taxonomy of Program Visualization Systems.
IEEE Computer, 26(12):11-24, 1993.

151

[73] Gruia-Catalin Roman. Declarative visualization. In John Stasko, John

Domingue, Marc Brown, and Blaine Price, editors, Software Visualization,
chapter 13, pages 173-186. The MIT Press, Cambridge, 1998.

[74] Gruia-Catalin Roman, Kenneth C. Cox, Donald Wilcox, and Jerome Y. Plun.
Pavane: a system for declarative visualization of concurrent computations.
Journal of Visual Languages and Computing, 3(2):161-193, 1992.

[75] Steven F. Roth, Peter Lucas, Jeffrey A. Senn, Cristina, C. Gomberg, Michael B.
Burks, Philip J. Stroffolino, John A. Kolojejchick, and Carolyn Dunmire. Vis-
age: A user interface environment for exploring information. In Proceedings of
IEEE Information Visualization, pages 3—12, San Francisco, October 1996.

[76] Steven F. Roth and Joe Mattis. Automating the presentation of information.
pages 90-97, Miami Beach, FL, 1991.

[77] M. Scaife and Y. Rogers. External cognition: How do graphical representations
work? International Journal of Human-Computer Studies, 45:185-213, 1996.

(78] Andrew Sears and Ben Shneiderman. High precision touchscreens: Design
strategies and comparisons with a mouse. International Journal of Man-
Machine Studies, 34(4):593-613, 1991.

[79] B. Shneiderman. Designing the User Interface (3rd edition). Addison-Wesley,
1998.

[80] Ben Shneiderman. Dynamic queries for visual information seeking. IEEE Soft-
ware, 11(6):70-77, November 1994.

[81] John Stasko. Samba. http://www.cc.gatech.edu/gvu/softviz/algoanim/samba.html.

[82] John Stasko. Smooth continuous animation for portraying algorithms and pro-
cesses. In John Stasko, John Domingue, Marc Brown, and Blaine Price, editors,
Software Visualization, chapter 8, pages 103-118. The MIT Press, Cambridge,
1998.

[83] John Stasko, Albert Badre, and Clayton Lewis. Do algorithm animations assist
learning? an empirical study and analysis. In Proceedings of ACM INTER-
CHI’93 Conference on Human Factors in Computing Systems, Understanding
Programming, pages 61-66, 1993.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

152
John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors.
Software Visualization: Programming as a Multimedia Ezperience. M.LT.
Press, February 1998.

John T. Stasko. The Path-Transition Paradigm: A practical methodology for
adding animation to program interfaces. Journal of Visual Languages and Com-
puting, 1(3):213-236, 1990.

John T. Stasko. TANGO: A framework and system for algorithm animation.
Computer, 23(9):27-39, September 1990.

John T. Stasko. Supporting student-built algorithm animation as a pedagogical
tool. In Proceedings of ACM CHI 97 Conference on Human Factors in Com-
puting Systems, volume 2 of DEMONSTRATIONS: Programming with Less
Programming, pages 24-25, 1997.

John T. Stasko and Eileen Kraemer. A methodology for building application-
specific visualizations of parallel programs. Journal of Parallel and Distributed
Computing, 18(2):258-264, 1993.

John T. Stasko and Eileen Kraemer. A methodology for building application-
specific visualizations of parallel programs. Journal of Parallel and Distributed
Computing, 18(2):258-264, 1993.

Sun Microsystems, Inc. Java 3D (TM). http://java.sun.com/products/java-
media/3D/index.html.

V.S. Sunderam. PVM: A framework for parallel distributed computing. Con-
currency: Practice & Experience, 2(4):315 — 339, December 1990.

Andrew S. Tanenbaum. Computer Networks. Prentice-Hall International, Inc.,
1996. ISBN: 0-13-394248-1.

Brad Topol, John T. Stasko, and Vaidy S. Sunderam. Pvanim: a tool for
visualization in network computing environments. Concurrency - Practice and
Ezperience, 10(14):1197-1222, 1998.

Mihail E. Tudoreanu and Eileen Kraemer. Legends as a device for interacting
with visualizations. Technical Report WUCS-01-44, Washington University in
St. Louis, 2001.

[95]

[99]

[100]

153
Lisa Tweedie, Bob Spence, David Williams, and Ravinder Bhogal. The attribute
explorer. In Proceedings of the CHI °9/ conference companion on Human factors

in computing systems, pages 435-436. ACM Press, 1994.
Colin Ware. Information Visualization. Morgan Kaufmann, 2000.

Colin Ware and Jeff Rose. Rotating virtual objects with real handles. ACM
Transactions on Computer-Human Interaction, 6(2):162-180, 1999.

Kent Wittenburg, Tom Lanning, Michael Heinrichs, and Michael Stanton. Par-
allel bargrams for consumer-based information exploration and choice. In Pro-
ceedings of the 14th annual ACM symposium on User interface software and
technology, pages 51-60. ACM Press, 2001.

W. Woodson, B. Tillman, and P. Tillman. Human Factors Design Handbook
(second edition). McGrawHill, 1992.

Shumin Zhai, Paul Milgram, and William Buxton. The influence of muscle
groups on performance of multiple degree-of-freedom input. In Proceedings of
ACM CHI 96 Conference on Human Factors in Computing Systems, volume 1
of PAPERS: Fingers, pages 308-315, 1996.

Date of Birth

Place of Birth

Degrees

Research
Interests

Teaching
Interests

Professional
Societies

Publications

154
Vita
Mihail-Eduard Tudoreanu

February 13, 1974
Tasi, Romania

D.Sc. Computer Science, August 2002 (expected)
B.S. Computer Science, June 1997
M.S. Computer Science, May 1999

Program and algorithm visualization
Human-computer interaction

Automatic visual presentation of computations
Monitoring and steering of distributed computations
Mobile code

Information and program visualization
Human-computer interaction and user interfaces
Distributed computation and mobility

Software engineering

Association for Computing Machinery
Institute of Electrical and Electronic Engineers (IEEE)
IEEE Computer.

Tudoreanu, M. E., Wu R., Hamilton-Taylor, A., Kraemer, E.
(2002) Empirical Evidence that Algorithm Animation Pro-
motes Understanding of Distributed Algorithms, To appear
in Empirical Studies of Programmers: Individual Sympo-
stum within 2002 IEEE Symposia on Human Centric Com-
puting Languages and Environments (HCC’02).

Tudoreanu, M. E.; Kraemer, E. (2001) Automatic Presenta-
tion of Running Programs, Proceedings of the SPIE 2001
Conference on Visual Data FEzxploration and Analysis VIII,
p.143-155, San Jose, CA.

155

Tudoreanu, M. E., Kraemer E. (2001) Legends as a Device
for Interacting with Visualizations, Washington University
technical report, WUCS-01-44, St. Louis, MO.

Hart, D.; Tudoreanu, M. E. (2001) Visualization Channels:
Time Multiplexing on a Display, Proceedings of IASTED In-
ternational Conference on Visualization, Imaging and Im-
age Processing, p.95-100, Marbella, Spain.

Kraemer, E.; Tudoreanu, M. E.;Taylor A. (2001) Why Johnny
Won’t Visualize, Workshop on Software Visualization at
ICSE 2001, Toronto, Canada.

Hart, D.; Tudoreanu, M. E.; Kraemer, E. (2001) Token Find-
ing Using Mobile Agents, Proceedings of the International
Conference of Computational Science, vol. 2, p.791-800,
San Francisco, CA.

Hart, D.; Tudoreanu, M. E.; Kraemer, E. (2001) Mobile Agents
for Monitoring Distributed Systems, Proceedings of the Fifth
International Conference on Autonomous Agents, p.232-233,
Montreal, Canada.

Tudoreanu, M. E.; Hart, D.; Roman, G.-C. (2000) Resha-
peable Visualizations, Proceedings of the IEEE Multimedia
Software Engineering, p.245-250, Taipei, Taiwan.

Tudoreanu, M. E., Kraemer E. A Study of the Performance of
Steering Tasks under Spatial Transformation of Input, 7o be
submitted to Transactions of Computer-Human Interaction

(TOCHI).

August 2002

	Economy of Interaction in Program Visualization: Designing Effective Visualization Tools for Reducing User's Cognitive Effort - Doctoral Dissertation, August 2002
	Recommended Citation
	Economy of Interaction in Program Visualization: Designing Effective Visualization Tools for Reducing User's Cognitive Effort - Doctoral Dissertation, August 2002

	tmp.1472055847.pdf.1jDAX

	Abstract: Abstract: Program visualization has the potential to be an important tool for

people who seek to observe and understand the behavior of a running

computation. This thesis focuses on alleviating barriers to the

realization of this potential that pertain to the design of a

visualization system and to insufficient knowledge about how people

take advantage of program visualizations. Our major contribution is

the design of a visualization approach capable of improving user's

performance through the use of economy of information and tasks. We

present evidence from our empirical studies that this type of

economy promotes animations capable of significantly improving

people's understanding of the computation. We apply this knowledge

to develop a system for creating application-specific visualizations

solely through interactions with program visualizations and textual

views of the computation, thus promoting economy of interaction. The

system is built around the principle that animation viewers are also

the creators of animations and systematically refine the

visualizations to suit their momentary goal.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: August 29, 2002
	Author: Authors: Tudoreanu, Mihail Eduard
	Title: Economy of Interaction in Program Visualization: Designing Effective Visualization Tools for Reducing User's Cognitive Effort - Doctoral Dissertation, August 2002
	ReportNumber: 2002-30
	DepartmentName: Department of Computer Science & Engineering

