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Introduction

1.1 What is Morphology?

Natural language morphology dictate the rules for the the structure of words in a
language. Words, in all languages, are constructed of morphemes which combine to
give meaning to a word. There are two types of morphemes, stems and affixes. Stems
contribute the base meaning of the word, while affixes either add additional meaning.
There are three types of affixes, prefixes, which attach to the beginning of words,
suffixes, which attach to end of words, and infixes which are inserted into the middle
of words. The change in meaning from affixes comes either as a part of speech change,
such as from adjective to adverb when the suffix -ly is used, or as semantic alteration,
such as when the prefix un- in English is used to negate meaning.

Knowledge of morphology is useful for several reasons in Natural Language
Processing. Limited solely to the field of linguistics, morphology is an integral part
of language, directly related to phonology and syntax. From a purely computational
viewpoint, knowledge of morphology can be used to reduce the size of language lex-
icons. Rather than having to store a stem with all possible affixes, one can simply
store the stem, and the rules which generalize the morphology to all the stems. Mor-
phology is also useful in natural language processing for its aid in part of speech

tagging, speech segmentation, and parsing.



AN obvious solution to the problem 1s the automatic generation ol morpholog-
ical analyses, a task which intuitively should be feasible as children learn morphology
without direct supervision. Such an algorithm would need to be unsupervised so that
no initially annotated data is required, as well as being knowledge free and language
independent. The knowledge free requirement dictates that the algorithm should not
require any other annotated data from the language, such as part of speech tags, as
such annotations are likely to be just as difficult and costly to acquire as the mor-
phological analysis. The algorithm should be language independent so it can run on
any language without detailed knowledge of language being required.

The algorithm could then be used to annotate a new corpus for languages
which do not already have good morphological lexicons. The annotation need not be
perfect, but should be highly reliable with few mistakes. This annotation could then
be improved using other methods, either by first aiding in the bootstrapping of part
of speech tags and then refining the morphological analysis, or by use of adjustment

rule learning algorithms.

1.3 The Goal

The general goal of this work is to take a list of common words from a language and
deduce the morphological structure of those words without any annotated data or
prior knowledge, such as part of speech tags. In specific these algorithms only ad-
dress final suffix detection, and do not attempt to learn prefix, infix or reduplicative
morphology. The algorithm described does not attempt to learn stem or suffix adjust-
ment rules and only predicts concatenative morphology. Each word is only allowed
one morphological analysis by the algorithm, which would be a concern in aggluti-
native languages such as Turkish, where there are frequently multiple morphological
analyses of a word, each with separate meaning, that can only be distinguished on

the basis of context.



Ideally, the algorithm would produce the output words given the input words
such as shown in Table 1.1. The € that attaches to build represents the empty string
and is reported as the suffix when no actual suffix is detected. The algorithm actually
treats € as a real suffix for detection purposes. Because the algorithm is only concerned
with final suffix detection, it should find that buildings should be analyzed as building

+ s and not as build + ing + s, which is in fact the correct analysis.

1.4 Previous Work

1.4.1 Supervised Learning

Van den Bosch and Daelemans|16] approach morphological learning with an instance
or memory based learning algorithm. Such an approach is a useful way to generalize
from a preestablished morphological lexicons, but it cannot help in the annotation of
new lexicons. Instance based learning could be applied to a preliminary hypothesis
generated by some of the unsupervised algorithms described below, allowing for ease

of prediction of the morphological forms of new words.

1.4.2 Unsupervised Learning
Minimum Description Length Models

Minimum Description Length, MDL,[13] has been shown to be effective in supervised
machine learning, such as Quinlan and Rivest’s[12] use of MDL to help prune decision
trees. It is also highly suited for unsupervised learning and has been used in several
algorithms for the unsupervised learning of morphology. The Minimum Description
Length Principle lends itself to morphology, since the problem can be viewed as finding

the smallest set of stems and affixes to describe the observed words.



uses Expectation Maximization (EM) as the search method. In addition Goldsmith’s
model incorporates the notion of suffix signatures to the MDL model. A suffix sig-
nature, similar to the notion of a paradigm which is described later, is a group of
suffixes which all attach to the same stems. His algorithm, also known as Linguistica,
is considered one of the most successful unsupervised techniques to learn morphology.
It does not focus solely on productive morphology but also detects word concatena-
tion, as well as more historical morphological features. The algorithm predicts large
numbers of suffixes and often misanalysizes many rarer words.

The system described in this paper is a probabilistic model and is not based
on MDL, but could be translated into such a framework with minor mathematical

manipulation.

Other Models

In addition to MDL driven algorithms, there have been several other unsupervised
algorithms developed.

Déjean[7] uses a bootstrapping method which detects frequent morphemes and
then attempts to use those to learn more morphemes and apply to them to the list of
words. The end goal of his algorithm is to aid in chunking. He also uses the notion
of suffix signatures, but the approach is rather ad hoc, and it is unclear how well it
would generalize to other languages.

Gaussier|[8] uses an explicitly probabilistic model to derive morphology from
word pairs. The algorithm uses part of speech tags to learn derivational morphol-
ogy. Because of this requirement the algorithm is not knowledge free and would be
unsuitable for morphology discovery in unannotated languages where part of speech
information is not readily available. If a highly reliable method for unsupervised learn-
ing of part of speech was developed then the algorithm might have more practical

value.



to be a very promising technique, but Schone and Jurafsky emphasis the need to in-

corporate it with more sophisticated orthographic methods for learning morphology.

1.5 Preview

The algorithm described in this thesis is composed of two components, a probabilistic
model and a search algorithm. The search algorithm is used to find a local maxima
in the probability space defined by both the model and the input words.

Chapter 2 describes several versions of a probabilistic model that is used to
evaluate hypotheses. The formulation of the models are described in a generative
framework.

Chapter 3 discusses algorithms used to search the hypothesis space and max-
imize the probabilities described in Chapter 2. A lattice representation of the hy-
pothesis is described and then used in the formulation of a a simple search. This
search proves inadequate though, and necessitates the introduction of a better initial
hypothesis.

Experimental testing of the algorithm is presented in Chapter 4 as well as
empirical comparisons between different variants of the probability model and search
techniques. The algorithm is also compared to Goldsmith’s Linguistica morphology
learning system[9], considered to be the best current unsupervised system for learning
morphology. Section 4.2 details the methods used for evaluation of empirical results.
Evaluation of morphological results is difficult due to the high degree of ambiguity
present in morphology, and the inherent limitations of concatenative models. Two
methods of evaluation, which measure the accuracy of the stems and suffixes identified
separately are described.

Chapter 5 summarizes the work, draws conclusions from it and presents ideas

for future development and research.



A Generative Probabilistic Model
of Concatenative Morphology

This chapter introduces several variants of a language-independent prior probability
distribution on all possible hypotheses, where a hypothesis is a set of words, each
of which is marked with a stem-suffix boundary. The distributions are based on a
multiple step model for the generation of hypotheses. Associated with each step is a
probability distribution for the various choices that could be made at that step. By
taking the product over all steps of the generative model, one can calculate the prior
probability for any given hypothesis. The steps described are a mathematical model
used to calculate a probability for a hypothesis, not an algorithm intended to be run.
This technique for calculating a probability model is fairly common and has
been successfully used in other computational linguistics tasks, such as word segmentation|3].
In addition, a naive model, which is based on some simple heuristics is de-
scribed. It is not a probabilistic model, but provides some intutions that motivate

models described later.

2.1 Naive Model

The most naive scoring method for morphological hypotheses is to minimize the sum
of the number of characters in the stem and suffix sets. While such a model performs
very poorly as it fails to identify many of the morphological patterns that exist in
language, it does give a good starting point for constructing a better scoring system.

This scoring system will make horrible mistakes. For instance given the words

at, accomplishment, and abolish, the best hypothesis from this naive model would be



Insertions and deletions are given a cost of 1 and substitutions are given a cost of 2.
For every pair of words that are postulated to be morphologically related, the min-
edit-distance is calculated and added to the cost of the model. Two words are said to
be morphologically related if they have the same stem. The naive model can thus be
reformulated such that cost of a hypothesis is the number of characters in the stem
and suffix sets, plus the minimum edit distance of every pair of words which have the
same stem. The search will then attempt to minimize the cost of the hypothesis.

The hypothesis given above for at, accomplishment, and abolish, in which all
words have the stem a, will have a cost of 46, (19 for the number of characters, 11 for
the min-edit-dist of at and accomplishment, 7 for the min-edit-dist of at and abolish
and 9 for the min-edit-dist of accomplishment and abolish). This is far worse than the
hypothesis where all of the words are not morphologically related and are their own
stems, which has a cost of 21. The best hypothesis for this set of words according
to the new model has a cost of 20 and is where ¢ is a suffix on the stems a and
accomplishmen, and abolish is its own stem with no suffix. There is no edit distance
between a and accomplishment because the two words do not share a stem. This is
still not perfect but it is a large improvement on the original naive formulation.

The modification is useful because it discourages long suffixes, and it penalizes
heavily for stems with lots of suffixes, due to the number of minimum edit distances
that would be calculated.

2.2 Simple Model

The following is a five step process describing how a hypothesis could be constructed

along with associated probability distributions.



throughout this paper.
Example: M = 5. X = 3.

. For each stem i, choose its length in letters, L{", according to the inverse squared
distribution on the positive integers. Assuming that the stem lengths are chosen

independently and multiplying together their probabilities, we have:

6\MM ;N2
Pr(L™ | M) ={— — 2.2
= () 11 (5) (2:2)
For each suffix ¢, choose its length in letters, L7, according to a similar distribu-
tion to (2.2), which differs in that suffixes of length 0 are allowed, by offsetting
the length by one.

Example: L™ =4, 4,4, 3,3. L* =2, 0, 1.

. Let ¥ be the alphabet and let {p;...p;x/} be a probability distribution on X.
For each ¢ from 1 to M, generate stem ¢ by choosing L!* letters at random,
according to the probabilities {p; ...pyx }. Call the resulting stem set STEM.
Similarly, for each 7 from 1 to X, generate suffix ¢ by choosing L7 letters at
random, according to the probabilities {p;...py/}. Call the resulting suffix
set SUFF. To compute the joint probability of hypothesized stem and suffix
sets under this model we use the maximum likelihood estimates of the letter
probabilities:

N G

b= g
where ¢; is the frequency count of letter [ among all the hypothesized stems and
suffixes, and S =), ¢;. Thus,

Pr(STEM, SUFF | M, L™, X, L) = MIX! ]| (%) (2.3)

lex



1
Pr(Freq; | M, X) = e

Assuming all these choices are made independently and multiplying together

their probabilities yields:

Pr(Freq | M, X) = (%)M (2.4)

Example: Freq=1{3,3,2,1,2}

5. For each stem 7 in STEM, choose a set of suffixes, D;, of size Freq,, that 7 will
be paired with in order to generate the lexicon. The number of subsets of a
given size is finite, so we can again use the uniform distribution. This implies
that the probability of each individual subset of size Freq; is the inverse of the

total number of such subsets:

¥ \!
Pr(D; | M, X, Freq;) = (F )
req

Assuming that all these choices are independent yields:

M X -1
Pr(D | M, X, Freq) = 2.
IR R 1 () (25)

Example: Dy =1 ed, ¢, s}, Djyop =1 ed, €, 5 }, Dgoor =1 6 5}, Dggr =1 € },
Deat ={ € s}

From the results of step 5 one can see that running example would yield the hy-
pothesis consisting of the set of words with suffix breaks, {walk+e€, walk+s, walk+ed,
look+e, look+s, look+ed, far+e, door+€, door+s, cat+€, cat+s}. Removing the breaks
in the words results in the set of input words. To find the probability for this hypoth-
esis just take the product of the probabilities from equations (2.1)-(2.5).
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e The count of each letter in the combined stem and suffix sets ({¢; | | € ¥}).

Using this generative model, we can assign a probability to any hypothesis.
Typically one wishes to know the probability of the hypothesis given the data, how-
ever in our case such a distribution is not required. Equation (2.6) shows how the

probability of the hypothesis given the data could be derived from Bayes law.

Pr(Hyp) Pr(Data | Hyp)

Pr(Hyp | Data) = Pr(Data)

(2.6)

The search algorithm described later only considers hypotheses consistent with
the data. The probability of the data given the hypothesis, Pr(Data|Hyp), is always 1,
since if you remove the breaks from any hypothesis, the input data is produced. This
would not be the case if our search considered inconsistent hypothesis. The prior
probability of the data is unknown, but is constant over all hypotheses. Thus the
probability of the hypothesis given the data reduces to Pr(Hyp)/c. The probability
of the hypothesis is given by the above generative process. Thus, among all consistent
hypotheses, the one with the greatest prior probability also has the greatest posterior
probability.

When considering varying hypotheses for a given input the most probable
hypothesis will be determined based on several forces. The simple model favors
hypotheses with less stems and suffixes, and then those hypotheses with shorter stems
and suffixes. The primary force of the model is to minimize the number of characters

in the stem and suffix sets.

2.3 Paradigm Model

The simple model described above ignores some vital information about morphology,

namely that the suffixes that attach to stems do so in regular and consistent groups.



suffixes of their paradigm and no others.
The Paradigm Model uses the same initial steps, 1-3 as the Simple Model for
generating the stem and suffix sets but uses a different method to combine stems and

suffixes. Steps 4-5 are replaced in the Paradigm model with the following steps:

4. Pick the number of paradigms, P. Each stem is in exactly one paradigm, and
each paradigm has at least one stem, therefore the number of paradigms, P, can

range from 1 to M. We pick P according to the following uniform distribution:

1

Pr(P | M) = — (2.7)

Example: P = 3.

5. We choose the number of suffixes in the paradigms, R, according to a uniform

distribution. The distribution for picking R;, suffixes for paradigm ¢ is:

1

Pr(R; | XP) =+

The joint probability over all paradigms, R is therefore:

Pr(R| XP) = HX1 (—)P (2.8)

Example: R = {2, 1, 2}.

6. For each paradigm 4, choose the set of R; suffixes, PARA? that the paradigm
will represent. The number of subsets of a given size is finite so we can again use
the uniform distribution. This implies that the probability of each individual

subset of size R;, is the inverse of the total number of such subsets. Assuming



possible distributions that could be used at this step, a uniform distribution,
which makes all paradigms equally likely and a biased distribution that favors
paradigms with more stems. Under the uniform distribution the probability of

picking any particular paradigm is %. Taking the product over all stems yields:

1\ M
Pr(PARA™ | MP) = (F) (2.10)
Using the biased distribution, the probability of choosing a paradigm ¢, for a

stem is calulcated using a maximum likelihood estimate:

|PARA"|

Pr(PARAT|MP) = ——~

where PARA" is the set of stems in paradigm ¢. Assuming that all these choices

are made independently yields the following:

P m
<7|PARAZ' | (2.11)

Pr(PARA™ | MXP) =[] 7

i=1

) IPARA?|

Example: PARAT' = {walk, look}. PARAT = {far}. PARAY" = {door, cat}.

The hypothesis generated by the running example for the Paradigm Model is
the same as the example for the Simple Model, though different probabilities would
have been calculated. To find the probability for this hypothesis just take the prod-
uct of the probabilities from equations (2.1)-(2.3) and equations (2.7)-(2.10). Equa-
tion (2.11) can be substituted for equation (2.10) depending on which distribution is
used for step 7.

The two distributions described in step 7 can be thought of as two different
priors on the selection of paradigms by stems. The biased distribution in equation 2.11

favors hypothesis where more stems are in a smaller number of paradigms, whereas



using the uniform distribution.

The main force on the probability space exerted by the Paradigm Model is the
minimization of the number of paradigms. The hypotheses that are favored are more
structured. The minimization of paradigms is actually a liberal force when compared
to the Simple Model. In the Simple Model there is a large cost to assigning a stem
to a large number of suffixes, and this cost is paid for every stem in that paradigm.
In the Paradigm Model, that cost is only paid once, in the creation of the Paradigm.
The Paradigm Model actually allows for the creation of more paradigms than the

Simple Model, allowing the prediction of potentially more suffixes.



Probability Maximization

3.1 Lattice Formulation

The input to the morphology induction system is a set of words, or lexicon, L. The
hypothesis space for this system is defined in terms of the set of all possible stems in L,
pStem, and the set of all possible suffixes in L, pSuff. The empty string is considered
to be a possible suffix but not a possible stem. A hypothesis A is a function from the

set of possible stems to sets of suffixes:

h : pStem — opSuff

where h(m) is interpreted as the set of suffixes that occur with stem m in the input.
The set of words generated by a stem m under hypothesis A is simply the concatena-
tion of m with all the suffixes in h(m). For example, if h(walk) = {e, s, ing} then the
stem walk generates the words walk, walks, walking. If h(m) is the empty set then
m generates no words. In the searches described, the only hypotheses considered are
those in which (a) each word of the input is divided into stem and suffix in exactly
one way, (b) no other words are generated. Under such a hypothesis the sets of words
associated with all possible stems form a partition of the input lexicon. Thus, the

following invariant holds:

Invariant 1 For all hypotheses h,
{{mz | x € h(m)} | m € pStem}

is a partition of the input lexicon, L.



[ cat, door ]

Figure 3.1: A Simple Lattice Representation

The nodes shown are those whose suffix sets are subsets of {e, s, ed}. The set
of suffixes corresponding to a node n are designated by s(n). In Figure 3.1, s(n) is
shown in the curly braces in each node n, and the stems of a paradigm are shown in
square brackets. The node representing the suffix set {¢, s} has two stems, cat and
door, and generates the words cat, cats, door, and doors. Those nodes with no suffixes
or no stems, such as the node representing {s, ed}, generate no words. Note that the
empty suffix (denoted by € or by -) is treated like any other suffix: The suffix set
containing only € has size one and is distinct from the empty set.

Each node is also assigned a level I(n) corresponding to the number of suffixes
in n (I(n) = |s(n)|). The node represeenting the empty set of suffixes is at level 0 in
the lattice. If hypothesis h maps stem m onto node n at level 7 then m generates ¢

words. As a direct consequence of Invariant 1, the following invariant holds:

Invariant 2 Let L be an input lexicon with possible stem set pStem. For all hy-

potheses h, the sum of the node levels of all stems is the number of input words:

Y. Unm) =L

mepStem
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satisfies Invariants 1 and 2.

3.2.2 Search Operators

We now focus on search operators that move stems up and down the lattice by a single
step. We first define operations that either promote or demote a single stem. That
is, they move a stem up to a node whose level is one greater or down to a node whose
level is one less than the node the stem occupies in the current hypothesis. In order
to maintain Invariant 1, a stem m can be promoted from a node not containing suffix
x to a node containing suffix z only if mx is one of the input words (mz € L). If m
is promoted to a node containing z some other stem must be demoted (Invariant 2).
In particular, the stem that previously generated the word mxz must be demoted so
that it no longer does (Invariant 1). This stem is called the Compensating Stem, and
the suffix with which it combined to generate mx is called the Compensating Suffix.

The following formal definitions will prove useful.

Definition 1 Let L be an input lexicon. Let m and z be such that m is a stem in
pStem, z a suffix in pSuff, and ma € L. Let h be a hypothesis. Then CompM (m, z, h)

and CompX(m, z, h) are the two unique strings such that:
1. CompM(m, z, h)CompX(m,z, h) = mz
2. CompX(m, z, h) € h(CompM(m, z, h))
The uniqueness of CompM(m, z, h) and CompX(m, x, h) follows from Invariant 1.

Definition 2 Let L be an input lexicon, m a stem in pStem, z a suffix in pSuff, and
h a hypothesis. Then Prom(m, x, h) is the hypothesis that results from starting with

h and promoting stem m; to a node that contains suffix x:

1. If x € h(my) or mixz ¢ L, Prom(mq,x,h) = h.
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an adjacent node not containing x is always possible. The result is that m; no longer
generates word mix, so some other stem must be moved up to a node in which it
generates mx. There is always at least one stem that can be moved up so that it
generates max — namely, the stem that is equal to mx can be moved up one level
from its current node to the node that also contains the empty suffix. (Its current
node cannot contain the empty suffix because otherwise the word mx would have

been generated twice).

Definition 3 Let L be an input lexicon, m; a stem in pStem, x a suffix in pSuff,
and h a hypothesis. Then Dem(m1, z, h) is the hypothesis such that:

1. If x ¢ h(m,), Dem(my, z, h) = h.

2. Otherwise, Dem(my,x,h)(m) =

h(m) —{z} ifm=m
h(m)U{e} if m=mz

h(m) otherwise

Remark. Dem(my, z, h) is equivalent to Prom(m;z, €, h). Thus, Dem is a special case
of Prom and all properties that hold for Prom(m,, z, h) regardless of my, z, or h also
hold for Dem.

The search algorithm used in the experiments reported below applies the pro-
motion and demotion operators sequentially to all stems that map to a given node.
It is convenient to define this operation by overloading the functions Prom and Dem

as follows:

Definition 4 Let L be an input lexicon, n a node in the subset lattice of pSuff, x a

suffix in pSuff, and h a hypothesis. Let {my,..., my} be the set of stems that map



Theorem 1 guarantees that the order of composition does not affect the result,

and hence that these functions are well defined.

Theorem 1 Let z a suffix in pSuff, 4 a hypothesis, and {m, ..., m;} a set of stems

in pStem. The hypothesis
Prom(my, z, Prom(ms, z, . . . Prom(my, x, h)))

is invariant under permutation of the subscripts.

3.2.3 Search Algorithm

The hill climbing search alternates between a promotion phase and demotion phase
until neither phase can improve the score further.

Search

1: h = InitialHypothesis

2: While (Probability increases)

3: PromotionPhase

4: DemotionPhase

The promotion phase loops through all possible suffixes. For each suffix, it loops
through all nodes that contain at least one stem and one suffix (the node for the
empty set of suffixes is not included). For each suffix/node combination, it evaluates
the hypothesis that would result from applying the promotion operator to that node
and that suffix. If the probability of the hypothesis resulting from promotion is greater
than the probability of the current hypothesis then the promotion is carried out. For
each suffix z, the loop through all nodes is restarted whenever a promotion is carried
out.

PromotionPhase

1: For each x € pSuff
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The order in which PromotionPhase and DemotionPhase iterate through possible
suffixes is determined by the relative frequency of the suffix, as a string, divided by

the relative frequencies of its component letters. For example if ¢ is the total number
fCINg)/(c=2)
_ . fOfM)f(g)/c?
reflects the degree to which the observed relative frequency of a suffix exceeds what

of characters in the lexicon, the rank of -ing would be This formula
would be expected under a null model in which letters are chosen independently.
Suffixes are processed in order from highest rank to lowest in order to give priority

to those that are most likely to be productive.

3.2.5 Search Limitations

There are severe limitations to the search as described above, which may not be
readily noticeable. The most important of them is that each stem considered by the
search algorithm must itself be a word in the input lexicon.

Each word is initially generated by the node containing only the suffix €. For
a word to be generated by another node, its stem must be promoted from this node.
All stems in this node must themselves be words, however. Since all stems can only
be promoted from the node containing no suffixes into the node representing the e,
there is no way for a stem that is not itself a word in the input lexicon to enter a
node containing suffixes. All stems therefore must also be words.

This limitation is not a significant impairment in English, where almost all
stems are words, but it is devastating in other languages, including those in the
Romance and Slavic language families. French for example, has the verb parler,
whose inflected forms include parle, parles, parlons, and parla. The ideal stem to
identify would be parl, as it is the longest common substring for all of the inflected
forms, however parl is not a word in French and thus the hill-climbing search on its

own could not identify it and would miss many of the inflected forms of parier.



search is a valid hypothesis, and can be used without the hill climbing search detailed
above, though a combination of the two will yield a more probable hypothesis than
the directed search would on its own. The directed search does not directly attempt
to find the most probable hypothesis consistent with the input, but finds a highly
probable and consistent hypothesis.

The directed search algorithm attempts to find highly productive nodes in the
lattice and maximally fill them with stems. The set of highly productive nodes and
the stems in them are then pruned to produce a valid hypothesis consistent with the
lattice invariants.

The directed search is accomplished in two steps. First sub-hypotheses, each
of which is a hypothesis about a subset of the lexicon, are examined and ranked. The
sub-hypotheses are initially each nodes in the lattice. The N best sub-hypotheses are
then incrementally combined until a single sub-hypothesis remains. The remainder
of the input lexicon is added to this sub-hypothesis at which point it becomes the
final hypothesis.

3.3.1 Ranking Sub-Hypotheses

The set of possible suffixes is defined to be the set of terminal substrings, including
the empty string €, of the words in L. Each subset of the possible suffixes has
a corresponding sub-hypothesis. The sub-hypothesis, h, corresponding to a set of
suffixes SUFF},, has the set of stems STEMS,. For each stem m and suffix z, in
h, the word m 4+ x must be a word in the input lexicon. STEM, is the maximal
sized set of stems that meets this requirement. The sub-hypothesis, h, is thus the
hypothesis over the set of words formed by all pairings of the stems in STEM,, and
the suffixes in SUFF},, with the corresponding morphological breaks. One can think of
each sub-hypothesis as initially corresponding to a maximally filled paradigm. Only

sub-hypotheses which have at least two stems and two suffixes are considered.



3.3.2 Combining Sub-Hypotheses

The highest /N scoring sub-hypotheses are incrementally combined in order to create
a hypothesis over the complete set of input words. The selection of N should not
vary from language to language and is simply a way of limiting the computational
complexity of the algorithm. Changing the value of N does not dramatically alter
the results of the algorithm. We let N be 100 in the experiments reported here.

Let S be the set of the NV highest scoring sub-hypotheses. We remove from S
the sub-hypothesis, s’, which has the highest score. The words in s’ are now added
to each of the remaining sub-hypotheses in S, and their counter hypotheses. Every
sub-hypothesis, s, and its counter, 5, in .S are modified such that they now contain
all the words from s’ with the morphological breaks those words had in §'. If a word
was already in s and s and it is also in s’ then it now has the morphological break
from s', overriding whatever break was previously attributed to the word.

All of the sub-hypotheses now need to be rescored, as the words in them will
likely have changed. If, after rescoring, none of the sub-hypotheses have scores greater
than one, then we use s’ as our final hypothesis. Otherwise, we repeat the process
of selecting s’ and adding it in. We continue doing this until all sub-hypotheses have
scores of one or less or there are no sub-hypotheses left.

The final sub-hypothesis, s, is now converted into a full hypothesis over all
the words. All words in L, that are not in s’ are added to s’ with € as their suffix.

This results in a hypothesis over all the words in L.



Empirical Results

This chapter describes experiments evaluating the performance of the algorithm de-
scribed in Chapter 2 and Chapter 3 conducted on English and Polish data. Several
variants of the algorithm are compared and the performance of the algorithm is com-

pared with that of Goldsmith’s Linguistica algorithm|9].

4.1 Input Lexicons

Various sized word lists were extracted from English and Polish corpora. The English
word lists were extracted from set A of the Hansard corpus, which is a parallel English
and French corpus of the proceedings of the Canadian Parliament. No standard corpus
of Polish could be found, so one was developed from online documents consisting of
old Polish stories. The sources for the Polish corpus were somewhat older texts and
thus our results correspond to a slightly antiquated form of the language, though
not significantly divergent from modern Polish. The English in the Hansard corpus
corresponds to British English and not American English.

The most frequent words in both corpora were extracted, excluding words with
non-alphabetic characters, to build the input lexicons. The 100 most common words
in each corpus were also excluded, as these words tend to be function words and do not
tend to have regular inflection. Testing does not reveal significantly different results
when the one hundred most common words are included. Lexicons consisting of the
500, 1000, 2000, 4000, 8000 and 16,000 most common words were then constructed
and used as input to the morphology learning algorithms. The Polish data set did not
include a lexicon with 16,000 words as the corpus was too small and did not contain

a sufficient number of word types.
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combined with the suffix “tion”, but in terms of simple concatenation it is unclear
if the break should be placed before or after the “t”. When “locate” is combined
with the suffix “s”, simple concatenation seems to work fine, though a different stem
is found from “location” and the suffix “es” could be argued for. One solution is to
develop an evaluation technique which incorporates the adjustment or spelling change
rules, such as the one that deletes the “e” in “locate” when combining with “tion”.
None of the systems being evaluated attempt to learn adjustment rules, and
thus it would be difficult to analyze them using such a measure. In an attempt to
solve this problem we have developed two new measures of performance, neither of
which specifies the exact morphological split of a word. The accuracy of stem and
suffix identification are evaluated separately, but when considered together they give
a robust measure of the overall performance. The accuracy of the stems predicted is
analyzed by examining whether pairs of words are related by having the same imme-
diate stem. We measure suffix identification by comparing against groups of suffixes
which have the same underlying form but differ in surface form due to adjustment

rules.

4.2.2 Stem Relation

Two words are related if they share the same immediate stem. For example the words
“building”, “build”, and “builds” are related since they all have “build” as a stem,
just as “building” and “buildings” are related as they both have “building” as a stem.
The two words, “buildings” and “build” are not directly related since the former has
“building” as a stem, while “build” is its own stem. Irregular forms of words are also
considered to be related even though such relations would be very difficult to detect
with a simple concatenation model.

We say that a morphological analyzer predicts two words as being related if

it attributes the same stem to both words, regardless of what that stem actually is.



Lexicon Size | English | Polish
500 99 348
1,000 321 891
2,000 1,012 | 2,062
4,000 2,749 | 4,352
8,000 6,762 | 9,407
16,000 15,093 -

Table 4.1 shows the correct number of stems relations at each lexicon size in
both English and Polish. Because Polish is morphological richer than English and
uses more inflected forms, the number of relations in Polish is consistently higher

than in English for same number of words.

4.2.3 Suffix Identification

Suffix accuracy is measured by gathering all of the surface forms of all of the suffixes
from a given input and grouping those with the same underlying form together.
We only grouped together those suffixes which seemed to be simple adjustment-rule
variations of each other. Only suffix spelling changes were included. For example, “s”,
“es”, and “ies” were grouped together, as were several variations of “tion”, such as
“ation”, “sion”, and “ion”. The suffix “ing” was not grouped with any other suffixes,
despite the presence of words such as “running”, where the “n” was duplicated, as
this was deemed to be a stem spelling change.

We only scored against those suffix groups whose suffixes occurred in at least
two of the stem relations for the same input. If an analyzer predicts any suffix in a
suffix group, it is said to predict that group. Predicting multiple suffixes in a group
yields no additional score increase, though it will likely improve the stem relation
score. Each incorrect suffix predicted counts as a false suffix group. The precision

for suffix identification is the number of correct groups predicted divided by the total



be able to score high in one measure but at the expense of the other measure.

Table 4.2: Correct Number of Suffixes

Lexicon Size | English | Polish
500 10 (31) | 19 (29)
1,000 14 (40) | 34 (46)
2,000 24 (65) | 51 (70)
4,000 33 (85) | 63 (86)
8,000 39 (92) | 86 (109)
16,000 45 (99) -

Table 4.2 shows the correct number of suffixes at each lexicon size in both
English and Polish. The first number is the number of suffix groups and the number
in parentheses is the total number of surface forms of suffixes. Again the number of
suffixes in Polish is much higher than in English, but the ratio of suffix surface forms
to suffix groups is much lower. This is because there are fewer suffix spelling change
rules in Polish than in English, so there are fewer surface forms for each suffix. There

are in fact a roughly equal number of surface forms in both languages.

4.2.4 Example Evaluation

It might be of some assistance to consider an example evaluation of a hypothesis in
English. Consider the 21 words in Table 4.3, with the morphological breaks shown.
These words and the morphological splits shown are not from actual experiments and
are purely for explanation of the evaluation method.

There are obviously several incorrect analyses of words in Table 4.3. The
preferred analysis for justice would be justice 4+ €, and the analysis for justices should
be justice + s. Similarly for office and offices. In addition the hypothesis fails to
find that buildings should be building + s. The analysis of operate as operat + e is



ponder + 1ng quick + € quick + ly

debatable, as there should be no morphological split in operate, but such an analysis

identifies that operate and operation have the same stem.

Table 4.4: Evaluation of Example Hypothesis

TP FP FN Precision Recall Fscore
Stem Relation 12 4 1 0.75 0.923 0.828
Suffix Identification 5 3 0 0.625 1.0 0.769

Table 4.4 shows the results of evaluating the example hypothesis in Table 4.3.
TP is the number of true positives, which is the number of relations or suffixes
correctly identified. FP is the number of false positives and FN is the number of

false negatives. Precision, a measure of the accuracy of the predictions is defined as:

TP

Precision := m

Recall, a measure of how many of the correct predictions were found, is defined as:

TP

Il=—
Reca TP + FN

Fscore is a measure that combines precision and recall in an unbiased manner, which
favors an equal precision and recall. The fscore allows a single value by which to
evaluate the performance, in either stem relation or suffix identification, and is defined
as:

2 % Precision * Recall
Fscore :=

Precision + Recall



There are nine predicted suffixes, €, -ing, -s, -ly, -e, -tion, -ice, -ices, and ion,
of which three are not really suffixes, -e, -ice and -ices. Two of the suffixes, -ion and
-tion, belong to the same suffix group, that is they are really the same suffix but have
different surface forms. There are no suffixes in the data that were not identified in
the hypothesis, so there are 5 correct suffix groups. The number of correct suffixes
found is 5 and the number of incorrect suffixes identified is 3. The hypothesis thus
has a suffix precision of 0.625 and a suffix recall of 1.0, giving an fscore of 0.769.

No hypothesis for this set of words would ever result in a perfect score for stem
relations, due to build, building, and buildings. To get a perfect stem relation score,
build and building would have to have the same stem, building and buildings would
have to have the same stem, and build and buildings would have to have different
stems. However if any two of those relationships hold then the third must be false,
since no ambiguity is allowed.

Additionally if operate and operating are correctly found to have the same
stem then one of the words must have an incorrect suffix, as -ing has only one correct
surface form and -e is not a correct suffix. Only a system that could learn spelling
change rules would be succeed at a perfect score with these two words. A balance

between the two evaluation methods must be reached for optimal performance.

4.3 Experimental Comparisons

4.3.1 Comparison of Model Variants

Comparisons of results using the Naive Model from section 2.1, the Simple Model
from section 2.2, and the Paradigm Model from section 2.3. The search through
the probability space was accomplished by first finding a good hypothesis using the
directed initial hypothesis algorithm described in section 3.3, and then maximizing

the probability with the hill climbing search from section 3.2.



0\ 1 1 1 1 1 1 O\ 1 1 1
500 1000 2k 4k 8 16k 500 1000 2k 4k 8k

Lexicon Size Lexicon Size

Figure 4.1: Number of Suffixes Predicted by Model Variants

Figure 4.1 shows the number of suffixes predicted by the different model vari-
ants in both English and Polish. This is the number of surface forms of suffixes, not
the number of suffix groups predicted. The Naive Model predicts far more suffixes at
larger corpus sizes than any of the other models, due mostly to the small constraints
on the suffix set. The Simple Model is the most conservative due to the high cost of
pairing a suffix with a stem. The difference between the two versions of the Paradigm
Model is fairly small though it appears that the uniform prior distribution causes the

model to be slightly more liberal in predicting new suffixes.
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Figure 4.2: English Stem Relation Accuracy across Model Variants

Figure 4.2 and figure 4.3 show the stem relation accuracy for the different
models in English and Polish, respectively. The precision for all the models are
relatively equal, making it impossible to judge which is better. The recall is slightly
more informative, as it shows the consistently worse performance of the Naive Model.
The other models are still too similar to differentiate. The performance across both

languages is relatively consistent.



Figure 4.3: Polish Stem Relation Accuracy across Model Variants
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variants in English and Polish, respectively. The Simple Model has very high precision
in both English and Polish at the expense of its recall. This is reasonable as the Simple
Model predicts a very small set of suffixes, though those suffixes that it does predict
are very accurate. Both versions of the Paradigm Model have very similar Fscores.
The biased paradigm prior causes a slightly higher precision, balanced by a reduction

in recall. Since our goal is to generate a conservative model that has higher precision,
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Figure 4.5: Polish Suffix Accuracy across Model Variants

Figure 4.4 and figure 4.5 show the suffix identification accuracy for the model

it is fair to say that the biased prior slightly outperforms the uniform prior.



evidence that the suffix occurs and more words are required for the models to favor
the introduction of new suffixes. At much larger lexicon sizes the number of suffixes
detected in Polish should exceed the number detected in English. This phenomenon
can also be seen in the lower recall of the models in Polish.

The Paradigm Model with a biased paradigm prior has the best performance
and balance between both stem relation identification and suffix identification. The
Paradigm Model with a uniform paradigm prior has only slightly worse performance,
indicating that the prior used for that distribution only causes slight differences in
performance with the searches used. Therefore the Paradigm Model with the biased

paradigm prior has be used for the future experiments in this chapter.

4.3.2 Comparison of Search Variants

This section will compare the search starting from the original initial hypothesis
from section 3.2.1 to the directed initial hypothesis without search, as well as the
combination of the two. The Paradigm Model with a biased paradigm prior was used

with all of the experiments in this section.
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Figure 4.6: Number of Suffixes Predicted by Search Variants



growth rate of the number of correct suffixes.

The results in Polish for the Hill Climbing search are especially interesting and
unusual. Both the Simple Model and the Paradigm Model with a uniform paradigm
prior perform quite differently when applied to Polish using only the Hill Climbing
search, in that neither of those models identifies any suffixes, except €. Using only
the Hill Climbing search those models completely fail to analyze the Polish input
lexicons. Using the Directed and Combined Searches they succeed in producing an

analysis as previously shown in Figure 4.1.
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Figure 4.8: Polish Stem Relation Accuracy across Search Variants



misanalyzing many words as the lexicon sizes grow larger indicating difficulties scaling

up to larger datasets.
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Figure 4.9: English Suffix Accuracy across Search Variants
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Figure 4.10: Polish Suffix Accuracy across Search Variants

Figure 4.9 and figure 4.10 show the suffix identification accuracy for the search
variants in English and Polish, respectively. The Directed Search shows an excellent
increase in precision as the datasets increase in size, indicating that while it may not
be predicating many more suffixes as the lexicon size increases, those suffixes that it
does predict are more and more accurate. The lack of new suffixes predicted by the

Directed Search is evident in the rapidly descending recall score. The combination of



the addition of the Hill Climbing Search to find decent hypotheses. It is even slightly
more conservative than the combination of the two. The performance of the combined
system, as shown by the fscores, does seem to outweigh the slight loss of conservation.
The Directed Search appears to be too conservative, a problem solved by performing
the Hill Climbing Search from hypothesis generated by the Directed Search. As a
result the combined search technique will used for the remainder of the experiments

in this chapter.

4.3.3 Comparison with Linguistica

A version of Goldsmith’s Linguistica system available on the world wide web! was
used for these experiments. Word-list corpus mode and the method A suffix detection
were used, while all other parameters were left at their default values. The use of the
word-list corpus mode may have slightly hampered the performance of the system,
as it is an EM algorithm that uses the frequency of word types in assigning initial
weights. Due to software difficulties Linguistica was unable to run on the 500, 1000,
and 2000 word English Lexicons. The system ran without difficulties on the larger
English lexicons and on all of the Polish input lexicons.

Comparisons of Linguistica to the combined search with the Paradigm Model
with a biased paradigm prior are shown below. For purposes of simplicity the com-
bined search with the Paradigm Model with a biased prior shall be referred to as the
sMorph system.

Number of Suffixes Predicted

Figure 4.11 shows the number of suffixes predicted by Linguistica and sMorph. Lin-
guistica clearly identifies far more suffixes than the sMorph system. The sMorph

system is very consistent in the number of suffixes it predicts, with slight upward

Lavailable at http://humanities.uchicago.edu/faculty/goldsmith



Figure 4.11: Number of buffixes Predicted in Linguistica Comparison

trends. As Linguistica is predicting over 700 suffixes when exposed to 16,000 word

types in English it is clearly over predicting. Surprisingly Linguistica predicts far

fewer suffixes in Polish than in English, for the same reasons as the sMorph system,

as described above in section 4.3.2.
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Figure 4.12: English Stem Relation Accuracy
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Figure 4.13: Polish Stem Relation Accuracy in Linguistica Comparison

Figure 4.12 and figure 4.13 show the differences in stem relation accuracy

between sMorph and Linguistica in both English and Polish. The relation precision
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Figure 4.15: Polish Suffix Accuracy in Linguistica Comparison

Figure 4.14 and figure 4.15 show the suffix identification accuracy between
Linguistica and sMorph in various sized lexicons of English and Polish. These results
are especially interesting as the number of suffixes predicted by the two systems is
so divergent. The exceptionally low suffix identification precision of the Linguistica
system in English shows that very few of the large number of suffixes predicted by
that system are correct. Due to the large number of suffixes predicted by Linguistica
it does retain a high recall, though the balance of precision and recall is slightly worse
than the sMorph system. Since we are aiming for high precision for this task the loss

of precision at the benefit of recall is not desired.



Conclusions

I have presented and compared several generative probability models, which are used
to evaluate hypotheses, as well a non-probabilistic naive scoring system. The most
sophisticated of these systems, the Paradigm Model with a biased paradigm prior, con-
sistently has the best performance when applied to both English and Polish datasets.
This model is used to score hypotheses by a search which looks for the highest scor-
ing, or most probable, hypothesis. The combination of a directed and hill-climbing
search is shown to slightly outperform the directed search on its own in both English
and Polish. This system, sMorph, was then compared to Goldsmith’s Linguistica
system, which is another unsupervised morphology learning algorithm. Linguistica
over predicts the number of suffixes causing it make far more mistakes, while sMorph
makes fewer, but more accurate, predictions.

The sMorph system succeeds in its goal of conservative morphology learning,
though there is much room for increased accuracy. The hypotheses generated appear
to be good starting points for sophisticated systems, which could learn part of speech
tags, adjustment rules and more advanced morphology. Further testing is required to
show the language independence of the system, though the main difficulty here lies
in evaluation. Morphological analyses of languages are difficult to obtain, especially
for the rarer languages upon which this algorithm is designed to be used, and it is
difficult to test the system without the ability to quantitatively evaluate the results.

The primary power of the system is its exploitation of the notion of a paradigm.
By both modeling paradigms and searching specifically for paradigms in both searches,
the system hones in on the decisive characteristic of natural language morphology.
Any system that doesn’t capture the notion of a paradigm cannot succeed at learning

morphology. The modular nature of the system is also highly useful, as one could use



and multiple suffixes, such finding that buildings should be build + ing + s. The
current system is also unable to handle the ever popular word antidisestablishmen-
tarianism, which has many layers of prefixes and suffixes. The current models and
searches would probably need some significant improvement, though not enough to
destroy their fundamental character. The current system could be trivially altered
to detect prefixes by simply reversing all of the words in the lexicon on input and
output, such that it would treat all prefixes as suffixes. This does not aid in the task
of detecting prefixes and suffixes at the same time however.

The learning of adjustment or spelling change rules would be an invaluable
improvement to the current model. These rules would need to be learned for both
spelling change rules in the suffixes, such as the rule in English stating “-s” — “-es”
after a stem ending in “h”. A minimally supervised system for learning these rules
has already been developed by Yarowsky and Wicentowski[18]. The system takes a
preliminary morphological hypothesis, part of speech tags and token counts for the
input words, and learns a set of adjustment rules. Integrating such an algorithm into
the current sMorph system could allow for significant improvement in performance,
especially in English where suffix spelling changes are frequent.

A minimally supervised version of the sMorph algorithm seems very feasible.
Rather than presenting only unlabelled data to the algorithm a few examples of words
with morphological splits could also be given to aid in the initial searching. The
expense of annotating a small set of examples by hand is much more practical than
annotating the entire lexicon of a language, and would help limit the search space.
Such a modification to the system could be accomplished by including the supervised
training data with the unsupervised data, and not allowing the search routines to
modify the morphological breaks of the annotated data. A similar approach was
used by Brent and Tao [5] to make their unsupervised word segmentation algorithm,
minimally supervised. The incorporation of training data might not significantly

improve performance, since the current algorithm does not have difficulty identifying



modeling for speech recognition tasks[1]. Schone and Jurafsky use singular value
decomposition (SVD) to calculate the semantic relatedness of words from the cooccu-
rance data, but such a method does not lend itself to incorporation into a probabilistic
model. Probabilistic Latent Semantic Analysis[10] is a variation on LSA that at-
tempts to model the data using a multinomial distribution with maximum likelihood
estimates. This probabilistic model has shown success when integrated into language
modeling[15], and attempts have been made to integrate a similar model into the
morphology system. I am confident that the incorporation of semantic information
could succeed and provide greater accuracy.

Perhaps the most useful improvement to this system would be the development
of an incremental directed search. The system currently needs to be applied to the
entire set of input words, which is computationally very expensive if the input size
is extremely large, making scaling up the system difficult. The system would benefit
if it analyzed only a subset of the lexicon, such as the 500 most frequent words, and
then added in more and more words incrementally so that the search space was more
limited. The most fascinating part of the directed search is that it in effect targets
subsets of the lexicon and analyzes them, making it ideal for working on subsets of
the data. An alternative approach would be to break the lexicon into several pieces,
use the directed search on each part, and then merge the resulting sub-hypotheses

together.
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