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Axonal degeneration plays an important role in the etiology of major central nervous system 

(CNS) neurodegenerative disorders such as Parkinson’s disease (PD) but investigations into the 

mechanisms underlying this important process has been limited.  The goal of this dissertation was to 

design and demonstrate the use of a compartmented microdevice which allows for the isolation and 

study of axonal processes such as mitochondrial transport away from cell neuronal bodies.  To 

achieve this goal, a PDMS microdevice comprised of two large chambers connected by a parallel 

array of microchannels successfully achieved separation of axons from the soma and allows tracking 

of transport along oriented axons.  To create an in vitro model of PD, dopaminergic axons from 

midbrain cultures were isolated within the microchannels away from the cell bodies. To determine 

the best method for imaging intracellular organelles, cells were transduced with a mitochondria 

targeted DsRed2 lentiviral vector or with a mitochondria specific dye, Mitotracker Deep Red.  While 

both methods successfully labeled the mitochondria, the dye, created significant fluorescent 

background noise which made measuring mitochondria movement difficult.  Using the microdevice, 

the effects of 6-hydroxydopamine (6-OHDA), one of the most commonly used toxins for modeling 

PD, on axonal transport was then investigated on GFP labeled midbrain neurons cultured within  

the microdevice.  6-OHDA quickly induced mitochondrial transport dysfunction in both GFP and 
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non-GFP labeled axons.  Transport of synaptic vesicles were also blocked by the effects of 6-

OHDA.  6-OHDA also induced the fragmentation of microtubules and the induction of autophagy 

but these processes came at a much later time point compared to transport inhibition.  These toxin 

effects on mitochondrial transport were blocked by the addition of SOD1-mimetic, 

Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), as well as the anti-oxidant N-acetyl-

cysteine (NAC).  However, addition of calcium ion chelator, ethylene glycol tetraacetic acid (EGTA), 

did not restore mitochondrial transport.  This study suggests that transport dysfunction occur early 

and may play a significant role in inducing axonal degeneration in response to 6-OHDA treatment. 

Overall, the dissertation shows that the microdevice is an excellent tool for studying axonal 

degenerative processes in the CNS.  



1 
 

Chapter 1  

Introduction 

1.1 Overview 

This work describes the design and use of a compartmented microdevice that allows for the 

isolation and study of axons apart from the cell body and dendrites.  The motivation behind the 

work is the important initial role that axonal degeneration plays in the onset and progression of 

major neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease and 

Huntington’s disease.  When designing therapies, it is important to understand and target the 

molecular pathways involved in the earlier stages of the degenerative process rather than targeting 

more downstream events.  Many therapies that have been designed to rescue cell bodies in 

neurodegenerative diseases show little efficacy in slowing disease progression. This may be due to 

axonal degeneration being the initial locus of disease.  Unfortunately, designing treatments to 

preserve axonal structure and function remains an incredible challenge simply because of the limited 

knowledge available regarding the pathways that underlie the axonal degeneration process.  One of 

the main obstacles is the limited availability of tools to study the degenerative process within the 

axons of central nervous system (CNS) neurons.  Technical challenges that must be overcome in 

order to obtain more accurate PD models include maintaining viability of the oft-times fragile 

primary CNS neuronal cultures in vitro, stimulating axonal outgrowth, and isolating axons so that 

they may be studied without confounding effects from the cell body or dendrites .   

One of the key conundrums of PD is the apparent specific vulnerability of dopaminergic 

(DA) neurons to degeneration, at least in the earlier phases of the disease, and it is not clear what 

properties make them so vulnerable in PD.  The fragility and scarcity of DA neurons within the 



2 
 

midbrain (5-10% of the entire midbrain neuronal population) is an important consideration.  

Regardless, in order to properly understand the disease pathology, it is important to study actual 

midbrain DA neurons and axons rather than a cell line or neurons of other lineage.  

The first aim was to create a microdevice using soft lithographic techniques that allowed for 

culture and separation of midbrain DA neurons from their axons within fluidically-isolated 

chambers.  Murine mesencephalic cultures were obtained and cultured within the microdevices for 

up to 30 days to show that long-term culture could be maintained.  On average, it took 

approximately 8-10 days for axons to fully cross between compartments. To optimize single axon 

visualization, the extent of neurite penetration and axonal bundling were assessed for various 

geometric parameters. As well as culture and assay conditions.  As axons extend, they may naturally 

bundle with one another with one leading axon serving as a guide for others.  To avoid any 

activation of secondary pathways from biochemical bundling inhibition, physical aspects of the 

microchannels were redesigned to optimize finding and imaging single oriented axons.  In addition 

to isolating the axons, the material properties of the elastomer used to create the microfluidic device 

was considered to identify the best techniques for visualizing intra-axonal organelle movement.  It 

was found that the adsorbent nature of the microdevice material was not conducive to fluorescent 

dye visualization of mitochondrial movement.  Therefore, a lentiviral vector for an organelle-specific 

fluorescent protein was used to visualize mitochondria and other vesicles during live-cell imaging.   

The final study was done to investigate the effects of 6-hydroxydopamine (6-OHDA) on 

axonal transport within midbrain cultures.  Disruption to the movement of organelles and vesicles is 

commonly observed within axonopathies and occurs early within the degenerative process.  6-

OHDA is a commonly used toxin to induce parkinsonism and is a model of an acute form of PD.  

While it does not completely recapitulate all of the symptoms of sporadic PD, it is frequently used to 
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establish the efficacy of potential PD therapeutics as it reliably produces axonal degeneration of DA 

neurons in the nigrostriatal pathway in vivo.  The microdevices were used to explore how 6-OHDA 

affects various aspects of axonal transport, such as mitochondria and synaptic vesicle movement in 

anterograde and retrograde directions, integrity of tracks for transport, and potential underlying 

mechanisms, which may explain how 6-OHDA exerts its toxicity.  Using 6-OHDA and the 

microdevice, I was able to establish that disruption to axonal transport of mitochondria and synaptic 

vesicles transport was an early event in the onset of axonal degeneration.  These transport 

disruptions may be due to excess ROS produced by 6-OHDA.   

This chapter will provide a general introduction to PD, which includes current theories and 

models regarding the mechanisms that underlie the neurodegenerative process in PD.   This chapter 

will also cover some of available methodologies to study specific segments of the neuron, such as 

axons and dendrites, and the limitations to those methods.  Additionally, new soft lithographic 

techniques such as microfabrication will be explored to developing tools for studying 

neurodegenerative diseases.  

 

1.2 Parkinson’s Disease 

1.2.1 An Overview of Parkinson's Disease  

 Parkinsonism has been known since ancient times but was not medically described until 

1817 by Dr. James Parkinson in his work "An Essay on the Shaking Palsy"(Parkinson 1817).  

Additional important and more thorough investigations of the malady came later from the works of 

investigators, such as Jean Martin-Charcot, to fully establish the clinical spectrum of Parkinson's 

disease (PD) (Charcot and Bourneville 1872).  Since then, PD has been established as second most 
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common neurodegenerative disease in the United States and the most common moto-degenerative 

disease.  It is estimated that there are currently 1 million PD patients in the United States and more 

than 5 million sufferers around the world (Olanow, Stern et al. 2009).  Arguably, the greatest risk 

factor for PD is old age, as the chances of getting PD increases dramatically over the age of 60 

(Driver, Logroscino et al. 2009).  However, certain forms of familial PD show symptoms earlier in 

life: between late 30s and early 40s (Schrag and Schott 2006).  The cardinal motor hallmarks of PD 

are: bradykinesia or slowness of movement, rigidity, resting tremors and postural instability (Lees, 

Hardy et al. 2009).  These motor symptoms are associated with the death of dopaminergic (DA) 

neurons that are part of the nigrostriatal pathways.  The cell bodies of these DA neurons lie within 

the Substantia Nigra par compacta (SNpc) and extend their axons into areas of the striatum, such as 

the caudate and putamen (Dauer and Przedborski 2003).  After centuries of investigation, the 

mechanisms responsible for the death of these neurons remain elusive.  It has been estimated that 

85% of all PD cases are classified as sporadic in which there is no known cause, and 15% of the 

cases are familial with both autosomal dominant and recessive mutations contributing to the onset 

of PD symptoms (Corti, Lesage et al. 2011).  Pathological features of PD include eosinophilic 

aggregates of misfolded proteins known as Lewy bodies and Lewy neurites.  The major protein 

identified within these aggregates is α-synuclein, but other proteins are also found within the Lewy 

bodies, such as tau and ubiquitin (Spillantini, Schmidt et al. 1997).  Lewy bodies are also found 

within peripheral systems (Wakabayashi, Takahashi et al. 1988).  Whether these misfolded protein 

aggregates are a causative factor in PD and contribute to the progression of the disease, or are 

simply symptoms of breakdowns in the protein clearance systems, remain unclear.   

 Advances in understanding of PD remained stagnant until the discovery of dopamine and its 

localization within the striatum in the mid-twentieth century.  An accompanying major discovery 

was that levodopa, a natural precursor to dopamine, reversed the effects of parkinsonism in toxin 
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models and eventually PD in patients.  However, without a clear understanding of the mechanism 

underlying the disease process, it has been impossible to establish a cure or treatment to delay the 

disease's progression.  Currently, Levodopa remains the gold standard of treatment for PD, but 

eventually its efficacy wanes and there is the development of unwanted side effects, such as 

dyskinesia or uncontrolled movement of the body.  Mood disorders are also associated with heavy 

levodopa use, such as agitation, confusion, anxiety, and hallucination (Olanow, Agid et al. 2004).  

Most other medications for PD are designed around the idea of making dopamine more available 

whether it is through limiting the degradation of dopamine/levodopa, acting as agonists of 

dopamine receptors, or being stabilizers to ensure a steady and constant supply of levodopa.  Other 

treatments, such as deep brain stimulation, have shown efficacy in reducing the motor symptoms of 

PD, but the mechanism of these treatments remains unknown (Rodriguez-Oroz, Obeso et al. 2005; 

Nilsson, Patel et al. 2013).  

 While PD has been classically described as a motor disorder, it is clear now that many other 

non-motor symptoms exist. Autonomic dysfunctions, cognitive deficits, such as memory loss and 

confusion, disturbances to sleep and other behavioral disorders are also common to PD sufferers.  

Degeneration of hippocampal and cholinergic structures have been observed with the deaths of 

cholinergic (Candy, Perry et al. 1983), noradrenergic (Greenfield and Bosanquet 1953), and 

serotonergic neurons (Scatton, Dennis et al. 1986).  Adding to the confusion is the uncertainty that 

the motor deficits seen in PD are part of the early phases of the disease.  It has also been suggested 

that the disease may actually begin elsewhere in the brain and even that PD is not a single disorder 

with a singular cause (Cheng, Ulane et al. 2010).  Part of the difficulty in establishing a clear 

definition of PD and developing a cure is the lack of a good animal model that recapitulates all of 

the features seen in PD.    
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1.2.2  Genetic Models of PD 

 The growing list of gene mutations (particularly within the Park family) that contribute to 

familial PD has made genetics an important piece in understanding in the complex etiology of PD.  

Autosomal dominant forms of hereditary PD include mutations to SNCA (Polymeropoulos, 

Lavedan et al. 1997), one of the first PD genes to be sequenced, that codes for α-synuclein, and 

leucine-rich repeat kinase 2 (LRRK2) (Zimprich, Biskup et al. 2004).  In addition to point mutations 

of SNCA gene, overexpression of SNCA have led to a PD pathology (Singleton, Farrer et al. 2003). 

Unfortunately, the endogenous function of α-synuclein is unknown despite being enriched at the 

axon terminal (Maroteaux, Campanelli et al. 1988) and involved with vesicles trafficking and storage 

of neurotransmitters (Kramer and Schulz-Schaeffer 2007).  How SNCA interacts with other protein 

targets of PD mutations is still unclear.  Common recessive forms of familial of PD include Pink1 

(Rohe, Montagna et al. 2004), DJ-1 (Bonifati, Rizzu et al. 2003), and Parkin (Kitada, Asakawa et al. 

1998).  Investigation into the targets of PD mutants have made important contributions to the 

understanding of many biological processes (Shulman, De Jager et al. 2011). 

 A common thread in many of the familial forms of PD is the link to mitochondrial 

regulation.  Pink1 and Parkin have been linked to a common pathway (Narendra, Jin et al. 2010) that 

regulates key aspects of mitochondria dynamics, such as mitochondria quality control (Narendra, 

Walker et al. 2012), calcium homeostasis (Heeman, Van den Haute et al. 2011), fission (Liu, Acin-

Perez et al. 2011) and fusion (Poole, Thomas et al. 2010; Liu, Acin-Perez et al. 2011) , as well as 

regulation of mitochondrial transport (Wang, Winter et al. 2011).  These regulatory factors, which 

are localized to the mitochondrial membrane, have contributed greatly to uncover mechanisms that 

may potentially explain why mitochondria are vulnerable in many different forms of PD.  In 
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addition to the mitochondria, Parkin has also been shown to play roles in ubiquitin-proteasome 

systems (Tanaka, Cleland et al. 2010).  

 Despite the mechanistic insight into mitochondrial regulation gained from studies with 

Pink1 and Parkin, there are still many caveats to using these genetic models of PD.  Knockdown of 

PD genes, such as Pink1 and Parkin in Drosophila using RNAi have beautifully recreated the loss of 

DA neurons seen in sporadic PD with the associated motor defects (Wang, Qian et al. 2006; Yang, 

Gehrke et al. 2006), However, double and triple knockouts of Pink1, Parkin and DJ-1 in mice have 

led to very mild motor symptoms and no progressive loss of DA neurons (Goldberg, Fleming et al. 

2003; Palacino, Sagi et al. 2004; Gispert, Ricciardi et al. 2009; Kitada, Tong et al. 2009).  These in vivo 

results suggest the presence of compensatory mechanisms in place to maintain neuronal function.  

Regardless, PD toxin models remain the gold standard for developing and testing therapeutics for 

PD, as well as understanding the mechanisms for degeneration of DA neurons. 

 

1.2.3  Environmental Models of PD 

1.2.3.1  MPP+  

Currently, the gold standard for modeling toxin-induced degeneration of DA neurons is 1-

methyl-4-phenyl-4-propionoxypiperidine or MPTP.  Its crosses the blood brain barrier where it is 

taken up by astrocytes and converted into its active metabolite MPP+ by monoamine oxidase B 

(MAO-B) (Markey, Johannessen et al. 1984).  MPP+ is then released into the extracellular milieu and 

taken up by DA neurons via the dopamine transporter (DAT).  MPP+ has also shown slight affinity 

for other catecholaminergic transporters.   
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MPTP was created in the early 1980s from street user’s attempt to synthesize the narcotic 

meperidine (Davis, Williams et al. 1979). To the surprise of doctors and researchers, the users 

quickly developed irreversible and severe parkinsonian symptoms (Langston, Ballard et al. 

1983).  Administration of MPTP in monkeys show similar patterns of striatal DA degeneration and 

cell loss within the SNpc. Both primates and humans affected by MPP+ have responded well to 

treatments with levodopa (Langston, Ballard et al. 1983).  Despite being mostly selective for DA 

neurons, not all features of sporadic PD are present in the MPP+ model of cell degeneration as 

there is inconsistent loss of monaminergic neurons within the locus coeruleus (Forno, Langston et 

al. 1986) and also lack of Lewy body formation (Davis, Williams et al. 1979; Forno, DeLanney et al. 

1993).   

Once inside the cell, MPP+ has been shown to be sequestered inside the mitochondria 

where subsequently there is disruption to the activities of the electron transport chain via Complex I.  

This disruption may then lead to mitochondrial damage and energy loss within the cell (Ramsay and 

Singer 1986; Surmeier, Guzman et al. 2010).  MPP+ has also been shown to be a substrate for 

vesicular monoamine transporter 2 (VMAT2), and MPP+ has been hypothesized to induce the 

release of the highly reactive dopamine from its intracellular stores (Lotharius and O'Malley 2000; 

Staal and Sonsalla 2000).  The mechanism for MPP+ induced cellular degeneration does not 

completely resemble necrosis or apoptosis (Choi, Canzoniero et al. 1999; O'Malley, Liu et al. 2003). 

The observation that genetic models of PD and MPP+ both affect mitochondrial processes 

presented an exciting link between sporadic and familial forms of the disease.  So far, it has been 

unclear whether environmental factors (such as pesticides, toxins or heavy metals) or genetic factors 

(or both) play significant part in the onset of PD.  It may also turn out that multiple causes may lead 

to PD and other parkinsonisms, but if they converge on a single or a few target pathways then those 
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pathways would be the more realistic and ideal targets for the development of therapies (Burke and 

O'Malley 2012).  

 

1.2.3.2  6-hydroxydopamine (6-OHDA) 

 Discovered in the 1950s, 6-hydroxydopamine or 6-OHDA was the first toxin to lesion the 

nigrostriatal DA pathway, and is frequently used to generate behavioral and physiological effects in 

vivo, as well as to screen for therapies that may improve PD symptoms (Ungerstedt 1968).  6-OHDA 

is a naturally occurring and highly reactive hydroxylated analog of dopamine (Curtius, Wolfensberger 

et al. 1974) and  does not cross the blood brain barrier.  It has shown a high affinity for 

catecholaminergic transporters, such as DAT and norepinephrine transporters as catecholaminergic 

blockers have blocked 6-OHDA toxicity in vivo(Breese and Traylor 1970).  To produce more 

specificity in vivo, it is often injected in conjunction with a noradrenaline reuptake inhibitor, such as 

desipramine (Luthman, Fredriksson et al. 1989).   

 In vivo, 6-OHDA is directly injected into areas of the striatum or substantia nigra in order to 

produce retrograde or anterograde, respectively, models of DA degeneration.  While its degenerative 

effects are highly reproducible, the toxin does not mimic all of the effects of PD, such as cell death 

in other brain regions, such as olfactory bulb and brain stem.  Also missing are signs of Lewy-like 

inclusions seen in PD (Schober 2004).   

In addition to being transported into the cell via DAT in in vitro models, 6-OHDA has been 

shown to inhibit mitochondrial complex I and IV (Glinka and Youdim 1995) as well as oxidizing 

readily to generate reactive oxygen species, such as hydrogen peroxide (Saito, Nishio et al. 2007) as 

well as p-quinones (Monteiro and Winterbourn 1989) extracellularly thus leading to higher levels of 
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oxidative stress (Holtz, Turetzky et al. 2005; Holtz, Turetzky et al. 2006).  Therefore, the exact 

pathway by which 6-OHDA exerts its toxic effects is highly controversial.  Studies using cell lines 

with and without DAT have yielded variable results of intra vs. extracellular 6-OHDA mechanisms 

(Clement, Long et al. 2002; Hanrott, Gudmunsen et al. 2006; Redman, Jefferson et al. 2006).  

Whatever the route, 6-OHDA has been shown to inhibit complex I and induce collapse in 

mitochondrial membrane potential (Lotharius, Dugan et al. 1999) and p53 activation (Bernstein, 

Garrison et al. 2011).  6-OHDA has also been shown to induce an apoptotic version of cell death 

(Choi, Yoon et al. 1999; Marti, Saura et al. 2002) with observations of increased DNA 

fragmentation, cytochrome c release, and caspase activation (Holtz and O'Malley 2003).   

 While patient studies and experimental data have revealed an incredible amount of data on 

where PD degeneration occurs at the level of large structures within the brain, the actual cellular 

processes remain a mystery.  Despite knowing that MPP+ is sequestered inside of mitochondria and 

6-OHDA may activate apoptotic pathways, the actual chain of events which lead to these effects 

isn't clear.  In fact, a significant research effort has been underway to determine where the 

degeneration initiates.   

 

1.3  Mechanisms of PD 

1.3.1 Axonal Degeneration in PD 

Unlike many other somatic cells, the neuron has a highly compartmentalized structure.  The 

simplest model of a neuron can be conceptualized as three distinct compartments: dendrites, the cell 

body (somal), and the axon.  The dendrites and the cell body receive and process inputs that can 

then be used to generate an output, such as neurotransmitter release via the axon.  Without a viable 
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axon or synaptic terminal, neurons would lose the means to perform their function and carry signals 

to the target.  In addition to being sites of neurotransmitter release, the synapses are also the sites 

where neurotransmitters are produced and where growth factors may be taken up and transported in 

a retrograde fashion towards the cell body where they act as survival signals.   

The more significant depletion of DA signals within the striatum compared to the SNpc 

suggests that the cell body may not actually be the initial site of injury but that degeneration could 

initiate along the axon.  If this were true, then treatments that target the maintenance of axonal 

functionality and integrity could potentially have greater efficacy in overcoming degenerative 

diseases.  It is of interest to note that axon degeneration is a phenomenon that is seen not only in 

PD but also in other major neurodegenerative diseases, such as Alzheimer’s and Huntington’s 

disease (Coleman 2005).  Therefore, understanding the process of axonal degeneration in PD could 

potentially provide clues to understanding cell death in other diseases as well.   The following 

sections will cover patient and experimental data which suggests the existence and importance of 

axonal degeneration. 

 

1.3.2  Patient and Functional Imaging Data in PD 

Patient data from post-mortem studies showed a distinct dopaminergic deficiency in PD 

patients.  Since dopamine is primarily synthesized at the axonal terminal and dopamine transporters 

are enriched within the striatum (Ehringer and Hornykiewicz 1960), it was proposed by Dr. Oleh 

Hornykiewicz that degeneration at the cellular level first begin at the axons and proceeds towards 

the Substantia Nigral cell bodies in a “dying back” fashion (Hornykiewicz 1998).  Regression analysis 

of cell count versus PD duration found that at the onset of motor symptoms, there is a 31% loss of 
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the cell bodies with signs of incidental Lewy bodies (Fearnley and Lees 1991).  Concurrently, there 

has been a much more substantial loss of DA terminals within the striatum (Bernheimer, Birkmayer 

et al. 1973).  Post mortem measurement of dopamine levels in the caudate show that at the onset of 

motor symptoms there is a 68-82% loss of striatal DA signal (Riederer and Wuketich 1976).  

Functional imaging PET studies have supported the previous findings that striatal DA terminal loss 

occurs significantly before death of the cell bodies (Lee, Samii et al. 2000).  Using radioligand 

imaging analysis of striatal DA markers, such as levodopa metabolism, dopamine transporter, or 

vesicular monoamine transporter (responsible for sequestering dopamine within vesicles), it was 

found that at the onset of motor symptoms, there was a 50-70% loss of ligand labeling at the onset 

of motor symptoms in PD (Nandhagopal, McKeown et al. 2008).  

1.3.3 Toxin and Genetic Models of Axonal Degeneration in PD 

The protein aggregates known as Lewy bodies are a distinct pathological hallmark of PD and 

it is of interest to note that Lewy neurites form prior to Lewy bodies. Studies that looked at the 

development of α-synuclein pathology have found that the degenerative process typically begins 

within the axon and may proceed retrogradely (Orimo, Uchihara et al. 2008) showing distinct loss of 

dopamine release, striatal dopaminergic pathology,  and reduction of synaptic and motor proteins 

(Chu, Morfini et al. 2012) prior to the significant loss of DA cell bodies.  In addition to α-synuclein, 

mice with LRRK2 mutations showed preservation of DA cell bodies but significant loss of striatal 

tyrosine hydroxylase (TH) immunoreactivity (Li, Liu et al. 2009).  Tyrosine hydroxylase is the rate 

limiting enzyme for production of dopamine and is often used as a marker for identifying DA 

neurons.  While Parkin knockout mouse models have not exhibited the same degree of DA 

pathology as the autosomal dominant models of PD (Palacino, Sagi et al. 2004), Perkin’s role in 
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supporting mitochondrial health and transport suggests that maintenance of axon function and 

health is important.  

Results from PD toxin models continue to support the idea that axons are a major target for 

degeneration and disruption.  In primate models of MPP+, the pattern of degeneration recapitulates 

what has been seen in humans, where severe degradation of the terminal fields occur prior to serious 

loss of cell bodies within the substantia nigra (Herkenham, Little et al. 1991).  Chronic application of 

MPP+ in mice showed a similar pattern with 80% loss of DAT staining and only 43% decline in 

SNPc cell bodies (Meissner, Prunier et al. 2003).  Additionally, in rodent models, injection of 6-

OHDA into the striatum led to depletion of dopamine rapidly and induced a progressive retrograde 

degeneration (Blum, Torch et al. 2001). Unfortunately, it is not known just how exactly the toxins 

and genetic models cause axonal degeneration.  However, one common feature of axonal 

degeneration in PD and in other degenerative diseases is a disruption to axonal transport  

 

1.4  Axonal Transport  

Axons vary diversely in both length and size with some motor axons being over 1 m in 

length.  As the protein translation machinery present within the axon is quite limited, transport of 

proteins is required for maintaining axonal structures, such as receptors, ion channels, and 

cytoskeletal molecules.  Delivery of synaptic vesicles, growth factors, and power generating 

organelles such as the mitochondria also occurs via axonal transport machinery.  Cytoskeletal 

structures, such as microtubules and neurofilaments, act as “tracks” along which transport takes 

place.  Motor proteins, such as kinesin and dynein, transport cargo in anterograde (towards the 

synaptic terminal) and retrograde (towards the cell body) directions, respectively (O'Malley 2010).  
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These motor proteins are powered by ATP hydrolysis to generate a “walking” motion along the 

tracks.  It is shown that kinesin and dynein are interdependent (Martin, Iyadurai et al. 1999) and may 

both be present on a single mitochondria (Pilling, Horiuchi et al. 2006)They are connected by 

adaptor complexes such as those of Miro (Fransson, Ruusala et al. 2006) and Milton (Glater, 

Megeath et al. 2006; Misko, Jiang et al. 2010) for the transport of mitochondria.  While studies 

investigating the control and regulation of movement direction and speed of vesicle and 

mitochondria transport have begun, much remains unknown in the study of axonal transport and 

movement.  

 

1.4.1  Axonal transport defects in PD 

 There have been many signs of disruption to axonal transport in major neurodegenerative 

diseases.  Overexpression of α-synuclein has led to axonal transport defects (Saha, Hill et al. 2004).  

Pink1 and Parkin mutations have been shown to disrupt mitochondrial transport within axons 

(Wang, Winter et al. 2011).  MPP+ has led to transport disruptions of mitochondria in giant squid 

axons (Morfini, Pigino et al. 2007).  6-OHDA treatment has led to destabilization of microtubules in 

cell-free assays (Davison, Legault et al. 1986).  In PC12 cells, MPP+ has been shown to disrupt 

stability of microtubules, which subsequently led to the disruption of mitochondria movement 

(Cartelli, Ronchi et al. 2010).   However, in murine mesencephalic models, mitochondrial disruption 

due to MPP+ occurs prior to loss of microtubule tracks.  Therefore, it is still controversial which 

aspect of the axonal process is disturbed first (Kim-Han, Antenor-Dorsey et al. 2011).  Other PD 

models, such as rotenone, have also shown disruptions to mitochondrial transport (Choi, Palmiter et 

al. 2011). Many additional questions regarding axonal transport dysfunction remain unanswered.  

For example, is there a dysfunction in the motor proteins which decreases their movement 
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efficiency? Could there be a deficiency in binding between motor proteins and their cargo or 

perhaps motor proteins and the tracks?  Could there be an energy deficiency which precludes the 

function of motor proteins?  A disruption to any aspect of the axonal transport machinery could 

lead to the activation of a program for axonal degeneration (Burke and O'Malley 2012).  

 

1.5  Mitochondrial dysfunction in PD 

Mitochondria are dynamic organelles that perform important functions such as producing 

energy in the form of ATP, acting buffers for regulating intracellular calcium ions, and regulating 

apoptosis through release of cytochrome c in response to stressors.  Transport of mitochondria 

throughout a neuron, and its extensions such as axons and dendrites, is critical for supporting and 

maintaining the function of those particular compartments. The length of the axon places a heavy 

energy demand on the cell.  Many processes within the axon rely on the energy provided by 

mitochondria, such as movement of the motor proteins, maintaining microtubule tracks, attachment 

and loading of vesicles.  Disruption of mitochondria movement or limiting the distribution of 

mitochondria to places of high energy demand (such as at the axonal terminal) may compromise 

meeting the high energy requirement.  Maintenance of the health of the mitochondrial network is 

complex and tightly regulated by fusion and fission processes to share healthy mtDNA or to 

sequester and break off damaged compartments within the mitochondria (Youle and van der Bliek 

2012). Parkinsonism toxins have been linked to mitochondrial dysfunction since the discovery of the 

effects of MPP+ on complex I activity (Cleeter, Cooper et al. 1992). Other parkinsonism drugs, such 

as rotenone also inhibit complex I activity (Betarbet, Sherer et al. 2000). Though MPP+ induces 

acute parkinsonism which is different from progressive PD, post mortem studies of idiopathic PD 

patients have shown reduced complex I activity in the SNpc (Schapira, Cooper et al. 1990).  
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Interestingly, other cells, such as platelets derived from PD, patients have also shown reduced 

complex I activity, which may suggest a systemic defect (Haas, Nasirian et al. 1995). Damage to 

complex I may then contribute to disruption of ATP production and increase the formation of ROS 

that will lead to mtDNA damage and higher levels of oxidative stress.  

 

1.5.1 Mitophagy 

Mitochondria removal is an important process for regulating the health of the mitochondria 

network within a cell.  The oxidative phosphorylation process within mitochondria presents a source 

of ROS, such as hydrogen peroxide and super-oxides, which may cause oxidative damage to lipids, 

DNA, proteins and other mitochondria.  Damaged mitochondria may also release their inner stores 

of calcium ions and cytochrome c, which will lead to axonal degeneration and cell death. Therefore, 

it is important for normal mitochondria to be separated from the damaged mitochondria so that the 

health of the network is not affected and also for the damaged organelles to be sequestered and 

removed quickly.  While several pathways exist for mitochondrial control to recycle misfolded 

proteins, the process for removing entire mitochondria is a selective form of autophagy (a catabolic 

process to degrade intracellular components) known as mitophagy.  While there are three main types 

of autophagy: micro-, macro-, and chaperone-mediated autophagy (Mizushima and Komatsu 2011), 

the focus will be on the process of macroautophagy, which will remove an entire mitochondrion.   

A simplified description of autophagy is as follows. First, an autophagophore will form and 

eventually engulf a damaged mitochondrion to form what is known as an autophagosome, which 

can be identified by markers such as LC3 I and II. Second, this autophagosome will be transported 

towards a lysosome, enriched in the cell body rather than in the axons). Finally, the autophagosome 



17 
 

will fuse with the lysosome to form an autolysosome, and the contents of the autophagosome will 

be enzymatically degraded (Tanida 2011). While autophagy is an ongoing process occurring all the 

time within a cell, over- or under-activation or disruption to any portion of the autophagic process 

could contribute significantly to the neurodegenerative disease process (Wong and Cuervo 2010).  It 

is thought that recessive forms of PD, such as Pink (Dagda, Cherra et al. 2009)1 and Parkin 

(Narendra, Tanaka et al. 2008), may lead to a disrupted mitophagy process and lead to accumulation 

of damaged mitochondria.  6-OHDA treated animals and in vitro models have shown upregulation of 

autophagy and increased cell deaths but autophagy inhibition via 3MA (Li, Wang et al. 2011) or a 

constitutively active form of Akt that is part of the PI3 kinase/Akt/mTOR pathway lead to the 

rescue of neuronal death (Cheng, Kim et al. 2011).   

 

1.6 Different mechanisms between axonal degeneration and 

apoptosis 

Despite knowing the role that axonal injury plays in degenerative diseases, treatments to halt 

the progress of axonal die back have proven elusive (Raff, Whitmore et al. 2002).   The primary 

reason is that degeneration of cell bodies and neurites occur via independent processes; protection 

of one does not guarantee protection of the other.  For example, caspase 3 is not activated during 

axonal degeneration, but is activated during programmed cell death (Finn, Weil et al. 2000).  

Compared to the wealth of information available on programmed cell death or apoptosis, players 

involved in axonal degenerative pathways are only beginning to emerge (Osterloh, Yang et al. 2012).   

A significant amount of data concerning the distinctiveness of the axons from the cell bodies 

comes from studies done on Wld(S) or Wallerian degeneration slow mutation (Lunn, Perry et al. 
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1989).  This spontaneous mutation has shown to confer protection to axons and significantly delay 

the process of Wallerian degeneration due to various types of physical and biochemical injuries.  

However, this protection does not  extend to the cell bodies as Wld(S) was able to confer protection 

against MPP+ induced axonal degeneration but did not protect the cell bodies (Hasbani and 

O'Malley 2006; Antenor-Dorsey and O'Malley 2012).  With 6-OHDA, Wld(S) protected against 

anterograde models of degeneration, but did not protect against retrograde degeneration (Cheng and 

Burke 2010).  Wld(S) has also shown protection against axotomy and microtubule destabilization via 

vincristine (Wang, Wu et al. 2001) in peripheral neurons (Coleman 2005).  In addition to Wld(S), 

knockout of JNK2 and 3 have also conferred protection against 6-OHDA-induced degeneration of 

midbrain cell bodies but did not rescue the axons (Ries, Silva et al. 2008).  Growth factor signaling 

led to the degeneration of neurites but left cell bodies intact (Campenot 1982; Mijatovic, Piltonen et 

al. 2011).  The players involved the pathways underlying axonal degeneration are only beginning to 

be uncovered.  But the lack of tools to easily and effectively study axonal processes has hampered 

the progress of such research.  

  

1.7  Tools for studying Axons 

The study of axonal processes, such as development, path finding and growth in the 

peripheral nervous system (PNS) in neurons, such as superior cervical ganglia or dorsal root ganglia, 

was facilitated by the use of explant cultures.  Cells within the explants were able to easily survive 

and extend their axons.  It is possible to cut and remove the cell bodies after the axons have 

extended to the desired length in order to have a pure axonal culture (Araki, Sasaki et al. 2004).  

However, the fragility of CNS neurons precluded successful explants from being established using 

CNS tissue.  The development of the three compartmented Campenot chamber in 1977 provided 
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the ability to spatially and chemically isolate axons from the cell bodies led to the discovery of 

growth factors (such as nerve growth factor) that impacted neurite growth (Campenot 1977).  Since 

then, various modifications or simplifications to both the Campenot chamber’s design and also the 

microgrooves along which neurites could travel have been developed to facilitate a variety of 

different assays (Ivins, Bui et al. 1998).  

The key to the usability of Campenot and explants in axonal experiment has been an 

understanding of how to elicit neurite outgrowth through the use of growth factors and culture 

conditions (Campenot 1987).  Using single or combinations of growth factors, such as NGF or 

GDNF, PNS neurons show robust neurite outgrowth in in vitro models.  However, promoting 

neurite outgrowth from CNS neurons remains a challenge as the axon growth and guidance 

pathways are less well studied compared to PNS neurons.  Conditions for culturing CNS neurons 

must also be modified because these cells are much more sensitive and more difficult to culture than 

PNS neurons  

1.7.1  Soft Lithography 

Advances in microfabrication techniques have driven tremendous growth in the MEMS 

industry (Bryzek, Peterson et al. 1994).  Techniques such as conventional lithographic techniques 

such as photolithography offered unparalleled methods in creating nano and microsized structures.  

In photolithography, structures are created by pouring a photoresist over a substrate (typically a 

silicon wafer), placing a photomask above it and then passing radiation through the mask.  The areas 

of the photoresist exposed to the radiation would then be rendered hard and insoluble; the 

unexposed photoresist can then be washed away from the wafer (Rai-Choudhury 1997). However, 

despite the attractive feature of being able to create micron sized features, the choice of materials 
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and expensive costs (e.g. maintenance of clean rooms and long process times) (Geppert 1996) have 

limited the application of photolithography in areas of biology and medical sciences.  

It was not until the development of soft lithography that the ability to rapidly and cheaply 

create small structures in biologically compatible materials was finally within grasp. (Zhao, Xia et al. 

1997; Xia and Whitesides 1998).  Soft lithography is a set of non-photolithographic techniques used 

to generate submicron structures.  An elastomeric stamp with a pattern or structures upon its 

surface is used to create microstructures ranging from 30 nm to 100 µm in a process known as 

replica molding (Xia, Kim et al. 1996).  For biological applications, polydimethylsiloxane (PDMS) is 

the most widely used material for generating the patterns or relief.  Other materials include 

polyurethane and polyimides.  PDMS is a liquid at room temperature but can easily be converted 

into a solid via a crosslinker.  Typically the liquid PDMS is poured onto a patterned master, a silicon 

wafer with patterned photoresists created using standard photolithographic techniques, and then 

heated to generate a solid via a hydrosilyation reaction between the vinyl (SiCH=CH2) and 

hydrosilane (SiH) group (Clarson and Semlyen 1993).  The elastomer makes conformal contact with 

surfaces of large areas and can be easily released from the master upon curing.  This functionality 

allows for rapid prototyping and fast iterations of multiple designs.  The surface structure of PDMS 

is quite stable and does not adhere irreversibly to many surfaces (Xia and Whitesides 1998).  

However, it is worth noting that the crosslinking reaction is not always complete and may require 

longer time, increased crosslinker to base polymer ratio, or higher temperature and pressure (such as 

those found in an autoclave) to drive the reaction to completion.  Otherwise, oligomers would 

diffuse out of the bulk product and may adversely affect biological assays (Berthier, Young et al. 

2012).  As a material for biological applications, PDMS has other attractive features such as being 

optically transparent down to 300 nm, which supports use of traditional Brightfield, fluorescent and 

confocal microscopy.  PDMS is durable and gas permeant to CO2 and O2, which renders it favorable 
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for cellular applications (Xia and Whitesides 1998).  These properties make PDMS an excellent 

candidate for the design of and rapid prototyping of microfluidic devices.  

 

1.7.2  Microfluidic Devices for the Study of Neurons 

With the development of soft lithographic techniques by the Whiteside group at Harvard, 

many groups were quick to exploit the flexibility and capacity of techniques, such as replica molding 

and microcontact printing to design microfluidic compartments and cellular assays (Whitesides, 

Ostuni et al. 2001). The ability to manipulate the extracellular environment with such ease led to the 

development of many innovative “lab on a chip” devices that could generate gradients to study stem 

cell differentiation or trap and sort single cells to study cell motility or the effects of shear forces 

(Qin, Xia et al. 2010).  These microdevices could manipulate small biomolecules, such as proteins, 

DNA, and RNA (Beaudet and Belmont 2008) or facilitate the study of entire organisms, such as C. 

elegans (Ben-Yakar, Chronis et al. 2009; Chung, Crane et al. 2009; Shi, Wen et al. 2010).  One of the 

first microfluidic devices geared towards the study of central nervous system axons in isolation of 

the cell body and dendrites was first developed by the Jeon lab (Taylor, Rhee et al. 2003).  This 

design and other similarly inspired microfluidic devices have enabled the isolation of hippocampal 

and cortical neurons thus overcoming the limitation of Campenot and explants for the study of CNS 

axons.  With the microfluidic model system, Jeon was able to perform experiments on only the 

axons and also acquire axonal material for assays, such as the western blot or RNA extraction 

(Taylor, Blurton-Jones et al. 2005).  However, neurons from the mesencephalic midbrain could not 

be cultured successfully within the Jeon microdevices (Kim-Han, Antenor-Dorsey et al. 2011).  Very 

few neurons survived the loading process and of those that did survive, few were close to the 

microchannels and could extend neurites (Kim-Han, Antenor-Dorsey et al. 2011).  This result 
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suggests that the particular design of the Jeon microfluidic device is not compatible with all neuron 

type of the central nervous system.   

 

1.8  Concluding Remarks  

 The development of compartmented chambers that could support the growth and isolation 

CNS axons would greatly facilitate the study of disease causing processes.  Tools, such as the 

Campenot chamber and explants, are limited to the study of peripheral systems.  The development 

of soft lithographic microfluidic devices enabled the study of CNS neurons and their axonal 

processes.  However, early device designs from the Jeon group did not allow for the study of all 

CNS neuronal populations, in particular DA neurons of the nigrostriatal pathway.  The loss of these 

neurons led to the onset of motor symptoms in PD patients and understanding the degenerative 

process for these cells may help to better design therapies that could halt the cell death and disease 

progression.  Therefore, the first part of this dissertation focused on the design of a microfluidic 

device that gave researchers the ability to study intracellular processes of midbrain DA neurons.   

 Since axonal degeneration and disruptions to axonal transport, are key parts of 

neurodegenerative diseases, the microfluidic device designed in the first part of the dissertation was 

used to study transport processes within dopaminergic axons and how these processes are affected 

when the cells are treated with a toxin, 6-OHDA that is commonly used to model PD.  By studying 

axonal degenerative events and the order in which they occur, a clearer understanding of axonal 

degeneration could be obtained.  
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 Overall, this work seeks to design a tool that would enable better study of degenerative 

processes within the CNS and then demonstrate the tools' application towards the investigation of a 

major neurodegenerative disease.   
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Chapter 2 

Designing a microfluidic device for isolating 
single dopaminergic neurons 
 
2.1 Abstract 

Much experimental evidence has pointed to the importance of mitochondria transport 

defects in the onset of major neurodegenerative diseases, such as Parkinson’s disease.  Imaging of 

mitochondria transport along single axons is notoriously difficult with traditional dissociated culture 

systems, and the fragility of the midbrain dopaminergic neurons precludes their survival in 

microfluidic devices with an enclosed architecture.  Using soft lithography, a microfluidic device was 

created from PDMS for the purpose of studying the transport of mitochondria along single 

dopaminergic axons.  The device, comprised of two large chambers connected by a parallel array of 

microchannels, achieves separation of axons from the soma and allows tracking of mitochondria 

movement along oriented axons.  Dopaminergic neurons from midbrain cultures were successfully 

cultured in the chambers and extended their axons into the microchannels.  Axonal mitochondria 

within the microchannels were labeled by transduction with a DsRed2 lentiviral vector or with a 

mitochondria specific dye, Mitotracker Deep Red, and were visually tracked with conventional 

confocal microscopy.  The methodology described here will allow study and additional 

understanding of the role that mitochondrial transport defects play in major neurodegenerative 

diseases.   

 

2.2  Introduction 
Contents of this chapter were published in J Neurosci Methods 2012 June: 209(1): 35-9 and 

reprinted with permission of the publisher  
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2.2  Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting 

more than 20 million people worldwide (Mayeux 2003). The major clinical symptoms of this 

disorder arise from the loss of dopaminergic (DA) neurons. It has been suggested that the onset of 

motor symptoms  is due to the loss of the axonal projections to the striatum (60-70%) compared to 

the loss of DA cell bodies (~30%) (Cheng, Ulane et al. 2010).  Support for this notion comes from 

recent studies showing that genes whose mutations are responsible for familial forms of PD, such as 

Parkin and Pink1, encode for proteins that regulate mitochondrial trafficking and impairment (Yu, 

Sun et al. 2011).  Moreover, the PD-mimetic, 1-methyl-4-phenylpyridinium (MPP+) (Blum, Torch et 

al. 2001), rapidly leads to abnormal trafficking of DA axonal mitochondria and loss of mitochondrial 

function (Kim-Han, Antenor-Dorsey et al. 2011).  However, the latter studies are currently 

hampered by the lack of a simple, standardized device to rapidly separate axons from cell bodies. 

To study axonal transport, investigators have used versions of compartmented Campenot 

chambers (Campenot 1977; Ivins, Bui et al. 1998) to isolate axons from the cell body. These devices 

seal a piece of Teflon to a petri dish using silicone grease, and the Teflon acts as a divider to create 

two or more compartments; three compartments in the original Campenot and two compartments 

in Ivin’s modified Campenot (Ivins, Bui et al. 1998).  Previously, we have used Ivin’s modified 

compartment chamber, which consists of a semicircular Teflon piece walled off at one end by a glass 

cover slip supported by a layer of collagen/Matrigel and sealed to a Petri dish using silicone vacuum 

grease (Kim-Han, Antenor-Dorsey et al. 2011; Iglesias-Gonzalez, Sanchez-Iglesias et al. 2012). 

Neurons were seeded on one side of the glass cover slip and extend axons through the collagen to 

the axonal side of the chamber (Kim-Han, Antenor-Dorsey et al. 2011).  Although effective at 

isolating the axons from the neurons, one downside of this design and the original Campenot 
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chamber is that the isolated axons are randomly oriented, making it difficult to distinguish between 

anterograde and retrograde transport.   

A major advance in axon trafficking came from microfluidic devices designed by the Jeon 

lab that are fabricated using soft lithographic techniques. These devices orient the axons by forcing 

them to grow through a parallel array of microchannels that connect somal and axonal 

compartments (Taylor, Rhee et al. 2006).  Previous reports showed that dorsal root ganglion (Kim, 

Karthikeyan et al. 2009)  and hippocampal neurons (Taylor, Blurton-Jones et al. 2005) can be 

successfully cultured in these devices. However, we have found that they are not suitable for 

culturing midbrain DA cultures, as the majority of DA neurons do not survive within the enclosed 

somal compartment, and those that remain fail to extend axons into the axonal compartment (Kim-

Han, Antenor-Dorsey et al. 2011).  

To overcome the limitations of previous compartmented devices and create a culture 

platform for investigating the role of mitochondrial transport in axonal degeneration during PD, we 

designed a microdevice with a large “open” compartment versus the enclosed compartments 

devised by Jeon lab. This “open” chamber is directly adjacent to an array of parallel microchannels 

that will allow us to 1) culture midbrain DA neurons 2) isolate DA axons 3) orient the axons to 

allow determination of retrograde and anterograde directions and 4) visualize these axons by live cell 

imaging so that we can record the movement of axonal mitochondria over time.  One advantage of 

miniaturization is that we can place two devices on a single 35mm petri dish, allowing us to run 

more than one condition (e.g. control vs. experimental) simultaneously. Using these devices and 

green fluorescent protein expressing DA neurons from a line of transgenic mice (DA/GFP) (Kim-

Han, Antenor-Dorsey et al. 2011), we can study the effects that PD-mimetic drugs such as MPP+ 

have on mitochondrial transport and other transport processes.  
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2.3  Materials and Methods 

 

2.3.1  Microdevice Designs   

A summary of the process for creating a microdevice is depicted in Fig. 2.1.  First a CAD file 

of the design for the microdevice was dawn using AutoCAD (Autodesk, CA) and used to generate 

high-resolution transparency masks (CAD/Art Services, OR).  The microchannels and relevant 

surface markers were drawn in separate layers from the main compartments and its markers so that a 

mask was generated for each (i.e. one for the microchannels and the other for the compartments).  

For features below 10 µm, a glass-chrome mask (Infinite Graphics Inc, MN) was needed.  

 A two-step photolithographic process was then used to produce the master wafer.  To 

prepare the surface for either 10 or 5 µm microchannels, a clean silicon 15 cm wafer (Silicon Inc, 

ID) was briefly washed in hydrofluoric acid, then distilled water, and then dried using nitrogen to 

render the surface hydrophobic.  The wafer was then placed on a spin coater and SU8-2 

(Microchem, MA) was poured onto the surface so that 95% of the wafer was covered. The spin 

coater settings to generate the microchannels are as described in Table 2.1.   

  Acceleration Spin speed Duration (s) 

Step 1 100 rpm/s 500 rpm 5 

Step 2 300 rpm/s 1000 rpm 30 

step 3 300 rpm/s 0 rpm 2 

 
Table 2.1 Spin cycle settings to generate 5 µm tall microchannels using SU8 2 

The wafer was then “soft” baked at 65ºC for 1 minute and then baked 95ºC for another minute. 

Then the wafer was placed onto the mask aligner with the microchannel pattern and exposed to UV 

for 8 seconds. After exposure, the wafer was baked again at 65 and 95ºC for 1 minute each. The 
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wafer was then placed into a container filled with SU 8 developer (Microchem) and gently swirled 

for 12 minutes to remove excess SU-8 2. The wafer was hard baked at 195ºC for 12 minutes to 

remove cracks and imperfections.   

 The second step was to generate the main compartments.  The procedure is similar as to 

what was previously described for making the microchannels.  The differences are that SU 8 2050 

(Microchem) was used as the photoresist. The protocol for the main compartment spin cycle is 

shown in Table 2.2.  

  Acceleration Spin speed Duration (s) 

Step 1 100 rpm/s 500 rpm 5 

Step 2 300 rpm/s 1500 rpm 30 

step 3 300 rpm/s 0 rpm 2 

 

Table 2.2 Spin cycle settings for 100 µm tall main compartments using SU8 2050 

The soft bake after spin coating was 65 and 95ºC at 5 and 12 minutes, respectively.  The UV 

exposure time was increased to 20 seconds.  After exposure, the wafer was baked at 65 and 95ºC for 

5 and 8 minutes, respectively and then developed using SU 8 developer for 12 minutes.  As in the 

microchannel step, the wafer was hard baked at 195ºC for 12 minutes.   

 After the wafer has been constructed, the master underwent a silanization process by placing 

a small drop of trichloromethylsilane (TCMS) (Sigma-Aldrich, MO) on a 35 mm dish lid next to the 

wafer in a desiccator. The TCMS was vaporized and deposited onto the wafer so that the PDMS did 

not stick to and destroy the wafer. After silanization, the wafer was ready for use.  
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Figure 2.1 Outline of Replica Molding Process. 1) A master wafer with negative photoresist is 
created using standard photolithographic techniques. 2)  An elastomer is poured over the master. 
3) After the elastomer crosslinks, the microdevice is cut out. 4) The microdevice is bonded to a 
glass cover slip for cell culture  

 

 

2.3.2  Replica Molding 

PDMS in the form of Sylgard 184 (Dow Corning, USA) was mixed vigorously for 10 

minutes at a ratio of 10:1 (base : curing agent)  to ensure a homogenous mixture, and poured over 

the wafer. Then, the mixture was placed into a vacuum desiccator and the gas was evacuated in 

order to remove air bubbles trapped during mixing.  The chamber was evacuated periodically to 

speed up the bubble removal process.  Afterwards, the PDMS was baked overnight at 60ºC to 

solidify the PDMS piece.  Higher temperatures at shorter time periods were ruled out to avoid 

warping the polystyrene dish containing the wafer. After the PDMS had been solidified via 
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crosslinking, it was cut out of the dish and then autoclaved at 125ºC for 25 minutes.  Microdevices 

treated through the autoclave process showed fewer instances of unpolymerized PDMS oligomers 

diffusing in the culture medium and healthier cells (Berthier, Young et al. 2012).  

To create the main compartments, a 6 mm diameter Visipunch (Huot Instruments, USA) 

was used.  One side of the Visipunch was flattened against a table top to create a linear edge, 

punching out an opening that would expose as many microchannels as possible.  A punch farther 

away from the opening of the microchannels would create an overhanging space that resists fluid 

flow and cell deposition, unnecessarily limiting the number of cells that could be placed next to the 

microchannels and the number of neurites able to extend into these microchannels.  

 The base for the cut out PDMS microdevice was a 35mm dish with a 23mm diameter hole 

cut out from the bottom.  A thin (0.09-0.12mm) glass cover slip (Carolina Biological, NC) was 

attached to the bottom of the cut out dish.  This set up renders the device amenable to use on an 

inverted confocal microscope.  After the microdevice was cut out and the compartments were 

punched, the devices were cleaned thoroughly using scotch tape and a compressed air blower to 

remove dust and debris.  Reproducible and successful bonding (fewer leaks between compartments) 

required dry and clean surfaces.  The microdevice was irreversibly bonded to the glass coverslip dish 

via air plasma treatment (Harrick Plasma, USA) for two minutes at a high setting.  Having an 

irreversible seal improved fidelity of the bond and decreased the “leaks” that may occur between 

compartments when feeding or plating due to accidental bumping of the microdevices.  The finished 

microdevices were then coated with poly-D-lysine (PDL) (Sigma-Aldrich, MO) at 0.2 mg/mL 

overnight and sterilized via UV treatment for 30 minutes in a standard flow hood. After 24 hours, 

the microdevices were washed three times with sterile distilled water and left overnight within the 

incubator.  Two hours prior to cell plating, the microdevices were filled with DMEM+ plating 
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media, which was comprised of DMEM/F-12 (Sigma-Aldrich), B-27 (1:50 dilution) (Invitrogen), 

penicillin and streptomycin (Invitrogen) and 5% fetal bovine serum (FBS, Sigma-Aldrich).  

 

2.3.3  Midbrain Cell Culture:  

DA/GFP cultures were harvested from Tg(TH-EGFP) DJ76GSAT transgenic mice 

(Jackson Laboratories, ME).  These mice were created by mating a DA/GFP male with a wild type 

female.  The midbrain was isolated from pup embryos on embryonic day 14 (E14) and then 

screened for GFP fluorescence prior to dissection.  All GFP positive tissues were pooled. 

 Isolated neuronal culture were then plated within the somal compartment at 60,000 cells per 

well.  For plating, the cells were also concentrated by spinning in a centrifuge so that the final 

loading volume per well was 5 µL.  The smaller loading volume increased the likelihood that most of 

the cells were loaded closer to the microchannels and not distributed throughout the compartment.  

On DIV 5, the media was supplemented with AraC (Sigma-Aldrich, final concentration: 5- 10 µM) 

to limit the proliferation of glial cells.  On DIV 2, the cells were transitioned to feeding with fresh 

neural basal media (neural basal supplemented with glutamine (Sigma-Aldrich) and B-27) every two 

or three days to ensure that fluid levels within the microdevices were maintained.  The microdevices, 

prone to evaporation, were checked for fluid levels every other day. When feeding, additional media 

(15-20 µL more) was added to replace what was lost due to evaporation.  The thickness of each 

microdevice ranged from 0.7 to 1.5 cm and each compartment was filled with approximately 100-

120 µL of media.   To induce axonal extensions, Netrin I (300 ng/mL, R&D Systems, MN) was 

added as a supplement to the axonal compartment starting on DIV 5 with every feed.   
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2.3.4  Mitochondrial Labeling 

Lentiviral labeling  

A mitochondrially-targeted DsRed2 was generated by inserting a mitochondrial targeting 

sequence from complex IV of the mitochondrial electron transport in front of the DsRed2 

(Clontech) (Araki, Sasaki et al. 2004).  The mitoDsRed2 was then subcloned into a FUGW lentiviral 

expression vector provided by Dr. Jeffrey Milbrandt (Washington University in St. Louis).  The 

lentivirus was generated in HEK293T cells and collected using an Optima LE-80K Ultracentrifuge 

(Beckman-Coulter, USA).  Viral concentration was titrated so that approximately 70-80% of cells 

expressed mitoDsRed2.  The lentivirus was added to the midbrain cultures in the microdevice on 

DIV2 for 5-6 hours.   

Mitochondrial Dye Labeling.  

Mitochondria were also labeled with Mitotracker Red and Deep Red (Invitrogen) at 

recommended concentrations of (25 nM and 50 nM respectively) either 30 minutes prior to imaging 

or 24 hours prior to imaging on DIV 13 or 14.  With 24 hours of labeling, a higher concentration of 

dye was used (~100 nM for only 15 minutes), and then the cells were washed and left to incubate 

over night. 

 

2.3.5  Confocal Imaging.  

 Time lapse images of mitochondrial movement were taken using a Zeiss LSM510 Meta 

NLO Multiphoton System (Carl Zeiss) on Axiovert 200M inverted microscope with a 40x water 

objective [C-Apochromat 40x/1.2W Corr.1.2 numerical aperture, collar correction (0.14-0.18)].  The 
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microscope contains a heated stage which includes a Pecon CTI-Controller 3700 for regulating 5% 

CO2 (Zeiss, USA) and a Pecon TempControl 37-2 digital (Zeiss) for heating the stage to 37ºC for the 

duration of the image recordings.  A total of sixty images of mitochondrial movement at 5 s intervals 

were recorded and then used to generate kymographs for measurement of transport.   

Filters used for visualizing the fluorescent markers included a 488 nm argon laser and 505 

longpass emission filter (GFP), 543 HeNe laser and 560 long pass emission filter (MitoDsRed2 and 

Mitotracker Red) and a 633 nm HeNe laser and 650-710 bandpass emissions filter (MitoTracker 

Deep Red FM).  

2.3.6  Immunocytochemistry 

 Primary midbrain cultures were plated within the microdevices and then fixed on DIV12-13.  

Cells were washed twice with PBS, fixed with 4% paraformaldehyde for 20-25 minutes, and then 

washed three times with PBS for 15 minutes per wash.  To visualize dendrites and axons, cultures 

were stained with mouse β-tub-III IgG2a (Millipore, MA) and mouse MAP2 IgG1(Millipore) 

primary antibodies  (1:2000 and 1:1000 dilutions respectively).  Secondary antibodies used were goat 

anti-mouse IgG2a Alexa488 (Invitrogen) and donkey anti-mouse IgG1 Alexa647 (Invitrogen) at 

1:500 dilutions.  Blocking was done using Roth blocking buffer (1% bovine serum albumin, 0.2% 

milk, 0.3% Triton X100).  To allow for sufficient penetration of antibodies into the microchannels, 

all blocking and antibody incubations were done overnight.  Typical antibody incubation times (e.g. 

2 hours with secondary antibodies and 1 hour of blocking) produced inconsistent antibody staining 

within the microchannels and only the cells and axons within the larger compartments showed 

consistent staining. 
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2.3.7  Kymograph Analysis of Moving Particles 

Kymographs generated using ImageJ (NIH, Bethesda, MD) were analyzed as described 

previously.  Time lapse images were imported into ImageJ and then the image was split into 

individual channels.  A threshold image of the mitochondrial channel was used for analysis.  A 

segmented line was then used to select the region of interest.  An add-on to ImageJ called Multiple 

Kymographs was then used to generate each kymograph derived from the region of interest.  Each 

diagonal line upon a kymograph represented a moving particle while the straight lines represented 

nonmoving particles.   The angle and length of each line was then used to calculate the direction and 

speed of the moving mitochondria.  To convert between the pixels and lengths/times, the following 

equations were used:  

Distance (µm) = (112.5 * (Length * COS[RADIANS(Angle)]))/ 512 (2.1) 
 
 

Time (s) = 5 * (-Length * SIN[RADIANS(Angle)])      (2.2) 

The following parameters were used: 112.5 was the frame length, 512 was the pixel size of the 

image, and 5 was the interval between images. Only particles that moved more than 5 µm in length 

for at least 15 seconds were counted as motile.  

 

2.3.8  Modeling toxin diffusion:  

Transport of MPP+ into the somal compartment of a Jeon microfluidic device 

(approximated by a rectangular block that is 7 mm in length, 1.5 mm in width, and 100 µm in height) 

was modeled as a convection-diffusion problem using COMSOL multiphysics software version 4.0a 

(COMSOL Inc, Burlington MA). The concentration of MPP+ within the compartment was initially 
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set to zero and the concentration of the MPP+ at the entrance of the compartment was set to 2 µM.  

The model assumed diffusion through water at 37°C and a diffusion coefficient of 1 µm/ms.  

 

2.3.9  Statistical Analysis: 

 One way ANOVA and unpaired two-tailed Student’s t-tests were used for statistical analysis 

(Statistica). P value below 0.05 was considered as statistically significant.  
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2.4 Results 

2.4.1 “Open compartment” microdevice shows improved viability and axon 

growth for midbrain DA/GFP neurons.  

Trying to culture midbrain DA neurons within the Jeon microfluidic device proved 

unsuccessful.  The somal compartment of the Jeon device is enclosed within the PDMS and 

plating/feeding the cells within the compartment is done through two large wells connecting directly 

to the somal compartment.  But after repeated attempts, it was found that very few of the midbrain 

cells remained within the somal compartment of the Jeon device (Fig 2.2A), and most of the cells 

were found within the larger loading wells away from the microchannels. The cells that remained 

within the somal compartment did not survive. It is possible that even with careful technique and 

extended plating time, shear forces that occur during loading may damage the fragile midbrain 

cultures and may remove them from the somal compartment. Additionally, the somal compartment 

of the Jeon device holds only a very small volume of culture media; hence it may take a long time for 

nutrients to diffuse from the media compartment to the cell compartment and for waste to diffuse 

out. Also, dead cells are trapped within the cell compartments and cannot be removed after plating 

without risking further shear damage to the surviving cells.  Finally, the enclosed nature of the 

device makes toxin treatment of DA axons or cell bodies difficult as excessive force may dislodge 

the cells. Because some PD toxins oxidize within a few minutes, rapid, homogeneous delivery of 

toxin is critical for consistent results. Modeling diffusion of 2 µM MPP+ through an enclosed somal 

compartment show that uneven distribution of the toxin at 1 hour (Fig. 2.2B). 
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Figure 2.2 Midbrain cultures survive within open compartmented microdevice A) 
Representative images of live dead assay performed on midbrain neuronal cultures plated within 
Jeon microdevice (left) and open compartmented device (right)Very few healthy cells remained 
within the Jeon microdevice on DIV 5 while cultures survival very well within open compartmented 
microdevices.  B) COMSOL simulation of diffusion of 2 µM MPP+ into cellular compartment of 
Jeon microdevice showed that even after 1 hour of diffusion, concentration has not equilibrated. 

An “open” compartmented microfluidic device was designed for the culture and isolation of 

midbrain axons (Fig 2.3A).   The decision behind the design was to mimic the “openness” of the 

compartmented chamber described by Ivins (Ivins, Bui et al. 1998) while combining the array of 

parallel microchannels for aligning and orienting axons. This open design enabled direct access to 

and loading of the cells right next to the microchannels for convenient cell seeding, media sampling, 

cell/axon labeling and more efficient waste/nutrient exchange. The new design also reduced 

A 

B 
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exposure of the cells to shear forces during plating and feeding, and ensures that the cells have 

sufficient access to a large volume of media through the entire culture period.     

 

Figure 2.3 Schematic of Microdevice.  A) Each microdevice is composed of two open 
compartment connected by an array of 237 microchannels. The dimension of the microchannel in 
the final microdevice design is 500 x 5 x 5µm (l: w: h) B) Two microdevices can fit onto a single 3 
5mm dish. A 23 mm (diameter) hole was cut and Corning glass cover slip (0.09-0.12 mm thickness) 
was adhered to the bottom of the dish using PDMS. Fluidic isolation was maintained using a 30 µL 
volume difference between the axonal and somal chambers.  Scale bar indicates 5 mm. 

 

60,000 cells per well were chosen as the final loading density for each compartmented 

chamber. Higher cell densities (100,000 per well) exacerbated the problem of axonal bundling and 

made obtaining single axons difficult.  Lower densities (40,000 cells per well) limited the number of 

axons that could extend into the microchannels.  Two different microchannel widths (10 and 5 µm) 

were tested to try to obtain the maximal number of singly aligned isolated axons.  Axonal bundling 

in microdevices with 10 µm was significant and very few (2-5) of the microchannels had single axons 

per device.  Use of devices with 5 µm microchannels and adjusting the amount of virus used to 

A 

B 
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transduce 70-80% of cells significantly improved the probability of obtaining single labeled axons in 

each microchannel.   

Axons begin extending into the microchannels by DIV 6 and on DIV 10-12 would 

completely cross the microchannels into the axonal compartment. The microchannels between the 

somal and axonal compartments provided both a means for orienting axons as they extend and for 

providing fluidic isolation between the compartments so that drugs can be applied separately to 

either the axons or cell bodies.  This isolation is maintained by a hydrostatic pressure difference 

created by a volume difference (~30 µL) between the compartments. A large proportion (~30%) of 

microchannels contained DA/GFP axons so that imaging of mitochondria from many different 

neurons is possible. Based on morphological assessments, there was no evidence of dendrite 

infiltration in the micro-channels, nor did neurites in the axonal chamber stain for the dendritic 

marker MAP2 (Fig. 2.4A). Using the open chamber microdevice, DA/GFP cultures were 

successfully plated and maintained for up to 4 weeks (Figure 2.4B).  Over time (>DIV14), axons 

continued to fasciculate such that establishing directionality and uniqueness became problematic. 

Thus measurements of mitochondrial movement were performed on either V13 or 14.  
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Figure 2.4 Isolation of axons within axonal compartment A) Dendrites (labeled with MAP2 
antibodies) do not extend significantly into the microchannels by DIV 14 so that the population of 
neurites (β-tubulin-III staining) extending into the axonal compartment is purely axons. B) Midbrain 
cultures can be maintained within the microdevice for long term studies.  Depicted in B are axons 
with mitochondria labeled with by DsRed2 and stained with β-tub III at DIV 27.   

 

A major advantage of the open chamber system is that the microchannels “straightened” the 

axons making distinguishing between anterograde and retrograde movement very simple.  No axon 

was observed to reverse directions within the micro-channels to grow toward the somal 

compartment. The alignment provided by the microchannels is a significant improvement compared 

to the random growth of the axons in the Campenot compartments.  In the Campenot, the axons 

are often likely to cross other axons and change direction (i.e. growing back towards the somal 

A 

B 
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compartment), making it difficult to identify the transport direction even when using landmarks, 

such as the growth cone.  Establishing polarity is important for understanding the disruption of 

axonal transport processes, as anterograde and retrograde transport are mediated by different 

proteins and may be targeted in different ways during degeneration.  Previously, we found a 

difference between anterograde and retrograde transport of mitochondria after exposure to MPP+. 

Specifically, there is a decrease in anterograde transport speed and an increase in retrograde 

transport speed. These data are consistent with a model in which impaired mitochondria stop 

traveling towards the growth cone and instead return to the cell body for repair. A culture platform 

that allows for the isolation of aligned axons and visualization of interior transport processes can aid 

the process of addressing the mechanisms underlying these events. 

2.4.2 Mitochondria of oriented DA/GFP axons can be tracked and measured 

within microchannels.   

Using an optically transparent and biologically compatible elastomer, PDMS, it is possible to 

visualize and track the movement of mitochondria in live cells by either transducing the cells with 

the mitochondrial-targeted DsRed2 lentiviral vector (Fig. 2.5) 
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Figure 2.5 Axonal mitochondria can be clearly tracked within microchannels. GFP expressed 
under a tyrosine hydroxylase promoter identifies and shows the extensions of DA axons into the 
microchannels.  Mitochondria labeling that do not co-localize with GFP staining show the bundling 
of many axons within the 10 µm microchannels.  

 

In the case of MitoDsRed2, the level of transduction can be manipulated by using varying 

amounts of virus so that not all of the axons within a microchannel are labeled We did not observe 

toxicity with either the viral or dye method of labeling, and there were no changes to the 

mitochondria morphology or transport speed (not shown).  MitoDsRed2-labeled mitochondria were 

observed and tracked visually by DIV 5 in the microchannels. Alternatively, MitoTracker Deep Red 

labeled organelles in both somal and axonal compartments within 15 minutes. However, 

mitochondria labeling inside of the microchannels was not immediately apparent. The latter required 

incubating the cells with the dye for 20 minutes, washing out the excess dye and then letting the cells 
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incubate overnight in order to label the mitochondria within the microchannels.  In addition, 

MitoTracker Deep Red tended to adhere to PDMS, and rendering it fluorescent (Fig. 2.6). 

 

Figure 2.6 Disadvantage of using fluorescent dye for labeling mitochondria in microdevice. 
Mitotracker Deep Red was absorbed into the bulk material of PDMS and generated significant noise 
when visualizing and making quantitative measurements of mitochondria movement. 

This leads to background noise in the channels, which can make distinguishing individual 

mitochondria difficult.  Reducing dye concentrations did not overcome the problem but instead led 

to inconsistent labeling. In contrast, MitoDsRed2 had no “noise” problems and once labeled, the 

mitochondria could be clearly tracked within the microchannels using a confocal microscope. Time 

lapse images of mitochondria movement along DA axons were then used to generate kymographs 

(Fig. 2.7A).  These kymographs were used to calculate the proportion of moving mitochondria (Fig 

2.7B.) and the speed of mitochondria moving in either the anterograde or retrograde direction (Fig. 

2.7C). Measurements of these key DA mitochondria parameters, such as motility, were essentially 

the same between the Campenot chamber (Kim-Han, Antenor-Dorsey et al. 2011) and the 

microdevice (21±2.3%). Mitochondria speeds between the two devices were also comparable to 

what was previous reported: anterograde speeds in the microdevice was 0.39±0.03 µm/s while the 

retrograde speed was 0.34±0.03 µm/s. 
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Figure 2.7 Properties of mitochondrial transport can be measured within microchannels. (A) 
Kymograph of mitoDsRed2 labeled DA mitochondria movement within the microchannels under 
normal culturing conditions. Scale bar indicates 10 µm. (B) The kymographs were then used to 
calculate the proportion of moving mitochondria from 12 axons over 3 independent experiments as 
well as the (C) mitochondrial movement speed in both anterograde and retrograde directions (over 
60 mitochondria were examined). Error bars indicate standard error of mean (SEM) for B and C. 

 

2.5  Discussion 

Since the development of soft lithographic microfluidic devices for culturing CNS neurons 

by the Jeon group (Taylor, Rhee et al. 2003), many publications have explored the application of this 

and other compartmented microfluidic device configurations in areas of neuroscience and 

neuroengineering. Electrophysiological recordings of axons using patch clamp and microfluidic 
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devices were possible using a modular design consisting detachable and re-sealable PDMS layers 

(Jokinen, Sakha et al. 2013). The key aspects of modular design include being able to use upright 

microscopes with microdevices and enabling access of patch clamp electrode to the cells.  The thick 

PDMS piece often precludes focusing of the lens upon the cells and requires the use of an inverted 

microscope. Typically, microfabricated devices aimed at performing electrophysiology require the 

use of a microelectrode array (MEA) below the PDMS piece in order to perform 

electrophysiological recordings in slice cultures (Berdichevsky, Sabolek et al. 2009) or dissociated 

sympathetic neurons (Takeuchi, Nakafutami et al. 2011).  

 To study the responses of neuronal culture to diffusible molecules derived from glial cells, a 

co-culture platform was developed in which a pressure valve was used to allow or block fluid 

exchange between different types of cells (Majumdar, Gao et al. 2011).   Modifications of this 

pressure valve design to additional or vertically aligned chambers allowed for the study of glial 

influences on neuronal synaptic formation (Shi, Majumdar et al. 2013). In addition to these co-

culture devices, synaptic function could be studied in the Jeon microdevice, which has been 

modified with the addition of a perfusion channel that intersects with the microchannels (Taylor, 

Dieterich et al. 2010).  

 Isolation of axons within individual compartments also allowed for the study of axonal 

properties such as myelination (Park, Koito et al. 2009). Using a diffusible gradient generator, the 

Folch group has studied the response of axon guidance and turning in response to diffusible factors 

(Bhattacharjee, Li et al. 2010).  Femtolasers and patterned surface proteins have also been used in 

conjunction with microfluidic neuronal devices study axonal pathfinding and axonal regeneration 

(Kim, Karthikeyan et al. 2009; Shi, Nedelec et al. 2010; Hur, Yang et al. 2011).  
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Microfluidic devices have also been used as model systems for neurology to investigate 

studying Alzheimer’s disease (Kunze, Meissner et al. 2011; Kim, Park et al. 2012), spread of 

exogenous alpha-synuclein fibrils for PD (Volpicelli-Daley, Luk et al. 2011), as well as the spread 

and transport of herpes simplex and rabies virus in neurons (Liu, Goodhouse et al. 2008).  Despite 

the potential that soft lithography and microfluidic devices hold to investigate many important 

questions in biology or medical sciences, widespread use of microfluidic devices in biological 

research has not yet occurred.  In the history of cell culture, the application of microfluidics to areas 

of biology remains within its nascent stages.  Many technical challenges such as material selection 

and device geometry need to be addressed to ensure a standardized, easy to use and consistently 

performing product that the engineers can then pass onto biologists.  The challenges and difficulties 

associated with each biological problem are unique and modifications to a microfluidic device design 

may be necessary.  For example, as was presented in this research, an enclosed compartment design 

for a microfluidic culturing platform does not support the growth of DA neurons and therefore 

cannot be used for the study of axonal processes.   

The methods provided by the results of this research provide a convenient and easy 

technique for real time tracking and measurements of axonal transport processes within DA axons.  

In summary, the methods presented by this research provide a technique for real time tracking and 

measurement of the movement of labeled mitochondria in oriented DA axons.  This technique 

could be extended to the study of other processes, such as vesicular transport and microtubule 

fragmentation, which may also participate in the onset of axonal degeneration.  The microdevice 

platform shown here displays improved culture conditions for sensitive neurons, such as those from 

the midbrain and promotes oriented axon growth into a separate axonal compartment for analysis. 

Using this culture system, it is possible to obtain a better understanding the mechanisms of axonal 
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degeneration that may underlie the pathophysiology of major neurodegenerative diseases, such as 

Parkinson’s disease.  
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Chapter 3  

The Effects of 6-OHDA on Axonal Transport 

 

3.1  Abstract 

 6-hydroxydopamine (6-OHDA) is one of the most commonly used toxins for modeling 

axonal injury and understanding degeneration of dopaminergic (DA) neurons in Parkinson's disease.  

But how 6-OHDA causes axonal degeneration and affects intra-cellular processes, such as axonal 

transport, is still unknown. To investigate the response of axons to 6-OHDA, a microfluidic device 

designed to isolate axonal processes was used to separate DA axons labeled with green fluorescent 

protein (GFP) from their cell bodies.  The axons were treated with 6-OHDA and transport 

processes were then examined.  6-OHDA quickly induced mitochondrial transport dysfunction in 

both GFP and non-GFP labeled axons. We also observed disruption in transport of synaptophysin-

tagged vesicles.  These toxin effects on mitochondrial transport were blocked by the addition of 

SOD1-mimetic, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), as well as the anti-

oxidant N-acetyl-cysteine (NAC).  However, addition of calcium ion chelator, ethylene glycol 

tetraacetic acid (EGTA), did not restore mitochondrial transport.  The results from the study suggest 

that transport dysfunction occur early and may play a significant role in inducing axonal 

degeneration in response to 6-OHDA treatment. 
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3.2  Introduction  

 Axonal degeneration plays a critical role in the development of major neurodegenerative 

diseases, such as Parkinson's disease (PD) (Coleman 2005).  The cardinal motor symptoms of PD, 

bradykinesia, resting tremors, postural instability, and limb rigidity are associated with the loss of 

dopaminergic (DA) neurons that are part of the nigrostriatal pathway.  The cell bodies of these 

neurons reside within the substantia nigra, and they innervate areas of striatum, such as caudate and 

putamen where they play a role in the regulation of motor function (Dauer and Przedborski 2003).  

Functional imaging and patient studies have indicated a significant loss of striatal dopaminergic 

terminal fields prior to the loss of cell bodies (Riederer and Wuketich 1976; Lee, Samii et al. 2000).  

In vivo models with PD toxin, such as MPP+ (Fuller and Hemrick-Luecke 1985) and 6-OHDA have 

also been shown to induce significant axonal injury(Kirik, Georgievska et al. 2004). Autosomal 

dominant genetic models of Parkinson’s, such as α-synuclein, have shown similar patterns of axonal 

pathology (Orimo, Uchihara et al. 2008). 

A common feature seen in axonal degeneration is disruption of axonal transport.  

Mitochondrial movement was severely interrupted by the expression of mutated Pink1 and Parkin, 

which are responsible for two familial forms of early onset PD (Wang, Winter et al. 2011).  In giant 

squid axons, MPP+ quickly disrupts mitochondrial transport in the anterograde direction while 

increasing transport in the retrograde direction (Morfini, Pigino et al. 2007).  In murine 

dopaminergic neuron cultures, MPP+ showed similar trends of lowering overall mitochondrial 

motility and an increase in the speed of retrograde mitochondrial transport within 30 minutes of 

treatment.  Mitochondria were also damaged as indicated by the loss of mitochondrial membrane 

potential (Kim-Han, Antenor-Dorsey et al. 2011).  This effect was limited to dopaminergic neurons, 

as MPP+ is selectively transported via the dopamine transporter (Blum, Torch et al. 2001).  Synaptic 
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vesicle and other particle transport was unaffected by MPP+.  It is hypothesized that MPP+ induces 

toxicity via a thiol-redox mechanism because N-acetylcysteine, a glutathione precursor, as well as 

glutathione itself were able to abolish the effects of MPP+ and rescue the cell bodies and neurites.  

In addition, NAC has also been shown to protect against MPP+-induced decreases in mitochondrial 

motility.  Interestingly, the use of other general antioxidants, such as SOD1 mimetic, MnTBAP, and 

calcium chelator, EGTA, did not rescue dopaminergic axons and neurons from the effects of MPP+ 

(Kim-Han, Antenor-Dorsey et al. 2011).  In 6-OHDA models, NAC, catalase, super-oxide 

dismutase (SOD) and SOD mimetic, such as MnTBAP  were observed to attenuate the degree of 

DA cell death (Kulich and Chu 2003; Holtz, Turetzky et al. 2006; Saito, Nishio et al. 2007; Iglesias-

Gonzalez, Sanchez-Iglesias et al. 2012).  

 The disruption of mitochondrial transport due to MPP+ was one of the earlier events seen 

in mouse midbrain neurons.  It wasn’t until 3 hours post-treatment when a significant rise in the 

number of autophagosomes was observed, and it took more than 6 hours to observe a significant 

increase in the number of fragmented microtubules (Kim-Han, Antenor-Dorsey et al. 2011).  This 

study and others thus suggest that mitochondrial transport and dysfunction leads to other transport 

defects, such as the destabilization of microtubule tracks (Kim-Han, Antenor-Dorsey et al. 2011).  In 

vitro, studies of PD patients’ fibroblasts (Cartelli, Goldwurm et al. 2012), differentiated PC12 cells 

(Cartelli, Ronchi et al. 2010), and in vivo murine studies (Cartelli, Casagrande et al. 2013) have 

indicated that MPP+ also acts as a destabilizing factor for microtubules (Cappelletti, Pedrotti et al. 

2001; Cappelletti, Surrey et al. 2005) and could disrupt trafficking.  In these models, the 

microtubules destabilized prior to loss of mitochondrial transport due to MPP+.  Resolving this 

conflict in whether transport is disrupted before or after microtubule destabilization will be 

important in understanding the order of events that leads to axonal degeneration. 
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To study axonal degenerative processes, we previously developed a microdevice that allowed 

for the compartmentalization of neuronal segments so that we can isolate and orient single axons 

from the dendrites and cell body(Lu, Kim-Han et al. 2012).  Using this device, we have studied the 

effects of 6-OHDA on various axonal transport processes within murine mesencephalic cultures. In 

addition, we have also investigated mechanisms that may underlie 6-OHDA-induced axonal 

degeneration.   

 

3.3  Materials and Methods 

 

3.3.1  Microfluidic device and cell culture 

Microfluidic devices were fabricated and cell culture studies were performed as previously 

described in chapter 2 of this dissertation. 

 

3.3.2  Optical Imaging 

Mitochondria labeling and time-lapse images with mitoDsRed2 was performed the same as 

previously described in chapter 2.  A lentivirus used to label synaptic vesicles was created as 

previously described (Araki, Sasaki et al. 2004) using a plasmid containing synaptophysin fused in 

frame with cerulean (provided by Dr. Rachel Wong, University of Washington Seattle).  DA/GFP 

cultures were transduced with the virus on DIV 2 for 5 hours.  Time lapse images for both vesicle 

and mitochondrial transport were taken as previously described in chapter 2. A 458 nm argon laser 

with 466-514 meta emissions filter set was used in conjunction with a 488 nm argon laser and 505 

long pass emissions filter to identify vesicle transport.  
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3.3.3  Image analysis 

Mitochondrial transport, as well as synaptic vesicle transport, was analyzed using the 

methods described in Chapter 2.  Particle sizes used for measuring mitochondrial dimensions 

(mitochondria labeled with mitoDsRed2) were generated using particle analysis in ImageJ using a 

threshold image.    

 

Microtubule Structure: The integrity of microtubule was determined by immunostaining with antibodies 

against tyrosine hydroxylase (TH) (Pel-Freeze Biological) and acetylated tubulin (AcTub; Sigma). TH 

positive axons with three AcTub breaks or more were considered damaged and counted as the 

percentage total of all TH-positive axons.   

 

Mitochondrial membrane potential: Cells were loaded with 25 nM of Tetramethylrhodamine ethyl-ester 

(TMRE, Invitrogen) for 25 minutes prior to imaging. TMRE is a positively charged cell permeant 

dye, which can be sequestered in healthy mitochondria due to their relative negative charge.  

Depolarized mitochondria with less membrane potential do not sequester TMRE and leading to a 

decrease in the dye intensity. Changes in mitochondrial membrane potential were determined by 

differences in TMRE membrane potential along an axonal region of interest before and after 

treatment with 6-OHDA.  

 

Autophagy: Cultures without DA/GFP labeling were taken from the same Tg(TH-EGFP) mice 

(Jackson Laboratories, ME)  as previously described in chapter 2.  These cells were taken from pup 

embryos (E14), which were not positive for DA/GFP.  On DIV5, cells plated within microdevices 

were transfected with a GFP-tagged LC3 expression vector provided by Dr. Chris Weihl (Kuma, 

Matsui et al. 2007).  24 hours after transfection, cells were treated with 6-OHDA for the specified 
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time, fixed, and then immunostained with a rabbit anti-TH antibody.  A Cy3-conjugated secondary 

antibody (Jackson ImmunoResearch) was used to visualize TH positive cells.   Images were taken 

using the Zeiss LSM510 Meta NLO Multi-Photon System (Carl Zeiss) on Axiovert 200M inverted 

microscope with a 40x water objective.  Cells with LC3-GFP granules were then counted and 

compared to the total number of LC3-GFP positive cells.   

 

Retrograde degeneration study: On DIV13, the axonal compartment was treated with 6-OHDA and then 

cell death was assayed using propidium iodide labeling at 24 and 48 hours.  Fluorescent and 

Brightfield images were taken of cell bodies within 350 µm of the microchannel opening in the 

somal compartment.  Cell death was quantified using the fraction of propidium iodide positive cells.  

 

3.3.4  Statistical Analysis  

Statistical analysis was performed using Statistica (Statsoft). One way ANOVA and Student’s 

t-test were used to determine statistical significance.  P values below 0.05 were determined to be 

statistically significant.  
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3.4  Results 

 

3.4.1  Mitochondrial movement decreased in DA and non-DA axons  

Axonal bundling is a natural process that presents a technical challenge when imaging 

particle transport within a single axon.  Axons from different neuronal populations extend at 

different rates and axons with a slower extension rate may wrap around and follow a leading axon.  

With microchannel width of 10 µm, we found that there was a significant amount of bundling within 

each microchannel and acquiring a single axon for imaging presented a logistical difficulty.  

Therefore we sought to limit the number of axons present within each microchannel and increase 

the number of microchannels available so that we will have a higher probability of finding singly 

labeled axons.  Previously, Peyrin et al (Peyrin, Deleglise et al. 2011) had found that reducing 

microchannel diameters to smaller than 3 µm had an adverse impact on the health of the axons 

despite limiting the number of axon per channel to around 4. Therefore, we selected 5 µm as the 

microchannel width, reduced the separation between each microchannel to increase the the total 

number of microchannels available. To label mitochondria, we used a lentivirus carrying a 

mitochondrially targeted DsRed2 sequence.  By tittering the virus used per transduction to obtain 

60-70% transduction efficiency, we saw many more singly labeled axons per microchannel.    

A dose response study to assess the effects of 6-OHDA indicated that within 30 minutes, 

lower concentrations of 6-OHDA (20 and 40 µM) did not significantly affect the transport of 

mitochondria in DA axons from murine mesencephalic cultures (data not shown).  At 60 µM of 6-

OHDA, there was a significant decrease in axonal mitochondrial motility or the percentage of 

mobile mitochondria in both anterograde and retrograde direction after 30 minutes of treatment 6-

OHDA within the axonal compartment and thus this concentration was used for subsequent axonal 
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assays (Fig 3.1A,B)  However, of the mitochondria that were still motile, there was no significant 

differences in transport speed in either direction (Fig 3.1C).  Taking advantage of the fluidic isolation 

between the somal and axonal compartment, experiments were performed where only the somal 

compartment was treated with 6-OHDA to observe the effect that an anterograde model of 

degeneration would have on axonal mitochondrial transport.  After 30 minutes, mitochondrial 

motility or movement speed within the microchannels showed no statistically significant change 

compared to the control under this condition.  6-OHDA is popular for inducing reproducible 

damage to dopaminergic neurons within the nigrostriatal pathway in vivo.  However, its auto-

oxidation such as p-quinones and ROS species such as hydrogen peroxide, 6-OHDA may exert its 

toxic effect via an extracellular mechanism without the need for uptake via the dopamine transporter 

(Hanrott, Gudmunsen et al. 2006) and therefore affect non-DA cells in vitro. Assessment of 

mitochondrial transport in nonGFP axons supports 6-OHDA non-specificity as there was a 

significant decrease in total mitochondrial motility without an effect on mitochondrial transport 

speeds in either direction (Fig 3.2).   
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Figure 3.1 6-OHDA decreases mitochondrial movement in DA axons. A) Kymographs of 
axonal mitochondrial movement in control and treated axons. Mitochondria was labeled 
MitoDsRed2 vector and imaged 30 minutes after treatment with 6-OHDA. Quantification of B) 
total moving mitochondria (n = 4-5 devices per group with 4-5 axons analyzed per dish) and C) 
mitochondrial speeds (n = 60-80 mitochondria per group). In B and C, data is represented as Mean 
± SEM, *,+ indicate p < 0.05 versus control and somal compartment respectively.  
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Figure 3.2 6-OHDA decreases mitochondrial movement in non-DA-GFP axons. A) 
Kymographs of axonal mitochondrial movement in control and treated axons. Mitochondria was 
labeled MitoDsRed2 vector and imaged 30 minutes after treatment with 6-OHDA in the axonal 
compartment. Quantification of B) total moving mitochondria (n = 20-25 axons per group) and C) 
mitochondrial speeds (n = 90-120 mitochondria per group). In B and C, data is represented as Mean 
± SEM 
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3.4.2  6-ODHA damages microtubules tracks after 6 hours  

 Previously, it was observed in vitro that 6-OHDA induced a significant amount of DA cell 

death via apoptotic mechanisms within 24 hours.  Prior to the loss of cell bodies, there was loss of 

DA neurites that indicates the presence of a dying back mechanism of cellular degeneration.  To 

study the degeneration of axons at earlier time points, the structural integrity of microtubules was 

assessed after treatment with 6-OHDA.  Cytoskeletal structures, such as neurofilaments and in 

particular microtubules, act as the primary tracks along which vesicles and organelle transport occur.  

It is conceivable that loss of these microtubule tracks would immobilize movement along axons.  To 

determine, whether the decrease in mitochondria and synaptic vesicle movement was due to 

destabilization of these tracks after treatment with 6-OHDA, DA cultures were stained for 

acetylated tubulin, which is a marker for stabilized microtubules.  No significant fragmentation in 

DA-GFP axons was observed until after 6 hours of treatment with 6-OHDA in the axonal 

compartment (Fig 3.3A).  A significant amount of fragmentation in non-DA-GFP axons was also 

observed and followed the same time course of degeneration as observed for DA axons.  By 24 

hours, more than 80% of all axons assessed within the axonal compartment showed significant 

breaks and punctate acetylated tubulin staining (Fig 3.3B).   
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Figure 3.3 Fragmentation of microtubules after 6-OHDA treatment. A) Dissociated midbrain 
cultures were treated with 60 µM of 6-OHDA at the indicated times and then fixed and stained with 
antibodies against AcTub and TH. Significant fragmentation of AcTub is seen at 24 hours. B) TH 
positive axons with fragmented AcTub staining were quantified.  One hundred to three hundred 
DA-GFP axons were counted per dish and 4-5 dishes were used per group.  Scale bars indicate 
10µm. Bars show Mean ± SEM.  ** indicates p < 0.001 
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3.4.3  6-OHDA induces retrograde degeneration 

 In vivo, 6-OHDA is often used to induce retrograde axonal degeneration and commonly used 

as a toxin to test the efficacy of therapies for protecting DA neurons.  To assess whether this form 

of retrograde degeneration also occurs in vitro and to determine when a significant degree of somal 

degeneration would occur, 6-OHDA was applied only to the axonal chamber and cell death was 

assayed with propidium iodide.  No significant cell death was observed in the somal compartment 

until 48 hours after treatment with 6-OHDA (Fig. 3.4).  

 

 
 

Figure 3.4 6-OHDA induced retrograde degeneration. A) dissociated midbrain cultures were 
treated with 6-OHDA for the indicated times and then assayed with 1 µg/ml of propidium iodide to 
assess cellular degeneration.  B) Quantification of cell death using propidium iodide. n = 4 devices 
per group.  Scale bar indicates 40 µm. Data is represented as Mean ± SEM, * indicates p < 0.05 
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 3.4.4  6-OHDA leads to drop in mitochondrial membrane potential but does 

not affect mitochondrial size 

Mitochondrial membrane potential is a commonly used parameter for determining 

mitochondrial health and may act as a signal to regulatory machinery that would lead to cessation of 

mitochondrial movement.  Therefore to assess relative changes to mitochondrial membrane 

potential, we investigated the ability of mitochondria to accumulate a membrane voltage sensitive 

dye, TMRE and determined membrane depolarization by a decrease in TMRE fluorescent intensity. 

Thirty minutes after treatment with 6-OHDA, a significant decrease in TMRE fluorescence was 

observed in both DA-GFP axonal mitochondria and non-GFP mitochondria (Fig 3.4).  To 

determine whether mitochondrial fragmentation plays a role in cessation of movement, 

mitochondrial cross-sectional area was measured using particle analysis.  As TMRE fluorescence is 

lost upon membrane depolarization, it cannot be used to accurately measure changes to relative 

mitochondrial morphology.  Instead, mitoDsRed2 was used to measure mitochondrial size but there 

was no significant difference between cross-sectional areas of the control or 6-OHDA-treated 

groups at 1 hour (Fig 3.6).  
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Figure 3.5 6-OHDA depolarizes mitochondria in both DA and nonDA axons. A) 
mitochondria labeled with 25 nM of TMRE were assessed before and after treatment. B) 6-OHDA 
significantly decreased mitochondrial membrane potential in axons. Data indicate Mean ± SEM 
from three independent experiments. ** indicate p < 0.001 versus control. 
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Figure 3.6 Mitochondria size unaffected during transport block. Quantification of cross-

sectional area of DA mitochondria before and after treatment with 6-OHDA. Data indicate Mean ± 

SEM 

 

3.4.5  6-OHDA decreases axonal transport of synaptic vesicles 

To determine whether 6-OHDA specifically disrupts mitochondrial transport or whether it 

may affect transport of other axonal cargo, movement of synaptic vesicles was also assessed by 

tagging them with a synaptophysin-cerulean marker.  The synaptophysin sequence had been 

previously shown to not co-localize with mitochondria (Kim-Han, Antenor-Dorsey et al. 2011).  

Similar to the decrease in mitochondrial motility, 6-OHDA significantly reduced the movement of 

synaptic vesicles in both the anterograde and retrograde direction after 30 minutes (Fig 3.7).  

Unfortunately, due to the low number of moving particles, meaningful velocity data could not be 

obtained from measuring the remaining motile particles.  This decrease in synaptic vesicle motility 

show that unlike other PD-mimetic toxins such as MPP+ which specifically affects mitochondria 

but not other moving particles (Kim-Han, Antenor-Dorsey et al. 2011), 6-OHDA could affect 

additional transport machinery and decrease overall axonal transport.   
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Figure 3.7 6-OHDA decreases synaptic vesicle movement in DA axons. A) Kymographs of 
synaptic vesicle movement in control and treated axons. Quantification of B) total moving vesicles 
(n = 8 axons per group). Scale bar indicates 5 µm.* indicate p < 0.05 versus control. 

 

3.4.6  6-OHDA induces autophagosome formation 

Damaged mitochondria can release harmful levels of ROS and can be degraded by a form of 

autophagy known as mitophagy.  Successful removal of damaged mitochondria is critical for 

maintaining axonal health and limiting secondary damages.  Improper regulation of the mitophagy 

process could adversely affect neuronal health. Previously, 6-OHDA has been shown to induce 

autophagy in rat models (Cheng, Kim et al. 2011) and cell lines (Li, Wang et al. 2011). To determine 

whether 6-OHDA could also induce autophagy within murine mesencephalic neurons in vitro, the 

appearance of an autophagy marker, LC3 or microtubule associated protein 1, light chain 3 was 

assessed.  An LC3-clone was transfected into midbrain cultures and under control conditions, LC3-

GFP take on a continuous fluorescence appearance within the cytosol.  However, by 9 hours after 

treatment with 6-OHDA, LC3 could be seen to aggregate to the membranes of autophagosomes as 

suggested by the formation of LC3-GFP punctas (Fig. 3.8). 
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Figure 3.8 6-OHDA induces autophagy in midbrain cultures. A) Formation of 
autophagosomes was measured by the appearance of LC3-GFP punctas B) the number of cells with 
at least 3 LC3 punctas were counted and expressed as the percentage of all cells that were positive 
for LC3-GFP. Mean ± SEM from 4 independent experiments.  ** indicates p < 0.001 versus 
control, Scale bar indicates 10 µm.  
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3.4.7  NAC and MnTBAP rescues mitochondrial transport 

6-OHDA has been shown to inhibit mitochondrial complex I activity (Glinka and Youdim 

1995) and has been suggested to induce cell death via oxidative stress primarily by increased ROS 

formation (Blum, Torch et al. 2001).  It has also been found that ROS scavengers were potent in 

protecting cell bodies against the toxic oxidative byproducts of 6-OHDA (Choi, Yoon et al. 1999).  

To investigate whether oxidative stress induced by ROS formation also plays a role in disrupting 

axonal transport of mitochondria, we investigated whether anti-oxidants such as NAC and 

MnTBAP could rescue this early event in axonal degeneration.  In addition, we also investigated 

whether EGTA could rescue mitochondrial transport disruption as Ca signaling plays an important 

role in axon degeneration (Wang, Medress et al. 2012).    From table 3.1, it was found that both 

NAC and MnTBAP managed to protect against the transport dysfunction of mitochondrial in DA 

axons after treatment with 6-OHDA.  However, EGTA did not protect against this loss of 

mitochondrial mobility. 

 Motile 

Mitochondria 

Control 24.6 ± 1.3%* 

6-OHDA 10.3 ± 2.2% 

NAC 25.7 ± 3.3%* 

MnTBAP 28.2 ± 6.5%* 

EGTA 8.34 ± 3.9% 

 

Table 3.1 Effects of antioxidants and calcium chelator on 6-OHDA disrupted DA mitochondrial 
transport, data indicates mean ± SEM. * indicate p < 0.05 versus 6-OHDA. [NAC] = 2.5mM, 
[MnTBAP] = 100 µM, [EGTA] = 2.5 Mm 
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3.5  Discussion  

From the results of the study, we conclude that unlike MPP+ which specifically affects DA 

neurons' axonal transport processes in vitro, 6-OHDA reduced mitochondrial motility in both DA 

and non-DA axons. Compared to other non-transport studies, a relatively high concentration of 6-

OHDA was used in order to observe a difference in the motility within an hour.  Lower 

concentrations could have been used, but it would have been logistically difficult to acquire a 

sufficient number of samples with longer incubation times because only one dish can be treated and 

imaged at a time for assessing transport. The total assessment time for each dish is about 1.5-2 

hours. While 6-OHDA is known to induce apoptosis and axonal degeneration, it is not known just 

how it activates these pathways remain unknown.  Both intracellular and extracellular mechanisms 

have been proposed that required or did not require the presence of DAT (Blum, Torch et al. 2000; 

Hanrott, Gudmunsen et al. 2006; Redman, Jefferson et al. 2006).  However, for transport studies, a 

higher concentration is required to observe an effect therefore, it is conceivable that at the 

concentration used for the study, 6-OHDA acted both intracellularly after being taken up via DAT 

and extracellularly by oxidizing to ROS species.   

Similar to MPP+, 6-OHDA induced mitochondrial depolarization and subsequent decrease 

in mitochondria movement is an early event in the process of axonal degeneration.  This effect 

suggests that MPP+ and 6-OHDA may act upon a common pathway and that this pathway is 

present in both DA and non-DA neurons.  Previous reports using MPP+ showed increased 

movement speed of mitochondria in the retrograde direction post-toxin treatment.  In this study, we 

noted that while 6-OHDA decreased the overall proportion of moving mitochondria, the speed of 

those that are still moving remain dramatically unchanged.  The mechanism behind this 
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phenomenon is unclear. Many regulators of mitochondria movement remain unknown and of those 

that are known, it is not clear how they affect mitochondrial transport speed.   

A model proposed by Youle suggests that the halting of mitochondrial movement is related 

to recruitment of Pink1 and Parkin (Narendra, Walker et al. 2012). Pink1 and Parkin are regulators 

of mitochondrial dynamics and morphology (Wang, Chou et al. 2011) and have been shown affect 

not only mitochondrial transport (Kane and Youle 2011), but also other aspects, such as removal 

and fusion/fission.  It has been suggested that damage to mitochondrial membrane potential stops 

the quick turnover rate of Pink1 upon the mitochondrial membrane (Jin, Lazarou et al. 2010).  

Stabilization of Pink1 recruits and activates Parkin (Lazarou, Jin et al. 2012; Lazarou, Narendra et al. 

2013), potentially by acting upon mitofusin2, which then recruits Parkin to the damaged organelle 

(Chen and Dorn 2013).  Parkin is an E3 ligase and targets proteins of the mitochondria-motor 

adaptor complex, Miro (Wang, Winter et al. 2011) and Milton (Glauser, Sonnay et al. 2011), for 

removal.  The ubiquitination and degradation of the Miro/Milton adaptor complex effectively 

detaches the mitochondria from the motor proteins and thus effectively halts and sequesters the 

damaged mitochondria (Wang, Winter et al. 2011).  However, it is unclear what happens next to the 

stopped mitochondria.  Does it remain at its location until mitophagy occurs and an autophagosome 

forms around the mitochondria? So are the mitochondria that are still moving actually contained 

within autophagosomes? It may be possible that an alternate adaptor-motor system is in place which 

could identify an immobile and damaged mitochondria and then move it towards the cell body for 

removal. 

 Unfortunately, the mechanism underlying axonal degeneration is unknown, but 

experimental evidence has suggested that it is a distinct process from programmed cell death.  JNK2 

have been shown to be essential for apoptosis as it can translocate to mitochondria and mediate the 
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release of cytochrome c.  In JNK2 and 3 null mice models, apoptosis was completely abrogated, and 

there was increased survival of neuronal cell bodies despite treatment with 6-OHDA.  However, it 

was noted that protection against apoptosis via this pathway did not extend to the axons(Ries, Silva 

et al. 2008).  The WLDS mutant protein is able to significantly delay axonal degeneration caused by 

both physical axotomy and biochemical insults, such as MPP+ but has shown little capacity to 

rescue neuronal cell bodies.(Hasbani and O'Malley 2006; Coleman and Freeman 2010)  How WLDS 

confer its protection is unclear, but it is interesting to note that the mitochondria of WLD(S)+ axons 

showed not only increased basal mitochondrial transport but also increased capacity to buffer Ca2+ 

ions (Avery, Rooney et al. 2012).  In addition, Wld(S) has been shown to regulate release of calcium 

ions via the mitochondrial transition pore (Barrientos, Martinez et al. 2011).  After axotomy, there is 

an increase in the levels of intracellular calcium ions.  Typically these calcium ions would activate 

calcium dependent proteases, such as calpain and once activated, calpain may cleave neurofilaments 

and microtubule associated proteins, such as spectrin and tubulin (Billger, Wallin et al. 1988; 

Johnson, Litersky et al. 1991).  In WLD(S) axons, the high burst of calcium influx was highly 

suppressed after axotomy perhaps due to the increased buffering provided by WLD(S) 

mitochondria(Avery, Rooney et al. 2012). 

Interestingly, 6-OHDA also decreased the movement of synaptic vesicles in both DA and 

non-DA axons and not just mitochondria. Previously, it was observed that MPP+ decreased the 

movement of only mitochondria but not synaptic vesicles (Kim-Han, Antenor-Dorsey et al. 2011).  

The decrease in the movement of both mitochondria and vesicles suggests that 6-OHDA or the 

byproducts of its degradation may be potentially acting upon additional mechanisms of axonal 

transport, such as kinesin, dynein, or stress kinases (Falzone, Stokin et al. 2009). It has been found 

that hydrogen peroxide, one of the byproducts of 6-OHDA oxidation, decreases both mitochondrial 

motility and Golgi vesicle movement (Fang, Bourdette et al. 2012).   
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It has been controversial whether transport disruptions are due to mitochondrial dysfunction 

or some other factor such as microtubule destabilization/modification.  Recently, it was shown that 

MPP+ affected microtubule post-translational modifications in a mouse in vivo model and that these 

modifications affect mitochondrial transport(Cartelli, Casagrande et al. 2013).  However, that study 

did not show actual mitochondrial movement data and instead relied on the appearance of 

mitochondrial aggregates and axonal beading to demonstrate transport block.  In vitro, mitochondrial 

movement decrease occurred prior to the appearance of axonal beading (Kim-Han, Antenor-Dorsey 

et al. 2011). The decrease in transport after exposure to 6-OHDA was not associated with 

mitochondrial fragmentation or loss of axonal integrity in this study or with hydrogen peroxide 

(Fang, Bourdette et al. 2012). Oxidative stress induced by hydrogen peroxide has led to increased  

  In vivo, injection of 6-OHDA into the striatum produced a progressive retrograde loss of 

DA axons, which subsequently resulted in heavy loss of DA cell bodies.   Similarly, the results of 

this dissertation also show significant degeneration of DA cell bodies 48 hours after treatment with 

6-OHDA and lend support to the theory of a dying back axonopathies. It was found that in the in 

vivo retrograde models of 6-OHDA-induced degeneration there were increased levels of autophagy, 

as marked by accumulation of LC3 and also DA degeneration (Cheng, Kim et al. 2011). In both 

MPP+(Kim-Han, Antenor-Dorsey et al. 2011) and 6-OHDA in vitro studies, smooth LC3-GFP 

labeling was seen along both the cell body and axons prior to toxin treatment.  It was not until much 

later (3 hours for MPP+ and 9 hours for 6-OHDA) that there was punctated LC3-GFP labeling. 

Though co-labeling experiments would be useful in determining the localization and formation of 

autophagosomes around mitochondria and perhaps the degree of mitophagy, my data provides 

additional support to the idea that 6-OHDA can induce autophagy and that disruption to the 

autophagic system could play a role in leading to DA cell death(Dagda, Zhu et al. 2008; Li, Wang et 

al. 2011; Galindo, Solesio et al. 2012).  The PI3K/AkT/mTOR pathway has been implicated in 
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maintaining DA axonal phenotype and axonal outgrowth (Kim, Chen et al. 2011; Kim, Ries et al. 

2011). An active form of Akt offered protection against 6-OHDA induced axonal degeneration and 

significantly reduced LC3 punctas and autophagosome formation.  In the same study, the authors 

also performed a conditional deletion of the protein Atg7, which is an essential mediator of 

autophagy, and found that this deletion limited the appearance of autophagosomes and protected 

against 6-OHDA induced axonal degeneration and (Cheng, Kim et al. 2011).   

 While subtle differences exist between the effects of two different toxins, MPP+ and 6-

OHDA that cause parkinsonisms.  It is clear that axonal transport disruptions play an early and 

important role in both models.  With improper trafficking of mitochondria, there could be energy 

deficits and loss of function to various intra-axonal processes, which could eventually lead to axonal 

degeneration. Increased oxidative stress could stem from improper removal of mitochondria and 

lead to disruptions of other systems such as failure of ubiquitin-proteasome pathways and result in 

aggregation of misfolded proteins.   As of right now, the details of an axonal degenerative pathway is 

unclear but the discovery of Sarm1, a protein required for the activation of injury-induced axonal 

degeneration points to the existence of an ancient and conserved axonal death signaling 

pathway(Osterloh, Yang et al. 2012).  Whether this pathway could be targeted for the development 

of PD therapeutics or perhaps an axon regenerative pathway such as mTOR (Park, Liu et al. 2008; 

Park, Liu et al. 2010) could be used currently remains unknown.  However, the development of 

microfluidic devices and genetic screens renders previously intractable problems solvable.  These 

new technologies continue to enhance and expand the available toolset for understanding key 

biological processes in order to develop better therapies for patients suffering from major 

neurological disorders.  
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Chapter 4  

Summary and Future Directions 

4.1  Summary of findings 

 This dissertation demonstrated the design and construction of microfluidic devices for 

isolating and orienting axons, and then used these devices to study specific axonal transport 

processes in isolation from the dendrites and cell bodies.  The goals of the dissertation were fulfilled 

by 1) identifying the design constraints for a microfluidic device that can support the culture of 

sensitive primary mesencephalic neurons, as well as conducting assays in isolated and aligned axons 

and 2) investigating the mechanisms and effect of 6-OHDA, a commonly used parkinsonism toxin, 

on aspects of axonal transport, such as mitochondrial movement and microtubule stability.  

 The first objective of the dissertation was to design a cellular compartment strategy that 

would allow for the culturing of sensitive primary midbrain neurons.  Essential requirements 

included exposing the neurons to minimal stress during the plating process as well as subsequent 

feedings.  The neurons also had to be plated as close to the entrances to the microchannels as 

possible so that they have the opportunity to find and extend their axons into the microchannels.  

They had to be exposed directly to a sufficient quantity of fresh media, and the strategy had to allow 

for direct access of toxins to the neurons so that the concentration of the toxin can be controlled.   

 So based on the previously listed requirements, it was hypothesized that an open 

compartment would fulfill all of these conditions rather than an enclosed compartment as seen in 

the Jeon microdevice(Taylor, Rhee et al. 2003; Lu, Kim-Han et al. 2012).  It has already been shown 
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that primary neurons can survive in the open well environment of compartmented devices 

previously made by Ivins (Ivins, Bui et al. 1998).  Ivin’s device was composed of two large semi-

circular Teflon pieces with a glass slide acting as a partition for dividing the somal and axonal 

compartment. It was reasonable to hypothesize that the DA neurons may also survive within the 

same geometric considerations of an open compartmented device made using PDMS.  Another 

important consideration for the design of the microdevice is the geometry of the microchannels.  

For these experiments, both 10 and 5 µm width microchannels were used.  The 5 µm width seemed 

to provide higher number of single axons available for study compared to the 10 µm channels where 

axonal bundling was more common.  Peyrin had performed a study looking at the effects of 

different channel width upon the number and health of axons within each channel(Peyrin, Deleglise 

et al. 2011).  They had found channel sizes below 3 µm led to unhealthy axons where as channel 

sizes above 10 µm led to even more axonal bundling.   

 The second part of the dissertation was to use the microdevice to study the effects that 6-

OHDA had on different aspects of axonal transport within dopaminergic neurons.  It was found 

that 6-OHDA quickly depolarized mitochondrial membranes and led to a decrease in the fraction of 

motile mitochondria within 30 minutes. Of the mitochondria that were still motile, there did not 

seem to have been an effect upon the velocity of the mitochondria nor was there increased 

mitochondrial transport in the retrograde direction as was previously observed with MPP+.  The 

decrease in mitochondrial motility was seen in both dopaminergic and non-dopaminergic neurons.   

6-OHDA also affected the movement of synaptic vesicles, decreasing their motility in both 

anterograde and retrograde directions.  No changes to the size of the mitochondria were observed 

between control and 6-OHDA-treated groups at 30 minutes.  Microtubule fragmentation did not 

occur until after 6 hours of treatment with 6-OHDA and could be due to mitochondrial 

dysfunction.  Treatment with 6-OHDA in the axonal chamber led to a retrograde degenerative 
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model of cellular degeneration similar to what was seen in vivo as a significant amount of cell death 

occurred after 48 hours.  Previously, NAC, a glutathione precursor and MnTBAP, a cell-permeant 

SOD1 mimetic, were able to protect axons and cell bodies from the effects of 6-OHDA.  In these 

experiments, they were also able to prevent the loss of mitochondrial movement after 6-OHDA 

exposure. However, EGTA, a calcium ion chelator, did not offer protection against 6-OHDA’s 

effects on mitochondrial transport.  This second part of the dissertation therefore suggests that 6-

OHDA’s toxicity is due to the generation of high levels of ROS, which increases oxidative stress 

within the cell. This study also suggests the importance of transport dysfunction as an initial event in 

the onset of axonal injury and may play a role in leading the cascade of events that leads to failure.   

 The conclusions derived from the results of the dissertation suggest the usefulness of 

microfluidic devices in helping to answer many fundamental questions of biology and the underlying 

axonal degenerative mechanisms into neurodegenerative diseases.   

 

4.2  Recommendations for Future Directions  

 While this dissertation work has achieved the development of a tool to answer some of the 

questions regarding what happens to axonal transport processes when a neurodegenerative toxin is 

introduced, many biological questions remain unanswered, not only about the mechanisms involved 

in the dying-back process of PD but also many other neurodegenerative diseases as well.    
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4.2.1. Unidirectional three compartmented microdevices.   

 Considering the potential application of the microdevice for the study of neuronal networks 

using co-cultures of different neuronal populations, the symmetrical nature of the microchannels 

currently used are not ideal as both neuronal populations may extend axons into the microchannels 

and synapse on to each one another.  It would be desirable to have unidirectional signaling to better 

recapitulate what is observed in vivo in which one neuron subtype would synapse onto another and 

not vice versa.  Peyrin developed an axon diode concept in which an asymmetrical funnel shaped 

microchannel would prevent neurite extensions from one group of cells and permit extensions from 

another(Peyrin, Deleglise et al. 2011).  Using this axon diode concept and the open compartment 

chamber, one can design a compartment (fig 5.1) to model the network of dopaminergic, striatal, 

and cortical neurons and then study the propagation of disease pathology through this network.  

Striatal neurons that are part of the nigrostriatal pathway receive both DA and cortical innervation.  

However, striatal neurons do not synapse onto DA or cortical neurons.  Loss of cortical neurons 

contributes to the progression of dementia in PD patients (Dauer and Przedborski 2003).  Given the 

preponderance of evidence pointing to axonal and cellular degeneration beginning within areas of 

the striatum, it would be interesting to model and study network behavior and the spread of 

degenerative behavior within this network.  Experiments can be done to investigate the impact of 

PD toxins MPP+ and 6-OHDA or genetic models of PD, such as the use of mutated α-synuclein 

fibrils (Volpicelli-Daley, Luk et al. 2011) on the network. Using the axon diode concept, 

dopaminergic and cortical innervation of striatal culture could be achieved without the possibility of 

cross contamination (Fig. 4.1).   
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.   

Figure 4.1 Schematic for three chambered unidirectional microdevice: Different neuronal 
populations could be loaded in three compartments connected by asymmetrical microchannels. This 
asymmetry supports unidirectional synapse formation where cortical/DA neurons can synapse onto 
striatal neurons but not vice versa.  

 

4.2.2  Wells for high throughput imaging  

 Since axonal degeneration appear early in the development of multiple major 

neurodegenerative diseases (Coleman 2005), development of future therapies should be targeted 

towards maintaining the health and function of axons (Burke and O'Malley 2012).  Drug treatments 

to maintain the survivability of cell body may be too little and too late in stopping the progression of 

these disorders.  However, the drug screening process is logistically difficult given the lack of 

compartmentalization to achieve axonal separation with current high-throughput methods, such as 

the use of 96 well plates.  The density and health of axons would obviously be the metric of drug 

efficacy.  Existing compartmented chambers, such as the Campenot or microfluidic devices can only 

be used to screen a few toxins at a time. However, the problem of high-throughput axonal imaging 

could be overcome with miniaturization and rapid prototyping.  While PDMS is the go to material 

for developing microfluidic devices, polystyrene is another material which can be easily molded and 
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adapted to creating compartmented chambers.  Incorporation of a thin divider into each well of a 96 

well polystyrene plate could potentially create a compartmented chamber within each well (Fig. 4.2).  

Having the divider span the diameter of the well and creating a small and wide tunnel through which 

neurites could extend would effectively separate the axons from the dendrites and cell bodies similar 

to what was achieved in Ivin's compartmented device (Ivins, Bui et al. 1998).  Each well could then 

be used to screen for a different compound to assess their effectiveness in preservation of axonal 

integrity in a toxin model.   

 

 

Figure 4.2 Schematic for 96 well plate compartments. Compartmented 96 well plates could be 
modified for high throughput screening of axon protective compounds.  

 

4.3  Future work for understanding the mechanisms of PD  

4.3.1  6-OHDA and Parkin.  

 From the second aim of this dissertation, it was observed that 6-OHDA quickly depolarizes 

mitochondria.  Current model suggests that Pink1 accumulation on the depolarized mitochondria's 
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membrane surface would recruit Parkin which then leads to the degradation of adaptor proteins and 

disconnect the mitochondria from motor protein (Wang, Winter et al. 2011).  However, whether this 

model is true for all cases remains to be seen.  Unpublished observations using CCCP to decouple 

mitochondria electron transport chain rapidly led to the depolarization of mitochondria within 10 

minutes.  However, at this stage most of the mitochondria were still moving.   Parkin was not yet 

recruited to the mitochondria at this time.  This suggests that mitochondria depolarization may not 

necessarily recruit Parkin and this difference may depend upon the cell type.  Whether 6-OHDA 

induces Parkin localization to depolarized mitochondria would be important to addressing the 

validity of the model.  

 

4.3.2  Wld(S) and Mitochondrial transport  

 It was found that Wld(S) significantly delayed axonal degeneration in physical axotomy 

(Coleman and Freeman 2010) and also PD toxins, MPP+ and 6-OHDA model (Cheng and Burke 

2010; Antenor-Dorsey and O'Malley 2012).  However, an interesting observation was made by the 

Burke group in an in vivo model of 6-OHDA.  They found that Wld(S) delayed anterograde axonal 

degeneration but surprisingly had no effect on retrograde 6-OHDA induced degeneration (Cheng 

and Burke 2010).  This difference suggests that anterograde and retrograde axonal degeneration may 

be mediated by different pathways.  By using the fluidic isolation offered by the microchannels, it 

would be simple to culture a set of Wld(S)+ neurons in the somal compartment and then establish 

an in vitro model of anterograde and retrograde axonal degeneration induced by 6-OHDA.  Various 

aspects of axonal transport processes, such as mitochondrial movement, the axonal localization of 

the Wld(S) protein, and calcium properties of the midbrain neurons could then be studied under 

both anterograde and retrograde degenerative models.  
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4.4  Concluding Remarks 

 The overall intention of this dissertation was to develop a microfluidic device capable of 

isolating and studying axonal transport processes within mesencephalic axons.  Disruptions to 

axonal transport and also axonal degeneration are early events in the etiology of neurodegenerative 

diseases, such as PD and Huntington’s' disease.  Understanding how axonal transport occurs as well 

as what pathways are involved in the maintenance of axonal structure and function, could lead to the 

development of better therapies for curing neurodegenerative diseases that may have multiple causes 

but whose causes converge on a single pathway.  
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