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Chapter 3 describes the data with which TELCIM was originally populated, and the case study this data 

collectively simulates, which is called the “Test Scenario”.  Key outputs from the Test Scenario are 

presented and discussed, and several sensitivity analyses on these outputs are presented.  Some of the 

text included in Chapter 3 is taken from the same manuscript mentioned in the previous paragraph. 

 

Chapter 4 reviews a number of alternative cases that explore the effect on key biodiesel performance 

metrics of changes in the biological properties of the microalga, and the processes used to convert it into 

biodiesel.  The effect of seasonal and diurnal variations in sunlight intensity and climate conditions are 

studied, and the impact of the sunlight saturation effect on biomass productivity is explored.  Finally, the 

effect on the manufacturing process of the climate experienced in different locations in the continental 

United States is evaluated.   

 

Chapter 5 is a summary of other topics and results generated during the development and deployment of 

TELCIM.   

 

Conclusions and recommendations arising from this research are presented in Chapter 6.  

 

Detailed derivations of the mathematical relationships underlying the physical models used by TELCIM 

are presented in the Appendix.  Most of the material presented in the Appendix was taken from the 

Supplemental Information section that accompanies the manuscript from which parts of Chapters 2 and 3 

are taken.   

 

Literature references are presented at the end of each individual chapter and the Appendix.   

 

Professors Jay R. Turner and Richard L. Axelbaum are identified as co-authors on the two manuscripts 

from which sections of this dissertation are taken.  Professor Turner served as lead advisor for this 

research, and Professor Axelbaum served as co-advisor.  They contributed to the overall intellectual merit 
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of the project consistent with their roles as research advisors including editing the manuscripts. They did 

not perform any programming of the TELCIM.   
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2. TELCIM∗

2.1 Introduction 

 

TELCIM consists of a set of interlinked engineering, financial, and life cycle inventory models, as 

illustrated in Figure 1.1.  The purpose of this chapter is to explain how these models function, and to 

describe the types of outputs TELCIM is capable of generating. 

 

2.2. The Process Models 

A commonly proposed microalgal biodiesel production scheme consists of four major process steps: 

microalgae cultivation, biomass harvesting, lipid extraction, and lipid conversion to fatty acid esters1,2,3,4.  

TELCIM simulates this scheme and adds a fifth major step - anaerobic digestion of the residual (non-lipid) 

biomass for the purpose of energy and nutrient recovery5,6.  A simplified flowsheet of the manufacturing 

process modeled by TELCIM is shown as Figure 2.1.  For clarity, the only energy stream shown in this 

flowsheet is that which is recovered from the biogas produced in the anaerobic digestion step, but it 

should be noted that energy is consumed in every major process step.   

 

Within the context of this five-step manufacturing process, TELCIM retains modeling flexibility by treating 

some unit operations as generic processes.  For example, the harvesting step includes “dewatering” 

operations that can represent sedimentation, filtration, centrifugation, etc.  In other cases TELCIM models 

more than one type of unit operation for a given processing step, and the user selects which alternative’s 

output is to be used in subsequent calculations.  For example, the harvesting step simulates contact and 

non-contact biomass drying, as well as no drying.  For some processing steps, due to factors such as 

process complexity (e.g., transesterification) or a lack of sufficient engineering design and cost data for 

novel alternatives (e.g., wet extraction), TELCIM models only one specific type of unit operation.  A prime 

example is the type of reactor in which microalgae are grown; only cultivation in raceway ponds is 

simulated.  A user wishing to evaluate an alternative to raceway ponds, such as photobioreactors, can 

                                                           
∗ Some of the text and figures included in this chapter were taken from a manuscript that is being prepared for 
publication. 
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replace the raceway pond models with suitable alternatives.  Or the alternative models can be installed 

alongside the default models, allowing direct comparison of their respective impacts on the key 

performance indicators (KPI’s) of interest.  In any event, TELCIM’s modular structure facilitates modifying, 

replacing, or deleting operations, or rearranging the entire process scheme.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Simplified Flowchart of the Microalgal Biodiesel Manufacturing Process 
modeled by TELCIM.  The energy recovered from the digester biogas is shown feeding 
the algae harvesting step, but it can be used elsewhere within the plant or exported. 

 

TELCIM is intended to simulate biodiesel plants with production capacities on the order of hundreds of 

thousands of gallons per day.  At that scale, the physical layout of the facility is critical, since large 

amounts of energy are consumed moving materials within the plant.  Several assumptions about the 

facility layout are built into TELCIM.  To minimize gas-pumping distances, the source of carbon dioxide is 

situated at the center of the plant (Figure 2.2).  Ponds, harvesting equipment and digesters are clustered 

together in biomass production “modules”, minimizing water-pumping distances.  Dewatered biomass is 

transported by truck from the production modules to a centralized lipid extraction plant.  The residual 

biomass is backhauled to the modules, where it is slurried in water and fed to anaerobic digesters.  The 
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extracted lipid is transformed into biodiesel in a centralized conversion plant located alongside the 

extraction plant.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Pumping Distance Model.  The conceptual layout of the biodiesel 
manufacturing facility and how TELCIM estimates the distances that CO2-containing gas 
must be pumped.  The inset shows one “biomass production module,” consisting of 
ponds, harvesting equipment and digesters.  TELCIM calculates the number of modules 
needed, and assigns them to annular rings from the innermost ring outward until all 
modules are assigned.  The pumping distance to a particular module is taken as the 
outer radius of the ring in which it is located.  The first annular ring holds nine biomass 
production modules, the second 15, and so on. 

 

2.2.1. The Growth Step Process Model 

The main function of the Growth Step Process Model is to predict the quantities of chemical fertilizers and 

water that must be supplied, the illuminated surface area required, and the electricity used, when a given 

quantity of carbon dioxide is converted into microalgal biomass.  Critical inputs include: 
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• The chemical compositions of the microalga, the additives that supply nitrogen, phosphorus and 

sulfur, and the gas that contains carbon dioxide; 

• The physical dimensions of a cultivation pond; and 

• The areal productivity of the microalga, in units of mass per illuminated surface area per time 

(g/m2-day).   

The carbon dioxide feed rate is either entered directly or is calculated from a power plant capacity rating 

and a CO2 emission factor.  This feed rate is corrected to a carbon uptake rate by a CO2 conversion 

efficiency, which accounts for losses from the ponds due to offgassing.  In the event that the microalga’s 

areal productivity is unknown, TELCIM includes two subroutines with which it can be estimated.  The first 

is a photosynthetic efficiency model that estimates biomass yield based on the intensity of incident 

sunlight7,8.  The second is a chemical reactor model in which the microalga’s doubling time is used to 

calculate a pseudo-first order rate constant, and the ponds are assumed to be perfectly mixed flow-

through reactors at steady state.  (The derivation of the governing equations used in these two 

subroutines is shown in the Appendix.)  Because TELCIM is a time-averaged, steady-state model, a 

correction factor may have to be applied to the areal productivity to ensure it is valid for the time-scale 

being modeled.  For example, if a single TELCIM run is intended to predict annual plant performance 

metrics, the value used for the areal productivity should account for losses arising from maintenance and 

sanitation downtime, effects of temperature on growth rate, variation in the number of daylight hours, etc. 

 

Once the amount of biomass to be grown has been determined, TELCIM employs a “Stoichiometry 

Model” to close mass balances around the growth step.  Inputs to this model include chemical 

composition data and information about the recycle water and nutrient streams generated by the 

harvesting step and digestion step process models (Fig. 2.1).  The Stoichiometry Model allows that 

treated sewage water containing usable nitrogen and phosphorus may be used as an input to the growth 

step, reducing the demand for chemical fertilizers.  It accounts for any carbon present in the nitrogen 

source (e.g., urea), and recognizes that fertilizers may contain combinations of macronutrient elements 

(e.g., ammonium phosphate).  The Stoichiometry Model computes the minimum quantities of the 

specified chemical fertilizers that must be added to satisfy the mass and composition of the microalga to 
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be grown.  It also predicts the mass of water consumed and oxygen produced in photosynthesis 

reactions.  The mass balance equations for carbon, nitrogen, phosphorus and sulfur, the microalga’s 

primary nutrients, are shown here.  The derivation of these and the other equations used by the 

Stoichiometry Model is given in the Appendix. 

𝐶𝑇𝑂𝑇 =  �
(𝐶𝐶𝑂2 − 𝑘𝐶𝑁𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊)
[1 − 𝑘𝐶𝑁𝑘𝑁𝐴(1 − 𝑓𝑁)]

 , 𝑖𝑓 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2
𝐶𝐶𝑂2 ,                                      𝑖𝑓  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2

� (2.1) 

𝑁𝑁 =  �
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0,                                                      𝑖𝑓  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2

� (2.2) 

𝑃𝑃 =  �𝑘𝑃𝐴
(1 − 𝑓𝑃)𝐶𝑇𝑂𝑇 − 𝑝𝑆𝐸𝑊𝑄𝑆𝐸𝑊 −  𝑘𝑃𝑁𝑁𝑁 , 𝑖𝑓 (𝑝𝑆𝐸𝑊𝑄𝑆𝐸𝑊 +  𝑘𝑃𝑁𝑁𝑁)  < 𝑘𝑃𝐴(1 − 𝑓𝑃)𝐶𝑇𝑂𝑇 
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𝑆𝑆 =  �𝑘𝑆𝐴
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where: 

 𝐶𝑇𝑂𝑇 = the total amount of carbon to be converted to microalgae [kg-mol/day]; 

 𝐶𝐶𝑂2  = amount of carbon in carbon dioxide to be converted to microalgae [kg-mol/day]; 

 𝑘𝐶𝑁 = molar ratio of carbon to nitrogen in the nitrogen source (𝑘𝑃𝑁, 𝑘𝑆𝑁 by analogy); 

 𝑘𝑁𝐴 = molar ratio of nitrogen to carbon in the microalgae (𝑘𝑃𝐴, 𝑘𝑆𝐴 by analogy); 

 𝑛𝑆𝐸𝑊 = concentration of usable nitrogen in the sewage wastewater [kg-mol/m3] (𝑝𝑆𝐸𝑊, 𝑠𝑆𝐸𝑊 by 

analogy); 

 𝑄𝑆𝐸𝑊 = volumetric flowrate of sewage wastewater [m3/day]; 

 𝑓𝑁 = fraction of usable nitrogen in the microalgae exiting the ponds that is recycled to the 

growth step (𝑓𝑃, 𝑓𝑆 by analogy); 

 𝑁𝑁 = amount of nitrogen in the nitrogen source added to the growth step [kg-mol/day]; 

 𝑃𝑃 = amount of phosphorus in the phosphorus source added to the growth step [kg-mol/day]; 

and 

 𝑆𝑆 = amount of sulfur in the sulfur source added to the growth step [kg-mol/day]. 

 

The water of reaction computed by the Stoichiometry Model is an input to the “Water Balance Model,” 

which is the TELCIM subroutine that determines how much make-up water must be added to the raceway 
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ponds to replace losses.  To reduce the demand for make-up water, it is assumed that as much 

supernatant (filtrate) as possible is recycled from the dewatering operations; Figure 2.3 illustrates the 

microalgae cultivation water balance.  Three linearly independent water balance equations, a mass 

balance on a dissolved constituent (e.g., Total Dissolved Solids), and limits representing physical 

constraints, are used to solve for the amount of water that must be added (qfresh) to maintain the system 

water balance and control salt accumulation.  (The derivations of the water flowrate and dissolved 

constituent mass balance equations, along with TELCIM’s solution strategy for the Water Balance Model, 

can be found in the Appendix.)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The Water Balance around the Ponds and Dewatering Operations.  Qi or 
qi is the volumetric flowrate of stream ‘i’.  Streams with uppercase tags are specified by 
user input or the Stoichiometry Model; those with lowercase tags are calculated by the 
Water Balance Model.  QREACTION is shown as a dotted line because it is a virtual rather 
than an actual process stream.  

 

TELCIM uses the mass of carbon to be converted to biomass, and the carbon content and areal 

productivity of the microalga, to calculate the required pond surface area.  This fixes the number of ponds 

in the facility, which are all assumed to be identical.  The model uses the following equation to compute 

the power required to provide vigorous mixing in the ponds:  
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𝑃 =  𝑘
𝑄𝜌(∆𝐷 + ℎ𝐿)

𝑒
 (2.5) 

where: 

 𝑃 = electrical power usage [kW]; 

 𝑘 = conversion factor = 0.0098066 kW-sec/kg-m; 

 𝑄 = volumetric flowrate [m3/sec]; 

 𝜌 = fluid density [kg/m3]; 

 𝑒 = motor efficiency [none]; 

 ∆𝐷 = hydraulic gradient required to induce the desired mean channel velocity [m]; and 

 ℎ𝐿 = head loss due to changes in flow direction [m]. 

The hydraulic gradient (∆𝐷) is calculated using the Manning Equation for open channel flow9.  Both head 

loss terms (∆𝐷 and ℎ𝐿) are proportional to the square of the velocity in the ponds; separate velocities can 

be entered for daytime and nighttime operations under the presumption that less vigorous mixing is 

required at night.  (The derivation of the equations with which the pond mixing energy demand is 

calculated can be found in the Appendix.) 

 

Although identical for the purpose of computing mixing energy, the ponds are not equivalent with respect 

to the power required to distribute to them the CO2-containing gas (hereafter assumed to be a flue gas 

from an industrial plant), since they are located at different distances from the central CO2 source. 

TELCIM uses a simple geometric model (the “Pumping Distance Model”) to estimate these distances, as 

shown in Figure 2.2.  Each biomass production module contains a specified number of ponds and 

associated harvesting and digestion equipment.  Once the number of ponds needed to provide the 

required illuminated surface area is determined, the number of biomass production modules becomes 

fixed.  The surface area of one module is estimated by applying to its pond surface area an escalation 

factor that accounts for the footprint of the harvesting equipment, digesters, and infrastructure items 

(roads, pipe bridges, buildings, etc.).  The overall facility is visualized as a set of concentric rings whose 

radii are integer multiples of the radius of the innermost circle (‘R’).  That radius is scaled so that the first 

annular ring has an area equal to that of exactly nine biomass production modules.  This results in a 
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number series in which each successive ring holds six more modules than its next inner neighbor.  Rings 

are filled from the innermost ring outward, until the required number of modules has been assigned.   

 

Estimating the power required to pump flue gas to the ponds in a given module involves two calculations.  

The first estimates the pressure drop in the gas main, using the following form of the Bernoulli Equation10: 

𝑚̇ = �
𝜋
8
�  �

(𝑃12 − 𝑃22)𝑔𝑐𝐷5𝑀
𝑓𝐿𝑅𝑇

 (2.6) 

where:  

 𝑚̇ = gas mass flowrate [lbm/sec]; 

 𝑃1 = header inlet pressure [lbf/ft2];  

 𝑃2 = header outlet pressure [lbf/ft2];  

 𝑔𝑐 = gravitational constant = 32.174 lbm-ft/lbf-sec2;  

 𝐷 = pipe inside diameter [ft];  

 𝑀 = gas molecular weight [lbm/lb-mole]; 

 𝑓 = Fanning friction factor [none];  

 𝐿 = pipe length [ft]; 

 𝑅 = Universal Gas Law constant =1546 ft-lbf/lb-mole-oR; and 

 𝑇 = absolute temperature [oR]. 

 

The header outlet pressure (𝑃2) is supplied as input (it can be estimated from the pressure drop in the 

local pipes and fittings and across the gas sparger, and the liquid head in the ponds above the sparger), 

and TELCIM calculates the gas mass flow rate (𝑚̇) in each gas header from the carbon dioxide loading 

and gas properties.  The model then uses Equation 2.6 to find the header inlet pressure (𝑃1) necessary to 

overcome the pressure drop due to friction.  Since the pressure drop for a given flowrate varies with the 

length of the pipe, different compressor outlet pressures are calculated for the modules in different rings.  

Once each header’s inlet pressure is determined, the following equation for adiabatic compression is 

used to calculate the head required to compress the gas to that pressure10: 
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where:  

 𝐻𝑎𝑑 = adiabatic head [kJ/kg-mole]; 

 𝑘 = ratio of heat capacities = 𝐶𝑃/𝐶𝑉 [none]; 

 𝑃𝑜𝑢𝑡 = compressor outlet pressure [atm]; and 

 𝑃𝑖𝑛 = compressor inlet pressure [atm].  

The adiabatic head is converted to a power load, and TELCIM compiles the electrical power used to feed 

gas to each module. 

 

The remaining calculations in the Growth Step Process Model estimate the power load for water 

pumping.  Three streams are addressed: the make-up water (qfresh in Fig. 2.3), any sewage water used as 

make-up (QSEWAGE), and the effluent from the ponds (QEFF), which is pumped to the first dewatering 

operation.  The head loss due to friction is calculated using the following form of the Darcy Equation11: 

ℎ𝐿 =  
2𝑓𝐿𝑣2

𝐷𝑔
 (2.8) 

where:  

 ℎ𝐿 = head loss [m]; 

 𝑓 = Fanning friction factor [none]; 

 𝐿 = pipe length [m]; 

 𝑣 = gas velocity [m/sec]; 

 𝐷 = pipe diameter [m]; and 

 𝑔 = acceleration due to gravity = 9.81 m/sec2. 

The frictional head loss is summed with any change in elevation, and the total is converted to a power 

load.  The electrical power loads for water pumping are combined with the pond mixing and flue gas 

compressor loads, as well as any other specified auxiliary power uses, to estimate the total electricity 

usage in the growth step.   
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2.2.2. The Harvesting Step Process Model 

The purpose of the harvesting step is to dewater the biomass to the extent required by the lipid extraction 

step.  The Harvesting Step Process Model allows for as many as five sequential mechanical dewatering 

steps to remove extracellular water, followed by as many as five sequential drying steps to remove 

intracellular water.  Specifying the biomass recovery efficiency and solids concentration in the 

concentrate from each harvesting step allows the model to predict the composition and flowrate of each 

concentrate and supernatant (filtrate) stream.  The supernatant flowrates from all of the dewatering steps 

(qsuper in Fig. 2.3) are combined and provided as an input to the Water Balance Model.   

 

TELCIM computes the drying energy loads using two separate drying models.  The first assumes the 

dewatered biomass is contacted with heated surfaces, such as in a plate or drum dryer.  The theoretical 

evaporative heat loads are scaled using specified thermal efficiency factors for each dryer, and then 

summed to estimate the total drying heat load.  The second drying model assumes the biomass is 

contacted with hot air, such as in a fluidized bed or moving belt dryer.  The thermodynamic model for air 

drying involves two changes of state, as illustrated in Figure 2.4.  Simultaneous mass and enthalpy 

balances are used to estimate the theoretical drying heat load (Q), based on specified dryer outlet 

conditions.  (These conservation equations are derived in the Appendix.)  TELCIM also accounts for the 

additional thermal efficiency losses that occur assuming steam is used to heat the dryers in the first 

model, and to preheat the air in the second model.  Based on these heat loads and transfer efficiencies, 

the model calculates the amount of natural gas that must be burned to supply the required thermal energy 

for biomass drying.   

 

The Harvesting Step Process Model calculates the electrical power load for pumping the concentrate 

from each dewatering operation to the next process step, the recycled filtrate back to the ponds, and the 

blowdown to an outfall.  These calculations are performed in the same manner as those described above 

for water pumping in the growth step.  The power load for compressing the air used in the dryers is 

estimated using the same approach as that used for flue gas compression in the growth step, except that 

the pressure drops in the air piping, heat exchangers, and dryers can be specified separately.  Finally, the 
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power loads for any other electricity consumers in the harvesting step are entered (e.g., clarifier rakes, 

evaporator rotors), and TELCIM computes the total electrical power load for the harvesting step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Thermodynamic Model of Air Drying.  In the first change of state, heat (Q) 
is added to a mass of ambient air (MA,1), raising its temperature and reducing its relative 
humidity.  In the second change of state, sensible heat is converted to latent heat, and 
the relative humidity of the air is increased.  The model solves for Q and MA,1 based on 
the composition and temperature of the incoming wet biomass and user-specified dryer 
outlet conditions.    

 

2.2.3. The Extraction Step Process Model 

The purpose of the lipid extraction step is to separate nonpolar lipids (assumed to be entirely composed 

of triacylglycerides, or TAG) from the remainder of the microalgal biomass.  It is assumed that the same 

lipid extraction process commonly used for soybean oil extraction will be used to recover TAG from the 

biomass1,2,3,6.  TELCIM uses as its “basis” extraction plant the lipid extraction facility modeled by 

Lundquist et al. in their study of algal oil production6, which includes the following operations:  

• Forming the microalgal biomass into cassettes in an extruder/expander; 

• Leaching neutral lipids from the cassettes with hexane in a moving belt extractor; 

 

KEY: 

Ti = Temperature at condition i 

RHi = Relative humidity at condition i 

MA,i = Mass of dry air at condition i 

MW,i = Mass of water at condition i 
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• Stripping solvent from the residual biomass using hot air; 

• Separating the extraction solvent from the solvent-oil mixture (miscella) in a series of 

evaporators and strippers; 

• Condensing the solvent vapors and passing the condensate through an oil-water separator; 

and 

• Recycling the recovered solvent and discarding the separated water.  

 

Because the lipid extraction step involves several complex mass transfer operations, it is treated as a 

single “black box” in which the consumptions of solvent, electricity, and process heat, and the generation 

of wastewater, are assumed to scale linearly with oil production.  The scaling factors are calculated from 

the mass and energy flowrates for the basis plant, which are provided as TELCIM inputs.  Additional 

inputs to the extraction process model include the lipid fraction in the harvested microalgal biomass, and 

the overall lipid recovery efficiency of the extraction process.  TELCIM scales these 

consumption/generation rates based on the ratio of oil production in the microalgal biodiesel plant being 

modeled to that in the basis plant.   

 

2.2.4. The Conversion Step Process Model 

The role of the conversion step is to convert TAG into biodiesel and glycerol by reacting it with a short 

chain monoalcohol.  The U.S. Department of Agriculture recently developed a techno-economic model of 

an industrial-scale plant for producing biodiesel from soybean oil12.  TELCIM’s lipid conversion process 

model is based on the USDA’s proposed process, which uses sodium methoxide as a homogeneous 

catalyst and methanol as the esterifying alcohol, and includes the following operations: 

• Two continuous transesterification reactors in series; 

• Centrifugal separation of the crude ester phase from the aqueous glycerol phase; 

• Acid washing of the crude ester to neutralize catalyst and convert soaps to free fatty acids, and 

centrifugal separation followed by vacuum drying to produce refined biodiesel; 
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• Acid washing and caustic neutralization of the glycerol phase, followed by distillation to recover 

and recycle unreacted methanol; 

• Further distillation of the crude glycerol/water mixture to produce a semi-refined glycerol co-

product (80% aq.), and water suitable for recycle to the wash step; and 

• Steam generation in a natural-gas fired boiler (steam is used to heat the reactors and 

distillation tower reboilers). 

Selection of this lipid conversion process model extends the earlier assumption that microalgal oil can be 

converted to biodiesel using the same process technology currently used to convert soybean oil to 

biodiesel.  This assumption appears to be reasonable because the compositions of microalgal TAG13 and 

soybean oil TAG14 are similar, and transesterification processes are used to produce biodiesel from a 

wide variety of animal and vegetable oils with very different fatty acid profiles15. 

 

As with the extraction step, the conversion step process model is treated as a unitary “black-box”.  

Consumption rates for alcohol, catalyst, acid, caustic, water, electricity and natural gas are entered for a 

basis conversion plant at a specified oil feed rate, and the model calculates normalized consumption 

rates.  Except for the esterifying alcohol, these consumption rates are scaled based on the mass flowrate 

of oil recovered in the extraction step.  Methanol consumption is instead calculated based on the molar 

flowrate of TAG in the incoming oil; this accounts for potential differences in fatty acid profiles between 

the algal lipids and the soybean oil assumed by the USDA model.  TELCIM predicts biodiesel, glycerol, 

wastewater, and free fatty acid production rates based on molar and mass balances around the 

transesterification process.  It also estimates carbon dioxide production from the natural gas burned in the 

steam generator using an appropriate emission factor16.  Finally, several vital statistics about the biodiesel 

product are displayed, including the area normalized production rate (gal/acre-year), fuel energy 

productivity (MJ/day), and the mass ratio of biodiesel to microalgal biomass.  

 

2.2.5. The Anaerobic Digestion Step Process Model 

Anaerobic digestion is commonly used to break down biomaterials, such as wastewater treatment 

sludges, while generating methane as a valuable byproduct.  Several prior studies have proposed 
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anaerobic digestion of the microalgal biomass that remains after lipid extraction as a means of reducing 

the demands for purchased nitrogen and phosphorus fertilizers, electricity and natural gas3,6,17,18. 

 

The TAG fraction of the biomass is characterized by its average carbon chain length and number of 

double bonds, which fixes its chemical composition.  Because the chemical composition of the microalgal 

biomass is known, the elemental composition of the residual biomass (also referred to as “lipid-extracted 

algae,” or LEA) is calculated by difference.  Because TAG is pure hydrocarbon, all of the nitrogen and 

phosphorus contained in the microalgal biomass is assumed to partition to the LEA during extraction.  As 

digestion of this material proceeds, a fraction of these elements is liberated as water-soluble species.  

TELCIM calculates the amounts of nitrogen and phosphorus that are recycled to the growth step by 

applying recovery efficiency factors to the amounts present in the residual biomass.   

 

Biogas yield from biological wastes is typically predicted on the basis of the chemical oxygen demand 

(COD) of those materials19,20.  The COD of the residual biomass is calculated by TELCIM based on its 

chemical composition and standard oxidation chemistries (typical oxidation reactions are shown in the 

Appendix), but this can be overwritten with a measured COD value.  Other essential inputs include the 

COD removal efficiency in the digesters, the estimated biogas yield per kilogram of COD removed, and 

the estimated methane content of the biogas.  After the methane production rate and the biogas’s energy 

content are calculated, the carbon dioxide production rate in the digester is estimated using a carbon 

balance.  The model also calculates the rate of CO2 production from biogas combustion.  Finally, the 

production of digester sludge (anaerobic bacteria plus unreacted LEA) is estimated based on a specified 

carbon fraction and the assumption that it contains all of the carbon not present in the biogas.  

 

TELCIM models the conversion of biogas to electricity in microturbine generators located alongside the 

anaerobic digesters.  This choice of distributed power generation is made to avoid the large capital and 

operating costs of compressing and conveying biogas to a centralized power unit.  The amount of 

electrical power produced from the biogas is predicted using a conversion efficiency factor.  The residual 

thermal energy of the exhausted biogas is estimated by subtracting the electrical energy produced from 
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the heat of combustion of the biogas.  This thermal energy is assumed to be exported to the harvesting 

step, where it displaces an equivalent amount of thermal energy from natural gas.   

 

2.3. The Financial Models 

The purpose of TELCIM’s financial models is to estimate the capital cost of a microalgal biodiesel 

manufacturing plant of the size specified by the process models, and the unit production cost of the 

biodiesel produced in that plant.  The capital cost of each major process step is estimated by scaling the 

capital costs of a basis plant to match the production capacity of the biodiesel plant being modeled.  Most 

variable operating costs are calculated by multiplying a material or energy usage rate by a unit price.  

Some fixed operating costs are estimated as percentages of certain capital or variable costs, while others 

are entered directly.  

 

There is one financial model for each of the five major process steps.  Each of these models assembles 

operating and capital cost structures for its process step.  These five models are sufficient if detailed cost 

data is available for all of the major process steps, but TELCIM includes a sixth, auxiliary financial model 

(the “Summary Cost Model”) which is used when only aggregated cost structures are available as input.  

The Summary Cost Model is used to allocate aggregated costs among the applicable major process 

steps.  (If this allocation is not performed, the model is unable to isolate the contributions of each of the 

individual steps to the overall cost structures.)  The Summary Cost Model also organizes capital cost data 

in a way that allows Economic Input - Output LCA models to be interrogated, which is how the 

contributions of capital spending categories to the LCI of the biodiesel plant are estimated. 

 

Because the growth, harvesting, and digestion steps are of modular design, their financial models are 

configured slightly differently than those for the extraction and conversion steps.  The subsequent 

description of the growth step financial model applies as well to the harvesting and digestion step 

financial models, while that for the extraction step also applies to the conversion step.  
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The capital cost structure for a basis plant is entered into each process step’s financial model.  Because 

capital costs for the growth step are scaled on the basis of the number of modules in the overall biodiesel 

plant, its basis plant is defined as the equipment and facilities comprising the growth step in one biomass 

production module.  This selection ensures continuity between the growth step’s process and financial 

models.  The total capital cost structure for the growth step is obtained by multiplying the cost structure for 

one module by the number of production modules in the overall facility.  In contrast, the capital cost 

structure of the basis plant for the extraction step is adjusted using a power law method for scaling the 

capital costs of chemical plants of different sizes11.  The capital cost structures for the basis plants can be 

entered directly into each step’s financial model or imported from the Summary Cost Model if the 

allocation method was used. 

 

The operating cost structure for each basis plant is entered into the corresponding financial model.  Since 

some operating costs are calculated from capital costs (e.g., maintenance and depreciation), the 

operating cost structure should match the basis plant selected for the capital cost estimate.  These 

operating cost structures can also be entered directly into each step’s financial model or imported from 

the Summary Cost Model, depending on the specificity of the available input data.   

 

TELCIM adjusts for cost/price inflation that occurred between the time the cost estimate for a basis plant 

was generated and the time period being modeled.  Applicable construction, commodity, and labor cost 

indices for the appropriate dates are entered into each financial model.  The Growth Step Financial Model 

displays the inflation-adjusted capital cost structure for the growth step in one production module, and for 

the growth step in the entire facility.  The Extraction Step Financial Model adjusts for inflation and scales 

the capital cost structure (based on production capacity) in a single calculation.  Each process step’s 

operating cost structure is similarly displayed in its financial model.  For the growth step, the inflation-

adjusted operating cost structure for a single production module is presented, along with the operating 

cost structure for that step across the entire facility.  For the extraction step, the inflation-adjusted, 

capacity-scaled operating cost structure is displayed in its model.  Grand totals are displayed in each 

model, and are exported to several tabular and graphical output summaries. 
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2.4. The Life Cycle Inventory Models 

The purpose of TELCIM’s LCI models is to estimate the energy and water usage and air pollutant 

emissions resulting from indirect activities attributable to the manufacture of microalgal biodiesel, 

including: 

• Raw material manufacture and transportation; 

• Electricity production; 

• Natural gas production, distribution, and use; 

• On-site transportation (i.e., biomass hauling);  

• Capital equipment manufacture; and 

• Construction activities. 

In general, these indirect environmental impacts are estimated by multiplying a consumption rate 

predicted by the TELCIM’s process models by an appropriate energy use, water use, or air pollutant 

emission factor.  These factors must be supplied as inputs, and can be obtained from process knowledge 

or external LCA databases (as illustrated in Figure 1.1), such as Argonne National Lab’s GREET model21, 

or Carnegie Mellon University’s EIO-LCA Model22.  There is one LCI model for each major process step, 

helping to isolate the indirect environmental impacts attributable to each step, and making it easier to 

model alternative process schemes. 

 

For raw material manufacture, each ingredient’s identity and usage rate are imported from the 

corresponding process model.  These usage rates are multiplied by factors corresponding to various air 

pollutants (including greenhouse gases), energy use categories, and water use, yielding the total 

emissions and resource usages attributable to each raw material.  Resource usages and pollutant 

emissions arising from the delivery of these raw materials to the biodiesel plant are also estimated.  

Additional inputs required for these calculations include the transportation mode, fuel type and energy 

density, distance traveled, and load factors.  TELCIM calculates the rate of fuel consumption for 

delivering each raw material, and estimates the air emissions and resource usages resulting from fuel 
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production and combustion.  A similar set of calculations is performed in the extraction and digestion step 

LCI models for the transportation of biomass within the facility.  For these internal shipments, TELCIM 

uses the average distance between the production modules and the center of the facility, as calculated by 

the growth step’s Pumping Distance Model (Fig 2.2).   

 

An LCI is assembled for the electricity that is imported into the facility from off-site.  The energy use and 

emissions factors for imported electricity should reflect the appropriate fuel mix (i.e., specific percentages 

of coal, gas, nuclear, wind, biomass, etc.).  When determining the biodiesel’s NER, TELCIM accounts for 

the energy content of the fuels used to generate electricity, reflecting the efficiency of fuel-fired electric 

power generation.  This avoids distortions that might arise if all forms of energy, including electricity, are 

considered equivalent in the NER calculation.   

 

A similar LCI is constructed for thermal energy on the basis that imported natural gas is the sole source of 

process heat, except for that obtained from the combusted biogas.  Any thermal efficiency losses that 

occur in the use of natural gas and biogas are reflected in the process models, whereas inefficiencies 

associated with natural gas production and distribution are accounted for by the energy use factors 

entered into the LCI models.   

 

The LCI models account for the resource usages and air pollutant emissions resulting from the 

manufacture of capital items and the performance of construction activities.  The same list of capital 

expense categories that appears in each process step’s financial model is entered into the corresponding 

LCI model, and TELCIM imports the total capital spending, by category.  This list forms one axis of a 

matrix; the other axis consists of spending categories for which an EIO-LCA model can be probed (e.g., 

machinery, instrumentation, construction, concrete, steel pipe, tanks/vessels, and plastics).  The 

percentage of each capital cost that is attributable to each spending category is entered into the 

corresponding matrix cell; these percentages can be determined from detailed capital cost estimates, 

project experience, or engineering judgment.  The total spending in each of these expense categories is 
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multiplied by factors obtained from an EIO-LCA model to estimate the indirect energy and water usages 

and air emissions attributable to capital items.  

 

TELCIM includes the indirect energy uses tabulated by the LCI models when computing the NER of the 

biodiesel manufacturing process.  It similarly includes the indirect carbon dioxide emissions reported by 

the LCI models when computing the biodiesel’s carbon intensity.  However it does not include the CO2-

equivalence of other greenhouse gases when calculating the carbon intensity of the biodiesel.  The other 

information compiled by the LCI models, such as indirect emissions of air pollutants like VOC and NOx, 

can be used to inform site-specific studies, such as a Life Cycle Assessment.  

 

2.5. TELCIM Outputs 

TELCIM extracts important outputs from the process, financial and LCI models and presents them in 

summary tables and graphics.  Outputs reported in the “Summary Results” section include: 

• The energy content of the produced biodiesel (MJ/gal);  

• The Net Energy Return of the biodiesel manufacturing process (MJ/MJ);  

• The direct and indirect energy use by major process step, and by category (e.g., direct 

electricity use, direct natural gas use, and embedded energy in capital items);  

• Net carbon dioxide emissions, by major process step, and by category of CO2 flux (e.g., pond 

uptake, electricity production, natural gas combustion, and transportation activities);  

• A system carbon balance showing the amount of CO2 taken up in the ponds, and the carbon 

content of the biodiesel product and other byproduct and waste streams;   

• The contribution of each major process step to the carbon intensity of the produced biodiesel, 

the net CI of the production process, and the CI of biodiesel combustion;  

• The annual operating and capital cost contributions from each of the major steps and grand 

totals; 

• The biodiesel’s unit production cost ($/gal);  
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• The capital productivity of the manufacturing plant, defined as the total capital investment 

divided by the annual biodiesel production capacity ($/gallon/year); and 

• The water intensity of direct biodiesel manufacturing activities, defined as the volume of water 

used per volume of fuel produced [gal/gal]. 

Note that the reported water intensity does not include indirect water usages, due to a paucity of water 

use data in the LCI databases that were accessed when TELCIM was being developed. 

 

2.6. Conclusion 

TELCIM is an integrated techno-economic LCI model with which an analyst can generate estimates of 

numerous financial, technical and environmental performance metrics for a proposed microalgal biodiesel 

manufacturing scheme.  Implementation in Excel makes it accessible to a broad audience, including 

those with limited computer programming skills.  Its modular structure limits the number of connections 

between individual models, making it easily adapted to simulate alternative raw material and energy 

inputs, microalgal species, and/or production processes.  Excel’s open architecture allows background 

information to be loaded directly into the model, facilitating information organization, sharing and 

recordkeeping.  The layout and approach used in TELCIM might serve well as a template for combined 

techno-economic life cycle inventory models of other products and processes.    
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Figure 3.5.  Annual Manufacturing Costs by Major Process Step, and overall.  The 
costs for each major process step are determined without consideration of the nutrient 
recovery and energy recovery accomplished by the anaerobic digesters.  The net cost of 
the digestion step represents the value of those recovered inputs, less the operating and 
maintenance costs of the digesters. (Annual costs are reported in units of millions of 
dollars.) 

 

Although the cost of the harvesting step is high due to the high energy demand of the drying operations, 

the growth step has the largest contribution to total manufacturing cost.  The full cost of nitrogen and 

phosphorus is roughly $250MM per year (this assumes no nutrient recycle from the digesters).  The 

extraction and conversion steps each contribute less than 5% of the net cost of production.  

 

A breakdown of the capital cost for the facility by major process step is shown in Figure 3.6.  The cost of 

the lipid extraction and conversion plants is minor at the scale of this facility.  Because of the different 

scaling rules used for estimating the capital cost of these two steps versus the other three (growth, 

harvesting and digestion), these percentages will be higher at smaller plant sizes.  
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Figure 3.6.  Facility Capital Cost, by Major Process Step.  The extraction and 
conversion steps each contribute less than 1% to the total capital cost of the plant.   

 

3.2 Sensitivity Analyses 

TELCIM has a large scope; it models the technical, financial and environmental performance of a 

complex, multi-step, biochemical manufacturing process.  Hundreds of input parameter values are 

required to run the model, and it is useful to know which parameters have strong influence on the 

performance characteristics of greatest importance (such as NER, CI, and unit manufacturing cost), and 

which inputs have little or no influence.  One way to identify influential input parameters is to run multiple 

simulations in which only one input is varied, and the effect of that variation on key performance 

measures is evaluated.  Finding the influential variables has several important implications.  The modeler 

should be most concerned about ensuring the accuracy of highly influential inputs, since errors in those 

variables propagate most strongly.  And more strategically, it is the influential parameters that should be 

the targets of research and development, since improvements in those aspects of the process will deliver 

the greatest benefits.   
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Two types of single-parameter sensitivity analyses are described in this section: tornado plots and trend 

plots.  In these analyses, input parameters are treated as independent variables, which may not be the 

case in an actual production system.   

 

3.2.1. Tornado Plots 

The tornado plots in Figures 3.7, 3.8 and 3.9 illustrate the sensitivity of NER, CI, and manufacturing cost 

(respectively) to six input parameters that were individually varied by ±20%.  “Oil Content” is the weight 

percent concentration of recoverable lipid in the microalgal cell mass, on an ash-free dry weight basis.  

“Dewatered Algae Conc.” is the weight percent concentration of ash-free dry cell mass in water after 

dewatering and before drying.  “Microalgae Productivity” is the average microalgal growth rate.  “COD 

Removal Efficiency” is the percentage of chemical oxygen demand removed in the anaerobic digesters.  

“CO2 Concentration” is the volume percent concentration of carbon dioxide in the flue gas feeding the 

ponds.  “Power Plant Size” is a surrogate for the carbon dioxide feed rate.   

 

Figure 3.7 indicates that among the variables selected, two biological properties – intracellular water 

content and oil content - have the greatest influence on the NER of the biodiesel.  The areal productivity 

of the microalgae has little impact on NER; the energy footprint of the biodiesel is dominated by the 

energy and material inputs that vary with biomass production, and not productivity.  The NER is 

completely insensitive to the size of the facility, for the same reason.   
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Figure 3.7.  Tornado Plot Indicating the Sensitivity of Net Energy Return (NER) to 
several input parameters.  Shown in parentheses after the name of each input variable is 
the value used in the Test Scenario.  The solid bars indicate the change in NER from its 
base value of 0.40 when the input parameter value is decreased by 20% (relative), and 
the hatched bars indicate the results when the parameter value is increased by 20%.  For 
example, when the oil content of the microalgae is assumed to be 20%, the NER is 
reduced to 0.35.  The horizontal axis values indicate the deviation from the base value.  

 

Of the six input parameters evaluated in Figure 3.8, the dry solids concentration exiting the dewatering 

operations is the most influential.  This relates to the energy load imposed by drying the biomass to the 

Test Scenario target of 90% dry solids.  As the residual water content of the cells increases, the drying 

load increases, and the amount of natural gas used for thermal energy goes up accordingly.  The top 

solid (blue) bar shows that if the dry solids concentration of the biomass exiting the dewatering operations 

falls to 21.2%, the carbon intensity of the fuel almost doubles, to 137 gCO2/MJ.  The second most 

influential input parameter with respect to carbon intensity is the carbon dioxide concentration in the flue 

gas feeding the ponds.  If the gas is more concentrated in CO2, the volume of flue gas that must be 

pumped is lower, reducing electricity consumption.   
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Figure 3.8.  Tornado plot indicating sensitivity of biodiesel Carbon Intensity (CI) to 
several input parameters.   

 

It might seem surprising that the carbon intensity is insensitive to oil content, since the biodiesel 

production rate is directly proportional to the oil content of the microalgae, and fuel energy content is in 

the denominator of the CI calculation.  When there is less oil, there is more LEA going to the digestion 

step, which increases the amount of biogas produced.  And because biogas has a lower carbon footprint 

than the purchased energy it displaces, these two effects tend to cancel one another, and the CI remains 

nearly constant.     
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Figure 3.9.  Tornado Plot Indicating the Sensitivity of Unit Biodiesel Manufacturing 
Cost to several input parameters.   

 

Although carbon intensity is insensitive to the microalga’s oil content, Figure 3.9 shows that the unit 

biodiesel manufacturing cost is highly sensitive to oil content.  This reflects the direct dependence of 

biodiesel production rate on oil content.  Considering that the cost of producing a unit of biomass is 

almost independent of its composition, increasing the oil content spreads those costs over a larger 

amount of fuel, lowering its unit cost.  The dewatered algae concentration is also influential, due to the 

cost of purchased energy for the drying operations.  Finally, algae productivity also strongly influences 

unit cost.  This is because productivity affects facility size, and hence capital costs.  And many of the 

operating costs, such as maintenance and interest on debt, are related to the capital cost of the facility.  

 

3.2.2. Trend Analysis 

Another type of single-parameter sensitivity analysis that can be used to identify input parameters with 

significant influence on critical system performance metrics is trend analysis.  A base case simulation is 

created in which the most probable values of all input parameters are entered.  Additional simulations are 

performed in which an individual input parameter is systematically varied over its expected range, and the 
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predicted values of important output parameters are plotted against the input parameter.  The shape of 

the resulting curve indicates the nature of the relationship between the input and output parameters (e.g., 

linear, non-linear).  The direction of a curve’s slope indicates whether the variables are directly or 

inversely correlated, and the magnitude of the slope indicates the sensitivity of the output parameter to 

the input that was varied.  No consideration is given for the probability distribution of the input parameters; 

the purpose of the trend analysis is to assess the response of important output parameters to changes in 

particular input variables.   

 

Once influential variables are identified, the modeler can focus on improving their accuracy.  These 

parameters should also be the preferred targets for research and development efforts, since they offer the 

greatest potential impacts on the performance characteristics of interest.  Input parameters identified by 

trend analysis as being influential (i.e., those to which KPI’s are most sensitive) are the ones that should 

be studied in an uncertainty analysis.  Trends will also indicate whether a change in an input will cause all 

or some of the KPI’s of interest to vary in the same or opposite direction (favorable or unfavorable).  

Otherwise, trade-offs will arise between improvements in some categories and deterioration in others.   

 

To illustrate how one might use this technique with TELCIM, an analysis was made of the impact on the 

biodiesel Net Energy Return, carbon intensity, and unit manufacturing cost, of the following inputs to the 

anaerobic digestion process model:  

• Nitrogen recovery efficiency factor (no units; base case value = 0.75) 

• Phosphorus recovery efficiency factor (no units; base case value = 0.50) 

• COD removal efficiency (no units; base case value = 0.65) 

• Methane yield (cubic meters per kg of COD removed; base case value = 0.35) 

Upper and lower bounds for these four variables were selected arbitrarily, but are intended to represent 

realistic limits for the corresponding parameters.  Cases were run at the limits for each of the four 

parameters, and at increments of 0.05 in between.  The biodiesel’s NER, CI and unit manufacturing cost 

for each simulation were recorded, and are plotted below.   
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Figure 3.10.  Trend Analysis of Anaerobic Digestion – Net Energy 
Return.  Values for the four input parameters are shown on the 
horizontal axis 

 

A plot of Net Energy Return as a function of several anaerobic digestion input variables is shown as 

Figure 3.10.  It is apparent that the NER is relatively insensitive to the nitrogen and phosphorus recovery 

efficiency factors.  This indicates that the energy consumed to produce and transport the nitrogen and 

phosphorus fertilizers used in the growth step contributes little to the overall energy footprint of the 

biodiesel.  As expected, both curves have a positive slope, indicating that recycling nitrogen and 

phosphorus reduces overall energy use.  The slope of the curve for the nitrogen recovery efficiency factor 

is larger than that for the phosphorus recovery efficiency factor, indicating that there is more embedded 

energy in the nitrogen source being added to the system than in the phosphorus source.   

 

The NER is moderately sensitive to the COD removal efficiency factor, and is quite sensitive to methane 

yield.  Both variables are positively correlated with NER.  These conditions reflect the large impact that 

energy recovery in the digestion step has on the biodiesel’s overall energy footprint.  An increase in COD 

removal efficiency means more biogas is generated, reducing the demand for externally sourced energy. 
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(Since the biogas is part of an internal carbon loop, its energy content is not included in the calculation of 

the NER.)  An increase in methane yield means the biogas has a higher energy content, also reducing 

the amount of energy that must be purchased from off-site.  

 
Figure 3.11.  Trend Analysis of Anaerobic Digestion – Carbon 
Intensity.   

 

The sensitivity of the biodiesel’s carbon intensity to the input parameters of interest is shown in Figure 

3.11.  Varying the nitrogen and phosphorus recovery efficiencies has little impact on the carbon intensity 

of the biodiesel.  As with energy, the manufacture and delivery of the nitrogen and phosphorus fertilizers 

does not contribute significantly to the overall carbon intensity of the biodiesel manufacturing process.  

The negative slope of each of these curves indicates that recycling nitrogen and phosphorus entails lower 

carbon dioxide emissions than manufacturing and delivering them to the biodiesel plant.   

 

The biodiesel’s carbon intensity is also relatively insensitive to the COD removal efficiency.  If less COD is 

removed, more carbon remains fixed in the un-degraded material, and less is converted back to CO2 in 

the combusted biogas.  But the energy that would have been extracted from the biogas has to be 

supplied from external sources, so the carbon emissions are similar; they simply occur elsewhere.  The 
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negative slope indicates that using biogas has a lower carbon intensity than relying on purchased energy 

streams.  In contrast, the CI is very sensitive to the methane yield.  When the carbon in the residual 

biomass is broken down in the digesters, it is mostly converted either to methane or carbon dioxide (the 

ratio of these two products is a function of the oxidation state of the biomass being degraded).  So as the 

methane yield goes down, there is a corresponding increase in the amount of carbon dioxide generated.  

This is in addition to the carbon dioxide generated off-site, to supply the site’s energy demand.   

 
Figure 3.12.  Trend Analysis of Anaerobic Digestion – 
Manufacturing Cost.   

 

Of the four variables shown in Figure 3.12, unit biodiesel manufacturing cost appears to be least sensitive 

to the nitrogen recovery efficiency.  The curve for this parameter has a negative slope, and contains an 

inflection point.  As the nitrogen recovery efficiency in the digesters declines, the amount of nitrogen 

fertilizer being added must increase commensurately.  But the nitrogen source used in the Test Scenario, 

urea, contains carbon, and the model adds this carbon to the carbon dioxide which is converted into 

biomass.  At a fixed biomass productivity, a larger carbon load requires more illuminated surface area, 

and the model computes the number of additional ponds needed.  But because TELCIM aggregates 
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ponds into modules, and the number of modules is a discrete quantity, and at some point TELCIM 

determines that an additional module is required.  An additional module brings with it many fixed costs, 

such as operating labor, maintenance, and other overheads, causing an apparent step change in 

biodiesel cost.   The “knuckle” in the nitrogen curve occurs at the total carbon loading at which TELCIM 

models that another biomass production module is required.   

 

Surprisingly, the slope of the phosphorus recovery factor curve is greater than that for the nitrogen 

recovery factor curve.  Because the mole ratio of nitrogen to phosphorus in the microalga is more than 

ten to one, the same relative increase in these two recovery factors means that more than ten times as 

many moles of nitrogen are being recovered than are moles of phosphorus. But the cost of the 

phosphorus fertilizer (superphosphate), on a molar basis, is so much higher than that of urea that it more 

than offsets this 10:1 ratio.  And because superphosphate contains no carbon, there are no inflections 

points in that curve.   

 

Manufacturing cost is moderately sensitive to the COD removal efficiency; if the LEA is more degradable 

than is modeled by the Test Scenario, the biodiesel cost could be reduced by as much as $0.50-$1.00 

per gallon.  Unit cost is slightly more sensitive to methane yield, and COD removal efficiency and 

methane yield are both negatively correlated with manufacturing cost.   

 

3.3. Conclusions 

The microalgal biodiesel production cost and NER predicted by the Test Scenario fall well within the 

ranges predicted by other modeling efforts reported in the literature, helping to validate TELCIM’s integrity 

and functionality.   

 

TELCIM is designed to isolate the impacts of the anaerobic digestion step on biodiesel cost and energy, 

carbon and water footprints.  In the Test Scenario, anaerobic digestion reduces net manufacturing cost 

and improves sustainability by lowering the demand for purchased nutrients and energy.  It predicts that 

the equivalent monetary value of the residual biomass is on the order of $175 per tonne, and roughly 30% 
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of the carbon dioxide converted to biomass in the cultivation step is tied up in the biomass exiting the 

digesters.  The ultimate fate of this byproduct is critical in assessing the overall carbon footprint of the 

modeled microalgal biodiesel manufacturing process, and highlights an important difference between a 

cradle-to-gate LCI and a cradle-to-grave LCI.  If the digester sludge is managed in a way that its 

constituent carbon is ultimately released as CO2, then the Test Scenario predicts that the overall carbon 

intensity of the biodiesel will be substantially higher than that of petrodiesel.   

 

It is apparent from the tornado plots that the modeled biodiesel production scheme has almost no 

economies of scale; changing plant size has little impact on the KPI’s.  Capital costs are largely driven by 

illuminated surface area, which scales linearly with biomass production.  Similarly, operating cost, NER 

and CI are dominated by variable inputs such as ingredients and energy.  While this suggests that the 

penalties for distributed manufacturing will be small, the number of viable manufacturing sites will be 

limited by the availability of large tracts of flat land near sources of carbon dioxide and make-up water.  In 

particular, water requirements in dry climates may represent a barrier to facility siting.  The tornado plots 

also show that the KPI’s respond quite differently to different input parameters, demonstrating that there 

can be trade-offs among the KPI’s, and system optimization will depend on the relative weights placed 

upon them.  

 

From the Trend Analysis, it appears that the COD removal efficiency and methane yield are influential 

variables – one or more of the NER, CI, and manufacturing cost are sensitive to those inputs.  In 

comparison, the nitrogen and phosphorus recovery efficiencies are less influential.  As a result, the 

digestion step should be optimized for biogas production, and not for nutrient recovery.  And because 

they are influential, COD removal efficiency and methane yield might be included among those variables 

that would be studied in an uncertainty analysis.  This topic will be covered in more detail in Chapter 6.  

All four of the input variables evaluated in the Trend Analysis have a positive slope with respect to NER 

and a negative slope with respect to CI and cost across their entire range.  This means that increases in 

nutrient recovery, COD removal, and methane yield improve all three of the KPI’s; in no case did a 
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4. CASE STUDIES∗

4.1. Introduction 

 

Washington University in St. Louis recently released, as freeware, a techno-economic life-cycle inventory 

model (“TELCIM”) of microalgal biodiesel manufacture.  Implemented in Microsoft Excel®, the model is 

accessible at www.openscholarship.wustl.edu.  It simulates a biodiesel manufacturing process 

consisting of five major steps.  Microalgal biomass is cultivated continuously in raceway ponds fed an 

industrial gas containing carbon dioxide.  The biomass is then concentrated by consecutive 

sedimentation, thickening, filtration, and forced air drying operations.  Neutral lipids are extracted from the 

dry biomass using hexane leaching, and are then converted to methyl esters in an aqueous alkali-

catalyzed transesterification process.  Finally, the residual biomass (lipid-extracted algae, or LEA) is 

anaerobically digested to recover nutrients for recycle to the growth step, and to produce biogas, which is 

burned to produce electricity and process heat.   

 

A review of prior microalgal biodiesel modeling efforts showed that there is considerable uncertainty in the 

financial viability and environmental sustainability of this alternative fuel1.  These models also generally 

focused on either the economics or environmental footprint of the biodiesel manufacturing process, which 

motivates the development of an integrated techno-economic-environmental model of biodiesel 

production.  That manuscript also provided detailed descriptions of TELCIM’s component physical, 

financial and life cycle inventory (LCI) models, listed many of the input parameter values used to populate 

a base case (the “Test Scenario”) and key results from that case, and showed examples of sensitivity 

analyses used to identify influential input parameters. The purpose of this article is to report on several 

variants to the Test Scenario in which the impacts of alternative production processes, manufacturing site 

locations, and modeling time-scales, were investigated.   

 

                                                           
∗ This chapter in its entirety is taken from a manuscript that is being prepared for publication; only the 
Abstract and Acknowledgments section of that manuscript are not reproduced here. Some of the 
formatting of the original document has been altered to conform to the format of the remainder of the 
dissertation. 
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input parameters, including setting to zero all of the capital and operating costs assigned or allocated to 

the digestion step, the digester nutrient recovery efficiency factors, and the biogas generation rate).  The 

inclusion of anaerobic digestion in the overall process scheme appears justified, since it reduces unit 

manufacturing cost, improves NER, and reduces carbon intensity.  Because TELCIM is a “cradle-to-gate” 

life cycle inventory model, these results do not account for the ultimate fate of the waste biomass from the 

digesters, which in the Test Scenario accounts for roughly 30% of the carbon taken up in the ponds.  The 

unfavorable manufacturing cost variance for the No Digestion case can be eliminated or even reversed if 

the LEA is sold at a high enough price.  (For the conditions modeled in the Test Scenario, TELCIM 

predicts the break-even price of the LEA is around $175 per tonne.)  The NER and CI of the biodiesel 

could also be improved or worsened, depending on the fate of the LEA, and in particular, what other 

products it might displace (e.g., animal feed), and the environmental burdens resulting from the 

production and use of those displaced products.  The wide variety of options for the fate of the byproducts 

from the microalgal biodiesel manufacturing process is one of the reasons TELCIM is limited to a “cradle-

to-gate” LCI model. 

 

Additional outputs from the Test Scenario and the “No Anaerobic Digestion” variant are shown in Table 

4.2 (“With Anaerobic Digestion” and “Without Anaerobic Digestion”, respectively).  This table illustrates 

how TELCIM reports cost structures, energy profiles, and carbon balances.  For example, TELCIM 

computes energy and resource burdens in the other major process steps assuming that no nutrients or 

energy are recovered in the anaerobic digestion step.  The energy and nutrients recovered in the 

digesters are treated as credits, which offset equivalent amounts of purchased raw materials and energy.  

(The small differences in values for the growth, harvesting, extraction and conversion steps between the 

Test Scenario and the “No Anaerobic Digestion” case arise because urea was used as the nitrogen 

source in the growth step.  Since urea contains carbon, and more urea is used in the “No Anaerobic 

Digestion” case, slightly more biomass is produced in that case, leading to small differences in the cost, 

energy and carbon profiles.)   
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The capital cost for the facility with anaerobic digestion is roughly 33% higher than for the facility without 

it, but its operating costs are lower due to reduced raw material and energy purchases.  The net cost 

savings (after accounting for the operating and maintenance costs of the digestion step) generate an IRR 

of 17% on the incremental capital investment.  The effect of anaerobic digestion on the energy footprint of 

the biodiesel is very large; burning biogas on-site reduces energy purchases by almost half.  Anaerobic 

digestion also has a large impact on the carbon footprint of the biodiesel; with anaerobic digestion the 

overall biodiesel manufacturing process is almost carbon neutral (assuming the carbon in the byproducts 

remains fixed).   

 

4.3. Seasonality Analysis 

TELCIM models continuous, steady-state operation of the biodiesel manufacturing plant.  The assumption 

of steady state operation may be suitable for a well-controlled industrial process, but microalgae 

cultivation in ponds will be subject to variable ambient conditions.  In the Test Scenario, annual average 

values were used for input parameters such as climatological conditions and the microalga’s areal 

productivity.  However, it is clear that in the continental United States these parameters will be inconstant 

over the span of an entire year.  The areal productivity, for instance, will be affected by seasonal and 

diurnal variations in solar irradiance.  The following analysis is intended to determine to what extent 

seasonal variations in sunlight intensity might affect the KPI’s for the biodiesel manufacturing process. 

 

TELCIM includes a photosynthetic efficiency model with which the microalga’s areal productivity can be 

estimated from sunlight intensity12,13: 

 

𝑃𝑚𝑎𝑠𝑠 =  𝐸𝑠 �
𝐶𝑃𝐴𝑅𝜏𝑝𝜀𝑓𝜀𝑠𝜀𝑎𝑀𝐴

𝑄𝑟𝐶𝑐𝐸�𝑝
� 

(4.1) 

 

where 𝑃𝑚𝑎𝑠𝑠 is algal productivity (kg/m2-day), 𝐸𝑠 is sunlight intensity (kJ/m2-day), 𝐶𝑃𝐴𝑅 is the fraction of 

sunlight that is photosynthetically active, 𝜏 and 𝜀 represent efficiency factors for transmission, 

fluorescence, light saturation and biomass conversion, 𝐶𝑐/𝑀𝐴 is the mole concentration of carbon in the 



 

 72  

microalga (kg-mol/kg), 𝑄𝑟 is the quantum yield, and 𝐸�𝑝 is the average energy content of photosynthetically 

active radiation (kJ/kg-mol).  Most of the parameters in the brackets in Equation 4.1 are constant or near-

constant for a given organism and reactor design.  As a first approximation, a linear relationship between 

productivity and incident sunlight intensity can be assumed: 

 

𝑃𝑚𝑎𝑠𝑠 =  𝑘𝐸𝑠 (4.2) 

 

where 𝑘 is a proportionality constant (kg/kJ).  Once this constant is known, changes in areal productivity 

can be estimated from the seasonal variations in sunlight intensity.  Equation 4.2 represents an idealized 

model in which every incremental photon of photosynthetically active sunlight is converted to biochemical 

energy with equal efficiency.  The proportionality constant for the “NAABB R&D Targets” case was 

calculated by substituting into Equation 4.2 the annual average daily sunlight intensity in the Salton Sea 

area of southern California (5.67 kWh/m2-day) and the NAABB areal productivity target (20 g/m2-day).  

The Western Regional Climate Center, an arm of the National Oceanic and Atmospheric Administration 

(NOAA), was the source of daily sunlight intensity data for the Salton Sea site14.  The average daily 

sunlight intensity for each month of the year for the period 1994-2010 was computed from the WRCC 

data, and are plotted in Figure 1.  Equation 4.2 was then used to calculate the areal productivity for each 

month of the year from the average daily sunlight intensity during that month.  The WRCC database also 

reports the monthly average temperature, relative humidity, and precipitation for each year in this time 

range; long-term averages for these TELCIM input parameters for the 1994-2010 time period were also 

computed.  The monthly average pan evaporation rate (the only other climatological input required by 

TELCIM) was obtained from the California Climate Data Archive for the Indio, California, reporting station, 

for the period 1927-200215.  (The time span over which pan evaporation data was averaged differed from 

that used for the other climatological inputs because the CCDA database only reports the monthly pan 

evaporation rate averaged over this entire time span; it does not report separate monthly figures for each 

year within that range.  In addition, CCDA’s database does not include a Salton Sea monitoring station; 

the Indio and WRCC’s Salton Sea monitoring stations are approximately 30 miles apart.) 
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Figure 4.1: Average Sunlight Intensity for Salton Sea, California.  
Data from the California Climate Data Archive for the time period 1994 
through 2010.  The dashed line indicates the annual average (5.67 
kWh/m2-day) over this time span. 

 

TELCIM uses the microalga’s areal productivity to predict the illuminated surface area required to convert 

a specified amount of CO2 to biomass.  However, for this analysis it was necessary to determine how 

much biomass will be produced in a facility of fixed size under different productivity conditions.  To specify 

the size of the facility, it was necessary to define a design basis for the facility.  There are two cases 

which represent the bounds of realistic design bases: the facility either maximizes sunlight utilization or 

carbon dioxide uptake.  These alternatives nicely conform to two simple design bases.  In the first, 

sunlight utilization is maximized by sizing the facility based on the highest monthly productivity (June in 

the Salton Sea area; Fig. 4.1).  As productivity falls off in other months, the ponds convert less carbon 

dioxide to biomass, and the excess carbon dioxide is vented.  In the other design basis, carbon utilization 

is maximized by sizing the facility based on the lowest productivity month.  This ensures that all of the 

carbon dioxide that is available for conversion to biomass is converted every month.  In months with 

higher sunlight intensity, less illuminated surface area is required to achieve the same biomass 

production rate. So, as sunlight intensity and hence biomass productivity increases, some ponds are 

taken out of service, avoiding some operating costs.   
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Variant cases representing these two alternative design bases were modeled, each as a set of 12 

monthly TELCIM simulations.  The “base case” for this analysis was the “NAABB R&D Targets” case 

described earlier (Table 4.1), in which the annual average areal productivity of 20 g/m2-day, and annual 

average climate data were used.  The proportionality constant in Equation 4.2 was determined using this 

base case (𝑘 = 3.529 g/kWh), and for the monthly simulations, the areal productivity was calculated using 

the monthly average sunlight intensity in Equation 4.2.  To isolate the impacts on the KPI’s of using 

monthly productivity values instead of the assumed annual average of 20 g/m2-day, annual average 

climate data were used in these simulations rather than monthly average data.  The simulation outputs 

were then annualized, using volume-averaging when appropriate (e.g., unit production cost).  The results, 

which are shown in Table 4.3, clearly indicate that the maximum productivity design basis has a much 

better cost structure – in the minimum productivity case too much capital equipment is idle too much of 

the time.  The maximum productivity case also has a smaller environmental footprint, as indicated by the 

values returned for NER, CI and water intensity.   

 

Table 4.3: Seasonality Analysis for Salton Sea Location 
 Biodiesel 

Production 
Volume 

(Mgal/yr) 

Biodiesel 
Production 

Cost 
($/gal) 

 
Areal 

Productivity 
(gal/acre-yr) 

 
Capital 

Productivity 
($/gal) 

Net 
Energy 
Return 
(MJ/MJ) 

 
Carbon 

Intensity 
(gCO2/MJ) 

 
Water 

Intensity 
(gal/gal) 

Petro- 
Diesel 

N/A N/A N/A (?) 4.35 84.3 (?) 

NAABB R&D 
Targets 

187 5.72 3171 25.14 0.56 87.3 781 

Max. Productivity 
& Annual 
Average 

Weather Data 

134 5.74 3165 26.95 0.56 86.9 825 

Min. Productivity 
& Annual 
Average 

Weather Data 

187 8.00 1643 44.18 0.53 96.4 865 

Max. Productivity 
& Monthly Avg. 
Weather Data 

134 5.74 3166 26.95 0.57 87.0 827 

 

The first of the 12 simulations run for the maximum productivity case was for the month of June, which 

had the highest sunlight intensity and hence the highest predicted biomass productivity (Fig. 4.1).  This 

fixed the size of the facility at 3347 4-hectare ponds, as compared to 4650 ponds in the base case.  For 
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each of the other months, the carbon dioxide feed rate was iterated until the model predicted that 3347 

ponds were required (Excel’s “Goal Seek” function was used to perform these iterations).  As a 

consequence of the assumption of proportionality between sunlight intensity and productivity, the 

production cost, NER and carbon intensity in the maximum productivity case are virtually unchanged from 

the base case.  On the other hand, the annual biodiesel production volume is substantially lower, 

consistent with the smaller illuminated surface area.  Another important difference between the maximum 

productivity case and the annual base case is with regard to water intensity.  Because less biomass is 

produced in all but the peak sunlight month, but the rate of evaporation is held constant at the annual 

average, the water intensity is higher for the month-by-month simulation.  The capital productivity in this 

case is also slightly poorer than in the annualized base case, as would be expected of a facility with a 

large turndown ratio over a full annual cycle.   

 

In contrast, the initial simulation for the minimum productivity case modeled December, which had the 

lowest predicted monthly productivity (Fig. 4.1).  This fixed the facility size at 8972 ponds, almost double 

the illuminated surface area of the base case.  In the remaining monthly simulations TELCIM predicted 

the minimum number of ponds necessary to process the desired amount of carbon dioxide, based on the 

higher biomass productivity.  This led to some electricity savings, but operating labor and maintenance 

costs were held constant - it was assumed that the labor force could not be upsized and downsized 

throughout the year as the number of ponds in operation changed.  As expected, the annual biodiesel 

production volume for this case is the same as in the base case, but the capital cost productivity is much 

worse ($44.18 vs. $25.14 per gallon/year of installed capacity), and the unit manufacturing cost is much 

higher.  Both the NER and CI are less favorable for this case compared to the maximum productivity 

design basis, so all four of these performance metrics appear to favor the facility designed to maximize 

sunlight utilization.   

 

Another goal of the seasonality analysis was to determine whether there is any significant difference in 

the KPI’s using climate data averaged over shorter timescales.  Another set of 12 simulations was run, 

using the maximum productivity design basis, and month-by-month climate data.  Key outputs from this 
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set of simulations, which are reported on the bottom line of Table 4.3, suggest that using annual average 

data instead of monthly climate data does not change the model’s predictions for the Salton Sea location. 

 

4.4. The Light Saturation Effect 

Since it appears that seasonality effects can be significant, it is appropriate to reconsider how areal 

productivity is expected to vary with season.  A linear relationship between sunlight intensity and biomass 

productivity assumes that the light energy of every photon is converted to biochemical energy with the 

same efficiency.  But it is known that photosynthetic systems, including those present in microalgae, 

saturate at relatively low light intensity16,17, so this assumption may be too optimistic.  By including a 

correction for the light saturation effect (LSE) when calculating biomass productivity, it is possible to 

determine to what extent light saturation affects the KPI’s.  

 

The light saturation efficiency factor that appears in Equation 1 can be estimated using the Bush 

Equation18: 

𝜀𝑠 =  �
𝐸0
𝐸𝑠

ln �
𝐸𝑠
𝐸0

+ 1� , 𝑖𝑓 𝐸𝑠 > 𝐸0 

1                          , 𝑖𝑓  𝐸𝑠 ≤ 𝐸0

� (4.3) 

 

where 𝐸0 is a species-specific light saturation constant.  A plot of the Bush Equation is shown as Figure 

4.2, with 𝐸0 taken as 150 µmol/m2-sec, a value used previously to characterize microalgae13. 
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Figure 4.2: Plot of the Bush Equation. Effective solar irradiance as a 
function of total solar irradiance (Es), with the light saturation constant 
(E0) equal to 150 µmol/m2-sec.  The diagonal dotted line represents no 
light saturation effect (i.e., εs = 1 for all values of Es).   
 

Assuming the other factors in Equation 4.1 remain constant, Equation 4.2 can be rewritten as: 

𝑃𝑚𝑎𝑠𝑠 = 𝑘′𝜀𝑠𝐸𝑠  (4.4) 

 

where 𝑘′ is a new proportionality constant.  The predicted monthly average areal productivities using 

Equations 4.2 and 4.4 were calculated based on sunlight intensity and weather data obtained for 

Memphis, Tennessee.  The annual average direct plus diffuse sunlight intensity at a Memphis monitoring 

station for the period 1991-2005 was obtained from NREL’s National Solar Radiation Database19.  That 

value is 5.68 kWh/m2, almost exactly the same intensity reported for the Salton Sea site in the California 

Climate Data Archive.  The NSRDB lists the average daily sunlight intensity for each month of the year for 

the span 1991-2005, as well as for each individual year in that span.  First, the normalization constant 

assuming a linear relationship between light intensity and biomass productivity (𝑘 in Equation 4.2) was 

calculated for the Memphis site assuming the NAABB areal productivity target of 20 g/m2-day.  The 
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productivity for each month was then calculated by scaling the sunlight intensity to that annual average, 

using Equation 4.2.  The resulting monthly average areal biomass productivities are shown in Figure 4.3a 

(“Memphis without LSE”).  The annual average solar intensity at Memphis was then used in Equation 4.3 

to calculate 𝜀𝑠.  This value (0.441) was used in Equation 4.4, along with the NAABB productivity target of 

20 g/m2-day, to calculate a new scaling constant (𝑘′ = 8.383 g/kWh), and then Equation 4.4 was used to 

estimate month-by-month values of the areal biomass productivity.  These productivities, which are 

corrected for light saturation (“Memphis with LSE”), are plotted alongside the “uncorrected” values in 

Figure 4.3a.  Also shown are the standard deviation and range for each data set; applying the correction 

for light saturation greatly reduces the variation in monthly biomass productivity values. 

 

To determine whether similar results obtain for another geographic location, the same analysis was 

performed for Bakersfield, California, using monthly average sunlight intensity data for that site obtained 

from the NSRDB for the period 1991-2005.  To retain the effect on biomass productivity of any difference 

in overall sunlight intensity at the two sites, the correlation factors derived for the Memphis cases (𝑘 and 

𝑘′) were also used in the Bakersfield simulations.  The results are shown in Figure 4.3b. 

 

At both sites, applying the light saturation effect significantly reduces the month-to-month variation in 

effective sunlight intensity.  The expected advantage in biomass productivity of the site with higher 

average sunlight intensity is retained - compare Bakersfield without LSE to Memphis without LSE, or 

Bakersfield with LSE to Memphis with LSE - but that advantage is significantly diminished when the light 

saturation effect is accounted for. 
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Figure 4.3: Impact of Light Saturation Effect (LSE) on Microalgal Productivity at 
Memphis, TN, and Bakersfield, CA.  Data from the National Solar Radiation Database 
for 1991-2005.  Shown beneath each graph are the standard deviation and range of the 
data sets with and without the correction for light saturation.  The annual average sunlight 
intensity in Memphis was normalized to a biomass productivity (Pmass) of 20 g/m2-day for 
the simulations both with and without the LSE.  The higher sunlight intensity in 
Bakersfield translates into higher annual average biomass productivity values than for 
Memphis, but it is also apparent that the light saturation effect diminishes that difference. 

 

While this analysis suggests that applying the light saturation effect is important, it involved applying a 

correction to daily average sunlight intensity values.  While this may account for seasonal variations in 

sunlight intensity, it does not address diurnal variations.  Since the Bush Equation is highly non-linear, 

one might expect that applying it to a daily average sunlight intensity value (kWh/m2-day) can introduce 

significant distortion.  In addition to monthly average daily sunlight intensity values, the NSRDB also 

includes hourly average sunlight intensity statistics, by month20.  For the Bakersfield site, plots of the 

hourly average sunlight intensity for the months of January (which had the lowest average daily sunlight 

intensity) and July (highest average intensity), 1991, are shown in Figure 4.4.  Also shown in Figure 4.4 

are the plots of the January and July, 1991, hourly sunlight intensity data after correcting them for the light 

saturation effect using the Bush Equation, on an hour-by-hour basis.  It is obvious from Fig. 4.4 that a 

substantial amount of attenuation occurs in both curves.  It is also interesting to note that both curves 

corrected for light saturation peak at about the same effective light intensity.  Thus any additional biomass 

productivity in July compared to January is due primarily to the longer day length, and not to the higher 

sunlight intensity. 
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Figure 4.4: Average Hourly Sunlight Intensity in Bakersfield, CA for 
January and July.  Data from the National Solar Radiation Database for 
1991.  After correcting for light saturation, the increase in effective 
sunlight intensity in July compared to January is almost entirely due to 
the longer day.   
 

Hourly sunlight intensity data for 1991 for the Memphis and Bakersfield sites were obtained from the 

NSRDB and corrected using the Bush Equation to obtain effective sunlight intensity, on an hour-by-hour 

basis, for each month in that year.  Hourly effective sunlight intensity values were then summed to obtain 

the average effective daily sunlight intensity for each month.  The correlation factor 𝑘′ was calculated 

from Equation 4.4 using the annual average daily sunlight intensity in Memphis and the NAABB biomass 

productivity target of 20 g/m2-day, and a light saturation efficiency factor calculated from Equation 4.3.  

(The daily average sunlight intensity of 5.278 kWh/m2-day for 1991 was attenuated to 1.380 kWh/m2-day, 

yielding a value for 𝑘′ of 14.50 g/kWh.)  This conversion factor was then used to recalculate the average 

daily biomass productivity (kg/m2-day) for each month, using the attenuated sunlight intensity calculated 

on an hour-by-hour basis.  Again, to retain the relative differences between the Memphis and Bakersfield 

sites, the effective sunlight intensity data for Bakersfield was converted to biomass productivity values 

using the same conversion factor calculated by normalizing the Memphis data to 20 g/m2-day. 
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Figure 4.5: Biomass Productivities Based on Sunlight Intensity Data Averaged over 
Different Time Scales.  These graphs show predicted biomass productivities for 
Memphis, TN, and Bakersfield, CA, calculated from daily average sunlight data from the 
National Solar Radiation Database for 1991, without correcting for light saturation 
(“Without LSE”), from daily average sunlight data after correcting for light saturation 
(“With LSE”), and from hourly average sunlight data after correcting for light saturation 
(“With LSE – Hourly”).  The annual average sunlight intensity in Memphis was normalized 
to a biomass productivity (Pmass) of 20 g/m2-day for all three cases.   

 

Figure 4.5 presents the monthly average productivities for Memphis (on the left) and Bakersfield (on the 

right) based on hourly sunlight intensity data, alongside the productivity values based on daily average 

sunlight intensity with and without the correction for light saturation.  It is clear from the graphs for both 

sites that the productivity predicted using hourly data much more closely resembles the results generated 

from the daily average data with the correction for light saturation, and in almost all cases the productivity 

predicted using hourly sunlight intensity data lies between the productivity predicted using daily average 

sunlight data with the light saturation effect, and that predicted using daily average sunlight intensity 

without correcting for light saturation.   

 

The “flattening” effect of the LSE is readily apparent when the annual average productivities at Memphis 

and Bakersfield are compared.  With the linear assumption, the annual average productivity at Bakersfield 

is 26.9 g/m2-day (with Memphis normalized to 20 g/m2-day).  With the LSE correction, it is 22.1 g/m2-day 

using daily average sunlight intensity, and 22.0 g/m2-day using hourly average sunlight intensity (again, 

with Memphis normalized to 20 g/m2-day in each case).  The light saturation effect tends to reduce the 
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benefit in microalgal productivity that one might expect from higher sunlight intensity (35% higher annual 

average sunlight intensity yields only a 10% increase in biomass productivity).  

 

The very small difference between the productivity values calculated for Bakersfield using hourly average 

and daily average sunlight intensities (22.1 vs. 22.0 g/m2-day) suggests that using daily average data is 

sufficient, and the 24-fold increase in computations necessary to calculate hourly average productivities is 

probably unnecessary.  But it is important to recognize that in each case the Bakersfield productivity data 

was compared to data from Memphis that was separately normalized to 20 g/m2-day.   

 

Figure 4.6 illustrates the impact of applying the Bush Equation correction to the daily average sunlight 

intensity versus applying it to the hourly data and then summing that data to arrive at the effective daily 

average sunlight intensity.  Because of the asymptotic behavior of the Bush Equation at high sunlight 

intensities, there is a marked difference in the net daily effective sunlight intensity, with the average 

computed from hourly data being on the order of half of that derived from the daily average data.  This 

has a profound implication if an investigator is attempting to predict biomass productivity directly from 

sunlight intensity data, without “pegging” a gross overall average to some arbitrary value, such as using 

20 g/m2-day in Memphis as a basis.  In other words, if an investigator is attempting to predict a biomass 

productivity from sunlight intensity data, it is essential to use sunlight intensity at the smallest time-scale 

available, and to apply the Bush Equation to that data rather than applying it to data representing time 

scales of days or longer.  
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Figure 4.6: Impact of Applying Light Saturation Effect to Hourly 
versus Daily Average Sunlight Intensity.  Data from the NSRDB for 
Bakersfield, CA, for January, 1991.  The text boxes indicate the area 
under each curve.  Due to the non-linearity of the Bush Equation, 
applying it to the daily average sunlight intensity instead of the hour-by-
hour intensity almost doubles the effective daily sunlight intensity, and 
thus the estimated daily biomass production rate.  

 

4.5. Alternative Site Analysis 

Prior modeling at the Pacific Northwest National Laboratory predicted that the Gulf Coast and lower 

Atlantic seaboard regions might have the most suitable combination of resource availability and site 

conditions for mass algae cultivation13.  To evaluate the impact of differences in climatic conditions at 

locations along the southern rim of the continental United States, a set of TELCIM simulations was 

performed for potential biodiesel manufacturing sites in each of: Bakersfield, California; Tucson, Arizona; 

Memphis, Tennessee; Baton Rouge, Louisiana; and Jacksonville, Florida.  This includes sites in the 

desert southwest, Gulf Coast, lower Atlantic seaboard, and lower Mississippi River Valley.  Monthly 

average sunlight intensity, temperature, and relative humidity data were obtained for these locations from 

the National Solar Radiation Database for the span 1991-200519; the sum of direct and diffuse sunlight 

was used throughout.  Monthly average precipitation and pan evaporation data for these locations (except 

Bakersfield) were obtained from the National Climatic Data Center21 for the same time period.  (There 

were no monitoring stations near the Salton Sea area in the NSRDB and NCDC data sets used for this 

geographic analysis, so to ensure that all of the sunlight intensity data was obtained from a single source, 
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the Bakersfield site was selected as an alternative southern California location.)  Unfortunately, very few 

monitoring locations are common to both the NSRDB and NCDC databases, so several compromises had 

to be made when compiling input climate data for these simulations: 

• The pan evaporation and precipitation data for the Tucson site covers only the 1991-1999 period 

(pan evaporation data collection was discontinued at Tucson after 1999). 

• The pan evaporation and precipitation data for the Jacksonville simulations was that reported for 

Lake City, Florida, some sixty miles distant. 

• Pan evaporation and precipitation data for the Bakersfield locations were obtained from the 

California Climate Data Archive15.  The precipitation data was averaged over the period 1981-

2010, and the pan evaporation rates were reported to have been estimated using a form of the 

Penman Equation for an unspecified time period.  

• Pan evaporation data for Memphis for the 1991-2005 time period was reported only for the 

months of April through October, the normal growing season.  An older NOAA data set, for the 

period 1956-1970, included pan evaporation rates at Memphis for all twelve months of each 

year22.  A linear regression analysis between these two data sets (r2 = 0.970) was used to 

estimate the pan evaporation rates for the missing months in the 1991-2005 NCDC data sets.  

 

The TELCIM simulations performed in this study of alternative production locations were all based on the 

Test Scenario with the NAABB productivity targets (20 g/m2-day at 50% lipid content).  The southern 

California cost structures used in the Test Scenario were retained for all sites, ensuring that any changes 

in the KPI’s are solely attributable to the differences in sunlight intensity and other climatic conditions.  For 

each site, twelve simulations were performed, one for each month of the year, using the average sunlight 

intensity and climate data for that month.  The maximum productivity design basis was used in these 

simulations, with the result that the size (i.e., illuminated surface area) of the facility varied from one site 

to another, based on each location’s peak sunlight month.  Memphis was again used as the “base” site – 

the annual average biomass productivity (𝑃𝑚𝑎𝑠𝑠) there was assumed to be 20 g/m2-day.  The annual 

average sunlight intensity in Memphis of 5.68 kWh/m2-day and a light saturation constant (𝐸0) of 150 

µmol/m2-sec (equivalent to 0.811 kWh/m2-day at an average photon energy content of 225.3 kJ/g-mol) 
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were used in Equation 4.3 to calculate a base light saturation efficiency factor (𝜀𝑠) of 0.421.  When 

substituted into Equation 4.4, this resulted in a value for k’ of 8.389 g/kWh.  The Bush Equation (Eqn. 4.3) 

and Equation 4 were then used to calculate 𝜀𝑠 and 𝑃𝑚𝑎𝑠𝑠 from the average daily sunlight intensity on a 

month-by-month basis for each location.  A TELCIM run for the month with the highest productivity at 

each site was used to size the facility (May was the peak sunlight month for Baton Rouge and 

Jacksonville, June for Bakersfield and Tucson, and July for Memphis).  For each site, a simulation was 

run for each of the other eleven months, iterating on the CO2 uptake rate until the design basis number of 

ponds was returned by the model.  Annual performance statistics were computed using biodiesel volume-

averaging.  The results for several key performance indicators are shown in Table 4.4.  For comparison, 

another set of simulations was run for the same five sites, using the same input data, but without 

correcting for the light saturation effect.  The results of these simulations are also shown in Table 4.4.  
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The most striking outcome of this analysis is that when the light saturation effect is accounted for, there 

is almost no difference in unit manufacturing cost, NER, or CI among the five sites.  The parameter which 

differs most significantly among the sites is water intensity, which is an order of magnitude higher for 

the two western sites (Bakersfield and Tucson) than for the sites located east of the Rocky Mountains.  

The capital productivity of the western sites is also slightly better, which appears to be the only benefit 

of the higher average sunlight intensity experienced by those sites.  When the light saturation effect is 

ignored, the cost differences between sites are more pronounced, but the energy and carbon footprints 

are not significantly different.   

 

4.6. Conclusions 

Based upon the results of the simulations described in this article, coupling the conventional algae 

cultivation and bio-oil processing technologies modeled by TELCIM to produce biodiesel will not yield a 

renewable fuel with a sustainable net energy balance.  Anaerobic digestion of the LEA significantly 

improves the biodiesel’s NER while generating a favorable financial return, but this augmentation alone is 

insufficient to make the fuel environmentally sustainable.  Even with anaerobic digestion, the large 

external energy demand imposed by a “conventional” biodiesel manufacturing process creates a very 

large carbon footprint; the full cradle-to-gate manufacturing process releases almost as much carbon 

dioxide as is incorporated into biomass in the growth step.  As a result, biodiesel produced in this way has 

almost the same carbon footprint as diesel refined from petroleum.  Faster microalgal cell growth and 

higher oil content increase the NER, but to achieve long-term sustainability it appears necessary to 

employ a different manufacturing process.  Modeling suggests that reducing the extent to which the wet 

biomass must be dried before the lipid fraction is recovered holds significant potential for creating a 

positive net energy balance.   
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One of the objectives of this work was to determine how much impact seasonal variations in climate, and 

seasonal and diurnal variations in sunlight intensity, have on the KPI’s of interest.  It appears that for 

modeling purposes annual average climate data is adequate; using more fine-grained input does not 

significantly affect estimates of unit manufacturing cost, NER, or CI.  However, this conclusion presumes 

that the biodiesel manufacturing facility is operated to maximize sunlight utilization.  TELCIM predicts that 

operating the biodiesel facility to maximize CO2 uptake will significantly increase capital and operating 

costs and adverse environmental impacts.  A comparison of the results from the maximum and minimum 

productivity cases shows that the incremental cost of fully utilizing carbon is very high, which is 

unfortunate, since it would be preferable to take as much advantage as possible of the concentrated CO2 

in the industrial gas feeding the algae ponds.  And although using monthly average climatological inputs 

instead of annual averages did not significantly change the NER, CI and unit manufacturing cost of the 

biodiesel, the production capacity (carbon dioxide conversion) and water intensity were sufficiently 

affected to warrant the use of finer-grain inputs, when available.   

 

Incorporating the light saturation effect into the prediction of biomass productivity significantly reduces the 

seasonal variation in this parameter.  When using the maximum productivity design basis, including the 

light saturation effect in the productivity calculation makes the facility size larger than it would be if the 

effect was ignored, but that also increases the annual biodiesel output for a given CO2 source.  Because 

of the “flattening” effect of the LSE on biomass productivity, the differences in climate conditions along the 

southern tier of the United States do not have a significant impact on the biodiesel’s energy and carbon 

footprints.  The potential advantage in biomass productivity offered by the higher sunlight intensities 

experienced in the southwestern United States is almost entirely lost when the light saturation effect is 

taken into account.  But assuming the biological and/or technological barriers to long-term sustainability 

can be overcome, this suggests that the portion of the continental United States where microalgal 

biodiesel might be sustainably produced is much larger than first thought, and sites in the southeastern 

United States might be as suitable or even more suitable for microalgal biodiesel production than those in 

the southwest. As a result, local resource availability (e.g., carbon dioxide, water, land, labor, and 

electricity) and cost structures may be the deciding factors when siting manufacturing facilities.   
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Including precipitation as a source of make-up water creates a significant difference in water intensity for 

sites in the western United States versus those located east of the Rocky Mountains.  But rainfall is an 

episodic phenomenon, and to take advantage of it some provision must be made in the production 

scheme for accumulating precipitation.  Possible mechanisms include increased freeboard in the ponds, 

additional surface impoundments, storage in the subsurface, and dedicated tanks, all of which entail 

additional capital and operating costs that are not included in the base cost structures used in the 

simulations described in this article.   

 

An unexpected outcome from the many TELCIM simulations performed to date is that NER and CI do not 

always move in the same direction, often because of assumptions about byproduct fates.  This reinforces 

the importance of life cycle modeling, and in particular, appropriate selection of system boundaries and 

fully accounting for the fates of byproducts.   

 

One of the limitations of this work is that the effect of ambient temperature on biomass growth rate is 

ignored.  This was deemed an acceptable assumption because all of the locations which were modeled 

lay along the southern tier of the continental United States.  Accounting for temperature effects may tend 

to increase the seasonal variation in biomass productivity, driving the predicted growth rates to more 

closely match those made when the light saturation effect is ignored.  In fact, the cases with and without 

the light saturation correction may represent upper and lower bounds of actual performance, with the non-

LSE cases representing more “ideal” or optimistic cases.  A possible future enhancement of TELCIM is 

the inclusion of a more robust heat and mass transfer model of the raceway ponds, which would allow 

more accurate modeling of biodiesel production in locations at higher latitudes.   

 

Finally, despite being a very large model, TELCIM is easy to work with and has a considerable amount of 

background information already loaded into it in the form of default input parameters.  Selectively varying 

particular input values while holding all the other inputs constant allows the effect of specific parameter 
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selections and process assumptions to be systematically evaluated.  And although perhaps not the 

obvious software choice for chemical process modeling, Excel has many features that make it a highly 

effective and accessible platform for integrated process-financial-LCI modeling.   
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5. OTHER ANALYSES AND RESULTS 

5.1. Introduction 

Several lines of inquiry pursued during the course of this research helped guide the direction of the work 

but did not relate directly to the results discussed thus far.  Four of these secondary areas of research, 

which are representative of the types of supporting analyses that were performed during the course of 

this project, are discussed in this chapter.  The first is an example of work done to test a basic 

assumption made when the production scheme modeled by TELCIM was selected: that conventional 

oilseed extraction technology will perform just as effectively with microalga 

 

 

 

l biomass as with soybeans.  The second topic is an example of work to identify mathematical 

relationships that model physical processes which occur in the manufacturing plant, allowing an 

optimization problem to be solved.  The goal of this analysis was to optimize the residual water content 

based on its effects on the energy used during harvesting and the lipid recovery efficiency of the 

extraction process.  The third study is an example of a detailed analysis of an individual process step, in 

which the effects of local climate conditions and standard operating conditions on the energy loads in the 

biomass drying operation were evaluated.  The fourth topic is an example of a multi-parameter sensitivity 

analysis in which the sensitivity of the biodiesel’s NER, CI, and unit cost to lipid content was evaluated 

under two different microalga growth rate assumptions.   

 

5.2. Microalgal and Soy Lipids 

As discussed in Section 1.1.4, some biodiesel production modelers have assumed that the same lipid 

extraction process commonly used in vegetable oil production will work similarly when the substrate is 

microalgal biomass.  For example, Lundquist’s techno-economic model of microalgal biodiesel production 

included a lipid extraction plant that was modeled after a comparably sized soybean oil extraction plant1 

(see Section 2.2.3 for a more detailed description of the lipid extraction process).  To test this assumption, 
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the chemical profile of the neutral lipids present in a common microalga was compared to a profile typical 

of soybean oil. 

 

Extraction with a pure hydrocarbon solvent is quite specific for neutral (i.e., non-polar) lipids, consisting 

primarily of triacylglycerides (TAG).  TAG is a family of compounds in which three unbranched fatty acid 

molecules are esterified to glycerol.  Figure 5.1 shows a breakdown of the compositions of TAG extracted 

from a Chlorella strain2 and from soybean oil3.  Table 5.1 lists some average properties of the fatty acids 

in the TAG produced by these two organisms. 

 

 
Figure 5.1: Lipid Profiles of Microalgal and Soybean Oil.  Weight 
percentages of fatty acids in triacylglyceride extracted from Chlorella 
protothecoides and soybeans. The horizontal axis entries x:y indicate 
carbon chain length followed by the number of double bonds.   
 

Table 5.1: Properties of Microalgal and Soybean Lipids 
 Microalgal Oil Soybean Oil 
Average Carbon Chain Length 17.1 17.8 
Average Number of Double Bonds 2.2 1.5 
Average Fatty Acid Molecular Weight (kg/kg-mol) 267 278 
Average Triacylglyceride Molecular Weight (kg/kg-mol) 840 872 
 

Figure 5.1 reveals some differences in the compositions of the fatty acids in the TAG recovered from 

Chlorella and soybeans.  Roughly 75% (by weight) of the fatty acid in soybean TAG is comprised of oleic 
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acid (18:1) and linoleic acid (18:2), while these compounds represent less than 15% of microalgal TAG.  

Tri-unsaturated fatty acids constitute almost 60% of microalgal TAG, versus around 5% in soybean TAG.  

Despite these differences, the fatty acids in TAG from these two sources are very similar in average chain 

length and molecular weight.  The most significant difference is in degree of unsaturation, which is 

roughly 50% higher in the microalgal TAG.  While this difference may have implications with respect to 

biodiesel performance (e.g., viscosity, freeze point, pollutant formation), the chemical composition of 

these two materials is similar enough that microalgal oil can be expected to behave similarly to soybean 

oil during alkane extraction.   

 

5.3. Effects of Residual Water on Oil Extraction 

In the conventional production scheme modeled by TELCIM, the biomass drying step contributes 

significantly to the energy and carbon footprints of microalgal biodiesel.  The extent to which the biomass 

must be dried is a constraint imposed by the lipid extraction process.  Per Crown Iron Works, a leading 

supplier of vegetable oil recovery systems, hexane extraction has a very narrow water tolerance centered 

around 10% (wt.) residual water in the biomass4.  It is clear from an overall system energy balance that 

allowing more water to enter the extraction step reduces the amount of energy consumed per unit of 

biodiesel produced.  However, there is a concurrent loss in lipid recovery efficiency, which lowers the 

NER of every gallon of biodiesel produced.  These offsetting factors create an optimization problem.  If 

the relationships between residual water content and energy usage and lipid yield can be expressed 

mathematically and coded into TELCIM, the model can be used to identify the residual water content(s) 

that correspond to potential minima/maxima for NER, CI, and manufacturing cost.   

 

If time effects such as different rates of drying are ignored, biomass drying can be modeled as a change 

of thermodynamic state, as discussed in Section 2.2.2.  The curve describing the relationship between 

residual water content and energy usage is linear, and its slope is equal to the latent heat of vaporization 

of water.  TELCIM’s drying model is therefore already programmed to calculate the difference in energy 

loads represented by different residual water requirements.   
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The extraction of neutral lipids from biomass is a very complex process, and it may be better described as 

a leaching process than an extraction.  Cooney and co-authors have reviewed the mechanisms by which 

neutral lipids are extracted from microalgal biomass using hydrocarbon solvents5.  They conclude that 

there are multiple mechanisms involved in transferring lipids from microalgal cells to the extraction 

solvent, and that these mechanisms operate at different time scales: 

• Solvation of accessible lipid droplets at the surface of the biomass (fast); 

• Penetration of solvent into capillaries in the biomass matrix and diffusion of lipids from broken 

cells into those capillaries, followed by diffusion of the miscella out (slow); and 

• Diffusion of solvent across intact cell membranes and diffusion of miscella back out (very slow). 

Water interferes with mass transfer phenomena at the macro-scale by hindering solvent wetting of the 

biomass, and by inhibiting coalescence of miscella droplets.  At the micro-scale, water occupies pores in 

the biomass matrix through which solvent and miscella must pass, converting a convective flow process 

into a much slower diffusion transport process.  Dissolved water reduces the diffusivity of oil in the 

extraction solvent, and it increases the extraction of polar lipids, which reduces the solubility of TAG in the 

organic solvent.  In addition to these detrimental effects when there is excess water, there are also 

adverse consequences when the biomass is “over-dried”.  At the bulk scale, the biomass becomes 

compacted, reducing the interfacial contact area.  The solids also lose plasticity, resulting in an increase 

in the production of fine particulates, which tends to stabilize emulsions and inhibit coalescence.  At the 

micro-scale, too little water leads to shrinkage and closure of pores in the biomass matrix, reducing 

access of the solvent to the oil5.  In combination, these mechanisms create the potential for an optimum 

residual water concentration in the extraction process, and this is exactly what is seen in industrial 

soybean oil extraction plants using hexane extraction.  In the Handbook of Soy Oil Processing and 

Utilization, G.C. Mustakas reports that “For optimum operation of the [hexane] solvent extraction process, 

9.5 to 10% moisture is desirable…”6.  And in “Introduction to Fats and Oils Technology,” L.A. Johnson 

reports that “Moisture of the [soy] flakes is yet another factor affecting rate of solvent extraction.  In most 

cases, 9-11% moisture is ideal.”7 
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Other than these statements, no quantitative relationship correlating extraction efficiency with water 

content was found for hexane extraction of soybean oil.  However, a reference in which the efficiency of 

soybean oil extraction by a different solvent – isopropanol – yielded the graph and equations shown in 

Figure 5.28.  These curves clearly show a maximum oil recovery at a relatively low residual water content, 

consistent with what has been reported for hexane extraction.     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Effect of Water Content on Extractability of Soybean Oil.  Efficiency of oil 
recovery from soy flakes and broken beans, on a moisture-free weight basis, using 
isopropanol as the extraction solvent.  The curves not only show the sensitivity of oil 
extraction efficiency to residual water content, but the benefit of disrupting the solid matrix 
and expanding its surface to volume ratio, by flaking the biomass. 

 

The optimum residual water content is a function of the relative magnitudes of the slope of the drying 

energy versus residual water content curve (the latent heat of vaporization of water), and the slope of the 

extraction yield versus water content curve.  It is readily apparent from the curves in Figure 5.2 that the 

extraction efficiency is highly sensitive to water content, and therefore the optimum residual water content 

must lie very near the maximum of extraction yield (Y) versus water content (M).   
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5.4. Analysis of Biomass Drying 

The potential microalgal biodiesel production locations evaluated during this research are subject to 

different climate conditions (see Section 4.5).  An objective of this analysis was to evaluate the impact of 

these differences on the cost and energy and carbon footprints of the biomass drying process.  The first 

part of the analysis was intended to determine whether the lower relative humidity experienced at the 

western sites, particularly Tucson, would translate into lower drying energy consumption.  The second 

phase was intended to evaluate the effect on the biodiesel’s NER, CI, and unit cost, of lowering the dryer 

inlet air temperature from the default value used in the Test Scenario.  Phase 2 involved a set of 

simulations for the Tucson site, which had the lowest average relative humidity and highest average 

ambient temperature of the five sites evaluated in the Alternative Site Analysis. 

 

The monthly average climate data assembled for the five sites evaluated in the Alternative Site Analysis 

were used to compute the annual average sunlight intensity, temperature, relative humidity, 

precipitation, and evaporation for each site9,10,11,12.  The areal productivity of the microalga at the 

Memphis location was set equal to 20 g/m2-day, and the lipid content to 50%, consistent with the 

NAABB R&D targets previously described (see Section 4.2)13.  The remainder of the TELCIM inputs for 

these simulations were the same as the values used in the Test Scenario (see Section 3.2).  The areal 

productivity at the other four sites was calculated based on the average sunlight intensity at those sites 

relative to that at Memphis, without correcting for the light saturation effect.   

 

For the first (Phase 1) analysis, a single TELCIM simulation was run for each location using the default 

dryer conditions: 

• Air temperature at inlet to Dryer #1 and Dryer #2 = 250oF; 

• Biomass water content at inlet to Dryer #1 = 73.5%; 
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• Biomass temperature at inlet to Dryer #1 = ambient (as specified by climate data for each site); 

• Air and biomass temperature at outlet from Dryer #1 = 106oF;  

• Biomass water content at outlet from Dryer #1 = 25%;  

• Air and biomass temperature at outlet from Dryer #2 = 120oF; and 

• Biomass water content at outlet from Dryer #2 = 10%. 

The power loads for heating and compressing the inlet air at each site are reported in Table 5.2.  

Table 5.2: Drying Energy Loads at Alternative U.S. Locations 
PLANT 

LOCATION 
AVERAGE 

TEMPERATURE 
(oF) 

AVERAGE RELATIVE 
HUMIDITY 

(%) 

DRYING AIR 
COMPRESSION 

(MWe) 

DRYING AIR 
HEAT LOAD 

(MWth) 
Bakersfield, 
California 65.1 56 169 543 

Tucson,  
Arizona 69.7 38 171 530 

Memphis, 
Tennessee 62.8 67 168 550 

Baton Rouge, 
Louisiana 67.2 75 168 537 

Jacksonville, 
Florida 67.7 78 168 536 

 

There is virtually no difference in the drying energy loads among the five sites.  The drying air heat load 

is dominated by the latent heat required to evaporate sufficient water to achieve the target exit 

concentration of 10% (wt.).  Because the rate of water evaporation is the same at all of the sites, the 

small differences in heat load arise from the slight variation in the inlet air and wet biomass 

temperature.  And because the drying heat loads among the five sites are so similar, so too are the 

volumes of drying air required, leading to the similarity in compression electricity demand. 

 

It appears that any benefit that might result from the low relative humidity at the Tucson site is lost 

because the drying air is being heated to such a high temperature (250oF) relative to its original, ambient 



 

 99  

temperature (70oF).  The second phase of this analysis was performed in order to determine whether 

lowering the inlet air temperature at Tucson would allow this advantage to become more apparent, and 

reduce the overall energy load of biomass drying.  Two cases were considered in Phase 2 of the biomass 

drying analysis, representing two different dryer operating strategies.  In the first, the dryer inlet air 

temperature was varied over the range of 175-250oF, while the exit temperatures from the dryers were 

held constant at their default values (106oF and 120oF for Dryers #1 and #2, respectively).  The results of 

this case are shown in Table 5.3. 

Table 5.3: Tucson Site Drying Cost Analysis – Constant Dryer Exit Temperature Operating Mode 
 DRYER INLET AIR TEMPERATURE 
 250oF 225oF 200oF 175oF 
Dryer #1 Outlet Temperature (oF) 106 106 106 106 
Dryer #2 Outlet Temperature (oF) 120 120 120 120 
Dryer #1 Outlet Relative Humidity (%) 82.6 70.4 58.3 46.1 
Dryer #2 Outlet Relative Humidity (%) 47.7 40.0 32.3 24.7 
Air Flowrate (million scfm) 5.83 7.08 9.00 12.3 
Air Compression Power Load (MWe) 171 207 263 362 
Water Rejected (million kg/day) 9.79 9.79 9.79 9.79 
Steam Thermal Load (MWth) 530 553 590 654 
Drying Cost ($K/day) 712 816 976 1259 
Biodiesel Production Cost ($/gal) 4.90 5.10 5.42 5.97 

 
In this case, as the inlet air temperature is reduced, the air compression electricity load and the thermal 

load to preheat the air both increase significantly.  Since the dryer outlet temperature conditions are 

being held constant, the dryer heat duty remains the same.  As the inlet air temperature falls, enthalpy 

conservation requires the volume of air to increase correspondingly, which causes the compression 

energy duty to increase.  The increase in the dryer thermal load with falling inlet temperature occurs 

because more sensible heat is required to heat a larger volume of air from the same inlet air 

temperature to the same exit temperature.   

 

It is also noteworthy that the relative humidity of the air exiting both dryers falls as the inlet 

temperature is reduced.  This is simply a dilution effect – the same amount of water is being evaporated 
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into a progressively larger volume of air.  And while dryer exit temperature might be the normal control 

parameter for an operating dryer, in this case it would make more sense to operate the dryers based on 

exit humidity targets rather than exit temperature.  To simulate this alternative operating strategy, 

another series of simulations was run, over the same inlet air temperature range 175-250 oF.  The exit 

temperatures from the dryers were varied until the exit humidity from each dryer matched the default 

dryer humidities (82.6% from Dryer #1 and 47.7% from Dryer #2).  Excel’s “Goal Seek” function was used 

to perform these iterations.  The results of this second case are shown in table 5.4.  (This case 

optimistically assumes that the dryers can achieve the same exit humidity with a smaller temperature 

driving force.) 

Table 5.4: Tucson Site Drying Cost Analysis – Constant Dryer Exit Relative Humidity Operating Mode 
 DRYER INLET AIR TEMPERATURE 
 250oF 225oF 200oF 175oF 
Dryer #1 Outlet Temperature (oF) 106 102 98 93 
Dryer #2 Outlet Temperature (oF) 120 116 111 105 
Dryer #1 Outlet Relative Humidity (%) 82.6 82.6 82.7 82.8 
Dryer #2 Outlet Relative Humidity (%) 47.7 47.6 47.8 47.6 
Air Flowrate (million scfm) 5.83 6.84 8.23 10.3 
Air Compression Power Load (MWe) 171 200 241 300 
Water Rejected (million kg/day) 9.79 9.79 9.79 9.79 
Steam Thermal Load (MWth) 530 535 539 543 
Drying Cost ($K/day) 712 785 886 1031 
Biodiesel Production Cost ($/gal) 4.90 5.05 5.24 5.53 

 

The constant relative humidity case has a more favorable energy profile than the constant exit 

temperature case, but the energy loads still increase with decreasing inlet air temperature.  The dryer 

thermal load is nearly constant, but the volume of air required still increases dramatically (due to the 

lower specific enthalpy of cooler air), which drives up the amount of electricity needed.   

 

This analysis indicates that the dryer energy load is dominated by the evaporative load required to 

achieve the extraction step residual water concentration target, and that differences in ambient 
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conditions barely affect that load.  The analysis of alternative dryer operating conditions suggests that 

the highest possible inlet air temperature should be used, since the impact on electricity usage for air 

compression is significant.  The upper limit for the inlet temperature is dictated by the thermal stability 

of the biomass, and particularly the lipids, which are susceptible to oxidative degradation in the 

presence of hot air.   

 

5.5. Lipid Accumulation 

A limitation of many microalgae for the purpose of biodiesel production is that they contain relatively little 

usable oil.  Consequently, considerable amounts of energy and cost are expended in the biodiesel 

manufacturing process producing carbohydrates, proteins and other biomolecules, which are undesired 

byproducts.  Increasing the fraction of cell mass that is neutral lipid should have desirable effects on the 

KPI’s.  But due to thermodynamic and metabolic considerations, increasing the lipid fraction may slow the 

microalga’s growth rate, which slows the rate of lipid production.  Sensitivity analyses revealed that 

several of the KPI’s of most interest - NER and unit cost - are strongly influenced by the microalga’s oil 

content (see Section 3.2).  But in those single parameter sensitivity analyses, the oil content was 

changed while all other parameters remained the same.  One might instead expect that as TAG, a 

hydrophobic lipid, accumulates in a microalgal cell, the mass of water in that cell will decrease 

correspondingly.  One possible model of lipid accumulation in microalgal cells is that the concentration 

of hydrophilic (non-lipid) compounds in water stays relatively constant as lipids accumulate.  [This model 

is consistent with the hypothesis that cells that accumulate lipid do so at the expense of other energy 

storage polymers, such as glycogen.]  If it is assumed that the mass ratio of non-lipid biomass to 

intracellular water remains constant, the change in residual water content corresponding to any given 

change in lipid content can be calculated.   
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If β is defined as the mass fraction of water in the wet biomass (i.e., residual water content), and α is 

defined as the mass fraction of lipid in the dry biomass, then one gram of wet biomass contains β grams 

of water, α(1-β) grams of lipid, and (1-α)(1-β) grams of non-lipid biomass.  The assumption that the ratio 

of non-lipid biomass to residual water is constant is expressed by: 

𝐾 =  
(1 − 𝛼)(1 − 𝛽)

𝛽
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(5.1) 

 

For this analysis, the constant 𝐾 was determined by substituting into Equation 5.1 the values of α and β 

used in the Test Scenario (0.25 and 0.735, respectively); this resulted in a value for 𝐾 of 0.270.  Equation 

5.1 can be rearranged to solve for β: 

𝛽 =  
(1 − 𝛼)

(1 − 𝛼) + 𝐾
 

(5.2) 

A plot of the residual water content (𝛽) as a function of oil content (𝛼) is shown as Figure 5.3: 

 

 
Figure 5.3: Plot of Residual water Content as a Function of Lipid Content, assuming the 
mass ratio of non-lipid biomass to residual water remains constant. Data points 
correspond to individual TELCIM simulations. 
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Two sets of TELCIM simulations were run; all input parameter values were as in the Test Scenario except 

as described below.  In the first set of simulations, the oil content was varied over the range of 25-75% 

(centered on the NAABB target of 50%), and the residual water content was held constant at the default 

intracellular water fraction (0.735).  In the second set, the oil content was varied over the same range, 

and for each value of the oil content, the residual water content was calculated from Equation 5.2.  The 

values of NER, CI, and manufacturing cost generated by the two sets of simulations are shown in Figures 

5.4 through 5.6, respectively. 

 

 

Figure 5.4: Effect of Lipid Accumulation on Net Energy Return.   
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fractions.  When the residual water content is assumed to vary with lipid content, the NER exceeds 1.0 

when the lipid content is greater than around 50%.    

 

 

Figure 5.5: Effect of Lipid Accumulation on Carbon Intensity. 

 

Figure 5.5 shows the effect of higher lipid content on the carbon intensity of the biodiesel product.  

When the water content is assumed to vary with lipid content, the carbon intensity falls off significantly 

as the lipid fraction increases.  When the water content is held constant at 73.5%, the carbon intensity 

remains nearly constant.  One might expect that even with constant water content, the carbon intensity 

of the biodiesel would fall as the lipid fraction increases, since more of the carbon dioxide that is 

converted to biomass ends up as fuel rather than a byproduct.  To better understand why the carbon 

intensity responds so weakly to the lipid content, the contribution of each major process step to the 

biodiesel’s overall carbon intensity was retrieved from TELCIM’s Summary Results worksheet.  To 

maximize the contrast, carbon intensity data from the simulations corresponding to the two extreme 
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data points on the upper curve in Figure 5.5 are compared in Figure 5.6.  The data for the “75% Lipid” 

case in Figure 5.6 corresponds to the furthest data point on the right on that curve (oil content = 75%, 

carbon intensity = 77 gCO2/MJ), while the “25% Lipid” data corresponds to the point furthest to the left 

(oil content = 25%, carbon intensity = 80 gCO2/MJ). 

 

 

Figure 5.6: Breakdown of Carbon Intensity When Residual Water Content Is Held 
Constant.  In both cases the residual water content is 73.5%.  The remainder is biomass, 
of which lipid comprises either 25% or 75%.    

 

In the simulation in which the lipid content of the biomass is 75%, three times as much carbon dioxide is 

being converted to lipid as in the case in which it is limited to 25%.  As shown in Figure 5.6, the carbon 

intensity attributable to the growth step in the 75% case is roughly one-third that of the 25% case (in the 

carbon intensity calculation the same carbon dioxide flux is divided by a fuel energy content three times 

as large).  The drying energy used in the harvesting step is the same in both cases (the model does not 

use different heat capacities for different cellular components), which results in the same carbon 

emissions, but again in the 75% case those emissions are divided by a number three times as large as in 
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the 25% case.  Because the carbon dioxide fluxes in the growth and harvesting steps are (coincidentally) 

roughly equal in magnitude, these effects largely cancel one another, leading to little difference in the 

overall carbon intensity between the two cases.   

 

It is also informative to compare the two simulations in which the oil content is constant%, but the 

water content is at its maximum difference (i.e., the furthest data point to the right on each of the upper 

and lower curves in Figure 5.5).  Figure 5.7 shows a carbon intensity breakdown, by major process step, 

for those two cases.  In both cases, the lipid content is 75% of the biomass on an ash-free, dry weight 

basis, but in the top curve the residual water content is 73.5%, and in the bottom curve it is around 48% 

(as determined from Equation 5.2 when 𝛼 is equal to 0.75).   

 

 

Figure 5.7: Breakdown of Carbon Intensity When Residual Water Content Is Allowed 
to Vary.  In both cases the oil content is 75% of the biomass.    
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The only significant difference in carbon intensities is found in the harvesting step.  Because the lipid 

content is the same in both cases, the carbon flux occurring in the growth step is divided by the same 

fuel energy content, so the carbon intensity of the growth step is unchanged.  The amount of thermal 

energy required to achieve the target residual moisture content of 10% is obviously lower when the 

residual water content of the biomass entering the drying operations is 48% instead of 73.5%.  And 

because the amount of heat that must be transferred to the biomass in the 48% water case is so much 

lower, so too is the electricity demand for air compression.  In combination, the reduced natural gas and 

electricity demands create a sizeable reduction in the carbon emissions attributable to the harvesting 

step.   

 

 

Figure 5.8: Effect of Lipid Accumulation on Unit Biodiesel Manufacturing Cost. 

 

Figure 5.8 shows that the microalga’s lipid content has a dramatic effect on unit biodiesel manufacturing 

cost, regardless of whether the residual water content is constant or variable.  The cost reduction with 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.20 0.30 0.40 0.50 0.60 0.70 0.80 

Pr
od

uc
tio

n 
Co

st
 ($

/g
al

) 

Lipid Fraction (dry wt. basis) 

Variable Water Content 

73.5% Water Content 



 

 108  

increasing lipid content merely reflects that purchased inputs, such as raw materials and energy, are 

more efficiently being converted into biodiesel, reducing each gallon’s unit cost.  There is still a net cost 

benefit from having less water in the biomass feeding the drying operations, but that effect is much 

smaller than the cost benefit derived from improving the yield of biodiesel from the carbon dioxide 

taken up in the ponds.  

 

In this analysis the areal productivity of the microalga was assumed to be constant.  This is a 

questionable assumption, since a cell that is accumulating large amounts of lipid may not be growing as 

quickly as one that is producing a more balanced slate of biomolecules.  For example, researchers have 

substantially increased the lipid content of microalgal cells by starving them of nitrogen for extended 

periods of time14.  But the cells do not grow and divide during the starvation period; essentially they are 

investing energy in converting other biomolecules into lipids.   To investigate the potential impacts of 

this phenomenon, another set of simulations was run in which it was assumed that lipid productivity, 

rather than overall biomass productivity, remains constant.  Thus cells with high lipid content tend to 

grow more slowly (on average) than those with a lower lipid content.  Figures 5.9 through 5.11 

reproduce Figures 5.4, 5.5 and 5.8, respectively, except the areal productivity was adjusted in each 

simulation so that the lipid productivity (i.e., grams of lipid per square meter per day) remain constant, 

at the same rate as in the Test Scenario (6.19 g lipid/m2-day). 
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Figure 5.9: Effect of Lipid Accumulation on Net Energy Return Assuming Constant Lipid 
Productivity.   

 

A comparison of Figures 5.9 and 5.4 shows that the assumption of constant lipid productivity reduces 

the benefit of lipid accumulation to the biodiesel’s NER, especially in the case of variable water content.  

Assuming that lipid accumulation displaces water (the variable water content assumption), in both the 

constant biomass productivity and constant lipid productivity cases the NER climbs above the theoretical 

viability threshold of 1.0 at a lipid content of around 50%. 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

0.20 0.30 0.40 0.50 0.60 0.70 0.80 

N
et

 E
ne

rg
y 

Re
tu

rn
 

Lipid Fraction (dry basis) 

Variable Water Content 

73.5% Water Content 



 

 110  

 

Figure 5.10: Effect of Lipid Accumulation on Carbon Intensity Assuming Constant Lipid 
Productivity.   

 

The curves representing the response of the biodiesel’s carbon intensity to lipid fraction, as shown in 

Figure 5.10, have much the same shape as those shown in Figure 5.5, but are slightly displaced upward, 

in the direction of higher carbon intensities.  This degradation when modeling constant lipid productivity 

as compared to constant biomass productivity is caused by an increase in facility size, with 

corresponding increases in mixing and pumping energy expenditures and the embedded energy in the 

facility’s capital assets. 
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Figure 5.11: Effect of Lipid Accumulation on Unit Biodiesel Manufacturing Cost 
Assuming Constant Lipid Productivity.   

 

The shape of the curves in Figures 5.8 and 5.11 are similar, but the slopes of the curves representing 

constant lipid productivity (Fig. 5.11) are much shallower than those simulating constant biomass 

productivity (Fig. 5.8).  Because the size of the plant increases as the biomass productivity falls off 

(which happens as lipid content increases at constant lipid productivity), some of the cost benefits of 

higher lipid content seen in Figure 5.8 are offset by the higher energy and capital-dependent operating 

costs (e.g., maintenance, depreciation) resulting from a larger facility.   

 

5.6. Conclusions 

The results from the Test Scenario convincingly show that biomass drying imposes a large energy burden 

on the biodiesel manufacturing process, and this seriously degrades the NER, CI and unit cost of the fuel.  
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The attempt to optimize water content based on its effects on drying energy load and extraction efficiency 

led to a semi-quantitative conclusion (i.e., the optimum water content with respect to each of the NER, CI, 

and unit cost lies near the 10% target quoted in the literature) due to a lack of hard data on extraction 

efficiency when hexane is the solvent.  Data on the extractability of lipids from microalgal biomass in 

commercial-scale equipment is needed to provide a more quantitative analysis. 

 

The attempt to optimize dryer operating conditions did not identify any maxima or minima in the range of 

dryer inlet temperatures studied, but it showed the importance of the dryer operating strategy, which 

became another variable in the analysis.  This study also revealed that local climate conditions have little 

effect on the NER, CI or cost of drying, whereas standard operating conditions can have a large effect.  

While this means that no potential biodiesel manufacturing site has an advantage due to its temperature 

and humidity, it also means no site will be disadvantaged because of its climate.  (Note this applies only 

to biomass drying – ambient temperature may have an important impact on the microalgal growth rate 

when cultivated outdoors.) 

 

The fourth analysis described in this chapter (lipid accumulation) shows how the detailed information 

available in TELCIM can be used to probe the underlying causes of results or trends.  The use of the bar 

charts in Section 5.5 is an example of this.  This study also shows how sensitivity analyses can be refined 

and extended by accounting for the potential dependencies between model parameters.  This analysis 

explored three potentially interdependent input parameters: lipid fraction, residual water content, and lipid 

productivity.  If high lipid content can be achieved without sacrificing biomass productivity, the NER, CI, 

and cost of manufacture are all significantly improved.   
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

There are many performance metrics that might be used to evaluate and compare alternative microalgal 

biodiesel manufacturing processes.  The analyses conducted for this dissertation relied primarily on Net 

Energy Return, carbon intensity, and unit manufacturing cost for that purpose.  NER is an especially 

relevant performance metric for a fuel, since it indicates the extent to which a particular manufacturing 

process is self-sufficient in terms of energy; the lower the NER, the higher the demand for externally 

supplied energy.  An NER less than 1.0 is inherently unsustainable unless the energy deficit is supplied 

from renewable sources.  TELCIM’s LCI models differentiate between energy derived from renewable 

sources and fossil fuels, allowing an investigator to determine how much fossil energy is consumed to 

produce a quantity of microalgal biofuel.  If more fossil energy is consumed to make a biofuel than the 

biofuel contains, then one must question whether it makes sense to produce that biofuel at all.  However, 

some forms of energy are more valuable than others, and there may be situations in which it is 

appropriate to produce a fuel at a net energy deficit; examples might include a fuel used for military or 

other national security purposes.  Carbon intensity is also a good performance metric for a fuel, since it 

indicates to what extent the life cycle of that fuel contributes to anthropogenic carbon emissions.  One 

must question the merit of producing a biofuel that has higher net carbon emissions than the fossil fuel it 

is intended to replace.  And manufacturing cost is the most commonly used measure of the resource 

intensity of a commodity, and provides a basis for gauging the ability of that commodity to compete in a 

fair and open marketplace. 

 

TELCIM predicts many other performance measures that can be used to evaluate and compare biodiesel 

manufacturing schemes or scenarios.  For example, the life cycle inventory models are designed to 

compile the indirect emissions of several air pollutants in addition to carbon dioxide.  Some of these 

compounds are believed to contribute to global warming, others to adverse human health effects, ozone 

depletion, smog formation, etc.  (Note that to construct a complete inventory of the emissions of these 

pollutants, any sources within the manufacturing plant must also be included.  For example, hexane 
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emitted from the extraction step should be counted as VOC emissions, and fugitive methane emissions 

from the digestion step should be included in the inventory of greenhouse gases.  TELCIM may have to 

be modified to estimate emissions of particular pollutants from the manufacturing plant.)   

 

Other relevant performance measures that were used in this research include: 

• Water intensity, which indicates the amount of stress a biodiesel plant will place on local water 

resources. 

• Oil or biodiesel areal productivity, which is the volume of oil (biodiesel) produced per hectare per 

year.  This metric is commonly used to evaluate the productivity of oilseed crops, and is an 

indicator of how much land is required to produce a quantity of fuel. 

• Capital productivity, which is the total capital cost of the biodiesel plant divided by the annual 

biodiesel production volume.  This is a measure of the investment required to produce a quantity 

of fuel. 

An investigator will have to select the best performance indicators for the type of analysis being 

performed, and perhaps customize TELCIM to compute them.. 

6.2. Conclusions 

6.2.1. The Viability of Microalgal Biodiesel 

Assuming that the Test Scenario provides reliable indications of the approximate costs and energy and 

carbon footprints of producing microalgal biodiesel in the United States, it appears that conventional 

process technologies are inadequate to produce an environmentally sustainable and economically 

competitive fuel.  The Net Energy Return is much less than 1.0, indicating that a significant amount of 

externally-supplied energy in excess of the energy content of the biodiesel must be expended to produce 

it.  The biodiesel’s carbon intensity is almost as high as that of conventional diesel produced from 

petroleum, so converting to microalgal biodiesel will not significantly slow the rate at which carbon dioxide 

is accumulating in the atmosphere.  And the estimated production cost of microalgal biodiesel is several 

multiples of the current selling price of conventional diesel, meaning that switching would impose a 

substantial financial penalty. In addition, installing the production capacity to provide meaningful 
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quantities of microalgal biodiesel will require the investment of hundreds of billions of dollars.  Under the 

circumstances, it hardly seems advisable to build microalgal biodiesel production plants that rely on 

current process technology.   

 

Energy use within the biodiesel manufacturing process is the main driver for the NER, CI and 

manufacturing cost.  Thermal energy for drying represents the largest energy user, followed (in 

descending order) by drying air compression, flue gas compression, pond mixing, and water pumping.  

Case studies showed that if the biomass drying load can be substantially reduced or eliminated, 

presumably by substituting an alternative “wet” extraction process for conventional oilseed extraction, the 

biodiesel’s carbon intensity becomes negative, indicating net carbon sequestration.  Among the many 

simulations performed during the course of this research, the “No Drying” case is the only scenario in 

which the biodiesel’s carbon intensity is negative.  Improving lipid productivity at constant biomass 

productivity can substantially reduce carbon intensity, but not enough to achieve net carbon removal from 

the atmosphere.   

 

The case studies and sensitivity analyses indicate there may be several ways to improve the NER to 

above 1.0.  In addition to implementing a wet extraction process, increasing the lipid faction of the 

biomass (on a dry basis) without appreciably slowing the microalga’s growth rate can achieve that goal.  

This is very encouraging, since it suggests that advancements in both biology and process engineering 

can deliver substantial improvements in the biodiesel’s energy footprint as well as dramatically reducing 

the fuel’s manufacturing cost.  In the analyses performed thus far, the biggest improvement in cost was 

achieved either by eliminating the need for drying, or by raising the lipid fraction of the dry biomass to 

greater than 60% without slowing the microalga’s growth rate. Combining these two developments should 

deliver even greater benefits. 

 

Among the more significant findings of the analyses conducted during this research is that there is little 

variation in the NER, CI, and unit manufacturing cost of biodiesel produced in different locations across 

the southern tier of the continental United States, from California to Florida.  Energy usage, which drives 
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the KPI’s, is only slightly affected by local climatological conditions.  Differences in sunlight intensity 

barely affect biomass productivity, due to the light saturation effect.  This finding suggests there is little 

benefit in locating biodiesel in peak sunlight areas, such as the desert Southwest, and that many other 

candidate sites will perform equally well or better, especially from the standpoint of make-up water 

requirements.   

 

Finally, a massive amount of capital investment will be required to install manufacturing capacity for a 

meaningful amount of microalgal biodiesel.  It is doubtful that private enterprise can or will make that 

investment unless dramatic process improvements and/or government incentives (e.g., land grants, 

favorable tax treatment, subsidies) make the economics more rewarding.  Alternatively, if the driving 

forces become strong enough, biodiesel production may have to be viewed as a public utility at first, with 

production plants co-located and integrated with power and water treatment facilities.  Government policy 

and funding may play a pivotal role in determining whether there is a future for microalgal biofuels in the 

United States. 

 

6.2.2. Alternative Process Technologies 

As previously discussed, energy use is the main driver of the three benchmark KPI’s used in this research 

to characterize proposed biodiesel manufacturing schemes. The best way to improve these KPI’s is to 

reduce the amount of energy consumed per gallon of fuel produced.  Reductions in energy usage in 

biodiesel manufacture can be achieved by: 

• Increasing the water tolerance of the oil extraction process.  Allowing more water to enter the 

extraction step reduces the thermal and air compression energy loads in the harvesting step, the 

two largest energy users in the entire process.  

• Lowering the microalga’s intracellular water content.  Reducing the amount of water entering the 

drying step also reduces the thermal and air compression loads in the drying operations.  

Increasing the lipid fraction of the dry biomass may also reduce the residual water content, giving 

a synergistic benefit.  
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• Using indirect drying.  In an indirect dryer, the biomass comes into contact with a heated surface, 

so no hot air is needed.  (Indirect dryers were not modeled in the Test Scenario because they 

are susceptible to fouling when drying biosolids like sewage sludge.  Skin temperatures can also 

be high enough to accelerate undesired lipid degradation reactions.  Replacing even just a 

portion of the total drying load with indirect drying should have favorable impacts. 

• Increasing the drying air temperature.  This will reduce the volume of air required, and with it the 

air compression energy load.  (Higher temperatures may increase lipid decomposition reactions, 

however.) 

• Reducing the mean channel velocity in the ponds.  The ponds are circulated solely for the 

purpose of mixing, which ensures that adequate mass and heat transfer rates are maintained.  

Pond mixing should be kept at the absolute minimum necessary to ensure adequate 

performance. 

 

Another way to improve the performance of the plant is to increase the amount of material and energy 

which is recovered and recycled within the process.  Potential examples include: 

• Anaerobic digestion of sewage sludge was the model for TELCIM’s digestion process model.  

LEA may behave similarly, but any portion of it which is not decomposed and converted into a 

recoverable resource (i.e., biogas, nitrogen and phosphorus) is a lost opportunity.  Some form of 

LEA pretreatment, such as acidic or enzymatic hydrolysis, may be justifiable on the basis of cost, 

energy return, and/or carbon balance.   

• In the Test Scenario, heat is recovered from the exhaust from the biogas microturbine generators.  

This offsets some of the thermal energy load that would otherwise be met by burning natural gas.  

It may be possible to increase the efficiency of this and potentially other heat recovery operations 

in the plant. 

• High volumes of humid air are rejected from the dryers, while at the same time there is a 

substantial need to replace evaporative losses from the ponds.  Cooling towers to recover water 

from the dryer exhaust may be justified under some circumstances.  
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6.2.3. The Ideal Production Organism 

Manufacture of microalgal biodiesel is at its heart a biological process, and compared to industrial 

organisms such as yeast or E. coli, microalgae are not yet well characterized or understood.  Sensitivity 

analyses indicate that biological properties and characteristics are among the most influential on the 

biodiesel KPI’s of interest.  Biological factors affect the performance of virtually every step in the 

manufacturing process; for example:  

• Growth rate affects the size of the ponds, which affects capital costs and the amount of energy 

used for pond mixing and water and flue gas pumping.  

• Lipid fraction also affects the size of the ponds, and the size (capital cost) and performance 

(recovered energy) of the anaerobic digesters. 

• Lipid profile affects the performance of the extraction and conversion steps, and influences the 

end use properties of the biodiesel. 

• Cell wall properties affect the rate at which intracellular water is removed in drying, and the ease 

with which oil can be extracted.. 

• Specific gravity affects the pond mixing energy demand, and the size and operating costs of the 

clarifiers and thickeners in the harvesting step. 

• Cell number density at the end of fermentation affects the size of the dewatering operations. 

• Intracellular water content affects the size of the dryers and the amount of energy used in the 

drying step. 

• Thermotolerance affects the growth rate, and influences the range of sites in which production 

facilities might be located. 

• Osmotolerance also potentially affects the growth rate, the amount of water that can be recycled 

from the dewatering operations, and the quality of the water used as make-up.   

• Substrate specificity determines which fertilizers can be used in the growth step, and can affect 

the growth rate of the organism. 

• Digestibility of LEA affects the size and energy and nutrient recovery rates of the anaerobic 

digestion step. 
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TELCIM is an excellent tool with which to evaluate the relative importance of these properties, and to 

potentially identify the optimal mix of properties for a biodiesel production organism.  Multi-dimensional 

sensitivity analyses might help guide bioprospecting, by directing researchers to microenvironments that 

should select for desirable properties.  They might similarly influence efforts to create more effective 

production organisms using forced selection or genetic engineering techniques.   

 

The goal of the growth step is to maximize lipid productivity (i.e., mass of lipid per unit illuminated surface 

area per unit time) rather than biomass productivity.  But given that lipid productivity is the product of lipid 

fraction and cell growth rate, it should be recognized that, from a process standpoint, it is preferable to 

increase lipid fraction rather than growth rate.  A higher lipid fraction reduces byproduct processing costs 

and waste.  The value of higher lipid fraction is diminished only to the extent that energy is recovered 

from the residual biomass in the digesters.   

 

The dependence of process performance on the biological, biochemical and physical properties of the 

microalga creates a need for close collaboration between biologists and engineers, so that the most 

advantageous characteristics of the organisms are identified, developed, and exploited.  

 

6.2.4. TELCIM’s Functionality 

The benefits of an integrated Techno-Economic-LCI Model of biodiesel manufacture are evident in the 

results of the analyses described in this dissertation.  Because TELCIM models the entire “cradle-to-gate” 

manufacturing process, including raw material and energy production and distribution, direct comparisons 

can be made to diesel produced by any other route.  With TELCIM, an investigator can systematically 

evaluate the effects of alternative microorganisms, process technologies, and site conditions, on a wide 

range of technical, financial, and environmental performance measures.  And this can be accomplished 

without the need to alter the underlying programming – every one of the variant cases and scenarios 

described in this dissertation was simulated only by changing input values from those used in the Test 

Scenario.  
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There were situations in which changes to the Test Scenario caused the NER and CI to move in opposite 

directions.  For example, compared to the Test Scenario, adopting NAABB’s productivity and lipid content 

targets caused the NER to improve while the CI got worse.  The rich detail in TELCIM’s supporting 

calculations allows an investigator to deconstruct aggregate measures like NER and CI to see precisely 

where changes are occurring in the manufacturing process, and how they contribute to changes in the 

performance metrics of interest.   

 

In the Test Scenario, the extraction and conversion steps contribute little to the NER, CI and cost of the 

biodiesel.  This raises the question of whether it is necessary to include these steps in the model, and 

whether the functional unit for the model should be expressed in terms of microalgal oil instead of 

biodiesel.  It must be recognized that the purpose of the harvesting step is to render the biomass suitable 

for oil extraction, and that the harvesting step imposes the largest energy burden of all of the processing 

steps in the manufacturing process.  In addition, large cost and energy savings are realized by digesting 

the LEA, which is a byproduct of the extraction step.  Ignoring the extraction and conversion steps creates 

the risk of significantly distorting the ultimate costs and environmental impacts of biodiesel manufacture.  

It must also be recognized that due to the different cost scaling approaches used for the “modular” 

operations (growth, harvesting and digestion) versus the “unitary” process steps (extraction and 

conversion), the contributions of these two steps to the benchmark KPI’s will be different at production 

scales other than the very large plant scale contemplated by the Test Scenario (as the plant size gets 

smaller, the relative contribution of the extraction and conversion steps to the NER, CI, and unit cost 

increases.)   

 

6.2.5. TELCIM’s Limitations 

In a model such as TELCIM, there are trade-offs among size, accuracy, and flexibility.  A model that is 

both highly accurate and flexible enough to model many different process schemes is likely to be very 

large and complex.  TELCIM represents a reasonable balance among these competing priorities.  

Retaining the flexibility to model a range of physical processes while also constructing reliable financial 

and life cycle inventories required many simplifying assumptions, some of which are listed here: 
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• Quantitative nutrient uptake.  It is assumed that 100% of the nitrogen, phosphorus and sulfur (if 

needed) added to the growth step is assimilated by the microalgae, and that no excess of these 

nutrients is needed.  (This is a reasonable assumption as long as the blowdown ratio from the 

dewatering step is low, since most of the unused nutrients are recycled back to the ponds.) 

• Autoflocculation.  It is assumed that the biomass will flocculate and either settle or float without 

the aid of chemical additives, or resorting to an energy-consuming sedimentation process, such 

as dissolved air flotation or sonic focusing. 

• No wastewater treatment.  It is assumed that the blowdown and other wastewater streams 

generated during biodiesel manufacture can be disposed to the environment without additional 

treatment.   

• Carbon dioxide uptake.  Carbon dioxide is soluble in water, it undergoes rapid reactions with 

water to form carbonate and bicarbonate ions, and it participates in other biochemical and 

inorganic reactions.  When fed flue gas at a high CO2 concentration (relative to the concentration 

in the atmosphere), some carbon dioxide will escape from the ponds by offgassing.  TELCIM 

models these complex phenomena with a simple linear correction to estimate the amount of 

carbon dioxide that is converted into biomass in the ponds.   

• Cell growth.  The microalga’s areal productivity is probably the most influential input parameter in 

the entire model, and yet a number of complex biological, meteorological and operational 

phenomena are subsumed under this one variable.  Results presented in this dissertation show 

that variations in this parameter over the time-scales being modeled can be significant, so the 

investigator must be careful to use appropriate input data for the type of analysis being 

undertaken. 

• Capital costs.  The capital cost structure for the harvesting step in the Test Scenario was 

prepared for a slightly different process than is represented by TELCIM’s Harvesting Step 

Process Model.  For example, the process model includes forced air dryers while the capital costs 

are based on solar drying beds.  It was assumed that the changes in equipment size and/or type 

were small enough that the original capital cost estimates are still reasonably accurate. 
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TELCIM is a steady-state model simulating a process that is subject to variations of important process 

parameters that follow diurnal and seasonal cycles.  Because it is an instantaneous model, small time 

steps can be used to simulate different meteorological and operating conditions, and those results can be 

integrated over time to build up a more accurate assessment of plant performance.  The investigator must 

be careful to recognize the limitations on accuracy imposed by other uncertainties inherent in the model 

and the data used to populate it.  Given these limitations, it may be advisable to place more importance 

on the trends and sensitivities predicted by TELCIM than the numerical values it produces.    

 

6.3. Recommendations for Future Work 

6.3.1. Uncertainty Analysis 

TELCIM is a deterministic model – specific values are entered as input, calculations are made, and output 

is rendered in the form of numerical values for a large suite of process, financial, and environmental 

parameters.  The model does not evaluate the validity of input parameter values, nor is it configured to 

estimate the uncertainty of its predictions.  And although the processes modeled by TELCIM are 

plausible, they are still hypothetical, so there is undoubtedly some uncertainty in the model’s predictions. 

 

Some of the uncertainty in the predictions made by TELCIM arises because a single numerical value is 

supplied for each input parameter to the model.  Many input parameters have a distribution of possible 

values, and although those selected as inputs to the Test Scenario and the other cases described in this 

dissertation represent reasonable or expected values, they were not the only values that might be 

defensibly used as input.  Uncertainty also arises from the assumptions made about process type, 

sequence, and performance, or from other simplifying assumptions made to make the analysis more 

manageable.  Because of TELCIM’s structure, the uncertainty in parameters and assumptions related to 

the physical processes modeled by TELCIM is likely to be the most important, since predictions made by 

the process models are used as inputs to the financial and environmental models, and consequently 

process uncertainties propagate to the outputs from those models too.  Price uncertainty only affects the 

model’s financial predictions, except for the dependency of the resource usages and pollutant emissions 
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attributable to capital assets on monetary expenditures.  Similarly, uncertainty in the resource and 

emission factors used in the life cycle inventories primarily affects the NER and CI calculations, and does 

not directly affect the engineering or financial predictions made by the model.  

 

Now that the integrity and functionality of TELCIM have been demonstrated, an uncertainty analysis 

should be considered as a future project.  For deterministic models like TELCIM, uncertainty is often 

addressed by performing Monte Carlo simulations.  But Monte Carlo analysis is subject to one of the 

same limitations that single parameter sensitivity analysis is prone to – all variables are treated as 

independent, when there may be hidden or complex interdependencies that are not reflected by the 

mathematical models.  Allowing these interdependencies to go unrecognized may actually suppress the 

uncertainty in the model’s predictions, so it is recommended that a thorough review of the input parameter 

set is made, looking for interdependencies that are not reflected by the program.  Wherever possible, 

these dependencies (e.g., residual water content as a function of lipid content, the interrelationship 

between growth rate and lipid fraction) should be expressed mathematically and coded into TELCIM.  In 

addition, some of the process assumptions might be replaced with mathematical expressions.  For 

example, quantitative uptake of nutrients could be replaced with an uptake efficiency factor that can be 

treated as a variable in an uncertainty analysis.    

 

The following is a general outline of a plan for an uncertainty analysis that can be performed with 

TELCIM: 

1. Review the complete set of input parameters and identify those between which there are 

dependencies.  Develop mathematical relationships describing those interdependencies, thereby 

reducing the number of input parameters that must be specified.   

2. Review process assumptions, and wherever possible, replace assumptions that limit model 

flexibility (e.g., allow for incomplete nutrient uptake in the ponds, allow for the use of a flocculant 

in the sedimentation step).  This may add more input parameters that must be specified, but also 

allows for additional sensitivity analyses.   
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3. Perform comprehensive sensitivity analyses testing all input variables for their influence on a 

defined set of performance metrics.  While selecting the range over which each variable is to be 

evaluated, initial consideration should be given to the type and characteristics of the probability 

distribution for that parameter.   

4. Select the most influential variables.  Prepare probability distributions from operational or 

experimental data, interviews with subject matter experts, and/or best technical judgment.  (A 

reference work on preparing probability distributions and interviewing subject matter experts is 

“Uncertainty”, by Morgan and Henrion, published by Cambridge University Press in 1990.) 

5. Run Monte Carlo simulations using Oracle’s Crystal Ball software, which is an Excel add-in.  

Predict frequency distributions for KPI’s of interest, and determine confidence limits and other 

measures of uncertainty from those distributions (Training on Crystal Ball is available through 

Technology Partnerz; www.crystalballservices.com.) 

 

6.3.2. Enhanced Physical Models 

One of the design objectives for TELCIM was to make it easy for an investigator to evaluate different 

processing schemes for the manufacture of microalgal biodiesel.  Several such alternatives are discussed 

in this dissertation, including a scenario in which biomass drying in the harvesting step is bypassed, and 

another in which the anaerobic digestion step is deleted from the process.  All of the alternative scenarios 

described in this dissertation were performed by altering certain of the input data to neutralize the effects 

of certain operations (e.g., no separation across a dryer, no nutrient recovery or biogas production in a 

digester).  To model other alternative operating schemes, it may be necessary to revise one or more of 

the physical models that comprise TELCIM’s process models. 

 

Prior results indicate that the three benchmark KPI’s predicted by the Test Scenario can be greatly 

improved by adopting an oil extraction process that has a much higher water tolerance than the hexane 

extraction process commonly used for vegetable oil extraction.  The “No Drying” variant case described in 

Chapter 4 was modeled by bypassing the drying operations from an operational standpoint, while 

retaining the capital and non-energy operating costs of the drying and extraction operations as 

http://www.crystalballservices.com/�
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representative of the corresponding costs of a novel, but as yet undefined, wet extraction process.  As 

more information becomes available on alternative lipid recovery processes, the following steps can be 

followed to model them in TELCIM: 

• Retain the dewatering operations in the harvesting step process model. 

• Revise the drying target if the water tolerance of the extraction process cannot be met by 

mechanical dewatering operations alone.  A single drying step may be sufficient to reach that 

target, or the load may be split between sequential dryers, as in the Test Scenario. 

• Develop a physical model for the extraction step that relates the amount of oil recovered to some 

process variable(s).  This may be as simple as an oil recovery efficiency factor, or as 

sophisticated as an integrated model of solvation, pore diffusion, and coalescence.  Express this 

model mathematically and incorporate it into TELCIM’s programming.  

• Develop correlations between extraction process performance and mass and energy flows, so 

that material and energy balances can be closed around the new process.  Ensure that all of the 

outputs required from the Extraction Step Process Model are generated and correctly identified 

as inputs by any other models that use them.  In addition, new entries in the financial and LCI 

models may have to be made to reflect new raw materials, energy carriers, capital spending 

categories, emission categories, etc.   

If the extraction solvent contains the alcohol to which the the fatty acids will be esterified in the conversion 

step, some or all of the transesterification reaction may occur in the extraction step.  In that case, some 

changes may also need to be made to the conversion step process model, or it may need to be bypassed 

altogether.   

 

One of the environmental factors that can affect microalgal growth rate is the temperature of the ponds.  

TELCIM does not account directly for the effect of pond temperature on growth rate; it assumes that the 

areal productivity value selected by the user accounts for any such effects.  By analyzing only sites along 

the southern rim of the United States, it was assumed that temperature effects on areal productivity would 

be insignificant, or would be the same at all of those sites.  A more explicit heat balance around the ponds 

could be performed and incorporated into the Growth Step Process Model.  This would allow differences 
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in productivity arising from lower ambient temperatures at more northerly sites to be predicted.  To do this 

correctly, the investigator must be able to correlate changes in growth rate to water temperature.  If such 

a model is implemented, TELCIM might be used to determine over what temperature range it is justifiable 

to continue running the plant, or to estimate how much external heat must be supplied to overcome low 

ambient temperatures and maintain the biomass growth rate at the desired level. 

 

In the Test Scenario, carbon uptake in the ponds is modeled as a linear process – a fixed percentage of 

the carbon dioxide fed to the ponds is converted to biomass.  Carbon dioxide conversion is a complicated 

process, since equilibration is occurring between atmospheric carbon dioxide, soluble carbon dioxide, 

dissolved carbonate and bicarbonate species, the biological reactions involving these chemical species, 

and perhaps other inorganic reactions (e.g., solids precipitation and dissolution).  A more sophisticated 

model of these simultaneous mass transfer and reaction phenomena could be used to predict the rate at 

which carbon is converted into biomass.  Another valuable alternative is to develop a model that predicts 

the efficiency of carbon dioxide transfer from the flue gas to the liquid phase in the ponds, based on gas 

composition and properties, fluid composition and properties, and the design and operating conditions of 

the gas spargers.  Such a model could even investigate the effect of gas injection on the local and mean 

velocities of the circulating fluid in the ponds.  Along similar lines, a carbonate balance around the system 

could be attempted.   

 

In TELCIM, nutrient uptake in the ponds is assumed to be quantitative.  This simplistic model can be 

replaced with a more complicated one, in which an uptake efficiency factor is either entered, or is 

calculated from relevant physical properties and operating conditions.  Or elemental balances can be 

performed around the growth, harvesting and digestion steps to determine steady state concentrations of 

usable nitrogen and phosphorus species.  These balances will predict required feed rates from steady 

state concentrations in the various process, product, and byproduct streams. 
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Although TELCIM assumes that microalgal cells will autoflocculate, in practice a chemical flocculant may 

be needed to achieve acceptable levels of clarifier and thickener performance.  A simple mass or volume 

ratio can be used to estimate the consumption of flocculant, or a more sophisticated settling model can be 

constructed to calculate the settling characteristics of the biomass, and predict chemical addition rates.  

 

6.3.3. Alternative models 

In addition to enhancing some of its physical models, TELCIM could also be modified to simulate different 

processes.  For example, the growth step could be based on photobioreactors (PBR’s) instead of 

raceway ponds.  This would require the redesign of most of the growth steps physical models, but the 

overall configuration of the Growth Step Process Model can be retained.  The Stoichiometry Model will 

remain unchanged, precipitation and evaporation can be deleted from the water balance model, the 

pressure drop in the bioreactors will have to be revised, etc.   

 

TELCIM currently treats all growth ponds the same, and the model is based on continuous, well-mixed 

flow reactors.  A more sophisticated growth model that more accurately reflects the growth characteristics 

of the production organism could be developed.  For example, some of the ponds might be used for 

production of inoculum.  One set of reactors could be configured to promote biomass production, while 

another could be designed to maximize lipid production.   

 

An assumption that was built into the model is that it is preferable to use microturbines distributed around 

the facility for power generation, rather than collecting and pumping biogas to a central power generation 

unit.  Another design assumption built into TELCIM which could easily be replaced is the use of trucks to 

haul biomass to and from the extraction plant.  Alternative systems could be considered, such as 

conveyor belts, or a pneumatic system.  

 

One of the potential advantages of using microalgae to produce biodiesel is that many strains are capable 

of thriving in brackish, saline, or otherwise degraded water.  TELCIM uses the salt tolerance of the 

organism to assist with closing the system water balance.  An analysis of the impact of allowable water 
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quality on the KPI’s can be performed to identify the expected benefits of using an osmotolerant 

organism.  The ability to grow in degraded water may also be an absolute requirement for sites at which 

fresh water supplies are limited.  There may be financial and operational synergies if the algae ponds can 

be used to treat some form(s) of wastewater, and the biodiesel is credited with avoided costs at an 

industrial or municipal wastewater treatment plant.  Tests may have to be conducted to determine how 

effectively microalgae can remove conventional and other organic pollutants from wastewater, and what 

effect the presence of pollutants might have on its growth rate and lipid fraction.   

 

Finally, the pressure drop calculations performed by TELCIM are based on highly simplified piping 

arrangements.  In the Test Scenario, gas and water pumping are the second and third largest consumers 

of energy (following the heat energy used in biomass drying), so more accurate estimates may improve 

the quality of the KPI estimates generated by TELCIM.  Sensitivity analyses on piping friction factors and 

equivalent pipe lengths will indicate whether this analysis is warranted.   

 

6.3.4. Other Analyses 

Because local climatological conditions appear to have little impact on the cost of manufacture at the five 

alternative US sites considered, the availability of required resources and local price structures will 

determine which is the most economical.  Utility rates (electricity, natural gas, and water) will be among 

the most influential, along with labor rates.  TELCIM’s financial models can be populated with data 

specific to different sites.  Another local criterion is the availability of sufficient quantities of water of 

suitable quality.  Water procurement may involve additional capital and operating costs, such as for 

extraction wells and electricity for pumping groundwater.  Local data can also be used to extend 

TELCIM’s analysis into a Life Cycle Assessment.  This would involve characterizing the complete life 

cycle of the byproducts from the biodiesel manufacturing plant, and assigning impacts to the data 

compiled in the LCI models.  

 

TELCIM is programmed to model a microalgal biodiesel manufacturing facility.  It assumes there is a 

source of carbon dioxide at the center of the facility, but no other interactions between that source and the 
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biodiesel plant are modeled.  Similarly, TELCIM allows that part of the water brought in to the facility is 

wastewater treatment plant effluent, but no other connection between that plant and the biodiesel plant is 

modeled.  Instead of viewing these as distinct facilities functioning in a traditional supplier-consumer 

relationship, the facility being modeled could be a utility enterprise that integrates municipal wastewater 

treatment, electricity generation, and biodiesel production.  In that case, the biogas from the digesters 

could be co-fired with natural gas in the central power unit.  Optimizing the production of biodiesel, 

electricity, and delivery of wastewater treatment services could lead to more cost effective and 

environmentally sustainable operating platforms when combined rather than operating individually. 

 

In its current configuration, TELCIM does not model the extraction and conversion steps at the level of 

individual unit operations, as it does with the growth and harvesting steps.  Instead, it models each of the 

extraction and conversion steps as a single activity in which all of that step’s inputs and outputs are 

linearly related to its oil throughput.  The original models for the basis extraction and conversion plants 

modeled by TELCIM were developed using chemical process simulators such as Aspen Plus.  To better 

characterize the relationships between material and energy flows and oil throughput in these two major 

process steps, several simulations could be run over the range of relevant oil throughputs, and 

mathematical models entered into TELCIM. 

 

As pointed out in Section 5.5, there are likely to be interdependencies between a microalga’s lipid 

fraction, intracellular water content, and growth rate.  TELCIM currently treats these biological properties 

as independent variables.  When performing sensitivity analyses on these parameters, two possible 

relationships among these variables were proposed: the ratio of intracellular water to non-lipid biomass in  

the microalgal cells remains constant, and that the lipid productivity of the cells remains constant.  These 

relationships, or other likely relationships among these three cell properties, can be expressed 

mathematically and coded into TELCIM.   

 

The flue gas used as a source of carbon dioxide in the Test Scenario was assumed to originate at a coal-

fired electric power plant.  The offgas from other types of industrial sources, including power plants using 
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different fuels, will have different compositions.  A series of TELCIM simulations could be used to 

estimate the impact on the KPI’s of using flue gas from electric power plants fueled by natural gas, or that 

use advanced technologies such as oxycoal combustion.  More concentrated carbon dioxide sources will 

reduce pumping energy and pipe sizes, reducing capital and operating costs and energy and carbon 

footprints, perhaps significantly.  

 

For the Test Scenario, the COD removal efficiency in the anaerobic digesters was set at 65%, a value 

commonly achieved when sewage sludge is digested.  However, LEA may be a more consistent, 

biodegradable material than sewage sludge, in which case the actual COD removal efficiency may be 

higher than 65%.  On the other hand, because fatty acids are relatively reduced molecules, the LEA will 

be more oxidized than whole microalgae, and the methane yield might be lower than for sewage sludge.  

As production quantities of LEA become available it will be instructive to study how it behaves in an 

anaerobic digestion process. 
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Appendix - Derivation of Process Models 

A.1. Introduction 

The primary purpose of this Appendix is to provide the derivations of the governing relationships of 

several of TELCIM’s process models.  Another purpose is to capture the major assumptions underlying 

these models.  Knowing the bases for TELCIM’s physical models makes it easier to assess the reliability 

and accuracy of their predictions. 

 

A.2. Models for Predicting Microalga Productivity 

One of the most influential input parameters used by TELCIM to predict the technical, financial and 

environmental performance of proposed microalgal biodiesel manufacturing schemes is the areal 

productivity of the microalga strain to be grown.  This parameter determines the amount of illuminated 

surface area required to produce a given amount of biomass, and affects energy loads, pollutant 

emissions, and capital and operating costs.  Ideally, a value for this critically important parameter is 

available from actual operating data, or can be estimated from experimental data.  But in the absence of 

such data, TELCIM includes two alternative methods for predicting it.   

 

A.2.1. Photosynthesis Model 

The first method for estimating the areal productivity of a microalga strain is adapted from techniques 

used by Weyer1 and Wigmosta2.  Their approach is to estimate the efficiency with which the energy of 

incident sunlight is converted into biochemical energy, using either the energy density of whole algal cells 

(Weyer), or the typical energy density of lipid, protein, and carbohydrate, and a representative microalgal 

cell composition (Wigmosta).  TELCIM uses a similar formulation, but employs a carbon mass balance 

rather than an energy balance to estimates a microalga’s productivity:  

 

𝑃𝑚𝑎𝑠𝑠 =  
𝐸𝑠𝐶𝑃𝐴𝑅𝜏𝑝𝜀𝑓𝜀𝑠𝜀𝑎𝑀𝐴

𝑄𝑟𝐶𝑐𝐸�𝑝
 (A.2.1) 
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where: 

 𝑃𝑚𝑎𝑠𝑠 = areal productivity of microalga [kg/m2-day]; 

 𝐸𝑠 = sunlight intensity [kJ/m2-day]; 

 𝐶𝑃𝐴𝑅 = fraction of sunlight that is photosynthetically active [none]; 

 𝜏𝑝 = sunlight transmission efficiency [none]; 

 𝜀𝑓= efficiency loss due to fluorescence [none]; 

 𝜀𝑠 = efficiency loss due to light saturation [none]; 

 𝜀𝑎= efficiency of sunlight conversion to biomass [none]; 

 𝑀𝐴 = nominal molecular weight of microalga [kg/kg-mol]; 

 𝑄𝑟 =  quantum yield [kg-mol photons/kg-mol CO2]; 

 𝐶𝑐 = molar carbon concentration [kg-mol carbon/kg-mol microalga]; and 

 𝐸�𝑝 = average energy content of photosynthetically active radiation [kJ/kg-mol photons]. 

 

This approach is based on the assumption that all of the carbon atoms in new microalgal cells are 

ultimately obtained from carbon dioxide via photosynthesis reactions.  It uses the detailed microalga 

composition data already available in TELCIM, and obviates the need to have a measured or estimated 

value for the microalga’s energy density.  

 

All of the parameters on the right side of Equation A.2.1 are entered as constants, except for the 

efficiency factor for light saturation.  TELCIM computes the light saturation efficiency using a form of 

Bush’s Equation3: 

 

𝜀𝑠 =  �
𝐸0
𝐸𝑠

ln �
𝐸𝑠
𝐸0

+ 1� , 𝑖𝑓 𝐸𝑠 > 𝐸0 

1                          , 𝑖𝑓  𝐸𝑠 ≤ 𝐸0

� (A.2.2) 

where: 

 𝐸0 = light saturation constant [kg/m2-day]; and 

 𝐸𝑠 =actual sunlight intensity [kJ/m2-day]. 
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A.2.2. CSTR Model 

The second method is a simplified chemical reactor model that uses the microalga’s doubling time and 

several properties of the growth vessel to estimate the microalga’s areal productivity.  It assumes that the 

growth vessel is a perfectly mixed, flow-through reactor (also known as a continuously-stirred tank 

reactor, or CSTR), operating at steady state, and that growth kinetics can be modeled as first order in 

biomass concentration (i.e., exponential growth).  An expression for these kinetics is: 

 

𝐶 =  𝐶0𝑒𝑘𝑡 (A.2.3) 

where: 

 𝐶 = microalga concentration at time ‘t’ [kg/m3]; 

 𝐶0 = microalga concentration at time zero [kg/m3]; 

 𝑘 = pseudo-first order rate constant [1/day]; and 

 𝑡 = reaction time [days]. 

 

The microalga’s doubling time can be used in Equation A.2.3 to find the pseudo-first order rate constant 

‘𝑘’: 

 

𝑘 =  
1
𝑡𝐷

ln �
𝐶
𝐶0
� =  

ln 2
𝑡𝐷

=
0.693
𝑡𝐷

 (A.2.4) 

where: 

 𝑡𝐷 = microalga’s doubling time [1/day]. 

 

The reaction rate, which is the rate of microalga production, is found by differentiating Equation A.2.3 with 

respect to time, and using Equation A.2.4: 

 

𝑟𝐴 =  
𝑑𝐶
𝑑𝑡

=  𝑘𝐶0𝑒𝑘𝑡 = 𝑘𝐶 = 0.693
𝐶
𝑡𝐷

 (A.2.5) 

where: 

 𝑟𝐴 = microalga production rate [kg/m3-day]. 
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Finally, the volumetric productivity (𝑟𝐴) is converted into an areal productivity by dividing it by the ratio of 

the reactor’s illuminated surface area to its volume, and including an efficiency factor (𝑓𝑡) to account for 

less than peak illumination: 

 

𝑃𝑚𝑎𝑠𝑠 =  0.693
𝑓𝑡𝐶𝑉
𝐴𝑖𝑡𝐷

 (A.2.6) 

where: 

 𝑓𝑡 = efficiency factor [none]; 

 𝑉 = reactor volume [m3]; and 

 𝐴𝑖 = reactor illuminated surface area [m2]. 

 

(As a first approximation, 𝑓𝑡 can be estimated as the fraction of the day during which the sun is shining.)  

This alternative is a crude approach to estimating areal productivity, since microalgae growth is 

exceedingly complex, and does not remain exponential even when all required growth factors are 

present.  And because mixing in reactors as large as raceways ponds will almost certainly be less than 

perfect, local nutrient and/or light limitations will also reduce the microalga’s growth rate.  The efficiency 

factor can be used to account for these non-idealities. 

 

A.3. Predicting Fertilizer Addition Rates (The “Stoichiometry Model”) 

The primary purpose of the Stoichiometry Model is to estimate the minimum amounts of chemical 

supplements (“fertilizers”) that must be added to satisfy the composition of the microalgal strain being 

grown.  The following inputs are required to perform mass balance calculations around the growth step: 

the amount of carbon dioxide that will be converted to biomass, the elemental composition of the 

microalga, and the elemental composition of each of the chemical fertilizers that will be used to supply 

nitrogen, phosphorus, and sulfur to the growing microalgae. (It is assumed that the requirements for other 

trace elements and micronutrients are satisfied by the make-up water streams being fed to the 

bioreactors.)  In addition, TELCIM allows for two other sources of nitrogen and phosphorus: treated 
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sewage, and recycle from the anaerobic digestion step.  These additional sources of nitrogen and 

phosphorus can offset some or all of the demand for purchased fertilizers.   

 

The elemental composition of the microalga is entered in the form of the mass fraction of each element 

(e.g., grams of carbon per gram of microalga).  TELCIM requires input data for carbon, nitrogen, oxygen, 

hydrogen, phosphorus, and sulfur.  The mass fractions of several other elements (e.g., iron, calcium, and 

magnesium) are recorded, but do not factor into subsequent mass balance calculations, which are done 

an ash-free, dry weight basis.  TELCIM converts the mass fractions to mole fractions on the basis that 

one “molecule” of alga contains exactly one atom of phosphorus.  This artificial construct is very useful 

when performing subsequent mass balance calculations, which are much more conveniently done as 

molar balances.   

 

The elemental composition of the nitrogen, phosphorus, and sulfur sources are specified by entering each 

compound’s molecular weight and the number of atoms of nitrogen, phosphorus, sulfur, carbon, hydrogen 

and oxygen each contains.  The amount of carbon dioxide that is to be converted into biomass is entered 

directly, or is calculated by TELCIM from a power plant rating and an appropriate CO2 emission factor 

(e.g., gCO2/kWh).  A CO2 uptake efficiency factor is entered to account for any losses due to offgassing 

from the ponds.   

 

Mole balances around the growth ponds are performed for six elements: carbon, nitrogen, phosphorus, 

sulfur, hydrogen and oxygen.  The most general statement of these balances takes the following form:  

 

�𝜈𝑖,𝑗
𝑖,𝑗,𝑘

𝑀𝑗,𝑘𝑄𝑘 =  0 (A.3.1) 

where: 

 𝜈𝑖,𝑗  = stoichiometric coefficient for element ‘i’ in compound ‘j’ [kg-mol/kg-mol]; 

 𝑀𝑗,𝑘 = molar concentration of compound ‘j’ in stream ‘k’ [kg-mol/m3]; and 

 𝑄𝑘 = volumetric flowrate of stream ‘k’ [m3/day]. 
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Values of 𝑄𝑘 are considered to be positive if entering the ponds, and negative if exiting the ponds.   

 

Several key assumptions are made to simplify the elemental balances, and to ensure that the minimum 

required amounts of fertilizers are calculated: 

• No more than one unique chemical compound is used as the primary source of nitrogen, of 

phosphorus, and of sulfur (the primary supplement for one element may include one or both of 

the other elements, however); 

• All macronutrient elements (C, N, P and S) feeding the ponds are converted quantitatively into 

microalgal cells (consequently, the filtrate from the harvesting operations contains no usable C, 

N, P or S); 

• There is no usable carbon in the make-up water (𝑞𝑓𝑟𝑒𝑠ℎ in Figure 4.1, below), sewage water 

(𝑄𝑆𝐸𝑊𝐴𝐺𝐸), and recycle from the digesters (𝑞𝑟𝑒𝑐𝑦𝑐𝑙𝑒); and 

• There is no usable nitrogen, phosphorus or sulfur in the make-up water stream.  

 

Given these assumptions, an elemental balance on carbon simplifies to: 

 

𝐶𝑇𝑂𝑇 =  𝐶𝐶𝑂2 + 𝐶𝑁 + 𝐶𝑃 + 𝐶𝑆 (A.3.2) 

where: 

 𝐶𝑇𝑂𝑇 = total amount of carbon to be converted to microalgae [kg-mol/day]; 

 𝐶𝐶𝑂2  =  amount of carbon in the CO2 that is converted to microalgae [kg-mol/day]; 

 𝐶𝑁 = amount of carbon in the nitrogen source added to the growth step [kg-mol/day]; 

 𝐶𝑃 = amount of carbon in the phosphorus source added to the growth step [kg-mol/day]; and 

 𝐶𝑆 = amount of carbon in the sulfur source added to the growth step [kg-mol/day]. 

 

Balances on nitrogen, phosphorus and sulfur can also be written, accounting for the amounts of these 

elements that are present in any sewage water used as make-up, and in the recycle from the anaerobic 

digestion step:  
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𝑁𝐹𝐸𝐷 =  𝑁𝑁 + 𝑁𝑃 + 𝑁𝑠 + 𝑁𝑆𝐸𝑊 + 𝑁𝑅𝐸𝐶  (A.3.3) 

𝑃𝐹𝐸𝐷 =  𝑃𝑁 + 𝑃𝑃 + 𝑃𝑠 + 𝑃𝑆𝐸𝑊 + 𝑃𝑅𝐸𝐶  (A.3.4) 

𝑆𝐹𝐸𝐷 =  𝑆𝑁 + 𝑆𝑃 + 𝑆𝑠 + 𝑆𝑆𝐸𝑊 + 𝑆𝑅𝐸𝐶  (A.3.5) 

where: 

 𝑁𝐹𝐸𝐷 = total amount of nitrogen added to the microalgae growth step [kg-mol/day]; 

 𝑁𝑁 = amount of nitrogen in the nitrogen source added to the growth step [kg-mol/day]; 

 𝑁𝑃 = amount of nitrogen in the phosphorus source added to the growth step [kg-mol/day]; 

 𝑁𝑠 = amount of nitrogen in the sulfur source added to the growth step [kg-mol/day]; 

 𝑁𝑆𝐸𝑊 = amount of nitrogen added in the sewage wastewater [kg-mol/day]; 

 𝑁𝑅𝐸𝐶 = amount of nitrogen recycled from the digesters [kg-mol/day]; and 

 etc. 

 

Carbon is used as a “key” element, allowing the amount of nitrogen, phosphorus and sulfur incorporated 

into biomass to be related to the amount of carbon that is converted to new cells: 

 

𝑁𝑇𝑂𝑇 =  𝑘𝑁𝐴𝐶𝑇𝑂𝑇 (A.3.6) 

𝑃𝑇𝑂𝑇 =  𝑘𝑃𝐴𝐶𝑇𝑂𝑇 (A.3.7) 

𝑆𝑇𝑂𝑇 =  𝑘𝑆𝐴𝐶𝑇𝑂𝑇 (A.3.8) 

where: 

 𝑁𝑇𝑂𝑇 =  total amount of nitrogen to be incorporated into microalgae [kg-mol/day]; 

 𝑘𝑁𝐴 = molar ratio of nitrogen to carbon in the microalgae [kg-mol/kg-mol]; and 

etc. 

 

An additional set of nine relationships can be written based on the relative numbers of atoms in the 

fertilizers used to supply nitrogen, phosphorus, and sulfur. For example:  

 

𝑁𝑁 =  𝑘𝑁𝐶𝐶𝑁 (A.3.9) 
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where: 

 𝑘𝑁𝐶 = molar ratio of nitrogen to carbon in the nitrogen source [kg-mol/kg-mol]. 

 

To support microalgal growth, enough nitrogen, phosphorus and sulfur must be added to satisfy the 

microalga’s composition: 

 

𝑁𝐹𝐸𝐷 ≥  𝑁𝑇𝑂𝑇 (A.3.10) 

𝑃𝐹𝐸𝐷 ≥  𝑃𝑇𝑂𝑇 (A.3.11) 

𝑆𝐹𝐸𝐷 ≥  𝑆𝑇𝑂𝑇 (A.3.12) 

 

This system of relationships (A.3.2 – A.3.12) constitutes an optimization problem, which, due to the 

unbounded nature of the composition and stoichiometry of the fertilizers, is very complex.  The first step 

in setting mathematical constraints to allow a solution to emerge is to consider whether any physical 

constraints might limit the possible solution set.  The initial problem statement allowed for all fertilizers to 

contain any number of carbon, nitrogen, phosphorus and/or sulfur atoms.  While this is the most general 

case, it is also physically unrealistic, so the following additional simplifying assumptions are made: 

 

1. Fertilizers to provide phosphorus and sulfur are most likely to be inorganic phosphate or sulfate 

salts, containing no organic carbon. By further assuming these macronutrients contain no 

inorganic carbon, then the only potential source of carbon for cell growth other than carbon 

dioxide is the compound added as a nitrogen source. As a result, 𝐶𝑃 = 𝐶𝑆 = 0. 

2. If a supplemental phosphorus source is required, it is assumed that the phosphorus source 

contains a negligible amount of nitrogen and/or sulfur.  As a result, 𝑃𝑁 = 𝑃𝑆= 0. 

3. If a supplemental sulfur source is required, it is assumed that this material contains a negligible 

amount of nitrogen and/or phosphorus.  As a result, 𝑆𝑁 = 𝑆𝑃 = 0. 

 

These heuristics acknowledge that in typical algal biomass, the number of nitrogen atoms (per cell, or per 

unit mass) greatly exceeds the number of atoms of phosphorus and sulfur.  Thus a nitrogen source that 
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contains phosphorus or sulfur (e.g., (NH4)3PO4, (NH4)2SO4) will most likely deliver more than enough 

phosphorus or sulfur to meet that element’s requirement.   

 

Applying these heuristics to the elemental balances yields the following simplifications: 

 

𝐶𝑇𝑂𝑇 =  𝐶𝐶𝑂2 + 𝐶𝑁 = 𝐶𝐶𝑂2 + 𝑘𝐶𝑁𝑁𝑁 (A.3.13) 

𝑁𝐹𝐸𝐷 =  𝑁𝑁  + 𝑁𝑆𝐸𝑊 + 𝑁𝑅𝐸𝐶  (A.3.14) 

𝑃𝐹𝐸𝐷 =  𝑃𝑃  + 𝑘𝑃𝑁𝑁𝑁  + 𝑃𝑆𝐸𝑊 + 𝑃𝑅𝐸𝐶 (A.3.15) 

𝑆𝐹𝐸𝐷 =  𝑆𝑆  + 𝑘𝑆𝑁𝑁𝑁  + 𝑆𝑆𝐸𝑊 + 𝑆𝑅𝐸𝐶  (A.3.16) 

where: 

 𝑘𝐶𝑁 = molar ratio of carbon to nitrogen in the nitrogen source; and 

etc. 

 

The amount of usable nitrogen contained in the sewage wastewater fed to the microalgae growth step is 

the product of the sewage water flowrate and its nitrogen concentration: 

 

𝑁𝑆𝐸𝑊 =  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 (A.3.17) 

where: 

 𝑛𝑆𝐸𝑊 = concentration of usable nitrogen in the sewage wastewater [kg-mol/m3]; and 

 𝑄𝑆𝐸𝑊 = volumetric flowrate of sewage wastewater [m3/day]. 

 

The amount of usable nitrogen that is recycled from the anaerobic digesters to the growth step is a 

function of the performance of the harvesting, extraction and digestion steps, which can be modeled as a 

linear function: 

 

𝑁𝑅𝐸𝐶 =  𝑓𝑁𝑁𝑇𝑂𝑇 (A.3.18) 
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where: 

 𝑓𝑁 =  fraction of the usable nitrogen contained in the microalgae exiting the ponds that is 

recycled to the growth step. 

 

Combining Equations A.3.3, A.3.10, A.3.14, A.3.17, and A.3.18, and given that the amounts of usable 

nitrogen in the sewage water and digester recycle are specified by user inputs, the following relationship 

can be written: 

 

𝑁𝑁 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 − 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 (A.3.19) 

 

Recognizing that the first term on the right-hand side of Equation A.3.19 represents the demand for 

nitrogen that is NOT satisfied by the digester recycle stream, this relationship merely states that the 

minimum amount of nitrogen that must be added to the ponds is equal to that unsatisfied demand less the 

amount present in the incoming sewage waste.  Because the amount of nitrogen fertilizer added cannot 

be less than zero, it can be concluded that: 

 

𝑖𝑓  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 , 𝑡ℎ𝑒𝑛 𝑁𝑁 = 0 (A.3.20) 

𝑖𝑓   𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 , 𝑡ℎ𝑒𝑛 𝑁𝑁 = 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 − 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊   (A.3.21) 

 

It is also apparent that if no nitrogen source is needed, the only source of carbon for microalgal growth is 

carbon dioxide, so: 

 

𝑖𝑓  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 , 𝑡ℎ𝑒𝑛 𝐶𝑇𝑂𝑇 = 𝐶𝐶𝑂2  (A.3.22) 

 

and Equation A.3.22 can be rewritten as: 

 

𝑖𝑓  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2 , 𝑡ℎ𝑒𝑛 𝐶𝑇𝑂𝑇 = 𝐶𝐶𝑂2 , 𝑎𝑛𝑑  𝑁𝑁 = 0 (A.3.23) 
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Note that Equation A.3.21 specifies 𝑁𝑁 if 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇, while Equation A.3.23 specifies 

𝑁𝑁 if 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2.  But because 𝐶𝑇𝑂𝑇 ≥ 𝐶𝐶𝑂2 , there is overlap between these intervals, in 

the region in which: 

 

𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2 ≤ 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 

 

Because Equation A.3.23 is unbounded, it must hold that in this interval 𝐶𝑇𝑂𝑇 = 𝐶𝐶𝑂2 .  And because 𝑁𝑁 is 

a continuous function over all values of 𝐶𝑇𝑂𝑇, the transition point at which 𝑁𝑁 becomes nonzero must be 

at 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2 .  In that case, Equation A.3.21 can be rewritten as: 

 

𝑖𝑓   𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2 , 𝑡ℎ𝑒𝑛 𝑁𝑁 = 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 − 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊  (A.3.24) 

 

Substituting Equation A.3.24 into A.3.13 gives: 

 

𝑖𝑓   𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2 , 𝑡ℎ𝑒𝑛 𝐶𝑇𝑂𝑇 = 𝐶𝐶𝑂2 + 𝑘𝐶𝑁[𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 − 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊] (A.3.25) 

 

which can be rearranged to: 

 

𝑖𝑓   𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2 , 𝑡ℎ𝑒𝑛 𝐶𝑇𝑂𝑇 =
𝐶𝐶𝑂2 − 𝑘𝐶𝑁𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊
[1 − 𝑘𝐶𝑁𝑘𝑁𝐴(1 − 𝑓𝑁)]

 (A.3.26) 

 

The only unknown in Equations A.3.23 and A.3.26 is 𝐶𝑇𝑂𝑇, allowing direct numerical calculation of this 

parameter from input data.  (Note that if the nitrogen source contains no carbon, 𝑘𝐶𝑁 is identically zero, 

and Equation A.3.26 simplifies to 𝐶𝑇𝑂𝑇 = 𝐶𝐶𝑂2 , which is the expected result (i.e., carbon dioxide is the only 

source of carbon in the ponds).  Similarly, as 𝑓𝑁 approaches one, indicating that all of the nitrogen 

contained in the microalgae is being recycled, the condition described by Equations A.3.20 and A.3.22 is 

met, and TELCIM predicts that no additional nitrogen source is required, and 𝐶𝑇𝑂𝑇 = 𝐶𝐶𝑂2 .) 
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Once 𝐶𝑇𝑂𝑇 is calculated, 𝑁𝑁 is found from Equations A.3.20 and A.3.21.  The only remaining unknowns in 

the simplified system of relationships are 𝑃𝑃 and 𝑆𝑆, the amounts of phosphorus and sulfur supplements 

that must be added.  The phosphorus and sulfur balances for the growth step expressed by Equations 

A.3.15 and A.3.16 are solved in a manner similar to that used to resolve the nitrogen balance, except that 

the nitrogen source may be another supplemental source of phosphorus and/or sulfur.   

 

The complete solution for determining the total amount of carbon converted to microalgae, and the 

minimum addition rates of nitrogen, phosphorus and sulfur supplements, is given by:  

 

𝐶𝑇𝑂𝑇 =  �
(𝐶𝐶𝑂2 − 𝑘𝐶𝑁𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊)
[1 − 𝑘𝐶𝑁𝑘𝑁𝐴(1 − 𝑓𝑁)]

 , 𝑖𝑓 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2
𝐶𝐶𝑂2 ,                                      𝑖𝑓  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2

� (A.3.27) 

𝑁𝑁 =  �
𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 − 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 , 𝑖𝑓 𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊  < 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝑇𝑂𝑇 
0,                                                      𝑖𝑓  𝑛𝑆𝐸𝑊𝑄𝑆𝐸𝑊 ≥ 𝑘𝑁𝐴(1 − 𝑓𝑁)𝐶𝐶𝑂2

� (A.3.28) 

𝑃𝑃 =  �𝑘𝑃𝐴
(1 − 𝑓𝑃)𝐶𝑇𝑂𝑇 − 𝑝𝑆𝐸𝑊𝑄𝑆𝐸𝑊 −  𝑘𝑃𝑁𝑁𝑁 , 𝑖𝑓 (𝑝𝑆𝐸𝑊𝑄𝑆𝐸𝑊 + 𝑘𝑃𝑁𝑁𝑁)  < 𝑘𝑃𝐴(1 − 𝑓𝑃)𝐶𝑇𝑂𝑇 

0,                                                                         𝑖𝑓 𝑘𝑃𝐴(1 − 𝑓𝑃)𝐶𝑇𝑂𝑇 ≥ (𝑝𝑆𝐸𝑊𝑄𝑆𝐸𝑊 + 𝑘𝑃𝑁𝑁𝑁)
� (A.3.29) 

𝑆𝑆 =  �𝑘𝑆𝐴
(1 − 𝑓𝑆)𝐶𝑇𝑂𝑇 − 𝑠𝑆𝐸𝑊𝑄𝑆𝐸𝑊 −  𝑘𝑆𝑁𝑁𝑁 ,   𝑖𝑓 (𝑠𝑆𝐸𝑊𝑄𝑆𝐸𝑊 + 𝑘𝑆𝑁𝑁𝑁)  < 𝑘𝑆𝐴(1 − 𝑓𝑆)𝐶𝑇𝑂𝑇 

0,                                                                         𝑖𝑓 𝑘𝑆𝐴(1 − 𝑓𝑆)𝐶𝑇𝑂𝑇 ≥ (𝑠𝑆𝐸𝑊𝑄𝑆𝐸𝑊 +  𝑘𝑆𝑁𝑁𝑁)
� (A.3.30) 

 

The Stoichiometry Model also predicts the amount of water consumed in photosynthesis reactions.  This 

is accomplished by performing an elemental balance on hydrogen around the ponds, with the following 

assumptions: 

• The hydrogen content of the nitrogen, phosphorus, and sulfur-containing compounds in sewage 

water is negligible (consistent with the effluent from a secondary treatment system); 

• The nitrogen recycled to the ponds from the digester is in the form of ammonia, and the 

concentration of reduced sulfur in this stream is negligible; and 

• Sufficient water is oxidized in photosynthesis reactions to exactly satisfy the hydrogen balance 

around the ponds. 

With these assumptions, the following balance on hydrogen atoms can be written:  

 


