
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2002-17

2002-05-03

Design and Performance of Scalable High-Performance Design and Performance of Scalable High-Performance

Programmable Routers - Doctoral Dissertation, August 2002 Programmable Routers - Doctoral Dissertation, August 2002

Tilman Wolf

The flexibility to adapt to new services and protocols without changes in the underlying

hardware is and will increasingly be a key requirement for advanced networks. Introducing a

processing component into the data path of routers and implementing packet processing in

software provides this ability. In such a programmable router, a powerful processing

infrastructure is necessary to achieve to level of performance that is comparable to custom

silicon-based routers and to demonstrate the feasibility of this approach. This work aims at the

general design of such programmable routers and, specifically, at the design and performance

analysis of the processing... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Wolf, Tilman, "Design and Performance of Scalable High-Performance Programmable Routers - Doctoral
Dissertation, August 2002" Report Number: WUCSE-2002-17 (2002). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1135

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1135?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1135

Design and Performance of Scalable High-Performance Programmable Routers - Design and Performance of Scalable High-Performance Programmable Routers -
Doctoral Dissertation, August 2002 Doctoral Dissertation, August 2002

Tilman Wolf

Complete Abstract: Complete Abstract:

The flexibility to adapt to new services and protocols without changes in the underlying hardware is and
will increasingly be a key requirement for advanced networks. Introducing a processing component into
the data path of routers and implementing packet processing in software provides this ability. In such a
programmable router, a powerful processing infrastructure is necessary to achieve to level of
performance that is comparable to custom silicon-based routers and to demonstrate the feasibility of this
approach. This work aims at the general design of such programmable routers and, specifically, at the
design and performance analysis of the processing subsystem. The necessity of programmable routers is
motivated, and a router design is proposed. Based on the design, a general performance model is
developed and quantitatively evaluated using a new network processor benchmark. Operational
challenges, like scheduling of packets to processing engines, are addressed, and novel algorithms are
presented. The results of this work give qualitative and quantitative insights into this new domain that
combines issues from networking, computer architecture, and system design.

https://openscholarship.wustl.edu/cse_research/1135?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1135?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages

SEVER INSTITUTE OF TECHNOLOGY

DOCTOR OF SCIENCE DEGREE

DISSERTATION ACCEPTANCE

(To be the first page of each copy of the dissertation)

DATE: May 3, 2002

STUDENT’S NAME: Tilman Wolf

This student’s dissertation, entitled Design and Performance of Scalable High-
Performance Programmable Routers has been examined by the undersigned commit-
tee of five faculty members and has received full approval for acceptance in partial
fulfillment of the requirements for the degree Doctor of Science.

APPROVAL: Chairman

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

DESIGN AND PERFORMANCE OF SCALABLE HIGH-PERFORMANCE

PROGRAMMABLE ROUTERS

by

Tilman Wolf, M.S.

Prepared under the direction of Professor Jonathan S. Turner

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Science

August, 2002

Saint Louis, Missouri

Short Title: Design of Programmable Routers Wolf, D.Sc. 2002

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

DESIGN AND PERFORMANCE OF SCALABLE HIGH-PERFORMANCE

PROGRAMMABLE ROUTERS

by Tilman Wolf

ADVISOR: Professor Jonathan S. Turner

August, 2002

Saint Louis, Missouri

The flexibility to adapt to new services and protocols without changes in the

underlying hardware is and will increasingly be a key requirement for advanced net-

works. Introducing a processing component into the data path of routers and imple-

menting packet processing in software provides this ability. In such a programmable

router, a powerful processing infrastructure is necessary to achieve a level of perfor-

mance that is comparable to custom silicon-based routers and to demonstrate the fea-

sibility of this approach. This work aims at the general design of such programmable

routers and, specifically, at the design and performance analysis of the processing sub-

system. The necessity of programmable routers is motivated, and a router design is

proposed. Based on the design, a general performance model is developed and quanti-

tatively evaluated using a new network processor benchmark. Operational challenges,

like scheduling of packets to processing engines, are addressed, and novel algorithms

are presented. The results of this work give qualitative and quantitative insights into

this new domain that combines issues from networking, computer architecture, and

system design.

copyright by

Tilman Wolf

2002

to my family

Contents

List of Tables . viii

List of Figures . ix

Acknowledgments . xi

Preface . xii

1 Introduction . 1

1.1 Trends in Networking . 2

1.2 Programmable Networks . 3

1.3 Technology Challenges and Opportunities 5

1.4 Programmable Router Design . 6

1.5 Organization of Dissertation . 7

2 Programmable Router Design . 9

2.1 Software-Based Programmable Routers 9

2.1.1 Active Network Node . 10

2.1.2 Active Applications . 11

2.1.3 Performance Issues . 13

2.2 High-Performance Programmable Routers 14

2.2.1 Parallelism in Networking Workloads 14

2.2.2 Programmable Router Design 15

2.3 Processing System . 21

2.3.1 Processor Architectures . 21

2.3.2 Memory System . 26

2.3.3 I/O System . 26

2.3.4 Configurations . 27

iv

2.4 Scalability . 28

2.4.1 APC Design Scalability . 28

2.4.2 Technology Scaling . 29

2.5 Related Work . 35

2.5.1 Programmable Routers . 35

2.5.2 Network Processors . 37

2.6 Summary . 38

3 Workload Characterization . 40

3.1 CommBench Applications . 40

3.1.1 Header-Processing Applications 41

3.1.2 Payload Processing Applications 42

3.2 Measurements . 43

3.2.1 Tools and Input Data . 43

3.2.2 Code and Computational Kernel Sizes 44

3.2.3 Computational Complexity . 46

3.2.4 Instruction Set Characteristics 46

3.2.5 Memory Hierarchy Characteristics 49

3.2.6 Summary of Characteristics 52

3.3 Comparison to SPEC . 52

3.4 Architectural Implications . 53

3.5 Related Work . 55

3.6 Summary . 56

4 Performance Model . 57

4.1 Analytic Model . 57

4.1.1 Processing Performance . 60

4.1.2 Chip Area . 60

4.1.3 Memory System . 61

4.1.4 Memory and I/O Channels . 65

4.1.5 Optimization . 66

4.2 Workload and System Characteristics 67

4.2.1 Network Processor Workload 67

4.2.2 System Parameters . 67

4.3 Design Results . 68

4.3.1 Optimal Configuration . 68

v

4.3.2 Performance Trends . 70

4.3.3 Sensitivity of Results . 76

4.3.4 Summary of Results . 78

4.3.5 Impact on Programmable Router Design 78

4.4 Related Work . 79

4.5 Summary . 79

5 Processor Scheduling Algorithms . 80

5.1 Scheduling Problem . 80

5.2 Processing Characteristics . 81

5.2.1 Predictability of Processing Times 82

5.2.2 Cold Cache Penalty . 84

5.2.3 Reservations . 86

5.3 Locality-Aware Predictive Scheduling 87

5.3.1 Scheduling Algorithm . 87

5.3.2 Evaluation . 90

5.4 Estimation-Based Fair Queuing . 97

5.4.1 Scheduling Algorithm . 98

5.4.2 Evaluation . 105

5.5 Combination of LAP and EFQ . 109

5.6 Related Work . 109

5.7 Summary . 111

6 System Simulation . 112

6.1 Introduction . 112

6.2 System Simulation . 114

6.2.1 Data Path . 114

6.2.2 Control Path . 115

6.2.3 Processing Engine Simulation 115

6.2.4 Queuing System . 119

6.2.5 Schedulers . 121

6.2.6 Programming Environment 121

6.2.7 Simulation Summary . 123

6.3 Simulation Results . 123

6.3.1 Workload and Configuration 123

6.3.2 Comparison . 125

vi

6.3.3 Error Trends . 126

6.4 Summary . 132

7 Summary and Future Work . 133

7.1 Summary . 133

7.2 Future Work . 134

References . 136

Vita . 149

vii

List of Tables

2.1 Technology Growth Parameters. 33

2.2 Processing Engine Scalability. 36

3.1 CommBench Applications. 41

3.2 Code Size for CommBench. 44

3.3 Dynamic Kernel Size for CommBench. 45

3.4 Computational Complexity of CommBench Applications. 47

3.5 Ordered Instruction Frequencies for CommBench. 49

3.6 Effects of Cache Line Size on Miss Rates. 51

3.7 SPEC Code Size. 52

3.8 SPEC Kernel Size. 53

4.1 Performance Model Parameters. 59

4.2 Aggregate Workload Parameters. 67

4.3 System Parameters. 69

4.4 Optimal System Configurations. 71

4.5 Sensitivity of Results. 77

5.1 Packet Processing Parameters. 84

5.2 System Parameters. 88

6.1 Comparison of Analytic Model and Simulation Results. 127

viii

List of Figures

1.1 Network Services Requiring Programmability. 4

1.2 Technology Growth Trends. 6

2.1 Active Network Node. 11

2.2 Parallelism in Networking Workloads. 15

2.3 System Organization of Programmable Router. 17

2.4 Router Port Design. 18

2.5 Processor Performance in Relation to Complexity. 23

2.6 Growth of Communication Link Speed. 30

2.7 Growth of Processor SPEC Performance. 31

2.8 Growth of Processor Clock Rate. 31

2.9 Growth of Processor Size. 32

2.10 Growth of Application-Specific Integrated Circuits. 33

2.11 Processing Power per Byte of Link Data. 35

3.1 Locality in CommBench Applications. 47

3.2 Instruction Mix for CommBench. 48

3.3 Cache Miss Rates for CommBench Applications. 50

3.4 Average Cache Miss Rates. 51

3.5 SPEC and CommBench Instruction Frequencies. 54

4.1 Network Processor Architecture for Performance Model. 58

4.2 Queue Length for Memory Channel. 64

4.3 Aggregate Cache Miss Rates. 68

4.4 Performance vs. Memory Channel Load. 71

4.5 Performance vs. Memory Channel Width. 72

4.6 Performance vs. Processor Clock Rate. 73

4.7 Optimal Number of Threads. 73

ix

4.8 Performance vs. Cache Sizes (Workload A). 74

4.9 Performance vs. Cache Sizes (Workload B). 74

4.10 Chip Area Usage. 76

5.1 Scheduler System Outline. 82

5.2 Packet Processing Time Approximation. 83

5.3 Cold Cache Penalty. 85

5.4 Processor Assignment Comparison between FCFS and LAP. 93

5.5 Throughput of Different Scheduling Algorithms. 94

5.6 Cold Cache Fraction. 95

5.7 Delay Variation. 96

5.8 EFQ Scheduling Example. 102

5.9 Packet Delays for a Flow Processed by IP Forwarding. 107

5.10 Packet Delays for a Flow Processed by CAST Encryption. 107

5.11 Packet Delays for a Flow Processed by Reed-Solomon FEC. 107

5.12 Variation of Minimum Packet Delay. 108

6.1 Simulation Data Path. 116

6.2 Simulation Control Path. 117

6.3 Simulation Address Space. 119

6.4 Queue Memory Layout. 120

6.5 Application Template. 122

6.6 Simulation Workload Cache Misses. 124

6.7 Comparison of Analytic Model and Simulation Results. 129

6.8 Comparison of Analytic and Simulated Cache Miss Rates. 130

6.9 Memory Channel Queue Length. 131

x

Acknowledgments

I would like to express my thanks to the numerous people who have helped me in

completing this work. First and foremost, I want to thank my advisor Jon Turner

for his guidance and the many fruitful discussions. His constant quest for meaningful

research and results has taught me invaluable lessons for my career. I also want

to thank the members of my thesis committee, Mark Franklin, Jason Fritts, David

Richard, and Marcel Waldvogel, who have given me constructive input. In particular,

I want to thank Mark Franklin with whom I have collaborated on much of the research

related to computer architecture. For support with every-day lab work I want to thank

John DeHart, who helped me with many of the measurements. Thanks to Sumi

Choi, Dan Decasper, and John DeHart for all the work on the ANN project. For

interesting discussions on all kinds of topics, I would like to thank Anshul Kantawala,

David Taylor, Samphel Norden, Jai Ramamirtham, Prashant Pappu, and Sherlia Shi.

Finally, I want to thank Ed Spitznagel, who was a great officemate for the past four

years.

For financial support, I would like to thank DARPA and IBM Research, who

paid for my stipend and many conference trips. Especially, I would like to thank

Mahmoud Naghshineh from IBM, who sponsored my IBM Research Fellowship.

I thank my fianceé Ana Lucia Caicedo for her love and patience throughout

my time as a graduate student. For further non-technical support, I want to thank

all the “fools” from the 4th floor in Bryan Hall who were fun to interact with. I thank

Dr. Roman for his advice on how to run the Friday Happy Hour and on how to find

a faculty position. Thanks to the people from the Evolutionary Biology program at

WashU who gave my mind a respite from computer science when needed.

Finally, I thank my parents for having me brought up to appreciate the value

of friends, travel, respect, and education.

Tilman Wolf

Washington University in Saint Louis

August 2002

xi

Preface

Hundreds of scientific papers are being published every year proposing changes to

existing protocols (e.g., TCP) or introducing new communication mechanisms (e.g.,

mutlicast, QoS). In practice, however, only very few modifications to the current

Internet are deployed. One reason is that most improvements require changes to

current Internet routers, which means that expensive equipment that is already in

place has to be replaced. For economic reasons, it is infeasible to do this more often

than every few years.

To address this problem, it was proposed that packet processing be performed

in software on each node in the network. Such a network is called an “active network”

or “programmable network.” Much funding by DARPA has been put into this research

area, including the Active Network Node project at Washington University. One key

issue in our project was the limited amount of processing that can be performed at

link rates. From this need for more processing power, my work on high-performance

programmable routers has been motivated.

The processing engine of a programmable router, the “network processor,” is

the most performance-critical component. While network processors have recently

been developed commercially, not much effort has been put into systematically eval-

uating the processing requirements and design alternatives of these multiprocessors.

It is imperative to obtain a quantitative understanding of system issues in order to

develop programmable routers that scale well and can keep up with the ever-growing

link speeds and application demands. My work proposes such a programmable router

design based on workload measurements and analytic performance modelling. The

scope of this work also includes network processor scheduling and system simulation,

which brings together issues from networking, computer architecture, and system

design.

xii

1

Chapter 1

Introduction

Industrialized countries have become more dependent on a widely accessible and

high-performance networking infrastructure. The Internet is used for personal and

business communications as well as online commerce in the form of e-shopping and

e-business. It is crucial that networking technology maintains and further improves

the performance and the range of functionality of the Internet.

With the wide deployment of optical fiber over the past years, raw bandwidth

has become a widely available commodity. A key challenge now is to make use of

this bandwidth and extend networks to provide advanced services. The need for

new services lies in the fact that the protocols that were originally developed for the

Internet are not addressing issues that have recently become critical (e.g., security).

It is important that the Internet be able to adapt to support such changes. However,

current routers in the network are specialized for fast processing of existing protocols.

New protocols can only be supported by replacing existing routers with new routers.

Programmable routers offer a solution to providing this necessary flexibility in

the network. By processing packets in software rather than specialized hardware, a

programmable router can be re-programmed to support new protocols and services.

One key challenge is to design such a programmable router in a way that it can

achieve data forwarding performance that is comparable to traditional networks. This

dissertation addresses this issue and proposes a scalable, high-performance design for

programmable routers.

2

1.1 Trends in Networking

One reason for the lack of flexibility in today’s Internet is that it evolved from a

network that was originally designed in the 1970’s. The design goals then were to

have a simple, packet-switched communication infrastructure, which connects a large

number of networks with gateways (or “routers”) [Cla88]. The network itself was kept

relatively simple and provided basic communication between the end-systems. This

led to networking protocols, where most of the complexity is implemented on the end-

systems (e.g., retransmission of lost packets, congestion control based on round-trip

time measurements).

Over time, several additions have been proposed and implemented in the In-

ternet, because the initial design did not consider them. Since the Internet does not

support the dynamic deployment of new protocols, these additions were specifically

added to later generations of routers. The following list highlights a few, which are

characterized by the need of support by the network (i.e., they cannot be implemented

on end-systems only):

• Random Early Detection [FJ93] is a queue management scheme for routers to

fairly drop packets from rogue TCP flows. This is can be implemented in a very

simple fashion, but it constitutes a type of processing on a router. Almost all

current routers implement some form of RED, but only few use it in practice.

• Firewalls [Mog89] are a standard security component of most networks. Packets

are filtered depending on rules defined by the network administrator. This

enables the blocking of network traffic that could compromise the security of

hosts on the network (e.g., port scanning). The firewall rules can be numerous

and complex, which requires significant computational power on the firewall to

keep up with typical access link speeds.

• Network address translators (NAT [EF94]) are another common component in

IP networks. A NAT allows multiple hosts in a stub domain to use a single

globally unique IP address. IP packets passing between the stub domain and

the Internet are modified by the NAT. This reduces the number of IP addresses

used by a stub domain and thereby extends the time before all IP addresses are

assigned.

• Web switching [AAP+00] is a method of distributing a web server over sev-

eral physical machines while presenting a single font-end to the outside. Web

3

switches parse HTTP requests in packets and determine the appropriate server

to which to forward the request. Since the HTTP request is sent only after

the TCP connection is established, the web switch also has to splice the TCP

connection between client and back-end server.

• IP traceback [SPS+01] allows the network to keep state on the traffic that was

forwarded and provides the ability to identify the sources of possibly malicious

data flows. For this purpose, routers need to compute a hash from the data

packet and store it for a possible later audit.

In practice, these changes either have been slowly added to all routers (as for

RED) or they were implemented on servers that are connected to the routers (as

for NAT and Web Switching). These specialized solutions are working reasonably

well for individual problems, but they are limited in that each extension requires its

own solutions. This approach is limited as more and more changes are proposed. A

few examples of desirable functions that the network should support are shown in

Figure 1.1. Also, as the number of devices connected to the Internet increases with

time, the diversity of protocols and the range of services will further increase. A more

general approach to providing flexibility to adapt to new protocols and services is by

means of programmable routers.

1.2 Programmable Networks

A programmable network consists of programmable routers that have general-purpose

processing units in their data path. These processing units can be programmed to

perform various protocol operations as well as complex payload processing. Unlike

traditional routers, deployment of new protocols can be achieved by reprogramming

the system rather than exchanging expensive hardware. This programmability of the

data plane extends the traditional store-and-forward paradigm of routers to store-

process-and-forward. The processing step is where interesting new services and pro-

tocols can be integrated into the network.

The philosophy of opening the network to be programmable raises many ad-

ministrative issues. In particular, safety and security are points of increasing concern.

We assume that programmable networks would only allow system administrators and

4

End system:
- IP security
- TCP termination

Server:
- Content-based
switching

- Firewall
- SSL termination
- IP security

Access router:
- Access concentration
(cable, DSL, wireless)

- Network address translation
- Policy-based QoS
- Monitoring and billing
- Firewall

Edge router:
- Packet classification
- QoS (DiffServ)
- monitoring and billing

Core router:
- Multiprotocol label switching
- QoS aware routing
- Monitoring

Figure 1.1: Network Services Requiring Programmability.

router vendors to deploy well-tested router software that provides the required ser-

vice functionality. Such a model might later migrate to a fully open programming

platform as proposed by the active networking community.

The flexibility of a programmable router comes of course at a price. Software

processing is inherently slower than customized logic that is optimized for protocol

processing. However, the increased life-time of a programmable router and the shorter

development phase for new protocol support can pay for possibly lower performance.

Also, highly parallel processing engines can be developed for this environment to

achieve processing rates comparable to traditional routers.

On the commercial side, there has been much development on such network

processors. Numerous companies have announced and built such multiprocessor

systems-on-a-chip for this environment (e.g., IBM’s Power NP, Intel’s IXP1200, and

Motorola’s C-5). However, a general architecture for network processors has not been

developed, and a quantitative method for comparing designs is not available. There

is much need for a more systematic design approach for these architectures.

The field of programmable routers is still in its early years. It can be ex-

pected that there will be much growth in this area. One reason is that the flexibility

5

provided by programmable routers enables companies to deploy new services faster

than in traditional networks. This is particularly important, since the telecommuni-

cations market has saturated on raw bandwidth. Services are now what differentiates

telecommunications providers, and the ability to quickly react to user demands and

competitions will be key to survival in the new telecommunications age.

1.3 Technology Challenges and Opportunities

The need for high performance in the processing engines of programmable routers re-

quires consideration of the newest available integrated circuit technologies. Therefore

it is important to observe the technology growth trends in these areas. Of particular

interest are:

• Communication Link Speed. Programmable router performance must scale with

the growing data link rates.

• Semiconductor Technology. Economic reasons require processing engines to be

implemented on single chips. Higher levels of integration allow more processors

and memory on such an embedded system.

• Processor Architecture. Advances in processor design give opportunities for

higher performing processing engines.

• Application Complexity. With the proliferation of processing engines in net-

works, application programmers will invent new applications, services, and pro-

tocols that will require more and more processing power.

These four areas are relevant to programmable router design as they directly

impact the performance requirements (link speeds and application complexity) and

the possible solutions (ASIC technology and processor design). In particular, link

speed, ASIC technology, and processor performance follow exponential growth char-

acteristics. Moore’s “Law” [Moo65] states that the number of transistors on a chip

doubles about every 18 months. This exponential growth has impacted other mea-

sures in semiconductor technology (i.e., exponential increase of clock speeds). Con-

sidering the exponential growth in performance, Figure 1.2 shows the growth rates

for the important technologies (each technology is discussed in more detail in Chap-

ter 2, where also the sources for this data are given). It shows that communication

6

1

10

100

1000

10000

100000

1980 1985 1990 1995 2000 2005 2010

re
al

tiv
e

pe
rf

or
m

an
ce

year

transistors on ASIC
SPEC performance

transmission link speed
processor size

processor clock rate

Figure 1.2: Growth of Semiconductor and Communication Technologies.

link speeds grow rapidly, but the density of applications-specific integrated circuits

(ASICs) grows even faster. This allows network processor designs with multiple par-

allel processors to keep up with link speed growth. Since the clock rates and perfor-

mance of processors themselves grow over time, we can show that processing power

of the network processor design proposed in this work even grows faster than link

speeds. As a result, more complex network protocols and services can be supported.

1.4 Programmable Router Design

There are two interesting design questions for programmable routers. One is how to

provide the functionality of dynamically installing new protocols and services, and the

other is how to obtain the necessary performance to compete with traditional routers.

The issue of functionality has been addressed by some research in the area. Extending

software-based routers to dynamically support new protocols and applications has

been a goal of the “active networks” community. An equally important goal for

programmable routers is to achieve performance that is comparable to traditional

custom-logic routers.

To achieve such performance, two components of a programmable router need

to be considered closely. One is the queuing system that moves packets from the

7

interface to the processors and to the switching fabric is an important component.

With the additional processing step, this component becomes more complex than

in traditional routers as it has to ensure that the packet is processed by the right

instruction code on a processor at the right time. This leads to the question how a

processing engine should be integrated in each system and what the data and control

path should look like. The other component is the processing engine itself. There

are many interesting questions regarding the design and configuration of the network

processor. It is necessary to consider realistic workload characteristics in order to

obtain results that are meaningful for a particular environment. By using analytic

performance models, a broad range of configurations can be considered and general

performance trends can be derived.

A related issue is the scheduling of processing on a router port. Since neither

traditional processor scheduling schemes nor link bandwidth schedulers apply for

this environment, a new scheduling algorithm needs to be developed. The goal of

a scheduling algorithm is give performance guarantees for flows and improve the

processing throughput of a system by exploiting instruction locality.

In this work, the above issues are discussed and solutions are proposed and

evaluated.

1.5 Organization of Dissertation

The dissertation is organized as follows:

Chapter 2 introduces the design that we consider for the programmable router

and the network processor chip. Based on the trends in supporting technologies, a

scalable design is derived and described in detail.

Chapter 3 discusses the workload characteristics for network processors. Quan-

titative results are derived from a benchmark that was developed specifically for this

purpose. This chapter also discusses how workloads for NPs are different than for

workstations and what impact this has on the overall processor design.

The network processor that is described in Chapter 2 has a variety of configu-

ration options. Chapter 4 derives an analytical performance model that can be used

to find an optimal configuration and provides a method for exploring the large design

space.

The scheduling of the network processor is addressed in Chapter 5. In particu-

lar, two scheduling strategies are investigated; one that considers locality in the data

8

stream to reduce context switching overhead and one that addresses fair sharing of

processing resources under the premise of unknown processing times.

Chapter 6 ties the results of Chapters 2-5 together in a system simulation. The

analytical results for ASIC optimization and scheduling are simulated and verified.

Additional results are derived to evaluate overall system performance and demon-

strate its feasibility.

Finally, Chapter 7 summarizes the contributions of this work, addresses future

work, and concludes this thesis.

Related work to each topic is discussed individually in each chapter.

9

Chapter 2

Programmable Router Design

The ability to not only forward packets through a network, but also process them on

a router, is the key to implementing new services and protocols without changing the

underlying hardware infrastructure. Such processing can range from simple routing

and queuing decisions to complex payload modifications. Performing such processing

in software rather than custom logic opens the possibility to adapt and deploy new

services by simple changes in the software. The crucial challenge in such a system is

not only to be able to provide the functionality to dynamically change the forward-

ing loop for selected data streams. It is equally important that the performance of

the system be comparable to custom logic solutions despite the fact that software

processing is inherently slower than hardware solutions.

This chapter briefly motivates programmable networks by discussing our im-

plementation of a software-based programmable router. Two applications are intro-

duced to show the spectrum of processing demands necessary. This leads to our

programmable router design discussed in Section 2.2. In particular the processing

engine is discussed in detail. The scalability of this design is shown under current

technology growth trends. Related work at the end of the chapter discusses com-

mercial solutions and contrasts them to the port design proposed here. Parts of this

chapter are published in [WT00] and [WT01].

2.1 Software-Based Programmable Routers

General-purpose workstation processors that perform packet routing and forwarding

in software were common router configurations in the 1980’s. Typical link speeds of

a few kilobits per second did not exceed the processing power of such a system. As

10

performance demands for communication changed in the 1990’s towards link speeds

of several megabits per second, software-based routers were not able to keep up with

this trend. As a result, ASIC-based routers were developed to provide basic protocol

processing functionality at high speeds. The majority of current Internet routers

are still ASIC-based. Their limitations in supporting new protocols led to efforts

re-introduce the flexibility and extensibility of software-based systems.

General-purpose processing as part of the data path and deployment of pro-

cessing code via the packet itself was initially proposed by Tennenhouse and Wetherall

in 1996 [TW96]. From this idea, numerous research projects have spawned to develop

infrastructure that can process packets in the data path and dynamically deploy the

processing code. The majority of these projects were and are aimed at investigat-

ing and implementing software-based “active routers”1. Key questions are how to

dynamically install protocol processing code in the data path, how to deploy code

modules, and how to safely and securely execute arbitrary code on a router. We have

developed such a software-based programmable router in the Active Network Node

project at Washington University [DPC+99].

2.1.1 Active Network Node

The Active Network Node uses a programmable port processor [DRST01] on the

Washington University Gigabit Switch to implement the active processing function-

ality (see Figure 2.1). The operating system on the port processors is an extension

of NetBSD [Net], which allows dynamic installation of code modules (so-called “plu-

gins”) into the O/S kernel. IP packets are received by the O/S and processed by

the traditional IP processing steps. They are classified, and if active processing is

required, they are forwarded to the plugin code modules. There, the special func-

tionality and protocols can be processed. Afterwards, packets are sent through the

IP output processing to the switch backplane.

Plugins can be installed dynamically (i.e., when the first packet arrives that

requires a new plugin) or statically (i.e., by the administrator for commonly used

plugins). The code distribution for this system is done by code servers and clients on

1The difference between an “active router” and a programmable router lies in the way packet
processing code is developed and deployed. The “active networks” community supports the phi-
losophy of having end-systems (i.e., applications or users) deploy code modules along the path of
a data stream. For programmable routers, it is assumed the only well-defined code modules (i.e.,
new protocol support developed by the router vendor) are installed by administrative entities in the
network.

11

Source

Destination

Active
Node

Code Server

Active
Node

Back-
plane

PortPort

PortPort

Interface Interface

IP input
processing

IP output
processing

Plugins

Packet
classifier

Plugin Instal-
lation Unit

kernel

user space

Figure 2.1: Active Network Node. The data path is indicated by arrows.

the respective nodes. If a plugin is requested, the Plugin Installation Unit checks the

local plugin repository for the module. If the plugin module cannot be found, it is

downloaded from a remote code server.

The major contribution of this project, which makes it different from many

other active node implementations, is that the processing of packets occurs entirely

in the operating system kernel. This avoids the need to cross the boundary between

kernel and user-space, which is associated with overheads from switching between

contexts. Therefore much higher packet forwarding rates can be achieved.

2.1.2 Active Applications

The following two examples of applications that use processing on routers illustrate

how such a functionality can be used. More applications and their quantitative char-

acteristics are discussed in Chapter 3, where a programmable router benchmark is

presented.

Application-Specific Queuing

Once a node is able to consider application-specific requirements of data flows, queu-

ing policies can be adapted to improve the drop policies for flows. In this particular

application, which was implemented by Keller et al. [KCD+00], a WaveVideo data

12

flow was used. WaveVideo is a wavelet-based encoding of video data that separates

each frame into 33 frequency components [FDW+99]. Low frequency components

define the general image in the frame; high frequency components contain the details

of the image.

When a WaveVideo transmission encounters congestion in the network, it is

desirable that higher-frequency components are dropped first. With traditional queu-

ing, it is not possible for the router to make any distinction among packets. On an

active node, a plugin can determine if a packet should be forwarded or dropped. This

decision is based on the frequency-level of the current packet and the output queue

length. The result of this application-specific queuing is that under congestion the

subjective quality of the WaveVideo at the client is significantly higher than under

a random dropping policy. Also the quality degrades gracefully under increasing

congestion.

While the processing for this kind of application-specific queuing is very simple,

it has a considerable effect on the application. It should be noted that this particular

method of queuing could not easily be implemented on end-systems in traditional

networks without processing capabilities on the router.

Data Aggregation

An example of an active application, which is much more demanding in terms of

processing power, is Audio Data Aggregation [WC01]. The basic idea is to use the

capability to store and process packets to combine several data flows into a single

stream. In the process, data from multiple sources is aggregated, such that the

outgoing stream has lower bandwidth that the sum of all incoming streams. This

mechanism has also been described as “reverse multicast” [CGM+01].

Practical applications of this aggregation are scenarios, where a large number

of sensors transmit periodic status information, for example, a set of temperature

sensors in a building. Instead of forwarding all messages from all sensors to one central

location, the active nodes in the network can aggregate the information and forward

only a “summary.” For temperature, a suitable aggregation function is to compute

the minimum, maximum, and average temperature of all nodes that are connected

to that node. Another example is groups of people, who periodically transmit their

geographic position (e.g., soldiers in a battlefield). For this case, the centroid or the

bounding box of the group can be used as an aggregation function.

13

If the networking infrastructure matches the location of the sensors (e.g., all

sensors in one room send to one particular active node), then the aggregation steps

can be arranged in a hierarchical fashion. By connecting to the output from different

levels of the aggregation hierarchy, an observer can navigate the entire sensor space

at various levels of detail. Such a hierarchical aggregated multicast is described in

more detail in [WC01].

We have implemented this reverse multicast on the Active Network Node for

an audio conferencing application. With possibly multiple participants transmitting

audio data, the network can bridge the audio information together into a single data

stream (with the same bandwidth as an individual stream). There is a twofold benefit

in doing that. For one, the overall amount of data that is sent through the network

is reduced. Instead of each sender sending to all receivers, the audio is aggregated

on the first active node and each receiver receives only one single data stream. The

other benefit lies in the reduced processing requirements on the end-system. Since

the bridging has already been performed by the network, the audio stream can be

played back directly. In a traditional scheme, the end-system would need to bridge

all data streams individually. This is particularly useful for “thin clients” (e.g., mo-

bile PDAs), which have limited processing power. Another nice feature of audio

aggregation in the network is that the multiparty aspect of the conference becomes

completely transparent to the end-system software. In our implementation, we used

an IP telephony application, which can only support point-to-point communication.

Since the active network performed the bridging function, the aggregated stream was

indistinguishable from a point-to-point stream, and thus the application could be

used for conferencing without any modifications (except the control plane, which is

not considered here).

2.1.3 Performance Issues

The implementations of the above applications have shown that providing the func-

tionality of processing packets in software on a router can be achieved. An interesting

issue is the level of performance that can be achieved with such a system. For the

application-specific queuing application, very little processing power is necessary, and

high throughput can be achieved that is comparable to the throughput of a typical

software-based router. However, the processing of the entire payload for the aggre-

gation limits the throughput in the audio application. On the Active Network Node,

14

which uses a 167MHz Pentium processor, the processing of one 400 byte packet takes

in the order of 750µs, which translates to less than 5Mbps throughput. Such perfor-

mance is definitely several orders of magnitude below the needs in high-bandwidth

environments. This low throughput can be attributed to several causes:

• Heavy O/S Overhead. The programmable router uses a full-blown NetBSD

operating system, which is not optimized for packet processing.

• Non-Optimized Implementations. The proof-of-concept implementations lack

the fine-tuning that can be found in commercial software.

• Non-Optimized Architectures. The processing architecture is not optimized for

networking applications, but for traditional workstation-type processing.

These three points clearly limit the performance of a software-based router.

However, it cannot be expected that improving on these shortcomings would increase

the data throughput by more than an order of magnitude. The real limit of the Active

Network Node (and most other active router implementations) lies in the use of a

single-processor system. To overcome this limitation, the remainder of this Chapter

introduces a programmable router design that emphasizes on a high-performance

processing infrastructure.

2.2 High-Performance Programmable Routers

Higher levels of processing power can be achieved by exploiting parallelism in net-

working workloads. The packet processing can then be performed by highly parallel

multiprocessor systems, which are called “network processors.” The following dis-

cusses the parallelism in networks and shows our router design.

2.2.1 Parallelism in Networking Workloads

In a networking environment, more levels of parallelism are available to the system

designer than in traditional workstation multi-processors. This enables the design of

processing engines with a large number of independent processors without the need

for much communications or synchronization among them. There are three layers at

which parallelism can be exploited in a network multiprocessor (see Figure 2.2):

15

flow 2flow 1 flow n flow 2 flow nflow 1 flow 1

flo
w

-le
ve

lp
ar

al
le

lis
m

flow 1 flow 1 flow 1

flow n flow n

flow 2 flow 2

flow-level parallelism

ILP

Figure 2.2: Parallelism in Networking Workloads.

• Flow Level. Packets from different flows do typically not interact with each

other. Therefore they can be processed completely independently.

• Packet Level. In many protocols, there is no dependency among packets within

a flow. For example, simple IP protocol forwarding does not keep or modify

state between packets. Therefore packets can be processed in parallel, even if

they belong to the same flow. In some cases it is necessary to ensure that the

original packet order is restored after processing.

• Instruction Level. When processing a packet, there are several ways that paral-

lelism can be exploited. These approaches are the same as found in traditional

processor architecture. In particular, pipelining and instruction-level parallelism

can be used.

Parallelism in the processing workload can be directly translated to parallelism

in a processing system. For this to work, we need to make a few assumptions. First,

it is assumed that the processing requirements for a single flow do not exceed the

processing power of a processor. Otherwise processing would have to be split over

several processors creating similar synchronization problems as encountered in parallel

workstation processors. Second, if there are dependencies (e.g., between packets of a

flow), the scheduler assigns packets from the same flow to the same processors. This

is discussed in more detail in Chapter 5. These limitations are not expected to pose

significant constraints on realistic systems.

2.2.2 Programmable Router Design

The proposed programmable router design extends a traditional router design by

adding a network processors on router ports. This differs slightly from some commer-

cial approaches, where the entire router port functionality is implemented on network

16

processors. In our system, the network processor could be removed and the remaining

components would still provide basic router functions.

Processing Resources

A traditional router can be augmented to support flexible processing in different

ways. One approach is to add a processing engine at each router port. Another is to

provide a shared pool of processing engines that can be used to process traffic from

any port. These two baseline system designs are shown in Figure 2.3. The routers

are based on a scalable cell switching fabric which connects to external links through

Port Processors. In the first design, all ports are augmented by a Processing Engine

that can perform active processing. In the second design, a set of router ports is

dedicated to active processing. These ports are equipped with processing engines but

do not have external interfaces.

The first approach is most appropriate when all ports have comparable require-

ments for active processing. The second makes sense when ports have widely varying

needs. One can also combine these approaches by having both per-port processing

engines and a shared pool to augment the processing power of ports with particu-

larly high processing needs. For the rest of the discussion, the first configuration is

assumed.

Packets can be processed on the input port, the output port, or both. We

assume processing is performed on the input side. The advantage of this approach

is that the processing requirements are limited to the link speed of the connected

link. If multicast is used, processing has to be done only once. On the other hand,

the drawback is that in case of congestion on the output port, processing might be

performed on packets that are later dropped.

Packets belonging to passive flows (that is, flows that do not require active

processing), are passed directly from the input port at which they first arrive to

the output port where they are to be forwarded. Such packets encounter no added

overhead or delay, compared to a conventional router. Packets belonging to active

flows are received by the input port and sent to a processing engine (either on the

same port or on a dedicated processing port) where they are enqueued and eventually

processed. After processing, the packets are forwarded to the proper output port. If

there are processing engines on all ports, processing may also be done at the output

port. To provide the maximum flexibility, an input port can distribute packets to

various processing engines to achieve system-wide load balancing.

17

System Controller

...

...

...

Port
Processor

Processing
Engine

Port
Processor

Processing
Engine

(a)

(a) Processing Engines on all Ports

Dedicated Ports for Active Processing

System Controller

Processing
Engine

Processing
Engine ...

...

...

...

...

...

...

...

...

Port Processor Port Processor

(b)

(b) Dedicated Processing Ports

Figure 2.3: System Organization of Programmable Router.

18

to/from
Transmission Interface

Extension Port

Filter Memory PCQ

Packet
Classifier

Queue Controller

Queue Memory

APC

I/O
C

ha
nn

el

to/from Switch Fabric

Processing
Engine

...

M
em

or
y

C
ha

nn
el

C
ac

he
P

ro
c

C
ac

he
P

ro
c

M
em

or
y

C
ha

nn
el

C
ac

he
P

ro
c

C
ac

he
P

ro
c

Off-Chip
DRAM

Off-Chip
DRAM

Figure 2.4: Router Port Processor Design. Shaded areas indicate distinct chips.

The switching fabric can be implemented in a variety of ways. For concreteness,

we assume a multistage network such as described in [CFFT97]. That system supports

external link rates up to 2.4 Gb/s and can be configured to support hundreds or

even thousands of such ports. The active router’s port processors perform packet

classification, active processing and fair queuing. The System Controller provides

a control and management interface to the outside world and implements routing

algorithms and other high level operations.

Router Port

The port design for our programmable router is shown in Figure 2.4. The shaded

areas indicate physically distinct logic and memory chips. The center of the port

is the Packet Classification and Queuing chip (PCQ), which controls the data flow

through the port. The processing engine with the Application Processing Chip (APC)

and off-chip memories comprises the network processor of the system.

19

Data Path

The PCQ performs classification of packets arriving from the Transmission Interface,

to determine how they are to be processed and where they are to be sent. It also

manages queues on both the input and output sides of the system. The PCQ has two

memory interfaces, one to a Filter Memory used for packet classification and one to

a Queue Memory used to store packets awaiting processing or transmission.

As packets are received from the Transmission Interface, the headers are passed

to the Packet Classifier which performs flow classification and assigns a tag to the

packet. At the same time, the entire packet is passed to the Queue Controller (QCTL)

which segments the packet into cells and adds it to the appropriate queue. This re-

quires a fast general flow classification algorithm, such as the one described in [SSV99].

The processing engine is the key component of the programmable router. In our

system, the APC performs active processing for packets that require more processing

than just plain forwarding. Note that removing the APC from the system still leaves

a router port that is capable of plain forwarding of packets. After processing, packets

are queued by the QCTL and then scheduled for forwarding through the switching

fabric to the output port. Packets that are received from the switch fabric are also

queued, possibly processed, and scheduled for transmission on the outgoing link.

Queuing System

The queuing system of the router stores packets which need to wait for processing

or transmission to the switch fabric or the outgoing link. Packets can be assigned to

queues in a fully flexible fashion (e.g., per flow or aggregate). The queues can be rate-

controlled to provide guaranteed quality of service. The filter database determines

whether flows are aggregated or handled separately.

To make the implementation of the queuing system efficient, the queues can

be implemented with a combination of two types of memory. Fast (and expensive)

SRAM and cheaper (but slower) DRAM. There is also a limited amount of on-chip

memory available in the PCQ. The queue data structures can be split onto memories

in the following way with respect to the need for fast access versus more storage:

• Per-flow Queue Head and Tail Pointers. These pointers should be stored on the

PCQ, since they are accessed frequently. It can be assumed that there is only

a limited number of such pointers necessary (particularly since multiple flows

can be aggregated into traffic classes).

20

• Packet Meta Information and DRAM Pointers. This data structure is necessary

for each packet and should be stored in SRAM. It contains higher-level infor-

mation for each packet (i.e., packet size, classification results, output port, etc.)

and a pointer to the first memory location in DRAM that contains the actual

packet data.

• Actual Packet. The packet is stored in DRAM in a set of “chunks.” Each chunk

contains a fixed amount of packet data and a pointer to the next data chunk.

Chapter 6 contains more details on the actual implementation of the queuing system

on our system simulator.

One key design variable for any router is the amount of memory to provide

for queues and how to use that memory to best effect. The usual rule of thumb is

that the buffer size should be at least equal to the bandwidth of the link times the

expected round trip time for packets going through the network. For 2.4 Gb/s links

in wide area networks, this leads to buffer dimensions of roughly 100 MB. Such large

buffers are needed in IP networks because of the synchronous oscillations in network

traffic produced by TCP flow control and the long time constants associated with

these oscillations. In the context of large buffers, per flow queuing and sophisticated

queuing algorithms are needed to ensure fairness and/or provide quality of service.

Flow control is also needed within a router which has hundreds of high speed ports.

Without flow control, output links can experience overloads that are severe enough

to cause congestion within the switch fabric, interfering with traffic destined for un-

congested outputs. Fortunately, the large buffers required by routers make it possible

for cross-switch flow control to be implemented with a relatively coarse time gran-

ularity (1-10 ms). Using explicit rate control, output PPs can regulate the rate at

which different input PPs send them traffic so as to avoid exceeding the bandwidth

of the interface between the switch fabric and the output PP. By adjusting the rates

in response to periodic rate adjustment requests from the input PPs, the output PPs

can provide fair access to the output links on a system-wide basis or can allocate

the bandwidth so as to satisfy quality of service guarantees. Such a rate control

mechanism is described in [KDK+02].

21

2.3 Processing System

The Application Processing Chip provides the general purpose computational re-

sources needed to implement active networking applications. Since these networking

tasks are relatively simple and there are many that can be processed in parallel, it is

suitable to use very simple processing cores (a more detailed discussion on the choice

of processor cores can be found below). Each APC also has several external memory

interfaces, providing access to additional memory, which is shared by the processors

on the chip. The processors are arranged in clusters, where processors in a cluster

share one off-chip memory interface. The APC processors retrieve active packets from

queue memory through the I/O Channel, process them, and write them back out to

the proper outgoing queue. Processing instructions and flow state information are

stored in the on-chip and off-chip memory. The scheduling of these processing engines

and issues related to maintaining consistency in flow state is discussed in Chapter 5.

The APC design shown in Figure 2.4 contains four Application Processing

Units. Each application processing unit consists of a processor, an SRAM cache

memory for instructions and data, and a memory controller for off-chip DRAM access

and communication with the I/O channel (not shown). The processing units are

linked to the PCQ through an I/O channel, which also provides the interface to the

extension port. The Memory Channel provides access to the external DRAM.

2.3.1 Processor Architectures

There is a wide range of processor architectures that can be considered for processing

on a programmable router. The key criteria that have to be considered for selecting

a suitable processor are:

• General-Purpose Processing Capability. The key to flexibility to support new

protocols and services lies in having general-purpose processing engines. This

does not exclude a design that has a few special hardware accelerators for speed-

ing up common tasks (e.g., checksum computation, table lookups).

• Small Physical Size. One major constraint for processing engines is that they

need to fit onto a single chip. Due to the high level of parallelism that can

be exploited, multiple small processors can provide more performance than a

single, more sophisticated processor.

22

• Performance on Networking Tasks. The characteristics of tasks that process

packets on routers is significantly different from traditional workstation tasks (a

quantitative comparison of our network processor benchmark with a workstation

benchmark shows this in Chapter 3).

For the processing engine of our router, we consider RISC cores, VLIW processors,

DSPs, and specialized co-processors.

Reduced Instruction Set Computers

Reduced Instruction Set Computers (RISC) [Pat85] were proposed in the 1980’s as

an alternative to increasingly complex “Complex Instruction Set Computers” (CISC).

RISC architectures are typically relatively simple (several dozen to few hundred in-

struction, orthogonal addressing modes, etc.), pipelined, and supported by a sophis-

ticated compiler. Since some of the complexity of execution is off-loaded to the

compiler, the RISC processor itself is simpler than a CISC processor and thus can be

implemented in a smaller area. RISC architectures are particularly suitable for em-

bedded systems, where area constraints are much more pressing than in workstation

environments.

It is important to consider the processing performance that can be obtained

from a processor architecture versus the size that it occupies on the chip. Figure 2.5

shows this tradeoff for several generations of the most common processor architec-

tures. The performance metric (y-axis) is the processor’s performance on the SPEC

benchmark [Sta95]2 normalized by the clock rate of the processor. This allows a com-

parison of various processor generations without considering improvements in clock

rates due to smaller feature sizes (as done in [AHKB00]). The performance and size

values are obtained from [CPU].

As can be seen, the performance of a processor does not increase linearly with

the area it occupies. Instead, larger processors of newer generations show propor-

tionally lower performance than smaller, simpler processors. This is partly due to

fact that these architectures are optimized for processing of single tasks. Traditional

workstation workloads cannot easily be parallelized as is possible in networking en-

vironments. High levels of parallelism can be exploited much better by multiple

simpler processors, which results in linear performance improvements when replicat-

ing processors. Another reason for the observed trend is that modern processors are

2The SPEC performance values were adjusted to SPEC CPU92, because certain architectures
predate the release of the SPEC CPU95 benchmark.

23

0

0.5

1

1.5

2

2.5

0 2M 4M 6M 8M 10M

S
P

E
C

 p
er

fo
rm

an
ce

 p
er

 M
H

z

processor size in transistors

Intel
PowerPC

MIPS
Sparc
Alpha
trend

Figure 2.5: Processor Performance in Relation to Complexity. The performance
metric is SPEC rating per MHz and the complexity is the processor size in transistors.

optimized for speed at the cost of chip area. It is not necessarily clear that older,

simpler architectures can be implemented on modern ASICs and clocked at gigahertz

rates. However, the clock rates considered in network processor are not at the cutting

edge of technology as they are for workstation processors. Therefore, it can be as-

sumed that most processor implementations can be adapted to these increasing clock

rates.

This leads to the conclusion that simple RISC cores, like MIPS [MIP98],

ARM [ARM99], and PowerPC [IBM98], are suitable processor architectures for net-

work processors.

Superscalar and Multithreaded Processors

Numerous improvements to the basic RISC architecture have been proposed. In

particular, several methods for exploiting parallelism on the instruction level and

thread level have been proposed:

• Superscalar and Very-Long Instruction Word Processors. These processors can

issue and execute multiple instructions per cycle exploiting instruction-level

parallelism (ILP). Superscalar processors can be scheduled statically by the

24

compiler or dynamically using scoreboarding techniques. VLIW can only be

scheduled statically by the compiler.

• Fine-Grained Multithreaded Processors. Such multithreaded processors main-

tain hardware contexts for several threads. In case of a stall of a thread, the

processor can continue processing another thread [ALKK90]. Most recent mul-

tithreaded architecture support zero-overhead context switching, which means

that no cycles get lost during a context switch [MMC00].

• Simultaneous Multithreaded Processors. SMT processors also maintain multiple

thread contexts. The processor can dynamically schedule multiple instructions

from all available threads [HKN+92], [TEL95]. This approach is a combination

of superscalar and multithreaded processors.

The main goal of all these architectures is to improve the execution time of a

single thread and increase the overall processor utilization. In the context of network

processors, the individual thread execution time is less significant than the overall

processing throughput of the system. Thus, all the architectures need to be examined

in the light of usage in a network processor. Such a study has been done by Crowley et

al. [CFBB00]. The results have shown that simple RISC multiprocessors perform best

under networking workloads. When considering a heavier O/S overhead, the SMT

architectures perform best.

For our router design, we chose to use simple RISC processors instead of con-

sidering more complex architectures. One key reason is the higher space requirements

and smaller overall performance gain as shown in Figure 2.5. Another reason is that

with the trends in integrated circuit technology, processor architecture, and link rates,

the performance of a RISC multiprocessor outperforms a multiprocessor that uses in-

creasingly complex processor architectures (which will be discussed in more detail in

Section 2.4).

The one improvement over RISC that will be considered in this work is the

idea of multithreading. Since the shared off-chip memory can create long processor

stalls under high loads, it is desirable to keep the processors utilized by adding a few

thread contexts. Such an approach is discussed in more detail in Chapter 4, where

the performance model of our system is introduced.

25

Digital Signal Processors

Digital Signal Processors (DSP) are processors that are specialized for performing

highly regular and real-time critical processing. A typical DSP consists of several

arithmetic units and multipliers. In each cycle, an instruction can be executed on

each unit and data can be moved between them. The operation of a DSP is usually

highly pipelined, which allows the DSP to operate at high clock frequencies. Mul-

tiple memories or peripherals provide the data and instructions for the DSP. With

clock rates as high as one GHz, DSPs can provide significantly more performance

than general-purpose processors if the applications match well the regular operating

patterns of the DSP architecture.

Traditionally, DSPs have been used in applications involving digital control,

audio, telephony, imaging, and video. Recently, DSPs have also been developed for

use in networking. For example, the C6000 family from Texas Instruments implements

a complete TCP/IP stack on the DSP. This allows certain networking equipment to

operate without a host processor, which was traditionally required for running the

network protocol processing.

For the programmable router design in this work, we do not consider DSPs,

because the arbitrary processing requirements of a programmable router cannot al-

ways be mapped efficiently to the regular, pipelined operation modes of DSPs. It is

conceivable, though, that the APC can be implemented as a hybrid system that is

equipped with a set of DSPs for the few applications which execute more efficiently

on such processors.

Specialized Coprocessors

There is a set of common operations in the networking domain that are used in a wide

range of protocols. For some such operations, specialized coprocessors can perform

significantly better than general-purpose RISC processors. Such functions are:

• Checksum and CRC Computations. Several protocols in a typical protocol stack

require a checksum or CRC computation across parts of or the entire packet.

• Table Lookup and Packet Classification. Routing and QoS algorithms require

such functionality to determine the flow to which a packet belongs.

26

• Encryption Processing. This is only one example for a processing step that

requires intense processing and that can be efficiently implemented in specialized

hardware.

As with DSPs, coprocessors can be used in addition to the general-purpose RISC

processors. In our system, such coprocessors could be co-located with each RISC

processor if they are relatively small (e.g., checksum coprocessors) or be shared among

a set of processors (e.g., table lookup unit).

2.3.2 Memory System

For efficient processing of flows, the processors should have enough memory to store

both a small operating system kernel and the code for the applications being used.

In addition, they need to be able to store the current packet that is being processed

as well as per flow state information for the current flow. Since the packets can be

brought in from the queue memory as needed, then promptly written back out, not

too much on-chip memory is needed for the packets themselves, but the program

code and per-flow state could easily consume hundreds of kilobytes of memory. This

suggests that the bulk of data should be stored in the off-chip DRAM. To allow the

processors to operate at peak efficiency, on-chip SRAM can be used to cache data

and instruction code.

Integrated circuits with embedded DRAM have recently been developed. Since

the CMOS fabrication process for DRAM optimizes for density rather than speed as

in processing logic, it is challenging to combine both on a single chip. We are not

considering a second level cache in DRAM at this point, but it might be possible in

the future to use DRAM technology and increase the available on-chip memory.

The bandwidth required between an APC and its external memory is deter-

mined by the number of APUs on the chip, the instruction-processing rate of those

APUs and the fraction of instructions that generate requests to the external memory.

Chapter 3 and 4 discuss in detail the application requirements and the performance

tradeoffs for different memory interface configurations.

2.3.3 I/O System

The I/O channel on the APC transports data packets from the queue memory to

the processors. The required I/O bandwidth is a key consideration. In this design,

27

the bandwidth required for the interface to/from the PCQ can be bounded by the

link bandwidth. For 2.4 Gb/s links, this implies a bandwidth of 300 MB/s in each

direction. To allow for loss of efficiency due to packet fragmentation effects (caused

by packets being divided into cells) and to reduce contention at this interface, it is

advisable to increase the bandwidth at this interface to 1 GB/s. This can be achieved

with a 32 bit interface in each direction, operating at a clock rate of 250 MHz, which

is feasible in .25 µm technology. It is also possible to implement the I/O Channel as

a ring. This can give a simpler implementation but may yield larger delays.

2.3.4 Configurations

The actual configuration of an APC depends on a variety of factors. The issues that

influence the performance of a configuration are:

• Workload. Computationally intense workloads require more processing and on-

chip memory. Simpler processing requires more I/O bandwidth, because packets

are moved more quickly between the queue controller and processors.

• Technology. Advances in technology allow higher levels of integration, which

yields more processors and more memory on a chip.

• Power Consumption. With more components on a chip and higher clock rate,

the power consumption of the APC becomes a critical issue.

• Cost. The overall size of the APC affects the cost of the router port and the

overall router system.

Since the overall size of an APC is limited, there is a tradeoff between placing

more processors or more memory onto the APC. More processors mean smaller on-

chip caches, which leads to inefficient execution and more traffic on the memory

channel. Fewer processors mean larger on-chip caches and more efficient execution,

but also limited overall processing power. It is a challenging problem to find an

optimal configuration for the APC. Chapter 4 discusses an analytic solution for this

optimization problem and shows results for our system.

28

2.4 Scalability

To illustrate the long-term usefulness of the proposed design, we describe its scalabil-

ity under current technology trends. The design can be scaled in three dimensions:

• Increase in Number of Router Ports. The number of ports can be increased by

configuring the multistage interconnection network to have a larger number of

stages. For the design in [CFFT97], a three stage network can support up to

64 ports and has an aggregate capacity of 154 Gb/s, while a five stage network

can support up to 512 ports and has an aggregate capacity of 1.2 Tb/s.

• Increase in Processing Capacity Per Port. One can increase (or decrease) the

active processing capacity by incorporating more or fewer APC chips at each

port. For systems with only a small amount of active processing, APCs can

be omitted from most ports, and packets requiring active processing can be

forwarded from the ports at which they arrive to one of the ports containing an

APC.

• Increase in Processing Capacity per APC. Developments in technology allow

more processors, memory, and I/O components to be implemented on a system-

on-a-chip. This increases the overall processing power of the APC.

The most significant potential for more processing power lies in the higher levels of

integration that can be achieved with newer generations of CMOS technology.

2.4.1 APC Design Scalability

To increase the per-port processing capacity of the router, multiple APCs can be

arranged in a daisy-chain configuration that connects the APCs via the extension

port on the I/O channel. Each interface that connects to another processing chip

acts as a gateway and routes data to other APCs further down in the chain. This

design requires that the I/O channel be able to handle the total bandwidth between

the queue controller and the APC. It can be assumed that this requirement can be

met even for faster link rates. Note, that the total amount of bandwidth between the

queue controller and the application processing chips is at most twice the external link

bandwidth, since each packet is sent at most once to the processing chips and sent at

most once back to the queue controller. Since each processing chip has its own off-

chip memory interfaces, the traffic from off-chip memory accesses is restricted to the

29

individual APC and does not aggregate over multiple chips. Finally, only data traffic

that requires processing needs to be sent to an APC. While we expect processing to

be an important element of future routers, we expect most packets to be forwarded

without processing for the foreseeable future.

2.4.2 Technology Scaling

The trends in technology that are relevant to our design are increases in link speed,

processor performance, and the transistor density and clock rates of Application-

Specific Integrated Circuits (ASICs). The basis for our analysis is Moore’s Law,

which states that the number of components on an integrated circuit doubles roughly

every eighteen months [Moo65]. This was first predicted in 1965 and has found to be

accurate ever since [GGPY89]. It is expected that these trends will continue at least

for another decade [Sem01].

While Moore’s Law only addresses the number of components on a chip, it

has been observed that most technology trends in the semiconductor industry follow

similar exponential growth. Therefore we approximate growth trends for technologies

relative to the performance in year t0 by:

performance in year x = at0 · eb·(x−t0). (2.1)

The parameters a and b are characteristic for the particular technologies. For the

plain interpretation of Moore’s law, a is 50 components per chip in 1965 and b is 0.41,

which corresponds to doubling every year and a half. Quantifying these parameters for

the technologies relevant to the proposed router design, we can obtain a quantitative

understanding of its scalability.

Communication Links

The growth of communication link speed is an important factor in router design since

it determines how much data has to be processed. Figure 2.6 shows the growth in

speed for communication links since 1975 [Rob00] [Chr99]. It is important to note

that until the middle ’90s, optical link speeds grew at about the same rate as elec-

tronic communication links. However, with the advent of Dense Wavelength Division

Multiplexing (DWDM), the growth of bandwidth on a single fiber has started growing

much faster [Chr99] (not shown in figure). This trend is expected to continue until a

30

1 Mbps

1 Gbps

1 Tbps

1975 1980 1985 1990 1995 2000 2005 2010

co
m

m
un

ic
at

io
n

lin
k

sp
ee

d

year

optical
electronic

Figure 2.6: Growth of Link Speed for Electronic and Optical Communication Links.

the limit in the communication spectrum of optical fiber is reached. However, each

WDM channel must be processed electronically for the foreseeable future regardless

of the overall WDM channel count. Therefore, we only consider the growth of a single

channel. From the figure, we can extract a value of b ≈ 0.43.

Processors

Advances in processor design have continuously increased the processing performance

of CPUs. Figure 2.7 shows that growth in terms of performance on the SPEC INT92

benchmark. The performance values for the processors were obtained from [CPU].

There are two parts to the improvement in performance. For one, the clock rate

at which processors operate increases as shown in Figure 2.8. The other is the im-

provements in the processor architecture, increase in on-chip cache sizes, etc., which

increase the efficiency of processors. This affects the processor size as shown in Fig-

ure 2.9. Both contribute to an improvement in SPEC performance. The growth

parameters are shown in Table 2.1.

These trends indicate that newer generations provide more processing per-

formance at the cost of larger and more complex circuitry (as discussed above and

31

10

100

1,000

10,000

100,000

1990 1995 2000 2005 2010

S
P

E
C

92
 p

er
fo

rm
an

ce

year

Intel
PowerPC

MIPS
Sparc
Alpha
trend

Figure 2.7: Growth of Processor Performance. The results are normalized to the
metric used in the SPEC 92 benchmark.

10 MHz

100 MHz

1 GHz

10 GHz

1975 1980 1985 1990 1995 2000 2005 2010

pr
oc

es
so

r
cl

oc
k

year

Intel
PowerPC

MIPS
Sparc
Alpha
trend

Figure 2.8: Growth of Processor Clock Rate.

32

10,000

100,000

1 mio.

10 mio.

100 mio.

1975 1980 1985 1990 1995 2000 2005 2010

pr
oc

es
so

r
si

ze
 in

 tr
an

si
st

or
s

year

Intel
PowerPC

MIPS
Sparc
Alpha
trend

Figure 2.9: Growth of Processor Size. The size is expressed in transistors.

illustrated in Figure 2.5). Below we will see that simple RISC cores are not only cur-

rently a better choice for network processors, but the performance gap over complex

processors will grow with time (see Figure 2.11.

Application-Specific Integrated Circuits

For economic reasons it is desirable to implement the APC on a single ASIC. Thus, the

size of an ASIC poses a limit on how many processors or memories can be combined in

an APC. Figure 2.10 shows the number of logic gates that are available on ASICs. One

logic gate translates roughly into four transistors (for comparison with Figure 2.9).

The values shown correspond to the IBM 5S, 5X, SA-12, SA-12E, SA-27, SA-27E,

and Cu-11 families, the LSI 5V, G10-p, G11-p, and G12-p families, and the NEC

CB-C7, CB-C8, CB-C9, CB-C10, CB-C11 families.

With quickly decreasing feature sizes and slightly increasing chip sizes, tech-

nology provides a lot of potential for powerful multiprocessors. Note that the growth

parameters with b = 0.63 are slightly more optimistic than Moore’s Law predicts.

33

0.1 mio.

1 mio.

10 mio.

100 mio.

1000 mio.

10000 mio.

1990 1995 2000 2005 2010

A
S

IC
 s

iz
e

in
 g

at
es

year

IBM
LSI

NEC
trend

Figure 2.10: Growth of the Number of Available Gates on an ASIC.

Table 2.1: Growth Parameters of Key Technologies. The values for a are normalized to
the year 2000. Sizes are given in million transistors (Mtx) and million gates (Mgates)
(1 gate ≈ 4 transistors).

Technology a b Time to double

Communication electronic links 6.8 Gbps 0.44 18 months
optical links 175 Gbps 0.42 19 months

Processor SPEC performance 2400 0.44 18 months
clock 630 MHz 0.23 36 months
size 22 Mtx 0.32 26 months

ASIC size 55 Mgates 0.63 8 months

34

Impact on APC Design

The parameters for technology growth can be used to give an estimate on the perfor-

mance growth of the APC. Assuming that we can continue to arbitrarily parallelize

the workload on the APC, we can compare three design approaches:

• Single Processor Design. This corresponds to software-based programmable

router implementations.

• Complex Multiprocessor Design. Using the improvements in processor archi-

tecture, more complex and more powerful processors can be used to process

packets.

• Simple Multiprocessor Design. Following our APC design, the ASIC can be

filled with simple RISC cores rather than more complex processors.

Figure 2.11 shows the performance of these three approaches. Performance is

expressed as processing power per byte of link data, where the processing power is the

SPEC INT92 metric per MHz. The trends are based on results from Table 2.1. It can

be seen that the single processor system can just barely keep up with the increasing

link rates. Both multiprocessor systems show an increase in processing power over

time. The simple multiprocessor outperforms the complex multiprocessor by about

one order of magnitude by the year 2010. This shows that the design of the APC is

the most promising to provide increasing processing power to support more complex

applications.

APC Scaling

To give a concrete example of the scalability of the APC design, Table 2.2 shows

possible configurations for the APC for the next decade. The scaling follows roughly

the technology trends discussed above. The ASIC scaling is considered by decreasing

the feature size by a factor of two every three years. Also, the total APC area

increases over time. Since the application complexity can be expected to grow with

time, increasing processor caches sizes are expected. Assuming that the number of

threads are sufficient to let the processors operate at a high utilization, the processing

power can be estimated by multiplying the processor clock rate by the number of

processors (in giga-instructions per second (GIPS)). While the performance depends

on particular configurations and workload parameters, it provides a rough estimation.

35

2000 2002 2004 2006 2008 2010

pr
oc

es
si

ng
 p

ow
er

 p
er

 b
yt

e
of

 li
nk

 d
at

a

year

simple multiprocessor
complex multiprocessor

single processor

Figure 2.11: Processing Power per Byte of Link Data.

Considering the increasing link speeds, the APC is still able to provide increasing

processing performance per byte of link rate. A more detailed performance model is

discussed in Chapter 4.

2.5 Related Work

There has been much work on developing software architectures as well as commercial

efforts to develop network processors.

2.5.1 Programmable Routers

Software environments for packet processing on programmable routers have received

much attention in recent years and many such systems have been developed:

• Tennenhouse et al. at MIT proposed the capsule mechanism, where packets

carry code fragments, which are interpreted on the nodes in the network [TW96].

The ANTS toolkit is an architecture for dynamic deployment of processing

code. Instead of each packet carrying code, only references to code modules are

transported. Along the path of the flow, code is installed on demand as it is

needed [WGT98].

36

Table 2.2: Scalability of APC with Improvements in Technology.
Year 1999 2002 2005 2008
Feature size (µm) 0.25 0.18 0.12 0.09 0.06 0.045 0.03
Number of processors 6 12 16 24 30 48 64
Number of threads per proc. 1 1 2 2 2 4 4
I-cache size (kB) 16 16 32 32 64 64 96
D-cache size (kB) 16 16 32 32 64 64 96
Number of memory interfaces 1 2 2 3 3 3 4
Memory interface width (bit) 32 32 32 48 48 64 64
Processor area (mm2) 1.4 1.0 0.67 0.50 0.33 0.25 0.17
SRAM area per MB (mm2) 140 100 67 50 33 25 17
Total APC area (mm2) 87 107 120 139 172 204 248
Processor clock frequency (MHz) 400 550 830 1,100 1,700 2,200 3,300
Processing power (GIPS) 2.4 6.6 13 26 51 106 211
Link rates (Gbps) 1 1.9 3.6 6.9 13 25 47
Instructions per byte of link rate 19 28 29 31 31 34 36

• To improve the performance of ANTS, the Joust project at University of Arizona

implemented the Java virtual machine on the Scout operating system [HBB+99].

This implementation is about two to three times faster than off-the-shelf imple-

mentations of the Java VM.

• The Smart Packets project at BBN is another capsule approach that aims at

network management functions [SJS+99]. Using a compact programming lan-

guage, small pieces of active code are sent with packets and executed on nodes

for diagnostic and management functions.

• The Switchware project at University of Pennsylvania addresses the issues

of safe execution of active code by using a very restrictive language (PLAN

[HKM+98]) to program capsules [AAH+98]. In addition, more complex func-

tionality is implemented in “switchlets,” which can be called by active packets.

The switchlets are also programmed in a language that allows formal verification

for safe execution.

• To make systems interoperable, a common architecture for active router operat-

ing systems has been proposed. This Node Operating System (NodeOS [Pet01])

defines common abstractions for communication and processing resources. On

top of the NodeOS, several Execution Environments (EEs) can operate in par-

allel. Different active functionalities are implemented within the EEs. One in-

stance of a NodeOS-compliant architecture is the CANES and Bowman project

37

at University of Kentucky and Georgia Institute of Technology [MBC+99],

[MBZC00]. CANES is an implementation of the NodeOS and Bowman is an

Execution Environment.

Other issues are how to signal control information and reserve resources in the

network [CCF+01], and how to safely and securely executed code [MLP+01]. There

is a number of other projects, which are discussed in several survey papers on active

networks [TSS+97], [CDMK+99], [Pso99].

2.5.2 Network Processors

The promise of flexibility and lower development times have raised considerable in-

terest in network processors within the commercial communications sector. Unlike

active networks, today’s commercial network processors are mainly optimized for

packet header processing of established protocols. Nevertheless, these network pro-

cessors are general-purpose processing engines that can also be used for more complex

applications. The following list of products gives a brief overview of available and

publicly announced systems and some of their basic characteristics:

• IBM PowerNP [IBM00]: 8 processing units with 2 processors each, one PowerPC

control processor, 133 MHz clock rate, 1.6 GB/s DRAM bandwidth, 8 Gb/s line

speed, 2 threads per processor.

• Intel IPX1200 [Int00]: 6 processing engines, one StrongARM control processor,

200 MHz clock rate, 0.8 GB/s DRAM bandwidth, 2.6 Gb/s line speed, 4 threads

per processor.

• Lexra NetVortex [Lex00]: 16 processing units, 450 MHz clock rate, 4 threads

per processor.

• Lucent Fast Pattern Processor [Luc00]: 3 VLIW processing units, one control

processor, 133 MHz clock rate, 1.1 GB/s DRAM bandwidth, 5 Gb/s link rate,

64 threads per processor.

• MMC nP3400 [MMC00]: 2 processing units, 220 MHz clock rate, 0.5 GB/s

DRAM bandwidth, 5 Gb/s aggregate throughput, 8 threads per processor.

• Motorola C-5 [C-P99]: 16 processing units arranged in 4 clusters with reconfig-

urable data path, one control processor, 200 MHz clock rate, 1.6 GB/s DRAM

bandwidth, 5 Gb/s line speed, 4 threads per processor.

38

• Tsqware TS704 [T.s99]: 4 processing units, 90 MHz clock rate, 0.3 Gb/s DRAM

bandwidth.

• Vitesse Prism IQ2000 [Sit00]: 4 processing units, 200 MHz clock rate, 1.6 GB/s

DRAM bandwidth, 6.4 Gb/s aggregate throughput, 5 threads per processor.

Most network processors are system-on-a-chip designs that combine processors, mem-

ory, and I/O on a single ASIC. They run extremely simple operating systems and the

packet processing code is often hand-coded to achieve good performance using the

small (4kB to 32kB) caches. Some processing engines are augmented by specialized

instructions, multithreading, and zero-overhead context switching mechanisms. A

detailed description of these network processors can be found in [Sha01].

The active router that we propose is different insofar that it is not geared to-

wards processing of independent packets, but towards true general purpose processing

of data streams that span many packets. This requires the ability to store per-flow

state information (e.g. encryption keys or partial video frames) and make this state

accessible to all packets of one flow. Also, we aim at complex applications that may

modify the entire packet payload.

In terms of network processors, academic research has not yet addressed the

topic sufficiently and has instead focused on single-processor “workstation routers.”

Only recently a few groups started looking into general purpose processing support

in the data plane [HMS98]. Also many general-purpose parallel processor architec-

tures have been adapted to the networking environment, like RAW [BTKM+02] and

Imagine [KDR+01].

2.6 Summary

The performance results from the Active Network Node project show that single-

processor software-based routers are not able to provide sufficient processing power for

complex applications at increasing link speeds. The proposed router design is targeted

to provide the required processing performance by exploiting the parallelism that can

be found in networking workloads. The highly parallel network multi-processor is a

system-on-a-chip that contains processors, memory, and I/O components on a single

ASIC. In terms of processors, we mainly focus on simple RISC cores, because they

provide the most processing power for their small size. If necessary, more complex

architectures, DSPs, and specialized co-processors can be added.

39

A particularly important point of the architecture is its scalability. In terms of

technology scalability, the network processor will provide increasing processing power

with improvements in ASIC technology despite rapidly increasing link rates. Also,

multiple processing chips can be chained together to increase the processing power of

a port.

One key question that remains open is how to configure the application pro-

cessing chip in terms of number of processors, and memory sizes. Chapter 4 presents

an extensive analytic performance model, with which the optimal configuration for a

given workload can be found. Since the results are workload-dependent, Chapter 3

first introduces a network processor benchmark, which we use to get a quantitative

understanding of the processing requirements.

40

Chapter 3

Workload Characterization

In the previous chapter, we have seen that active networking applications can be quite

processing-intensive. To get a better quantitative understanding of processing char-

acteristics, this chapter discusses a benchmark for network processors and presents

measurement results in terms of processing complexity, memory performance, instruc-

tion mix, and other metrics.

The need for a new benchmark arises from the fact that the workloads for

network processors are significantly different from workloads of traditional worksta-

tion processors. Networking tasks are very short, focus on I/O, and are less complex

than typical workstation task. While there are many established benchmarks for the

workstation domain (most notably SPEC [Sta95]), there was no benchmark available

for network processors in 1998, when this work was started. The benchmark that is

presented here, CommBench, constitutes one of the first published results on network

processor workloads [WF00].

The applications of the benchmark are described in detail and simulation re-

sults of workload characteristics are presented. Section 3.3 compares the results to

measurements on SPEC and discusses implications for network processor architec-

tures. The quantitative results obtained here are used in the performance model in

Chapter 4. A shorter version of this chapter is published in [WF00].

3.1 CommBench Applications

A desirable property of any application in a benchmark is its representativeness of

a wider class of applications in the domain of interest. CommBench applications

have been chosen with this in mind. Therefore, the key focus is on the “kernels” of

41

Table 3.1: Applications of the CommBench Benchmark.
Name Type Application Kernel

RTR HPA Radix tree routing Lookup on tree data structure
FRAG HPA IP header fragmentation Packet header checksum computation
DRR HPA Deficit round robin Queue maintenance
TCP HPA TCP filtering Pattern matching on header fields

CAST PPA Encryption Encryption arithmetic
ZIP PPA Data compression Compression arithmetic
REED PPA Reed-Solomon FEC Redundancy coding
JPEG PPA JPEG Compression DCT and Huffman coding

the applications, which are the program fragments containing the set of dynamically

frequently used instructions. We determine the kernel of a program statistically

by identifying the set of instructions, that constitute 99% or 90% of all instruction

executions. If the kernel of an application is computationally similar to a wide class

of applications, we can assume that the derived characteristics of the benchmark

applications are representative for this class. For example, the tree based lookup

in the RTR program is representative of many routing algorithms as well as packet

classification schemes. The discrete cosine transform performed in the JPEG program

is the basis of all JPEG and MPEG coding schemes.

CommBench applications have also been selected to represent typical work-

loads for both traditional routers (focus on header processing) and programmable

routers (perform both header and stream processing). Thus, the applications can

be divided into two groups: Header-Processing Applications (HPA) and Payload-

Processing Applications (PPA). The list of applications is shown in Table 3.1.

3.1.1 Header-Processing Applications

The header-processing programs represent operations that are done on a per-packet

basis and are mainly independent of the size and type of the packet payload. These

applications involve a good deal of “random” logic, header field interrogation and

processing, table lookup, and control. We have selected the public domain programs

listed below which are likely to be operationally similar to proprietary programs.

• RTR is a Radix-Tree Routing table lookup program. Routing table lookups are

important operations performed on every packet in a datagram-based network,

and on every connection in a connection-based network. RTR is the radix-tree

42

routing algorithm from the public domain NetBSD distribution [Net]. There

are more efficient routing approaches [SVSW98], however they are not freely

available. Kernel : lookup operations on tree data structure.

• FRAG is an IP packet fragmentation application. IP packets are split into mul-

tiple fragments for which some header fields have to be adjusted and a header

checksum computed. The checksum computation that dominates this applica-

tion is performed as part of all IP packet application programs other than just

forwarding. Kernel : packet header modifications and checksum computation.

• DRR is a Deficit Round Robin fair scheduling algorithm [SV95] that is com-

monly used for bandwidth scheduling on network links. The algorithm is im-

plemented in one form or another in various switches currently available (e.g.,

Cisco 12000 series [Cis99]). Kernel : queue maintenance and packet scheduling

for fair resource utilization.

• TCP is a TCP traffic monitoring application that is representative of the class

of monitoring and management applications. We use tcpdump, a widely used

tool, that is standard in BSD distributions and is based on the BSD packet

filter [MJ93]. Kernel : pattern-matching on header data fields.

3.1.2 Payload Processing Applications

Payload-processing applications access and possibly modify the contents of a packet

during network node processing. The applications are typically executed on a stream

of packets. Note that each of these applications has an encoding and a decoding sec-

tion. While each of these sections is executed separately, they are considered together

as a single program unless they have significantly different performance characteris-

tics.

• CAST is a program based on the CAST-128 block cipher algorithm that uses a

128 bit key to encrypt data for secure transmission [Ada97]. CAST-128 operates

similarly to other block cipher algorithms used in current networks, such as

IDEA [Lai92] and RC5 [Riv95], but CAST is in the public domain. Kernel :

encryption arithmetic.

• ZIP is a data compression program based on the commonly used Lempel-Ziv

(LZ77) algorithm [ZL77]. The implementation can achieve different levels of

43

data compression by varying the algorithm’s computational complexity and

exemplifies applications that permit tradeoffs between computational power and

bandwidth. Kernel : data compression.

• REED is an implementation of the Reed-Solomon Forward Error Correction

scheme that adds redundancy to data to allow recovery from transmission er-

rors [RF89]. This is commonly used on unreliable data links which can be found

in wireless networks. Kernel : redundancy coding.

• JPEG is a lossy compression algorithm [Wal91] for image data. It represents

the class of media transcoding applications. Kernel : discrete cosine transform

(DCT) and Huffmann coding.

Note that ZIP, JPEG, and REED decoding perform data dependent computations,

while CAST and REED execute the same instructions independent of the actual data.

3.2 Measurements

There is a wide range of characteristics associated with any benchmark, and which

of these impact performance depends on the underlying processor architecture and

associated compiler. We have selected the following general areas of characterization,

which are closely related to network processor performance as is discussed in Chap-

ter 4: code and kernel sizes, computational complexity, instruction frequency, and

cache performance.

3.2.1 Tools and Input Data

In collecting data, all the benchmark programs were run on SUN UltraSparc II proces-

sors operating under the SunOS 5.7. The C compiler used was gcc 2.8.1 (optimization

level O2). The O2 level was selected because the compiler only performs optimiza-

tions that are independent of the target processor and does not exploit particular

architectural features (e.g., loop unrolling for superscalar machines). To determine

the influence of the compiler, for selected statistics the gcc to the cc 4.2 compiler were

compared. Differences in the generated instruction mix were limited to 1-2% for each

instruction class and cache performance of the generated code was also very similar.

44

Table 3.2: Code Size for CommBench Applications.
CommBench Type Code Size Code Size
Program C lines Object bytes

TCP HPA 19,100 352,000
JPEG PPA 18,300 260,000
ZIP PPA 6,500 117,000
RTR HPA 1,130 16,000
REED PPA 410 6,900
CAST PPA 350 19,500
DRR HPA 100 2,500
FRAG HPA 100 2,400

Average 5,750 97,000

For run time instruction mix analysis, Shade [CK94] and SpixTools [Cme93]

were used. These tools simulate and analyze programs on a Sparc processor. For the

cache simulations, Dinero [EH98], a uniprocessor cache simulator, was used.

The benchmark programs were executed with a variety of input data to see

the effect on program operation characteristics. While the header-processing applica-

tions require data inputs in a particular format for each program (i.e., TCP requires

raw packet header, while RTR lookups requires IP addresses), the payload-processing

applications, except for JPEG, can process any data stream. For these applications

we measured instruction mix and cache behavior for HTML data (plain text), bi-

nary program code, and JPEG coded image data. While CAST and REED perform

identically on any data, ZIP shows differences on data that has already been entropy

encoded (i.e., JPEG data). To account for this variation, the input for the benchmark

measurements was chosen with an equal mix of all three data types.

3.2.2 Code and Computational Kernel Sizes

One can view the size of an application along a number of different dimensions ranging

from source code size to the number of bytes most often referenced during execution.

Both static (i.e., lines of C code, bytes of compiled code) and dynamic code size

information (i.e., instructions executed at least once, accounting for 90% and 99% of

execution) was collected.

The size of the source code and compiled code of each program in CommBench

is shown in Table 3.2. The object size data does not include the large but little used

45

Table 3.3: CommBench Dynamic Kernel Size.
CommBench Instructions Instructions Instructions
Program at least once for 99% for 90%

TCP 7,257 317 232
JPEG 6,155 804 504
RTR 3,805 1,371 387
ZIP 3,538 555 296
CAST 2,529 716 642
REED 1,510 48 23
DRR 1,353 70 36
FRAG 1,258 97 80

Average 3,430 500 275

dynamically linked libraries (up to 300 kilobytes on the SUN Solaris system). Comm-

Bench programs are between 2.4kB and 350kB in size. The variation in CommBench

code size stems from the different environments in which the applications have been

developed. DRR and FRAG are non-commercial proof-of-concept implementations,

while ZIP and JPEG are industrial strength implementations with a multitude of

options. This has an impact on static code analysis, but dynamic run-time analysis

indicates that all applications execute within a fairly small kernel.

The dynamic kernel characteristics of CommBench programs are shown in

Table 3.3. The first column indicates the number of instructions which have been

executed at least once. Note that the average is 3,430 instructions (13,720 bytes),

which is significantly less than the average unlinked object code size (97,000 bytes).

Even when one removes from the object code size the roughly 15% which corresponds

to data fields, this indicates the presence of a significant amount of code that is never

executed. This ‘dead’ code typically corresponds to code for error handling conditions

or rarely used input data formats. This observation is reinforced by examining the

number of instructions which constitute 90% or 99% of the instructions executed.

With 23 to 640 instructions comprising 90% of the workload of a program, it can be

seen that network processor applications are quite small in size.

A common notion used in processor design is the “90/10 rule;” that is 90%

of executed instructions are derived from 10% of the instructions in the program.

Figure 3.1 is a visual representation of this rule showing kernel size in relation to

the total number of instructions. A steeply rising curve indicates that only a few

instructions are responsible for most of the runtime computation. Only instructions

46

that are executed at least once are considered. In CommBench, RTR, ZIP, and JPEG

have kernels that follow the 90/10 rule very closely with others having smaller kernels

(e.g., FRAG, DRR, REED follow 95/5), and in a couple of cases larger kernels (e.g.,

TCP follows 85/15). CAST has a basically linear behavior due to a fairly large inner

loop that repeats many instructions the same number of times.

3.2.3 Computational Complexity

In networking, streaming data through the programs is a significant portion of an

application. In contrast, in most traditional workstation benchmarks, the input is

limited to a few parameters and little input data and the output is only a few result

values. Given clearly defined I/O data streams for each CommBench application, it

is possible to define the computationally complexity of each application with respect

to the number and size of the processed packets. This complexity measure helps in

determining certain aspects of performance as a function of expected workload.

We define the computational complexity compla,l to be the number of instruc-

tions per byte required for application a operating on a packet of length l:

compla,l =
instructions executed by a

l
. (3.1)

The computational complexity does not reflect memory system performance since it

is based on the number of instructions rather than the number of cycles executed. For

header processing, l is taken to be 64, 576 and 1536 bytes (i.e., minimum IP-packet

size, minimum MTU (maximum transfer unit) over IP, and maximum Ethernet packet

size). The minimum l = 64 bytes is also in the range of ATM cell size (53 bytes). For

payload processing applications l is effectively equal to infinity. That is, we consider

data streams of sufficient length (l ≥ 1MB) so that startup overhead processing is

negligible. Table 3.4 shows the complexity of CommBench applications. Section 3.4

discusses how this complexity measure is used to determine the required processing

power for a given application and link rate.

3.2.4 Instruction Set Characteristics

The instruction mix gives an indication on the type of instructions executed in the

benchmark. Averages for CommBench, and its two components HPA and PPA are

given in Figure 3.2. Table 3.5 presents this same data sorted by frequency.

47

10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f d
yn

am
ic

 in
st

ru
ct

io
n

% of static instructions

RTR
FRAG

DRR
TCP

(a) Header-Processing Applications

10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f d
yn

am
ic

 in
st

ru
ct

io
n

% of static instructions

CAST
ZIP

REED
JPEG

(b) Payload-Processing Applications

Figure 3.1: Locality in CommBench Applications.

Table 3.4: Computational Complexity of CommBench Applications. The results are
given in instructions per byte.

HPA a compla,64 compla,1536

TCP 10.3 .4
FRAG 7.7 .3
DRR 4.1 .2
RTR 2.1 .1

PPA a compla,∞ (enc) compla,∞ (dec)

REED 603 1052
ZIP 226 35

CAST 104 104
JPEG 81 60

48

0

5

10

15

20

25

30

35

40

LD AD BR CP LG SH ST LI JP SR CL MUNO OT

dy
na

m
ic

 in
st

ru
ct

io
n

ex
ec

ut
io

n
in

 %

instruction

(a) HPA

0

5

10

15

20

25

30

35

40

LD AD BR CP LG SH ST LI JP SR CL MUNO OT

dy
na

m
ic

 in
st

ru
ct

io
n

ex
ec

ut
io

n
in

 %
instruction

(b) PPA

0

5

10

15

20

25

30

35

40

LD AD BR CP LG SH ST LI JP SR CL MUNO OT

dy
na

m
ic

 in
st

ru
ct

io
n

ex
ec

ut
io

n
in

 %

instruction

(c) CommBench

Figure 3.2: CommBench Instruction Frequencies. Error bars indicate the minimum
and maximum of instruction frequencies encountered for any single application (LD =
load, AD = add/sub, BR = conditional branch, CP = compare, LG = logic, SH =
shift, ST = store, LI = load immediate, JP = jump and link, SR = save/restore, CL
= call, MU = mult, NO = nop, OT = other).

49

Table 3.5: Ordered Instruction Frequencies for CommBench.
CommBench CommBench CommBench
Average % HPA % PPA %
load 22 load 27 add/sub 22
add/sub 17 cond. branch 18 load 18
cond. branch 16 compare 18 cond. branch 13
compare 15 add/sub 13 shift 13
logic 9 store 6 compare 12
shift 8 logic 6 logic 11
store 7 shift 4 store 7
load imm. 2 load imm. 2 load imm. 1
jmpl 1 jmpl 1 save/restore 1

The two components of CommBench, HPA and PPA, show significant differ-

ences in the instruction execution frequencies. The usage of load and add/sub differs

by about 10% and 5% for branch, compare, and logic. This indicates that Header-

Processing Applications are more dominated by “random logic” that heavily uses

load, branch, and compare. Payload-Processing Applications are more dominated by

add, shift, and logic, which indicates their emphasis on computationally intense tasks.

3.2.5 Memory Hierarchy Characteristics

An important part of any processor design is its memory hierarchy. Figure 3.3 shows

the results for a 2-way associative instruction and data cache from 1KB to 32KB.

Other caches with different associativity were also investigated. For the direct mapped

cache the rule of thumb holds which states that the miss rate is about 1.5 to 2 times

that of a 2-way cache. The differences between 2-way, 4-way, and 8-way associative

caches are minor, hence the gain for going to higher associativity given the additional

chip area costs are limited.

The CommBench HPA and PPA cache performance is shown in Figure 3.4.

The following points are relevant:

• Due to the relatively small CommBench program kernels, CommBench instruc-

tion miss rates are very low. For an 8KB instruction cache, miss rates under

0.5% can be achieved for all but the CAST program. For 16KB instruction

caches, all applications achieve miss rates below 0.2%.

50

0%

1%

2%

3%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

RTR
FRAG

DRR
TCP

(a) HPA Instruction Cache.

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

RTR
FRAG

DRR
TCP

(b) HPA Data Cache.

0%

1%

2%

3%

4%

5%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

CAST
ZIP

REED
JPEG

(c) PPA Instruction Cache (Encoding).

0%

5%

10%

15%

20%

25%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

CAST
ZIP

REED
JPEG

(d) PPA Data Cache (Encoding).

0%

1%

2%

3%

4%

5%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

CAST
ZIP

REED
JPEG

(e) PPA Instruction Cache (Decoding)

0%

5%

10%

15%

20%

25%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

CAST
ZIP

REED
JPEG

(f) PPA Data Cache (Decoding)

Figure 3.3: Instruction Cache and Data Cache Miss Rates for CommBench Applica-
tions.

51

0%

1%

2%

3%

4%

5%

6%

7%

8%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

HPA
PPA

CommBench
SPEC

(a) Instruction Cache Average.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 kB 2 kB 4 kB 8 kB 16 kB 32 kB

m
is

s
ra

te

cache size

HPA
PPA

CommBench
SPEC

(b) Data Cache Average.

Figure 3.4: Average Instruction Cache and Data Cache Miss Rates for CommBench,
HPA, and PPA.

Table 3.6: Average Ratio of Miss Rate at Smaller Line Size to Miss Rate at the Larger
Line Size.

Cache Type 16 vs. 32 byte 32 vs. 64 byte

Instruction 1.67 1.18
Data 1.36 1.26

• Data cache miss rates are below 1% for a 16KB cache, except for the ZIP and

FRAG applications.

• For payload-processing applications, encoding and decoding programs have al-

most identical instruction and data cache performance. Only ZIP has a much

higher data cache miss rate for the encoding application.

The instruction miss rates for CommBench also vary as a function of the cache

line size. Table 3.6 shows that average miss rates decrease with increasing line size.

The step from 16 to 32 bytes decreases the miss rates by 1.67 for instruction cache

and 1.36 for data cache. Going to 64 bytes decreases the miss rate further, but only

by 1.18 for instruction cache and 1.26 for data cache. There are two applications

(CAST and RTR) that have higher miss rates with a 64 byte line size than with a 32

byte line size. The overall performance effect of using increased line size depends not

only on the miss rate, but also on the miss penalty. This is processor implementation

dependent, though, and is therefore not considered here.

52

Table 3.7: SPEC Code Size.
SPEC Code Size Code Size
Program C lines Object bytes

126.gcc 206,000 1,950,000
147.vortex 67,200 1,150,000
132.ijpeg 31,200 594,000
099.go 29,200 558,000
134.perl 26,900 544,000
124.m88ksim 19,900 404,000
130.li 7,600 139,000
129.compress 1,930 81,700

Average 48,700 678,000

CommBench Avg. 5,750 97,000

3.2.6 Summary of Characteristics

The dynamic code sizes of CommBench applications are only in the order of a few

hundred to a thousand instructions, which characterizes the simple and focused appli-

cations in this domain. The instruction frequencies of Header-Processing Applications

are dominated by load, compare, and branch. Payload-Processing Applications exe-

cute significantly more add/sub, shift, and logic operations. With respect to the cache

performance, CommBench applications have very low miss rates, which are due to the

small kernel sizes of CommBench applications. For an instruction cache of 16 Kbytes

the miss rates drop below 0.1%. For data cache performance, payload processing

applications have slightly higher miss rates than header processing applications.

3.3 Comparison to SPEC

To highlight the differences between workloads for network processors and those

for workstations, we briefly compare the CommBench results to measurements on

SPEC [Sta95]. The SPEC results were obtained using the identically same simulation

environment as for CommBench. Table 3.7 shows the code size for SPEC applica-

tions. Comparing these results to the average for CommBench (from Table 3.2), it

can be observed that SPEC applications are about one order of magnitude larger

than CommBench applications. A similar observation can be made for the dynamic

code size shown in Figure 3.8.

53

Table 3.8: SPEC Dynamic Kernel Characteristics.
SPEC Instructions Instr. Instr.
Program at least once for 99% for 90%

126.gcc 124,246 43,983 15,899
147.vortex 60,630 10,136 1,715
099.go 53,629 17,511 6,530
132.ijpeg 12,627 1,735 949
124.m88ksim 12,313 2,154 875
134.perl 12,284 683 542
130.li 7,341 990 408
129.compress 2,842 352 227

Average 35,700 9,700 3,390

CommBench Avg. 3,430 500 275

With respect to the instruction frequency, SPEC displays some similarity to

CommBench. The error-bar for add shows that for certain applications, SPEC is

quite similar to PPA in CommBench, even through the average is closer to HPA.

The differences in cache performance can be seen in Figure 3.4. The instruction

cache miss rate for SPEC is much higher than CommBench due to the larger program

sizes. These results confirm the assumption that network processors can perform well

with smaller caches than workstation processors.

3.4 Architectural Implications

There are several implications for the programmable router design that can be derived

from the above results. For one, the definition of computational complexity gives the

opportunity to estimate the required processing power for a given scenario. Assuming

a link speed of OC-24 (1.244 Gbps), 64-byte packets, and processing, which consists

of routing (RTR) and scheduling (DRR), we can compute the necessary processing

power in million instructions per second (MIPS):

processing power = link rate · ∑
a={RTR,DRR} compla,64 =

= 1.244 Gbps · 1byte
8bit

· (2.1 + 4.1) = 964 MIPS.
(3.2)

Current processors are able to process around 1000 MIPS, which indicates that simple

forwarding could be performed by a single-processor software-based router. However

54

0

5

10

15

20

25

30

35

40

LD AD BR CP LG SH ST LI JP SR CL MUNO OT

dy
na

m
ic

 in
st

ru
ct

io
n

ex
ec

ut
io

n
in

 %

instruction

(a) SPEC

0

5

10

15

20

25

30

35

40

LD AD BR CP LG SH ST LI JP SR CL MUNO OT

dy
na

m
ic

 in
st

ru
ct

io
n

ex
ec

ut
io

n
in

 %

instruction

(b) CommBench

Figure 3.5: SPEC and CommBench Instruction Frequencies. Error bars indicate
the minimum and maximum of instruction frequencies encountered for any single
application. (see Figure 3.2 for x-axis legend).

the requirements for payload processing (e.g., CAST) for a gigabit link are beyond

current single-processor capabilities:

processing power = link rate · ∑
a={CAST} compla,∞ =

= 1.244 Gbps · 1byte
8bit

· 104 = 16, 200 MIPS.
(3.3)

Such processing requirements can only achieved by multiprocessor systems as

proposed for the programmable router design in Chapter 2.

From the differences in instruction mix, we can conclude that it might be

beneficial to have a few specialized processors on the APC. Applications can make

use of the special processor should be processed there. One example is a hybrid

configuration of RISC processors and DSPs for media applications.

Finally, the results on the memory performance of CommBench indicate that

smaller caches than they are currently used in workstation processors are sufficient

to achieve efficient execution. In Chapter 4, we will see that caches in the order of

16-32kB are a good design choice.

55

3.5 Related Work

There is a long history of developing synthetic benchmarks (Whetstone [CW76], Dhry-

stone [Wei84]) and realistic benchmarks (SPEC [Sta95]). The most popular bench-

mark associated with workstations have been the SPEC suites. Benchmarks aimed

towards other application classes have also been successfully developed with two ex-

amples being TPC [Tra98], for transaction processing applications, and SPLASH

[WOT+95], for scientific applications executing on parallel processors.

In addition to differences in program execution characteristics, traditional

benchmarks do not reflect other aspects of the telecommunications environment. One

significant shortcoming is the missing focus on clearly defined I/O. A recent bench-

mark, that addresses I/O issues in the context of multimedia applications is the

MediaBench benchmark [LPMS97] which consists of programs implementing various

compression and coding algorithms for streaming voice, audio, and video data (e.g.,

JPEG, MPEG, GSM, etc.). However, multimedia transcoding is only one part of the

network processor applications domain. Additionally, such processors must perform

a wide variety of logical control operations not significantly present in MediaBench.

CommBench includes streaming data flow based applications similar to those found

in MediaBench, and additional packet-based processing tasks such as routing and

data forwarding.

After the development of CommBench, several other network processor bench-

marks have been published. An industrial attempt to benchmarking network proces-

sors is done by the Embedded Microprocessor Benchmarking Consortium (EEMBC)

[EEM]. EEMBC maintains a set of benchmarks for embedded systems, which also

include a few simple networking applications, however, the focus in mainly on header-

processing applications. Crowley et al. have defined a set of networking benchmark

applications [CFBB99] in the context of their research. There is some overlap with

CommBench, but the aim of the analysis is more towards opportunity for exploit-

ing ILP than characterizing RISC processor performance. Recently, NetBench has

been developed by Memik et al., which distinguished between different levels of op-

eration [MMSH01]. Micro-level, IP-level, and application-level programs are defined.

PPA in CommBench are somewhat similar to applications-level programs in Net-

Bench. HPA correspond to micro-level and IP-level.

There are still several open questions on benchmarking network processors. In

particular the lack of a clearly defined architecture for network processors hinders the

56

efforts to develop a single standard benchmark similar to SPEC in the workstation

domain. There are some attempts to structure benchmarking methodologies to ac-

commodate different network processor architectures [CYB+02], [SBM02], but more

progress in this area can be expected over the next few years.

3.6 Summary

CommBench provides a quantitative understanding of the processing requirements

and characteristics of the networking domain. In particular, the definition of com-

putational complexity is a useful metric for estimating processing requirements. The

measurements of code size, instruction mix, and cache performance is used with the

performance model in the following chapter to determine APC configurations that

are optimized for particular workloads.

57

Chapter 4

Performance Model

One major difficulty in the area of network processor design is the lack of a method-

ology for comparing the performance of different designs. Unlike workstation proces-

sors, where the basic design is similar in most machines, network processors range from

straightforward RISC multiprocessors to complex combinations of processors, special-

ized co-processors, and custom logic. Qualitative comparisons are only of limited use

as there are very basic differences among different network processor architectures.

Therefore, we focus on a quantitative evaluation of this domain.

In this chapter, a general performance model for a basic network processor

design is developed. Due to the generality of the network processor model, it is

applicable to a range of network processor architectures. The evaluation requires a

set of easily obtainable technology and application parameters. The presented results

show tradeoffs for various design alternatives and are used to derive the optimal

configuration for the Application Processing Chip in the programmable router. This

chapter is published in [WF02] and [FW02].

4.1 Analytic Model

The single-chip network processor architecture used in the analytic model is shown

in Figure 4.1. It is a generalization of the APC design discussed in Chapter 2. The

system contains a number of identical multithreaded general-purpose RISC processors

with t threads. Each processor has its own instruction and data cache of size ci and

cd. Groups of n processors are clustered together and share a memory interface for

off-chip memory accesses. The network processor consists of m clusters. By varying

the number of processors, threads, clusters, and sizes of caches, a broad range of

58

ASIC

cache cache cache

...

packet demult iplexer & scheduler

transmisison interface

to switching
fabric

from network

off-chip memory

cache

...

... ...

memory channel

processor 1 processor n processor n

memory channel

processor 1

I/O channel and demux

off-chip memory

cluster 1 cluster m

... ...

threads

...1 t

threads

...1 t

threads

...1 t

threads

...1 t

Figure 4.1: Network Processor Architecture for Performance Model. This system is
an abstraction from the architecture in Figure 2.4.

processor architectures can be considered. The various system parameters used in

the performance model are listed in Table 4.1.

The goal of the model is to find the “optimal” configuration of a network pro-

cessor for a given workload. Optimal, in this context, means obtaining the maximum

processing power per unit of chip area. We develop analytic expressions for the pro-

cessing power, IPS, (Instructions Per Second) and the area, area, associated with

a given architecture configuration (e.g., number of processors, sizes of caches, etc.).

From these expressions we can obtain IPS/area and find its maximum as a function

of the various configuration parameters, thus developing an “optimal” architecture.

In the remainder of this section, we discuss how to obtain IPS and area in terms of

system and workload characteristics.

59

Table 4.1: System Parameters for Performance Model.
Component Symbol Description
processor clkp processor clock frequency

t number of simultaneous threads on processor
ρp processor utilization

program a floada frequency of load instructions
fstorea frequency of store instructions
mic,a i-cache miss probability for cache size ci

mdc,a d-cache miss probability for cache size cd

dirtyc,a prob. of dirty bit set in d-cache of size cd

compla complexity (instr. per byte of packet)
caches ci instruction cache size

cd data cache size
linesize cache line size of i- and d-cache

off-chip memory τDRAM access time of off-chip memory
memory channel widthmchl width of memory channel

clkmchl memory channel clock frequency
ρmchl load on memory channel

I/O channel widthio width of I/O channel
clkio clock rate of I/O channel
ρio load on I/O channel

cluster n number of processors per cluster
ASIC m number of clusters and memory channels

s(x) actual size of component x, with
x ∈ {ASIC, p, ci, cd, io, mchl}

60

4.1.1 Processing Performance

The processors are typical RISC processors, which ideally execute one instruction per

cycle. Processor stalls can occur when the on-chip cache cannot satisfy a memory

request. (We assume that the on-chip SRAM cache can be accessed in a single

cycle.) In such a case, the processor switches to the next thread to hide the memory

access latency. We assume that context-switching is done in hardware with zero cycle

overhead. This means that if one thread stalls, another thread can immediately start

processing with no cycle delay.

For a single processor, processing power can then be expressed as the product

of the processor’s utilization, ρp, and its clock rate, clkp. The processing power of the

entire NP can be expressed as the sum of processing power of all the processors on

the chip. Thus, with m clusters of processors and n processors per cluster:

IPS =
m∑

j=1

n∑
k=1

·ρpj,k
· clkpj,k

. (4.1)

If all processors are identical and run the same workload, then on average the pro-

cessing power is:

IPS = m · n · ρp · clkp. (4.2)

A key question is how to determine the utilization of the processors. In the

extreme case where there is a large number of threads per processor, large caches that

reduce memory misses, and low memory miss penalties, the utilization approaches 1.

However, a large number of thread contexts and larger caches require more chip area,

reducing the number of processors.

4.1.2 Chip Area

The on-chip area equation for an NP configuration in our general architecture is:

areaNP = s(io) +
m∑

j=1

(s(mchl) +
n∑

k=1

(s(pj,k, t) + s(cij,k
) + s(cdj,k

))). (4.3)

This is the summation over all the system component areas shown in Figure 4.1.

With identical processor configurations, this can be simplified to:

61

areaNP = s(io) + m · (s(mchl) + n · (s(p, t) + s(ci) + s(cd))). (4.4)

The processor size, s(p, t), depends on the number of hardware threads and is there-

fore expressed as s(p, t), a function of t. We model the processor size in terms of

two components. The first component, size s(pbasis), is independent of the number of

supported threads. It represents the basic processor logic (e.g., ALU, pipeline control,

branch prediction, etc.). The second component, size s(pthread), relates to logic associ-

ated with a thread (e.g., thread context registers, associated logic, etc.). This thread

component is modelled as increasing linearly with the number of threads, t. While

this might be optimistic for large numbers of threads, it is a reasonable assumption

for the relatively small number of threads considered here. Thus, the processor size

is:

s(p, t) = s(pbasis) + t · s(pthread). (4.5)

The size of a memory or I/O bus also consists of a basis area plus the on-chip area

of the pin drivers and pads. The total size depends on the width of the bus:

s(mchl) = s(mchlbasis) + widthmchl · s(mchlpin). (4.6)

The number of pins depends on the bus clock, clkmchl, and the required bus

bandwidth, bwmchl. Thus:

s(mchl) = s(mchlbasis) +

⌈
bwmchl

clkmchl

⌉
· s(mchlpin). (4.7)

with the equivalent equation being used for the I/O channel.

Equation 4.4 and the subsequent Equations 4.5-4.7 define the area requirements

of system configurations. Before this can be used in the evaluation of the overall

performance metric IPS/areaNP , the processor utilization must be determined so

that IPS from Equation 4.2 can be evaluated. In particular, the processor utilization,

ρp, depends on the performance of the memory system.

4.1.3 Memory System

The performance of the network processor is determined by the utilization of the

individual processing engines. A RISC processor is fully utilized as long as memory

62

misses do not cause a processor stall. Other stalls due to hazards, such as branch

misprediction, are not considered here since, with modern processor and compiler

designs, they generally have a relatively small effect compared to the effects of cache

misses. Using the model proposed and verified by Agarwal [Aga92], the utilization

ρp(t) of a multithreaded processor is given as a function of the cache miss rate pmiss,

the off-chip memory access time τmem, and the number of threads t as:

ρp(t) = 1 − 1∑t
i=0

(
1

τmem·pmiss

)i
t!

(t−i)!

. (4.8)

To illustrate the overall trend in this equation, we can simplify Equation 4.8 by

ignoring the second and higher order terms of the summation (i.e., i = 0, 1). Thus:

ρp(t) = 1 − 1

1 + t
τmem·pmiss

= . . . =
t

(t + τmem · pmiss)
. (4.9)

Note from this expression that, as expected, the utilization decreases with increasing

miss rates and with increasing miss penalties for off-chip memory accesses. The

larger the number of threads, t, the less the impact of τmem and pmiss, since more

threads are available for processing and processor stalls are less likely. In the limit

limt→∞ ρp(t) = 1. While it is desirable to run processors at high utilization there is

an increasing area cost with this as indicated in Equation 4.5. This impacts overall

performance since the added processor area due to more thread contexts leads to less

area available for caches and thus can lead to higher miss rates. The analysis of this

tradeoff requires expressions for the memory access time, τmem, and the cache miss

rate, pmiss.

Off-Chip Memory Access

We assume the memory channel implements a FIFO service order on the memory

requests in such a way that they can be interleaved in a split transaction fashion. The

total off-chip memory request time, τmem, thus has three components: the bus access

time, τQ, the physical memory access time, τDRAM , and the cache line transmission

time, τtransmit (all represented in terms of numbers of processor clock cycles):

τmem = τQ + τDRAM + τtransmit. (4.10)

63

The DRAM access time is a fixed technology parameter and the cache line transmis-

sion time can be determined from the memory channel width, clock rate, and cache

line size. The queuing time, however, depends on the load on the memory channel,

which depends on the number of processors that share the memory channel, the num-

ber of threads per processor, and the cache miss rates. This system component can

be simply modelled as a single server queuing system with n processors that generate

requests. The request distribution can be modelled as geometrically distributed ran-

dom variables (as suggested in [Aga92]). Based on the average cache miss rate of a

thread (see Equation 4.14 below), the parameter of the geometric random variable is

pmiss. The number of requests per processor is limited to t, which corresponds to the

situation where all the processor threads are stalled and the processor is idle until a

memory request is served. The service time for the memory channel is taken to be

deterministic with parameter 1/τtransmit.

This model can be slightly modified to make it more suitable for the analytical

evaluation. Instead of considering n processor sources each providing up to t requests,

we model the system as a single finite source having up to n · t requests. Since each

of the n sources generates requests at a mean rate pmiss, the single source model

generates requests at a rate n · pmiss.

Assuming an exponential distribution rather than a geometric and ignoring

the limit of n · t customers, the queuing system can be approximated by a M/D/1

queuing system. The request rate is λ = n · pmiss and the deterministic service rate

is µ = 1/τtransmit.

The M/D/1 model is a reasonable approximation to the real system, which

has a finite source population. Figure 4.2 shows the average queue length for the

simulated real finite source system and the analytic result for the M/D/1 system.

The number of threads in this example is t = 8, the number of processors is n = 4,

and the service time τtransmit = 40. The M/D/1 model has no constraint on the

maximum number of requests and therefore reaches a much larger queue length for

very high loads (i.e., > 90%). For a more typical load of ρmchl = 0.5 . . . 0.9, the

difference between M/D/1 and the other models is relatively small. Furthermore,

below 50% load the queue length is small enough for both models to have relatively

little effect on the overall performance. Therefore, we will use the M/D/1 model for

an approximation of the queuing time τQ.

The bus access time, τQ, is then given by the queuing time of the M/D/1

system, which is

64

0.01

0.1

1

10

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

qu
eu

e
le

ng
th

load

real
M/D/1

Figure 4.2: Comparison of Average Memory Queue Length for Different Queuing
Models.

τQ =
ρ2

mchl

2(1 − ρmchl)
· linesize

widthmchl

· clkp

clkmchl

. (4.11)

With a fixed DRAM access time, τDRAM , and a transmission time of

τtransmit =
linesize

widthmchl

· clkp

clkmchl

, (4.12)

we can substitute in Equation 4.10 to obtain the memory access time:

τmem = τDRAM +

(
1 +

ρ2
mchl

2(1 − ρmchl)

)
· linesize

widthmchl

· clkp

clkmchl

. (4.13)

On-Chip Cache

The remaining component needed to evaluate the utilization expression (Equation 4.8)

is the cache miss rate pmiss. For a simple RISC style load-store processor running

application a, the miss probability is given as [HP95]:

pmiss,a = mic,a + (floada + fstorea) · mdc,a, (4.14)

65

where mic,a and mdc,a are the instruction and data cache miss rates, and floada and

fstorea are the frequency of occurrence of load and store instructions when executing

application a. The instruction and data cache miss rates depend on the application,

the cache sizes, and the effects of cache pollution due to multi-threading.

Cache pollution from multi-threading reduces the effective cache size that is

available to each thread. On every memory stall, a thread requests one new cache line

(replacing the least recently used line). While the thread is stalled, t−1 other threads

replace one line. In steady-state, each thread can use 1
t

of the available cache. If the

working set size of a thread is very small, its effective cache usage could be less than 1
t

(and the other threads use slightly more). In a network processor, we expect the cache

sizes to be smaller than the working set size due to chip area constraints, which leads

to equal sharing of the available cache between threads. Thus, the effective cache size

that is available to a thread is:

ci,eff =
ci

t
, cd,eff =

cd

t
. (4.15)

The miss rates used in Equation 4.14 refer to this effective cache size.

4.1.4 Memory and I/O Channels

The expression for miss rate, pmiss, (Equation 4.14) and for total memory access time,

τmem, (Equation 4.10) can now be substituted into Equation 4.8 to obtain processor

utilization. In order to do this, we need to fix the memory channel load, ρmchl, because

τQ depends on ρmchl. With the memory channel load given, we can then determine the

utilization of a single processor. With the utilization given, the memory bandwidth,

bwmchl,1, required by a single processor is:

bwmchl,1 = ρp · clkp · linesize · (mic + (fload + fstore) · mdc · (1 + dirtyc)). (4.16)

In this equation, we have to consider the case where a dirty cache line needs to be

written back to memory. The probability of the dirty bit being set on a cache line

is dirtyc. In Equation 4.14, considering dirty cache lines was not necessary, since a

write-back does not stall the processor. In practice, the write-back only increases the

required memory bandwidth slightly and Equation 4.16 can be approximated by

66

bw∗
mchl,1 = ρp · clkp · linesize · pmiss. (4.17)

In the results below, the dirty bit is considered. The number of processors, n, in a

cluster is then the number of processors that can share the memory channel without

exceeding the specified load

n =

⌊
widthmchl · clkmchl · ρmchl

bwmchl,1

⌋
. (4.18)

This gives us a complete cluster configuration for all ranges of cache sizes and thread

contexts. Finally, we need to determine the bandwidth that is required for the I/O

channel. The I/O channel is used to send packets to the processing engines and back

out. Thus, each packet traverses the I/O channel twice. From Equation 3.1, we get

a relation between the number of instructions executed in processing a packet and

the size of the packet. The I/O channel is operated at a load of ρIO; thus, the I/O

channel bandwidth for the entire network processor is:

bwIO = 2 · IPS

compl · ρIO

. (4.19)

Finally, the network processor is limited in the number of pins that the package

can have. As a rough estimate, we add the number of pins required by the I/O and

memory channels, which depends on their respective width, to the control pins for

the network processor:

pinsNP = pinsIO + m · pinsmchl + pinscontrol. (4.20)

We can see below that, for our basic architecture, the number of pins that can be

supported do not pose a practical limit on the network processor.

4.1.5 Optimization

With the performance and area of the network processor expressed in terms of cache

configurations, application characteristics, and memory channel load, we can find

the maximum IPS/area. Since the optimization space is discrete (other than the

memory channel load) and relatively small, this can be done by exhaustive search. In

the results below, on the order of 50 million different configurations are considered.

67

Table 4.2: Computational Complexity and Load and Store Frequencies of Workloads.
Workload W complW fload,W fstore,W

A - HPA 9.1 0.2319 0.0650
B - PPA 249 0.1691 0.0595

4.2 Workload and System Characteristics

In order to obtain results from the performance model, the parameters of the workload

and the system characteristics have to be defined.

4.2.1 Network Processor Workload

For workload parameters in our model, the measurement results from CommBench in

Chapter 3 are used, which include computational complexity, load and store instruc-

tion frequencies, instruction cache and data cache miss rate, and dirty bit probability.

We aggregate the application parameters from CommBench into two workloads that

we consider for the evaluation of our analysis:

• Workload A: Header-Processing Applications.

• Workload B: Payload-Processing Applications.

These workloads are such that there is an equal distribution of processing require-

ments over all applications within each workload. Table 4.2 shows the aggregate

complexity and load and store frequencies of the workloads. The aggregate cache

miss rates for instruction and data cache are shown in Figure 4.3. The x-axis cor-

responds to the effective cache size available to a thread as given in Equation 4.15.

Note that we assume 2-way associative caches both for instruction and data cache.

If different associativity was to be considered, the cache miss rates would have to be

adjusted.

4.2.2 System Parameters

The system parameters for the network processor are listed in Table 4.3. The pa-

rameters that are varied in the optimization are chosen to cover a wide spectrum of

configurations. The results below show that this covers the relevant regions of the

design space. It is not expected that a wider range would result in any other optima.

The values for the on-chip area of different components are approximate for .18µm

68

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32 64 128 256

m
is

s
ra

te
 in

 %

cache size in kB

i-miss, workload A
d-miss, workload A
i-miss, workload B

d-miss, workload B

Figure 4.3: Aggregate Cache Performance of Workloads.

CMOS technology. It should be noted that exact values are hard to obtain from

industrial sources. The performance model can of course be used with more accurate

parameter sets. The total size of the NP is restricted to 400mm2 or less, which is the

limit of economic ASIC sizes.

4.3 Design Results

This section presents and discusses the optimization results and performance trends

for the analytical model and parameter sets defined above.

4.3.1 Optimal Configuration

Table 4.4 shows the overall best configuration for both workloads. There are several

important points that can be seen from this table:

• The optimal number of threads in both cases is t = 2, which indicates that it is

not necessary to have a large number of threads to obtain good performance.

• The cache sizes are in the range of 16kB to 32kB, which yields an effective cache

size of 8kB to 16kB per thread. These values correspond to knees in the i-miss

69

Table 4.3: System Parameters for Optimization.
Parameter Value(s)

clkp 200 MHz . . . 800 MHz
t 1 . . . 16
ci 1 kB . . . 1024 kB
cd 1 kB . . . 1024 kB
linesize 32 byte
τDRAM 60 ns
widthmchl 16 bit . . . 64 bit
ρmchl 0 . . . 1
widthio up to 72 bit
ρio 0.75
clkmchl, clkio 200 MHz
s(pbasis) 1 mm2

s(pthread) 0.25 mm2

s(ci), s(cd) 0.10 mm2 per kB
s(mchlbasis), s(iobasis) 10 mm2

s(mchlpin), s(iopin) 0.25 mm2

s(ASIC) up to 400 mm2

curves in Figure 4.3. Note that for the d-cache of workload B a small cache size

gives better results since there is no clear knee in the curve that makes a larger

cache pay off.

• Both configurations use the fastest processor because there is no cost in the

model associated with higher clock rates. Also the widest memory channel is

used, because it amortizes the basis cost s(mchlbasis) over a wider channel.

• The number of processors per cluster, n, is 31 and 20. This is relatively high,

because a wider memory channel with more processors sharing it amortizes the

basis cost better. When limiting the width of the memory channel to smaller

sizes (e.g., 48 bit), the same configuration as in Table 4.4 with a smaller n (e.g.,

24) and a larger m (e.g., 3) is the overall best. The IPS/area value for this

configuration is slightly lower (e.g., 173 MIPS/mm2).

• The number of clusters per system is 2 or 3, which is limited by the overall chip

area and the I/O channel width. With smaller memory channels and smaller n

the number of possible cluster increases.

70

• The I/O channel is much wider for workload A because the processing complex-

ity is much smaller for header-processing applications. Therefore data moves

more quickly into and out of the network processor. For payload processing, the

data remains on the processor for a longer time. Thus, a smaller I/O channel

is sufficient.

• The overall processing power for both workloads is about the same (although

workload B uses more chip area). Due to the lower complexity of header pro-

cessing, this translates into a much larger throughput for workload A.

The most important result is the overall processing power, which is over 45000 MIPS.

Considering the computational complexity of the workloads, this processing power

translates to a maximum throughput of 42.48 Gbps for workload A and 1.48 Gbps

for workload B. This shows that such configurations can easily handle gigabit link

speeds even for complex payload processing.

4.3.2 Performance Trends

The optimal configurations of the network processor are very specific to a particular

workload. To get more general results, we now look at the impact of different system

parameters on the overall performance by varying them. Unless noted otherwise, pa-

rameters are fixed to: t = 2, clkp = 800 MHz, ci = 16 kB, cd = 16 kB, widthmchl = 64

bit, and workload A. Note that these parameters correspond to the optimal config-

urations for workload A shown in Table 4.4. Also, ρmchl is chosen to be such that

it yields the maximum performance. When using the term “performance,” we mean

IPS/area (not IPS). Some of the configurations discussed below exceed the limits

on total chip area, width of the I/O channel, and pin count. They are still shown as

they might become feasible in the future.

Memory Channels

One critical parameter for the memory channel performance is the load, ρmchl. Fig-

ure 4.4 shows the performance of the network processor depending on the chosen load.

It also shows the queue length given by the M/D/1 queuing model. For high loads

the queuing time is so high that it impacts the performance of the processors. For

most configurations the best load is about ρmchl = 0.9.

71

Table 4.4: Optimal System Configurations.
Parameter Workload A Workload B

clkp 800 MHz 800 MHz
t 2 2
m 2 3
ci 16 kB 32 kB
cd 16 kB 16 kB
widthmchl 64 bit 64 bit
ρmchl 0.91 0.89
pmiss 0.187% 0.286%
τmem 137.6 121.6
ρp 0.974 0.957
n 31 20
widthio 71 3
pinsNP 199+pinscontrol 195+pinscontrol

IPS 48324 MIPS 45934 MIPS
area 272 mm2 322 mm2

IPS/area 178 MIPS/mm2 142 MIPS/mm2

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

M
IP

S
/m

m
^2

qu
eu

e
le

ng
th

memory channel load

workload A
workload B

queue length

Figure 4.4: Performance Depending on Memory Channel Load.

72

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16

M
IP

S
/m

m
^2

number of threads

width=16bit
width=32bit
width=48bit
width=64bit

Figure 4.5: Performance Depending on Memory Channel Width and Number of
Threads. The results for Workload A are shown.

The width of the memory channel also affects the performance of the network

processor. Figure 4.5 shows that for one thread the memory channel performance

does not impact the overall performance, because the system is mostly limited by

τDRAM and τQ. For two or more threads, a four-fold increase in memory channel

bandwidth (from 16 bit to 64 bit) yields up to twice the performance.

Processors

The processor can be configured in terms of clock rate and the number of thread

contexts. Figure 4.6 shows the performance gains for higher clock rates over different

numbers of threads. For one or two threads, the performance increases practically

linear with clock speed. For larger numbers of threads, the amount of available cache

per thread is less, which leads to more cache misses and possible memory stalls.

Thus, the increase in performance is limited by off-chip memory accesses that cause

processor stalls.

The performance impact of the number of available thread contexts can also

been seen in Figures 4.5 and 4.6. In both graphs, the optimal number of threads is

two. For larger number of threads, there are two factors that limit their benefits. One

73

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16

M
IP

S
/m

m
^2

number of threads

clock=200MHz
clock=400MHz
clock=600MHz
clock=800MHz

Figure 4.6: Performance Depending on Processor Clock Rate and Number of Threads.
The results for Workload A are shown.

1
4

16
64

256
1024

i-cache size1
4

16
64

256
1024

d-cache size

1

2

4

8

16

opt. # of threads

Figure 4.7: Optimal Number of Threads for Cache Configuration. The results for
Workload A are shown.

74

 150
 100
 50

2 4 8 16 32 64 1282565121024

i-cache size2
4

8
16

32
64

128
256

512
1024

d-cache size

0
20
40
60
80

100
120
140
160
180

MIPS/mm^2

Figure 4.8: Performance Depending on Cache Configuration (Workload A).

 120
 80
 40

2 4 8 16 32 64 1282565121024

i-cache size2
4

8
16

32
64

128
256

512
1024

d-cache size

0
20
40
60
80

100
120
140

MIPS/mm^2

Figure 4.9: Performance Depending on Cache Configuration (Workload B).

75

is the higher cache miss rate due to memory pollution. The other is the additional

area cost for the thread context.

To illustrate the impact of the cache pollution, Figure 4.7 shows the optimal

number of threads for a given i-cache and d-cache configuration. This shows that if

larger caches were available, more threads could be used for optimal performance.

This indicates that with advances in on-chip memory technology, it can be expected

that the number of threads in a processing engine will increase in the future.

Cache Memories

The size of on-chip caches is also an important configuration parameter. Since on-chip

SRAM is expensive in terms of area cost, the amount of memory should be minimized,

while still maintaining good cache hit rates to allow efficient execution of applications.

Figures 4.8 and 4.9 show the performance of different cache configurations for both

workloads. The performance is low for small caches due to high miss rates. It is also

low for very large caches, since much chip area is used. The optimum for workload A

lies at ci = 16 kB and cd = 16 kB. The optimum for workload B is at ci = 32 kB and

cd = 16 kB. With t = 2, each thread uses effectively half of the available cache.

Another observation is that the performance is relatively sensitive to deviations

from the optimal i-cache size. The d-cache size is less sensitive, but still has much

impact on the overall performance. This leads to the conclusion that it is important

to configure the memory system of network processors for the particular workload.

Chip Area Usage

Finally, to give a rough idea on how the chip area of a network processor is used, we

evaluate what fraction of the total area is used for the processor (including thread

contexts), the cache, and the memory and I/O channels. Figure 4.10 shows the

fraction of processor area versus the fraction of cache area. The remaining fraction

(to add up to 1) is the memory and I/O channel area. The top 1% (= 531) of all

configurations are shown. Thus, the processor area typically makes up for 25-40% of

the chip area. The cache area accounts for 20-60% and the memory and I/O channel

area for 20-60%. The centroid lies at 34% for processors, 38% for cache, and 27% for

memory and I/O channel.

76

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

fr
ac

tio
n

ca
ch

e
ar

ea

fraction processor area

Figure 4.10: Chip Area Distribution for Top 1% of Configurations.

4.3.3 Sensitivity of Results

For the above results, a certain set of technology parameters were assumed as shown

in Table 4.1. One important questions is how the results are affected when changing

these parameters. This “sensitivity” of the optimum is shown in Table 4.5 for pa-

rameters that were not considered in Section 4.3.2. For each parameter, the optimal

performance is shown for the default value as well as for a 10% lower and 10% higher

value of the parameter.

Of the parameters considered, the optimal performance is most sensitive to

changes in instruction and data cache area. For these parameters, a 10% change in

cache area per kilobyte resulted in in a 3.79% change in the optimal performance

per area. This is followed by the size of the processor core with about 2.3% impact

for a 10% change. The thread size, memory and I/O channel size, and pin size have

little impact with about 1%. The memory access time has no practical impact on the

performance with only 0.16%.

These results indicate that the overall optimization results are relatively stable.

Most sensitivity is exhibited when changing the cache area and processor core area

parameters.

77

Table 4.5: Sensitivity of Optimization Results to Changes in System Parameters.
Results are relative to the optimum of 177.7 MIPS/mm2 for workload A from Table 4.4
(Opt. in MIPS/mm2).

Parameter Default 10% Decrease
Value Opt. in Value Opt. in Change

MIPS/mm2 MIPS/mm2 in %

τDRAM 60 ns 177.7 54 ns 178.0 +0.16%
s(pbasis) 1 mm2 177.7 0.9 mm2 181.8 +2.33%
s(pthread) 0.25 mm2 177.7 0.225 mm2 179.7 +1.15%
s(ci), s(cd) 0.1 mms/kB 177.7 0.09 mm2/kB 184.4 +3.79%
s(mchlbasis), 10 mm2 177.7 9 mm2 179.7 +1.12%
s(iobasis)
s(mchlpin), 0.25 mm2 177.7 0.225 mm2 181.0 +1.86%
s(iopin)

Parameter Default 10% Increase
Value Opt. in Value Opt. in Change

MIPS/mm2 MIPS/mm2 in %

τDRAM 60 ns 177.7 66 ns 177.4 -0.16%
s(pbasis) 1 mm2 177.7 1.1 mm2 173.7 -2.23%
s(pthread) 0.25 mm2 177.7 0.275 mm2 175.7 -1.13%
s(ci), s(cd) 0.1 mms/kB 177.7 0.11 mm2/kB 171.4 -3.52%
s(mchlbasis), 10 mm2 177.7 11 mm2 175.8 -1.09%
s(iobasis)
s(mchlpin), 0.25 mm2 177.7 0.275 mms 174.5 -1.80%
s(iopin)

78

4.3.4 Summary of Results

The above results of our performance model can be used to extract a few general

design guidelines for network processors:

• The cache configuration has a big impact on the overall performance, which is

sensitive to the workload.

• Two to four hardware contexts for threads is optimal. With large on-chip caches,

more threads perform better.

• Higher processor clock rates and memory channel bandwidths are directly re-

lated to performance improvements for four or fewer threads.

• The chip area is split roughly evenly between processors, caches, and memory

interfaces.

These results are somewhat dependent on the particular workload and systems

parameter that are used. A more general rule of thumb is: “If a component in a

network processor is not used efficiently, it might be better to use its area for another

parallel processor.” Nevertheless, the main contribution of this work is not the design

results per se but the performance model that can be used with other workloads and

system parameters.

4.3.5 Impact on Programmable Router Design

The performance model and the configuration optimization can be applied directly

to the programmable router design discussed in Chapter 2. The APC configurations

shown in Table 2.2 were derived using the above optimization. In addition, the

performance tradeoffs shown above justify some of the design decisions of the APC:

• Multithreading. Figure 4.5 and 4.6 show that there is significant performance to

be gained by supporting multiple threads. For both cases the optimum number

of threads is 2. Figure 4.7, though, indicates that more contexts should be

supported as larger on-chip memories become available in the future.

• Multiple Memory Channels. The access to off-chip memory is crucial as on-

chip memory is limited in the APC design. To avoid heavy contention and long

access delays (see Figure 4.4), it is important to have a design that is scalable

in terms of the number of memory interfaces (i.e., clusters).

79

• Pin Count. The number of data pins for the APC as shown in Table 4.4 is

only about 200. This shows that the total I/O for the APC (from packet

transmissions and memory accesses) does not exceed typical configurations for

ASICs.

Altogether, the results indicate that the overall router design is quite feasible

for system-on-a-chip technology and can be used for implementing the processing

infrastructure of a programmable router.

4.4 Related Work

Crowley et al. have evaluated different processor architectures for their performance

under networking workloads [CFBB00]. This work mostly focuses on the tradeoffs

between RISC, superscalar, and multithreaded architectures (as discussed in Sec-

tion 2.3.1). In more recent work, a modelling framework is proposed that considers

the data flow through the system [CB02].

Thiele et al. have proposed a very general performance model for network

processors [TCGK02]. It takes into account the workload of the system in terms

of data traffic streams, the performance of a processor under different scenarios, and

effects of the queue system. The model is very general and could provide an interesting

approach to network processor design. However, it still has to be shown that the

results from this theoretical model can be applied to a realistic network processor

system.

4.5 Summary

The network processor model and the associated performance expressions represent

an attempt at developing a coherent approach to designing NPs. The model considers

workload parameters, technology constraints, and a selection of design alternatives.

The results can be used to optimize a particular configuration for a given workload.

In addition, general performance tradeoffs can be derived to obtain a quantitative

understanding of different design choices.

80

Chapter 5

Processor Scheduling Algorithms

General-purpose processing on a router introduces an additional level of complexity

into the system, since not only link bandwidth, but also computational resources have

to be allocated. While a significant amount of work has been done with respect to

designing systems, which can provide guaranteed QoS to flows competing for band-

width, processor sharing poses several new problems in this domain. Realizing such a

system is fundamentally complicated by the fact that the execution times of various

applications on packets are not known in advance, which limits applicability of well

known bandwidth scheduling algorithms. Also, at a flow level, it is not clear as to

how explicit or implicit admission control can be done as the processing requirements

of a single flow are not known.

This chapter formalizes the scheduling problem and defines performance met-

rics for comparison of different scheduling algorithms. Measurements show that pro-

cessing times can be estimated, which is helpful for resource reservation and schedul-

ing. Two algorithms are presented: Locality-Aware Predictive Scheduling (LAP),

which aims at reducing performance penalties due to cold caches, and Estimation-

Based Fair Queuing (EFQ), which aims at enforcing fair sharing of processing re-

sources. It is also discussed how both algorithms can be combined on the pro-

grammable router. This chapter is published in [WF01] and [PW02].

5.1 Scheduling Problem

Packets that are queued for processing need to be assigned to processors when these

become available. The processor scheduler can choose any one packet from the n

queues and assign it to any of the m processing engines if they are idle. This is

81

illustrated in Figure 5.1. After processing, packets are again queued in per-flow

queues before the link scheduler in the QCTL assigns them to be transmitted on the

link. The goal of scheduling is threefold:

• Good Performance. The scheduler should be work-conserving. That is if a

processor is idle and a packet is available for the processor, the scheduler should

not keep the processor idle. In addition, the scheduler should avoid “cold”

instruction caches, which reduce the performance of the processing system. This

effect is explained in more detail below.

• Fair Sharing of Resources. The scheduler should ensure that flows get access to

processors evenly. That is the processor scheduler should ensure that no flow

exceeds its fair share of processor usage.

• Low Delay. In order to minimize the effect of processing on the data flow, the

scheduler should also aim at reducing the overall delay that a packet experiences.

This also implies that the delay variation (i.e., jitter) should be minimized.

These goals are almost identical for scheduling in the link bandwidth domain, which

has been studied intensively with many published solutions. However, there is one

key reason, why these algorithms cannot be simply used for processor scheduling:

In theory, processing time of an arbitrary piece of instruction code on a general-

purpose processor cannot be determined beforehand (because it is a version of the

Halting Problem for Turing machines). Most bandwidth scheduling algorithms rely

on knowledge of packet sizes (which corresponds to transmission times on the link

resource). Another reason is that transmissions of packets of the same size always

take the same time. However in processor scheduling, the processing time of a packet

depends on the packet data and the state of the processor as it was left by the previous

packet (i.e., the state of the on-chip cache). Therefore it is necessary to consider new

scheduling algorithms that take these issues into account.

5.2 Processing Characteristics

To illustrate the approach taken for developing the scheduling algorithms, this section

discusses some characteristics of processing times on network processors.

82

processor
scheduler

processing
engine 1

processing
engine m

link
scheduler

queue 1

queue n

queue 1

queue n

feedback

feedback

from
switch
fabric

outgoing
link

...

processing
resource

Figure 5.1: Scheduler System Outline.

5.2.1 Predictability of Processing Times

The nature of packet processing causes the applications to repeatedly execute the

same code over the packets that are passed through the processor. This leads to good

predictability of processing times as the following results show.

Measurements

Four applications were selected: encryption, compression, forward error correction,

and IP forwarding. The first three applications are similar to payload processing ap-

plications presented in Chapter 3. For the measurements, the Washington University

Gigabit Switch [CFFT97] enhanced with the single-processor linecard [DRST01] was

used. The software environment for the processing utilized the Crossbow/Active Net-

work Node operating system [DDPP98], [DPC+99] as discussed in Chapter 2. Several

thousand packets were sent through the programmable router and the overall pro-

cessing time for each packet measured. This process was repeated for different packet

sizes and applications.

Figure 5.2 shows the processing time for packets of different sizes using the

three applications. The error bars indicate the 95% percentile of processing time. For

encryption and FEC, the processing times are very close to the average. For compres-

sion, which is a data dependent computation, the variations are slightly higher. Note

that we use time as the metric for processing cost. This is done to simplify the descrip-

tion of the scheduling algorithm and its analysis. In a realistic network, processing

cost should be translated to processor cycles per second and then adapted to the

particular router system, where the packets get processed, as described in [GMC+00].

83

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 m

ic
ro

se
co

nd
s

packet size in bytes

Reed-Solomon FEC
Huffman compression

CAST encryption
IP forwarding

Figure 5.2: Packet Processing Times for Programmable Router Applications. The
error bars indicate the 95%-percentile of processing times.

Processing Time Approximation

For IP forwarding, the processing time is practically constant for all packet sizes,

which shows the per-packet processing cost of header processing. However, the pro-

cessing times of the three payload processing applications are clearly dependent on

the packet size. The per packet processing time for these applications can be extrap-

olated for packets of size 0. With these observations, we can define the estimated

processing time te of a packet of length l when processed by application a as

te(a, l) = αa + βa · l, (5.1)

where αa is the per packet processing cost and βa is the per byte processing cost of

application a. Thus, the processing requirements of these applications can then be

described by two parameters: αa and βa. These parameters for the four applications

are shown in Table 5.1. To simplify notation, te(p) be the estimated processing time

of packet p, which is of length l and uses application a.

84

Table 5.1: Packet Processing Parameters.
Application a per-packet cost αa per-byte cost βa cold cache expansion

penalty πa factor γa

(µs per packet) (µs per byte) (µs per pkt.)

IP forwarding 51 0 70 1
Encryption 320 1.3 170 1
Compression 970 7.6 950 0.13 - 0.34
FEC coding 320 9.2 175 1.14

Online Estimation

The parameters αa and βa in Table 5.1 have been determined from traces. But it is

also possible to determine these parameters online and improve them using simple

linear least squares regression techniques. As packets are processed the scheduler

can maintain variables denoting the sums,
∑

te,i,
∑

li,
∑

t2e,i,
∑

l2i ,
∑

(te,i · li) for each

application a. These variables are updated on the arrival of a new (cn+1, ln+1) pair and

on completion of processing of a packet. The parameters to be used in the estimation

can then be computed as

βa =

∑
n te,i · li − ∑

n te,i · ∑
n li/n∑

n l2i −
∑

n li · ∑
n li/n

, (5.2)

αa =
∑
n

te,i − βa ·
∑
n

li. (5.3)

It should be noted that there are also applications, where the processing time

cannot be as nicely correlated to packet size as shown above. An example for such an

application is MPEG encoding. For MPEG encoding a whole video frame is required

to perform effective compression. With unencoded video frames typically exceeding

a packet size, processing can only be performed once several packets of a flow are

buffered. In this case the processing time varies significantly between packets, but it

can be expected to be more evenly distributed over frames (i.e., I-frame to I-frame). In

such a case the parameters should be maintained for the group of packets constituting

a single frame, which are always processed together.

5.2.2 Cold Cache Penalty

The optimization results from Chapter 4 show that on-chip cache sizes are typically

small (16-32kB) due to die size limitations and can only hold data for the most recently

85

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 m

ic
ro

se
co

nd
s

packet size in bytes

1st packet
2nd packet
3rd packet
4th packet
5th packet

Figure 5.3: Cold Cache Effects on Packet Processing Times. The results are shown
for the encryption application.

executed program. This data, which is mostly instruction code, can be reused by the

processor if subsequent packets require the same program. Data cache information

containing packet-dependent data can less easily be reused, since it changes with

every packet. Changing the program that a network processor executes, causes the

caches to become cold, which results in an execution time penalty associated with

the initial loading of the cache with new application instructions. This can have a

significant negative effect on overall network processor performance.

With the same measurement setup as above, this effect of “cold caches” can

also be shown and quantified. These measurements are shown for the encryption

application in Figure 5.3. When sending a stream of packets, which require the same

application, the first packet encounters a cold cache. For subsequent packets, the

processing time is reduced due to locality in the instruction code and the resulting

warm cache. The measurements indicate that the cold cache penalty is independent of

the packet size. Table 5.1 shows the average cold cache penalty, πa, for all applications.

The Locality-Aware Predictive Scheduler discussed below aims at minimizing

this cold cache penalty by assigning packets to processors that just completed pro-

cessing the same application as required by the packet.

86

5.2.3 Reservations

A key component of quality of service is the definition of the service that is requested

by a flow. While this is straightforward and well understood for link resources, reser-

vations for computational resources are not as clearly defined.

Bandwidth Expansion

Processing of packets on routers can affect the size of the packets after the process-

ing is completed. For many types of applications (e.g., encryption, routing lookup)

the packet size is not changed, but a few applications can significantly change the

bandwidth of a flow (e.g., compression, FEC). To take these changes into account,

we define an expansion factor, γa, that is the average output bandwidth divided by

the input bandwidth. This factor is also shown in Table 5.2. Note that the expansion

factor can be dependent on packet size and data as for the compression application.

Admission Control

In an environment, where we want to be able to give service guarantees to data flows,

it is typically necessary to explicitly reserve resources for that flow. This happens

during the flow setup and allows the network to route a new flow in such a fashion

that enough bandwidth is available on the chosen path. Now that we have shown

that the processing requirements for a stream of data can be described in a simple

manner, we can integrate this information into the flow setup process.

A reservation for a flow j with incoming bandwidth Bj that is processed by

application a needs to reserve γa ·Bj bandwidth on the outgoing link. The amount of

processing Pj that is required (as fraction of one processor) depends on the bandwidth

of the flow, the average size of packets lj, and the application parameters:

Pj =
Bj · te

l
=

Bj

l
· (αa + βa · l). (5.4)

Thus, flow j can be admitted to any router that has Pj processing power and γa ·Bj

outgoing bandwidth available.

Processing Location

When using reservations, it is necessary to determine the path of the flow and the lo-

cation(s), where processing should happen. Ideally, the allocation of resources should

87

be optimal (e.g., best performance or lowest cost). Determining the best path in

a traditional network can easily be done. However, with the additional processing

step, it is necessary to develop a new approach. By combining the transmission and

processing cost in a single metric and by modifying the network graph data struc-

ture to consider processing, we have shown that an optimal route can be computed

efficiently [CTW01]. The details of this work are beyond the scope of this dissertation.

5.3 Locality-Aware Predictive Scheduling

The scheduler bases the decision of which packet to process next on control informa-

tion that is received from the queue controller and the processors on the APC. The

QCTL can provide information on the size of each enqueued packet and which appli-

cation is required. The processors feed back information on when they become idle

and which application was executed most recently. The definition of the scheduling

problem is as follows:

Given a sequence of packets p1 . . . pn, associated processing application

requirements ∪i=1...na(pi), and a set of identical processors and their asso-

ciated caches u1 . . . um: Find a sequential assignment of processing units

ui ↔ pj (i = 1, . . . ,m; j = 1, . . . , n) to packets that maximizes a given

performance metric (defined later).

The schedule, S(ut, Qt), is a function of the set of packets in the queue memory, Qt, at

time t and the processing unit, ut, which has become idle at time t. The assignment

of a packet to a processor can be developed as a function of packet size, application

properties, time, and state of the processors (see Table 5.2). Naturally, a schedule S

is prohibited from assigning more than one packet to a processor u at any given time.

5.3.1 Scheduling Algorithm

The execution time of a packet depends on the state of the cache of the processor

when it is processed. A cache is said to be cold if the application required by a

newly assigned packet differs from the application just completed. If the cache is

warm (i.e., not cold), the processing time is ta(p). If the cache is cold, a penalty of

πa(p) is added to the processing time ta(p). The Locality-Aware Predictive (LAP)

scheduling algorithm considers this. To compare LAP’s performance, we also define

88

Table 5.2: System Parameters.
Component Symbol Description

packet p P the set of all packets (p ∈ P)
n number of packets (|P | = n)
pi the ith packet in the data stream
s(p) size of packet p
a(p) application a that is used to process packet p

application a A the set of all applications (a ∈ A)
k the number of all applications (|A| = k)
ta(p) the actual processing time of packet p
te(p) the estimated processing time of packet p with

warm caches
tcc(p) the cold cache penalty for packet p

processing unit u U the set of all processing units (u ∈ U)
m number of processors (|U | = m)
Wt(u) set of apps for which processor u has a warm

cache at time t

queue memory Qt Qt the set of all packets in the queue memory at
time t (Qt ∈ P b)

q number of buffer slots (|Qt| = q)

schedule S S(u,Qt) the packet from Qt that is assigned to u under
schedule S

tS(p) time when packet p is scheduled for a processor
by schedule S

c(S(u,Qt)) returns 1 if assigned processor has cold cache,
0 otherwise

oS(p) returns the order of packet p under schedule S

89

Throughput-Optimal (T-Opt), which is optimal in terms of least cold caches, and

First-Come-First-Serve (FCFS), which is optimal in terms of least delay variation (as

defined below).

Locality-Aware Predictive (LAP)

The locality-aware, predictive scheduling algorithm aims at making use of locality,

while keeping the delay of the individual packets low. At each scheduling decision,

LAP computes the fraction of processing that is necessary for each application based

on the packets in queue memory. To achieve that, LAP uses an estimation of the

processing time, te(p), for each packet p. Define fQt(a) as the fraction of processing

required by application a:

fQt(a) =

∑
{p∈Qt|a(p)=a} te(p)∑

p∈Qt
te(p)

. (5.5)

This fraction is compared to the fraction of processors that are currently executing

application a (which means that they have a warm cache for application a). Let wt(a)

be that fraction for a:

wt(a) =
|{u ∈ U |a ∈ Wt(u)}|

m
. (5.6)

Given fQt(a) and wt(a), LAP attempts to ensure that the fraction of processing

power associated with applications (i.e., wt(a)) is close to the that required by the

packets in the buffer (i.e., fQt(a)). LAP chooses to continue processing the application

a for which u has a warm cache if changing the application would drop its processing

fraction, wt(a), below the required fraction of processing, fQt(a). Thus, if wt(a)− 1
m

<

fQt(a), LAP picks the oldest packet with a(p) ∈ Wt(u) from Qt. Otherwise it picks

the oldest packet overall.

SLAP (u,Qt) =


 arg minj {pj ∈ Qt|a(pj) ∈ Wt(u)}, if wt(a) − 1

m
< fQt(a)

arg minj {pj ∈ Qt}, else
(5.7)

LAP tries to group processors such that each group processes one application

and thus keeps a warm cache for this application. The size of each group is determined

by the amount of processing pending for packets in queue memory. The effectiveness

of LAP is based on the assumption that the processing time for packets is predictable

90

from their size and the application they execute. LAP performance also depends on

the number of packets available in queue memory and that the scheduler is aware

of. We define this number as |Qt| = q. Below, we can see that LAP performance

increases with larger q as LAP can choose from a larger set of packets.

Throughput-Optimal (T-Opt)

We define Throughput-Optimal (T-Opt) as the algorithm that achieves maximum

locality (and thus maximum throughput) by being allowed to pick any packet out of

packet stream P (independent of Qt). T-Opt executes all packets of one application

before it switches the processor to another. Thus, the only cold caches are due to

compulsory cache misses for the first packet of an application.

ST−Opt(u,Qt) = pi, where pi = arg min
j

{pj ∈ P |a(pj) ∈ Wt(u)}. (5.8)

This strategy, though not realistic for actual implementation, gives an upper bound

on the possible performance.

First-Come-First-Serve (FCFS)

A simple, basic scheduling scheme is first-come-first-serve (FCFS). In this scheme,

packets are assigned to processors in the order of their arrival. If a processor u

becomes available at time t, the oldest packet in queue memory Qt is sent to u:

SFCFS(u,Qt) = pi, where i = arg min
j

{pj ∈ Qt}. (5.9)

The schedule does not take any locality into account. It is optimal in terms of variation

in delay for packets since it does not re-order packets and keeps the delay for each

packet in a given flow the same.

5.3.2 Evaluation

In order to evaluate the performance of LAP, several performance metrics need to be

defined.

91

Performance Metrics

The performance of a schedule S can be defined in several (sometimes conflicting)

ways. The performance depends in large part on the order of packet execution and

the resulting processing time for the packet set. We define the following performance

criteria:

• Throughput TS =
∑

i=1...n s(pi)/ (tS(pn) − tS(p1)) .

The throughput is defined as the amount of data (i.e.,
∑

s(pi)) that is pro-

cessed in a given amount of time. This is the key performance parameter, since

generally network processors are aimed at processing as much data as possible.

Note that for simplicity, the execution time remaining after scheduling the last

packet is ignored, since it has negligible effect on the results when n is large.

• Fraction of cold caches CS =
∑

i=1...n c(S(u,Qti))/n,

where t1 . . . tn is the sequence of times when scheduling decisions occur. The

fraction of cold caches is the number of times a packet p is assigned to a processor

with a cold cache (i.e., c(S(u,Qt)) = 1) divided by the total number of scheduled

packets. CS is an indicator of how much locality awareness a scheduling scheme

shows. The lower the fraction, the fewer cold cache penalties are incurred.

• Delay variation DS =
√∑

i=1...n(i − oS(pi))2,

where oS(pi) is the order in which schedule S assigns packets to processors.

If packet p5 is the seventh packet to be processed, then o(p5) = 7. Thus, for

in-order processing DS = 0. If packets are processed out of order, DS is the

standard deviation of the variation in the order. The larger DS, the more

variation, which means that certain packets are kept longer in queue memory,

which increases their overall delay. While it is necessary to change the order

of packet processing to make use of locality in reducing the negative cold cache

performance effects, the goal is to keep DS low. This will both reduce delay,

and help to avoid large-scale re-ordering of the packet stream.

Using these performance measurements, the different scheduling strategies are evalu-

ated below.

92

Simulation

The evaluation of the scheduling algorithms is done using a trace-driven simulation.

Packet traces that are obtained from the packet processing time measurements de-

scribed above. Traces of 100,000 packets are generated having an equal share of

bandwidth for each application. To simulate more than three applications, the orig-

inal traces are replicated with different application identifiers. We assume that a

processor can only have one application in its instruction cache at any time, which

is reasonable for the small cache sizes considered. These traces are used as input

to a discrete event simulator that emulated the behavior of the scheduler and the

processors. Simulations are performed over a variety of configurations. The number

of processors ranges from 1 to 64, the number of packets in queue memory from 1 to

512 packets, and the number of applications in a packet trace from 3 to 300.

Basic Operation and Adaptation to Workload Changes

To illustrate the basic operation of each of the algorithms, we look at the case where

we have three applications, 16 processors, and 64 packets in queue memory. The ap-

plication workload is such that the first 10,000 packets require equal processing. Thus,

each application on average should be processed on one third of the processors. After

10,000 packets, the workload changes, such that application 1 requires 80% of the

processing and applications 2 and 3 require 10% each (see Figure 5.4(a) and 5.4(b)).

This is used to illustrate the adaptability of the various algorithms to changes in the

workload. Figures 5.4(c)-5.4(f) show the different scheduling algorithms. The lines

show how many processors have warm caches for each application (i.e., how many

processors process each application at that moment) for packets 8,000 through 12,000.

Each change in the number of assigned processors (y-axis) causes a cold cache,

which reduces the overall performance. FCFS scheduling shows the expected “ran-

dom” behavior. Since packets are scheduled in the order of arrival, no locality is ex-

plicitly exploited and the number of processors executing a given application changes

frequently. This behavior leads to a large number of cold caches and low performance.

A smooth scheduling behavior is produced by LAP scheduling, because it partitions

the processors according to the processing requirements. Figure 5.4(e) and 5.4(f) show

that the partitioning follows very closely to the offered load as shown in Figure 5.4(a)

and 5.4(b).

93

0

0.2

0.4

0.6

0.8

1

8000 8500 9000 9500 10000 10500 11000 11500 12000

of
fe

re
d

lo
ad

packet number

(a) Offered Load (app 1)

0

0.2

0.4

0.6

0.8

1

8000 8500 9000 9500 10000 10500 11000 11500 12000

of
fe

re
d

lo
ad

packet number

(b) Offered Load (app 2/3)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d

to
 a

pp

packet number

(c) FCFS (app 1)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d

to
 a

pp

packet number

(d) FCFS (app 2/3)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d

to
 a

pp

packet number

(e) LAP (app 1)

0

2

4

6

8

10

12

14

16

8000 8500 9000 9500 10000 10500 11000 11500 12000

pr
oc

es
so

rs
 a

ss
ig

ne
d

to
 a

pp

packet number

(f) LAP(app 2/3)

Figure 5.4: Processor Assignment Comparison between FCFS and LAP. The schedul-
ing assignments for applications 2 and 3 are similar and only one set is shown.

94

0.8

0.85

0.9

0.95

1

1 2 4 8 16 32 64 128 256 512

th
ro

ug
hp

ut
 a

s
fr

ac
tio

n
of

 T
-O

pt

packets in queue memory

T-Opt
LAP

FCFS

Figure 5.5: Throughput for LAP compared to FCFS and T-Opt. The number of
available packets in queue memory is varied from 1 to 512 packets (30 applications,
16 processors).

Also, LAP adapts quickly to changes in the workload. LAP reaches a processor

assignment that corresponds to the offered load within a few hundred packets of the

change in workload (3 to 4 times the number of packets in queue memory). During

this period, packets from before the change are still in queue memory and influence

the scheduling decision.

Throughput

Figure 5.5 shows a throughput comparison of LAP with FCFC and T-Opt. The

number of processors considered is 16 and the number of applications is 30. Since

LAP depends on the number of packets in queue memory, this value is varied on

the x-axis. FCFS has the lowest throughput of about 85% of T-Opt. This can be

expected, since FCFS does not take locality into account. For a very small number

of available packets, LAP is close to FCFS, since the number of packets from which

the algorithm can select is small and locality can only be maintained for short times.

With about 16 to 64 packets, LAP performs significantly better than FCFS. For large

numbers of packets, LAP converges towards the throughput of T-Opt.

95

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256 512

co
ld

 c
ac

he
s

pe
r

pa
ck

et

selection buffer size

T-Opt
LAP

FCFS

Figure 5.6: Cold Cache Fraction for LAP compared to FCFS and T-Opt. The number
of available packets in queue memory is varied from 1 to 512 packets (30 applications,
16 processors).

Cold Cache Fraction

To illustrate the correlation between the use of locality information and throughput,

Figure 5.6 shows the cold cache fraction of packets for the same parameters as used in

Figure 5.5. The cold cache fraction gives the percentage of packets that are executed

with a cold cache (i.e., do not make use of locality). FCFS has the highest rate of

cold caches with about 96%. This is due to the random assignment of packets to

processors in FCFS, which causes only 1 in 30 assignments to be to a processor with

warm caches (because a = 30).

The cold cache fraction for LAP shows a trend that corresponds to the through-

put performance shown in Figure 5.5. For small numbers of available packets, the

number of cold caches is close to that of FCFS. As more packets are available, cold

caches drop and LAP converges towards T-Opt.

Delay Variation

Figure 5.7 shows the standard deviation of the variation in packet order for FCFS

and LAP. The delay variation for T-Opt is arbitrarily large and thus not plotted

96

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512

st
an

da
rd

 d
ev

ia
tio

n
of

 v
ar

ia
tio

n
in

 p
ac

ke
t o

rd
er

packets in queue memory

LAP
FCFS

Figure 5.7: Delay Variation for LAP compared to FCFS. The number of available
packets in queue memory is varied from 1 to 512 packets (30 applications, 16 proces-
sors).

here. For FCFS, there is no variation, because packets maintain their order. One

can see that LAP shows increasing delay variation for increasing numbers of packets

in queue memory. This is expected since the reordering is roughly limited to the

number of available packets. The large variation of delay for increasing numbers of

packets indicates that there is a tradeoff between achieving more cache locality and

delay variation.

LAP Complexity

Finally, the usefulness of these scheduling algorithms depend on how efficiently they

can be implemented in hardware. LAP has constant processing cost per packet,

making it well suited for high performance systems. The following briefly discusses a

possible data structure for LAP that can be implemented in hardware and has O(1)

update complexity.

There are three components necessary for LAP scheduling: the current val-

ues of fQt(a) and wt(a), a list of packets pending processing for each application in

order of packet age, and a list of all packets in order of packet age. Each of these

structures can be updated in constant time when a packet is received or scheduled.

97

The update of fQt(a) can be done every time a packet is entered into the buffer by

adding its expected processing time. When a packet is removed, the processing time

is subtracted. Similarly, wt(a) can be adjusted by incrementing and decrementing as

processors change the applications that they process. An update occurs only when a

packet enters or leaves the buffer. Thus, the complexity is O(1) per packet. Maintain-

ing lists of packets for different applications that are sorted by the age of the packets

can also be done in constant time. Since the age of packets corresponds to the arrival

order, a simple queue can be used. Updates to queues can be done in O(1) time per

update. There has been much work done in implementing efficient queuing systems

of this sort [CT98].

Evaluation Summary

The evaluation indicates that good throughput performance can be achieved if 32

or more packets are available to chose from. However, the delay variation increases

significantly causing large-scale re-ordering of packets in the data stream. Therefore,

the throughput and delay seem to have a “sweet spot” around 16 to 32 available

packets. To operate the system in this region, the number of packets to chose from

could be limited artificially to 16 or 32. If more packets are available, the scheduler

can only chose from the 16 or 32 oldest packets in the queue.

Another critical observation is that the algorithm causes the system to perform

better as it becomes more loaded. For small numbers of packets (i.e., low load), the

scheduler might cause a few cold caches. For more packets, the number of cold caches

approximates the optimum.

In summary, LAP is a good scheduling algorithm for a system that is back-

logged. LAP improves the throughput of the system by avoiding cold caches. Its only

drawback is the delay that it might incur on packets. To address the issue of giving

bounds on packet delay, we consider another scheduling algorithm.

5.4 Estimation-Based Fair Queuing

In contrast to LAP, Estimation-Based Fair Queuing (EFQ) aims to provide bounds on

packet delays. This requires that EFQ operates in a regime, where admission control

is performed, flows reserve bandwidth and processing, and the routers are operated

below maximum load. EFQ is built upon the class of rate-proportional servers, which

98

have desirable properties that allow the use of processing time estimates to design a

processor scheduling algorithm.

5.4.1 Scheduling Algorithm

The processor scheduler can view each processing engine as a separate resource to be

scheduled if they individually have capacities exceeding the requirements of any single

flow. The scheduler can also consider all the processing engines as a single processing

resource, which can be scheduled using multi-server variants of single server scheduling

algorithms [BO01]. In either case, the essential problem reduces to designing an

efficient scheduling algorithm for sharing a single processing resource. This is what

we consider.

We provide mechanisms for such a system to give guaranteed bandwidth and

computational resources to incoming flows. Guarantees in these two dimensions mean

that a flow always gets its reserved shares except when:

• A flow requires computational resources in excess of its reserved capacity and

hence only a fraction of the incoming traffic is processed and forwarded to the

link scheduler, possibly giving the flow a lesser share of its reserved bandwidth.

• Or equivalently, a flow exceeds its link share resulting in too many packets being

queued up at the link scheduler, which forces the processor scheduler not to give

the flow its processing share.

In order to do this, we base EFQ on the design methodology of Rate Proportional

Servers.

Rate Proportional Servers

Definition Rate Proportional Servers (RPS) are a class of scheduling algorithms

designed according to the methodology presented in [SV98], which allows the de-

signer to trade fairness of the algorithm with implementation complexity. Generally

speaking, a rate-proportional server is a work-conserving server with the following

properties:

• The server has an associated system potential, which is updated to reflect the

total work done by the server.

99

• Each flow in the system has an associated potential. When a flow becomes

backlogged, its potential is set equal to the system potential. When a flow is

already backlogged, its potential is updated to reflect the normalized service

received from the server.

By imposing conditions for the potential functions as given in [SV98] and by

serving packets from flows such that at any instant the individual potentials of all

backlogged flows are equal, it can be shown that rate proportional servers have delay

and fairness properties comparable to GPS. WF2Q+ [BZ96] is an important example

of a scheduler belonging to the RPS class.

We build on this methodology in designing the EFQ processor scheduling algo-

rithm for two important reasons. First, the methodology helps in designing algorithms

with delay bounds and fairness comparable to GPS without the complexity of GPS

emulation. More importantly, the methodology provides us with enough flexibility to

decouple the update of system potential from the exact finish times of the packets in

the queues, which addresses the problem of not knowing the exact processing times

in advance.

Packet Selection Policy A scheduling algorithm with optimal fairness would have

to schedule single processing cycles according to the fluid Rate Proportional Server.

However, in network processors, the smallest unit of processing is a complete packet.

Context switching between packets is not considered here, because saving and recov-

ering processing state is a relatively expensive operation compared to the short overall

processing time for a packet. Thus, to approximate a fluid RPS, packets should be

scheduled in order of their finish time with the earliest finish time first. While this

works perfectly fine for bandwidth schedulers, the lack of the knowledge of the ac-

tual execution times of the packets, makes an exact implementation infeasible for

processor schedulers.

However, to derive an approximate scheduler of this class, we can generalize the

definition of a packet-by-packet RPS. Such a scheduler schedules two packets, j and

k, of flows A and B, in the order in which they are more likely to finish processing.

That is, if F j
a and F k

b are random variables representing the finish times of these

packets in the fluid RPS, then packet j is scheduled for service before k, if

P (F j
a ≥ F k

b) ≥ 0.5. (5.10)

100

Hence, it is the knowledge of the distributions of F j
a and F k

b which determines the

accuracy with which schedulers can approximate GPS even if they use the same

potential (or virtual time) functions. Also, since the potentials of individual flows are

updated according to the normalized service received by the flows from the system,

the finish time F j
a is

F j
a = Pa +

W j
a

Ra

, (5.11)

where Pa is the potential and Ra is the rate of service reserved by flow A. While these

are known in advance when determining F j
a , W j

a , which represents the service time

required by packet j, is not. Thus, the random variable F j
a is directly determined

by W j
a .

Start-time Fair Queuing (SFQ) [GVC96b] (with a modified system virtual

time) and WF2Q+ [BZ96] are scheduling algorithms belonging to this class that

represent the extremes with respect to the amount of knowledge of F j
a . SFQ does not

use any information about the service time of a packet and hence, according to the

above policy, SFQ schedules packets in increasing order of Pa, which makes it suitable

for processor scheduling. WF2Q+, on the other hand, assumes that the exact service

times of all packets are known in advance and thus determines the right order of

servicing packets with probability 1.

Misordering Delay Different schedulers using the same potential functions and

ordering packets for execution according to the above defined policy can give varying

delays to flows based on their knowledge of the random variables W j
a . To quantify

these delays, assume that a scheduler of this class can be characterized by random

variables χaj ,bk , which denote the event that the scheduler (with its knowledge of W j
a

and W k
b) makes a mistake in ordering packets j and k. That is, P [χaj ,bk = 0] is the

probability that the scheduler orders the packets of these two flows correctly, while

P [χaj ,bk = 1] is the probability that the scheduler makes a mistake in the ordering.

Then, the average misordering delay, δa, as seen by a packet of flow A is the additional

delay caused by the scheduler misordering packets of flow A and flow B, which is

δa = P [χaj ,bk = 1] · Rb

R
· (Pb +

W j
b

Rb

− Pa − W i
a

Ra

). (5.12)

This accounts for the time spent by the server in servicing additional traffic from

flow B before processing packet from flow A. It is these additional delays caused by

101

misordering of packets that we intend to reduce using the estimates of the packet

execution times we derived in Section 5.2.1, which improves the schedulers knowledge

of W j
a .

Estimation-Based Fair Queuing

Estimation-based Fair Queuing (EFQ) is a scheduling discipline designed for processor

schedulers that uses the estimates of the packet execution times in ordering packets

of various flows for processing. While the packet selection policy of any Rate Pro-

portional Server can be changed to use these estimates, EFQ is derived by modifying

WF2Q+ which is known to have the tightest delay bounds and low time-complexity

among bandwidth schedulers. EFQ, like WF2Q+, uses a notion of system virtual

time (system potential), defined by

V (t + τ) = max(V (t) + τ,miniεB(t+τ)Si), (5.13)

where B(t) represents the set of backlogged flows at time t and Si the start-tag

associated with flow i as defined below. The above definition of V (t) makes WF2Q+

a Rate-Proportional Server. It differs from SFQ, in that it has a linear component,

which ensures that the delay bounds provided are within one packet servicing time

of a corresponding GPS server [BZ96].

For each flow i in the system, EFQ maintains a start tag, Si (potential of flow

i), a finish tag, Fi, and an estimated finish time tag, EFi. Consider a packet k of flow

i, with a reserved rate ri, that arrives at time ak
i . When this packet reaches the head

of the queue, Si is updated using

Si = max(Fi, V (ak
i)), (5.14)

if queue i is empty, else

Si = Fi. (5.15)

EFi is updated using

EFi = Si +
te(p

k
i)

ri

, (5.16)

where te(p
k
i) is the estimated number of instructions required to process packet k (see

Equation 5.1). When the processor finishes processing this packet, the actual finish

102

��������������������������������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

������

���
���
���
���

������������

��������
��
��
��
������������
���
���
��������

������
���������

���
���
���
��������������������

������������������������������
���
�����������

��������
��������������

���
�����������������

���
���

������
������
������
������

���
���
���

���
���
���

����
����
����
����

���
���
���

���
���
���

��
��
��

��
��
��

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Flow 6

EFQ

SFQ

WF2Q+

Figure 5.8: EFQ Scheduling Example. All flows have backlogged packets of the
same length and are processed by the same application. The figure shows the actual
execution times of packets as their size and the processing order derived by different
scheduling disciplines.

tag Fi is updated using feedback from the processor:

Fi = Si +
Ak

i

ri

, (5.17)

where Ak
i is the actual number of instructions required to process packet k. This

ensures that each flow is correctly charged for processing time, even if the initial

estimate was incorrect.

Given these tags, the EFQ scheduler, schedules packets in increasing order of

their estimated finish time tags EFi.

Example

The following illustrates the behavior of EFQ and compares it to that of SFQ and

WF2Q+. Consider a set of flows, all of which send packets of the same length but at

different rates and are processed by the same application. Figure 5.8 shows six such

flows, with flow 1 reserving 50% of the processing resource and the rest of the flows

reserving 10% each. The size of a packet in Figure 5.8 represents the actual processing

time of that packet. Note, however, that the estimates for all packets are the equal,

since they all have the same length and are processed by the same application.

103

WF2Q+ achieves an optimally fair schedule, because it is assumed the sched-

uler knows the actual processing times. Thus, the packets of flow 1 and the other

flows alternate (due to the rate reservations). Out of flows 2-6, the packet of flow 2

is processed first, because it has the lowest actual execution time and therefore the

lowest finish time.

EFQ expects all packets to have the same execution times. Thus, EFQ could

pick any order of packets 2-6 to alternate with packets from flow 1. The worst case,

which introduces most misordering delay, is shown in Figure 5.8. Here, the packet

of flow 2 is processed after packets of flows 6, 5, 4, and 3 are processed, which

all use more processing time than expected by scheduler. As a result, the packet

from flow 2 experiences an additional delay due to the variation in actual processing

times of these packets. However, these variations are much smaller (and bounded,

for the applications in consideration) than the total processing times of the packets

themselves. In particular, these delays are much smaller than those introduced by

SFQ.

As shown in the example, in the worst case SFQ could delay the processing of

the first packet of flow 1 until packets from all other flows are processed. This is due

to all initial packets having the same start time.

In summary, EFQ processes most packets in the same order as WF2Q+. When

either a flow reserves a much higher rate than others or has greatly differing processing

requirements (due to differing packet sizes or applications), the variations in the actual

executions times compared to estimated execution times do not change the scheduling

order. Even in the case when the scheduling order of packets in EFQ varies from that

of WF2Q+, the additional delay that is experienced by a packet is bounded by the

variation in execution times as opposed to the total execution times of packets as in

SFQ.

Analysis

From the example given above, it can be seen that for N flows, in the worst case,

SFQ introduces a misordering delay of

δSFQ =
N∑

i=1

Amax
i

R
− Amax

a

Ra

. (5.18)

This is obtained by using ∀k : χaj ,bk = 1 with the misordered packets being of

maximum size and using ∀b : Pb = Pa in Equation 5.12, since the scheduler can make

104

a mistake only when Pb ≤ Pa. Results below also show that SFQ actually favors (i.e.,

gives lesser delays to) flows with packets which require greater average normalized

service (i.e., higher tavg
e (pa)

Ra
).

To analyze EFQ, assume that for a given packet length, the packet execution

time estimates obtained in Section 5.2.1 can be represented by uniform random vari-

ables W j
a lying in the range [te(p

j
a) − V j

a , te(p
j
a) + V j

a]. The EFQ scheduler misorders

packet j and k when it determines that

Pa +
te(p

j
a)

Ra

≥ Pb +
te(p

k
b)

Rb

, (5.19)

but the actual processing times are such that

Pa +
Aj

a

Ra

≤ Pb +
Ak

b

Rb

. (5.20)

In the worst case, we get

Aj
a

Ra

− Ak
b

Rb

≤ Pb − Pa ≤ Aj
a

Ra

− Ak
b

Rb

+
V max

a

Ra

+
V max

b

Rb

. (5.21)

Hence from Equation 5.12, the misordering delay for packet j due to packet k is

limited to

δa = P [χaj ,bk = 1] · Rb

R
·
(

V max
b

Rb

+
V max

a

Ra

)
(5.22)

and the worst case misordering delay is bounded by

δEFQ =
N−1∑
i=1

V max
i

R
− V max

a

R
+

V max
a

Ra

. (5.23)

From the above equation we can see that as the number of flows increases,

δEFQ only increases with the variations in execution times as opposed to δSFQ which

increases with total processing times. Also note that, with a better estimation, e.g.,

by including higher order moments in characterizing W j
a , EFQ can more accurately

determine the right scheduling order, resulting in a smaller δEFQ and thus approxi-

mating WF2Q+.

105

5.4.2 Evaluation

In this section, we present simulation experiments to demonstrate the improved per-

formance of EFQ as compared to SFQ.

Simulation Setup

To compare the delay characteristics of the two schedulers, we use the following sim-

ulation setup. First, we use the traces of actual execution times of packets from dif-

ferent flows that are processed by different applications on the programmable router.

These traces are then used by a packet generator to feed the two simulated sched-

ulers: SFQ and EFQ. The speed of the processor in the simulator is 2GHz (about 10

times the speed of the processor on the Smart Port Card (SPC) [DRST01] on which

the actual measurements were made). The system has 32 flows with different packet

sizes, which are processed by the four different applications. All the flows reserve the

same processing rate and adjust their sending rates to just saturate their share of the

processing resource. These flows together require just below 100% of the system’s

processing resources. Thus, they can all be admitted and the measured delays are

only due to scheduling and not due to queuing backlog.

Packet Delay

Figure 5.9 shows the delays of various packets of a flow, which is processed by the for-

warding application. The interarrival time of the packets of the flow is approximately

163 microseconds, which is just enough to saturate the flow’s share of processing re-

sources. Note the high and bursty delays experienced by the packets of the flow when

scheduled by SFQ as shown in Figure 5.9(a). Since SFQ, always schedules packets

with the minimum virtual time, a single packet of a flow can be delayed in the worst

case by the equivalent of the sum of one packet processing time of all other flows. In

the simulation this translates to a worst case misordering delay of 8218 microseconds.

The maximum delay actually observed in Figure 5.9(a) is about 6100 microseconds,

implying an observed maximum misordering delay of 6100−163 = 5937 microseconds.

For EFQ, much lower delays can be seen in Figure 5.9(b). This illustrates

two things. First, given the small execution time of forwarding as compared to other

applications, the finish times of the packets of this flow where so different compared to

the finish times of the packets of other flows that the errors in estimates did not change

the scheduling order (i.e., Equation 5.21 was not satisfied for most comparisons of

106

finish times). Second, the worst case delay that could be experienced by these packets

is only 1312 microseconds which would occur if there were maximum variations in

the estimated execution times for packets from all other flows at the same time. In

the simulation, the maximum misordering delay observed is about 900 − 163 = 737

microseconds, which is about one order of magnitude smaller than for SFQ.

Figure 5.10 shows the delays experienced by a flow being processed by the

CAST encryption application, with the average packet size of the flow being 200 bytes

and has a higher average processing time per packet compared to the forwarded flow.

While the average delays experienced by the packets when scheduled using EFQ is

close to the interarrival time of the packets indicating a very low misordering delay,

the average delays seen in Figure 5.10(a) are about three times the interarrival time of

the packets. Figure 5.11 shows the delays experienced by a flow being processed by the

FEC application which requires much greater processing time per packet compared to

the above flows. Here, the average delays seen by the packets when scheduled by SFQ

are actually less than the interarrival time of the packets. This indicates an average

negative misordering delay, while delays due to EFQ are just about the interarrival

time of the packets. Two important conclusions can be drawn from these plots:

• SFQ gives much higher misordering delay bounds than EFQ.

• Across flows, while the misordering delays due to EFQ are on an average close

to zero, they vary from high positive misordering delays (e.g., the delay of

about 35 times the interarrival rate seen by the forwarding flow) to low negative

misordering delays when scheduled using SFQ.

The second point indicates a bias of SFQ.

Biased Delay Bounds Due To SFQ

The bias of SFQ can be explained by the work conserving nature of the two schedulers.

If SFQ gives high positive misordering delays to some flows, there should be flows in

the system which get low and in fact negative misordering delays, while EFQ gives low

(close to zero) average misordering delays for all flows. We actually show a correlation

between the misordering delay experienced by the packets of a flow and the average

processing time per packet to reserved processing rate ratio (i.e., tavg
e (pa)

Ra
).

SFQ favors and gives less misordering delays to flows with higher average

processing time to reserved rate ratio over flows with a lower ratio. Given a set

107

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

)

Packet Number

sfq

(a) SFQ

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

)

Packet Number

efq

(b) EFQ

Figure 5.9: Packet Delays for a Flow Processed by IP Forwarding.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

)

Packet Number

sfq

(a) SFQ

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

)

Packet Number

efq

(b) EFQ

Figure 5.10: Packet Delays for a Flow Processed by CAST Encryption.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

)

Packet Number

sfq

(a) SFQ

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

us
ec

)

Packet Number

efq

(b) EFQ

Figure 5.11: Packet Delays for a Flow Processed by Reed-Solomon FEC.

108

-1500

-1000

-500

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
ge

 M
is

or
de

ri
ng

 D
el

ay

Average Packet Execution Time

efq
sfq

Figure 5.12: Variation in Minimum Packet Delay for Different Flows Introduced by
SFQ and EFQ.

of flows with the same potential, since SFQ can schedule them in any random order,

it is very likely that a packet of a flow with higher average processing time to reserved

rate ratio is scheduled before at least a few flows with lower ratios, resulting in lower

delays for such flows. EFQ by just using the estimates is able to rightly reverse

this order. Figure 5.12 shows the average misordering delay introduced by the two

schedulers plotted with increasing average packet execution times. Note that all the

flows have the same reserved processing rates. This plot clearly shows the above

conjectured correlation between average misordering delay and average processing

time per packet to reserved rate ratio.

Simulation Summary

In summary, the simulation shows three main results. One is that the analytically

derived worst case misordering delay is almost reached by the SFQ scheduler as shown

in Figure 5.9(a). Second, EFQ shows a much lower and smoother scheduling delay.

This is due to the delay depending on the variance of the processing times rather

than the absolute processing times as in SFQ. Third, SFQ introduces unfairness by

favoring flows with high processing time to reserved rate ratios. This behavior is not

shown by EFQ, which provides fairness over a wide range of processing requirements.

109

5.5 Combination of LAP and EFQ

The LAP and EFQ scheduling algorithms address two different problems in network

processor task scheduling. LAP increases the throughput of the system as it makes

use of instruction locality. EFQ ensures fair sharing of resources and bounds the

misordering delay of packets. Both schedulers also operate in different usage regimes

of a programmable router. LAP performs best when packets are backlogged in queue

memory, which is characteristic for a system, where the processing resource is a

bottleneck. EFQ ensures fair sharing and delay bounds when the processing resource

is not oversubscribed. It is also necessary that flows adhere to the specified data rate

to avoid additional packet delay due to backlog.

These differences indicate that LAP should be used in an active network, where

processing is performed on a best-effort basis and no explicit flow setup is performed.

EFQ on the other hand requires explicit reservations, which are only available in a

network that is tightly managed and where resources are controlled. Such a network

could provide QoS in terms of bandwidth and processing resources.

It might be possible to combine the ideas of EFQ and LAP in a single schedul-

ing algorithm. In particular, in EFQ, we assume that the processing resource is

not oversubscribed. Therefore it is quite possible that at any point of time when a

scheduling decision is necessary more than one processor is available to handle the

scheduled packet. In such a case, locality information could be used to chose a pro-

cessor, which has a warm instruction cache. This would reduce the processing time

of a packet and allow more flows to be admitted to the router.

One drawback of such a scheme is that this could violate the QoS guarantees

of EFQ. If the distribution of application usage changes over time, it might not be

possible to assign processors with warm caches anymore. As a result the processing

time of a flow increases and the processing resource might be overloaded. But in

EFQ this should never happen. Other possibilities of combining EFQ and LAP are

considered as future work.

5.6 Related Work

Cache-affinity scheduling, which uses locality information for the scheduling decision

has been used mostly in shared memory multiprocessors [VZ91], [DM92], [SL93],

[TTG95]. The focus in this domain is to schedule the same process or thread on

110

processors that can reuse previously established cache state. While this is similar

to the network processor environment, it does not consider the reuse of instruction

cache state for different threads that use the same instruction code (as is done with

packets that use the same application).

An example for scheduling that uses hints about the processing requirement

is [PEA+96]. In this work, the compiler provides information about thread require-

ments that are used by the scheduler to determine a thread execution schedule with

high cache locality.

Salehi etal. show the effect of affinity-based scheduling on network processing

in [SKT96]. While this also considers the processing of network traffic, the focus is

on the operating system level, where packet processing is disrupted by a background

workload. This switching between packet processing and the background workload

reduces locality in execution and can be avoided by appropriate scheduling.

Most software-based programmable routers (see Section 2.5.1) enforce isola-

tion of packet processing between flows (e.g., malicious packets cannot effect the

proper processing of other packets). However, QoS issues at the level of processing

are addressed only in a few cases. The commonly used NodeOS specification [Pet01]

asks for packets to be processed by individual threads to allow for an accounting

mechanism. However, methods for admission control and QoS scheduling are not

described. Qie et al. [QBPK01] describe the problem of scheduling computational

resources among competing flows, but relies on being able to pre-determine the pro-

cessing time of packets. Also, the important issue of correlating the cycle rate of a

flow to the bit rate is not addressed. There are also approaches where the expres-

siveness of the processing environment is restricted (e.g., no loops) to give execution

time guarantees [MHN01], which limits its usefulness to simple header processing

applications.

Packet service disciplines and their associated performance issues have been

widely studied in the context of bandwidth scheduling in packet-switched networks

[Zha95]. The performance of these disciplines has been compared to Generalized

Processor Sharing (GPS) [PG92], which has been considered an ideal scheduling dis-

cipline based on its end-to-end delay bounds and fairness properties. Packet Fair

Queuing (PFQ) disciplines, however, cannot be used for processor scheduling. PFQ

disciplines like WFQ, WF2Q [BZ95] use a notion of virtual time, whose correct up-

date in a processor scheduler, requires precise knowledge of execution times of various

packets in advance. Efforts have been made to design service disciplines which isolate

111

the scheduler properties that give rise to ideal fairness and delay behavior, without

emulating GPS [Gol94]. Notable among these are a class of schedulers called Rate

Proportional Servers [SV98], which decouple the update of system virtual time from

the finish times of packets in queues. But even these service disciplines, while avoiding

the complexity of GPS emulation, schedule packets in order of pre-determined finish

times, which in turn requires the knowledge of execution times of various packets in

advance.

An exception to these disciplines is Start-Time Fair Queuing (SFQ) [GVC96b],

which has been deemed suitable for CPU scheduling [GVC96a]. Since SFQ does not

need prior knowledge of the execution times of packets (packet lengths in a bandwidth

scheduler), it is also applicable to scheduling computational resources. However, the

worst case delay under SFQ increases with the number of flows and can in fact worsen

in the presence of correlated cross-traffic as shown in [BZ96].

Our work is aimed at providing a way of estimating execution times of packets,

which is used on a flow level for admission control and for QoS scheduling at a packet

level.

5.7 Summary

This Chapter presents two algorithm for processor scheduling on a programmable

router. We show that network processing applications exhibit very regular and pre-

dictable processing patterns, which helps overcome the obstacle of theoretically un-

determinable computation times of arbitrary programs. The processing time estima-

tions can be approximated by a linear function that we use for admission control.

Locality-Aware Predictive (LAP) scheduling schedules packets such that instruction

cache state on processors can be reused, which effectively reduces the packet process-

ing time and increases the system throughput. The Estimation-based Fair Queuing

(EFQ) algorithm uses the processing time estimates to fairly and efficiently assign

packets to processing engines.

112

Chapter 6

System Simulation

A simulation of the proposed programmable router system was implemented as part

of this work. The simulation is accurate on a cycle level and captures the behavior

of the Application Processing Chip in detail. The Queue Controller, Flow Classifier,

and other components are modelled at a behavioral level.

In this chapter, the data and control path of the simulator are presented in

detail. Several memory management issues for packet storage and packet processing

are discussed. Simulation results are presented and contrasted to analytic results,

which have been derived in Chapter 4.

6.1 Introduction

The proposed programmable router introduces a set of features on the router port,

which allow custom processing. Several of these require careful consideration as they

are crucial for the overall system performance. The simulation of the router port

addresses these issues and proposes a possible implementation. The simulation also

allows the verification of analytic results.

Simulations can be modelled at different levels of detail. While it is desirable

to be as detailed as possible, there is a cost in terms of implementation complexity

and run-time performance. For this work, the level of detail is chosen to be cycle-level

accuracy in the Application Processing Chip and behavioral accuracy with consider-

ation of timing in other components. The following list highlights the features of the

simulation:

113

• Actual Packet Transmissions and Processing. The simulation processes packet

traces in tcpdump format [MJ93]. The packets of these traces are moved through

the router port, processed by the APC, and stored on the output.

• Cycle-Accurate Processor Simulation. The processor cores on the APC are

simulated using the SimpleScalar processor simulator [BA97]. This simulator

is extended to capture the multi-processor nature of the APC.

• APC Programmability with High-Level Language. The programs for packet

processing are compiled from C code. Using a “plugin template,” new processing

functions can easily be implemented

• Realistic Memory Management. The memory on the APC is simulated to keep

state between packets of a single flow, share instruction code among flows using

the same application, and keep packet data from different packets apart. This

is important in order to obtain realistic cache performance results. Also, the

queue memory is simulated with realistic data structures for packet storage.

• Timing for all Components. All parts of the router port are simulated con-

sidering processing, memory access, and communication delays. In particular

memory interfaces consider contention, bandwidth limitations, and DRAM ac-

cess times.

• Configurability. The simulator can be configured to consider a broad range of

APC configurations and other system parameters.

There is also a set of issues that were simplified for this simulation. A more accurate

implementation of the following is beyond the scope of this work:

• Flow Classification and Scheduling Decision Cost. While there is a fixed de-

lay associated with flow classification and scheduling, it is independent of the

number of flows and packets that are present in the system.

• Delays Synchronized with Clock. While the delays of various components are

considered, they are not necessarily synchronized with a system clock. This

should yield only minor differences in results.

• Access Patterns on DRAM Memory. The simulation assumes that all DRAM

accesses can be interleaved in a split-transaction fashion and that there is no

delay due to accesses to the same memory bank by different requests.

114

• Cache Coherence. The simulation does not allow for interaction between pro-

grams during execution. Once a program completes the packet processing its

state changes are visible, but during execution it operates in isolation. As a

result cache coherence is not an issue and therefore not considered. In realistic

systems, however, this can have a significant impact on performance.

• Cache Write-Back / Write-Through. Contention on the memory channel due

to write-backs or write-throughs from cache is not considered.

While these issues need to be considered in a real implementation of a programmable

router, they are not expected to significantly impact the results of the simulation.

6.2 System Simulation

The simulation is implemented in an event-based fashion, where different compo-

nents interact with each other over well-defined interfaces. The clear separation of

components ensures a realistic movement of data in the system and consideration of

all delays. The following describes in detail the data and control paths as well the

processor simulation, queueing system, and other components.

6.2.1 Data Path

The overall data path of the simulation is shown in Figure 6.1. The Queue Controller

and the APC are indicated by boxes around their respective components. Packet

buffers and queues are indicated by shaded areas.

Packets are generated by the link interface and switch interface from stored

traces. The flow classifier determines in which queue a packet should be stored and

what type of processing it requires. Packets are then stored in queue memory, which

consists of SRAM for meta-data and DRAM for the actual packet. More details on

the queue memory are discussed below. Controlled by the processor scheduler, the

APC interface forwards packets through the I/O channel to the APC. Processing is

then done on the processor, where the execution trace is played back to generate an

accurate pattern of cache accesses. After processing, the packet returns to the queue

memory. The link scheduler then determines when it should be sent out to the link

or to the switch. If the destination in the switch fabric is the same port as the current

port, the packet immediately appears on the input side in the switch interface. Not

115

shown in the figure is the case where a packet does not require processing, in which

case it is stored in queue memory and then sent to the output.

6.2.2 Control Path

The control path of the simulation illustrates the sequence of events that occur as

a packet traverses the system. Figure 6.2 shows the graph of events. Each event is

placed in the component, where it triggers an action. Not shown are the events for

the input from and output to the switch, which are similar to those for the link. The

various interactions are discussed in more detail in the following subsections.

6.2.3 Processing Engine Simulation

The APC is the main focus of the simulation. As discussed above it is meant to be

cycle-accurate and perform the actual processing of packets. For this purpose, Sim-

pleScalar, an established RISC processor simulator, is used to perform the processing.

Processors

The APC is a multiprocessor system, which requires multiple processors to be active

at the same time. SimpleScalar per se does not support multiprocessors. Therefore,

the APC simulation processes packets one-by-one, captures each instruction trace,

and “plays back” the trace to generate accurate timing and caching behavior. For

this purpose, the sim-safe instance of SimpleScalar was modified to generate a trace

of instructions that is executed. For each instruction, the program counter, opcode,

and memory access address is recorded. This trace is then used by the APC simulator.

For each active thread in each processor in each cluster, an instruction trace

is stored. When the thread executes an instruction, the next entry from the trace is

taken. Instruction fetch and possible load/store operations are then passed on to the

cache to see if they can be satisfied. If a cache miss occurs, the thread is stalled and

another thread takes over. Once the requested cache line is available, the original

thread is “unstalled” and can continue processing when the processor becomes avail-

able. This behavior is illustrated in Figure 6.2, where the case of a cache miss is shown.

The event PR INTR EXEC corresponds to the instruction execution. CA ACCESS

checks if a datum is available in cache. If not, PR STALL THREAD occurs, which

stalls the current thread and switches the context to another available thread. Once

116

S
w

itc
h

S
ch

ed
ul

er

D
R

A
M

M
em

or
y

S
R

A
M

M
em

or
y

A
P

C

Li
nk

T
ra

ffi
c

G
en

er
at

or
In

pu
tI

nt
er

fa
ce

F
lo

w
C

la
ss

ifi
er

F
ilt

er
M

em
or

y

A
P

C
In

te
rf

ac
e

P
ro

ce
ss

or
S

ch
ed

ul
er

Li
nk

S
ch

ed
ul

er
Li

nk
S

in
k

tc
pd

um
p

sw
itc

h
ou

tp
ut

I/O
C

ha
nn

el
P

ro
ce

ss
or

1
C

ac
he

1

M
em

or
y

1

M
em

or
y

In
te

rf
ac

e
1

O
ut

pu
tI

nt
er

fa
ce

Q
C

T
L

S
w

itc
h

T
ra

ff
ic

G
en

er
at

or

S
w

itc
h

In
te

rf
ac

e
S

w
itc

h
S

in
k

M
em

or
y

C
on

tr
ol

le
r

P
ro

ce
ss

or
n/

m
C

ac
he

n/
m

P
ro

ce
ss

or
n-

n/
m

+1
C

ac
he

n-
n/

m
+1

M
em

or
y

m

M
em

or
y

In
te

rf
ac

e
m

P
ro

ce
ss

or
n

C
ac

he
n

tc
pd

um
p

lin
k

ou
tp

ut

S
w

itc
h

In
te

rf
ac

e

Q
ue

ue
C

on
tr

ol
le

r

tc
pd

um
p

tr
ac

e
1

tc
pd

um
p

tr
ac

e
s

tc
pd

um
p

tr
ac

e
1

tc
pd

um
p

tr
ac

e
i

F
ig

u
re

6.
1:

S
im

u
la

ti
on

D
at

a
P
at

h
.

B
u
ff
er

s
an

d
q
u
eu

es
fo

r
p
ac

ke
t

d
at

a
ar

e
sh

ow
n

as
sh

ad
ed

ar
ea

s.

117

Q
ue

ue
C

on
tr

ol
le

r
(Q

C
)

S
w

itc
h

S
ch

ed
ul

er
(S

S
)

D
R

A
M

M
em

or
y

(D
R

)
S

R
A

M
M

em
or

y
(S

R
)

A
P

C

Li
nk

T
ra

ffi
c

G
en

er
at

or
(L

T
)

Li
nk

In
te

rf
ac

e
(L

I)
F

lo
w

C
la

ss
ifi

er
(F

C
)

F
ilt

er
M

em
or

y

A
P

C
In

te
rf

ac
e

(A
I)

P
ro

ce
ss

or
S

ch
ed

ul
er

(P
S

)

Li
nk

S
ch

ed
ul

er
(L

S
)

Li
nk

D
um

p
(L

D
)

tc
pd

um
p

sw
itc

h
ou

tp
ut

I/O
C

ha
nn

el
(I

O
)

P
ro

ce
ss

or
1

(P
R

)
C

ac
he

1
(C

A
)

M
em

or
y

1
(M

E
)

M
em

or
y

In
te

rf
ac

e
1

(M
I)

O
ut

pu
tI

nt
er

fa
ce

(L
O

)

Q
C

T
L

S
w

itc
h

T
ra

ff
ic

G
en

er
at

or
(S

T
)

S
w

itc
h

O
ut

pu
t(

S
O

)
S

w
itc

h
D

um
p

(S
D

)

M
em

or
y

C
on

tr
ol

le
r

(M
C

)

P
ro

ce
ss

or
n/

m
C

ac
he

n/
m

P
ro

ce
ss

or
n-

n/
m

+1
C

ac
he

n-
n/

m
+1

M
em

or
y

m

M
em

or
y

In
te

rf
ac

e
m

P
ro

ce
ss

or
n

C
ac

he
n

tc
pd

um
p

lin
k

ou
tp

ut

S
w

itc
h

In
te

rf
ac

e
(S

I)
tc

pd
um

p
tr

ac
e

1

tc
pd

um
p

tr
ac

e
s

tc
pd

um
p

tr
ac

e
1

tc
pd

um
p

tr
ac

e
i

LT
_P

E
R

IO
D

IC
_P

K
T

_A
R

V
F

C
_W

A
K

E
U

P

F
C

_C
LS

_C
O

M
P

LE
T

E

F
C

_Q
C

_T
R

A
N

S
F

_D
O

N
E

A
I_

Q
C

_T
R

A
N

S
F

E
R

_D
O

N
E

IO
_T

X
_R

E
Q

U
E

S
T

IO
_T

X
_G

R
A

N
T

E
D

IO
_T

X
_D

O
N

E

S
R

_R
E

A
D

S
R

_W
R

IT
E

D
R

_R
E

A
D

D
R

_W
R

IT
E

LO
_Q

C
_T

R
A

N
S

F
_D

O
N

E

LD
_W

A
K

E
U

P

LD
_T

X
_D

O
N

E

LS
_P

A
C

K
E

T
_R

E
A

D
Y

LS
_S

C
H

E
D

U
LE

_N
E

X
T

LS
_F

IR
S

T
_S

IZ
E

P
S

_P
A

C
K

E
T

_R
E

A
D

Y

P
S

_S
C

H
E

D
U

LE
_N

E
X

T

P
S

_F
IR

S
T

_S
IZ

E

C
A

_A
C

C
E

S
S

C
A

_M
E

M
_L

IN
E

_A
V

A
IL

M
I_

A
C

C
E

S
S

IO
_R

X
_R

E
Q

U
E

S
T

IO
_R

X
_G

R
A

N
T

E
D

IO
_R

X
_D

O
N

E

A
I_

IO
_R

X
_D

O
N

E

P
R

_N
E

W
_P

A
C

K
E

T

P
R

_I
N

S
T

R
_E

X
E

C

P
R

_S
T

A
LL

_T
H

R
E

A
D

P
R

_U
N

S
T

A
LL

_T
H

R
E

A
D

F
C

_Q
C

_T
R

A
N

S
F

E
R

Q
C

_A
I_

T
R

A
N

S
F

E
R

Q
C

_L
O

_T
R

A
N

S
F

E
R

Q
C

_F
R

O
M

_A
I_

D
O

N
E

F
ig

u
re

6.
2:

S
im

u
la

ti
on

C
on

tr
ol

P
at

h
.

E
ve

n
ts

th
at

tr
ig

ge
r

ac
ti

on
s

in
co

m
p
on

en
ts

ar
e

sh
ow

n
as

ov
al

s.

118

MI ACCESS is completed, the cache line is available (CA MEM LINE AVAIL) and

the PR UNSTALL THREAD event allows the thread to continue processing.

While maintaining a complete instruction trace for a program can be expensive

in terms of memory requirements, the processing of packets is typically limited to a

few thousand instructions, which can be handled easily.

Cache Simulation

The cache simulation needs to determine if a memory access leads to a cache hit or

a cache miss. For this purpose, a simple caching data structure is used. When an

address is requested, it is checked if the appropriate cache line is available. Note

that it is not necessary to maintain actual data in the cache, as this is already done

in SimpleScalar. It is sufficient to keep the addresses of currently active cache lines

to make a hit/miss decision. For the simulation, n-way associative caches (with

configurable n) with a least-recently-used replacement policy are implemented.

The address space is shared among threads in processors, which allows the

sharing of data. By partitioning the address space appropriately, the following be-

havior can be achieved for different types of data:

• Instruction Data. Program code should be shared among threads, which allows

i-cache reuse.

• Flow Data. If threads process packets from the same flow, that data should be

shared among them. Note that due to the way the simulation is implemented,

there is no need to consider any possible hazards due to memory accesses by

more than one thread.

• Packet Data. Packet data should only be accessible to the thread that currently

is processing the packet. Also, when the packet changes, the thread should not

be able to access data from the previous packet (e.g., in cache).

This partitioning is implemented such that each data address has an implicit identifier

for the respective application, flow, and packet. This is illustrated in Figure 6.3. For

example, the address space for instructions of application 5 is from 0x0005000 to

0x0005ffff. This allows for 4096 different applications with 64kB instruction data each.

For flow data, 1024 flows with 256kB of flow-state each are supported. This amount

of per-flow state should be enough to support even more complex applications, like

video transcoding. This address space also includes the execution stack, which grows

119

instruction address (16 bit)application id (12 bit)0 0 0 0

data / stack address (18 bit)flow id (10 bit)0 0 0 1

packet address (12 bit)packet id (16 bit)0 0 1 0

Figure 6.3: Simulation Address Space. The shaded bit fields are adjusted for each
application, flow, and packet.

“downwards” from the upper bound of the address segment. Finally, the packet

data is limited to 2kB in our simulation and 64k different packets are supported.

The packet identifier rolls over after 64k packets, which should not cause problems,

because previous packets with the same id will probably have left the router. Using

the address space in the above described fashion achieves the desired behavior and

does not require any cache flushes or invalidation during the simulation.

6.2.4 Queuing System

The port design shown in Figure 2.4 shows the queue memory as a single memory.

In a realistic system, though, there are usually multiple types of memories available.

There is fast, but small, off-chip SRAM and slow, but large, off-chip DRAM. There

is also a limited amount of on-chip storage on the QCTL. Therefore this memory

hierarchy is used to store important, frequently accessed flow data on chip, packet

meta-information in SRAM, and the actual packet in DRAM.

The memory layout is shown in Figure 6.4. The on-chip memory contains two

per-flow queue data structures. One is used to queue packets before the processing

step and the other is used for packets that are ready to be sent out. Each queue

requires two pointers (and possibly a counter for the number of queues packets).

With 1024 distinct flows, 16kB of on-chip memory are necessary. Additionally, two

pointers to the free-lists of SRAM and DRAM data structures are necessary. To

avoid memory fragmentation, all data structures are of fixed size. In SRAM, there

are packet meta-information data structures, which contain the packet size, the flow

classification result, etc., and a pointer to the first DRAM chunk. Packets of the

same flow are chained together in SRAM, which corresponds to the per-flow queue.

In DRAM, packet data is stored in fixed size chunks, which are chained together for

each packet. In the simulation, the SRAM data structure is 64 bytes, which allows

120

SRAM Memory

DRAM Memory

data cluster

next cluster

data cluster

next cluster

data cluster

next cluster

data cluster

next cluster

data cluster

next cluster

data cluster

next cluster

data cluster

next cluster

data cluster

next cluster

data cluster

next cluster

packet meta information

next packetfirst cluster

packet meta information

next packetfirst cluster
packet meta information

next packetfirst cluster

packet meta information

next packetfirst cluster

packet meta information

next packetfirst cluster

On-Chip Memory

DRAM
free list

SRAM
free list

per-flow queues

flow 1 head flow 1 tail

flow n head flow n tail

Figure 6.4: Queue Memory Layout. The per-flow queue data structure exists for
pre-processing queues and post-processing queues (only one shown).

for 56 bytes of meta-information. The DRAM chunks are 256 bytes, which allows the

storage of 252 bytes of packet data.

Accesses to queue memory and the off-chip APC memory are modelled to re-

flect the typical behavior of SRAM and DRAM memories. Each memory transaction

consists of a queuing time to get access to the memory channel, a memory access

time, which is technology dependent, and a transmission time, which depends on the

memory channel speed and width. This follows the expression given in Equation 4.10.

The DRAM access latency (not including the actual data transmission) is assumed to

be 60 nanoseconds. For off-chip SRAM this latency is assumed to be 10 nanoseconds.

On-chip SRAM is assumed to operate at the clock speed of the processor. As indi-

cated, the simulation does not consider contention for memory banks, which could

121

limit the ability to interleave memory requests (resulting in a throughput degradation

by 20-40%).

6.2.5 Schedulers

There are two schedulers in the queue controller: The processor scheduler, which

assigns packets to processors, and the link scheduler, which determines the order

of outgoing packets. For the link scheduler, a simple deficit round robin scheme

(DRR [SV95]) is implemented. The processor scheduler can implement the schedul-

ing schemes discussed in Chapter 5. In the initial simulation implementation, a

simpler round-robin scheduler is used to distribute the workload more evenly over all

processors in the system, which leads to more evenly distributed results.

Both schedulers need to maintain data structures for each flow in order to be

able to make scheduling decisions. The processor scheduler additionally requires a

data structure for each processor. In our implementation, the processor scheduler

maintains per-flow information on the size of the first packet in the queue and the

requires application. The link scheduler requires the size of the first packet in the

queue and the credit of the respective flow. This requires 8kB of on-chip memory for

each scheduler.

When a packet is transmitted to the APC or on the link, the respective

scheduler needs to be updated on the size of the next packet in the queue. This

is done by the queue controller, which reads the meta-information of the next packet

in queue memory. Then it informs the scheduler with the PS FIRST SIZE and

LS FIRST SIZE event. This way, the scheduler does not need to maintain a queue

of packet sizes for each flow.

6.2.6 Programming Environment

The simulation of packet processing is done by the SimpleScalar tools. However,

these tools simulate the entire execution process of a program on a realistic operat-

ing system, which includes the preparation of the process context and various other

O/S-specific tasks. To not have such processing instructions reproduced in the APC

simulation, the following restriction are placed on applications, which allow the sim-

ulator to distinguish between application and O/S processing:

• Single Processing Function. All code that should be considered in the simulation

has to be placed inside the scope of one function called process(). Functions that

122

process.h:

struct flow_state {

/* here goes any per-flow state data */

};

process.c:

#include "process.h"

extern struct flow_state state;

void process_packet(struct packet *p) {

/* here goes the processing code for the application */

}

Figure 6.5: Application Template. Packet processing functions can be programmed
in C using this template.

are necessary for the application have to be placed inside this scope through

inlining.

• Single Flow State. All state that has to be preserved among packets of a flow

has to be placed inside one structure called state.

• Single Packet. A pointer to the packet data structure that needs processing is

passed to the processing function. Any modifications to the packet have to be

done on this structure. It is not possible to generate or drop packets in the

current implementation of the simulator.

With these restrictions, it is possible that the simulator can maintain flow-state and

distinguish between flow data and packet data. This is done by scanning the symbol

table of the executable to find the location and size of the relevant symbols. There-

fore the name of these symbols must not be changed. A template for a processing

application is shown in Figure 6.5 (the code for loading and storing packets and flow

state is not shown). This is compiled together with some support functions, which

load the packet data and flow state before processing and store them after processing.

The compiler that is used is gcc with the SimpleScalar back-end.

123

6.2.7 Simulation Summary

The simulation was implemented on a Linux system. The discrete-event simulation

is “hand-coded” and the total simulation code (excluding any SimpleScalar tools)

consists of about 3500 lines of C code. The simulation speed is mostly bound by the

APC simulation, which can perform about 150,000 instruction simulations per second

on a 900MHz Pentium III.

In summary, the simulation of the programmable router port considers the

most important components of the system, which are the processing engine, memory

management, and data flow through the system. The accurate modelling of the

processing engine and the consideration of timing issues make it possible to obtain

meaningful quantitative results.

6.3 Simulation Results

In this section, simulation results are presented and contrasted to analytic results

from Chapter 4. This is helpful to verify the correctness of the analysis, as well

as highlight issues that are not captured in the analytic model. In order to obtain

comparable results, the workload and system configuration for the simulation and the

analytic model has to be the same.

6.3.1 Workload and Configuration

To simplify the comparison, only one application from CommBench is used. The

REED application, which performs Reed-Solomon FEC coding, is quite suitable for

this purpose. It is computationally intense, which causes the processing engine to be

the bottleneck in the system and packets to always be backlogged for processing.

Since the implementation of REED on the simulator is slightly different from

the CommBench implementation, there are small differences in the workload charac-

teristics as compared to Chapter 3. The computational complexity is complREED,sim =

582 for encoding, which is considered here. In CommBench, the complexity of

complREED,CB = 603 is a bit higher. The load/store frequency in the simulation

is fload + fstore = 0.22, which is slightly lower than in CommBench. Also, smaller

caches are considered in the simulation to be able to observe the effects of high miss

rates. The miss rates for cache sizes between 128 bytes and 4kB are shown in Fig-

ure 6.6.

124

0.0001

0.001

0.01

0.1

1

10

100

128B 256B 512B 1kB 2kB 4kB

ca
ch

e
m

is
s

ra
te

 in
 %

cache size

d-cache
i-cache

Figure 6.6: Simulation Workload Cache Misses. Instruction and data cache misses
for the REED application.

In the simulation, the number of clusters, m, the number of processors, n,

the number of threads, t, and the instruction and data cache sizes, ci and cd, are

varied to observe performance trends. To keep the number of combinations tractable,

the instruction cache is always set to the same size as the data cache. The fixed

parameters are:

• Processor Clock Speed: clkp = 200MHz.

• Cache Line Size and Associativity: linesize = 32 bytes, 2-way associative.

• Memory Channels: clkmem = 100MHz, widthmem = 32 bit.

• I/O Channel: clkIO = 200MHz, widthIO = 32 bit, full-duplex.

• Queue Memory Channel: clkQmem = 200MHz, widthQmem = 32 bit.

• Off-Chip Memory Access Times: τDRAM = 60ns, τDRAM = 10ns.

The data traffic for the simulation is a sequence of 100 data packets belonging to

the same flow. Each packet is 257 bytes long (34 bytes of Ethernet and IP header plus

223 bytes of payload) and requires REED processing. The outgoing packets are 289

bytes including an 32-byte FEC code. The link rate is 2.4Gbps to ensure that packets

are available quickly for processing. Due to the complex processing, the maximum

throughput of the active router is only a few Mbps (for small configurations).

125

6.3.2 Comparison

The performance of the analytic model is based on the equations derived in Chapter 4.

In particular, the processing power is of interest, which affects the tradeoffs between

more processors, more cache, and more memory channels. the following illustrates

the derivation of the processing power using the analytic model in the context of

the simulation. The configuration is one cluster, one processor, one thread, and 1kB

instruction and data caches.

With the workload given, the processor utilization can be determined by de-

termining the overall miss rate pmiss and the memory access time τmem. From Equa-

tion 4.14, the miss rate is

pmiss,REED = 0.00041 + 0.22 · 0.09261 = 0.02075. (6.1)

To determine the memory access time, τmem, it is necessary to consider the load on

the memory channel. In the analytic model, the memory channel load is fixed to a

particular value. Since we want to compare the results to the simulation, we use the

memory channel load of the simulation: ρmem,sim = 0.129. In a configuration with

only one processor and one thread per cluster, the queuing delay should of course be

τQ = 0. Nevertheless, we use the non-zero analytic result for τQ to be consistent with

the multiprocessor / multithreaded cases. Thus, the memory access time expressed

in processor clocks is:

τmem = 60ns · 100MHz +

(
1 +

(0.129)2

2(1 − 0.129)

)
· 32byte

32bit
= 14.1. (6.2)

Then, Equation 4.9 gives the total processor utilization:

ρp =
1

1 + 14.1 · 0.02075
=

1

1 + 0.4157
= 0.7739. (6.3)

This translates into 77 MIPS of processing power for the analytic model.

The processing power of the simulation for this configuration is also 77 MIPS.

A reason for the almost identical processing power results for the simulation and an-

alytic model lies in the negligible difference in parameters. The comparison between

the parameters in the analytic model and the simulation are shown in Table 6.1. In

configurations where the parameters show larger differences (see below), the process-

ing performance also differs.

126

To see the accuracy of the analytic model for other, more complex configura-

tions, Table 6.1 also shows the parameters and processing performance for a config-

uration with m = 2, n = 2, t = 2, and ci = cd = 1kB. Here, the instruction miss

rate and data miss rate differ significantly from the analytic model. This is due to

the inaccurate modelling of pollution effects when multiple threads access the same

caches. Also there is a slight difference in memory access times. This is due to the

packet transmissions over the memory and I/O channel that can delay memory ac-

cesses. In the single-thread case this does not occur since the processor is stalled

during packet transmissions. With multiple threads, though, one thread might need

to access memory while another thread receives or sends a packet over the I/O chan-

nel. This can cause significant delays as the I/O-operation cannot be preempted in

the simulation. Nevertheless, the analytic processor utilization is only about 3% dif-

ferent from the simulated utilization. This directly translates directly into a 3% error

on the processing performance estimation.

The bottom of Table 6.1 shows the results for a configuration with m = 4,

n = 4, t = 4, and ci = cd = 1kB, which is the largest in terms of the number

of clusters, processors, and threads that is considered in the simulation. Here, the

differences in instruction cache miss rates are enormous. This is due to the fact that

the analytic model assumes that different threads cannot share instruction data. In

the simulation, however, all threads execute the same instruction code, which is in

the same shared address space. As a result, the i-miss rate in the simulation is much

lower than in the analytic model. This indicates that the model for cache pollution in

Equation 4.15 is not suitable if threads execute the same instruction data. In terms

of memory access time, there are also large differences between the analytic model

and the simulation. This is again caused by packet transmissions interfering with

memory accesses. These two aspects cause the estimated processing power to be off

by 23% from the simulation. While this is a significant error, we can see below that

this is a particularly bad case of differences in pmiss and τmem.

6.3.3 Error Trends

To show the differences between the analytic model and the simulation over a broader

range of configurations, Figure 6.7 shows the processing power of both models for

different numbers of clusters, processors, threads, and cache sizes. Also shown is the

127

Table 6.1: Comparison of Analytic Model and Simulation Results.
1 cluster, 1 processor, 1 thread, 1kB i-cache, 1kB d-cache

parameter analytic model simulation error
i-miss rate mi 0.041% 0.041% 0%
d-miss rate md 9.26% 9.26% 0%
mem. chan. util. ρmem 12.9% 12.9% –
mem. acc. time τmem 14.1 cycles 14 cycles 0.5%
proc. util. ρp 77.39% 77.39% 0%
proc. power IPS 77 MIPS 77 MIPS 0%

2 cluster, 2 processor, 2 thread, 1kB i-cache, 1kB d-cache

parameter analytic model simulation error
i-miss rate mi 0.041% 0.038% 6.9%
d-miss rate md 21.56% 9.26% 132%
mem. chan. util. ρmem 30.2% 30.2% –
mem. acc. time τmem 14.5 cycles 16.2 cycles 10.4%
proc. util. ρp 87.6% 90.5% 3.3%
proc. power IPS 350 MIPS 362 MIPS 3.3%

4 cluster, 4 processor, 4 thread, 1kB i-cache, 1kB d-cache

parameter analytic model simulation error
i-miss rate mi 2.42% 0.046% 5110%
d-miss rate md 28.6% 15.5% 84.7%
mem. chan. util. ρmem 79.1% 79.1% –
mem. acc. time τmem 25.9 cycles 60.1 cycles 56.8%
proc. util. ρp 87.7% 71.4% 22.9%
proc. power IPS 1403 MIPS 1142 MIPS 22.9%

128

error between the two results (on a logarithmic scale). The baseline configuration is

m = 1, n = 1, t = 1, and ci = cd = 1kB.

For an increasing number of clusters, the analytic processing power estimation

is very close to the simulation (maximum error 2%), because the caches and memory

channels are replicated and only one thread accesses each. When increasing the

number of processors, the error is slightly higher as processors compete for access to

the memory channel. The effect of packet transmissions increases the memory access

time, which causes τmem to differ from the analytic model.

A larger number of threads causes the results to diverge due to differences

in cache miss rates. For example, for t = 2, the simulation achieves over 7% more

processing power than the analytic model predicts, because analytic miss rate is with

pmiss,analytic = 0.048 more than twice as high the simulation with pmiss,sim = 0.021.

For larger caches, the difference between analysis and simulation are limited as

the overall miss rates become very low and have little impact on the overall perfor-

mance. These trends indicate that the key differences between analysis and simulation

lie in the cache miss rates and the memory access times. The following subsections

discuss these two points in more detail.

Cache Pollution

As seen in the results above, the analytic model assumes that threads cannot share

the data in the cache and therefore effectively only use a fraction of the total cache.

However, the instruction cache can well be shared between threads that execute the

same application. This sharing is actually desired in the Locality-Aware Predictive

scheduling as discussed in Chapter 5. This results in the analytic model being ex-

tremely pessimistic in terms of the miss rates that can be achieved, in particular for

instruction caches.

Figure 6.8 shows the cache miss rates for different number of threads. Fig-

ures 6.8(a) and 6.8(b) show the differences for instruction cache misses. For three

and four threads, the analytic model is off by over two orders of magnitude. Less

severe is the difference in data cache miss rates as shown in Figures 6.8(c) and 6.8(d).

Here, the difference is no more than a factor of 10. As the number of threads in-

creases these errors have a decreasing impact, since the memory accesses can be

hidden through multithreading. Therefore, the overall processing power differs only

by a few percent, as shown above.

129

0

50

100

150

200

250

300

350

1 2 3 4
0.001

0.01

0.1

1

10

100

1000

pr
oc

es
si

ng
 p

ow
er

 in
 M

IP
S

er
ro

r
in

 %

number of clusters

analytic model
simulation

error

(a) Different Number of Clusters

0

50

100

150

200

250

300

350

1 2 3 4
0.001

0.01

0.1

1

10

100

1000

pr
oc

es
si

ng
 p

ow
er

 in
 M

IP
S

er
ro

r
in

 %

number of processors

analytic model
simulation

error

(b) Different Number of Processors

0

20

40

60

80

100

120

1 2 4
0.001

0.01

0.1

1

10

100

1000

pr
oc

es
si

ng
 p

ow
er

 in
 M

IP
S

er
ro

r
in

 %

number of threads

analytic model
simulation

error

(c) Different Number of Threads

0

20

40

60

80

100

120

1kB 2kB 4kB
0.001

0.01

0.1

1

10

100

1000

pr
oc

es
si

ng
 p

ow
er

 in
 M

IP
S

er
ro

r
in

 %

size of instruction and data caches

analytic model
simulation

error

(d) Different Number of Caches

Figure 6.7: Comparison of Processing Power in Analytic Model and Simulation. The
processing power and the error between the analytic model and the simulation results
are shown for different configurations. The baseline configuration is 1 cluster, 1
processor, 1 thread, and 1kB instruction and data caches.

130

0.01

0.1

1

10

100

1 2 3 4

in
st

ru
ct

io
n

ca
ch

e
m

is
s

ra
te

 in
 %

number of threads

1kB analytic
1kB simulated

(a) 1kB Instruction Cache

0.0001

0.001

0.01

0.1

1

1 2 3 4
in

st
ru

ct
io

n
ca

ch
e

m
is

s
ra

te
 in

 %
number of threads

4kB analytic
4kB simulated

(b) 4kB Instruction Cache

1

10

100

1 2 3 4

in
st

ru
ct

io
n

ca
ch

e
m

is
s

ra
te

 in
 %

number of threads

1kB analytic
1kB simulated

(c) 1kB Data Cache

0.01

0.1

1

10

100

1 2 3 4

in
st

ru
ct

io
n

ca
ch

e
m

is
s

ra
te

 in
 %

number of threads

4kB analytic
4kB simulated

(d) 4kB Data Cache

Figure 6.8: Comparison of Analytic and Simulated Cache Miss Rates. The analytic
results assume that cache pollution causes threads to evenly split the available cache.
The simulated results show that this assumption is too pessimistic as data can be
shared.

131

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

m
em

or
y

re
qu

es
t q

ue
ue

 le
ng

th

memory channel load

simulation
theoretical

Figure 6.9: Comparison of Analytic and Simulated Memory Channel Queue Length.

The processing characteristics of the workload in the terms of data sharing and

cache pollution are clearly not captured well in the analytic model. It can expected

that more divers workloads result in better matching parameter estimates.

Memory Access Time

Another cause for differences in the analysis and the simulation is the memory access

time. The analytic model does not consider that a packet transmission from the queue

controller to a processor locks up the memory channel for some time, which causes

memory accesses by other threads and processors to be delayed. Also, the memory

access pattern is assumed to be exponentially distributed, which is not necessarily

the case. Finally, the case of one single processor and thread is also not captured,

because there the memory channel is immediately available for the processor. These

points cause the simulated memory access queue length to differ from the M/D/1 ap-

proximation as shown in Figure 6.9. Note that the general trend, though, is following

the analytic model.

In summary, the comparison between the processing performance analysis and

the simulation results shows a good accuracy of the analytic model. In many cases,

the difference is only in the order of a few percent. Larger errors are caused by

analytic cache miss rates and memory access times that do not match the simulated

results. Nevertheless, the analytic model provides a good first-order approximation

of the simulated processing power.

132

6.4 Summary

The simulation of the programmable router port addresses system issues in more

detail. In particular, a detailed data and control path is defined and a possible im-

plementation for a queue memory data structures is described. Also, scheduling and

programming issues are discussed. The scheduling results are presented and con-

trasted to analytically obtained results. This comparison shows that the performance

model presented in Chapter 4 is accurate within a few percent of the simulation re-

sults when cache miss and memory access parameters are similar. The modelling of

cache pollution and memory access contention can cause these parameters to differ

significantly in the analytic model, which results in processing power estimation that

differ by up to 20-30%.

The combination of the analytic performance model, which allows fast de-

sign space exploration, and the simulation, which can give more accurate results for

selected configurations, is a powerful way for obtaining programmable router config-

urations with optimal performance characteristics for any workload.

133

Chapter 7

Summary and Future Work

7.1 Summary

This work presents an extensive discussion of design issues associated with pro-

grammable routers. Programmability in the data path of a router allows dynamic

deployment of new network protocols and services. This flexibility is achieved by

adding general-purpose processing engines to a router port. To achieve the necessary

performance, such network processors are designed as embedded parallel multiproces-

sors. A system design of a programmable router port is discussed and its scalability

under consideration of various technology growth trends is shown.

The presented benchmark, CommBench, implements a typical workload for a

network processor. The measurements of various characteristics gives a quantitative

understanding of application complexity, caching performance, and other processor-

architecture related metrics. Together with the analytic performance model, which

considers parallel, multithreaded processors, an accurate performance estimate for a

broad range of network processor configurations can be derived. This model is used

to obtain configurations, which optimally use the area of the embedded system-on-

a-chip and achieve maximum processing power per unit of area. From this model,

general design tradeoffs for different system components are derived. The simulation

of the system provides an additional, more accurate method for obtaining detailed

performance results.

The scheduling of processing engines on programmable routers poses a novel

challenge that can be addressed by using processing time estimations. By partition-

ing processors into application groups and scheduling packets such that instruction

cache data is reused, lower cache miss rates and higher throughput can be achieved.

134

Processing time estimations can also be used in the context of reserving processing re-

sources and enforcing fair sharing. Using the proposed scheduling algorithm, bounds

on processing delay can be provided.

7.2 Future Work

There are two main areas in which future work can be pursued. One is the networking

area, where the questions is how to use a programmable network infrastructure. The

other is in the computer architecture area, where more advanced network processors

need to be developed to satisfy the need for more processing power.

In the networking area, a particularly interesting question is how to make a

programmable network accessible to the user. If the network provides a set of services,

how can a user specify that a particular flow should use these services. One approach

to solve this is the usage of a programming abstraction similar to “pipes” as they are

common in UNIX shells. Such active pipes allow the specification of processing tasks

and processing-specific parameters (e.g., processing location restrictions) [KRW01].

The network needs to translate this specification, route the flow, and place processing

components accordingly.

With programmable network components becoming deployed throughout the

network, interesting new applications can be developed. Programmable routers are

particularly suitable to implement applications that not only process packet headers,

but the entire payload. One example for such a transcoding application is WWW-

document transcoding for thin clients. A mobile, hand-held computer might not have

the ability to receive or display large documents (due to a low-bandwidth wireless

link and a low-resolution display). A programmable router at the access point could

provide a service that automatically reduces images to the appropriate size and pos-

sibly converts them to gray-scale. This service would be transparent to the client and

the server, which avoids the need for software support on either side.

A key challenge for scenarios, where the network modifies packet payloads,

is the issue of end-to-end transport protocols. When TCP was developed, it was

assumed that the store-and-forward network would not change the packet (except for

data link and network layer headers). With the introduction of store-process-and-

forward paradigms, this assumption does not hold true anymore. To still satisfy TCP

on the end-system, complex TCP termination or splicing techniques need to be used.

135

It might be conceivable to develop a different transport layer protocol that supports

the notion of processing inside the network.

In the long term, processing inside the network will probably be augmented

by storage devices, which have been significantly increasing in data density per cubic

inch. With the merging of communication, processing, and storage into a single

device, a new class of smart networked servers could be developed. The traditional

client-server paradigm will probably be no longer applicable and new peer-to-peer-

like mechanisms for communications will be more applicable. The integration of

these three key components might help in keeping control over the ever-increasing

complexity of modern computer systems.

In the area of network processor design, an important consideration is the use

of specialized co-processors for computationally intense networking tasks. The key

challenge is to identify the processing steps that are suitable for co-processors, but

are also frequently used to effectively utilize such a co-processor. From the results in

Chapter 4.4 it is clear that a component should only be added to a network processor if

it is used frequently enough to justify the use of silicon real-estate. Candidates for co-

processor functions are lookup and classification engines, checksum co-processors, and

security co-processors. It might also be conceivable implement specialized hardware

for TCP termination to off-load end-systems or to allow payload modifications.

In terms of network processors architectures, the proposed APC design is only

one instance of a large class of architectures that exploit flow- and packet-level par-

allelism. It is conceivable to develop pipelined architectures, which might be more

efficient in terms of i-cache locality, but which are more challenging in terms of data

movement through the system. In particular with the increasing importance of low

power consumption, architectures that reduce data movement might be more suitable.

In either case, considering power consumption as the cost function for an analytic per-

formance model will probably be more important than the used chip area.

Finally, with the technology support for on-chip field-programmable gate arrays

(FPGAs), it can be considered to provide hardware-programmability as a resource in

the network. An FPGA-based implementation of a function can exploit parallelism

in a much broader way than a von Neumann processor architecture.

The most exciting challenge for programmable networks lies in the need to con-

tinue incorporating results from networking and computer architecture and building

a communications and processing infrastructure that provides the functionality and

performance for future networks.

136

References

[AAH+98] D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, Pankaj

Kakkar, Angelos D. Keromytis, Jonathan T. Moore, Carl A. Gunter,

Scott M. Nettles, and Jonathan M. Smith. The SwitchWare active net-

work architecture. IEEE Network Special Issue on Active and Control-

lable Networks, 12(3):29–36, August 1998.

[AAP+00] George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Prad-

han, and Debanjan Saha. Design, implementation and performance of

a content-based switch. In Proc. of IEEE INFOCOM 2000, Tel Aviv,

Israel, March 2000.

[Ada97] Carlisle Adams. The CAST-128 encryption algorithm. RFC 2144, Net-

work Working Group, May 1997.

[Aga92] Anant Agarwal. Performance tradeoffs in multithreaded processors.

IEEE Transactions on Parallel and Distributed Systems, 3(5):525–539,

September 1992.

[AHKB00] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger.

Clock rate versus IPS: The end of the road for conventional microar-

chitectures. In Proc. of the 27th Annual International Symposium on

Computer Architectures, pages 248–259, Vancouver, BC, June 2000.

[ALKK90] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz.

A processor architecture for multiprocessing. In Proc. of 17th Inter-

national Symposium on Computer Architecture, pages 278–288, Seattle,

WA, June 1990.

[ARM99] ARM Ltd. ARM9E-S - Technical Reference Manual, December 1999.

http://www.arm.com.

137

[BA97] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version

2.0. Technical Report 1342, Department of Computer Science, Univer-

sity of Wisconsin in Madison, June 1997.

[BO01] Josep M. Blanquer and Banu Ozden. Fair queuing for aggregated mul-

tiple links. In Proc. of ACM SIGCOMM 2001, San Diego, CA, August

2001.

[BTKM+02] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae

Ghodrat, Ben Greenwald, Henry Hoffman, Jae-Wook Lee, Paul John-

son, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnid-

man, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant

Agarwal. The Raw microprocessor: A computational fabric for software

circuits and general purpose programs. IEEE Micro, 22(2), March 2002.

[BZ95] Jon Bennett and Hui Zhang. Worst case fair weighted fair queuing. In

Proc. of IEEE INFOCOM 95, pages 120–128, Boston, MA, April 1995.

[BZ96] Jon C. R. Bennett and Hui Zhang. Hierarchial packet fair queuing

algorithms. In Proc. of ACM SIGCOMM, pages 43–56, Palo Alto, CA,

August 1996. ACM.

[C-P99] C-Port Corporation. C-5TM Digital Communications Processor, 1999.

http://www.cportcorp.com/solutions/docs/c5brief.pdf.

[CB02] Patrick Crowley and Jean-Loup Baer. A modelling framework for net-

work processor systems. In Network Processor Workshop in conjunction

with Eighth International Symposium on High Performance Computer

Architecture (HPCA-8), Cambridge, MA, February 2002.

[CCF+01] Prashant Chandra, Yang-Hua Chu, Allen Fisher, Jun Gao, Corey

Kosak, T. S. Eugene Ng, Peter Steenkiste, Eduardo Takahashi, and Hui

Zhang. Darwin: Customizable resource management for value-added

network services. IEEE Network, 15(1):22–35, January 2001.

[CDMK+99] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis,

Kazuho Miki, John B. Vincente, and Daniel Villela. A survey of pro-

grammable networks. Computer Communication Review, 29(2):7–23,

April 1999.

138

[CFBB99] Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer, and Brian N.

Bershad. Workloads for programmable network interfaces. In IEEE

Second Annual Workshop on Workload Characterization, Austin, TX,

October 1999.

[CFBB00] Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer, and Brian N.

Bershad. Characterizing processor architectures for programmable net-

work interfaces. In Proc. of 2000 International Conference on Super-

computing, Santa Fe, NM, May 2000.

[CFFT97] Tom Chaney, Andy Fingerhut, Margaret Flucke, and Jonathan Turner.

Design of a gigabit ATM switch. In Proc. of IEEE INFOCOM 97, Kobe,

Japan, April 1997.

[CGM+01] Kenneth L. Calvert, James Griffioen, Billy Mullins, Amit Sehgal, and

Su Wen. Concast: Design and implementation of an active network

service. IEEE Journal on Selected Areas of Communications, 19(3):404–

409, March 2001.

[Chr99] Andrew L. Chraplyvy. High-capacity lightwave transmission experi-

ments. Bell Labs Technical Journal, 4(1):43–47, January 1999.

[Cis99] Cisco Systems, Inc. Cisco 12000 Series Gigabit Switch Routers, 1999.

http://www.cisco.com/warp/public/cc/cisco/mkt/servprod/opt/prod-

lit/gsr ov.pdf.

[CK94] Robert F. Cmelik and David Keppel. Shade: A fast instruction-set simu-

lator for execution profiling. In Proc. of ACM SIGMETRICS, Nashville,

TN, May 1994.

[Cla88] David D. Clark. The design philosophy of the DARPA internet proto-

cols. In Proc. of ACM SIGCOMM 98, Stanford, CA, August 1988.

[Cme93] Robert F. Cmelik. SpixTools instroduction and user’s manual. Technical

Report TR-93-6, Sun Microsystems Laboratories, Palo Alto, CA, 1993.

[CPU] CPU info center. http://bwrc.eecs.berkeley.edu/CIC/.

[CT98] Yuhua Chen and Jonathan S. Turner. Design of a weighted fair queueing

cell scheduler for ATM networks. In Proc. of IEEE GLOBECOM 98,

Sydney, Australia, November 1998.

139

[CTW01] Sumi Yunsun Choi, Jonathan S. Turner, and Tilman Wolf. Configuring

sessions in programmable networks. In Proc. of the Twentieth IEEE

Conference on Computer Communications (INFOCOM), pages 60–66,

Anchorage, AK, April 2001.

[CW76] Harold J. Curnow and Brian A. Wichmann. A synthetic benchmark.

The Computer Journal, 19(1):43–49, February 1976.

[CYB+02] Prashant R. Chandra, Raj Yavatkar, Tony Bock, Mason Cabot, and

Philip Mathew. Benchmarking network processors. In Network Proces-

sor Workshop in conjunction with Eighth International Symposium on

High Performance Computer Architecture (HPCA-8), Cambridge, MA,

February 2002.

[DDPP98] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner.

Router Plugins - a modular and extensible software framework for mod-

ern high performance integrated services routers. In Proc. of ACM SIG-

COMM 98, Vancouver, BC, September 1998.

[DM92] Murthy Devarakonda and Arup Mukherjee. Issues in implementation

of cache-affinity scheduling. In Proc. of Winter USENIX Conference,

pages 345–357, January 1992.

[DPC+99] Dan Decasper, Guru Parulkar, Sumi Choi, John DeHart, Tilman Wolf,

and Bernhard Plattner. A scalable, high performance active network

node. IEEE Network, 31(1):8–19, January 1999.

[DRST01] John D. DeHart, William D. Richard, Edward W. Spitznagel, and

David E. Taylor. The smart port card: An embedded UNIX processor

architecure for network management and active networking. Technical

Report WUCS-01-18, Department of Computer Science, Washington

University in St. Louis, August 2001.

[EEM] Embedded microprocessor benchmark consortium.

http://www.eembc.org.

[EF94] Kjeld Borch Egevang and Paul Francis. The IP network address trans-

lator (NAT). RFC 1631, Network Working Group, May 1994.

140

[EH98] Jan Edler and Mark D. Hill. Dinero IV Trace-Driven Uniprocessor

Cache Simulator, 1998. http://www.cs.wisc.edu/˜markhill/DineroIV/.

[FDW+99] George Frankhauser, Marcel Dasen, Nathalie Weiler, Bernhard Plattner,

and Burkhard Stiller. WaveVideo – an integrated approach to adaptive

wireless video. ACM Journal on Mobile Networks and Applications,

4(4):251–277, December 1999.

[FJ93] Sally Floyd and Van Jacobson. Random early detection (RED) gate-

ways for congestion avoidance. IEEE/ACM Transactions on Network-

ing, 1(4):397–413, August 1993.

[FW02] Mark A. Franklin and Tilman Wolf. A network processor performance

and design model with benchmark parametrization. In Network Proces-

sor Workshop in conjunction with Eighth International Symposium on

High Performance Computer Architecture (HPCA-8), Cambridge, MA,

February 2002.

[GGPY89] Patrick P. Gelsinger, Paolo A. Gargini, Gerhard H. Parker, and Al-

bert Y.C. Yu. Microprocessors circa 2000. IEEE Spectrum, 26(10):43–

47, October 1989.

[GMC+00] Virginie Galtier, Kevin L. Mills, Yannick Carlinet, Stafan Leigh, and

Andrew Rukhin. Expressing meaningful processing requirements among

heterogeneous nodes in an active network. In Proc. of the Second In-

ternational Workshop on Software and Performance, Ottawa, Canada,

September 2000.

[Gol94] S. Jamaloddin Golestani. A self clocked fair queuing scheme for broad-

band applications. In Proc. of IEEE INFOCOM 94, pages 636–646,

Toronto, Canada, June 1994.

[GVC96a] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. A hierarchial

cpu scheduler for multimedia operating systems. In Proc. of the Sec-

ond USENIX Symp. on Operating System Design and Implementation

(OSDI), pages 107–121, Seattle, WA, October 1996.

[GVC96b] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time fair

queuing: A scheduling algorithm for integrated services packet switching

141

networks. In Proc. of ACM SIGCOMM, pages 157–168, Palo Alto, CA,

August 1996. ACM.

[HBB+99] John J. Hartman, Peter A. Bigot, Patrick Bridges, Brady Montz, Rob

Piltz, Oliver Spatscheck, Todd A. Proebsting, Larry L. Peterson, and

Andy Bavier. Joust: A platform for liquid software. IEEE Computer

Magazine, 32(4):50–56, April 1999.

[HKM+98] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and

Scott Nettles. PLAN: A packet language for active networks. In Proc.

of the Third ACM SIGPLAN International Conference on Functional

Programming Languages, pages 86–93. ACM, 1998.

[HKN+92] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mochizuki,

Akio Nishimura, Yoshimori Nakase, and Teiji Nishizawa. An elementary

processor architecture with simultaneous instructions issuing from mul-

tiple threads. In Proc. of 19th International Symposium on Computer

Architecture, pages 136–145, Gold Coast, Australia, May 1992.

[HMS98] Ilija Hadzic, W. S. Marcus, and Jonathan M. Smith. On-the-fly pro-

grammable hardware for networks. In Proc. of IEEE Globecom 98, Syn-

dey, Australia, November 1998.

[HP95] John L. Hennessy and David A. Patterson. Computer Architecture – A

Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Mateo,

CA, second edition, 1995.

[IBM98] IBM Microelectronics Division. The PowerPC 405TM Core, 1998.

http://www.chips.ibm.com/products/powerpc/cores/405cr wp.pdf.

[IBM00] IBM Corp. IBM Power Network Processors, 2000.

http://www.chips.ibm.com/products/wired/communications/net-

work processors.html.

[Int00] Intel Corp. Intel IXP1200 Network Processor, 2000. http://develo-

per.intel.com/design/network/ixp1200.htm.

142

[KCD+00] Ralph Keller, Sumi Choi, Dan Decasper, Marcel Dasen, George Franken-

hauser, and Bernhard Plattner. An active router architecture for mul-

ticast video ditribution. In Proc. of IEEE INFOCOM 2000, Tel Aviv,

Israel, March 2000.

[KDK+02] Fred Kuhns, John DeHart, Anshul Kantawala, Ralph Keller, John Lock-

wood, Prashanth Pappu, David Richard, David E. Taylor, Jyoti Par-

watikar, Ed Spitznagel, Jon Turner, and Ken Wong. Design of a high

performance dynamically extensible router. In Proc. of DARPA Active

Networks Conference and Exhibition, San Francisco, CA, May 2002.

[KDR+01] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi, Peter

Mattson, Jin Namkoong, John D. Owens, Brian Towles, and Andrew

Chang. Imagine: Media processing with streams. IEEE Micro, 21(2):35–

46, March 2001.

[KRW01] Ralph Keller, Jeyashankher Ramamirtham, and Tilman Wolf. Active

pipes: Program composition for programmable networks. In Proc. of

the 2001 IEEE Conference on Military Communications (MILCOM),

McLean, VA, October 2001.

[Lai92] Xuejia Lai. On the design and security of block ciphers. In ETH Series in

Information Processing, volume 1, Konstanz, Germany, 1992. Hartung-

Gorre Verlag.

[Lex00] Lexra Inc. NetVortex Network Communications System Multiprocessor

NPU, 2000. http://www.lexra.com/products.html.

[LPMS97] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Me-

diaBench: A tool for evaluating and synthesizing multimedia and com-

munications systems. In Proc. of IEEE MICRO-30, pages 330–335,

Research Triangle Park, NC, December 1997.

[Luc00] Lucent Technologies Inc. PayloadPlusTM Fast Pattern Proces-

sor, April 2000. http://www.agere.com/support/non-nda/docs/FPP-

ProductBrief.pdf.

[MBC+99] Shashi Merugu, Bobby Bhattacharjee, Youngsu Chae, Matt Sanders,

Ken Calvert, and Ellen Zegura. Bowman and canes: Implementation of

143

an active network. In Proc. of the 37th Allerton Conference on Com-

munication, Control, and Computing, pages 147–156, Monticello, IL,

September 1999.

[MBZC00] Shashidhar Merugu, Samrat Bhattacharjee, Ellen W. Zegura, and Ken

Calvert. Bowman: A node OS for active networks. In Proc. of IEEE

INFOCOM 2000, Tel Aviv, Israel, March 2000.

[MHN01] Jonathan T. Moore, Michael Hicks, and Scott Nettles. Practical pro-

grammable packets. In Proc. of the Twentieth IEEE Conference on

Computer Communications (INFOCOM), pages 49–59, Anchorage, AK,

April 2001.

[MIP98] MIPS Technologies, Inc. JADE - Embedded MIPS Processor Core, 1998.

http://www.mips.com/products/Jade1030.pdf.

[MJ93] Steven McCanne and Van Jacobson. The BSD packet filter: A new ar-

chitecture for user-level packet capture. In Proc. of the USENIX Tech-

nical Conference, San Diego, CA, January 1993.

[MLP+01] Sandy Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee. Strong

security for active networks. In Proc. of IEEE OPENARCH 2001, An-

chorage, AK, April 2001.

[MMC00] MMC Networks, Inc. nP3400, 2000. http://www.mmcnet.com/.

[MMSH01] Gokhan Memik, William H. Mangione-Smith, and Wendong Hu. Net-

Bench: A benchmarking suite for network processors. In Proc. of Inter-

national Conference on Computer-Aided Design, San Jose, CA, Novem-

ber 2001.

[Mog89] Jeffrey C. Mogul. Simple and flexible datagram access controls for

UNIX-based gateways. In USENIX Conference Proceedings, pages 203–

221, Baltimore, MD, June 1989.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.

Electronics, 38(8), April 1965.

[Net] NetBSD Project. NetBSD release 1.3.1. http://www.netbsd.org/.

144

[Pat85] David A. Patterson. Reduced instruction set computers. Communica-

tions of the ACM, 28(1):8–21, January 1985.

[PEA+96] James Philbin, Jan Edler, Otto J. Anshus, Craig C. Douglas, and Kai

Li. Thread scheduling for cache locality. In Proc. of the Seventh Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, Cambridge, MA, October 1996.

[Pet01] Larry Peterson, ed. NodeOS interface specification. Technical report,

AN Node OS Working Group, January 2001.

[PG92] Abhay K. Parekh and Robert G. Gallager. A generalized processor

sharing approach to flow control: The single node case. In Proc. of

IEEE INFOCOM 92, pages 915–924, Florence, Italy, May 1992.

[Pso99] Konstantinos Psounis. Active networks: Applications, security, safety,

and architectures. IEEE Communications Surveys, 2(1), Q1 1999.

[PW02] Prashanth Pappu and Tilman Wolf. Scheduling processing resources in

programmable routers. In Proc. of the Twenty-First IEEE Conference

on Computer Communications (INFOCOM), pages 104–112, New York,

NY, June 2002.

[QBPK01] Xiaohu Qie, Andy Bavier, Larry Peterson, and Scott and Karlin.

Scheduling computations on a software-based router. In Proc. IEEE

Joint International Conference on Measurement & Modeling of Com-

puter Systems (SIGMETRICS), Cambridge, MA, June 2001. IEEE.

[RF89] T. R. N. Rao and Eiji Fujiwara. Error-Control Coding for Computer

Systems. Prentice Hall, Englewood Cliffs, NJ, 1989.

[Riv95] Ronald L. Rivest. The RC5 encryption algorithm. In Lecture Notes

in Computer Science, volume 1008, pages 86–96, Heidelberg, Germany,

1995. Springer Verlag.

[Rob00] Lawrence G. Roberts. Beyond Moore’s law: Internet growth trends.

IEEE Computer, 33(1):117–119, January 2000.

[SBM02] Deepak Suryanarayanan, Gregory T. Byrd, and John Marshall. A

methodology and simulator for the study of network processors. In

145

Network Processor Workshop in conjunction with Eighth International

Symposium on High Performance Computer Architecture (HPCA-8),

Cambridge, MA, February 2002.

[Sem01] Semiconductor Industry Association. The National Technology

Roadmap for Semiconductors, November 2001.

[Sha01] Niraj Shah. Understanding network processors. Technical re-

port, Department of Electrical Engineering and Computer Science

at University of California at Berkeley, September 2001. www-

cad.eecs.berkeley.edu/ niraj/papers/UnderstandingNPs.pdf.

[Sit00] Sitera Inc. Prism IQ2000 Network Processor Family, 2000.

http://www.sitera.com/products/iq2000.pdf.

[SJS+99] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou,

Dennis Rockwell, and Craig Partrodge. Smart Packets for active net-

works. In Proc. of IEEE OPENARCH 99, New York, NY, March 1999.

[SKT96] James D. Salehi, James F. Kurose, and Don Towsley. The effectiveness

of affinity-based scheduling in multiprocessor networking. In Proc. of

IEEE Infocom 96, San Francisco, CA, March 1996.

[SL93] Mark S. Squillante and Edward D. Lazowska. Using processor cache

affinity information in shared-memory multiprocessor scheduling. IEEE

Transactions on Parallel and Distributed Systems, 4(2):131–143, Febru-

ary 1993.

[SPS+01] Alex S. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones,

Fabrice Tchakountio, Stephen T. Kent, and W. Timothy Strayer. Hash-

based ip traceback. In Proc. of ACM SIGCOMM 2001, San Diego, CA,

August 2001.

[SSV99] Venkatachary Srinivasan, Subhash Suri, and George Varghese. Packet

classification using tuple space search. In Proc. of ACM SIGCOMM 99,

Cambridge, MA, September 1999.

[Sta95] Standard Performance Evaluation Corporation. SPEC CPU95 - Version

1.10, August 1995.

146

[SV95] M. Shreedhar and George Varghese. Efficient fair queuing using deficit

round robin. In Proc. of ACM SIGCOMM 95, Cambridge, MA, August

1995.

[SV98] Dimitrios Stiliadis and Anujan Varma. Rate proportional servers: A

design methodology for fair queuing algorithms. IEEE/ACM Trans. on

Networking, 6(2):164–174, April 1998.

[SVSW98] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel

Waldvogel. Fast scalable algorithms for level four switching. In Proc. of

ACM SIGCOMM 98, Vancouver, BC, September 1998.

[TCGK02] Lothar Thiele, Samarjit Chakraborty, Matthias Gries, and Simon

Künzli. Design space exploration of network processor architectures. In

Network Processor Workshop in conjunction with Eighth International

Symposium on High Performance Computer Architecture (HPCA-8),

Cambridge, MA, February 2002.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous

multithreading: Maximizing on-chip parallelism. In Proc. of 20th Inter-

national Symposium on Computer Architecture, pages 278–288, Santa

Margherita Ligure, Italy, June 1995.

[Tra98] Transaction Processing Performance Council. TPC Benchmark C, Re-

vision 3.4, 1998.

[T.s99] T.sqware Inc. TS704 Edge Processor Product Brief, 1999.

http://www.tsqware.com/.

[TSS+97] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie,

David J. Wetherall, and Gary J. Minden. A survey of active network

research. IEEE Communications Magazine, 35(1):80–86, January 1997.

[TTG95] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Evaluating the per-

formance of cache-affinity scheduling in shared-memory multiprocessors.

Journal of Parallel and Distributed Computing, 24:139–151, February

1995.

147

[TW96] David L. Tennenhouse and David J. Wetherall. Towards an active net-

work architecture. Computer Communication Review, 26(2):5–18, April

1996.

[VZ91] Raj Vaswani and John Zahorjan. The implications of cache affinity

on processor scheduling for multiprogrammed, shared memory multi-

processors. In Proc. of Thirteenth Symposium on Operating Systems

Principles, pages 26–40, Pacific Grove, CA, October 1991.

[Wal91] George K. Wallace. The JPEG still picture compression standard.

Comm. of the ACM, 34(4):30–44, April 1991.

[WC01] Tilman Wolf and Sumi Y. Choi. Aggregated hierarchical multicast for

active networks. In Proc. of the 2001 IEEE Conference on Military

Communications (MILCOM), McLean, VA, October 2001.

[Wei84] Reinhold Weicker. Dhrystone: A synthetic systems programming bench-

mark. Comm. of the ACM, 27(10):1013–1030, October 1984.

[WF00] Tilman Wolf and Mark A. Franklin. CommBench - a telecommuni-

cations benchmark for network processors. In Proc. of IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 154–162, Austin, TX, April 2000.

[WF01] Tilman Wolf and Mark A. Franklin. Locality-aware predictive schedul-

ing for network processors. In Proc. of IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), pages 152–

159, Tucson, AZ, November 2001.

[WF02] Tilman Wolf and Mark A. Franklin. Design tradeoffs for embedded

network processors. In Proc. of International Conference on Architecture

of Computing Systems (ARCS) (Lecture Notes in Computer Science),

volume 2299, pages 149–164, Karlsruhe, Germany, April 2002. Springer

Verlag.

[WGT98] David J. Wetherall, John Guttag, and David L. Tennenhouse. ANTS:

A toolkit for building and dynamically deploying network protocols. In

Proc. of IEEE OPENARCH 98, San Francisco, CA, April 1998.

148

[WOT+95] Steven C. Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder P. Singh,

and Anoop Gupta. The SPLASH-2 programs: Characterization and

methological considerations. In Proc. of ACM ISCA-22, pages 24–36,

Santa Margherita Ligure, Italy, June 1995.

[WT00] Tilman Wolf and Jonathan S. Turner. Design issues for high perfor-

mance active routers. In Proc. of the International Zurich Seminar

on Broadband Communications, pages 199–205, Zurich, Switzerland,

February 2000.

[WT01] Tilman Wolf and Jonathan S. Turner. Design issues for high perfor-

mance active routers. IEEE Journal on Selected Areas of Communica-

tion, 19(3):404–409, March 2001.

[Zha95] Hui Zhang. Service disciplines for guaranteed performance service in

packet switching networks. Proc. of the IEEE, 83(10):1374–96, October

1995.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential

data compression. IEEE Trans. on Information Theory, 23(3):337–342,

May 1977.

149

Vita
Tilman Wolf

Date of Birth May 31, 1973

Place of Birth Marbach am Neckar, Germany

Degrees D.Sc. Computer Science, Washington Univ., August 2002

M.S. Computer Engineering, Washington Univ., August 2000

M.S. Computer Science, Washington Univ., December 1999

Diplom in Informatik, Universität Stuttgart, July 1998

Experience IBM T. J. Watson Research Center, Summer 2000 and 2001

Applied Research Lab, Washington Univ., 1998 – 2002

Electronic Radiology Lab, Washington Univ., Summer 1997

Awards

and Honors

IBM Research Fellowship, 2001 – 2002

Outstanding Thesis Aware, Universität Stuttgart, 1998

Fulbright Scholarship, 1996 – 1997

Honor Societies: Tau Beta Pi, Eta Kappa Nu

Journal

Publications

Tilman Wolf and Jonathan S. Turner. Design issues for high

performance active routers. IEEE Journal on Selected Ar-

eas of Communication, 19(3):404–409, March 2001.

Dan Decasper, Guru Parulkar, Sumi Choi, John DeHart, Til-

man Wolf, and Bernhard Plattner. A scalable, high per-

formance active network node. IEEE Network, 31(1):8–19,

January 1999.

Conference

Publications

Prashanth Pappu and Tilman Wolf. Scheduling processing re-

sources in programmable routers. To appear in Proc. of the

Twenty-First IEEE Conference on Computer Communica-

tions (INFOCOM), pages 104–112, New York, NY, June

2002.

150

Tilman Wolf and Mark A. Franklin. Design tradeoffs for

embedded network processors. In Proc. of International

Conference on Architecture of Computing Systems (ARCS)

(Lecture Notes in Computer Science), volume 2299, pages

149–164, Karlsruhe, Germany, April 2002.

Tilman Wolf and Mark A. Franklin. Locality-aware predic-

tive scheduling for network processors. In Proc. of IEEE

International Symposium on Performance Analysis of Sys-

tems and Software (ISPASS), pages 152–159, Tucson, AZ,

November 2001.

Tilman Wolf and Sumi Y. Choi. Aggregated hierarchical mul-

ticast for active networks. In Proc. of the 2001 IEEE Con-

ference on Military Communications (MILCOM), McLean,

VA, October 2001.

Ralph Keller, Jeyashankher Ramamirtham, and Tilman Wolf.

Active pipes: program composition for programmable net-

works. In Proc. of the 2001 IEEE Conference on Military

Communications (MILCOM), McLean, VA, October 2001.

Sumi Y. Choi, Jonathan S. Turner, and Tilman Wolf. Config-

uring sessions in programmable networks. In Proc. of the

Twentieth IEEE Conference on Computer Communications

(INFOCOM), pages 60–66, Anchorage, AK, April 2001.

Tilman Wolf and Mark A. Franklin. CommBench - a telecom-

munications benchmark for network processors. In Proc. of

IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), pages 154–162, Austin,

TX, April 2000.

Tilman Wolf, Dan Decasper, and Christian Tschudin. Tags

for high performance active networks. In Proc. of the Third

IEEE Conference on Open Architectures and Network Pro-

gramming (OPENARCH), pages 37–44, Tel Aviv, Israel,

March 2000.

151

Tilman Wolf and Jonathan S. Turner. Design issues for high

performance active routers. In Proc. of the International

Zurich Seminar on Broadband Communications, pages 199–

205, Zurich, Switzerland, February 2000.

Tilman Wolf and Dan Decasper. CPU scheduling for active

processing using feedback deficit round robin. In Proc. of

the 37th Allerton Conference on Communication, Control,

and Computing, pages 768–769, Monticello, IL, September

1999.

Sumi Y. Choi, Dan Decasper, John DeHart, Ralph Keller,

John Lockwood, Jonathan Turner, and Tilman Wolf. De-

sign of a flexible open platform for high performance active

networks. In Proc. of the 37th Allerton Conference on

Communication, Control, and Computing, pages 157–165,

Monticello, IL, September 1999.

Workshop,

Poster

Publications

Tilman Wolf. Network processors - flexibility and perfor-

mance for next-generation networks. ACM Computer Com-

munication Review, 32(1):65, January 2002. (Abstract).

Mark A. Franklin and Tilman Wolf. A network processor per-

formance and design model with benchmark parametriza-

tion. First Network Processor Workshop in conjunction

with Eighth International Symposium on High Performance

Computer Architecture (HPCA-8), Cambridge, MA, Febru-

ary 2002.

Tilman Wolf. Network processors - performance and flexi-

bility for next-generation networks. ACM Annual Confer-

ence of the Special Interest Group on Data Communication

(SIGCOMM), San Diego, CA, August 2001.

August 2002

	Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002
	Recommended Citation
	Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002

	tmp.1472055847.pdf.7ssSE

	Abstract: Abstract: The flexibility to adapt to new services and protocols without

changes in the underlying hardware is and will increasingly be a

key requirement for advanced networks. Introducing a processing

component into the data path of routers and implementing packet

processing in software provides this ability. In such a

programmable router, a powerful processing infrastructure is

necessary to achieve a level of performance that is comparable to

custom silicon-based routers and to demonstrate the feasibility of

this approach. This work aims at the general design of such

programmable routers and, specifically, at the design and

performance analysis of the processing subsystem. The necessity of

programmable routers is motivated, and a router design is

proposed. Based on the design, a general performance model is

developed and quantitatively evaluated using a new network

processor benchmark. Operational challenges, like scheduling of

packets to processing engines, are addressed, and novel algorithms

are presented. The results of this work give qualitative and

quantitative insights into this new domain that combines issues

from networking, computer architecture, and system design.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 3, 2002
	Author: Authors: Wolf, Tilman
	Title: Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002
	ReportNumber: 2002-17
	DepartmentName: Department of Computer Science & Engineering

