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Experimental design offers an elegant model of many problems where one navigates within

a vast search space seeking data points with certain characteristics. A multitude of applica-

tions in science and engineering fall under this umbrella, with drug and materials discovery

being prime examples. The experimental design approach maintains a probabilistic model of

the search space, and uses Bayesian decision theory accounting for this model to guide the

accumulation of observed data to maximize an experimentation objective of interest. This

dissertation explores Bayesian optimization and active search, two realizations of the exper-

imental design framework that model discovery tasks. While existing solutions are available

for these two problems under conventional settings, there are important scenarios to which

these solutions cannot be readily applied, namely those of high dimensions or with multiple

data sources, objectives that favor diversity in the collected data, and settings where effi-

cient policy computation is crucial such as real-time systems and large-scale databases. We

address these gaps, putting forward optimization and search policies with competitive em-

pirical performance under their respective settings. The algorithmic solutions in our works

provide practitioners with the tools to tackle a broad range of experimental design tasks,

and ultimately advance machine learning-aided scientific discovery efforts.
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Chapter 1

Introduction

The ability to adaptively make decisions based on data underlies many modern applications

ranging from product recommendation [50] and personalized healthcare [105] to algorithms

for robotic control, text generation, and learning to play games such as chess and Go at

superhuman level [182, 63]. Experimental design formalizes this framework of adaptive

decision-making by building a predictive model on available data, and using that model to

guide the design of new experiments towards a particular goal. Of particular interest are

scientific discovery problems that are characterized by (i) the sheer number of experiments

one could possibly perform and (ii) the high cost of experimentation. An illustrative example

is in drug discovery, where a scientist searches over a vast database of chemical compounds

for those with desirable properties (such as binding activity to target proteins). Given a

candidate compound, extensive computational and/or physical experiments are needed to

fully characterize its properties. This cost of experimentation prevents exhaustive screening

of the entire database, and motivates a sample-efficient strategy that inspects only a small

number of compounds that are beneficial to the search and lead the scientist closer to their

goal. In experimental design, we are concerned with the following question: Given a partic-

ular objective, how do we construct such an effective sampling strategy that can identify the

beneficial experiments to perform?

This dissertation explores experimental design strategies under settings relevant to scientific

discovery tasks. We begin with Bayesian optimization, a particular realization of experimen-

tal design for optimizing functions, in Chapt. 3. While traditional Bayesian optimization

approaches have proven to be extremely effective in low dimensions, they struggle to perform

well on high-dimensional objective functions due to curse of dimensionality. Noting the ef-

fectiveness of local optimization in high dimensions, we design a local Bayesian optimization

framework to circumvent the difficulty of global optimization under the curse of dimensional-

ity. By maximizing the probability that the next design will make progress in optimization,
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our algorithm can effectively navigate high-dimensional search spaces and successfully op-

timize challenging objective functions. This local optimization strategy allows us to tackle

optimization tasks that involve a large number of decision variables, and contributes to the

high-dimensional Bayesian optimization literature.

Next, we find another important instance of experimental design in active search, where

the goal is to identify rare and valuable data points within a large but finite database,

and study two specific settings. The first is multifidelity search discussed in Chapt. 4,

where one has access to multiple experiment oracles of varying degrees of cost and accuracy

(e.g., a cheap computer simulation and an expensive physical experiment conducted in a

laboratory). Here, we aim to design a search policy that can leverage these multiple oracles

simultaneously to maximize discovery. Chapt. 5, on the other hand, presents active search

settings with utility functions that exhibit diminishing returns for similar discoveries. These

utility functions model preference common in scientific settings for dissimilar over similar

data, and encourage search policies to uncover diverse data sets. We extend the machinery

developed from traditional active search to these new settings, first proving the hardness

result that, in the worst case, there are no polynomial-time policies that can achieve a

constant-factor approximation to the expected utility by the optimal policy. While these

hardness results establish the theoretical limit of efficient active search policies, we also

design policies that perform empirically well on real-world problems, by adopting the state-

of-the-art algorithm from traditional search to multifidelity and diversity-aware search.

Finally, as the application of active search to real-time systems as well as large search spaces

becomes more common, the need for highly efficient search policies arises. While the state-

of-the-art active search algorithm employs a combination of simplifications of the search

objective and aggressive pruning, it retains a time complexity superlinear with the size

of the search space. This complexity poses a challenge in deploying the policy in real-

time applications where decisions need to be made quickly or in large-scale spaces that are

common in modern drug discovery. Chapt. 6 addresses this gap by having a neural network

learn to search. Leveraging imitation learning techniques from reinforcement learning, we

train a small, relatively shallow neural network to mimic the behavior of the expensive-to-

compute state-of-the-art search policy. The trained policy network, which can rapidly make

its decisions via fast forward passes, can then be deployed in the aforementioned target

applications. We show that the policy network produces beneficially nonmyopic designs that

are similar to those of the original expert policy, and, across diverse real-world tasks, achieves
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competitive performance that closely matches the expert’s at a fraction of the cost, while

outperforming cheaper baselines.

Most of the algorithmic solutions discussed in this dissertation take a Bayesian decision-

theoretic approach. We first define a utility function that expresses preference over different

outcomes resulting from possible designs – in other words, this utility function quantifies the

experimental design objective. We then compute the expected utility of each possible design,

marginalizing over outcome uncertainties, and select the design maximizing this expected

utility. By deriving this expected-case optimal decision or, when marginalizing over all pos-

sible uncertainties is computationally intractable, efficiently approximating it, we develop

principled experimental design strategies with impressive empirical performance. Overall,

our works offer a wide range of solutions tackling diverse experimental design settings, pro-

viding flexibility in data-driven decision-making to accelerate scientific discovery.

This flexibility is further demonstrated in a wide range of real-life use cases to which our

experimental design solutions have been applied, which are enumerated in Chapt. 7 and

include the discovery of photoswitches with long half-lives in chemistry, offering guidance to

users of an interactive visualization for data exploration in visual analytics, and learning of

convex hulls for phase diagrams in materials science. Throughout these diverse applications,

our algorithms lead to more efficient learning and discovery than less adaptive approaches to

experimentation, showcasing the impacts experimental design can have on real-world tasks.

Declaration of Previous Publications

All works presented in this dissertation is the result of collaboration with other researchers,

most of which have been published at peer-reviewed conferences. We outline the original

work works presented in this dissertation below with references to those previous publications

or unpublished manuscripts, and describe each author’s contributions.
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Chapter 2: Background

This chapter reviews the fundamentals upon which the rest of this dissertation builds. The

presentation is mainly the candidate’s own; various notions on Bayesian decision theory are

partially inspired by

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022.

Chapter 3: Local Bayesian Optimization

The work in this chapter appears in

Quan Nguyen, Kaiwen Wu, Jacob R. Gardner, and Roman Garnett. Local Bayesian

optimization via maximizing descent probability. In Advances in Neural Information

Processing Systems, 2022.

Gardner and Garnett initiated the main idea of learning the gradient of the objective function

for local optimization. Nguyen and Wu jointly implemented prototypes and conducted pre-

liminary experiments. Garnett motivated maximizing descent probability, and Wu derived

the closed-form solution for the acquisition function. Wu implemented the acquisition func-

tion and Nguyen performed the experiments and analyses. Gardner and Garnett provided

valuable feedback throughout.

Chapter 4: Multifidelity Active Search

The work in this chapter appears in

Quan Nguyen, Arghavan Modiri, and Roman Garnett. Nonmyopic Multifidelity Acitve

Search. In Proceedings of the 38th International Conference on Machine Learning,

2021.

Modiri and Garnett independently motivated the problem. Modiri proposed an initial base-

line policy and Nguyen designed the final acquisition function. Nguyen conducted the ex-

periments and analyses. Garnett proposed showing the cumulative utility difference versus

the single-fidelity policy and offered crucial guidance throughout.
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Chapter 5: Diversity-Aware Active Search

The work in this chapter appears in

Quan Nguyen and Roman Garnett. Nonmyopic Multiclass Active Search with Di-

minishing Returns for Diverse Discovery. In Proceedings of the 26th International

Conference on Artificial Intelligence and Statistics, 2023.

Nguyen proposed the initial problem setting with the logarithm utility function, and de-

signed the search policy. Garnett suggested lazy pruning when optimizing the submodular

acquisition function to expedite policy computation, and motivated the analysis with the

other utility functions such as the square root. Nguyen performed the experiments and

analyses with Garnett’s feedback.

Chapter 6: Amortized Active Search

The work in this chapter is currently under review and appears in the following preprint:

Quan Nguyen, Anindya Sarkar, and Roman Garnett. Amortized nonmyopic active

search via deep imitation learning. arXiv preprint, 2024. arXiv:2405.15031 [cs.LG].

Garnett conceived the idea of using reinforcement learning to learn to perform active search

and suggested using imitation learning to obtain an initial policy. Nguyen designed the state

representation, performed the training, and conducted the experiments and analyses with

Sarkar’s and Garnett’s valuable feedback.

Chapter 7: Applications of Experimental Design

The works in this chapter appear in the following publications and preprint:

Fatemah Mukadum, Quan Nguyen, Daniel M. Adrion, Gabriel Appleby, Rui Chen,

Haley Dang, Remco Chang, Roman Garnett, and Steven A. Lopez. Efficient Discovery

of Visible Light-Activated Azoarene Photoswitches with Long Half-Lives Using Active

Search. Journal of Chemical Information and Modeling, 2021.
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The Lopez group motivated the problem and Garnett proposed using active search. Nguyen

adopted software implemented in previous work to implement the active search algorithm.

Subsequently analyses were jointly conducted by all collaborators.

Shayan Monadjemi, Sunwoo Ha, Quan Nguyen, Henry Chai, Roman Garnett, and

Alvitta Ottley. Guided Data Discovery in Interactive Visualizations via Active Search.

In IEEE Visualization and Visual Analytics (VIS), 2022.

Ottley and Garnett motivated using active search for interactive data discovery. Nguyen

implemented the active search policy and conducted preliminary simulated experiments to

demonstrate the benefits of active search. Monadjemi and Ha conducted subsequent analyses.

Andrew Novick, Diana Cai, Quan Nguyen, Roman Garnett, Ryan P. Adams, and Eric

Toberer. Probabilistic Prediction of Material Stability: Integrating Convex Hulls into

Active Learning. arXiv preprint, 2024. arXiv:2402.15582 [cond-mat.mtrl-sci].

Toberer motivated active learning of convex hulls. Garnett and Adams designed the active

learning policy. Cai implemented a preliminary version of the policy, which Novick refined

and ran with Nguyen’s support.
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Chapter 2

Background

We begin with the formulation of experimental design and the Bayesian decision-theoretic

approach to deriving decisions that are optimal in expectation. We also discuss the real-

ization of this expected-case optimality in active search, its exponential time complexity, as

well as an approximation to this optimal policy that circumvents the exponential blowup.

2.1 Experimental Design

Suppose we have evaluation access to a function f : X 7→ Y in that we may perform ex-

periments by evaluating the function at locations x ∈ X of our choosing, and observe the

experimental outcome in the form of the function value y = f(x). Here, y ∈ Y encapsulates

various observation models of interest, including binary observations or those corrupted by

Gaussian noise. We assume that the cost of experimentation, that is, of evaluating f(x) at

a specific x ∈ X , is high, and we can only do it for a specified number of times; in other

words, our evaluation budget is subject to a constraint.1 Our goal is to iteratively choose

the locations xi ∈ X at which evaluate the function yi = f(xi), and assemble a data set

D = {(xi, yi)}i so as to maximize a utility function of interest. We will refer to f(x) as the

label of the data point x, and the process of evaluating f(x) as labeling x.

The utility function specifies our experimental design objective by quantifying our preference

over possible data sets D that may result from different designs. Each combination of the

underlying function f and the utility function gives rise to an instance of a experimental de-

sign problem, and the works in this dissertation examine two important instances: Bayesian

1There are other types of budget constraints that have been explored in the literature, but this dissertation
focuses on the particular constraint that we introduce here, where the function f can only be evaluated for
a specified number of times.
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Algorithm 1 Experimental design

1: inputs function f , domain X , experimental budget T , experimental design policy π,
initial data D0

2: for t← 1 to T do
3: xt ← argmaxx∈X π(x | Dt−1) ▷ select the next point to query
4: yt ← f(xt) ▷ evaluate function f
5: Dt ← Dt−1 ∪ {(xt, yt)} ▷ update observed data
6: end for

optimization and active search. Bayesian optimization targets optimization of a real-valued

function f , while in active search, we aim to identify many data points within a finite search

space X that yield positive values when a binary-valued function f is evaluated. These two

experimental design tasks flexibly model a wide range of applications in scientific discovery.

For example, Bayesian optimization has been used to optimize desirable quality of molecules

such as synthesizability or high power conversion efficiency [80, 66, 72], or material proper-

ties such as durability and ease of production in materials design [45, 122]. Active search,

on the other hand, has similarly been successfully applied to discover molecules that bind

with target proteins for drug discovery [62], photoswitches with characteristics favorable for

materials chemistry [141], and bulk metal glasses that have higher toughness and resistance

than crystalline alloys [88, 145].

The assumed high cost of evaluating f is especially applicable in these scientific discovery

tasks, where evaluating the function f often equates running time-consuming computer sim-

ulations and/or performing laborious experiments in a laboratory to characterize a molecule

or material one would like to inspect. This cost of experimentation motivates careful consid-

eration of which data point x ∈ X to label in order to maximize the given utility function.

Our goal is to construct a policy π that facilitates this process in an iterative manner, where

at each iteration, π reasons about the data observed thus far and decides which data point to

label next. The iterative loop of experimental design is summarized in Alg. 1. At iteration

t, the policy π produces a score for each data point x that we could possibly evaluate f with

next based on the observed data Dt−1. This scores quantifies the value of performing the

experiment corresponding to evaluating f(x), and we proceed by selecting the data point xt

with the highest score. Upon computing f(xt), the new data point is added to the observed

set Dt, and the process repeats until our experimentation budget is exhausted.
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Again, how to design the policy π so that it appropriately favors data points that are

beneficial to our objective (i.e., those that maximize the utility function) is the key to

solving a given experimental design task. In the next section, we discuss Bayesian decision

theory as a framework for designing policies that make optimal decisions in expectation.

2.2 Bayesian Decision Theory

Bayesian decision theory is a general framework for decision-making under uncertainty, which

we leverage for experimental design tasks here. We first require a probabilistic model of the

function f , which produces the posterior distribution of the possible values of y = f(x) for a

given x ∈ X conditioned on the data we have seen so far D. We also need access to a utility

function u that quantifies our true valuation of a given data set D, denoted as u(D); in other

words, we prefer data set D over data set D′ if and only if u(D) > u(D′). For example, in

Bayesian optimization, this utility function is often chosen, in the maximization case, to be

the so-called simple reward function u(D) = maxy∈D y, the largest value observed in D, to
naturally reflect the goal of maximization.

Now, suppose that we are currently at iteration t of the experimental design loop in Alg. 1,

having observed the data set Dt−1 and looking for the next data point xt to label. Bayesian

decision theory identifies the optimal data point x∗
t as the one that, at the end of the loop,

results in the terminal data set DT with the highest expected utility:

x∗
t = argmax

xt∈X
E
[
u(DT ) | xt,Dt

]
. (2.1)

Here, the expectation is taken with respect to not only the label of the putative data point xt

but also labels of subsequent data points labeled at future iterations (t+1, t+2, . . . , T ). These

future data points are identified in a manner similar to Eq. (2.1), which may be derived via

dynamic programming [18]. However, as each subsequent decision depends on those before it,

the entire computation of Eq. (2.1) involves nested expectations and maximizations and has a

time complexity exponential in the remaining experimentation budget ℓ = T−t. This means

that computing Eq. (2.1) by fully looking ahead to the end of the loop is computationally

intractable for most applications, including those in this dissertation.
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A common strategy to overcome this exponential blowup in practice is to limit the lookahead,

effectively assuming that the horizon ℓ is sufficiently short to enable efficient policy compu-

tation. The simplest version of this strategy is to set ℓ = 1, assuming that we are at the

last iteration of Alg. 1, where Eq. (2.1) may be computed as maximizing the one-step utility

E
[
u(Dt)

]
. This myopic lookahead strategy is appealing as maximizing E

[
u(Dt)

]
is computa-

tionally straightforward in many applications. For example, in the specific case of Bayesian

optimization, optimizing the one-step utility E
[
u(Dt)

]
under u(D) = maxy∈D y gives rise to

the widely-used policy Expected Improvement. However, by ignoring the remaining decision-

making horizon, policies obtained with limited lookahead might underestimate the value of

exploratory designs that could yield high utility at future iterations, and ultimately produce

myopically suboptimal decisions. The next section discusses an approximation to the opti-

mal policy in Eq. (2.1) in the particular context of active search by Jiang et al. [88] that

accounts for the full decision-making horizon and thus yields nonmyopic designs. This non-

myopic policy achieves impressive empirical performance across many tasks, and serves as

the basis for policies developed in the candidate’s own works presented in this dissertation.

We also briefly note that another way to approximate Eq. (2.1) beyond myopic lookahead

is to employ an auxiliary utility function v. This alternative utility function should quan-

tify our preference for data sets in a way that optimizing for the corresponding one-step

utility E
[
v(Dt)

]
is more conducive to optimizing for the utility of the terminal data set

E
[
u(DT )

]
than greedily maximizing E

[
u(Dt)

]
. We see an example of this in Chapt. 3 for

local Bayesian optimization, where we pursue maximization of the probability of making

optimization progress as an approximation to optimizing the function f itself.

2.3 Nonmyopic Active Search

We now examine the active search framework as well as the state-of-the-art policy by Jiang

et al. [88], a nonmyopic approximation to the expected-case optimal policy. An active search

problem is defined by a finite search space X , among which there exists a rare, valuable

subset T ⊂ X . We use the term “targets” to refer to the members of this valuable subset,

which we wish to collect from the entire space X . We further use membership in T as the

labels for the points in X : yi = f(xi) ≜ I [xi ∈ T ],∀xi ∈ X . The targets are not known a

priori, but whether a specific data point xi is one can be determined by labeling the data
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point to obtain yi. The goal of active search is to sequentially select which data points to

label so as to find as many targets throughout the T iterations of the search as possible. To

express this preference for maximizing the number of “hits” across different terminal data

sets collected at the end of the search DT , we use the utility function

u(DT ) =
∑

yi∈DT

yi, (2.2)

which simply counts the number of targets in DT .

As discussed in the previous section, under Bayesian decision theory, the optimal decision at

each search iteration is the data point maximizing the expected utility of the terminal data

set E
[
u(DT )

]
, the computation of which can be obtained in theory via dynamic programming

but is computationally intractable in practice. We can instead seek to optimize the one-step

lookahead utility E
[
u(Dt)

]
as a myopic approximation to the optimal policy, which in active

search simplifies to finding the most likely data point:

argmax
xt∈X\Dt−1

E
[
u(Dt) | xt,Dt−1

]
= argmax

xt∈X\Dt−1

Pr(y = 1 | xt,Dt−1). (2.3)

Again, limiting the lookahead undervalues exploratory designs that might yield high future

rewards, and could as a result lead to suboptimal decision-making. To go beyond myopic

lookahead while avoiding the high cost of reasoning about the dependence among labels of

future queries, Jiang et al. [88] made the simplifying assumption that, after our next query

xt, all remaining future queries X = (xt+1, xt+2, . . . xT ) are made simultaneously in a batch,

exhausting our labeling budget. Under this assumption, the future queries in the lookahead

in Eq. (2.1) – to be optimally chosen to maximize expected terminal utility – simplifies to

the set of (ℓ−1) most likely targets thanks to linearity of expectation, and the (approximate)

expected terminal utility decomposes into:

E
[
u(DT ) | xt,Dt−1

]
≈ u(Dt−1)

+ Pr(yt = 1 | xt,Dt−1)

+ Eyt

[
max

X⊂X\Dt

∑
x∈X

Pr(y = 1 | x,Dt)

]
,

(2.4)

where the last term is the sum of the highest posterior probabilities achieved by X, the (ℓ−1)
most likely targets conditioned on Dt = Dt−1 ∪ {(xt, yt)}. Here, we estimate the value of

each putative query xt with the expected utility of the union of xt and the unlabeled points
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X that are adaptively selected based on each possible label yt. Unlike myopic policies that

set the lookahead horizon ℓ to be a fixed, small number, ℓ in this policy computation exactly

matches the true length of the decision-making horizon: |X| = ℓ − 1. The resulting policy

thus actively accounts for the remaining labeling budget when making its queries. Jiang et al.

[88] demonstrated the benefits of this budget-awareness by showing that the policy exhibits

nonmyopic, exploratory behavior when the budget is large, and automatically transitions to

more exploitative queries as search progresses. This strategic exploration ultimately allows

their policy to outperform many myopic baselines.

For its superior search performance, this nonmyopic policy serves as the state-of-the-art in

active search and the foundation of many of the works in this dissertation. For example,

Chapts. 4 and 5 realize the analogous policies under novel search settings by adopting the

assumption of conditional independence in future labels. Chapt. 6 on the other hand presents

an imitation learning framework that trains a neural network to mimic the behavior of this

state-of-the-art policy to amortize policy computation.
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Chapter 3

Local Bayesian Optimization

The optimization of expensive-to-evaluate, high-dimensional black-box functions is ubiqui-

tous in machine learning, science, engineering, and beyond; examples range from hyper-

parameter tuning [183] and policy search in reinforcement learning [30, 68], to configuring

physics simulations [128]. High-dimensional global optimization faces an inherent difficulty

stemming from the curse of dimensionality, as a thorough exploration of the search space

becomes exponentially more expensive. It is more feasible to seek to locally optimize these

high-dimensional objective functions, as we can then sidestep this inherent burden. This is

true even in settings where we cannot directly observe the gradient of the objective function,

as we may appeal to sophisticated techniques such as Bayesian optimization to nonethe-

less learn about the gradient of the objective through noisy observations, and then use this

knowledge to navigate the high-dimensional search space locally.

A realization of this scheme has been proposed by Müller et al. [142], where a Gaussian

process (gp) is used to model the objective function, and observations are designed to alter-

nate between minimizing the variance – and thus uncertainty – of the gp’s estimate of the

gradient of the objective at a given location, then moving in the direction of the expected

gradient. Although this approach seems natural, it fails to account for some nuances in

the distribution of the directional derivative induced by the gp. Specifically, it turns out

that beliefs about the gradient with identical uncertainty may nonetheless have different

probabilities of descent along the expected gradient. Further and perhaps surprisingly, the

expected gradient is not necessarily the direction maximizing the probability of descent – in

fact, these directions can be nearly orthogonal. In other words, simply minimizing the gra-

dient variance and moving in the direction of the expected gradient may lead to suboptimal

(local) optimization performance.

With this insight, we propose a scheme for local Bayesian optimization that alternates be-

tween identifying the direction of most probable descent, then moving in that direction.
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The result is a local optimizer that is efficient by design. To this end, we derive a closed-

form solution for the direction of most probable descent at a given location in the input

space under a gp belief about the objective function. We then design a corresponding

closed-form acquisition function that optimizes (an upper bound of) the one-step maximum

descent probability. Taken together, these components comprise an elegant and efficient op-

timization scheme. We demonstrate empirically that, across many synthetic and real-world

functions, our method outperforms the aforementioned prior realization of this framework

and is competitive against other, significantly more complicated baselines.

3.1 Preliminaries

We first introduce the problem setting and the local Bayesian optimization framework. We

aim to numerically solve optimization problems of the form:

given x0 ∈ D, find x∗ = argmin
x∈D(x0)

f(x),

where f : D → R is the black-box objective function we wish to optimize locally from a

starting point x0, and D(x0) is the local region around x0 inside the domain D. We model

the objective function as a black box, and only assume that we may obtain potentially noisy

function evaluations y = f(x) + ε, where ε ∼ N (0, σ2), at locations of our choosing. We

further assume the gradient cannot be measured directly, but only estimated from such noisy

evaluations of the function. Finally, we consider the case where querying the objective is

relatively expensive, limiting the number of times it may be evaluated. This constraint on

our querying budget requires strategically selecting where to evaluate during optimization.

Bayesian optimization (bo) is one potential approach to this problem that offers unparalleled

sample efficiency. bo constructs a probabilistic model of the objective function, typically a

Gaussian process (gp) [162], and uses this model to design the next point(s) to evaluate the

objective. After each observation, the gp is updated to reflect our current belief about the

objective, which is then used to inform future decisions. We refer the reader to Garnett [59]

for a thorough treatment of gps and bo.
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3.1.1 Local Bayesian Optimization

In many applications, the objective function f is high-dimensional. The curse of dimen-

sionality poses a challenge for bo, as it will take exponentially more function evaluations to

sufficiently cover the search space and find the global optimum. It may be more fruitful,

therefore, to instead pursue local optimization, where we aim to descend from the current

location, by probing the objective function in nearby regions to learn about its gradient.

It turns out the bo framework is particularly amenable to this idea, as a gp belief on the

objective function induces a joint gp belief with its gradient [162], which we may use to

guide local optimization. In particular, given a gp belief about the objective function f with

a once-differentiable mean function µ and a twice-differentiable covariance function K, the

joint distribution of noisy function evaluations observations (X,y) and the gradient of f at

some point x is

p

([
y

∇f(x)

])
= N

([
µ(X)

∇µ(x)

]
,

[
K(X,X) + σ2I K(X,x)∇⊤

∇K(x,X) ∇K(x,x)∇⊤

])
.

Here, when placed in front of K, the differential operator ∇ indicates that we are taking

the derivative of K with respect to its first input; when placed behind K, it indicates the

derivative is with respect to its second input. Conditioned on the observations (X,y), the

posterior distribution of the derivative ∇f(x) may be obtained as:

p
(
∇f(x) | x,X,y

)
= N (µx,Σx),

where µx = ∇µ(x) +∇K(x,X)
(
K(X,X) + σ2I

)−1(
y − µ(X)

)
,

Σx = ∇K(x,x)∇⊤ −∇K(x,X)
(
K(X,X) + σ2I

)−1
K(X,x)∇⊤.

(3.1)

Given the ability to reason about the objective function gradient given noisy function ob-

servations, we may realize a Bayesian local optimization scheme as follows. From a current

location x, we devise a policy that first designs observations seeking relevant information

about the gradient ∇f(x), then, once satisfied, moves within the search space to a new

location (that is, update x) seeking to descend on the objective. A particular realization of

this local bo scheme named gibo was investigated by Müller et al. [142]. In that study, the

authors choose to learn about ∇f(x) by minimizing the uncertainty (quantified by the trace

of the posterior covariance matrix) about the gradient, followed by moving in the direction of
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the expected gradient. This algorithm may be thought of as simulating gradient descent, as

it actively builds then follows a noisy estimate of the gradient. Although effective, gibo fails

to account for nuances in our belief about the objective function gradient and may behave

suboptimally during optimization as a result. Our work addresses this gap by exploiting the

rich structure in the belief about ∇f(x) to design an elegant and principled policy for local

bo.

3.2 Maximizing Probability of Descent

What behavior is desirable for a local optimization routine that values sample efficiency?

We argue that we should seek to quickly identify directions that will, with high probability,

yield progress on the objective function. Pursuing this idea requires reasoning about the

probability that a given direction leads “downhill” from a given location. Although one

might guess that the direction most likely to lead downhill is always the (negative) expected

gradient, this is not necessarily the case.

Consider the directional derivative of the objective f with respect to a unit vector v at point

x:

∇vf(x) = v⊤∇f(x),

which quantifies the rate of change of f at x along the direction of v. According to our gp

belief, ∇f(x) follows a multivariate normal distribution, so the directional derivative ∇vf(x)

is then:

p
(
∇vf(x) | x,v

)
= N

(
v⊤µx,v

⊤Σxv
)
,

where µx and Σx are the mean and covariance matrix of the normal belief about ∇f(x),
as defined in Eq. (3.1). This distribution allows us to reason about the probability that

we descend on the objective function by moving along the direction of v from x, which is

simply the probability that the directional derivative is negative. Thus, we have the following

definition.

Definition 3.2.1 (Descent probability and most probable descent direction). Given a unit

vector v, the descent probability of the direction v at the location x is given by

Pr
(
∇vf(x) < 0 | x,v

)
= Φ

(
− v⊤µx√

v⊤Σxv

)
, (3.2)
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where Φ is the cdf of the standard normal distribution. If v∗ achieves the maximum descent

probability v∗ ∈ argmaxv Pr
(
∇vf(x) < 0 | x,v

)
, then we call v∗ a most probable descent

direction.

Note that the definition Eq. (3.2) is scaling invariant. Thus, the length of v∗ does not

matter since the descent probability only depends on its direction. Moreover, we note that

descent probability depends on both the expected gradient µx and the gradient uncertainty

Σx. Therefore, learning about the gradient by minimizing uncertainty via the trace of the

posterior covariance matrix (which does not consider the expected gradient) and moving in

the direction of the negative expected gradient (which does not consider uncertainty in the

gradient) in a decoupled manner may lead to suboptimal behavior. We first present a simple

example to demonstrate the nuances that are not captured by this scheme and to motivate

our proposed solution.

3.2.1 The (Negative) Expected Gradient Does Not Always Max-

imize Descent Probability

In Fig. 3.1, we show polar plots of the descent probability Pr
(
∇vf(x) < 0 | x,v

)
with

respect to different beliefs about the gradient. The angles in the polar plots are the angles

between v and the vector [1, 0]⊤. Critically for the discussion below, the uncertainty in

the gradient, as measured by the trace of the covariance matrix, is identical for all three

examples.

In the first example in the left panel of Fig. 3.1, the negative expected gradient happens

to maximize the descent probability, and moving in this direction is almost certain to lead

downhill. In the middle panel, the expected gradient is the same as in the left panel, but the

covariance matrix has been permuted. Here, the negative expected gradient again maximizes

the descent probability; however, the largest descent probability is now much lower. In fact,

there is non-negligible probability that the descent direction is in the opposite direction.

This is because most of the uncertainty we have about the gradient concentrates on the first

element of µx, which determines its direction. We note that the situation in the left panel is

inarguably preferable to that in the middle panel, but distinguishing these two is impossible

from uncertainty in ∇f(x) alone.
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Figure 3.1: Polar plots of descent probability (blue). The most probable descent direction
v∗ is marked in red. The direction of the (negative) expected gradient is marked in black.
Left: the direction v∗ and the negative expected gradient match exactly. Center: given the
same level of uncertainty, the maximum descent probability has reduced from near certainty
to only 84%. Right: the expected gradient does not maximize the descent probability. See
Sect. 3.2.1 for discussion.

Finally, in the right panel, the direction of the expected gradient has rotated with respect to

that in the first two panels. Now the (negative) expected gradient is entirely different from

the most probable descent direction. Intuitively, the variance in the first coordinate is much

smaller than in the second coordinate, and thus the mean in the first coordinate is more

likely to have the same sign as the true gradient. However, using negative expected gradient

as a descent direction entirely ignores the uncertainty estimate in the gradient. This example

shows that, when we reason about the descent of a function, the mean vector µx and the

covariance matrix Σx need to be jointly considered, as the probability of descent depends on

both of these quantities (Eq. (3.2)).

3.2.2 Computing the Most Probable Descent Direction

In light of the above discussion, we propose a local bo algorithm centered entirely around

the local descent probability. As a first step, we show in the following how to compute the

most probable descent direction v∗ = argmaxv Pr
(
∇vf(x) < 0 | x,v

)
at a given location

given data.
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Theorem 3.2.1. Suppose that the belief about the gradient is p
(
∇f(x) | x,X,y

)
= N (µx,Σx),

where the posterior covariance Σx is positive definite. Then, the unique (up to scaling) most

probable descent direction is

argmax
v

Pr
(
∇vf(x) < 0 | x,v

)
= −Σ−1

x µx

with the corresponding maximum descent probability

max
v

Pr
(
∇vf(x) < 0 | x,v

)
= Φ

(√
µ⊤

xΣ
−1
x µx

)
.

Proof. As Φ (·) is monotonic, we can reframe the problem as

v∗ = argmax
v

Pr
(
∇vf(x) < 0 | x,v

)
= argmax

v
Φ

(
− v⊤µx√

v⊤Σxv

)
= argmax

v
− v⊤µx√

v⊤Σxv
.

Next, we square the objective, and the maximizer is still the same (up to sign). That is, if

v∗ is the maximizer of the squared objective:

v∗ = argmax
v

v⊤µxµ
⊤
xv

v⊤Σxv
, (3.3)

then either v∗ or −v∗ maximizes the descent probability. Let Σx = LL⊤ be the Cholesky

decomposition of Σx, where L has to be nonsingular. A change of variable v = L−⊤w gives

v⊤µxµ
⊤
xv

v⊤Σxv
=

w⊤L−1µxµ
⊤
xL

−⊤w

w⊤w
,

which is exactly the Rayleigh quotient of L−1µxµ
⊤
xL

−⊤. Note that this is a rank-1 matrix

with top eigenvector L−1µx and corresponding eigenvalue µ⊤
xΣ

−1
x µx. Thus, the maximizer

w∗ is given by

w∗ = L−1µx.

Therefore, the maximizer to Eq. (3.3) is v∗ = L−⊤L−1w∗ = Σ−1
x µx. Plug both Σ−1

x µx and

−Σ−1
x µx back into Eq. (3.2). It is easy to check that the direction along −Σ−1

x µx is the

desired maximizer.

19



Theorem 3.2.1 states that the most probable descent direction can be computed by simply

solving a linear system. Being able to compute this quantity allows us to always move within

the search space in the direction that most likely improves the objective value, which, as

we have seen, is not necessarily the negative expected gradient. This helps us to realize

the “update” portion of our local bo algorithm, where we iteratively move from the current

location x in the most probable descent direction v∗. That is, we repeatedly update x with

x + δv∗, where δ is a small constant that acts as a step size. This procedure is iterative in

that we do not take one single step along a direction, but multiple small steps, always in

the most probable descent direction at the current point, throughout. (Note that we do not

observe the value of the objective function at any of these steps.)

It is important that we stop this iterative procedure when it becomes uncertain whether we

can continue to descend. This is because we aim to move to a new location that decreases

the value of the objective function, and thus should only move when descent is likely. A

natural approach is to again use the maximum descent probability, which we can compute

using Theorem 3.2.1. Specifically, we stop the iterative update when the maximum descent

probability falls below a prespecified threshold p∗. Once we have stopped, the final updated

x is the location we move to at the current iteration of the bo loop. In our experiments, we

set the step size to δ = 0.001 and the descent probability threshold to p∗ = 65%, which we

find to work well empirically.

3.2.3 Acquisition Function via Look-Ahead Maximum Descent

Probability

When the maximum descent probability falls below the threshold p∗, we begin selecting

queries to learn about the gradient in the current location so as to maximize the probability

of descent. Here we derive an acquisition function seeking data that will, in expectation,

best improve the highest descent probability. For maximum flexibility, we consider the batch

setting where we may gather multiple measurements simultaneously, although we only use

the sequential case in our experiments.
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In particular, the acquisition function we would like to use for a batch of potential query

points Z is:

α0

(
Z
)
= Ey|Z

[
max

v
Pr
(
∇vf(x) < 0 | x,Z

)]
= Ey|Z

[
Φ
(√

µ⊤
x|ZΣ

−1
x|Zµx|Z

)]
,

(3.4)

where µx|Z and Σx|Z are the posterior mean and covariance of the belief about ∇f(x),
conditioned on a batch of observations at Z and a previously collected training set (X,y)

which we have omitted for notational clarity. Note that the second equality is due to The-

orem 3.2.1. The above acquisition function is exactly the look-ahead maximum descent

probability. Namely, α0 (Z) is the expected maximum descent probability after querying Z.

Unfortunately, this expectation is challenging to compute, so we opt for another acquisition

function that approximates Eq. (3.4) via computing the expectation of an upper bound:

α (Z) = Ey|Z

[
µ⊤

x|ZΣ
−1
x|Zµx|Z

]
. (3.5)

We discard the (monotonic and concave) transformation given by the normal cdf and square

root, thus optimizing an upper bound by Jensen’s inequality. The advantage to this acqui-

sition function α is that, remarkably, it has a closed-form expression, as we show below.

Note that µx|Z = µx + ΣxZΣ
−1
Z (yZ − µZ), where yZ ∼ N (µZ,ΣZ). Thus, the acquisition

function in Eq. (3.5) is an expectation of a quadratic function over a Gaussian distribution.

Let LL⊤ = ΣZ be the Cholesky decomposition of ΣZ and denote A = ΣxZL
−⊤. Then, the

acquisition function can be written as an expectation over a standard normal ζ:

α (Z) = Eζ∼N (0,I)

[
(µx +Aζ)⊤Σ−1

x|Z (µx +Aζ)
]
.

Expanding, we have:

(µx +Aζ)⊤Σ−1
x|Z (µx +Aζ) = µ⊤

xΣ
−1
x|Zµx + 2µ⊤

xΣ
−1
x|ZAζ + ζ⊤A⊤Σ−1

x|ZAζ.

The expectation of each term can be computed in closed form. The first term is a constant

and the second term vanishes. Finally, the third term is the expectation of a quadratic form,

yielding:

α(Z) = µ⊤
xΣ

−1
x|Zµx + tr

(
A⊤Σ−1

x|ZA
)
.
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Algorithm 2 Local bo via mpd

1: inputs starting location x, number of iterations N , number of samples for learning the
gradient M , step size δ, and minimum descent probability threshold p∗.

2: Initialize the gp.
3: for t = 0, . . . , N do
4: Observe the objective value: y = f(x) + ε.
5: Update the training data D ← D ∪ {(x, y)} and retrain the gp.
6: for m = 1, . . . ,M do ▷ learn the gradient
7: Query point: z∗ = argmaxz α(z).
8: Observe the objective value: yz = f(z) + ε.
9: Update the training data D ← D ∪ {(z, yz)} and the gp.
10: end for
11: while maxv Pr

(
∇vf(x) < 0 | x,v

)
> p∗ do ▷ move iteratively

12: Compute most probable descent direction v∗ ← argmaxv Pr
(
∇vf(x) < 0 | x,v

)
.

13: Move in the most probable descent direction: x← x+ δv∗.
14: end while
15: end for

This compact expression gives the closed-form solution to our acquisition function. Note

that solving a linear system with respect to Σx|Z can be performed efficiently using low-rank

updates to the Cholesky decomposition of Σx. Further, we may differentiate the acquisition

function easily via automatic differentiation. This allows us to optimize the acquisition

function trivially using any gradient-based optimizer such as l-bfgs with restart.

This completes our algorithm, local bo via most-probable descent, or mpd, which is summa-

rized in Alg. 2. The algorithm alternates between learning about the gradient of the objective

function using the acquisition function discussed above, and then iteratively moving in the

most probable descent direction until further progress is unlikely, as described in Sect. 3.2.

3.3 Experiments

We now present results from extensive experiments that evaluate our method mpd against

three baselines: (1) gibo [142], which performs local bo by minimizing the trace of the

posterior covariance matrix of the gradient and uses the expected gradient in the update step;

(2) ars [131], which estimates the gradient of the objective via finite difference with random

perturbations; and (3) turbo [52], a trust region-based Bayesian optimization method.

22



Müller et al. [142] provide code implementation under the mit license for gibo, ars, and

various test objectives. We extend this codebase to implement mpd and conduct our own nu-

merical experiments. For the synthetic (Sect. 3.3.1) and reinforcement learning (Sect. 3.3.2)

objectives, we use the provided experimental settings. For the other objectives (Sect. 3.3.3),

we set the number of samples to learn about the gradient per iteration M = 1. For each ob-

jective function tested, we run each algorithm ten times from the same set of starting points

sampled from a Sobol sequence over the (box-bounded) domain. In each of the following

plots, we show the progressive mean objective values as a function of the number of queries

with error bars indicating (plus or minus) one standard error.

3.3.1 Synthetic Objectives

Our first experiments involve maximizing, over the d-dimensional unit hypercube [0, 1]d,

synthetic objective functions that are generated by drawing samples from a gp with an rbf

kernel. We refer to §4.1 of Müller et al. [142] for more details regarding the experimental

setup. While Müller et al. [142] tested for dimensions up to 36, we opt for much higher-

dimensional objectives: d ∈ {25, 50, 100}. Each run has a budget of 500 function evaluations.

We visualize the results in Fig. 3.2, which shows that mpd was able to optimize these

functions at a faster rate than the other baselines. Note that the difference in performance

becomes larger as the dimensionality d grows, indicating that our method scales well to high

dimensions.

3.3.2 MuJoCo Objectives

The second set of experiments are reinforcement learning MuJoCo locomotion tasks [191],

where each task involves learning a linear policy that maps states to actions to maximize

the reward received from the learning environment. We use the same three environments

in Müller et al. [142], CartPole-v1 with 4 parameters, Swimmer-v1 with 16, and Hopper-v1

with 33, to evaluate the methods and show the results in Fig. 3.3. mpd is competitive in the

first two tasks but progresses slower than the other baselines on Hopper-v1.
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Figure 3.2: Progressive optimized objective value on high-dimensional synthetic functions.
mpd consistently finds higher objective values faster than other baselines.
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3.3.3 Other Objective Functions

We further evaluate our method on other real-world objective functions. The first two

functions represent inverse problems from physics and engineering. The first is from electrical

engineering, where we seek to maximize the fit of a theoretical physical model of an electronic

circuit to observed data. There are nine parameters in total, and we set the budget to 500

evaluations. The second is a problem from cosmology [165], where we aim to configure a

cosmological model/physical simulator to fit data observed from the Universe. In particular,

our objective is to maximize the log likelihood of the physical model parameterized by

various physics-related constants that are to be tuned. We follow the setting in Eriksson

et al. [52], which presents a harder optimization problem with 12 parameters and much larger

bounds, and set the budget at 2000 evaluations. Our third objective function uses the rover

trajectory planning problem [202]. This involves tuning the locations of 100 points on a two-

dimensional space that map the trajectory of a rover to minimize a cost, thus making up a

200-dimensional optimization problem. We set the budget to be 1000 function evaluations.

We visualize optimization performance on these three objective functions in Fig. 3.4. Our

proposed policy mpd is consistently competitive against both gibo and turbo. Most no-

tably, in the cosmological constant learning problem, mpd was able to make significant

progress immediately and ultimately outperforms its closest spiritual competitor gibo.

3.3.4 Ablation Study

We now present results from various ablation studies to offer insight into the components of

our method mpd and its hyperparameters, specifically the descent probability threshold p∗

(65% as the default) and the step size δ (0.001 as the default), as described in Sect. 3.2.

First, one may reasonably ask which of the two novel components of mpd – either the learn-

ing phase that seeks to maximize expected posterior descent probability, or the update phase

that moves in the most probable descent direction – is responsible for the performance im-

provement compared to gibo. We address this question by comparing the performance of

mpd against two variants: (1) trace + mpd, which learns about the gradient by minimizing

the trace of the posterior covariance matrix and moves in the most probable descent direc-

tion, and (2) mpd + expected gradient, which uses our scheme for identifying the most
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Table 3.1: Average terminal optimized objective values and standard errors of different
variants of mpd. Results that are better than those of our baseline gibo are highlighted
bold.

16D Swimmer
(maximization)

12D cosmo. constant
(maximization)

200D rover trajectory
(minimization)

mpd
(
p∗ = 65%, δ = 10−3

)
360.50 (0.61) −23.97 (0.34) 89.89 (3.88)

gibo 348.88 (10.11) −55.25 (3.23) 152.77 (2.26)

trace + mpd 350.58 (9.35) −27.72 (1.16) 84.17 (2.10)
mpd + expected gradient 340.12 (12.75) −21.24 (0.04) 293.08 (8.12)

mpd(p∗ = 50%) 342.36 (13.10) −24.29 (0.10) 51.48 (3.44)
mpd(p∗ = 85%) 294.67 (38.16) −31.08 (0.86) 142.63 (5.57)
mpd(p∗ = 95%) 15.97 (5.46) −31.86 (0.25) 140.44 (6.95)

mpd
(
δ = 10−4

)
362.06 (0.63) −24.22 (0.53) 90.99 (3.29)

mpd
(
δ = 10−2

)
350.15 (10.92) −25.73 (0.39) 98.72 (4.42)

probable descent direction, then moves in the direction of the (negative) expected gradient.

The second section of Tab. 3.1 shows the average terminal objective values of these mpd

variants on three tasks that mpd outperforms gibo: Swimmer-v1, cosmological constant

learning, and rover trajectory planning. We observe that swapping out either component of

mpd does not consistently improve from gibo as much as mpd does. This indicates that the

two components of our mpd algorithm work in tandem and both are needed to successfully

realize our local bo scheme.

In particular, the components of our method are coupled: because the expected gradient

and the most probable descent direction are not the same in general, spending evaluation

budget to learn about one and then using the other to move may not work well. gibo’s

acquisition function minimizes the trace of the posterior covariance and therefore aims to

make the expected gradient estimate more accurate, but it is unclear whether it will nec-

essarily estimate the most probable descent direction accurately. On the other hand, our

acquisition function focuses on the one-step maximum descent probability directly. gibo’s

“moving” policy, moving in the direction of the (negative) expected gradient (which may not

be the most probable descent direction), may not necessarily benefit from having a descent

direction with a high descent probability (which could point in a different direction), and is

therefore incompatible with our acquisition function.
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We also tested mpd with three other values for the minimum descent probability threshold

p∗ ∈ {50%, 85%, 95%} (described in Sect. 3.2). The first variant with p∗ = 50% is less

conservative when moving to a new location than our default policy with p∗ = 65%, while the

other two variants are more conservative. In the third section of Tab. 3.1, we observe that the

more conservative variants of mpd are not as competitive. For example, mpd(p∗ = 85%) sees

a drop in performance on the Swimmer task, while mpd(p∗ = 95%) fails to make significant

progress altogether. Interestingly, while the less conservative policy with p∗ = 50% also does

not perform as well on the two Mujoco tasks, we do observe an increase in performance in the

rover trajectory planning problem. From our experiments, we find that this rover objective

function is piecewise linear within most of its domain, making finding a descent direction

“easier” and allowing a lower value of p∗ to perform better.

The interpretation of the threshold p∗ is quite natural: it sets a threshold of the minimum

probability that we would make progress by moving to a new location. Intuitively, this

hyperparameter trades off robustness versus optimism, with higher thresholds spending more

budget before moving, but being more confident in their moves. While p∗ = 65% performs

well in our experiments, a user can set their own threshold depending on their use case.

As observed with the rover trajectory planning problem, if there are structures within the

objective function that make it “easy” to find a descent direction, mpd may benefit from a

lower threshold. We might also consider dynamically setting the value of p∗ based on recent

optimization progress – that is, we might increase p∗ if we believe that we are approaching

a local optimum and therefore that finding a promising descent direction is becoming more

challenging.

Finally, the lower section of Tab. 3.1 shows the performance of the variants of mpd with

two additional step sizes, 10−4 and 10−2. We observe that mpd with δ = 10−2 occasionally

fails to perform better than gibo, illustrating the potentially detrimental effect of a step

size that is too large. This step size parameter δ balances between faster convergence and

taking steps that are too large, analogous to gradient descent, and may even be problem

dependent. It would be additionally interesting to analyze whether there are good “rules of

thumb” for setting δ based on the length scale of the gp, as smoother functions can likely

support larger step sizes.

27



3.4 Conclusions

We develop a principled local Bayesian optimization framework that revolves around max-

imization of the probability of descending on the objective function. This novel scheme is

realized with (1) an update rule that iteratively moves from the current location in the di-

rection of maximum descent probability, and (2) a mathematically elegant, computationally

convenient acquisition function that aims to maximize the probability of descent prior to our

next move. Our extensive experiments show that our policy outperforms natural baselines

on a wide range of applications.

(Local) Bayesian optimization has seen a wide range of applications across science, engineer-

ing, and beyond; an extensive annotated bibliography of these applications was compiled

by Garnett [59] [appendix d]. However, it is possible to leverage bo for nefarious purposes

as well; a concrete example is constructing adversarial attacks on machine learning mod-

els [187, 198]. Further, bo requires human expertise and ethical considerations in many

important applications, and fully automated optimization systems may run the risk of per-

petuating misaligned goals in machine learning. The authors judge the potential positive

impacts on society resulting from better methods for local optimization to outweigh the

potential negative impacts.
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Chapter 4

Multifidelity Active Search

While the last chapter discusses our contribution to (local) Bayesian optimization, an ex-

perimental design framework for optimizing functions, from this chapter onwards, we will

examine active search, an alternative framework for modeling search and discovery tasks.

We begin with multifidelity active search in this chapter.

The goal of active search is to identify members of a rare and valuable class among a large

pool of unlabeled points. This is a simple model of many real-world discovery problems,

such as drug discovery and fraud detection. Active search proceeds by successively querying

an oracle that returns a binary label indicating whether or not a chosen data point exhibits

the desired properties. In many applications, this oracle is expensive, limiting the number

of queries that could be made. The challenge is to design a policy to sequentially query the

oracle in order to discover as many targets as possible, subject to a given labeling budget.

Active search has been extensively studied under various settings [61, 88, 89, 90]. Notably,

Jiang et al. [88] proved a hardness of approximation result, showing that no polynomial-

time policy can approximate the performance of the Bayesian optimal policy within any

constant factor. Thus active search is surprisingly hard. However, the authors also proposed

an efficient approximation to the optimal policy that delivers impressive empirical perfor-

mance. The key feature of their policy is its ability to account for the remaining budget and

dynamically trade off exploration and exploitation.

Most previous work on active search has assumed access to only a single expensive oracle

providing labels. In practice, however, we may have several methods of probing the search

space, including cheap, low-fidelity surrogates. For example, a computational simulation may

serve as a noisy approximation to an experiment done in a laboratory, and we may reasonably

seek to use a cheaper computational search to help design the expensive experiments. This

motivates the problem of multifidelity active search, where oracles of different fidelities may
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be simultaneously accessed to accelerate the search process. The central question in this

task is how to effectively leverage these oracles in order to maximize the rate of discovery.

We present a model for multifidelity active search and study the problem under the frame-

work of Bayesian decision theory. We propose a novel policy for this setting inspired by

the state-of-the-art single-fidelity policy mentioned above. The result is an efficient approx-

imation to the optimal multifidelity policy that is specifically tailored to take advantage of

low-fidelity oracles. We also create aggressive branch-and-bound pruning strategies to in-

crease the efficiency of our proposed algorithm, enabling scaling to large datasets. In a series

of experiments, we investigate the performance of our policy on several real-world datasets

for scientific discovery. Our solution outperforms various baselines from the literature by a

large margin.

4.1 Problem Definition

We briefly reintroduce the active search formulation here. Suppose we are given a finite set

of points X ≜ {xi}, which includes a rare, valuable subset T ⊂ X . The members of T ,
which we call targets or positives, are not known a priori, but whether a given point x ∈ X
is a target can be determined by making a query to an oracle that returns the binary label

y ≜ I{x ∈ T }. We assume that querying the oracle is expensive and that we only have

a limited budget of t queries to do so. We denote a given dataset of queried points and

their corresponding labels as D = {(xi, yi)}. At times, we will use Di to denote the dataset

collected after i queries.

4.1.1 Multifidelity Active Search

In addition to the expensive oracle that returns the exact label of a query, we have access

to other cheaper but more noisy oracles that are low-fidelity approximations to the exact

oracle. We limit our setting to two levels of fidelity – one exact oracle and one noisy oracle,

denoted as H and L, respectively – but note that our proposed algorithm can be extended

to more than two fidelities with minor modifications, as we will discuss later.
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fidelity L

fidelity H

time

1 4 7 22 25 28

2 3 5 6 8 23 24 26 27

Figure 4.1: An illustration of our multifidelity active search model. Each short vertical line
indicates when a query finishes and the next query is made. The numbers indicate the order
in which queries are made across the two oracles. The low-fidelity oracle is k = 2 times
faster than the high-fidelity oracle. The budget on H is t = 10; in total, T = t+ kt− k = 28
queries are made.

For a given point x ∈ X , we denote its exact label on H as yH and its noisy label on L as

yL. Under this setting, a dataset D can be partitioned into DL, the observations made on L,

and DH , those that are made on H. Recall that our objective is to query as many targets as

possible; as such, to express our preference over different datasets, we use the natural utility

function

u (D = DL ∪ DH) ≜
∑

yi∈DH

yi,

the number of targets discovered on the H fidelity.

We assume that queries to different oracles are run in parallel, but a high-fidelity query

takes longer to complete than a low-fidelity one. In particular, we will assume that each

query on H is k times slower than a query on L.2 That is, each time we make a query

on H, we may make k sequential queries on L while waiting for the result. The process

will then repeat until the budget is depleted. This model aims to emulate real-life scientific

discovery procedures, the main motivation for active search, where multiple fidelities (e.g.,

computational and experimental campaigns) are often run in parallel but vary in response

time.

If we are given a budget of t queries on H, we can make kt − k queries on L; in total,

T = t+kt−k queries are made. (Although a total of kt queries can be made on L, after the

final query on H is made at iteration T , further queries on L do not affect the final utility.

2This assumption is for simplicity; asynchronous queries could be addressed with a slight modification of
our proposed algorithm.
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We thus terminate after T queries.) This query schedule illustrated in Figure Fig. 4.1 for

t = 10 and k = 2.

4.1.2 The Bayesian Optimal Policy

We now derive the optimal (expected-case) policy using Bayesian decision theory. First, we

assume access to a probabilistic classification model that computes the posterior probability

that a point x ∈ X is a target given a dataset D, Pr (yH = 1 | x,D), as well as the posterior
probability that the same x is a positive on L, Pr (yL = 1 | x,D).

Suppose we are currently at iteration i + 1 ≤ T , having observed the dataset Di, and now

need to make the next query, requesting the label of an unlabeled point xi+1. The Bayesian

optimal policy selects the point that maximizes the expected utility of the terminal dataset

DT , assuming future queries will too be made optimally:

x∗
i+1 = argmax

xi+1∈X\Di

E
[
u (DT \ DT−1 | xi+1,Di)

]
.

If the query is on H, the expectation is taken over the posterior distribution of the label of

the putative query xi+1; if the query is on L, it is over the joint distribution of the L label

of xi+1 and the label of the pending H query (recall that we sequentially query k points on

L while waiting for an H query that runs in parallel to finish).

To compute this expected utility, we follow the backward induction procedure described in

Bellman [18]. In the base case, we are at iteration T and need to make the last H query and

E
[
u (DT \ DT−1 | xT ,DT−1)

]
=
∑
yH

u (DT \ DT−1) Pr (yH | xT ,DT−1)

= Pr (yH = 1 | xT ,DT−1) .

The optimal decision at this final step is therefore to greedily query the point most likely to

be a target, maximizing Pr (yH = 1 | xT ,DT−1). For the second-to-last query, which is on L,
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the expected utility is

E
[
u (DT \ DT−2 | xT−1,DT−2)

]
= E

[
max
xT

Pr (yH = 1 | xT ,DT−1)

]
.

This is the expected future reward to be collected at the next and final step, which we have

shown to be optimally the greedy query. Again, at this iteration, the second-to-last H query

is still pending, so the expectation is taken over the joint distribution of the label of that

query and that of the putative L query. In general, we compute this expected utility at

iteration i+ 1 ≤ T for an L query recursively as

E
[
u (DT \ Di | xi+1,Di)

]
= E

[
max
xi+2

E
[
u (DT \ Di+1) | xi+2,Di+1

]]
. (4.1)

For an H query, this expected utility may still be recursively computed in the same manner

but has a different expansion:

E
[
u (DT \ Di | xi+1,Di)

]
= Pr (yH = 1 | xi+1,Di)

+ E
[
max
xi+2

E
[
u (DT \ Di+1) | xi+2,Di+1

]]
.

(4.2)

The new term in (Eq. (4.2)), Pr (yH = 1 | xi+1,Di), accounts for the possibility that our

running reward increases if xi+1 ∈ T , as we are querying on fidelity H. This is simply the

probability that xi+1 is indeed a target. Also different from (Eq. (4.1)), the expectation

is taken over the distribution of the label yH of the putative point xi+1 only, as there is

no pending query at this time. An intuitive interpretation of the sum in (Eq. (4.2)) is the

balance between exploitation, the immediate reward Pr (yH = 1 | xi+1,Di), and exploration,

the expected future reward u (DT \ Di+1) conditioned on this putative query. Again, the

exploitation term is not present in (Eq. (4.1)) when an L query is made, as the query cannot

possibly increase our utility immediately.

Perhaps unsurprisingly, computing the optimal policy is a daunting task: the time complexity

of computing the expectation term in (Eq. (4.1)) and (Eq. (4.2)) is O
(
(4n)ℓ

)
, where ℓ = T−i

is the number of remaining queries and n is the number of unlabeled points. This optimal

policy is computationally intractable, and suboptimal approximations are needed in practice.

One natural solution is to shorten the lookahead horizon, pretending there are only ℓ′ < T−i
iterations remaining. This idea constitutes myopic policies, the most straightforward of

which is the greedy strategy that queries the point with the highest probability of being a

33



target in the single-fidelity setting, setting ℓ′ = 1. However, the design of a greedy policy for

an L query is not obvious, as no immediate reward can be obtained by making the query.

4.1.3 Hardness of Approximation

In addition to demonstrating the intractability of the analogous Bayesian optimal policy in

the classical single-fidelity setting, Jiang et al. [88] proved that no polynomial-time policy

can approximate the optimal policy (in terms of the expected terminal utility) by any con-

stant factor. This was done by constructing an adversarial family of active search problems

featuring “hidden treasures” that are provably difficult to uncover without exponential work.

By modifying details of this construction, the performance of any polynomial-time policy

can be made arbitrarily worse in expectation than that of the optimal policy.

This hardness result naturally extends to our multifidelity model, as even access to a perfectly

faithful low-fidelity oracle cannot aid a polynomial-time active search policy in one of these

adversarial examples. If we assume positives on L also count towards our utility, one such

active search problem with a faithful low-fidelity oracle reduces to a single-fidelity problem

with a budget on H increased by a factor of (k + 1). Unless k is exponential in the initial

budget, any polynomial-time policy remains incapable of approximating the optimal policy.

Under our model, only positives on H count towards our utility, so the performance of any

policy is further reduced. We therefore obtain the same hardness of approximation result.

However, we can still reasonably aim to design efficient approximations to the optimal policy

that perform well in practice.

4.2 Efficient Nonmyopic Approximation

Our proposed algorithm is inspired by the ens policy, introduced by Jiang et al. [88] for the

single-fidelity active search setting. ens offers an efficient and nonmyopic approximation to

the optimal policy by assuming that after the putative query, all remaining budget will be

spent simultaneously in one batch. Under this heuristic, the optimal decision following the

putative query is to greedily construct the batch with points having the highest probabilities.

The expected utility of this batch is simply the sum of these highest probabilities due to
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linearity of expectation and therefore can be computed efficiently. An interesting interpreta-

tion by Jiang et al. [88] about ens is that it matches the optimal policy given that after the

putative query, the labels of the remaining unlabeled points are conditionally independent.

4.2.1 One-stage Approximation

As a stepping stone to our proposed policy, consider the following adoption of ens. We

reapply the heuristic by assuming that after the putative query, which can be on either L or

H, all remaining H queries will be made simultaneously in one batch. Again, the optimal

choice for this batch is the set of most promising points, which we will refer to as the greedy

H batch. Using the summation-prime symbol
∑′

s to denote the sum of the top s terms,

we approximate the maximum expected utility of the remaining portion of the search in

(Eq. (4.1)) and (Eq. (4.2)) as

max
xi+2

E
[
u (DT \ Di+1) | xi+2,Di+1

]
≈
∑′

ℓH
Pr (yH = 1 | xi+2,Di+1) , (4.3)

where ℓH = ⌊(T − i−1)/(k+1)⌋ is the number of remaining H queries. The resulting policy

queries the point that maximizes the expected utility in (Eq. (4.1)) and (Eq. (4.2)), using

(Eq. (4.3)) as an approximation. This policy is cognizant of the remaining budget on H.

However, by assuming that the greedy H batch will be queried immediately following the

putative point, the strategy fails to consider future queries that could be made to the low-

fidelity oracle in its lookahead; this motivates the design of our proposed policy described

below.

4.2.2 Two-stage Approximation

Our main contribution is a policy we call mf–ens, an efficient approximation to the optimal

policy that additionally accounts for future L queries. As above, we assume in our lookahead

that after the putative query, our H budget will be spent simultaneously. However, prior to

committing to that final batch, we assume we may make k ≤ k additional L queries (also

simultaneously) with the goal of improving the expected utility of the final H batch. To

faithfully emulate our search model, we set k to be the number of L queries remaining before
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the next H query is made.3 We denote this batch of exploratory L queries as XL ⊂ X \ DL

and the corresponding labels as YL ∈ {0, 1}k. In the language of approximate dynamic

programming [21], the policy described in the previous subsection is a one-stage rollout

policy where the base policy selects the optimal batch on H following the putative query.

mf–ens on the other hand is a two-stage rollout policy whose base policy first queries the

L batch XL, and upon observing YL, adaptively queries the updated optimal H batch.

How should we construct XL to best improve the greedy H batch at the second stage?

One option would be to appeal to nonmyopic policies for batch active search [89], but the

best-promising batch policies become prohibitively expensive in this context as we would

need to construct a new batch for each putative query and label. In general, the conditional

dependence among the labels in the set YL poses a computational challenge in approximating

the expected utility gained from querying a given XL batch.

Recall that in the single-fidelity setting, the ens policy is optimal if labels become con-

ditionally independent after the chosen point. Let us make a similar assumption to ease

computation: we assume that labels become conditionally independent after the putative

query, except for the pair of labels (on H and L) corresponding to each point. That is, re-

vealing the label yL of a point x is allowed to affect our belief about the corresponding label

yH , but not the belief about any other label of any other point. This structure allows for

efficiently sharing information between the fidelities and enables our multistage lookahead

approach.4

We now aim to quantify the value of querying an unlabeled point on L in improving the final

H batch. Our solution is motivated by a heuristic search for alternatives to the members of

the greedy H batch that is assembled under the one-stage approximation. Given a putative

query, we still construct that same greedy H batch. Then, for each candidate x not in the

greedy H batch, we consider the expected marginal gain in utility of querying it on L and

modifying the membership of the H batch in light of its newly revealed label yL.

Recall that observing yL only changes the distribution of yH of the same x under our as-

sumption. Let p∗ be the lowest success probability among the current H batch and consider

two cases. If Pr (yH = 1 | x,D) exceeds p∗ as yL is revealed, we swap out the corresponding

3When making an H query, k = k; when making an L query, we subtract the number of L queries since
the pending H query.

4This is only used in policy construction and not in inference!
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least-promising member of the batch with x and thus increase the final batch’s expected

utility. Otherwise, we do not modify the current batch. The value of querying x on L and

observing yL, denoted as v (x | D), is then

v (x | D) ≜ EyL

[
max (Pr (yH = 1 | x, yL,D)− p∗, 0)

]
.

This score can be rapidly computed for most models under our conditional independence

assumption. With this value function in hand, we then greedily construct XL with the

candidates having the highest values. Another computational benefit of label independence

is that v (x | D) automatically vanishes for points already labeled on H, as querying its L

label does not affect the belief of our model and thus cannot improve the H batch. This

reduces our search space in computing the exploratory batch XL.

We now proceed to the last step of the rollout procedure in mf–ens: marginalizing over YL,

the labels of XL. As previously described, for each possible value of YL, we approximate the

optimal sequence of queries following the putative one and XL with the updated greedy H

batch given the newly revealed labels YL:

max
xi+1

E
[
u (DT \ Di) | xi+1,Di

]
≈ EYL

[∑′

ℓH
Pr (yH = 1 | x,XL, YL,Di)

]
. (4.4)

At each iteration, mf–ens queries the candidate maximizing the expected utility in (Eq. (4.1))

and (Eq. (4.2)), as approximated by (Eq. (4.4)). As an extension of ens, our approach is non-

myopic and aware of the remaining budget; we will demonstrate the impact of this reasoning

in our experiments. The policy also factors in future L queries, actively taking advantage of

the ability to query the low-fidelity oracle.

We give the pseudocode for mf–ens in Algorithm Alg. 3 (for H queries) and Algorithm

Alg. 4 (for L queries). The two versions are nearly identical; however, in Algorithm Alg. 4,

we marginalize both the putative label yL and the pending label yH for L queries, and the

Pr(yH = 1 | x,D) term is dropped from the final line.

4.2.3 Extension to Multiple Low Fidelities

So far, we have assumed our model only consists of one exact oracleH and one noisy oracle L.

To extend mf–ens to settings where there are multiple noisy oracles {Li} that approximate
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Algorithm 3 mf–ens for H queries

Require: x, D
Ensure: approximate expected utility for querying x on H, f(x) ▷ design by maximizing

1: for yH ∈ {−,+} do ▷ probabilities: Pr(yH | x,D)
2: determine XL by finding top-k v scores among unlabeled L points
3: for YL ∈ {−,+}k do ▷ probabilities: Pr(YL | x, yH , XL,D)
4: s (x, yH , XL, YL)←

∑′
ℓH

Pr (y′H = 1 | x′, x, yH , XL, YL) ▷ (4)
5: end for
6: f (x | yH)← EYL

[
s (x, yH , XL, YL) | x, yH , XL

]
▷ (4)

7: end for
8: return f(x)← Pr (yH = 1 | x,D) + EyH

[
f (x | yH) | x,D

]
▷ (2)

Algorithm 4 mf–ens for L queries

Require: x, D
Ensure: approximate expected utility for querying x on L, f(x) ▷ design by maximizing

1: for yL, yH ∈ {−,+}2 do ▷ probabilities: Pr(y | x,D)
2: determine XL by finding top-k v scores among unlabeled L points

3: for YL ∈ {−,+}k do ▷ probabilities: Pr(YL | x, yL, XL,D)
4: s (x, yL, XL, YL)←

∑′
ℓH

Pr (y′H = 1 | x′, x, yL, XL, YL) ▷ (4)
5: end for
6: f (x | yL)← EYL

[
s (x, yL, XL, YL) | x, yL, XL

]
▷ (4)

7: end for
8: return f(x)← EyL

[
f (x | yL) | x,D

]
▷ (1)
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H, potentially at different levels of fidelity, we still aim to design each query to maximize

the expected utility on H, marginalizing future experiments on the {Li} oracles. Once again

limiting the conditional dependence among labels to those of the same point, now between

each lower-fidelity Li and H, we identify a batch of appropriate size for each Li, marginalize

their labels, update the probabilities on H, and compute the approximate expected utility.

When there is only one low fidelity, this strategy reduces to the base version of mf–ens we

have presented here.

4.2.4 Implementation and Pruning

Active search requires a classification model computing a given point’s success probability

with an oracle. We extend the k-nearest neighbor introduced by Garnett et al. [61] to our

multifidelity setting by allowing information observed on L to propagate to H. Specifi-

cally, when calculating the probability that an unlabeled point x ∈ X is a positive on H,

Pr (yH = 1 | x,D), we take into account the revealed labels of its nearest neighbors on both

fidelities, as well as its own L label, yL. Effectively, we treat each given point x ∈ X as having

two separate copies: one corresponding to its H label, denoted as xH , and one corresponding

to its L label, denoted as xL. Compared to the single-fidelity k-nearest neighbor, the set of

nearest neighbors of xH is now doubled to include both copies of its original neighbors and

its own copy on L, xL. Formally, denote nnsingle(x) as the original nearest neighbor set of x.

The nearest neighbor set of xH under our multifidelity predictive model is

nn(xH) ≜ {xL} ∪
{
x′
H : x′ ∈ nnsingle(x)

}
∪
{
x′
L : x′ ∈ nnsingle(x)

}
.

To account for the unknown accuracy of the low-fidelity oracle, we apply a damping factor

q ∈ (0, 1) to the weights of the neighbors on L; q is dynamically set at each iteration via

maximum likelihood estimation.

This model performs well in practice, is nonparametric, and can be efficiently updated in

light of new data. The last feature is essential in allowing for fast lookahead, the central

component of our method. The time complexity of a naive implementation of mf–ens is
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O
(
2k n2 log n

)
,5 where k is the number of L queries made for each H query and n is the

size of the candidate pool. The corresponding time complexity of the single-fidelity ens is

O
(
n2 log n

)
[88], to which mf–ens adds a factor of 2k from the exhaustive marginalization of

the exploratory L labels. We may also take advantage of the implementation trick developed

by Jiang et al. [88], which reduces the time complexity to O
(
2k n (n + m logm)

)
, where

m ≪ n is the maximum number of unlabeled points whose probabilities are affected by a

newly revealed label. The interested reader may refer to §3.2 of Jiang et al. [88] for more

detail.

We also extend existing branch-and-bound pruning strategies to further reduce the compu-

tation time of our policy at each search iteration. First, following previous work [61, 88],

we establish an upper bound of the score function that is the approximate expected utility

defined by (Eq. (4.4)). This allows us to eliminate candidates whose score upper bounds are

lower than the current best score we have found, as their actual scores cannot possibly be

the final best score. These upper bounds are computationally cheap to evaluate, so applying

this pruning check only adds a trivial overhead to each search iteration. Further, we develop

an extension of this pruning strategy by making use of the fact that computing the score of

a point involves marginalizing over its unknown label. We thus apply similar pruning checks

at every step during this marginalization, which allows us to identify and prune suboptimal

candidates “on the fly,” avoiding any unnecessary computation.

Concretely, denote by f(x) the score of an unlabeled point x ∈ X , defined by (Eq. (4.4))

for mf–ens. Suppose x has a posterior probability of π = Pr (y = 1 | x,D), where y is the

label to be returned by the oracle we are currently querying. As previously described, we

compute f(x) by calculating its partial values while marginalizing over y:

f(x) = π f (x | y = 1) + (1− π) f (x | y = 0) ,

where f(x | y) is the partial score of x according to (Eq. (4.4)) when conditioned on a value

of y. Suppose before computing either f(x | y = 0) or f(x | y = 1), we know these partial

scores are upper bounded by u(x) given a new positive label and u(x) given a new negative

label:

f(x | y = 1) < u(x); f(x | y = 0) < u(x).

5Note that we are assuming k is small enough that 2k is a small constant; if this is not the case, we may
approximate (4.4) by sampling instead, replacing 2k by s, the number of samples used.
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Table 4.1: Experiment results with an H budget of t = 300, averaged across all repeated
experiments for each setting. θ is the simulated false positive rate of the low-fidelity oracle;
k is the number of L queries made between two H queries (i.e., the speed ratio between the
two fidelities). Each entry denotes the average number of targets found across the repeated
experiments and the corresponding standard error in parentheses. The best performance in
each column is highlighted bold.

ecfp4 gpidaph3 bmg

θ = 0.1 θ = 0.3 θ = 0.1 θ = 0.3 θ = 0.1 θ = 0.3

k = 2 k = 5 k = 2 k = 5 k = 2 k = 5 k = 2 k = 5 k = 2 k = 5 k = 2 k = 5

ens 218 (4.5) 218 (4.5) 213 (4.2) 213 (4.2) 197 (4.7) 197 (4.7) 186 (5.3) 186 (5.3) 279 (1.6) 279 (1.6) 278 (1.7) 278 (1.7)
mf–ucb 227 (4.8) 238 (4.4) 200 (5.7) 206 (5.8) 200 (5.7) 212 (5.7) 187 (5.5) 200 (5.3) 284 (1.0) 289 (1.0) 274 (2.0) 277 (1.7)
ug 228 (4.9) 237 (4.4) 207 (5.8) 209 (5.8) 204 (5.6) 211 (5.7) 191 (5.6) 202 (5.6) 283 (1.2) 287 (1.1) 278 (2.0) 280 (1.6)
mf–ens 244 (3.5) 250 (3.2) 226 (4.5) 230 (4.4) 230 (3.8) 243 (3.4) 208 (5.0) 221 (4.3) 290 (0.7) 294 (0.6) 286 (1.1) 286 (1.1)

As such, f(x) need not be evaluated if

π u(x) + (1− π)u(x) < f ∗, (4.5)

where f ∗ is the current best score we have found. This pruning strategy has been found to

offer a significant speedup in previous work [61, 88, 89].

We extend this strategy by considering the case in which a given candidate x is not pruned

because (Eq. (4.5)) is not satisfied, and we proceed with the calculation of f(x). Now,

suppose we have computed only f (x | y = 1) and not yet f (x | y = 0) and observe that

π f (x | y = 1) + (1− π)u(x) < f ∗,

then we may also safely conclude that f(x) cannot possibly exceed f ∗ without needing to go

further and compute f(x | y = 0). If this condition is met, we simply abort the computation

of the current score f(x) and move on to the next unpruned candidate. For each H query,

we apply this partial pruning check once (either after conditioning on yH = 1 and before on

yH = 0 or vice versa) for each candidate that is not eliminated by the full pruning check

(Eq. (4.5)). For an L query, we may do this at most three times for each candidate, as the

marginalization over the joint distribution of the putative label and the pending H label

when computing f(x) involves four different possible label combinations.
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4.3 Related Work

This work is an extension of the larger active search paradigm, first introduced by Garnett

et al. [61]. Active search is a variant of active learning [179] where the goal is not to learn an

accurate model but to find and query positive labels. Previous work has studied active search

under different settings such as finding a given number of targets as fast/cheaply as possible

[205, 204, 90], making queries in batches [89], or when points have real-valued utility [196].

Our work generalizes ens, the policy proposed by Jiang et al. [88] from the single-fidelity

setting. The authors of that work demonstrated that their policy is nonmyopic and aware of

its exact budget, allowing it to automatically balance between exploration and exploitation

during search and outperform various baselines by a large margin. We will make the same

observations about our policy.

Multifidelity active search was first examined by Klyuchnikov et al. [100], who specifically

considered the search problem of a recommender system: identifying items that users of a

given application are interested in. They modeled predictions made by a trained preference

model as output of a low-fidelity oracle and proposed a co-kriging predictive model [6] to

perform inference on the users’ true preferences. Under their setting, queries to the oracles

are made sequentially, one after another. Our multifidelity setting is different, modeling

situations where oracles of different fidelities are available to run in parallel and vary in their

response times, common in scientific experiments and testing. Regardless, our proposed

policy could be naturally adopted to their sequential model; the only difference in the com-

putation is that the marginalization over a pending H label is no longer necessary. Further,

as we will show in later experiments, our algorithm outperforms the adoption of their upper

confidence bound (ucb) policy for various datasets. To our knowledge, our work is the first

to tackle multifidelity active search using Bayesian decision theory.

Active search is equivalent to Bayesian optimization (bo) [28, 183] with binary observations

and cumulative reward. Multifidelity bo itself has been studied considerably, and policies

corresponding to common acquisition functions have been adopted to multifidelity settings,

including expected improvement [83, 158], knowledge gradient [159, 210], and ucb [94].

However, most of these policies are derived from or motivated by greedy approximations to

the optimal policy under different utility functions, and to our knowledge, no nonmyopic

multifidelity bo policies have been proposed.
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Active search is related to the multi-armed bandit (mab) problem [112]. In particular,

querying the label of a point can be viewed as “pulling an arm” in mab; in active search, an

arm cannot be pulled twice but is correlated to its neighbors. Kandasamy et al. [93] studied

a formulation of multifidelity mab in which each arm may be pulled on different fidelities at

different costs, and proposed a policy that is a variant of ucb. By assuming the accuracy

of the lower fidelities is known, the authors derived strong theoretical guarantees for their

proposed policy.

4.4 Experiments

We now compare the empirical performance of mf–ens against several benchmarks. As

previously described, ens is a state-of-the-art, nonmyopic active search policy in the single-

fidelity setting. In our experiments, this policy simply ignores the low-fidelity oracle, serving

as a single-fidelity baseline to illustrate the benefit of having access to low-fidelity queries.

We also test against the mf–ucb policy for multifidelity active search, recently proposed

by Klyuchnikov et al. [100]. Under this policy, each candidate x has a ucb–style score of

α (x,D) = π + β
√
π(1− π), where π is the probability of x having a positive label on the

fidelity being queried and β is the exploration/exploitation tradeoff parameter.6 We set

β = 0.01 for L queries and β = 0.001 for H queries, as suggested in the same work. For

another benchmark, we consider a simple but natural heuristic for multifidelity optimization,

that low-fidelity queries should serve to narrow down the most-promising search regions

(exploration), so that more informed queries could be made on the higher-fidelity oracle

(exploitation). Inspired by this heuristic, we design a policy we call ug (for uncertainty and

greedy sampling) that always queries the most uncertain points on L and the points most

likely to be positive on H. Uncertainty sampling is chosen for the role of exploration due to

its popularity as an active learning technique [115]. ug may also be viewed as the limit of

ucb when β approaches infinity on L for maximum exploration and 0 on H for maximum

exploitation.

Datasets for multifidelity active search are not readily available due to the relative novelty

of the problem setting, at least not in our motivating area of scientific discovery. However,

6The authors also considered an odd scenario in which the correlation between the two oracles is negative.
We assume that this correlation is always positive, and it is constructed to be so.
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numerous high-quality datasets are available in the single-fidelity setting, which we will adopt

and use to simulate multifidelity search. Namely, for each dataset, we simulate the noisy

labels returned by the low-fidelity oracle using the following procedure. We first create a

duplicate of the true labels. Given θ ∈ (0, 1), we randomly select a fraction θ of the positives

from this duplicate set and “flip” their labels to negative. We also randomly select the same

number of negatives and flip their values to positive. This perturbed set of labels is then

used as the L labels. This construction yields simulated L labels with a false positive rate

of θ and a false negative rate of θ r/(1 − r), where r ∈ (0, 1) is the prevalence rate of the

positive set T in X . In a typical active search problem, T is rare and r ≪ 1, making the

false negative rate much lower than the false positive rate, a common characteristic of many

real-world scientific discovery and testing procedures.

We set θ ∈ {0.1, 0.3}. We set k, the number of L queries that are made for each H query, to

be either 2 or 5, and set the budget on H to be 300. In each experiment, a policy starts with

an initial training dataset of one randomly selected target whose L label is also positive.

4.4.1 Datasets

We conducted experiments on three real-world scientific discovery datasets used in previous

studies [88, 89, 90]. The first two come from drug discovery, where the goal is to discover

chemical compounds exhibiting binding activity with a given protein. Each protein defines

the target for an active search problem. Here we used the first 50 proteins from the bindingdb

database [121] described by Jiang et al. [88]. A set of 100 000 compounds sampled from the

zinc database [184] served as a shared negative set. Features for the compounds are binary

vectors encoding chemical characteristics, also known as a chemoinformatic fingerprint. We

considered two fingerprints delivering good performance in previous studies: ecfp4 and

gpidaph3. The size of the positive set for these 50 targets ranged from 205 to 1488 (mean

538), having an average prevalence rate of r ≈ 0.5%. For each of these two datasets and 50

targets, we repeat each experiment five times, for a total of 500 search simulations.

The other dataset is related to a materials science application. The targets in this case

are alloys that can form bulk metallic glasses (bmgs), which have higher toughness and

better wear resistance than crystalline alloys. This dataset comprises 106 810 alloys from
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Figure 4.2: The difference in cumulative targets found between mf–ens and ens, averaged
across all experiments and datasets.

the materials literature [95, 203], 4275 of which exhibit glass-forming ability (r ≈ 4%). We

repeated each experiment 50 times for this dataset.

We report the average number of targets found by each policy across the experiments with

standard errors in parentheses in Table Tab. 4.1; each column corresponds to a specific setting

of θ and k under a dataset. We observe that our policy mf–ens outperforms all baselines

by a large margin. In each column, a two-sided paired t–test rejects the hypothesis that

the average difference in the number of targets found between mf–ens and any baseline is

zero with overwhelming confidence, returning a p–value of at most 4×10−5. Finally, looking

across the columns, we notice the expected trends: performance of all algorithms except for

ens, which does not utilize fidelity L, improves with higher k (when L is cheaper) or with

lower θ (when L is more accurate).

4.4.2 Performance Gain from Multifidelity Search

To further examine the benefit of having access to more than just the exact oracle, we

visualize the difference in the cumulative number of targets found between mf–ens and the

single-fidelity policy ens, averaged across all experiments, in Figure Fig. 4.2. We observe

that mf–ens completely dominates ens, finding roughly linearly more targets throughout

the search. This large difference in empirical performance illustrates the usefulness of the

simulated low-fidelity oracle in our experiments, and suggests that our approach is likely to

benefit search with any budget.
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Figure 4.3: An illustration of budget-awareness exhibited by mf–ens. Left: The average
progressive probabilities of points queried on H by different active search policies. Right:
The difference in cumulative targets found between mf–ens and mf–ucb. The results are
averaged across all experiments and datasets.

4.4.3 Nonmyopic Behavior

We have claimed that mf–ens is nonmyopic and aware of its remaining budget at any given

time during a search. We demonstrate this nonmyopia by first comparing the progressive

probabilities of the points queried on H (at the time of the queries being made) by the policy

against the myopic baselines mf–ucb and ug, averaged across all experiments, in the left

panel of Figure Fig. 4.3. Initially, mf–ens chooses points with lower probabilities, explor-

ing the space. As the search progresses, mf–ens queries more promising points, smoothly

transitioning to exploitation. The opposite trend can be observed for ucb and ug, whose

probabilities decrease over time due to greedy behavior. This difference translates to dis-

tinct patterns in the cumulative reward achieved by these policies. The right panel of Figure

Fig. 4.3 shows the difference in the cumulative number of targets found between mf–ens and

mf–ucb, also averaged across all experiments. During the first half of the search, mf–ens

appears to perform worse than mf–ucb, but quickly recovers and outperforms the latter in

the end. The corresponding plot comparing mf–ens and ug shows a similar trend.

Overall, this phenomenon perfectly highlights the automatic tradeoff between exploration

and exploitation exhibited by mf–ens: the policy makes its initial queries to explore the

search space, often requesting labels that are not the most likely to be positive and failing

to collect substantial immediate reward; however, as the budget decreases, its queries grow

more exploitative and are ultimately more successful than those from myopic policies by

leveraging what it has learned.
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Table 4.2: Average pruning rate and the contribution of each of the two pruning methods.

policy full coverage rate
given full coverage

total prune % partial prune %

mf–ens 27.6% 89.4% 9.2%

4.4.4 Effects of Pruning

We examine the effectiveness of our pruning strategies in helping mf–ens cover the entire

search space. Each of the two policies has an upper limit on how many candidates are to

have their scores fully computed. If this limit is reached, we only consider a random subset

of the remaining candidate pool. We classify each time a policy returns while there are

unpruned candidates remaining as an instance of failure to cover the entire space.

First, we compute the fraction of iterations, across all experiments, in which this limit is

not exceeded, or in other words, how often each policy can exactly consider all candidates

with the help of pruning. When a point is pruned, it may be before any actual computation

(total pruning) if its score upper bound is lower than the current highest score f ∗. Otherwise,

it may be pruned during the calculation of its scores (partial pruning) if its partial score,

combined with partial upper bounds, is lower than f ∗. We keep track of the fraction of

points pruned by each of the two methods; these results are averaged across the iterations

in which pruning helps cover the entire candidate pool. We report these statistics in Table

Tab. 4.2.

We observe that while we do not cover the entire candidate pool in many iterations, the

effect of pruning is dramatic when it is successful. The existing pruning method (total

pruning) helps eliminate most of the candidates, and our extension (partial pruning) raises

the combined pruning rate to roughly 99% on average. In our experiments, successful pruning

could reduce the time a policy takes to produce a decision from under an hour to mere

seconds.

At an iteration where the current best score f ∗ does not exceed the majority of the score

upper bounds, many candidates may be left unpruned. In order to help our policy avoid

having to calculate the scores of a large number of candidates and consequently spending

too much time on a single iteration, we place an upper limit on how many candidates are
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to be considered before we terminate the search. Our approach is to first follow the lazy-

evaluation strategy introduced by Jiang et al. [89] and sort the candidates by their score

upper bounds. With this sorting, candidates with higher upper bounds will be considered

first, and a candidate will never be considered if it will be pruned later on. Now, at each

iteration, if after having considered u candidates and noticing that there are still unpruned

points remaining, we simply consider a randomly selected subset of size at most s of the

unpruned set, before terminating the search and returning the current best candidate. In

our experiments, we set u = s = 500 for mf–ens.

We note that this strategy is only used when pruning fails to reduce our search space to

be below u + s, and to allow us to collect results over a long horizon over many repeated

experiments. When applied in a real-life planning setting, mf–ens can still cover the entirety

of a large pool of candidates if desired, even with a significant portion of the pool unpruned.

In our experiments, mf–ens takes approximately 30 seconds to reach its quota of 1000

candidates when pruning is unsuccessful; the time for it to fully cover a pool of 100 000

points (about the size of the real-world datasets used in our experiments) is thus well under

one hour. In short, our policy remains tractable in real-life settings, even without successful

pruning.

4.5 Conclusion

We have proposed a multifidelity active search model in which an exact oracle and a cheaper

surrogate are queried in parallel. We presented a novel nonmyopic policy (based on two-

stage rollout) for this setting that reasons about the remaining queries on both fidelities

seeking to maximize the total number of discoveries. Our policy is aware of the remaining

budget and dynamically balances exploration and exploitation. Experiments on real-world

data demonstrate that the policy significantly outperforms myopic benchmarks.
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Chapter 5

Diversity-Aware Active Search

Prior work on active search (as) has operated in a binary setting where every data point is

either valuable or not. The total number of discoveries made in a given budget is then used

as a utility function during experimental design, encoding equal marginal utility for every

discovery made. However, this may not adequately capture preferences over experimental

outcomes in many practical scenarios, where there may be diminishing returns in finding

additional members of a frequently observed class. This is often the case in, e.g., scientific

discovery, where a discovery in a novel region of the design space may offer more marginal

insight than the 100th discovery in an already densely labeled region. In this work, we

will consider a multiclass variant of the as problem, wherein discoveries in rare classes are

awarded more marginal utility than those in an already well-covered classes. As we will see,

this approach naturally encourages diversity among the points discovered.

After defining this problem, we study it through the lens of Bayesian decision theory. We

begin by outlining how we can capture the notion of diminishing returns in marginal dis-

covery through an (arbitrary) positive, increasing, and concave utility function. We then

extend the hardness of approximation result by Jiang et al. [88] from the linear utility to

this much larger family, demonstrating that search is fundamentally difficult for a broad

range of natural utility functions. We then propose an approximation to the optimal policy

for problems in this this class that is both computationally efficient and nonmyopic. We

show that the resulting algorithms effectively encourage diversity among discoveries, and,

similar to nonmyopic policies from previous work, leverage budget-awareness to dynamically

balance exploration and exploitation. We demonstrate the superior empirical performance

of our approach through an exhaustive series of experiments, including in a challenging drug

discovery setting. Across the board, our proposed policy recovers both better balanced and

richer data sets than a suite of strong baselines.
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5.1 Problem Definition

We first introduce the multiclass active search problem with diminishing returns and present

the Bayesian optimal policy. This policy will be hard to compute (or even approximate),

but will inspire an approximation developed in the next section. Suppose we are given a

large but finite set of points X ≜ {xi}, each of which belongs to exactly one of C classes,

denoted by [C] ≜ {1, 2, . . . , C}, where C > 2. We assume class-1 instances are abundant

and uninteresting, while other classes are rare and valuable; we call the members of these

classes targets. The class membership of a given point x ∈ X is not known a priori but can

be determined by making a query to an oracle that returning its label y = c. We assume

this labeling procedure is expensive and can only be accessed a limited number of times

T ≪ n ≜ |X | (the querying budget). Denote a given data set of queried points and labels

as D = {(xi, yi)}, and Dt as the data set collected after t queries to the oracle in a given

search.

Our high-level goal is to design a policy that decides which elements of X should be queried

in order to uncover as many targets as possible. Preferences over different data sets (ex-

perimental outcomes) are expressed via a utility function; previous work [61, 88] has used a

linear utility in the binary setting C = 2:

u (D) =
∑

y∈D
I{y > 1}, (5.1)

which effectively groups all targets in a common positive class and assigns equal reward to

each discovery. In many practical scenarios, however, once a target class has been thoroughly

investigated, the marginal utility of finding yet more examples decreases and we would prefer

to either expand a rarely sampled class or discover a new one. For example, in drug discovery

– one of the main motivating applications for as – screening procedures optimized for hit

rate tend to propose very structurally similar compounds and lead to an overall decline in

usefulness of these discoveries downstream [58]. This has lead to efforts to artificially en-

courage diversity when generating new screening experiments, as a way to induce the desired

search behavior [19, 156].

The preferences above reflect the notion of diminishing returns. We propose to capture

diminishing returns for marginal discoveries in a known class c (and thereby encourage
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diversity in discoveries) with a reward function fc:

u (D) ≜
∑
c>1

fc

(∑
y∈D

I{y = c}
)
=
∑
c>1

fc (mc) , (5.2)

where fc is a positive, increasing, and concave function quantifying our reward given the

number of found targets from a given class c. The term mc denotes the number of targets of

class c in data setD; we also usemc,t to denote the corresponding number inDt at time t. Any

utility encoding decreasing marginal gains (that is, concave) is an appropriate choice for this

setting, and we will see later in Sect. 5.2 that the key element of our algorithm is valid with

any concave utility. In our experiments, we use the logarithmic function fc(x) = log(x + 1)

(which has seen a wide range of applications, namely modeling utility of wealth [20] or

production output [155] in economics) as a reasonable default with which to generate our

main results. We also present results showing that our methods generalize well to other

possibilities such as the square root utility fc(x) =
√
x.
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Figure 5.1: Discoveries by region rel-
ative to a uniform target distribu-
tion by the state-of-the-art policy
ens, in a toy search problem where
points within the visible regions in
the unit square are considered search
targets. ens over-samples the cen-
ter region, the most common and
easiest-to-identify target class, and
collects a highly unbalanced data set.

Under this model, the marginal gain of an additional

discovery decreases with the size of the correspond-

ing class in D. Consider a toy problem illustrated

in Fig. 5.1, where we wish to search for points close

to the center and corners of the unit square, each

representing a target class. The state-of-the-art ens

policy [88], which uses a linear utility, recovers many

targets but over-exploits the center region. This is

undesirable behavior when we would prefer to have

balanced discoveries across all classes; ideally, we

would like to achieve a uniform target distribution

(an equal number of hits across all classes for max-

imum diversity), where all five regions in the plot

are transparent. We will develop policies that can

achieves such balance in the next section.
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5.1.1 The Bayesian Optimal Policy

We now derive the optimal policy in the expected case using Bayesian decision theory. We

first assume access to a model computing the posterior probability that a point x ∈ X belongs

to class c ∈ [C] given an observed data set D, denoted by pc (x | D) ≜ Pr (y = c | x,D). (We

sometimes omit the dependence on D in the notation when the context is clear.) This model

may be arbitrary. Now, suppose we are currently at iteration t + 1 ≤ T , having collected

data set Dt, and now need to identify the next point xt+1 ∈ X \Dt to query the oracle with.

The optimal policy selects the point that maximizes the expected utility of the terminal data

set DT , conditioned on the current query, recursively assuming that future queries will also

be made optimally:

x∗
t+1 = argmax

xt+1∈X\Dt

E
[
u (DT ) | xt+1,Dt

]
. (5.3)

This expected optimal utility may be computed using backward induction [18]. In the base

case where t = T − 1 and we are faced with the very last query xT ,

E
[
u (DT ) | xT ,DT−1

]
=
∑
c∈[C]

u (DT ) pc (xT | DT−1) . (5.4)

Maximizing this expectation is equivalent to maximizing the expected marginal utility gain

∆(xT | DT−1) ≜
∑
c>1

pc (xT | DT−1)
[
fc (mc,T−1 + 1)− fc (mc,T−1)

]
. (5.5)

For each class c, this quantity not only increases as a function of the positive probability

pc, but also decreases as a function of the number of targets already found in that class.

Therefore, even at this very last step, the optimal decision balances between hit probability

and discovery/extension of a rare class. When more than one query remains in our budget,

the expected optimal utility in Eq. (5.3) expands into

E
[
u (DT ) | xt+1,Dt

]
= u (Dt) + ∆ (xt+1 | Dt)

+ Eyt+1

[
max
xt+2

E
[
u (DT ) | xt+2,Dt+1

]
− u (Dt+1)

]
,

(5.6)

where E
[
u (DT ) | xt+2,Dt+1

]
is the expected utility that is a step further into the future and

may be recursively computed using the same expansion. Here, we note while the first term in

the sum on the right-hand side (the utility at the current step u (Dt)) is a constant, the other
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two terms may be interpreted as balancing between exploitation from the immediate reward

(the marginal gain ∆ (xt+1 | Dt)), and exploration from the future rewards to be optimized

by subsequent queries (the expected future utility). Overall, computing this expectation

involves (ℓ−1) further nested expectations and maximizations, where ℓ = T − t is the search

horizon. This has a time complexity of O
(
(C n)ℓ

)
, making finding the optimal decision

intractable for any large data set.

A potential solution to this problem is to limit the lookahead horizon by pretending that ℓ is

small, thus myopically approximating the optimal policy. The simplest form of this is to set

ℓ = 1 and greedily optimize for the one-step expected marginal utility gain in Eq. (5.5). We

refer to the resulting policy as the one-step policy. Since our utility function has elements

with diminishing returns, a question naturally arises as to whether the results from the

submodularity [104] and adaptive submodularity [65] literature apply here, and whether the

greedy strategy of the one-step policy could approximate the optimal policy well. In the

next subsection, we present the perhaps surprising result that no polynomial-time policy

can approximate the optimal policy by any constant factor.

5.1.2 Hardness of Approximation

Assuming access to a unit-cost conditional probability pc (x | D) for any point x ∈ X and

data set D, we obtain the same hardness result of Jiang et al. [88] for the broad range of

utility functions considered here:

Theorem 5.1.1. There is no polynomial-time policy providing any constant factor approxi-

mation to the optimal expected utility in the worst case.

Our proof strategy follows that of Jiang et al. [88]. We construct a family of hard problem

instances, where in each instance a secret set of points encodes the location of a larger

“treasure” of targets. The probability of discovering this treasure is extremely small without

observing the secret set first, which in itself is vanishingly unlikely to happen in polynomial

time. Further, the average hit rate outside of the treasure set is vanishingly low, making

it infeasible to compete with the optimal policy. Remarkably, we can construct such hard

problem instances for any utility that is positive, increasing, unbounded, and concave in the

number of discoveries in each class. The complete proof is included in Appx. A.
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Despite this negative result, we hope to design empirically effective policies. Previous work

has demonstrated that nonmyopic policies offer both theoretical and empirical benefits when

working with the linear utility function, and that budget-awareness is in particular can be

especially beneficial for a policy to effectively balance exploration and exploitation. In the

next section, we propose an efficient, nonmyopic approximation to the optimal policy for the

class of utility functions we consider here, which we will show later also improves practical

performance.

5.2 Efficient Nonmyopic Approximation

We propose a batch rollout approximation to the optimal policy similar to the ens algorithm

for binary as [88] and the glasses algorithm for Bayesian optimization [67]. The key idea is

to assume that after a proposed query in the current iteration, all remaining budget will be

spent simultaneously on a single batch of queries exhausting the budget. This assumption

simplifies the decision tree we must analyze, reducing its depth to 2 while expanding the

branching factor of the last layer. Under the linear utility model, the expected marginal util-

ity of a final batch of queries conveniently decomposes into a sum of positive probabilities of

individual batch members. The optimal final batch therefore consists of the points with the

highest probabilities, which may be computed efficiently. By matching the size of the follow-

ing batch to the number of queries remaining, we can effectively account for our remaining

budget when computing the expected utility of a given putative query. Unfortunately, the

linear decomposition enabling rapid computation in ens does not hold in our setting due to

our nonlinear utility (5.2), and designing an effective batch policy requires more care.

5.2.1 Making a Batch of Queries

We first temporarily consider the subproblem of designing a batch of b queries X given a data

setD to maximize the expected utility of the combined observation set, i.e., EY

[
u (D ∪X, Y )

]
,

where the expectation is taken over Y ,7 the labels of X. As labels may be conditionally

dependent and the utility function u is not linear, exact computation of this expectation

7In this section, expectations over Y are universally conditioned on knowledge of X and D; we drop this
conditioning from the expressions to clarify the main ideas.
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requires iterating over all Cb realizations of the label set Y . This is infeasible unless b is very

small, and represents the primary challenge we must overcome.

A crude but effective mechanism to address the conditional dependence of labels is to simply

ignore the dependence (a “mean field approximation”). This relieves us from having to up-

date the posterior for unseen points given fictitious observations arising in the computation.

However, in our setting, even if we assume conditional independence, we still face challenges

in computing the expected utility:

EY

[
u (D ∪X, Y )

]
=
∑
c>1

EY

[
fc (m

′
c)
]
, (5.7)

where m′
c is the total number of targets belonging to class c in the union set of D and a

particular realization of Y . In the interest of effective computation, we use Jensen’s inequality

to obtain an upper bound on the expected utility:∑
c>1

EY

[
fc (m

′
c)
]
≤
∑
c>1

fc

(
EY [m′

c]
)
. (5.8)

Now, for a given class c, the inner expectation may be rewritten as the sum of probabilities

(and some constants):

EY [m′
c] = mc +

∑
x∈X

pc (x | D) . (5.9)

We then upper-bound the overall expected utility:

EY

[
u (D ∪X, Y )

]
≤ u(X) ≜

∑
c>1

fc

(
mc +

∑
x∈X

pc(x | D)
)
. (5.10)

We propose to use this upper bound, u, to approximate the expected utility of a batch for the

purposes of policy computation. (We note that we may derive this bound for any concave

utility.) We later present simulation results comparing the fidelity of this approximation

to that of Monte Carlo sampling. Overall, our method offers competitive accuracy even

against sampling with a large number of samples of Y (>1000), while being significantly more

computationally lightweight. Here, speed is paramount since in batch rollout, computing the

utility of a batch is a subroutine that needs to run many times (C times for each putative

query candidate, once for each putative label). Another attractive feature of our approach is

that u is a monotone submodular set function, which will facilitate efficient (approximate)

maximization.
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Algorithm 5 Diversity-aware active search (das)

1: inputs observations Dt, remaining budget T − t
2: returns x∗

t+1 maximizing the score in Eq. (5.11)
3: for xt+1 ∈ X \ Dt do ▷ iterate over candidates
4: for yt+1 ← 1 to C do
5: α (xt+1 | yt+1)← u (X | Dt ∪ {(xt+1, yt+1)}) ▷ approximate future rewards
6: end for
7: α(xt+1)←

∑
c pc(xt+1)α (xt+1 | c)

8: end for
9: x∗

t+1 ← argmaxxt+1 α(xt+1) ▷ design by maximizing

Our goal now is to find the batch X that maximizes u, as an approximation to the batch

maximizing the expected one-step utility. Näıvely maximizing u requires iterating over
(
n
b

)
candidate batches to compute the corresponding score. However, we note that this score is

a sum of concave, increasing functions, which are monotone submodular, and therefore u

is a monotone submodular function itself. We thus opt to greedily optimize u by sequen-

tially maximizing the pointwise marginal gain; the resulting batch provides a (1 − 1/e)-

approximation for the optimal batch [144, 104]. We briefly remark on the nature of the

batches resulting from this greedy procedure, which naturally encourages batch members to

be diverse in their likely labels: once a point having a high pc is added to X, others with high

pc′ for another target will be prioritized during the next selection. This is a desideratum of

a batch policy when seeking to encourage diversity, indicating the output of the algorithm

is a reasonable approximation of the optimal batch. Further, when b = 1 (that is, at the

second-to-last iteration), this procedure makes the true expected-case optimal decision – a

reassuring feature.

5.2.2 Completing the Algorithm

With a method of constructing approximate one-step optimal batches in hand, we now com-

plete our proposed policy, diversity-aware active search, or das. For a candidate observation

xt+1, we condition on each possible label yt+1 ∈ [C], approximate the optimal batch obser-

vation following (xt+1, yt+1), and average the resulting approximate terminal utility u over

the labels yt+1:

α(xt+1) = Eyt+1

[
u (X) | xt+1,Dt

]
, (5.11)
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(a) One-step (b) das (ours)
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Figure 5.2: Discoveries by region relative to a uniform target distribution by the one-step
policy and our proposal das, in the problem visualized in Fig. 5.1. One-step distributes
queries more equally than the previously seen ens; however, center points are still over-
represented. das constructs more diverse data sets and finds more rare corner targets.

where u depends on the putative data D ∪ (xt+1, yt+1). das proceeds by selecting the can-

didate x∗
t+1 that maximizes the score α. This procedure is summarized in Alg. 5.

As mentioned, with the lookahead batch construction simulating future queries, das accounts

for not only the immediate reward but also the impact of the chosen query on future rewards.

Additionally, the latter quantity naturally decreases as a function of the remaining budget b,

allowing our policy to be budget-aware and dynamically balance exploitation and exploration

without any tradeoff parameter. We briefly demonstrate the benefits of our approach by

continuing with the example previously seen in Fig. 5.1, where ens, in seeking to maximize

only recovery, collected highly unbalanced data sets. Fig. 5.2 shows the results of the one-step

policy and das under the same setting. Compared to ens, one-step distributes its queries

more equally, but it is our proposed policy das that constructs the most diverse data set.

5.2.3 Implementation

A näıve implementation of the batch subroutine in das has a complexity of O(b n), and the

entire das procedure has a complexity of O
(
C n (b n)

)
= O (C bn2), where again n = |X | is

the size of our search space and b is the remaining budget.

57



We now describe the k-nn model used in our experiments, introduced by Garnett et al.

[61] in the binary setting. The idea is to use the proportion of class-c members among the

observed nearest neighbors of a given point x as the posterior marginal probability pc (x | D).
Formally, denote the set of nearest neighbors of x as nn(x) and the (potentially empty) subset

of labeled neighbors as lnn(x) ⊆ nn(x). Then, the posterior probability of x belonging to

class c is

pc (x | D) =
γc +

∑
x′∈lnn(x) I{y′ = c}

1 + |lnn(x)| , (5.12)

where each γc ∈ (0, 1) is a hyperparameter acting as a “pseudocount”, or our prior belief

about the prevalence of class c (since pc (x | D) = γc if lnn(x) = ∅).

The k-nn achieves reasonable generalization error in practice (in the sparsely labeled setting

we are considering here), and can be rapidly updated given a new observation, which is a

valuable feature with respect to our method. Further, the k-nn only uses the similarity

matrix for X , whose calculation only needs to be done once and can be accelerated by

modern similarity search libraries such as Faiss [91]. Another benefit of this model is that it

is possible to cheaply compute a posterior probability upper bound p∗, given any data set D
and an additional observation with label y:

max
x′∈X\D

pc
(
x′ | D ∪ {(x, y)}

)
≤ p∗c (y,D) .

This upper bound is useful in that we may then bound the approximate expected terminal

utility u conditioned on label c when computing the score in Eq. (5.11), i.e., α (x | y = c),

and therefore the overall score α(x). With these score upper bounds in hand, we employ

branch-and-bound pruning strategies used in previous work [89, 147]. Specifically, before

evaluating the score α of a given candidate x, we compare the upper bound of α(x) against

the current best score α∗ we have found. If α∗ exceeds this bound, computing α(x) is

unnecessary and we proceed to the next candidate. Otherwise, since we have access to the

conditional score upper bounds for α (x | y = c), as we marginalize over each label y, we

further check whether the conditional scores computed thus far, when combined with the

complementary conditional upper bounds, are less than α∗. If this is the case, we terminate

the current α computation “on the fly.” The upper bounds p∗c are cheap to evaluate, and

these checks add a trivial overhead to the entire procedure in the pessimistic situation of no

pruning – in practice, this cost is well worth it. Finally, a lazy-evaluation strategy is used,
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where candidates are evaluated in descending order of their score upper bounds, so that a

given point that may be pruned will not be evaluated.

We also employ a pruning strategy for the inner batch-building procedure. We first note

that, in this procedure, points having the same marginal probabilities pc (conditioned on

a putative query) are interchangeable as we have assumed conditional independence. We

point out one particular set of such points with equal pc: those whose marginal probabilities

have not been updated from the prior due to having no labeled nearest neighbors. In a

typical as iteration, there may be many such points, especially in early stages of the search.

Pruning duplicates appropriately allows the follow-on batch to be built more efficiently, and

we empirically observed a drastic improvement in our experiments. A welcomed property

of this method is that it has the most impact in the early iterations of a search, which

would usually be the longest-running iterations otherwise. Overall, the combination of these

strategies allows our algorithm to scale to large data sets (>100 000 points).

In the event where pruning is unsuccessful, we can sub-sample the space (e.g., subject to

a user-specified cardinality constraint) and conduct the current search within the sampled

pool. This technique is extensively explored in Mirzasoleiman et al. [136] and used by Nguyen

et al. [147].

5.3 Related Work

Active search [61] is a variant of active learning (al) [179] where we aim not to learn an

accurate model, but to collect members of rare and valuable classes. Previous work has

explored as under a wide range of settings, such as when the goal is to hit a targeted

number of positives as quickly/cheaply as possible [205, 204, 90], when queries are made in

batches [89], or with multifidelity oracles [147]. These studies all assumed there is only one

target class, and collecting a target constitutes a constant reward. Ours is the first to our

knowledge to tackle multiclass as.

Diversity as an objective has enjoyed great interest from the broader al community. A

common approach is to modify a typical al acquisition function to encourage diversity in

the resulting queries. For example, Gu et al. [73] and Yang et al. [215] encouraged diversity

by incorporating dissimilarity terms (computed via an rbf kernel) into uncertainty sampling
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schemes. Brinker [27] used the angles between the hyperplanes induced by adding new points

to the training set of an svm, and Zhdanov [219] considered the minimum distance between

any pair of labeled points. Others have employed coreset-based strategies [178, 3] to identify

a set of diverse representative points. Another popular strategy is to partition a given data

set into different groups (e.g., using a clustering algorithm) and inspect the groups in a

round-robin manner [127, 116, 124, 38]. We will apply a round-robin heuristic to a number

of benchmarks in our experiments.

Vanchinathan et al. [196] was motivated by a similar problem of uncovering a diverse, valu-

able subset. Theirs is a regression setting in which diversity is measured in the feature space

– via the logdet of the Gram matrix of the collected data. The proposed policy is myopic,

maximizing the expected one-step marginal gain in a weighted sum of reward and diversity.

He and Carbonell [78] studied a related problem where the objective is to detect at least one

instance of each rare target class as quickly as possible. By assuming the target classes are

highly concentrated, they design a policy that optimizes the difference in local density be-

tween a given point and its nearest neighbors, which is effective at identifying targets on the

boundary. Malkomes et al. [130] considered the constraint active search problem, in which

they seek to find a diverse set of points satisfying a set of constraints. The authors propose

maximizing the expected improvement in a coverage measure given a new observation. We

include these policies as al baselines in our experiments.

Closest to the motivation of our work, a line of research [102, 103] has explored a unified al

framework for querying rare, diverse subsets of a large pool using submodular information

measures. Specifically, the neural network-based similar algorithm [102] consists of al

policies that can tackle problematic yet realistic learning scenarios such as imbalance in the

training data, rare classes, out-of-distribution test data, and redundancy. While it can be

used for active search, similar is not designed to specifically target discovery tasks.Further,

our diversity-aware active search framework allows the utility function to be adjusted by

the user to dynamically balance between discovery and diversity, a valuable feature in many

discovery tasks.

Diversity has also been explored in the related task of Bayesian optimization [59]. A common

approach is to incorporate a determinantal point process [107] to induce diversity in the

feature space [201, 143]. In the multiobjective setting, many policies leverage the diversity

of their collected data in the Pareto space to design queries [75, 181, 123].
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5.4 Experiments

We performed a series of experiments to evaluate the empirical performance of our policy

das. As baselines, we considered related active learning/search algorithms [78, 196, 130] (see

Sect. 5.3), as well as the one-step lookahead policy, which greedily maximizes the marginal

utility at each iteration. Another baseline was ens [88], the state-of-the-art for binary as,

where we lumped all targets into a single positive class.

We also considered a family of policies that design queries in a round-robin (rr) manner.

In each iteration t, we choose a target class ct and seek to make a discovery for this target

class. A round-robin policy then continually rotates the target class among the positive

classes throughout the search, devoting an equal amount of resources to each class. The

first of these policies is rr-greedy, which for a given class index ct queries the point that

maximizes the probability pct . Another round-robin baseline is rr-ucb, which maximizes

an upper confidence bound score [11] corresponding to ct: pct + β
√

pct(1− pct). Here β is a

hyperparameter trading off exploitation (class membership probability) and uncertainty (as

measured by the standard deviation of the binary indicator [y = ct]). We evaluate this policy

for β ∈ {0.1, 0.3, 1, 3, 10} and report the result of the best performing value of β, denoted

β∗ in our results (Tab. 5.1). Finally, we consider rr-ens, which applies the ens heuristic to

the subproblem of finding positives in the target class ct. The remaining budget is equally

allocated among the positive classes, and we adjust the remaining budget when constructing

lookahead batches accordingly.

When relevant in the following experiments, we used a utility function that was logarithmic

in marginal discoveries for each class: u (D) =∑c>1 log (1 +mc); however, we also conducted

a robustness study comparing performance for this utility function with an alternative that

had significantly faster (square root) growth in each class. We set our budget T = 500

unless specified otherwise and run each policy 20 times, each time with an initial training

set containing a randomly selected target. We tested our policies on a wide range of data

sets representing a diverse set of applications, which we briefly describe below.

Product recommendation. Our first task uses the fashion-mnist data set [211] of fashion

item images to simulate a product recommendation setting. Here, we assume a user is looking

for specific classes of fashion articles while shopping online. To simulate two different users

(corresponding to two search problems), we select specific classes to be the products each
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user is looking for. We sub-sample these classes uniformly at random, making the positives

harder to uncover; the hit rate of a random policy is roughly 2%. While the k-nn model has

been found to perform well on the remaining data sets in previous studies [61, 88, 141], with

this data, we can select targets that are either easy or difficult to identify with the k-nn, to

simulate different levels of search difficulty and study the effect of the quality of the k-nn on

the performance of our methods. To this end, we measure the predictive performance of the

k-nn and split the two search problems into an “easy” one, where the model scores highly

on precision-at-k metrics (particularly important in as), and a “hard” one, where the k-nn

scores lower.

Photoswitch discovery. We also consider the task introduced by Mukadum et al. [141]

of searching for photoswitches (molecules that change their properties upon irradiation) in

chemical databases that exhibit both desirable light absorbance and long half-lives. Roughly

36% of the molecules in the search space are targets. In their study, the authors partitioned

the points into 29 groups by their respective substructures, thus defining a multiclass as

problem with C = 30 (a negative class and 29 positive classes). As this data set is smaller

in size, we set the budget T = 100.

The CiteSeerx data set. We use the CiteSeerx citation network data [61], which contains

papers published at popular computer science conferences and journals. The label of each

paper is its publication venue, and our targets are machine learning and artificial intelligence

proceedings. We conduct two sets of experiments with different numbers of classes C. For

C = 5, we select papers from neurips, icml, uai, and jmlr as our four target classes

(roughly a 14% hit rate). For C = 10, we further include ijcai, aaai, jair, Artificial

Intelligence, and Machine Learning (ml) as targets, yielding a 31% hit rate.

Drug discovery. Finally, we experiment with a drug discovery task using a massive

chemoinformatic data set. The goal is to identify chemical compounds that exhibit selective

binding activity to a given protein. The data set consists of 120 such activity classes from

bindingdb [121]. For each class, there are a small number of compounds with significant

binding activity – these are our search targets. In each experiment for a given C ∈ {5, 10, 15},
we select (C − 1) of the 120 classes uniformly at random without replacement to form the

targets. They are then combined with 100 000 “drug-like” entries in the zinc database [184],

which serve as the negatives, to make up our search space. We note that each of these

active classes has a unique structure and behavior, and combining multiple classes in one as
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Table 5.1: Logarithmic utility and standard errors across 20 repeated experiments for each
setting. C is the total number of unique classes in the search space. The best performance in
each column is highlighted in bold; policies not significantly worse than the best (according
to a two-sided paired t-test with a significance level of α = 0.05) are in blue italics.

fashion-mnist Photoswitch CiteSeerx Drug discovery

easy hard C = 5 C = 10 C = 5 C = 10 C = 15

He and Carbonell [78] 3.99 (0.16) 3.95 (0.16) 12.65 (0.22) 11.30 (0.11) 24.61 (0.14) 3.49 (0.23) 7.19 (0.27) 10.35 (0.35)
Vanchinathan et al. [196] 9.47 (0.50) 6.99 (0.51) 7.16 (0.25) 16.28 (0.06) 31.95 (0.49) 10.19 (0.70) 18.67 (0.88) 25.51 (1.40)
Malkomes et al. [130] 11.31 (0.34) 10.93 (0.47) 6.39 (0.03) 11.28 (0.01) 22.16 (0.01) 7.41 (0.31) 13.77 (0.56) 19.60 (0.66)

ens 10.48 (0.29) 10.91 (0.14) 5.04 (0.21) 16.57 (0.08) 32.54 (0.50) 10.29 (0.68) 13.79 (0.85) 17.00 (1.15)

rr-greedy 11.41 (0.36) 10.41 (0.44) 11.70 (0.30) 16.66 (0.14) 33.08 (0.13) 10.87 (0.82) 18.66 (1.13) 24.87 (0.95)

rr-ucb
11.51 (0.37)
(β∗ = 1)

11.28 (0.47)
(β∗ = 1)

11.70 (0.30)
(β∗ = 3)

16.68 (0.12)
(β∗ = 1)

33.22 (0.13)
(β∗ = 3)

11.60 (0.90)
(β∗ = 3)

19.27 (1.13)
(β∗ = 3)

26.45 (0.96)
(β∗ = 10)

rr-ens 13.97 (0.09) 12.78(0.31) 12.54 (0.11) 17.47(0.11) 33.78 (0.16) 10.56 (0.72) 17.83 (0.66) 23.58 (0.88)

One-step 11.83 (0.39) 11.57 (0.47) 8.67 (0.13) 16.77 (0.13) 34.01 (0.13) 11.68 (0.92) 19.06 (0.98) 27.40 (1.11)
das (ours) 14.02(0.06) 12.38 (0.30) 13.85(0.27) 17.37 (0.09) 34.45(0.11) 13.34(0.79) 23.39(0.83) 31.48(1.25)

Table 5.2: Average number of rarest papers found by different policies in the citation network
experiment. Ours finds more rare instances and achieves a better balance.

uai jmlr ml

ens 51.80 25.25 34.95
One-step 45.75 30.40 29.50
das (ours) 44.45 33.85 37.40

problem makes ours a challenging task. Here, the average prevalence of a target is 0.2%; the

hit rates are 1%, 2%, and 3% for C = 5, 10, and 15, respectively.

Discussion. We report the performance of the policies, quantified by the logarithmic utility

function, in Tab. 5.1. Overall, das either is the winner or does not perform significantly

worse than the best policy. This consistent performance highlights the benefits of our non-

myopic, budget-aware approach. Under fashion-mnist, most methods work better on the

easy problem than on the hard problem, showing the importance of the predictive model in

as. That said, our method remains competitive even under the harder setting. Inspecting

the optimal values for rr-ucb’s tradeoff parameter β∗ in the CiteSeerx and drug discovery

experiments, we notice a natural trend: as C increases, so does the need for exploration, and

larger values of β are thus selected.

To illustrate das is effective at constructing diverse observations, we show in Tab. 5.2 the

average numbers of discoveries by the best three policies under the CiteSeerx C = 10 exper-

iments for the three rarest classes: uai, jmlr, and ml. Here, das successfully finds more
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Figure 5.3: Difference in cumulative reward between das and one-step across the drug
discovery C = 10 experiments. das dynamically balances exploration and exploitation.

targets from the rarer classes of jmlr and ml, with a better balance among these classes as

well.

By design, das is always aware of its remaining budget during search and therefore dynam-

ically balances exploration and exploitation. We demonstrate this with the difference in the

cumulative reward of das vs. one-step under the drug discovery C = 10 setting in Fig. 5.3.

das collects fewer rewards in the beginning while exploring the space. As the search pro-

gresses, the policy transitions to more exploitation and ultimately outperforms the myopic

one-step.

Quality of approximation. We run simulations to compare the performance of the

Jensen’s upper bound u against Monte Carlo (mc) sampling, under the logarithmic util-

ity function u (D) =
∑

c>1 log (1 +mc). Using the CiteSeerx data set, we first construct a

training data set D by randomly selecting 50 points for each class (|D| = 50C), and compute

the posterior probabilities pc with the k-nn to simulate a typical as iteration. A random

target batch X of size b is then chosen, and the considered approximation methods are ap-

plied on this batch. This entire procedure is repeated 10 times for each setting of (C, b),

and the average root mean squared error (rmse) and time taken for each method to return

are reported in Tabs. 5.3 and 5.4. (mc(s) denotes mc sampling using s samples.) Note that

in settings with large C or b, exact computation of Eq. (5.7) is prohibitively expensive, in

which case mc (215) is used as the ground truth. Overall, our Jensen’s approximation offers

a good tradeoff between accuracy and speed.
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Table 5.3: Quality and time of our approximation method against mc sampling, averaged
across 10 random repeats of CiteSeerx C = 5 experiments. Under each setting, the approxi-
mation with the lowest error (with respect to the chosen ground truth) is highlighted bold,
and so is the fastest method.

rmse Time in seconds

Ground truth Exact mc(215) Exact mc(215)

b 3 10 30 100 300 3 10 30 100 300

Exact - - na na na 0.0031 53.7149 na na na
mc(25) 0.0021 0.0027 0.0060 0.0090 0.0167 0.0026 0.0015 0.0021 0.0056 0.0195
mc(210) 0.0004 0.0008 0.0014 0.0021 0.0025 0.0190 0.0304 0.0576 0.1574 0.4581
mc(215) 0.0001 0.0001 - - - 0.4908 0.7933 1.7341 4.7440 14.4539
Ours 0.0001 0.0003 0.0010 0.0028 0.0059 0.0001 0.0003 0.0003 0.0003 0.0004

Table 5.4: Quality and time of our approximation method against mc sampling, averaged
across 10 random repeats of CiteSeerx C = 10 experiments. Under each setting, the approx-
imation with the lowest error (with respect to the chosen ground truth) is highlighted bold,
and so is the fastest method.

rmse Time in seconds

Ground truth Exact mc(215) Exact mc(215)

b 3 10 30 100 300 3 10 30 100 300

Exact - na na na na 0.0056 na na na na
mc(25) 0.0023 0.0056 0.0091 0.0141 0.0275 0.0008 0.0016 0.0022 0.0060 0.0178
mc(210) 0.0005 0.0013 0.0010 0.0031 0.0032 0.0167 0.0281 0.0536 0.1522 0.4390
mc(215) 0.0001 - - - - 0.5122 0.8178 1.6678 4.7923 13.9236
Ours 0.0002 0.0007 0.0017 0.0055 0.0120 0.0003 0.0005 0.0004 0.0005 0.0007

Other utility functions and misspecification. One may reasonably ask whether das

still works under other possible utility functions, and how robust the method is against

utility misspecification. To tackle these questions, we reran the CiteSeerx C = 10 and drug

discovery C ∈ {10, 15} experiments with the square root utility u (D) = ∑c>1

√
mc, which

rewards additional discoveries of a known class more than the logarithm. This presents

an alternative utility with a different asymptotic behavior, but our method can be applied

without any algorithmic modification. das again consistently performs the best across these

settings shown in Tab. 5.5, showing that the policy generalizes well to this utility. As another

note on the flexibility of our framework, a user may select different reward functions fc (e.g.,

by weighting the functions differently) to prioritize certain classes, and das can still run

as-is.
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Table 5.5: Square root utility and standard errors across 20 repeated experiments for each
setting. C is the total number of unique classes in the search space. The best performance in
each column is highlighted in bold; policies not significantly worse than the best (according
to a two-sided paired t-test with a significance level of α = 0.05) are in blue italics.

CiteSeerx Drug discovery

C = 10 C = 10 C = 15

He and Carbonell [78] 35.51 (0.22) 9.40 (0.33) 13.60 (0.45)
Vanchinathan et al. [196] 48.61 (1.22) 32.28 (1.26) 41.10 (1.99)
Malkomes et al. [130] 31.32 (0.01) 18.26 (0.79) 25.82 (0.87)

ens 59.31 (0.81) 32.12 (1.17) 36.71 (1.71)
rr-greedy 57.37 (0.33) 30.66 (1.82) 37.51 (1.38)

rr-ucb
57.87 (0.32)
(β∗ = 3)

30.77 (1.47)
(β∗ = 1)

38.02 (1.49)
(β∗ = 3)

rr-ens 60.20 (0.30) 37.09 (1.20) 45.05 (1.27)

One-step 60.59 (0.46) 38.86 (1.59) 46.60 (1.70)
das (ours) 62.41 (0.24) 38.89 (1.76) 55.50 (1.41)

As for robustness against utility misspecification, we look for any performance drop when

das is evaluated under a utility different from what the policy uses during search. First, we

classify the variants of das by the utility they use: (1) the version optimizing the logarithmic

utility shown in Tab. 5.1 is denoted by daslog, (2) the version using the square root utility is

dassqrt, and (3) the version with the linear utility, daslinear, reduces to ens. We then evaluate

these policies using all three utility functions. We also include the one-step policy optimizing

the correct utility in the results in Tab. 5.6. Overall, each das variant is competitive under

the correct utility, always outperforming the corresponding one-step counterpart. Crucially,

both concave variants, daslog and dassqrt, perform well “cross-utility” in each other’s setting,

even outperforming the one-step policy with the correctly specified objective. Thus there is

merit in adopting das even when there may be uncertainty regarding the nuances of the

user’s “true” utility function. We hypothesize this is because the concave utilities are similar

in behavior – both encourage diversity in the collected labels and are optimized by balanced

data sets – and a policy effective under one utility is likely to perform well under the other.

The linear utility, on the other hand, does not exhibit diminishing returns and behaves

differently from the others. Utility misspecification here is thus more costly: daslinear is not

competitive under concave utilities, and neither are the concave variants under linear utility.
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Table 5.6: Average search utility and standard errors under various utility functions. C is
the total number of unique classes in the search space. The best performance in each column
is highlighted in bold; policies that are not significantly worse than the best (according to
a two-sided paired t-test with a significance level of α = 0.05) are in blue italics.

utility function One-step daslinear (ens) dassqrt daslog

CiteSeerx C = 10
linear 445.90 (5.74) 459.25 (3.23) 448.35 (2.48) 433.55 (4.42)
sqrt 60.59 (0.46) 59.31 (0.81) 62.41 (0.24) 61.41 (0.33)
log 34.01 (0.13) 32.54 (0.50) 34.72 (0.09) 34.45 (0.11)

Drug discovery

C = 10
linear 370.00 (18.37) 415.25 (12.05) 304.35 (22.73) 269.25 (18.47)
sqrt 36.33 (1.48) 32.12 (1.17) 38.89 (1.76) 40.44 (1.66)
log 19.06 (0.98) 13.79 (0.85) 21.07 (1.11) 23.39 (0.83)

C = 15
linear 384.65 (11.08) 427.95 (12.88) 327.50 (14.82) 269.25 (18.47)
sqrt 46.60 (1.70) 36.71 (1.71) 55.50 (1.41) 49.20 (1.98)
log 27.40 (1.11) 17.00 (1.15) 34.03 (1.06) 31.48 (1.25)

5.5 Conclusion

We propose a novel active search framework that rewards diverse discoveries and study

the problem from the Bayesian perspective. We first prove a hardness result, showing the

optimal policy cannot be approximated by a constant in polynomial time. We then design

a policy that simulates approximate optimal future queries in an efficient manner. This

nonmyopic planning allows our method to be aware of its remaining budget at any point

during search and trade off exploitation and exploration dynamically. Our experiments

illustrate the empirical success of the proposed policy on real-world problems and its ability

to build diverse data sets.

While many real-world applications are modeled by our multiclass as framework, our model

assumes we know a priori how many classes are present, which may be violated in many use

cases. In other applications, one might also consider the multilabel setting where a data point

can belong to more than one target class. Investigating the problem under these settings is

an interesting future work. Another direction is to extend our approach to the batch setting

where multiple queries run simultaneously.
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Chapter 6

Amortized Active Search

Active search (as) has been thoroughly studied in previous work and sophisticated search

policies have been developed [61, 88, 89, 90]. Of particular interest is the work of Jiang et al.

[88], who derived the Bayesian optimal policy under the simplifying assumption that future

experiments are chosen simultaneously in a batch. Here, the number of future experiments is

set to be the remaining labeling budget so that this remaining budget is actively accounted

for during policy computation. The authors called the resulting policy efficient nonmyopic

search (ens), which can be viewed as a budget-aware approximation to the true optimal

policy. They showed this budget-awareness induces nonmyopic decisions that automatically

balance between strategic exploration of the space and timely exploitation of regions that

likely yield many targets, and ultimately achieve state-of-the-art (sota) search performance

across many tasks. Although the aforementioned simplifying assumption, combined with ag-

gressive pruning, allows ens to be feasibly applied to problems of considerable size (100 000+

in Jiang et al. [88, 89, 90], for example), the policy retains a superlinear computational com-

plexity. This complexity poses a challenge in (1) deploying in real-time applications where

decisions need to be made quickly and (2) scaling to large spaces. For instance, a guided

data discovery task [139] in visual analytics combines a search algorithm with an interactive

visualization to assist a user with their analytic goals in real time, and the time available

for the search algorithm to run is thus severely constrained. Modern recommender systems

such as YouTube and Amazon must quickly search over millions of items to make recom-

mendations for a large number of users [50]; similarly, there exist databases with billions of

synthesizable molecules acting as search spaces for drug discovery [190].

We aim to alleviate the computational cost of budget-aware search by training a small,

relatively shallow feedforward neural network to mimic the behavior of the sota, expert

policy ens; policy computation is thus amortized as we deploy the trained network as the

search policy. We train this policy using the imitation learning technique DAgger [169],
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which aids the goal of behavior cloning by iteratively querying the expert’s actions on states

encountered by the network being trained. This procedure is done with small, synthetic

search problems where ens is cheap to query. We find that the trained policy network

successfully learns a beneficial nonmyopic search behavior and, despite the synthetic training

data, incurs only a minor decrease in search performance at real-world tasks, in exchange for

much faster decision-making. We showcase the usefulness of this computationally lightweight

policy with a wide range of search problems spanning diverse applications, including drug

discovery tasks of an unprecedented multi-million scale.

6.1 Nonmyopic Search via Budget-Awareness

We briefly reintroduce the sota, nonmyopic active search policy that serves as the basis

for our solution. To avoid the high cost of reasoning about the dependence among labels of

future queries, Jiang et al. [88] made the simplifying assumption that, after our next query,

all remaining future queries are made at the same time in a batch. Under this assumption,

the future queries in the lookahead – to be optimally chosen to maximize expected terminal

utility – can be quickly identified as the set of (ℓ− 1) most likely targets [88]. Their policy

ens thus estimates the value of each putative query xi with the expected utility of the

union of xi and the top (ℓ− 1) unlabeled points that are adaptively selected based on each

possible label yi. Again, as the number of future queries in this policy computation is set to

exactly match the true length of the decision-making horizon, ens actively accounts for the

remaining labeling budget when making its queries. The authors demonstrated the benefits of

this budget-awareness by showing that ens exhibits nonmyopic, exploratory behavior when

the budget is large, and automatically transitions to more exploitative queries as search

progresses. This strategic exploration ultimately allows ens to outperform many search

baselines including the one-step policy.

While the aforementioned batch assumption avoids an exponential blowup in computational

complexity, ens still incurs a considerable cost, especially under large values of n, the size

of the search space. A näıve implementation with a generic classifier has a complexity of

O
(
n2 log n

)
. The official implementation by Jiang et al. [88], on the other hand, uses a

lightweight k-nearest neighbor (nn) classifier that (reasonably) assumes a certain level of

locality when probabilities Pr(y | x,D) are updated in light of new data. This structure
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allows for a faster computation of the batch of future queries in ens’s lookahead, and brings

the complexity down to O
(
n (log n + m logm + T )

)
, where m is the largest degree of any

node within the nearest neighbor graph corresponding to the k-nn [88]. Unfortunately, this

reduced complexity still poses a substantial challenge in two scenarios commonly encountered

in as: large search spaces (e.g., drug discovery) and settings where queries must be rapidly

computed (recommender and other real-time systems). We address this problem by training

an estimator, specifically a neural network, to learn the mapping from possible candidate

queries to the output of ens, thus amortizing policy computation; the next section details

our approach.

6.2 Amortizing Budget-Aware Active Search

Our goal is to amortize search with a neural network, replacing the time-consuming policy

computation of ens with fast forward passes through the network. Crucially, this network

should learn a beneficial strategy that outperforms the greedy one-step policy, so that the

cost of training and deploying the network outweighs one-step’s speed and ease of use. We

now discuss our approach using reinforcement learning, specifically imitation learning, to

effectively train one such network.

6.2.1 Learning To Search With Imitation Learning

We start with the goal of training a neural network to learn to search using reinforcement

learning (rl), as the utility function in as can be naturally treated as a reward function,

and each search run of T iterations as belonging to a budget-constrained episodic Markov

decision process. Given a search space defined by X , the current state at iteration t is given

by Dt, the data that we have collected thus far, while the unlabeled data points X \ Dt

make up the possible actions that can be taken. Unlike many rl settings, though, the size

of the action space in a typical as problem makes it challenging for common rl training

algorithms.8 This is because many of these algorithms rely on thoroughly exploring the

action space to learn about the value of each specific action in a given state, and as n = |X |
grows larger, this task becomes increasingly more daunting.

8Not to mention one of our main goals, scaling as to large search spaces.
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Noting that we have access to ens, an expert policy with demonstrated superior performance

throughout previous works, we forgo learning to search from scratch and seek to instead rely

on ens for guidance. This proves to be more feasible, as we can leverage imitation learning

techniques in which we collect a data set of state and expert’s action pairs S = {s,ens(s)}
and train a neural network to learn this mapping. Here, we wish our neural network to

output the same decision generated by ens (i.e., which unlabeled point to query) given the

current state (the observed data) of a search problem. This is done by treating the goal of

imitating the expert policy as a classification problem, where a data point is characterized

by a given state s of a search, and the corresponding label is the expert’s decision ens(s).

A neural network classifier is then trained to correctly classify ens(s) as the desirable label

among all possible actions, by minimizing the corresponding cross-entropy loss.

Algorithm 6 DAgger for imitation learning

1: inputs number of training iterations N ,

expert policy π∗, problem generator G

2: initialize S ← ∅
3: initialize π̂0 randomly

4: for i = 1 to N do

5: sample as problems X ∼ G

6: roll out π̂i−1 on X to obtain states {s}
7: assemble Si =

{(
s, π∗(s)

)}
8: aggregate S ← S ∪ Si

9: train π̂i on S until convergence

10: end for

11: returns best π̂i on validation

The training data S for imitation learn-

ing can be assembled in several ways. For

example, we could run ens on training

problems and record the states encoun-

tered and the decisions computed. How-

ever, this leaves the possibility that as the

trained network is deployed, it will arrive

at a state very different from those seen

during training, and thus output unreliable

decisions. We use DAgger [169], a well-

established imitation learning technique, to

address this problem. DAgger is a meta-

learning algorithm that iteratively rolls out

the policy currently being trained (i.e., it

uses the current policy to make decisions), collects the expert’s actions on the encountered

states, and appends this newly collected guidance to the training set to improve the policy

being trained. This iterative procedure allows the expert policy to be queried more strate-

gically, targeting states the current policy network is likely to be in. Alg. 6 summarizes this

procedure.
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6.2.2 Constructing Search Problems for Training

To realize DAgger, we require access to a search problem “generator” that provides as

problems in which we are free to roll out the network being trained and observe its perfor-

mance. One may consider directly using one’s own real-world use case to train the policy

network; however, running DAgger on real-life as problems might prove infeasible. This

is because DAgger is an iterative training loop that requires many training episodes to be

played so that the collected training data S could cover a wide range of behaviors of the

expert to be imitated. We cannot afford to dedicate many real search campaigns to this

task, especially under our assumption of expensive labels. Instead, we turn to synthetic

problems generated in a way that is sufficiently diverse to present a wide range of scenarios

under which we may observe ens’s behavior. In addition to constructing these problems and

running a policy currently being trained on them at little computational cost, we can limit

the size of the problems so that ens can be queried efficiently.

When called, our data-generating process constructs a randomly generated set X . We sample

from a Gaussian process (gp) [162] at the locations in X to obtain a real-valued label for

each x ∈ X , which is then converted to a binary label by thresholding at a chosen quantile.

The generated search space and labels are returned as a training problem. Although this

procedure is quite simple and, in using a gp, assumes a certain level of smoothness in

the labels, we observe that the generated problems offer reasonable variety of structures

with “clumps” of targets of variable number and size. This variety successfully facilitates

imitation learning, as later demonstrated by the empirical performance of our trained policy

on real-world problems. We include more details in Appx. B.

6.2.3 Feature Engineering & Implementation

The effectiveness of any training procedure in rl crucially depends on the quality of the

representation of a given state during a search. To characterize a state in a way that aids

learning, we use the following features to represent each unlabeled data point x ∈ X \ D
remaining in a search:

• the posterior probability that the data point has a positive label Pr(y = 1 | x,D),
• the remaining budget ℓ = T − t,
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• the sum of posterior probabilities of the (ℓ− 1) unlabeled nearest neighbors of x:∑
x′∈nn(x, ℓ−1)

Pr(y′ = 1 | x′,D), (6.1)

where nn(x, k) denotes the set of k unlabeled nearest neighbors of a given x ∈ X , and
• the sum of similarities between x and its (ℓ− 1) unlabeled nearest neighbors:∑

x′∈nn(x, ℓ−1)

s(x, x′), (6.2)

where s(x, x′) ∈ [0, 1] denotes the similarity between two given points x, x′ ∈ X .

Which similarity function s to use to compute the nearest neighbors of each point and the

corresponding similarity values depends on the application. We use the radial basis function

kernel s(x, x′) = exp
(
− ∥x−x′∥2

2λ2

)
during training and upon deployment for appropriate tasks

in Sect. 6.4, but this can be replaced with another function more applicable to a given

domain.

We specifically design the third and fourth features to relate the value of an unlabeled point

we may query to the characteristics of its nearest neighbors. Intuitively, a point whose

neighbors are likely targets is a promising candidate, as it indicates a region that could yield

many hits. On the other hand, points that are close to its neighbors (e.g., cluster centers)

could also prove beneficial to query, as they help the policy explore the space effectively.

Further, the number of nearest neighbors to include in these computations is set to match

the length of the horizon, allowing these features to dynamically adjust to our remaining

budget. Overall, the four features make up the feature vector of each candidate point, and

concatenating all feature vectors gives the state representation of a given search iteration. We

also note that our state representation is task-agnostic and applicable across as problems of

varying structures and sizes, which is crucial for training our policy on the different problems

we generate, as well as for when we deploy our trained policy on unseen problems.

Here, finding the nearest neighbors of each point may prove challenging under large spaces.

We leverage the state-of-the-art similarity search library Faiss [91] to perform efficient ap-

proximate nearest neighbor search when exact search is prohibitive.9 Faiss allows us to

9We set the number of clusters into which the search space is split when performing approximate neighbor
search at ⌊4√n⌋, following https://github.com/facebookresearch/faiss/issues/112.
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Figure 6.1: Demonstration of our trained policy’s budget-awareness with a toy example.
Left panel: the probability that a point is a target. Remaining panels: computed logits
and the point selected to be the next query under different labeling budgets. Our policy
appropriately balances between exploitation under a small labeling budget and strategic
exploration if the budget is large.

significantly accelerate this step, completing, for example, the neighbor search for our largest

problem in Sect. 6.4 of 6.7 million points in roughly one hour. Once this neighbor search

is done before the actual search campaign, the time complexity of constructing the features

above at each search iteration is O(n).

We run Alg. 6 for N = 50 iterations, each consisting of 3 training problems. At the end of

each iteration, we train a small policy network with 5 fully connected hidden layers (with

8, 16, 32, 16, and 8 neurons, respectively) and relu activation functions using minibatch

gradient descent with Adam optimizer [97]. The trained policy is then evaluated on a fixed

set of 3 unseen validation problems. We set the labeling budget T = 100 across all generated

problems.

6.2.4 Demonstration of Learned Search Strategy

Before discussing our experiment results, we briefly demonstrate the learned behavior of our

trained policy network using an illustrative toy example visualized in Fig. 6.1. The search

space X consists of uniformly sampled points as well as 3 distinct clusters of different sizes.

The left panel shows Pr(y = 1 | x,D), the probability that each point is a target, specifically

set so that:

• for each of the 100 uniformly sampled points, Pr(y = 1 | x,D) = 0.1,

• for each point in the small cluster of size 10 at the top, Pr(y = 1 | x,D) = 0.9,
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• for each point in the medium cluster of size 30 on the right, Pr(y = 1 | x,D) = 0.3,

and

• for each point in the large cluster of size 100 on the bottom left, Pr(y = 1 | x,D) = 0.1.

This problem structure presents an interesting choice between exploiting the small cluster

of very likely targets and exploring larger clusters that contain less likely targets. A good

policy should select exploitation if the remaining budget is small and choose to further

explore otherwise. The remaining panels in Fig. 6.1, which visualize the logits computed

by our trained policy under different remaining budgets ℓ ∈ {10, 33, 100}, show that this is

exactly the case: the policy targets the cluster of likely targets when the budget is small,

and moves to larger clusters as the budget increases. Further, when exploring, the policy

appropriately favors cluster centers, which offer more information about the space. This

balance between exploitation and strategic exploration our trained policy exhibits indicates

that the policy has learned a meaningful search behavior from ens, which translates into

good empirical performance, as later shown in Sect. 6.4.

6.3 Related Work

Active search. We continue the line of research on active search (as) [61, 39], which

previous works have also referred to as active learning and adaptive sampling for discovery

[205, 204, 212] or active covering [87]. Garnett et al. [61] studied the Bayesian optimal policy,

and Jiang et al. [88] proposed ens as a budget-aware approximation demonstrating impres-

sive empirical success. ens has since then been adopted under various settings, including

batch [89], cost-aware [205, 204, 90], multifidelity [147], and diversity-aware as [146]. We

propose to amortize policy computation of ens using imitation learning, scaling nonmyopic

search to large data sets.

Amortization via neural networks. Using neural networks to amortize expensive com-

putations has seen increasing interests from the machine learning community. Of note is

the work of Foster et al. [56], who tackled amortizing maximizing expected information gain

[125, 126] for Bayesian experimental design (bed) [117] with a design network trained on

a specialized loss function, and was a major inspiration for our work. Subsequent works

[24, 180] have studied bed under other settings such as those with discrete action spaces.
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Liu et al. [120] tackled amortizing Gaussian process (gp) inference by training a transformer-

based network as a regression model to predict optimal hyperparameters of gps with station-

ary kernels; Bitzer et al. [23] later extended the approach to more general kernel structures.

Andrychowicz et al. [9], on the other hand, learned an optimization policy with a recurrent

neural network that predicts the next update to the parameters to be optimized based on

query history; the policy network was shown to outperform many generic gradient-based op-

timizers. Also related is the work of Konyushkova et al. [101], where a regressor was trained

to predict the value of querying a given unlabeled data point for active learning.

Reinforcement learning. Reinforcement learning (rl) has proven a useful tool for learning

effective strategies for planning tasks similar to as. Examples include active learning policies

for named entity recognition [54, 118], neural machine translation [119], and active learning

on graphs [82]. Igoe et al. [84] were interested in path planning for drones, framed as a

specialized as setting with linear models and many agents. Sarkar et al. [174] and Sarkar

et al. [175] studied the problem of visual as, a realization of as on images for geospatial

exploration. Overall, the methodologies in these works rely on being able to generate many

training episodes to learn an effective rl policy from scratch, which cannot be realized in

our setting. Having access to ens, we instead leverage imitation learning to learn to search

from this expert on synthetically generated search problems. When deployed, our trained

policy can be applied to a diverse set of use cases, as demonstrated in the next section.

6.4 Experiments

We tested our policy network, which we call amortized nonmyopic search, or ans, and a

number of baselines on search problems spanning a wide range of applications. For each

problem included, we run each policy 10 times from the same set of initial data D0 that

contains one target and one non-target, both randomly sampled. Each of these runs has a

labeling budget of T = 100.

Baselines. We compare our method against the expert policy ens which ours was trained

to mimic, as well as the one-step policy that greedily queries the most likely target. We

also implement a number of baseline policies from the literature. The first is a family of

upper confidence bound (ucb) policies [10, 32] that rank candidates by the following score:

p + β
√
p(1− p), where p = Pr(y = 1 | x,D) is the posterior probability that a given
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candidate is a target, and β is the tradeoff parameter balancing exploitation (favoring large

p) and exploration (favoring large uncertainty in the label, as measured by
√
p(1− p)). Here,

we have β take on values from {0.1, 0.3, 1}. Another baseline is from Jiang and Rostamizadeh

[87], who proposed a simple explore-then-commit (etc) scheme that uniformly samples the

space for m iterations and then switches to the greedy sampling strategy of one-step for the

remaining of the search. We run this etc policy with m ∈ {10, 20, 30}. Finally, we include

the policy by Xu et al. [212], which uses the information-directed sampling (ids) heuristic

[170, 171] that scores each candidate query x by the ratio between (1) information about the

labels of the current ℓ most likely targets (ℓ = T − t is the length of the remaining horizon),

gained by querying x and (2) the expected instant regret from querying x. We note that Xu

et al. [212] proposed this policy under specialized as settings that allow information gain

to be efficiently computed; they also only considered problems with fewer than 1000 points.

For our experiments, we can only apply ids to relatively small spaces where the policy is

computationally feasible.

Search problems. We now discuss the search problems making up our experiments. The

first was posed by Andrade-Pacheco et al. [8], who sought to identify disease hotspots within

a region of interest. The provided data sets correspond to 4 distinct as problems of find-

ing locations with a high prevalence of schistosomiasis in Côte d’Ivoire and Malawi and of

lymphatic filariasis in Haiti and the Philippines. Each problem consists of 1500 points, with

targets accounting for 10%–34% of the space. For our second task, following Nguyen and

Garnett [146], we simulate product recommendation problems using the fashion-mnist data

[211], which contains 70 000 images classified into 10 classes of clothing articles. We first

randomly select 3 out of the 10 classes as products a user is interested in (i.e., our search

targets). We further sub-sample these 3 classes uniformly at random to increase the difficulty

of the problem; the resulting prevalence rate of the targets is roughly 6%. We repeat this

process 10 times to generate 10 search problems with this data.

Borrowing from previous works [88, 89], we use a data set from the materials science literature

[95, 203] containing 106 810 alloys, of which 4275 can form bulk metallic glasses with high

toughness and wear resistance and are our search targets. Another application comes from

drug discovery, where we aim to identify “active compounds”, chemical compounds that

bind with a targeted protein. Garnett et al. [62] assembled a suite of such drug discovery

problems, each of which consists of the active compounds for a specific protein from the

bindingdb database [121], and 100 000 molecules sampled from the zinc database [184] that
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Table 6.1: Average number of targets found and standard errors by each search policy across
10 repeats of all instances of a given task. Settings that are computationally prohibitive for
a given policy are left blank. The best policy in each setting is highlighted bold; policies not
significantly worse than the best (according to a two-sided paired t-test with a significance
level of α = 0.05) are in blue italics. The state-of-the-art ens achieves the best performance
in all feasible settings and is closely followed by our policy network ans, which in turn yields
the best result in the large-scale problems.

Disease
hotspots

fashion-
mnist

Bulk metal
glass

Drug
discovery
(small)

GuacaMol
Drug

discovery
(large)

etc(m = 10) 50.50 (4.44) 47.79 (3.89) 81.70 (3.66) 75.46 (2.64) 10.37 (1.80) 33.97 (4.14)

etc(m = 20) 52.25 (3.47) 42.97 (3.47) 73.40 (3.67) 68.46 (2.37) 9.42 (1.61) 30.42 (3.70)

etc(m = 30) 48.75 (3.12) 38.16 (3.03) 65.70 (3.17) 60.76 (2.11) 8.56 (1.45) 26.59 (3.24)

ucb(β = 0.1) 48.20 (4.21) 51.66 (4.24) 88.80 (4.00) 80.74 (2.86) 11.21 (1.93) 36.94 (4.49)

ucb(β = 0.3) 48.15 (4.20) 51.66 (4.24) 88.80 (4.00) 80.74 (2.86) 11.21 (1.93) 36.94 (4.49)

ucb(β = 1) 45.48 (3.52) 51.10 (4.18) 81.80 (3.15) 75.14 (2.59) 11.21 (1.93) 36.94 (4.49)

one-step 48.20 (4.21) 51.66 (4.24) 88.80 (4.00) 80.74 (2.86) 11.21 (1.93) 36.94 (4.49)

ids 48.83 (4.08) 51.66 (4.24) — — — —

ens 57.67(3.22) 88.15(1.52) 91.10(3.48) 86.82(2.41) — —

ans (ours) 57.25 (3.58) 85.72 (1.69) 89.90 (4.20) 85.29 (2.47) 15.51(2.36) 39.83(3.76)

act as the negative pool. Our experiments include the first 10 problems where on average

the active compounds make up 0.5% of the search space.

Finally, to demonstrate the ability to perform search on large spaces achieved by our method

ans, we consider two large-scale, challenging drug discovery tasks. The first employs the

GuacaMol database of over 1.5 million drug-like molecules that were specifically curated for

drug discovery benchmarking tasks involving machine learning [29]. In addition to these

molecules, the database offers a family of objective functions to measure the molecules’

quality using a variety of criteria. We use each objective function provided to define a

search problem as follows. We first randomly sample a set of 1000 molecules which we

fully label using the objective functions. We then define the search targets as those of the

remaining unlabeled molecules whose scores exceed the 99-th percentile of the labeled set;

in other words, the goal of our search is the top 1% molecules. In total, we assemble 9

such as problems with GuacaMol. For our second task, we follow the procedure by Garnett

et al. [62] described above with the bindingdb and zinc databases, this time expanding the
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Figure 6.3: The time taken per iteration by different policies in the small- and medium-scale
experiments. Left: average number of seconds per iteration with respect to search space
size. Right: average number of targets found and standard errors vs. time per iteration.

negative pool to all drug-like molecules in zinc [190]. This results in a search space of 6.7

million candidates, of which 0.03% are the active compounds we aim to search for.
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Figure 6.2: The average difference
in cumulative reward and standard
errors between our policy and one-
step. Our policy spends its initial
budget exploring the space and finds
fewer targets in the beginning but
smoothly switches to more exploita-
tive queries and outperforms one-
step at the end.

Discussions. Tab. 6.1 reports the performance of

the search policies – measured in the number of tar-

gets discovered – in each of these tasks, where set-

tings that are computationally prohibitive for a given

policy are left blank. From these results, we observe

a clear trend: the state-of-the-art policy ens consis-

tently achieves the best performance under all set-

tings that it could feasibly run, while our trained

policy network ans closely follows ens, sometimes

outperforming the other baselines by a large mar-

gin. Our method also yields the best result in large-

scale problems, demonstrating its usefulness in large

search spaces. Among the baselines, we note the dif-

ficulty in setting the number of exploration roundsm

for etc, since no value of m performs the best across

all settings. Results from ucb policies, on the other

hand, indicate that prioritizing exploitation (setting

the parameter β to a small value) is beneficial, a trend also observed in previous work [88].
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Figure 6.4: Locations in Côte d’Ivoire selected by the one-step policy and by ours in an
illustrative run with the disease hotspot data, where our policy discovers a larger cluster.

To illustrate the tradeoff between performance and speed achieved by ans, the left panel of

Fig. 6.3 shows the average time taken by ans, ens, and myopic baselines per iteration as

a function of the size of the data, while the right panel shows the number of discoveries by

each policy vs. the same average time per iteration. These plots do not include the results

from the large-scale problems so that the comparison with ens is fair, or ids which is slower

than ens but does not perform as well. We see that ans finds almost as many targets as ens

but is much more computationally lightweight. We thus establish a new point on the Pareto

frontier of the performance vs. speed tradeoff with our search policy. In the 6.7 million-

point drug discovery problems, ans on average takes 36.94 ± 0.15 minutes per iteration,

which we deem entirely acceptable given the boost in performance compared to faster but

myopic baselines, the fact that the time cost of labeling is typically much higher, and ens,

in comparison, is estimated to take roughly 10 hours per iteration on the same scale.

As a demonstration of our policy’s strategic explorative behavior learned from ens, Fig. 6.4

shows the result of an illustrative run by the one-step policy vs. ans from the problem of

finding schistosomiasis hotspots in Côte d’Ivoire [8]. We note that the queries made by one-

step are localized within the center region containing the target in the initial data D0, while

ans is able to discover a larger cluster of targets to the south. Further, Fig. 6.2 visualizes the

cumulative difference in utility between ans and one-step across all experimental settings.

Here, ans initially finds fewer targets than one-step, as the former tends to dedicate its

queries to exploration of the space when the remaining budget is large; however, as the

search progresses, ans smoothly transitions to more exploitative queries and ultimately
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Table 6.2: Average number of targets found and standard errors by each ablated policy across
100 product recommendation tasks with fashionmnist. The best policy is highlighted bold.

without
target

probability

without
remaining
budget

without
neighbor
probability

sum

without
neighbor
similarity

sum

imitation
learning
without
DAgger

reinforce
without
imitation
learning

ans (ours)

66.93 (1.51) 80.11 (1.80) 73.35 (1.61) 63.29 (3.35) 59.66 (3.80) 75.15 (1.52) 85.72(1.69)

outperforms the greedy policy. The same pattern of behavior has been observed from ens

in previous works [88, 147, 146].

repeat 1

repeat 2

repeat 3

repeat 4

repeat 5

repeat 6

repeat 7

repeat 8

repeat 9

0 25 50 75 100

reward

repeat 10

Figure 6.5: Distributions of the number of
targets found across 100 product recommen-
dation tasks with fashionmnist by 10 policy
networks trained with different initial random
seeds. The distributions are comparable, indi-
cating that the trained policy networks behave
similarly.

Ablation study. We use the 10

product recommendation tasks from the

fashionmnist data to quantify the value

of various components of our framework.

First, we trained four additional policy net-

works, each learning from ens without one

of the four features discussed in Sect. 6.2.3.

We also trained another network using im-

itation learning but without DAgger’s it-

erative procedure: we ran the expert policy

ens on 3×50 = 150 generated search prob-

lems (the same number of problems gener-

ated to train the policy examined in the

main text), kept track of the encountered

states and selected actions, and used these

data to train the new network until conver-

gence only once. Finally, we trained a policy network without imitation learning using the

reinforce policy gradient algorithm [186]. The performance of these policies, along with

that of ans as a reference, is shown in Tab. 6.2. We see by removing any component of

our imitation learning procedure, we incur a considerable decrease in performance, which

demonstrates the importance of each of these components.

Training stability. We rerun our training procedure with DAgger for 10 times using

different random seeds and evaluate the trained policy networks using the experiments with

the fashionmnist data. Each row of Fig. 6.5 shows the distribution of the number of

81



targets found by each of these 10 policy networks across the 100 search problems. We

observe that the variation across these 10 distributions is quite small, especially compared

to the variation across different search runs by the same policy network. This shows that

our training procedure is stable, resulting in policy networks that behave similarly under

different random seeds.

Refinement under repeated search. In many settings that as targets, multiple search

campaigns may be conducted within the same search space. For example, as in our drug

discovery experiments in Sect. 6.4, a scientist may explore a molecular database to identify

candidates with different desirable properties. As the search for a given property concludes,

the next search stays within the same database but now targets a different property. In

these situations, we may reasonably seek to refine our search strategy throughout these

episodes using the results we observe, so that our search policy could improve using its past

experiences. We identify two approaches to such refinement:

• If a neural network is used as the search policy, it can be updated by a policy gradient

algorithm such as reinforce [186] after each episode.

• If a deep autoencoder (dae) is used to produce a representation of the search can-

didates (on which the nearest neighbor search described in Sect. 6.2.3 is conducted),

the autoencoder can be updated with a semisupervised loss [99] that accounts for the

labels it iteratively uncovers throughout the search.

To investigate the effects of each of these approaches on the search performance of our policy

trained with imitation learning and examined in the main text, we engineer another version

of the fashionmnist data set [211] that simulates a setting of repeated search. We first

randomly choose 5 out of 10 classes in the data set to act as possible target sets throughout

the repeated searches. These selected classes are then sub-sampled uniformly at random

so that there are only 1000 data points per class; this yields a data set of 40 000 points in

total. We then use a variational autoencoder [98] to learn a two-dimensional representation

of these 40 000 candidates.

We allow 100 search episodes within this database, where in each episode, 1 of the chosen 5

classes is randomly selected as the target class. To implement the second approach to search

refinement, we train a variational Gaussian process classifier on the observed data D and

use the corresponding evidence lower bound (elbo) to make up the supervised component

of the joint loss of the semisupervised model. While we update the search policy using
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Figure 6.6: Average cumulative difference in the number of targets found and standard
errors between (left) updating the policy network using reinforce or (right) updating the
autoencoder producing the representation of the candidates vs. performing no updates.

the reinforce loss at the end of each episode, an update to the semisupervised vae is

performed for every 20 iterations within one episode.

Fig. 6.6 shows the value of each of the two update schemes as the cumulative difference

in the number of targets found between each scheme compared to performing no updates

(both the search policy and the representation of the data points are kept fixed) throughout

100 search episodes across 10 repeats. Surprisingly, attempting to further refine the search

policy using reinforce actually hurts performance, resulting in an increasing gap in reward

between the initial policy and the one continually updated. On the other hand, we see

that updating the initial unsupervised vae to account for the observed labels yields an

improvement in performance on average, but this improvement is not consistent across the

10 repeats. Overall, we show the difficulty in further updating our trained search policy

using real experiences under repeated searches, and hypothesize that more sophisticated

reinforcement learning procedures such as the double Q-learning algorithm [137] are needed

to improve learning, which we leave as future work.
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6.5 Conclusion

We propose an imitation learning-based method to scale nonmyopic active search to large

search spaces, enabling real-time decision-making and efficient exploration of massive databases

common in product recommendation and drug discovery beyond myopic/greedy strategies.

Extensive experiments showcase the usefulness of our policy, which mimics the state-of-the-

art policy ens while being significantly cheaper to run. Future directions include deriving a

more effective reinforcement learning strategy to train our policy network, potentially out-

performing ens, as well as extending to other active search settings such as batch [88] and

diversity-aware search [146, 145].
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Chapter 7

Applications of Experimental Design

Throughout this dissertation, we have shown that experimental design is a flexible framework

that can be applied to a wide range of use cases to accelerate exploration and discovery. In

this chapter, we demonstrate this flexibility one more time by enumerating instances of

successful application of our algorithms to real-world experimental design campaigns.

7.1 Efficient Discovery of Visible Light-Activated Azoarene

Photoswitches with Long Half-Lives Using Active

Search

Photoswitches are molecules that undergo a reversible, structural isomerization after ex-

posure to different wavelengths of light. The dynamic control offered by molecular photo-

switches is favorable for materials chemistry, photopharmacology, and catalysis applications.

Ideal photoswitches absorb visible light and have long-lived metastable isomers. We used

high throughput virtual screening to predict the absorption maxima (λmax) of the E-isomer

and half-lives (t1/2) of the Z-isomer. However, computing the photophysical and kinetic

properties of each entry of a virtual molecular library containing 103–106 entries with density

functional theory is prohibitively time-consuming. We applied active search to intelligently

search a chemical search space of 255 991 photoswitches based on 29 known azoarenes and

their derivatives. Scheme 7.1 shows an illustration of the iterative processes used to identify

ideal photoswitches.

Phase 1 : An initial screen of 50–100 molecules is processed through an automated compu-

tational workflow developed by Abreha et al. [2]. RDKit[113] is used to generate 3-D co-

ordinates from a simplified molecular-input line-entry system (smiles)[206] string, followed
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Figure 7.1: The multipronged iterative procedure used to update the active search algorithm
with dft results.

Figure 7.2: Quantum chemical workflow for computing the λmax for all molecules considered
in this study.

by a low-mode conformational search where each conformer (4 total) is minimized with

the Universal Force Field [161]. The lowest energy conformer is determined through semi-

empirical optimizations and a single-point energy calculation. The lowest energy structure is

optimized with M06 [218]/6-31+G(d,p) [57, 48] and IEFPCMMeCN, [192] and a vibrational

analysis confirms the stationary point as the true minimum if it has only positive frequen-

cies. The λmax is calculated with a single point energy calculation using ωB97XD[33]/6-

31+G(d,p)//M06[218]/6-31+G(d,p). Figure 7.2 shows the automated workflow of quantum

chemical calculations used to compute the excitation energies and corresponding λmax for

selected molecules from our virtual library.

Phase 2 : An in-house Python script assigns a “core id” (1–29) to each computed structure.

Cores are determined using a substructure analysis included in RDKit. True or False labels
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are assigned to each smiles string based on the pre-determined threshold, λmax greater than

450nm.

Phase 3 : A machine learning model is trained on the set of labeled molecules to guide

the search algorithm. First, we generate the Morgan fingerprint [167] of each molecule and

compute the Tanimoto similarity coefficient [208] between each pair of molecules. We then

build a k-nearest neighbors (k-nn) predictive model that computes the probability of a given

unlabeled molecule having a positive label, given the data we have observed thus far. This

k-nn model is then utilized by the search algorithm. Note that the Morgan fingerprints and

Tanimoto similarity coefficients only need to be computed once, while the k-nn is updated

with newly labeled data at each iteration

Phase 4 : The active search algorithm builds the set of 50 recommendations, selecting among

all unlabeled molecules. These recommendations are then sent to Phase 1 to be computed

and labeled. This procedure repeats for a total of 40 iterations, sampling 1 962 molecules

from the space.

7.1.1 Methods

We adapted the active search method, which has shown impressive performance in molecular

discovery in previous studies [62, 88, 89]. The method was first introduced by Garnett et al.

[61] and extended to the batch setting by Jiang et al. [89]. Formally, suppose we have a large

set of elements X = {xi}, among which there is a small subset R ⊂ X of valuable elements

that we wish to search for (i.e., molecules exhibiting a desired property). We do not know

which members of X belong to R a priori, but whether a specific element x belongs to R can

be determined by querying an oracle, requesting for the binary label y = ℶ{x ∈ R}, where
I{·} is the indicator function. In this work, the binary label denotes whether a molecule

exceeds the λmax threshold of 450nm. Further, we assume that at each iteration of the

search, b elements are inspected simultaneously, requiring that queries to the oracle be made

in batches of size b. This models experimental settings in which multiple experiments may be

run in parallel to maximize throughput, contrasting with the fully sequential setting where

queries are made one after another; here, b = 50. The goal is to design a sequence of queries

limited by a predetermined budget, such that the number of target elements uncovered by

querying the oracle is maximized. As such, we naturally define the utility of a given set of
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observations D = {(xi, yi)} to be the total number of targets found:

u (D) =
∑
yi∈D

yi.

We aim to determine the sequence of queries that maximizes our definition of utility in the

expected case using Bayesian decision theory. This framework first requires a classification

model that computes the posterior probability that an unlabeled point x belongs to R, given
the elements we have inspected thus far in D, Pr (y = 1 | x,D). The active search method

is model-agnostic and does not make any further assumptions about this predictive model.

In the next section, we describe the k-nearest neighbors model we use for this classification

task.

We denote T = t b to be the total number of queries allowed to be made given our budget,

where t is the number of search iterations). We further denote by Di the observations

collected at the end of iteration i. At iteration i + 1 ≤ t, the best batch of queries (of size

b) we can make, denoted as Xi+1, maximizes the expected value of the utility of the dataset

at termination Dt:

Xi+1 = argmax
X

E
[
u (Dt) | X,Di

]
.

Jiang et al. [89] analyzed and provided further interpretation for this expected utility. Specif-

ically, it decomposes into the sum of the expected number of positives in the current batch

and the expected number of positives found in the future, assuming optimal behavior [89].

The second term in this sum is large relative to the first when the remaining budget is

large; as such, the objective naturally balances between exploration and exploitation. This

quantity only coincides with the expected number of molecules in the current batch at the

very last iteration where the greedy batch is optimal (the second term is zero). We refer the

reviewer to Equation (3) in Jiang et al. [89] for more discussion on this objective function.

Although this objective can be derived using the standard procedure of backward induction

[21], it involves t − i nested steps of sampling over unknown labels of candidate queries

and maximizing the future expected utility. This computation is prohibitively expensive for

horizons t− i ≥ 3, rendering the optimal query infeasible to calculate in practice.
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We adopt the sequential simulation strategy proposed by Jiang et al. [89] as an efficient

approximation to the optimal batch of queries. First, the strategy builds on the efficient

nonmyopic search algorithm ens [88] in the sequential setting where only one query is made

at each iteration. ens itself approximates the optimal sequential strategy by assuming that

all future queries after the current iteration are made at the same time. Jiang et al. [88]

demonstrated that ens actively explores the search space when the remaining budget is

large, recommends increasingly promising molecules as the search progresses, and achieves

significant improvements in performance over greedy strategies. Our sequential simulation

active search algorithm under the batch setting builds its recommendations by iteratively

adding elements to an initially empty set using the ens algorithm until the desired size

(b = 50) is reached. As a new element is added, we assume that this element will return a

negative label (i.e., the element is assumed to lack the desired property). Jiang et al. [89]

demonstrated that by taking on this pessimistic view, the algorithm encourages the elements

within the same batch to be diverse, which helps explore the search space more effectively.

During batch construction, as each point is assumed to be negative, the probabilities of the

neighbor points are lowered, effectively causing future points in the same batch to be “pushed

away” from the current one. Please see Section 5.2 in Jiang et al. [89] for more discussion

and theoretical motivation for this interpretation (this policy also greedily maximizes the

probability that at least one batch member is positive). The authors further showed that

the algorithm significantly outperformed popular baselines in the machine learning literature

such as the greedy and the upper confidence bound (ucb) policy.

Finally, we aim to distribute our queries equally across the 29 cores. Our sequential simula-

tion strategy may be naturally modified in service of this goal as follows. As a new element

is added to the running batch in the iterative procedure described above, we temporarily

remove other candidates having the same core id as the newest batch member from the

search space. When no candidate remains, we add all removed molecules back to our search

space. This simple procedure effectively forces each batch of queries to be constructed to

span the available cores equally.

7.1.2 Results and Discussion

We had a dataset of 1 436 azoarenes that we had previously computed (λmax) using the

method described in Figure 2. These azoarenes were generated with a different substitution
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Figure 7.3: Distribution of the λmax values of the photoswitch training set.

policy than previously described and a detailed description can be found in the supporting

information. 981 out of 1 436 had vertical excitation energies that corresponded to λmax

greater than 450nm. We initially ran two iterations of active search with 100 molecules each.

These two as iterations selected molecules from the chemical space of 255 991 molecules.

However, we realized that the algorithm would exploit a single core structure; and the time

required to perform 100 calculations for each iteration was expensive. We then decided to

create a core restriction policy where the algorithm would equally sample all cores. We re-

trained the algorithm with the 198 molecules previously selected. Of the 198, 20 molecules

absorbed greater than 450 nm. We also decreased the batch size to 50 molecules per batch

to decrease the turnaround time for the quantum chemical calculations. A histogram of the

λmax of these 198 azoarenes is shown in Figure 7.3.

Figure 7.3 shows that the λmax ranges from 301 to 541 nm for the selected 198 azoarenes.

To train the as algorithm, we assigned each candidate a label of True or False, depending

on whether the following expression is satisfied, λmax greater than 450 nm. 62 of the 198

azoarenes were assigned True and 136 were assigned False.

We then iteratively applied the algorithm 40 times on our new molecular dataset. Each

molecular batch featured 50 as-suggested candidates that would enter our computational

workflow. The first 20 iterations used an “equidistributed” policy, which equally sampled
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molecules belonging to each core family of the 29. Since the as selected 50 molecules for

each iteration, we sampled the 29 cores by constraining the algorithm to select at least one

molecule per core. The remaining 21 slots for each batch were selected in a similar fashion

where no more than two molecules were selected for each core. The remaining iterations

(21–40) used a “targeted” policy that only selected molecules from a subset of 15 cores that

had derivatives where the λmax greater than 450 nm. Cores that did not show derivatives

that fit the criteria were excluded from the subset. After each iteration, we added a binary

label to each molecule based on whether λmax greater than 450 nm. Figure 3 summarizes this

iterative procedure. We compared the as strategy to the performance of a random search

strategy by sampling three molecules selected at random from each of the 29 cores. Figure

7.4 shows the distribution of the λmax values from as and the random search.

Figure 7.4 describes the effect of applying as. The random search showed that 11 out of the

87 molecules (13%) had λmax greater than 450 nm. The active search increases the number

of molecules that are selected with λmax greater than 450 nm. The overall increase in average

can be seen for bins (501, 551] and (551, 602] where the random search was unable to select

any molecules in the latter bin, respectively. Figure 7.5 shows how the proportion of hits

changes with respect to the first 20 iterations using the equidistributed policy. We define the

hit rate as the percentage of molecules with a λmax greater than 450 nm from the current

batch.

The dotted orange line indicates a random search hit rate of 13%. The black data points

indicate the hit rate as the active search is iteratively applied. The equidistributed search

shows a range of hit rates from [12% to 35% (batch 3 and 18, respectively)]. The slope is

+0.82; the hit rate is improved relative to the random search in nearly all iterations. We then

turned our attention to the targeted as policy to maximize the number of hits corresponding

to the subset of cores with molecules that had a λmax greater than 450 nm, shown in Figure

7.6.

For iterations 21–40, the as algorithm selected three derivatives corresponding to each of

the 15 cores for a total of 45 selected molecules. To keep the batch size consistent to 50, as

chooses five more from the top-ranked derivatives of the 15 core subset. Figure 7.7 shows

the hit rate for iterations 21–40 with the targeted policy.

In the targeted policy, the hit rate varied from 44% to 56%; the average hit rate was 49%.

Unlike the equidistributed policy, Figure 7.7 does not show an increase in hit rate as a
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Figure 7.4: Box plot of the random search compared to active search. For the random
search, molecules are sampled for each core, resulting in a total of 87 molecules. Active
search calculations entail 1 962 computed azoarenes. The bin size is 50 nm. The median is
denoted by the horizontal line and the average for each bin is denoted by the white squares.
Outliers are shown as black circles.
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Figure 7.5: The hit rate of the first 20 iterations of the search with the reset policy. The
orange dotted line indicates the hit rate for the random search of 87 molecules which was
13%. A linear regression gave the following equation describing the correlation between the
hit rate and batch number, [%HR=0.82(batch) + 15.26] with an R2 of 0.57.

Figure 7.6: A subset of cores searched for the second half of iterations from 21–40. Cores
represented yielded at least one substituted molecule that had a λmax exceeding 450 nm.
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Figure 7.7: The hit rate of the second 20 iterations of the search policy with 15 cores.

function of the batch number. The relatively high hit rate led to the rapid discovery of 485

candidates with λmax greater than 450 nm in batches 21–40.

Overall, we identified a total of 717 photoswitches with λmax greater than 450 nm after the

40 batches (1 962 molecules) of as-assisted virtual screening. The resulting hit rate is 37%,

corresponding to a tripling of the 13% hit rate from the random search. A two-sample z–test

rejects the null hypothesis that the two strategies result in equal hit rates with overwhelming

confidence, yielding a p–value of 5× 10−6.

7.1.3 Conclusion

We created a molecular dataset of 255 991 azoarenes to find photoswitches with high λmax

values and high activation energies for therapeutic applications. We leveraged quantum

mechanical calculations to sample just 1% of the search space and computing 2 117 dft

calculations in total over 40 iterations. The iterative process of applying as to photoswitch

screening was highly effective and tripled the discovery rate of novel photoswitches compared

to a random search. The as algorithm identified 717 photoswitches with high λmax values

ranging from 451 nm to 602 nm.
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7.2 Guided Data Discovery in Interactive Visualiza-

tions via Active Search

Recent advances in visual analytics have enabled us to learn from user interactions and

uncover analytic goals. These innovations set the foundation for actively guiding users

during data exploration. Providing such guidance will become more critical as datasets grow

in size and complexity, precluding exhaustive investigation. Meanwhile, the machine learning

community also struggles with datasets growing in size and complexity, precluding exhaustive

labeling. Active learning is a broad family of algorithms developed for actively guiding

models during training, with active search is a particular paradigm aimed at discovery. We

consider the intersection of these analogous research thrusts. First, we discuss the nuances,

and present results of a user study for the particular task of data discovery guided by an

active search algorithm.

To investigate the feasibility and impact of this human–computer partnership on visual data

foraging, we created a prototype system and designed a simple data foraging task. We chose

a data set published in the Visual Analytics Science and Technology (vast) community

to represent a scenario in which an epidemic breaks out in the fictional city of Vastapolis

and authorities are searching through social media posts to identify impacted individuals

and parts of the city. Next, we performed a series of simulations to confirm our model

assumptions are appropriate for the vast data set and the active search algorithm is indeed

capable of generating plausible queries.

Finally, using our prototype system, we conducted two crowd-sourced user studies to in-

vestigate the impact of the active search algorithm in assisting users during visual data

exploration and discovery. We randomly assigned participants to one of two groups: (1)

an active search group that performed an information foraging task with visual cues pow-

ered by the active search algorithm and (2) a control group who performed the same task

without assistance. Our quantitative analysis of the user study indicates that users assisted

by the active search algorithm make more relevant discoveries while interacting with fewer

irrelevant data points. However, we found that a non-trivial percentage of the active search

group ignored the recommendations, and an analysis of the subjective responses revealed

these same participants reported a low level of perceived “trust” in the system.
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7.2.1 Assisted Visual Data Discovery via Active Search

Human–computer collaboration refers to the process of two or more agents working towards

a shared goal where at least one agent is a human and at least one agent is a computer [188].

Using this conceptual framework, we formulate assisted data foraging as a human–computer

collaboration in which the shared goal is to discover relevant data points by interacting with

a visualization. Specifically, we consider an interactive visual metaphor of a data set, where

each data point is represented by an element on the visual metaphor. The objective of the

user is to search through this data set via the visualization to discover data points deemed

valuable for a given task. With the goal of accelerating visual exploration and discovery, we

augment interactive visualizations with active search. Starting with a data set, we create an

interactive visualization with which the analyst interacts in order to inspect individual data

points. As the user sequentially inspects and discovers relevant data points, we create a cycle

where user interactions with the interface train a classifier on the relevance of unobserved

data points and the active search algorithm picks a set of promising points to present to the

analyst for further investigation. Details of this workflow are shown in Figure 7.8.

In the remainder of this section, we first formalize data foraging as a sequential decision-

making process (Section 7.2.1). Then, we present two major interactive components of this

technique: observing user interactions with the visualization to learn relevance of points

(Section 7.2.1), and presenting active search queries to the user through the visualization

(Section 7.2.1).

Problem Formulation

We assume there is a dot-based visual metaphor for a given data set, X = {x1, x2, ..., xn},
where each data point in X has a representative on the visualization. We further assume

that each data point is classified as either relevant or irrelevant, and the objective is to

recover as many relevant points as possible without getting distracted by irrelevant points.

As users begin providing labels by interacting with the visualization, we maintain a set of

observations, D = {(x1, y1), ..., (xm, ym)}, where yi ∈ {0, 1} denotes the binary classification

for a point xi. A label of yi = 1 indicates the point xi is relevant to the task at hand, whereas

yi = 0 indicates the point xi is irrelevant. Note that in an active search setting, a very small

portion of the data set is typically labeled (i.e., m≪ n). The objective is to recover as many
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relevant points as possible, defined by the utility function u where:

u(D) ≜
∑

yi∈D
yi,

which simply is the number of relevant points discovered.

In an active search procedure, the algorithm relies on a model to predict the relevance of

unobserved data points in light of observations. This model is used by a querying policy

that, given the current user interactions, suggests unlabeled points to the user for further

investigation with the goal of maximizing the total number of discoveries at the end of the

search process (denoted by u above). As suggested by Garnett et al. [61], we pick a simple

k-nn model that provides the posterior probability of an unlabeled point x being relevant

given the observed data: Pr(y = 1 | x,D). This choice of model is non-parametric, fast

to update in light of new observations, and is simple in that it only relies on a distance

metric between data points. Some examples of distance functions for various structured and

unstructured data types include the Euclidean distance for numerical values, Word Mover’s

Distance for text documents [109], and ImageNet for images [46].

In scenarios where datasets contain multiple (say d) attributes, practitioners may build a k-

nn model on each attribute, {M1,M2, ...,Md}, and merge the predictions via the following

weighted sum where the values of qi ∈ [0, 1] are tuned to maximize the likelihood of observed

interactions:

Pr(y = 1 | x,D) =
d∑

i=1

qi Pr(y = 1 | x,D,Mi).

Once the model over data relevance and an active search algorithm are in place, the next

primary consideration is the communication between humans and the active search proce-

dure. In this workflow, we consider a bidirectional communication channel in which the

active search algorithm needs a proxy to receive feedback from user interactions and humans

need to be presented with active search queries through user friendly means.

97



Figure 7.8: The workflow of assisted data foraging. The first step is to visualize a data set
and create a model over the relevance of data points to one another (A1, A2). The workflow
cycle begins with the user interacting with the visualization (B), the interactions translating
into data labels and updating the relevance model (C), an active search algorithm using the
model to generate queries for inspection (D), and the queries appearing on the visualization
for user inspection (E).

Learning Data Labels Interactively

In this section, we consider how human interactions with an interface can train the underlying

models about the relevance of data points. Visual analytics researchers have analyzed low-

level interactions to uncover information about users and the task at hand. In particular,

they have discovered that analyzing low-level interactions can result in better performance

at inferring user expertise [26], inferring exploration patterns [55, 138], and modeling the

cognitive sense-making process [157]. These successful attempts at analyzing interactions

naturally bring us to the following question: can user interactions with a system provide an

active search algorithm with a seamless, yet robust, labeling mechanism? In the simple case

which we examine in Section 7.2.2, certain low-level interactions can directly map into certain

training labels for active search. For example, clicking a button to bookmark a data point (or

disregard one) can signal a positive (or negative) label. In more complex settings, however,

a more ambiguous set of interactions may be used in order to provide labels seamlessly. For

example, examining the frequency of hovers on a certain data point and the length of the

hover may be a more robust approach to uncovering labels from interactions.

Querying the User Seamlessly

Similar to how well-designed mechanism are needed to translate user interactions into robust

labels for active search, we need a mechanism to communicate active search queries to the

user effectively. In the most intrusive case, the system would explicitly query the user to

provide labels for a given set of points. However, this may cause frustration for the user and
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undermine the role of humans in leading data exploration. Alternatively, we envision active

search queries as presented to the user in the form of visual cues such as color, opacity, and

size. In this work, we assume the user leads the analysis and take a non-intrusive approach

where active search queries are presented in a distinct color on the visualization. Depending

on the visual channels available for a specific application, the risk associated with missing a

relevant data point, and the intended degree of human involvement in analysis, practitioners

may design other methods of interactive queries.

7.2.2 Proof of Concept Prototype

In this section, we present our user study prototype of an visual analytic system for data

foraging. Using the vast Challenge 2011 epidemic data set, we create an interactive map

visualization of microblogs based on their posting location and ask participants to discover

posts by sick individuals. We discuss the details of the data set in Section 7.2.2, the details

of the k-nn model over the data set in Section 7.2.2, and the details of our visualization

interface in Section 7.2.2.

Data Set

The Visual Analytics Science and Technology (vast) community published a fictitious epi-

demic data set for their annual challenge in 2011. The story involves a terrorist attack in the

fictitious city of Vastopolis, where a truck accident over a major river contaminates the water

and air with harmful chemicals. The water flow and wind transport these chemicals to two

distinct parts of the city, causing citizens to exhibit symptoms of an illness. Those who live

downstream of the river show waterborne digestive symptoms, whereas those who live down-

wind of the accident show respiratory symptoms. The data set contains 1,023,077 microblogs

posted on social media from various parts of town during a 21-day period (04/30/2011-

05/20/2011). The fictitious attack occurred on 05/17/2011 and the outbreaks appeared

during 05/18/2011-05/20/2011.
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Labeling Heuristic

For evaluation purposes, we need ground-truth labels for this data set. Since the relevance of

each data point to the spread of epidemic is not included in the data set, we rely on a heuristic

for labeling. Specifically, microblogs containing a set of pertinent keywords such as “sore

throat,” “diarrhea,” and “pneumonia” are labeled relevant, and the remaining microblogs

are labeled irrelevant. Refer to the supplemental material for the full list of keywords. The

daily incidence rate (proportion of relevant points per day) according to our heuristic is ∼2%
for 04/30/2011-05/17/2011 and it increases to 26-38% for 05/18/2011-05/20/2011 after the

terrorist attack. We acknowledge that relying on this heuristic for labeling introduces false

positives, but inspection of the data set before the epidemic (i.e. the ∼%2 incidence rate on

04/30/2011-05/17/2011) suggests the false-positive rate during the epidemic is less than 2%.

Data Selection

To demonstrate active search on datasets with varying rates of relevant points, we choose

three subsets of the data set: (1) the first two days of the epidemic (05/18/2011 and

05/19/2011) with ∼33% of points being related to illness (high-incidence), (2) a random

sample of the data set with ∼9% of points being related to illness (medium-incidence), and

(3) the first two available days in the data set (04/30/2011-05/01/2011) with ∼3% of points

being labeled positive by the heuristic (low-incidence). In the upcoming sections, we use the

low- and high-incidence datasets in our simulations to validate our models and demonstrate

active search’s exceptional ability to identify rare points of interest. Furthermore, we use the

high-incidence data set as a relatively easy task in our crowd-sourced user study to demon-

strate active search’s ability to identify relevant data points in an interactive environment

(Section 7.2.3).

Probabilistic Classifier over Data Set

As mentioned in Section 7.2.1, performing active search relies on a probabilistic model that

computes the probability of an unlabeled point being relevant given the observed data. The

k-nn classification model is non-parametric and only relies on a distance definition among
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data points. This flexibility in the choice of distance function offers practitioners from various

fields the option to tailor this model to their domain-specific datasets.

For this data set specifically, we build two k-nn models over the data. The first one (ML) is

based on the posting location of microblogs, where the distance between two data points is the

Euclidean distance between locations from which they were posted. The second one (MT )

is based on the microblog texts, where the distance between two data points is the cosine

distance between the vector representation of their texts. We define the vector representation

of a microblog to be the normalized average over word2vec representation of its individual

tokens (after removing numerical values, punctuation, and stop words) trained on a large set

of news articles [164]. Given some observed data, each of these two models,Mi, calculates

the probability that an unlabeled data point x is relevant: Pr(y = 1 | x,D,Mi). To combine

these two predictions, we use a parameter q ∈ [0, 1] as the weight of the text-based prediction

(the location-based prediction thus has a weight of 1− q):

Pr(y = 1 | x,D,MT ,ML) = q Pr(y = 1 | x,D,MT )

+ (1−q) Pr(y = 1 | x,D,ML),

where q is chosen using the maximum-likelihood estimation method to maximize the likeli-

hood of the observed data D.

Interactive Interface

The interface of our prototype is shown in Figure 7.9. We aimed for a simple interface and

clear means of interaction for greater usability. There are two primary components on our

interface: an interactive map visualization of microblogs based on their posting location

(details to follow), and a side bar containing a list of current bookmarks, time remaining

for task completion, and control buttons to report technical issues or leave the experiment.

Although a text-based visualization (e.g. t-sne may seem more appropriate for the given

task, we assume the primary attribute determining relevance (i.e. microblog text in our

case) is not known a priori. We provide more details on the visualized data set as well as

the means of displaying active search recommendations in the following two sections.

Users hovered on data points to see a tooltip containing the microblog (Figure 7.9, C).

The tooltip allowed user feedback in one of three ways: (1) if the hovered data point was
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Figure 7.9: A view of the prototype system on the epidemic data set. Green dots on the
map indicate relevant data points bookmarked by the user (also shown in the left panel, A).
Orange dots indicate active search recommendations of potentially relevant data points (C).
Violet dots indicate the remaining data points. Hovering on data points triggers a tooltip
containing the microblog and feedback options (C). A countdown of the remaining time was
shown, and users had the option to exit the experiment at any time or report technical issues
(B).

suggested by the active search algorithm, the user could either add bookmark or report an

irrelevant suggestion; (2) if the hovered data point was already bookmarked, the user could

remove bookmark ; (3) if the hovered data point was not already bookmarked nor suggested

by active search, the user could only add bookmark. We utilized three distinct colorblind-safe

colors to distinguish between suggested dots, discovered dots, and the remaining dots. To

make potential feedback modifications easier, we displayed a list of bookmarks on the sidebar

along with an option to remove bookmark (Figure 7.9, A).

7.2.3 Data Discovery Throughput Experiment

We designed a crowd-sourced user study10 to investigate the impact of active search on

visual exploration and data foraging. We adopted the 2011 vast challenge, which describes

an epidemic in the fictional city of Vastopolis. The vast challenge has a long history of

10This experiment was pre-registered on Open Science Foundation.
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providing complex, realistic analytic tasks and datasets for visual analytics research [40, 176].

We used the mini-challenge which included twitter-like messages and their location data to

provide information about the spread of various disease symptoms.

Task

Participants were told that health professionals had reported a spike in reported illnesses with

flu-like symptoms, including fever, chills, sweats, nausea and vomiting, diarrhea, and death.

We informed participants that the authorities are interested in identifying the impacted

parts of the city by analyzing social media activity, and that we have access to social media

posts and their posting locations. Their task was to assist the authorities by searching

through a data set of microblogs via an interactive map and bookmarking as many posts

containing illness-related information as possible. The data set was presented with reference

to a satellite image of the city, highlighting major landmarks, regions, and water bodies, as

well as tweet-like messages spanning one month of activity.

Participants

We recruited 130 participants via Amazon’s Mechanical Turk platform. Participants were

18 to 65 years old, from the United States, and fluent in English. Each participant had a hit

approval rating of greater than 98% with more than 100 approved hits. After data cleaning

steps outlined in 7.2.3, there were 46 women, 76 men, and 1 participant with undisclosed sex

in our subject pool with ages ranging from 18 to 62 years (µ = 36, σ = 9). About 72% of

our participants self-reported to have at least an associate degree. The average completion

time (including reading the tutorial, performing the task, and completing the survey) was

12 minutes. The instructions specified that participants will be compensated $1.00 base pay

and an additional $0.10 bonus for every relevant microblog they identify (with a maximum of

$4.00). Although the advertised payment structure was designed to incentivize participants

to complete the task, we ultimately decided to pay everyone the maximum bonus of $4.00
for fairness.
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Procedure

The experiment complied with an approved protocol per [redacted for anonymity ]’s irb.

Workers who accepted the hit followed a url to the study platform. Our system randomly

assigned each participant to one of the following groups: the active search group, which

received a batch of 10 active search queries in the form of visual clues that were updated

after every bookmark, and the control group, which did not receive any assistance during

exploration. Upon giving consent to participate in our study, participants were given a

tutorial on their task and their corresponding system. Both groups initiated their task

without any initial “clues,” and in particular the active search group did not receive assistance

for their selecting their first bookmark. Participants were given at most 10 minutes to identify

as many microblogs related to the epidemic as they could using an interactive map visualizing

microblogs as dots placed their posting locations. Hovering on visualized dots triggered a

tooltip containing the post, and users could click on a button to bookmark the post if they

judged it to contain illness-related content. Once the users were either satisfied with their

search for illness-related documents or the 10 minutes were up, they were directed to a post-

experiment survey to collect demographic information and general feedback on the system.

In case our participants experienced technical difficulties with the system, we provided them

with the option to report issues, gracefully exit the session, and receive compensation.

Data Collection

We analyze our user study data by focusing on two interactions: inspection of microblogs

(hovers) and discovery of relevant posts (bookmarks). These two types of interaction inform

us about the speed and accuracy of visual data foraging through the metrics listed in Table

7.1. The bookmark and hover purity metrics are the proportion of bookmarks and hovers

that involved relevant data points, respectively. The bookmarks- and hovers-per-minute

metrics inform us about the speed at which users interacted with data points. The relevant

hovers and relevant bookmarks-per-minute metrics are the rate at which users interacted

with relevant data points, quantifying both speed and accuracy of interactions. Finally, we

measure the number of relevant bookmarks discovered by the end of the session and number

of unique illness-related keywords contained in the discovered microblogs.
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Data Cleaning and Exclusions

In a pre-processing step, we filtered the collected data to exclude participants who did

not attempt the task or were unable to finish the experiment. Specifically, we eliminated

participants based on the following four criteria:

1. those who failed the attention checks in the survey (eliminating 1 subject),

2. those who reported technical issues with the interface using the button provided (elim-

inating 1 subject),

3. those who hovered on less than 10 data points (eliminating 4 subjects) – we consider a

valid hover to be one that lasts at least 500 milliseconds (300 milliseconds for triggering

the tooltip, and 200 milliseconds for skimming the text), and

4. those who did not meet the age qualification (eliminating 1 subject).

A total of 123 subjects remained after filtering (74 in the control group and 49 in the active

search group).

Suggestion Quality

We begin our analysis by examining the quality of suggestions provided by the active search

algorithm when seeded with real users’ interaction data. We use the labeling heuristic

detailed in Section 7.2.2 to assign a label of relevant or irrelevant to each microblog in

the data set. These labels were hidden from the active search algorithm, which generated

suggestions solely based on observed interactions. Thus, the labeling heuristic serves only

as a proxy for ground truth in this analysis, allowing us to evaluate suggestion quality.

We define suggestion purity to be the proportion of unique microblogs recommended to

the user throughout a given session that were relevant. On average, active search group

participants had a suggestion purity of 79%. We observe a moderate positive correlation

between bookmark purity and suggestion purity (R2
adj = 0.594, p < 0.0001), suggesting that

the active search algorithm provides useful recommendations for participants who interacted

with known symptoms.
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Figure 7.10: Distribution of proportion of bookmarks resulting from the active search sug-
gestions

Suggestion Usage

Upon inspecting the sessions, we observed an unexpected pattern in the active search group.

As shown in Figure 7.10, for approximately 24% of participants in the active search group,

suggested microblogs accounted for less than 10% of their bookmarks. 9 out of 49 participants

did not bookmark any of the suggestions presented to them at all. Further inspection reveals

that the 9 active search participants who ignored the suggestions had on average 82 ± 9%

suggestion purity and 76 ± 11% bookmark purity. This compares to the 40 active search

participants who did interact with the suggestions, who had on average 79± 5% suggestion

purity and 82±5% bookmark purity. Finally, we observed a difference between how subjects

reported their trust towards system suggestions on a 1–5 Likert scale in the post-experiment

survey (3.3± 0.46 for those who ignored suggestions vs. 4.2± 0.24 for those who interacted

with the suggestions).

The following analyses focus on the impact of suggestions on data exploration and informa-

tion foraging. Thus, we exclude the 9 participants in the active search group who did not

interact with the system’s suggestions, leaving us with 74 participants in control group and

40 participants in the active search group.

The Effect of Suggestions on Data Foraging

We performed a series of two-sample t-tests to investigate differences in behavior in our two

study conditions: control and active search. Table 7.1 summarizes our findings. We found

that participants in the active search group bookmarked (t(112) = 3.98, p = 0.0001; d = 0.79)

and hovered over (t(112) = 4, p = 0.0001; d = 0.79) significantly more relevant microblogs per
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Table 7.1: The results of two-sample t-tests on the metrics discussed in 7.2.3

95% ci

Metric Control N=74 Active Search N=40 p-value t-statistic Cohen’s d

Hovers per Minute 16.7± 1.19 14.3± 1.23 0.0112 −2.58 −0.51
Relevant Hovers per Minute 6.7± 0.68 9.2± 1.12 0.0001 4.00 0.79

Hover Purity 0.39± 0.02 0.63± 0.05 < 0.0001 9.70 1.92

Bookmarks per Minute 6.9± 0.77 9.5± 1.41 0.0006 3.52 0.70

Relevant Bookmarks per Minute 5.4± 0.68 8.1± 1.26 0.0001 3.98 0.79

Bookmark Purity 0.77± 0.04 0.82± 0.05 0.2249 1.22 0.24

Relevant Microblogs Bookmarked 53.9± 6.80 73.4± 11.50 0.0026 3.09 0.61

Unique Keywords Identified 16.1± 0.83 15.6± 1.32 0.4980 -0.68 -0.13

minute than the control group. Furthermore, our findings show that the active search group

performed fewer exploratory hovers per minute (t(112) = −2.58, p = 0.0112; d = −0.51)
than the control group, implying that the suggestions resulted in a more efficient exploratory

analysis.

For a more fine-grained analysis, we examine bookmark discoveries as a function of time.

Figure 7.11 shows the average number of bookmarks over time for the active search and

control groups. We can observe that the active search group consistently outperformed the

control group by bookmarking more relevant microblogs throughout the ten-minute infor-

mation foraging session. However, it is noteworthy that although the suggestions improved

the quantity of the bookmarks, we found no measurable difference in the quality or content

of the bookmarked discoveries. Both the active search and control groups collectively exam-

ined similar geographical regions and symptom sets (see supplementary material for analysis

details).

Figure 7.11: The number of relevant microblogs discovered over time for individual partici-
pants (gray) and the 95% confidence interval for each group.
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Figure 7.12: Post-experiment survey responses. The results show a slight tendency in the
Active Search group to find the system more usable and the task easier. The last three
questions were only applicable to the Active Search group, showing that participants did
not find recommendations intrusive, confusing, and untrustworthy. (*) denotes statistically
significant difference between groups according to a Mann-Whitney U test at α = 0.05.

Impact of Active Search Suggestions on Usability

In a post-experiment survey, we asked subjects in both groups three questions on willingness

to use, ease of use, and ease of task completion. We performed a Mann–Whitney U statistical

test at α = 0.05 to determine if there was a significant difference between the control and

active search groups. The analysis showed some evidence that the active search group found

the system easier to use (U = 1199.50, p = 0.0336, r = 0.16) and were more willing to use

the system frequently (U = 1192, p = 0.0362, r = 0.16). However, the effect sizes were small

for both. Furthermore, we did not find a significant difference between the control and active

group’s response to ease of task completion (U = 1397.50, p = 0.2989, r = 0.07). Figure

7.12 summarizes the post-experiment survey results.

Discussion

Our results indicate that a human–machine partnership could significantly improve infor-

mation foraging and data discovery. For example, participants in the active search group

hovered on fewer points per minute while hovering on more relevant data points per minute

than the control group. These findings show that they successfully disregarded irrelevant
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data and were more mindful of the relevant data points. As a result, users with assistance

from active search inspected a more relevant subset of data points than the control group

and made more discoveries (per minute).

Overall, we demonstrate that adding active search to the information foraging workflow im-

proves an analyst’s throughput and the quality of interactions significantly. However, let’s

consider the potential downstream hypothesis generation and decision-making that might

result from this initial data foraging and collection. Our findings also show that the data

from the active search and control groups would produce similar conclusions. Both groups

yielded a similar set of keywords and geographical coverage. This convergence in data ex-

ploration indicates two things. First, the baseline task was reasonably manageable without

the machine’s assistance. The control group hovered an average of 17 points per minute

and bookmarking 7 points per minute, on average. Additionally, participants in the control

group generally believed that the task was easy to complete. Second, although we selected

a greedy policy for the active search policy algorithm, the data exploration convergence in-

dicates that showing suggestions did not limit the diversity of discoveries, which is a general

concern for greedy algorithms [88, 61].

From the data collected in our post-experiment survey, we observe an encouraging and con-

sistent tendency among the active search group to find the system and task easier and being

more willing to use the interface. However, it is noteworthy that a non-trivial percentage

of the active search group ignored the suggestions entirely, and those participants reported

lower levels of perceived trust in the system. Trust is a complex and multifaceted construct,

but it is essential for human–computer partnership [173]. In the context of visual analytics,

trust can be defined as “the truster (user)’s belief that the trustee (va system) will help them

correctly identify and visually distill the most valuable and relevant information content”

[76]. Our findings highlight a vital factor for nurturing the human–computer partnership so

that analysts can accelerate the process of information foraging. The analysts need to be

able to trust the suggested microblogs provided by the active search algorithm. Although

our study provides only a coarse Likert scale for assessing trust, the combination of low

trust ratings and low interaction provides suggestive evidence that the system’s method of

providing suggestions (visual cues with no explanations) was sub-optimal for building trust

with the human, leading to distrust, and ultimately, low engagement. There is existing work

on how to elicit trust through design, e.g., showing explanations [51] and being transparent
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about uncertainty [43, 173]. This raises the question of how explainable suggestions from

active search might impact the interaction behavior of participants.

7.3 Probabilistic Prediction of Material Stability: In-

tegrating Convex Hulls into Active Learning

Understanding thermodynamic stability is foundational to chemical and materials design.

Phase relations provide mechanistic insight and accelerate discovery in disparate areas such

as drug solubility [209, 12], polymer blend stability [166, 154, 220], and phase transitions

in metallic alloys [150, 36]. To accelerate stability predictions, computational research often

focuses on producing high-fidelity surrogate models [17, 49, 193, 92, 16, 15]. However, phase

stability prediction remains a persistent challenge for complex systems without effective

surrogate models; examples include high-entropy materials [31, 64, 152, 77, 1], liquids and

glasses [221, 129, 189], materials at high temperatures [71], and highly correlated materials

[42, 96, 217, 7, 135]. In this work, we address the frontiers of phase stability prediction by

constructing an active learning approach that directly learns about the convex hull.

Phase transitions often occur across length- and time-scales too large to be directly observed

using simulations. Instead, thermodynamic potentials need to be evaluated across a vast

space of competing compositions and phases. The outcome of this competition is encapsu-

lated in the convex hull: a single mathematical object that wraps the energy surface and

defines the set of stable phase-composition pairs. Convex hulls are often associated with

predicting the stability of compounds without external fields at 0K [41, 151, 172, 86, 14,

134, 79, 153, 111], but they have also been used to calculate phase transitions induced by

temperature [71], pressure [216, 114, 85], anisotropic stresses in thin films [213, 214], mag-

netic fields [110, 70], and applied voltages in battery materials [194, 195]. Indeed, the convex

hull formalism can be used to predict stability under any set of thermodynamic conjugate

variables [4, 185]. Beyond phase diagrams, convex hulls have been recently leveraged in

understanding chemical reaction networks and synthesis pathways [207, 132, 168, 35].

The global nature of convex hulls implies that it is not obvious which composition-phase

pairs will reside on the hull. For instance, it is possible for the exact value of the energy

to be certain, while still being uncertain that the composition is on the hull. A brute force
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Figure 7.13: (a) For a single phase, the search procedure begins by modeling the energy
surface with a Gaussian process. The black points denote observed compositions, the blue
curve represents the mean of the Gaussian process posterior, and the blue shaded region
corresponds to two standard deviations from the mean. (b) Sampling from the Gaussian
process posterior allows an ensemble of energy surfaces to be hypothesized. The convex
hull (grey) is constructed for each energy surface; single-phase regions are where the energy
surface touches the hull. (c) Each convex hull can be reduced to a composition vector
with a binary classification of phase stability. Here, each row of the matrix corresponds
to a separate sampled hull; blue denotes single phase compositions. (d) Interrogating this
ensemble of hulls yields the probability of being on the hull. We note that observing the
energy of compositions (dashed lines) does not necessarily give absolute information about
their stability.

approach to predicting the convex hull would require calculating the energy for all com-

peting phases and compositions. However, when the cost of individual energy evaluations

is large, or the space of possible competing compositions is high-dimensional, exhaustively

evaluating the energies is prohibitively expensive. Thus, there are two complimentary modes

of acceleration: efficiently producing surrogate models that lower the cost of energy calcula-

tions and minimizing the number of energy evaluations necessary to define the convex hull.

Both approaches can leverage active learning [179], since it is a natural method for select-

ing expensive data points that are expected to maximally increase the information about a

function.

To optimize the information gain about a surrogate energy function, active learning has

been used to iteratively select first-principles calculations that minimize uncertainty in the

surrogate model. Surrogate models like cluster expansion [34] and interatomic potentials
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[74] have been trained with active learning; they were then leveraged to conduct numerous

energy evaluations for predicting the underlying convex hull. Active learning has also been

biased to identify phase-composition pairs that are expected to be on or near the convex hull

[177, 108, 197]. While these approaches have been shown to be more efficient than random

and grid-based search procedures, the active learning was only biased using proxies that

incorporate a local view of the hull rather than directly reasoning about the entire convex

hull as a singular, global object.

We develop convex hull-aware active learning (CAL) to accelerate stability predictions. CAL

distinguishes itself from more conventional Bayesian approaches by reasoning directly about

the entire convex hull. CAL uses separate Gaussian process regressions to model the energy

surfaces of phases across the composition space. From the Gaussian processes, a posterior

belief is produced over possible convex hulls. This induced posterior enables the algorithm

to identify composition-phase pairs that are expected to minimize the uncertainty in the

convex hull itself, not the constituent energy surfaces. By focusing exclusively on the convex

hull, it is possible to make more effective decisions on what compositions to consider.

7.3.1 Approach

The overall goal is to establish a methodology that approximates the convex hull with min-

imal observed data. We begin by establishing a probabilistic view of the hull (Fig. 7.13)

and then present the policy for determining the next observation (Fig. 7.14). We provide

additional details on both the model and policy in the Methods section.

Probabilistic view of the hull In this and all subsequent examples, the energy surfaces

are assumed to be continuous and differentiable across alloy compositions. We also assume

that there is a finite set of candidate compositions that represent a dense subset of the space.

In our first example, we begin with a single phase for which we have observed the energies

of the parent compounds and three alloy compositions. These observations are denoted

as D = {(xn, yn)}Nn=1, with xn taking values in composition space and yn being energies.

We model the energy surface with a Gaussian process (GP), which provides a prior on

energy surfaces specified by a mean and covariance function [163, 44]. Conditioning on the

observations D results in a posterior distribution over energy surfaces that is itself a Gaussian
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process. Let FD be the random function associated with the posterior on energy surfaces;

then HD = C[FD] is the induced random (lower) convex hull, where C is the convex hull

operator. The random function HD is the object of primary interest in this work.

As we are only considering a finite set of candidate compositions, it is possible to generate

samples from this induced posterior by 1) drawing a sample from the multivariate Gaussian

distribution resulting from the GP posterior, and 2) using a standard algorithm such as

QuickHull [13] for computing the lower convex hull of a set of points. Fig. 7.13a shows a

posterior distribution over the energy surface, FD, and Fig. 7.13b depicts three posterior

samples and their associated convex hulls.

Our epistemic uncertainty about the true convex hull is captured by the random functionHD;

the Shannon entropy S[HD] then quantifies our (lack of) knowledge about the convex hull.

By framing our problem as one of minimizing S[HD], we can more rapidly gain information

about the structure in which we are most interested.

In addition to the hull itself, various properties of interest can be derived from HD, so we

can reason about their posterior distributions as well. For example, the (random) set

SD := {x : FD(x) = HD(x)}

contains the stable compositions as these are the compositions for which the minimum-energy

phase is tight against the convex hull.

Fig. 7.13c shows 20 samples of stable sets after the 3 iterations in 7.13b. These binary clas-

sifications can be averaged to estimate the marginal probability that any given composition

is on the hull, i.e., is stable (Figure 7.13d). Note that these marginal probabilities reveal an

important way in which this problem is different from conventional Bayesian optimization

and active learning tasks: the global nature of the convex hull means there is uncertainty

about stability even for compositions in which the energy has been noiselessly observed. In

this example, the observed compositions are marked with dashed vertical lines in Fig. 7.13d

and there is uncertainty about the stability in two of the three cases.

Refining the convex hull With a probabilistic view of convex hulls in place, our goal in

each iteration of the search is to identify the candidate observation x∗, which is expected to
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Figure 7.14: (a) Given some set of existing observations, energy surfaces are sampled from
the trained GP and the corresponding hulls are calculated. (b) To determine the expected
information gain for a potential observation at composition x′, hypothetical energies that
could result from such observations are predicted. These hypothetical energies are generated
using the conditional distribution of the GP at x = x′. (c) For contrast, a set of potential
observations for a different x composition are also highlighted. (d) This procedure is repeated
to calculate the expected information gain across all compositions. The optimal composition
x→ x∗ for subsequent observation is found by identifying the composition with the highest
expected information gain. After conducting an observation at x∗, the process repeats until
the uncertainty in the convex hull is sufficiently small.

minimize the Shannon entropy S[HD]. This objective can be viewed as a Bayesian experi-

mental design procedure in which the policy is to greedily maximize the information gain

(Fig. 7.14).
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Like many Bayesian optimization and search algorithms, the selection of x∗ requires approx-

imating the expected information gain (EIG) across the space of possible designs, which in

our case is the set of compositions [126, 125]. The EIG is simply the difference between the

Shannon entropy of the current state (reflected in the observed data, D) and the expected

Shannon entropy after making an observation at an unobserved composition x. Of course,

the energy value y is unknown at this point and so the new set of observations D ∪ (x, y) is

considered in expectation:

EIG(x ; D) := S[HD]− Ey[S[HD∪(x,y)]] . (7.1)

Finally, the expected information gain is used within each iteration to select x∗, the candidate

composition to be evaluated:

x∗ = argmax
x

EIG(x ; D) .

Fig. 7.14 illustrates how the EIG is evaluated in practice. In Fig. 7.14a, we start with a

GP conditioned on some data, D. Energy surfaces are sampled from the resulting posterior

distribution, convex hulls are calculated, and the Shannon entropy of state D is calculated,

giving us the first term in equation 7.1.

For a given candidate composition x, we sample from the conditional Gaussian process pos-

terior at x to obtain a set of K possible energy values, denoted yk. In other words, these

yk values correspond to different energies for composition x given the current uncertainty

within our energy model. For each of these K samples, the entropy S[HD∪(x,yk)] is esti-

mated in three steps. 1) The Gaussian process is conditioned on this “fantasized” pair of

observations (x, yk), and energy surfaces for all considered compositions are sampled from

the resulting distribution. 2) For each of these sampled energy surfaces, a convex hull is

computed. 3) The convex hull samples are used to estimate the Shannon entropy. The

expectation value of the Shannon entropy is then calculated by averaging the K entropy

estimates, thereby completing our evaluation of the EIG.

We continue to illustrate this algorithm in panels Fig. 7.14b where three hypothetical energy

values for composition x lead to three different hull distributions. For contrast, a different

composition is selected for Fig. 7.14c, resulting in visibly greater variation in the hulls and
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thus a higher expected Shannon entropy. In Fig. 7.14d, the process is repeated across

composition space to determine the composition with the maximum EIG (i.e., x∗). (For

panel b, the optimal value x∗ was intentionally selected to visually emphasize the impact

that sampling at x∗ would have.) Finally, an observation is made at x∗ to update D and

the algorithm repeats to refine the convex hull. We reiterate that this approach seeks to

minimize the Shannon entropy in the convex hull, not simply observe points that are on the

hull. Here, observing the composition x∗ is advantageous because regardless of its energy,

the resulting distribution in possible convex hulls narrows significantly.

Application of the Convex Hull Having sufficiently iterated to build an accurate hull,

relevant thermodynamic intensive variables can be directly calculated. For example, the

elemental chemical potentials can be determined by combining the tangent and energy value

of the hull. Figure 7.15a highlights that the elemental chemical potentials can be directly

read off the y-intercepts of the composition boundaries (i.e., x = 0 and x = 1). Here, the

energy surface is a single sample from a GP with an associated convex hull. Sweeping over the

derivative of the convex hull changes the elemental chemical potentials, as shown in Figure

7.15b. All compositions within the two-phase region (shaded in blue) are in thermodynamic

equilibrium, and as such, the chemical potentials stay constant. Figure 7.15c shows the mean

chemical potential and affiliated uncertainty (±2σ) associated with a distribution of convex

hulls.

Elemental chemical potentials are critical in predicting defect concentrations, as defect cre-

ation involves exchanges with element and charge reservoirs. For example, in LiZnSb, the

limited chemical potential window of Li renders the compound significantly Li-deficient even

in the presence of secondary phases with excess Li (e.g. Li3Sb) [69]. Chemical potentials

of charged species can also be leveraged to produce intercalation voltage curves in battery

materials [195], as was done for LixCoO2 [194]. Lastly, pressure is an intensive variable

that can be determined from the convex hull of an energy surface that is a function volume

[216, 114, 85]. For example, the impact of volumetric confinement on the freezing point of

water can be readily determined from the hull [160].

Multiple phases CAL can be naturally expanded to search across multiple competing

phases. In such cases, the n phases are modeled with n independent GPs. By adopting

separate GPs, we make no assumptions concerning correlations between the energy surfaces

116



Figure 7.15: (a) Given a sampled energy surface from the GP (blue), intensive properties
can be obtained from the associated hull (grey); when considering E(x), the tangent (black)
to the hull yields the elemental chemical potentials upon intersection with x = 0 and x = 1,
denoted by the red and orange points. (b) For the single sampled hull, the chemical potentials
are derived across the composition space. Within the two-phase region (shaded), the chemical
potentials are constant. (c) From an ensemble of convex hull samples, the corresponding
distribution in elemental chemical potentials are also represented as a distribution. The
uncertainty in these potentials can be used to inform stopping criteria.
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Figure 7.16: Chemical systems with multiple competing phases are represented with inde-
pendent GPs; here, two phases (blue and purple) are considered in a binary space. (a) Having
observed nothing but the endpoints, there is significant uncertainty across the composition
space. Ten example convex hull samples are shown in grey, and they also vary widely. With
(b) 5 and (c) 10 iterations, the distribution of hulls converges. (d-f) The probability that a
given phase is on the hull likewise converges with observation iterations. These are stacked
plots such that the total probability for being on the hull is broken up into the individual
phase contributions. (g-i) The elemental chemical potentials also converge after 10 iterations
(µA: red; µB: orange).

of different phases. For further efficiency, the set of n phases could be described with a joint

GP, as mentioned in the Discussion. To construct the corresponding convex hull distribu-

tion, each GP is sampled s times, resulting in sn permutations of n energy surfaces. For

a given permutation, the n energy surfaces, corresponding to the n phases, can once again

be wrapped with a single convex hull. From the convex hull we can predict the probability

that a given phase-composition pair is on the hull, as will be shown in Fig. 7.16. The search

process extends gracefully to multiple phases; the expected information gain is evaluated for

each phase-composition pair.

Case Example I: 1D, 2 Phases To see this methodology applied to an iterative loop, we

consider the case of a 1-dimensional binary composition space with two competing phases.
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Figure 7.16a shows how the initial energy surfaces are ambiguous and this uncertainty prop-

agates to the convex hull. The probability of any composition being on the hull is then

derived from the convex hull distribution. In Fig. 7.16b and c, increasing observations leads

to a tightening of the energy and convex hull distributions. However, CAL leaves significant

ambiguity in the energy surfaces when they are well above the hull. The probability of a

given phase being on the hull is shown across Fig. 7.16d-f; these curves quantify the evolving

uncertainty in the stability predictions. A similar evolution is seen in the elemental chemical

potentials (Fig. 7.16g-i).

As previously mentioned, CAL acquires observations that minimize the uncertainty in the

convex hull distribution. The behavior of the algorithm can be characterized by two steps. In

the first few iterations when there is large uncertainty, Figure 7.16b shows that the algorithm

tends to explore the energy surface, producing a coarse estimate for the convex hull. As the

estimate of the convex hull develops, the algorithm focuses its next iterations increasingly on

regions that are purportedly on the hull or close to it. These subtle refinements to the convex

hull distribution are reflected in Figure 7.16c, where the convex hull samples converge.

Quantitative performance assessment Hulls are intriguing objects as they involve both

classification and quantitative prediction. In part, we seek to classify if a given composition is

on the hull. Knowing about the energies and slopes of the hull are also important for deriving

intensive variables and quantifying the energy above the hull for an unstable composition.

For this reason, we use three metrics in order to assess these dual aims: mean absolute error

(MAE) for the hull energy, true positive rate (TPR), and false positive (FPR). Here, TPR

refers to the percentage of stable compositions that are correctly identified as being on the

hull, while FPR is the percentage of unstable compositions that are incorrectly identified as

being on the hull. Mathematical definitions for these metrics can be found in the Methods.

In low dimensions, producing an accurate hull can be achieved via brute force. However, the

necessity for efficient hull construction emerges in spaces that involve multiple competing

phases and large composition spaces. To test the efficiency of CAL in such a space, we pit

it against a challenging opponent: a baseline algorithm (BASE) that still models the energy

surfaces using a Gaussian process. However, BASE seeks to minimize the uncertainty in

the energy surfaces and has no knowledge of convex hulls. See the Methods for further

information about the BASE policy.
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Figure 7.17: To compare the performance of CAL (pink) and BASE (blue), we consider
a more complex search problem: ternary composition spaces with three competing phases.
(a) Concerning the regression problem for the convex hull, we calculate the average error
in the convex hull energy across the composition space. (b,c) The classification accuracy is
also evaluated using the true and false positive rates. Across all metrics, CAL outperforms
BASE. Here, we show the performance averaged across 40 sets of energy surfaces. The bands
represent one standard deviation from the mean.
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Figure 7.18: The evolution of the CAL performance is shown quantitatively in Fig 7.17;
further insight can be gained by visualizing the evolution of the GP and the associated hull
for a single set of energy surfaces. To investigate how CAL performs with three phases span-
ning a ternary composition space (continuing Fig. 7.17), a single example is considered with
increasing observations. (a) Each phase has an energy surface that spans the composition
space. (e) A slice of the ternary space from B to AC shows the energies of these competing
phases and a corresponding slice of the convex hull. (i) The full convex hull is represented
as a ternary phase diagram. (b) After 10 iterations of CAL, the three Gaussian processes
are illustrated by plotting their means and coloring the surfaces with their associated uncer-
tainties. (c,d) With increasing iteration, CAL prioritizes learning about phase-composition
pairs that are relevant to the convex hull, resulting in regions transitioning from high (or-
ange) to low (purple) uncertainty. (f-h) A similar progression can be seen in the slice from
B to AC. Ultimately, we are interested in predictions of the hull and the associated phase
diagram. j) After 10 iterations, the uncertainty in the convex hull distribution is represented
by overlaying 100 convex hull samples on a ternary phase diagram. (k,l) With increasing
iteration, the distribution tightens and converges around the true convex hull.

Case Example II: Ternary Composition Space with Three Phases Here we high-

light a ternary composition space of the form A1−x−yBxCy with three different competing
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phases. This example is chosen to show how CAL navigates multiple dimensions and prior-

itizes phases that are more relevant to the convex hull. With composition steps of 0.1, the

search space consists of 66 discrete compositions and 198 phase-composition pairs. We re-

peat the search process for 40 different sets of energy surfaces to reveal the typical differences

between the two policies.

Across all three metrics shown in Fig. 7.17, CAL significantly outperforms BASE. For CAL,

the mean absolute error (MAE) is nearly zero by 50 iterations. Similar convergence is found

for the true positive and false positive rates. Together, these metrics indicate that by 50

iterations (i.e., 25% of the search space), CAL is able to predict the energy of the convex

hull as well as classify which compositions are on and off the hull. BASE, however, takes

significantly longer to come to these conclusions. Considering that there only 198 phase-

composition pairs in this space, BASE requires observing nearly all phase-composition pairs

to understand the convex hull. Not only does BASE finish far slower, but its rate of learning

is consistently lower through the search process, as shown by its smaller slopes in Fig. 7.17a-

c. Finally, from the width of the shaded regions, we conclude that BASE is much more

variable than CAL.

Fig. 7.18 shows a representative example from Fig. 7.17 to understand the root of how CAL

so efficiently and consistently reveals the hull. The true energetic landscape is shown in

panel (a) with energy surfaces corresponding to the three distinct phases. A slice through

these energy surfaces is shown in (e); here, we show from B to intermediate composition

AC. Additionally, a slice of the true convex hull is included below in grey. In panel (i), the

complete convex hull is projected onto two dimensions as a ternary phase diagram. The

three energy surfaces are similar in energy, resulting in a fairly complex phase diagram. As

such, this is a challenging task for hull determination.

We model the three energy surfaces using separate Gaussian processes and conduct a total

of 50 observations within this system. In panels (b-d), we show the mean of each GP and

color the three surfaces by their standard deviation. In (b), before any observations, all

energy surfaces have significant uncertainty and are thus orange. With increasing iteration,

both the mean energies evolve and the uncertainties decrease for select composition regions;

it will be made clear that these regions are targeted by CAL for their relevance to the

convex hull. The evolution of energetic uncertainties can be clearly seen in the B − AC

slice. Composition-phase pairs near the hull show evidence of significant observation and an
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associated reduction in uncertainty. It is important to note that only observing the lowest

energy phase would not have been an optimal solution–different phases affect the hull in

different regions.

In panels (j-l), 100 hulls are projected and overlaid onto the ternary phase diagram. As

expected, no coherent expectation for the hull is present initially. By 30 iterations, most of

the single-phase regions have been identified, but there is still significant uncertainty. As

such, some unstable compositions are classified as having a non-zero probability of being on

the hull, resulting in a smearing out of the ternary phase diagram. Finally, after 50 iterations,

much of the lingering uncertainty has dissipated and the convex hull is well understood.

7.3.2 Discussion

The above case examples demonstrate CAL as a fundamentally distinct approach to resolv-

ing phase diagrams. There are a variety of ways in which the general method presented

can be adjusted to specific search problems. Herein, we consider joint Gaussian processes

as tools for capturing correlations between separate phases. As a natural extension of joint

Gaussian processes, we discuss conducting CAL simultaneously over a variety of tempera-

tures. We then list ways in which the computational cost of CAL can be reduced for truly

vast composition spaces.

It is also explained how our method may play a role in a broader uncertainty-based thermo-

dynamic workflow. First, the importance of uncertainty quantification is discussed, then we

consider how CAL may interact with sources of uncertainty that precede it in a workflow.

Finally, we talk through how the uncertainty in CAL predictions is propagated forward to

other thermodynamic predictions.

Correlated Energy Surfaces For simplicity, we used separate GPs for modeling the

energy surface of each competing phase. If there are compositional correlations between

energy surfaces, the set of GPs are not learning from them. For systems where strong

compositional correlations are expected, it would be advantageous to use observations of

one phase-composition pair to help inform the beliefs about a separate phase for similar

compositions.
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Joint Gaussian processes are well-suited for incorporating compositional correlations into the

energy model [6, 60]. In a joint Gaussian process, the energy surface of each phase would

be modeled simultaneously; the inputs for such a model would be observations across all

phases, and the outputs would be the energy surfaces for each phase. Incorporating joint

GPs into CAL would leave the acquisition function unchanged.

Temperature Often, it is favorable to produce phase diagrams over a range of temper-

atures; example applications include tuning synthesis conditions or identifying phase tran-

sitions that limit the operating conditions for a material. To incorporate temperature into

the CAL workflow, the free energy surface could be modeled as a function of both compo-

sition and temperature. Such an approach would allow for the GP to explicitly learn the

relationship between free energy surfaces at differing temperatures. As a terminology note,

here we use the term “free energy” to explicitly denote the temperature dependence of the

thermodynamic potential.

The policy for determining the next optimal observation would need to be extended in

order to account for temperature as an added dimension in the design space. The added

complexity derives from the free energy convex hull only being defined over composition

space at a single temperature. As such, the total expected information gain for a single

phase-composition-temperature triplet would need to be assessed as a sum over the expected

information gains across temperatures of interest. In practice, the temperature range would

need to be discretized to make evaluating the total information gain feasible.

A special case of temperature-dependent search involves thermodynamic methods where

calculating the enthalpy of formation is the computationally limiting factor and the entropy

can be approximated analytically [148, 222, 37]. As such, with these methods the free energy

can be predicted at multiple temperatures with no additional cost . The ramifications of

this set of observations would need to be incorporated into the acquisition function.

Computational Scaling and Approaches for Cutting Cost The computational cost

of CAL will often be dwarfed by that of first-principles calculations. However, there is some

cost to CAL, especially when moving to multi-dimensional composition spaces with many

possible phase-composition pairs. If the cost of CAL is unacceptably large compared to the

energy evaluations, there are multiple shortcuts for speeding up the algorithm.
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Evaluating the expected information gain (EIG) across phase-composition pairs is the main

source of cost for CAL. Indeed, one could use Bayesian optimization to efficiently find the

optimal phase-composition pair that maximizes the EIG. One could also imagine using a

coarse grid of compositions to begin with and then iteratively increasing the granularity of

the composition grid as the convex hull distribution continues to tighten.

In truly large spaces, one may want to prioritize composition sub-regions. The acquisition

function can be readily altered to exclusively focus on such regions. Here, the expected

information gain would only reflect minimizing the uncertainty for the convex hull in those

prioritized regions. The resulting efficiency gain will be dependent on how many different

multi-phase regions enclose the specified compositions.

Other approaches center around decreasing the cost of the EIG. For instance, the EIG could

be calculated with fewer convex hull samples. Another approach would employ BASE in the

beginning of the search and CAL only after some number of iterations. Since CAL is more

expensive, it would be reserved for later in the search when there is sufficient information

about the hull such that the CAL policy results in significantly different decisions from

BASE. Finally, one could approximate the joint entropy as a sum of the entropies across

individual compositions. This is a strong approximation for the entropy and should be taken

with caution since it assumes convex hulls have no correlations between compositions. All

these shortcuts add parameters requiring tuning to negotiate between speed and quality.

Opportunities for Uncertainty-basedWorkflows Understanding how uncertainty prop-

agates throughout a workflow allows for the rational prioritization of certain segments of the

workflow. Thermodynamic stability prediction is one such workflow–it often involves a series

of convoluted steps, and at each step there is opportunity to estimate and propagate un-

certainty. Such uncertainties could be produced from first-principles calculations [199, 25],

fitting surrogate models [149, 34], or numerical approaches to approximating free energies

[148]. The GP within CAL could incorporate uncertainties from previous steps as noise in

its observations. Such noise would be reflected in the convex hull distribution and resulting

predictions.

In an uncertainty-based thermodynamic workflow, CAL could be useful in iteratively training

surrogate models with energetic uncertainties like the Bayesian approach to cluster expansion

[140, 106, 5, 149, 34]. Here, completing the necessary first-principles calculations to train such
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models is the limiting factor. Such training would be focused on minimizing the uncertainty

in the convex hull rather than predicting energies.

Specifically, instead of the GP used in our work, the surrogate model would be leveraged to

produce uncertainty in the convex hull distribution before and after a potential observation.

The simplicity of such an inexpensive surrogate makes it computationally feasible to retrain

numerous times, which is necessary for choosing the optimal observation. Once an optimal

composition is identified by CAL, its energy would be calculated using first-principles, and

the result would be included in the training set for the surrogate model.

Ultra-fine Convex Hulls Bayesian modeling also allows for propagating uncertainty to

subsequent steps in the thermodynamic workflow. We have shown such propagation for both

stability predictions and chemical potentials, and herein we highlight one more example–the

production of ultra-fine convex hulls from coarse-grid composition spaces. Producing fine-

grained convex hulls is advantageous due to their ability to resolve single-phase regions, but

conducting CAL on ultra-fine composition grids heavily increases its computational cost.

As such, we use CAL to conduct search on coarse grids and use post-processing to produce

the fine-grained convex hulls shown in Fig. 7.18j-l. Specifically, a new GP is trained on the

existing energy observations from the coarse grid and produces energetic predictions over a

fine composition space. The resulting convex hull distribution is subsequently derived. The

associated uncertainty with interpolating to fine grids is naturally included in the convex

hull predictions.

7.3.3 Conclusion

Efficient, scalable calculations coupled with end-to-end uncertainty predictions are critical

for the next generation of computational materials design. Here, CAL provides a crucial

component of this workflow with the ability to efficiently and accurately predict thermody-

namic stability. This enhancement comes from developing an acquisition function for active

learning that is focused on minimizing the uncertainty of the convex hull. Rather than at-

tempt to characterize the entire space, CAL prioritizes observing compositions that are on

or near the hull. As a result, we see a factor of four gain in search efficiency for complex
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ternary spaces. While we focus on ternary spaces, our approach generalizes across dimen-

sions; thus, it can be applied to pernicious problems such as generating phase diagrams

for high-entropy alloys. Uncertainty quantification of both phase stability and associated

intensive variables emerges naturally from this hull-aware Bayesian method. Such intensive

variables (e.g., pressure, chemical potential, voltage) are critical for linking CAL’s results

into a predictive workflow for informing experimental campaigns.
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Chapter 8

Conclusion and Future Directions

This dissertation studies multiple experimental design settings that are relevant to scientific

discovery tasks. By taking a decision-theoretic approach, our policies achieve superior em-

pirical performance than previously proposed baselines. Overall, we provide practitioners

with a wide range of algorithmic solutions to tackle diverse experimental design problems.

We first studied Bayesian optimization in high dimensions and developed a local optimization

framework that maximizes the probability of descending on the objective function (i.e.,

making optimization progress). This maximization of descent probability is achieved by

exploiting the rich structure of the Gaussian process belief about the objective function,

which allows us to (i) compute the direction of maximally likely descent in closed form

and (ii) gather data to closely approximate maximizing the posterior maximum descent

probability. The resulting policy leads to more efficient optimization than baselines across

many tasks. A natural next step in this direction is to treat our local optimization algorithm

as a component within a larger framework for global optimization, such as those in McLeod

et al. [133], Wang et al. [200], Diouane et al. [47]. The outer optimization scheme could be

responsible for managing multiple local optimization runs, choosing the initial starting point

for each run, as well as terminating runs that either have converged or are unlikely to yield

good results. Here, the closed-form maximum descent probability from our method could

play a role in determining whether a run should be terminated if, for example, after the

local region has been thoroughly been explored, the maximum descent probability does not

exceed a certain threshold. In addition to maximizing descent probability, future directions

could explore other heuristics that are conducive to local optimization. For example, Fan

et al. [53] made a connection between moving in a descent direction and minimizing the

upper confidence bound of Gaussian process belief about the objective function, and derived

local optimization policies that leverage this upper confidence bound.
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This dissertation also forwards the research on active search methodologies by extending the

machinery in traditional active search to multifidelity and multiclass scenarios that model

many relevant scientific discovery tasks. We first prove the same hardness result in the

original to these two new settings, showing that the performance of the optimal policy

cannot be approximated by that of any polynomial-time policy by any constant ratio. We

further adopt the nonmyopic search policy to these settings by efficiently approximating

optimal future designs under their respective utility functions. The resulting policies are

shown to produce nonmyopic decisions that carefully reason about the remaining search

budget, and overall outperform various baselines. A future direction could extend these

policies to batch scenarios, where multiple experiments are conducted at the same time to

maximize experimentation throughput.

In the multiclass case, we propose a utility function with diminishing returns in the number

of targets found in each class to encourage diverse discoveries across the classes (i.e., diversity

in the label space), but alternative search settings that reward diversity in the feature space

are also possible. An example of this is the work of Nguyen and Dieng [145], who introduced

a utility function that acts as an “effective count” for the binary setting. As computing

this utility function involves decomposing the covariance matrix of the input data and thus

requires cubic effort, adopting a nonmyopic lookahead similar to that of Jiang et al. [88] was

not straightforward, and the authors proposed greedily optimizing the one-step lookahead.

Future works could consider developing efficient rollout strategies that well-approximate

future designs under such active search settings.

Another contribution of this dissertation lies in an imitation learning framework for training

a neural network to mimic the behavior of the state-of-the-art policy by Jiang et al. [88],

as a way to amortize policy computation. Our imitation learning procedure was successful

in training the network to inherit the beneficial search strategy from the expert policy.

The trained policy network ultimately achieved strong empirical performance that closely

approximates that of the expert, while being significantly less computationally demanding.

This increased computational efficiency opens doors to the application of active search to

real-time systems where decisions must been made quickly, as well as large-scale search

spaces such as drug discovery databases. With that said, behavior cloning of the expert

policy from Jiang et al. [88] is not necessarily the end goal, and one could seek to further

improve from our imitator policy network by learning directly from experiences using modern

reinforcement learning techniques. Hester et al. [81], for instance, proposed a procedure in
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which the policy network initially imitates an expert policy to achieve a reasonable behavior,

and subsequently keeps learning from interacting with the target environment to outperform

that expert and establish the new state of the art in game-playing tasks; adopting similar

strategies for active search poses an interesting future direction.

Another attractive feature of directly learning from past experiences with reinforcement

learning is that, under active search settings where the utility function is not known, we

only require evaluation access to the utility function to determine the reward at the end of

each search campaign. While previous works have assumed the true utility function that

accurately reflects one’s objective is known a priori to be able to simulate future designs,11

in many real-world applications, we might start out with an unknown utility function (an

example is the problem setting considered in Bhatia et al. [22]). Assuming a particular

structure of the unknown utility function could lead to utility misspecification and conse-

quently misguided designs. Instead, a potential direction may consider eliciting valuations

from a human evaluator by having them “score” the performance of the current policy in

each search episode, without needing to learn the underlying utility function. An important

consideration in this user-oriented direction is that the system frugally queries the human

evaluator for their scoring, so as to avoid straining the user and resulting in noisy evaluations.

Finally, this dissertation includes a number of applications of experimental design to real-

world discovery spanning chemistry, materials science, and human–computer interaction for

data discovery. By leveraging the tools experimental design, these campaigns lead to more

efficient learning and discovery than traditional, non-adaptive techniques, and demonstrate

the benefits of our methods.

11Although an exception is found in Chapt. 5, the setting explored in that work does assume that all possi-
ble utility functions share a common characteristic, specifically diminishing returns from similar discoveries.
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Appendix A

Hardness of Multiclass Active Search

with Diminishing Returns

We present the proof of Theorem 5.1.1. This is done by constructing a class of as problems

similar to those described in Jiang et al. [88] but with different parameterizations. Consider

an as problem whose setup is summarized in Fig. A.1 and described below. The problem

has n = 16m points, C = 2m+1 + 1 classes (2m+1 positive classes), and the search budget is

T = 2m+1, where m is a free parameter. We also have the reward function for each class fi

to be the same (arbitrary) positive, increasing, unbounded, and concave f . Each of the n

points is classified into two groups: “clumps” and “isolated points.”

The former consists of 4m clumps, each of size T , and is visualized in Fig. A.1b. All points

within the same clump share the same label, and exactly one clump contains positives, each

of which belongs to a different positive class. In each instance of the problem class being

described, this positive clump is chosen uniformly at random among the 4m clumps. As

such, the prior marginal positive probability of any of these points is pclump = 4−m.

As for the isolated points, their labels are independent from one another. The positives

among the isolated points only belong to a single positive class. The marginal probability

of an isolated is set to be pisolated = 1− 0.5
2m2

2m . These isolated points are further separated

into two categories:

• A secret set S of size T/2 = 2m, visualized in Fig. A.1a, which encodes the location

of the positive clump. The set S is first partitioned into 2m subsets S1, S2, . . . , S2m,

each of size 2m/2m. Each subset Si encodes one virtual bit bi of information about the

location of S, and is further split into m groups of 2m/2m2 points, with each group

encoding a virtual bit bij by a logical or. The aforementioned virtual bit bi, on the

other hand, is obtained via a logical xor: bi = bi1 ⊕ bi1 ⊕ . . .⊕ bim.

[152]



• The remaining points, denoted as R and visualized in Fig. A.1c, are completely inde-

pendent from each other and any other points. We have |R| = 16m − 2(8m)− 2m.

We first make the same two observations as in Jiang et al. [88].

Observation A.0.1. At least m points from Si need to be observed in order to infer one bit

bi of information about the location of the positive clump.

Each bij has the same marginal probability of being 1:

Pr (bij = 1) = 1− Pr (bij = 0) = 1− (1− pisolated)
2m

2m2 = 0.5.

We also have Pr (bi = 1) = 0.5, as the positive clump is chosen uniformly at random. It

is necessary to observe all virtual bits bij from the same group Si to infer the bit bi, since

observing a fraction of the inputs of a xor operator does not change the marginal belief

about the output bi. So, observing (m − 1) or fewer points conveys no information about

the positive clump.

Observation A.0.2. Observing any number of clump points does not change the marginal

probability of any point in the secret set S.

The knowledge of bi does not change the marginal probability of any bij. This is to say no

point in S will have a different probability after observing bi. This means observing points

outside of S does not help distinguish S from the remaining isolated points in R.

With this setup, we now compare the performance of the optimal policy and the expected

performance of a given polynomial-time policy. To this end, we first consider the opti-

mal policy with unlimited compute. Before querying any point, the policy computes the

marginal probability of an arbitrary fixed clump point, conditioning on observing every pos-

sible subset of the isolated points of size m and fantasized positive labels. This set of O (nm)

inference calls will reveal the location of the secret set S, as only points in S will update the

probabilities of the fixed clump point.

Now the policy spends the first half of its budget querying S, the labels of which identify

the positive clump. The policy now spends the second half of the budget collecting these

positive points. The resulting reward, denoted as opt, is lower-bounded in the worst-case
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Figure A.1: An instance of as where any efficient algorithm can be arbitrarily worse than
the optimal policy.

scenario where S does not contain any positive point:

opt ≥ T

2
f(1) = 2m f(1).

We now consider a policy A. Let α denote the total number of inference calls performed

by A throughout its run. At the ith inference call, A uses a training set Di of size at most

T = 2m+1. We will show that A has a very small chance of collecting a large reward by

considering several cases.

We first examine the probability that A finds the secret set S. By Theorems A.0.1 and A.0.2,

A cannot differentiate between the points in S and those in R unless |Di∩S| ≥ m. Suppose

that before this inference call, the algorithm has no information about S (which is always

true when i = 1). The chances of A choosing Di such that |Di ∩ S| ≥ m are no better than

a random selection from n− 2 (8m) isolated points. We can upper-bound the probability of

this event by counting how many subsets of size 2m+1 would contain at least m points from
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S among all subsets of the n− 2 (8m) isolated points:

Pr (|Di ∩ S| ≥ m) ≤
(
2m

m

)(
n−2(8m)−m
2m+1−m

)(
n−2(8m)
2m+1

) .

The rhs may further be upper-bounded by considering(
2m

m

)(
n−2(8m)−m
2m+1−m

)(
n−2(8m)
2m+1

) =
(2m)! (n− 2(8m)−m)! (2m+1)!

m! (2m −m)! (2m+1 −m)! (n− 2(8m))!
,

where

(2m)!

(2m −m)!
< (2m)m,

(2m+1)!

(2m+1 −m)!
< (2m+1)m,

(n− 2(8m)−m)!

m! (n− 2(8m))!
<

1

(n− 2(8m))m
.

The last inequality is due to

(n− 2(8m))m

m!
<

(n− 2(8m))!

(n− 2(8m)−m)!
,

which is true by observing that for each of the m factors on each side,

n− 2(8m)

i
< n− 2(8m)− i+ 1,∀i = 1, . . . ,m.

Overall, we upper-bound the probability that A hits m points in S with

Pr(|Di ∩ S| ≥ m) <

(
2m 2m+1

n− 2(8m)

)m

,
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and union-bound the probability of A “hitting” the secret set after α inferences, denoted as

phit, with

phit <
α(

n−2(8m)
2m 2m+1

)m .

Here, n− 2(8m) = 16m − 2(8m) = Θ(16m), so

phit <
α

Θ
((

16m

2(4m)

)m) =
α

Θ(4m2)
.

Hence, for any α = O(nc) = O(16cm) = O(42cm), where c is a constant,

phit < O

(
42cm

4m2

)
= O(4−m2

) = O(4− log2 n).

In other words, the probability that A does find the secret set S decreases as a function of n.

Conditioned on this event, we upper-bound its performance with 2m+1 f(1), assuming that

every query is a hit.

On the other hand, if A never finds S, we further consider the following subcases: if the

algorithm queries an isolated point, no marginal probability is changed; if a clump point

is queried, only the marginal probabilities of the points in the same clump are updated.

The expected performance in these two cases can be upper-bounded by pretending that the

algorithm had a budget of size 2T = 2m+2, half of which is spent on querying isolated points

and half on clump points.

The expected utility after T queries on isolated points is E
[
f(X)

]
, where X =

∑T
i=1Xi and

Pr(Xi = 1) = pisolated. We further upper-bound this expectation using Jensen’s inequality:

E
[
f(X)

]
< f

(
E[X]

)
= f

(
T pisolated

)
= f

(
2m+1(1− 2−

2m

2m2 )
)
.
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The expected utility after T queries on clump points is

f(T )

4m
+

(
1− 1

4m

)(
f(T − 1)

4m − 1
+

(
1− 1

4m − 1

)
(· · · )

)
=

∑T
i=1 f(i)

4m

<
Tf(T )

4m

=
f(2m+1)

2m−1
.

Combining the two subcases, we have the expected utility in the case where A never hits S

upper-bounded by

f
(
2m+1(1− 2−

2m

2m2 )
)
+

f(2m+1)

2m−1
.

With that, the overall expected utility of A, denoted by EA is upper-bounded by

EA < 2m+1 f(1) phit + f
(
2m+1(1− 2−

2m

2m2 )
)
+

f(2m+1)

2m−1
.

We then consider the upper bound of the approximation ratio

EA

opt
< 2 phit +

f
(
2m+1(1− 2−

2m

2m2 )
)

2m f(1)
+

(2m+1 − 1)

4m
.

The first and third terms are arbitrarily small with increasing m. As for the second term,

L’Hôpital’s rule shows that 1− 2−
2m

2m2 = Θ
(

2m2

2m

)
, so this term scales like Θ

(
f(4m2)

2m

)
, which

is O
(

4m2

2m

)
and also arbitrarily small with increasing m. As a result, algorithm A cannot

approximate the optimal policy by a constant factor.
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Appendix B

Generation of Training Search

Problems

Figure B.1: An example
two-dimensional problem
generated by Alg. 7, where
bright and dark points
indicate targets and non-
targets, respectively. The
search space includes both
clusters and more widely
dispersed points.

We now discuss our procedure of generating active search

problems to train the policy network in DAgger, summarized

in Alg. 7, where U{m,n} denotes a discrete uniform distribu-

tion of the integers between m and n (inclusive), while U [a, b]

refers to a continuous uniform distribution between a and b.

The search space X of each generated problem exists in a d-

dimensional space, where d is a random integer between 2 and

10. Once d is determined, we sample 100d points uniformly

from the d-dimensional unit hypercube. This set of uniform

points is combined with ncluster clusters, where ncluster is a ran-

dom integer between 10 and 10d. To generate each cluster,

we first sample another random integer between 10 and 10d,

denoted as m, to determine the size of the cluster. We then

draw m points from an isotropic Gaussian distribution with

the mean vector µ randomly sampled within the unit hyper-

cube and the diagonal covariance matrix σ2Id, where σ is drawn from U [0.1, 0.1d]. Here, σ,

which determines the spread of a given cluster, is constrained to be between 0.1 and 0.1d

(relatively small numbers) to ensure that the points within this cluster are indeed close to

one another.

Again, the union of the uniform points and the clusters make up the entire search space

X . We then draw a sample from a Gaussian process (gp) at the points in X . This gp is

equipped with a zero mean function and a radial basis function kernel whose length scale ℓ

scales linearly with the dimensionality of the space d by a factor of 0.05. This gp sample
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Algorithm 7 Generate synthetic search problems

1: d ∼ U{2, 10} ▷ sample dimensionality of search space

2: X ←
{
xj : xj ∼ U [0, 1]

}100d
j=1

▷ sample uniform points

3: ncluster ∼ U{10, 10d} ▷ sample number of clusters

4: for i = 1 to ncluster do

5: m ∼ U{10, 10d} ▷ sample cluster size

6: µ = [µj]
d
j=1, where µj ∼ U [0, 1] ▷ sample cluster center

7: σ ∼ U [0.1, 0.1d] ▷ sample spread of cluster

8: X ← X ∪
{
xj : xj ∼ N (µ, σ2Id)

}m
j=1

▷ use an isotropic Gaussian distribution

9: end for

10: f ∼ N (X ;0,Σ),

where Σ = K(X ,X ) and K(x1,x2) = exp
(
−∥x1−x2∥2

2ℓ2

)
with length scale ℓ = 0.05d

11: p ∼ U [0.01, 0.2] ▷ sample target prevalence

12: y = I
[
f > 100(1− p)-th quantile in f

]
▷ threshold to construct binary labels

13: returns (X ,y)

yields a vector f of real-valued numbers. We then sample uniformly between 0.01 and 0.2

for a prevalence rate p, which determines the proportion of X corresponds to the targets.

As such, we compute the binary labels y by thresholding f at the 100(1− p)-th quantile of

the values in f . We keep the prevalence rate p below 20% to ensure that the targets are

sufficiently rare. The tuple (X ,y) is finally returned. Fig. B.1 shows an example of one such

generated problem in two dimensions, showing a search space with a considerably complex

structure with multiple clusters and groups of targets.
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