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Abstract

Rate control, in conjunction with congestion control, is important and necessary to maintain both

stability of overall network and high quality of individual data transfer flows. In this paper, we study

stable rate control algorithms for streaming data, based on control theory. We introduce various control

rules to maintain both sending rate and receiver buffer stable. We also propose an adaptive two-state

control mechanism to ensure the rate control algorithms are compatible to TCP traffics. Extensive

experimental results are shown to demonstrate the effectiveness of the rate control algorithms.

1 Introduction

Streaming media is becoming increasingly important for many applications. In contrast to bulk data (e.g.,
file) transfer, streaming data is more sensitive to transmission delay, network bandwidth fluctuation and
high volume data loss. Rate control for streaming media applications is thus crucial in achieving high QoS
(quality of service). Transmission delay and data loss are usually caused by network congestions. Network
congestions, in turn, are usually caused by 1) insufficiency of overall network bandwidth due to addition of
new data flows into the network; and/or 2) high fluctuation in sending rates of existing data flows. While
the first factor is unavoidable and usually addressed by various congestion control algorithms, network
congestions are more often caused by the second factor. Wild swings in sending rate of each individual
data flow collectively make the network unstable, leading to much harder congestion control, ineffective use
of overall network bandwidth and poor transfer quality (large delay, high data loss rate, etc.) of individual
data flows. Thus to mitigate and eliminate network congestions, sending rate of each individual data flow
should be maintained as stable as possible at the first place. Stable rate control algorithms, in conjunction
with efficient congestion control algorithms, are thus necessary in maintaining both the stability of overall
network and the high transfer quality of individual data flows, especially for streaming flows.

Traditional approach used in data transfer protocols, such as TCP, can cause severe sending rate
fluctuation and is not suitable for streaming media. In order to achieve stable transmission rate, various rate
control approaches have been proposed. RAP[2] uses a simple AIMD (Additive Increase and Multiplicative
Decrease) scheme and adjusts sending rate per RTT or upon packet loss. LDA+[3] controls sending rate
based on RTCP feedback information in a much less frequent interval (usually several seconds). TEAR[4]
calculates fair receiving rate on receiver side and accordingly adjusts sending rate. Binomial Congestion
Control[5] analyzes a class of nonlinear algorithms and shows a set of TCP-compatible algorithms for
streaming media. TFRC[6] adjusts sending rate based on the feedback of loss event rate and a TCP
throughput equation.

All those approaches focus on the network bandwidth bottleneck and try to provide a slow-responsive
sending rate correspondingly. As network bandwidth increases dramatically, both in backbone network
brought by advanced optical technologies, such as DWDM (Dense Wave Division Multiplexing) and on
last-mile links with the widely deployment of broadband service, more and more network bandwidth is
becoming available to streaming applications. Thus, although the network could be the bottleneck at
sometime during a streaming session, the available bandwidth should be larger than the consumption rate
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Figure 1: Streaming Media System Architecture

at most of the time. We thus need some new rules to regulate streaming flows under this circumstance.
In this paper, we first show the failure of traditional TCP flow control in streaming applications. We
then introduce receiver buffer level into feedback and apply control-theoretic approach to address this flow
control problem. We design a set of rate control rules and the goal is to achieve relatively stable sending
rate, while maintaining certain receiver buffer level. The effectiveness of these rules are demonstrated
through real streaming experiments over Internet.

In an open environment like the Internet, streaming applications also need to follow the concept of fairly
sharing so as not to cause starvation of other TCP traffic or congestion collapse[1]. Therefore, we combine
the rate control rules with an existing TCP-friendly scheme and propose a two-state adaptive rate control
mechanism: in the UNSTABLE state, sender regulates sending rate in a slowly responsive TCP-friendly
fashion; in the STABLE state, sender enforces the rate control rules. State switching occurs based on both
network condition (available bandwidth and packet loss rate) and receiver buffer level. Our extensive real
Internet experiments show three properties of this mechanism, namely, TCP-friendliness, stable sending
rate and constant receiver buffer level.

In Sec. II, we first show the ineffectiveness of TCP flow control mechanism in streaming media appli-
cations. Then, we describe the design of STABLE state rate control rules with different approaches and
present experiment results. In Sec. III, we focus on the two-state adaptive rate control mechanism and
also show experiment results on an architecture (Figure 1). The future directions are mentioned in Sec.
IV.

2 STABLE State Rate Control Rules

2.1 Problem Statement

Figure 2 shows a simplified diagram of the streaming media system as in Figure 1, with only those compo-
nents that are of interests to us for this particular problem. During a streaming session, the send component
in the streaming server retrieves data constantly from the file server and sends it out to the network. The
streaming client receives data and stores in its local buffer. The decoder component pulls data from the
buffer as needed. The streaming client constantly feeds back buffer level information to the streaming
server, which accordingly decides its sending rate. The goal of rate control mechanism is to adjust sending
rate properly so as to minimize the possibility of overflowing or under-flowing receiver buffer and minimize
the effect of rate adjustment on network in the meanwhile. Turning these criteria to measurable variables,
we design a rate control algorithm, which keeps the client buffer level relatively constant and minimizes
the fluctuation of sending rate at the same time.
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Figure 2: Abstract Streaming System Diagram
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(b) Part of the Streaming Session

Figure 3: TCP Flow Control in Streaming Scenario

2.2 Failure of TCP Flow Control in Streaming Media

First, let us take a look at how TCP flow control fails in data streaming. Figure 3 shows an experiment
result of streaming a 12 minute long video sequence from tehran.clic.cs.columbia.edu to elm.cs.wustl.edu

(with an average TCP bandwidth of 7.5 Mbps and an average RTT of 32 ms) using TCP protocol. The
video sequence is in MPEG-1 format and is excepted from Terminator 2. Its average rate is about 1.4
Mbps. The same sequence is used for all experiments in this paper.

Figure 3(b) is a zoom-in version of Figure 3(a), augmenting the time period 350 ∼ 400 sec. We can see
that although the average throughput is relatively constant (close to the bitrate of video sequence itself),
the instantaneous sending rate fluctuates greatly. The reason is TCP flow control dominates transfer
when available network bandwidth is larger than client consumption rate and thus sending rate is actually
controlled by TCP receive window. To be more specific, when there is room in receiver buffer, receive
window opens and sender pushes as much data as possible. And when there is no room and receive window
closes, almost no data is sent out. The other reason that contributed to this phenomenon is, although
receiver consumes data in relatively constant rate in large time scale, it is not true in small time scale. We
will analyze this issue in detail in a later section.
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Figure 4: Results of HRA

2.3 Heuristic Rate Adaptation (HRA) Algorithm

2.3.1 HRA algorithm

To address the streaming media flow control problem, we start with a heuristic approach. HRA (Heuristic
Rate Adaptation) algorithm adopts similar idea to TCP AIMD (Additive Increase and Multiplicative
Decrease) algorithm, which tries to approach the maximum available network bandwidth by constantly
probing the network with a higher sending rate, until packet loss happens. HRA keeps increasing sending
rate additively and decreases it multiplicatively when the receiver buffer level exceeds a certain threshold.
The details is as follows:

Algorithm HRA

1. if (HRA timer expire)
2. then if recvbuf > bufthresh

3. then sendrate = (1 − β) · avg playrate

4. else sendrate = sendrate + α · avg playrate

5. return

Here, avg playrate is a property of the streaming session. By selecting proper α, β and HRA timer interval,
we can keep sending rate within a certain range around avg playrate, while maintaining the receiver buffer
level around the threshold bufthresh.

2.3.2 Experiment

We implement HRA algorithm in our streaming media system, as shown in Figure 1. For all experiments
in this paper, we disable FEC and use only retransmission as error recovery mechanism.

Figure 4 is an experiment result of HRA in the same environment as the TCP experiment in last section.
Here, we set α 0.05, β 0.15, HRA timer interval 2.5 sec and bufthresh 1.05 times of the target receiver buffer
level. By further tuning the parameters, α, β, HRA timer interval and bufthresh, it is possible to push
sending rate and receiver buffer level into a tighter range. However, the more important thing is that HRA
algorithm sheds lights on an approach of using receiver buffer level as an effective feedback information
to control sending rate. Therefore, better performance is expected if we can analyze the system from
theoretical aspect. We use this feedback information and apply control theory knowledge in the following
approach.
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Figure 5: Feedback Control System Diagram

2.4 Feedback Control Model and Basic Design

2.4.1 Feedback Control Model

Figure 5 is a feedback control model[8] abstracted from Figure 2. Here, the plant consists of send com-
ponent in the streaming server, the network and the client buffer. Inside the plant, a sending rate rs is
decided according to a control signal u(t) and data in the client buffer is consumed at a constant playback
rate rp. Both rs and rp contribute to actual buffer level b. The controller implements rate control rules.
It calculates error e between the feedback value of b and the reference buffer level b0 and sets output signal
u(kT), at a sample rate 1

T
. The zero-order hold (ZOH) maintains the same value within the sample period

T.

2.4.2 Basic Design

Based on above model, a control rule is designed for the controller using root-locus method[8]. The intuition
here is that if we can keep the feedback control system in steady state, then the error between receiver
buffer level and the reference is small (close to 0) and the controller output is small too. Thus the sending
rate is close to playback rate and relatively stable.

Define control signal u(t) = rs - rp, then

ḃ = u(t) (1)

Thus, the transfer function of plant is

G(s) =
1

s
(2)

If we let damp ratio ζ and natural damp frequency ωn to be 0.5 and 1 respectively, the lead compensation

for G(s) is

D(s) =
s + 1

s + 10
(3)

Using the root-locus method, we can get control gain K = 7.22, with ωn = 0.963, ζ = 0.5 and overshoot

Mp = 16.3%. Given ωn and ζ, we can also calculate the rise time, settling time, peak time of the system,
but there are of less interests to us because we focus primarily on the steady state response.

We choose sample period T to be 500 ms, then digitize D(s) using the Tustin’s method[8] and get

D(z) =
2.5786(z + 0.6)

(z + 0.4286)
(4)

This gives a simple control rule as

u(k) = −0.4286u(k − 1) + 2.5786(e(k) + 0.6e(k − 1)) (5)

Mapping this control rule back to our streaming system, sender constantly gets feedback information
of receiver buffer level b(k), compares it to the reference buffer level b0 and calculates the error e(k). It
then computes the controller output u(k) and adjusts sending rate accordingly.
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Figure 6: Results with a Playback Simulator
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Figure 7: Trace of Real Playback

2.4.3 Experiment 1

In the first experiment, we use a playback simulator in the streaming client. The purpose here is to ensure
playback rate is constant without any disturbance, as the model requires. The total receiver buffer size is
4 MB and the reference buffer level b0 is 3 MB. The playback rate rp is 1.4 Mbps. The result is shown in
Figure 6. From the results, we can see receiver buffer is well controlled toward the reference buffer level
and sending rate is not fluctuating significantly. This shows the control rule is effective.

2.4.4 Experiment 2

In our second experiment, we test the control rule with a real player, which introduces disturbance to
playback rate.

First, let’s examine the property of a real playback. From Figure 7(a), we can tell that playback rate is
rather constant in large time scale. However, Figure 7(b) shows that instantaneous playback rate oscillates
considerably. We expect this fact will have significant effect on our feedback control system. And the great
fluctuation of sending rate shown in Figure 8 confirms this.

2.4.5 Receiver Buffer Level Smoothing

The reason that the control rule doesn’t work well for a real player is because the instant receiver buffer
level changes significantly. This suggests if the reference buffer level is smoothed to be relatively constant
even in small time scale, we can eliminate the effect of playback rate disturbance and achieve better control
results.
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Figure 8: Results with a Real Player

0

500

1000

1500

2000

0 100 200 300 400 500 600 700

ra
te

 (
K

bp
s)

time (s)

sending rate

(a) Sending Rate

0

20

40

60

80

100

0 100 200 300 400 500 600 700

bu
ffe

r 
us

ag
e(

%
)

time (s)

buffer usage

(b) Receiver Buffer Level

Figure 9: Results with a Real Player after Receiver Buffer Smoothing

From Figure 7(a), we can see that consumed data lies on a straight line with a certain slope. So we
design a heuristic smoothing approach here, where is to calculate the slope with a measured value and
predict a smoothed value with that slope. To be specific, define tnow as current measurement time, tlast

as last measurement time, Cm as the measurement value of cumulative consumed data at tnow, Cp as
the predict value of cumulative consumed data at tnow and Clast as the measurement value of cumulative
consumed data at tlast. C0 and t0 represent the measurement value of consumed data and time when
playback starts. Thus, we can predict Cp by

slope =
Cm − C0

tm − t0
(6)

Cp = Clast + slope(tm − tlast) (7)

If we let Rm be the total data received at time tm, then the smoothed buffer level b̂ is

b̂ = Rm − Cp (8)

We implement this receiver buffer level smoothing mechanism and the results in Figure 9 show significant
improvement in terms of sending rate fluctuation.

2.5 Refined Model and Advanced Design

2.5.1 Refined Model

In above section, we see that our heuristic approach of smoothing buffer level helps to decrease sending
rate fluctuation significantly. More improvement in controlling the stability of sending rate is achieved by
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introducing estimator into the feedback control system. As described in [9], an estimator is used as an
approximation when it is not possible to measure the state variable. In our case, however, we introduce
estimator to decrease the effect of receiver buffer level fluctuation.

Figure 10 is a feedback control model with an estimator, where we use state-space method[9] to do
design.

2.5.2 Advanced Design

First, the state-space description of the plant is:

ẋ = Fx + Gu (9)

b = Hx + Ju (10)

Here, F, G, H and J are the system matrix, input matrix, output matrix and transmission term, respectively.
x is the system state vector. u is control input and b is receiver buffer level, as shown in Figure 10. Given
a sample time period T , we can obtain a discrete state-space representation as

ẋ(k + 1) = Φx(k) + Γu(k) (11)

b(k) = Hx(k) + Ju(k) (12)

After introducing x̂, K and N̄ as the estimate matrix of x, control gain and reference input gain multipli-

cation, the control rule of the complete feedback control system is

x̂(k) = [Φ − ΓK − LcHΦ + LcHΓK]x̂(k − 1) + Lcb(k) (13)

u(k) = −Kx̂(k) + N̄b0 (14)

Lc is the gain matrix of the current estimator and K is the feedback gain matrix of the close-loop system.

2.5.3 Experiment

Given the transfer function of the plant as

G(s) =
1

s
(15)

We can get

F = [0] G = [1]

H = [1] J = 0

If we choose the same sample period T = 500 ms, the same as previous design, then

Φ = [1] Γ = [0.5]
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Figure 11: Feedback Control with Estimator at Different Pole Pairs

To complete the control system design, we need to select poles for both the close-loop and the estimator.
The trade-off here is between the responsiveness to feedback and the fluctuation of sending rate. If we
choose poles far away from the origin, the response of the feedback control system is quick. It could have
very stable receiver buffer level, but results in great fluctuation of sending rate. On the other hand, if
we select poles too close to the origin, the response could be too slow. We would have much more stable
sending rate at the price of receiver buffer level fluctuation.

The experiment shown in Figure 11 is carried out in the same environment as previous ones, with
different pole pairs and thus different sets of rate control rules. We can see that the smallest pole pair
(−0.1,−1), which has the longest settling time, results in the least fluctuated sending rate, however the
most fluctuation in buffer level. Vice versa, the largest pole pair (−1,−10), which has the smallest settling
time, produces the most fluctuated sending rate, while maintaining the smoothest buffer level.

Finally, we decide pole pair (−0.5,−5) to be a good balance, with which both sending rate and receiver
buffer level are well controlled within a small range. Correspondingly, the control parameters are:

K = [0.4424]

Lc = [0.9179]

N̄ = 0.4424

And the control rule is

x̂(k) = [0.0639]x̂(k − 1) + 0.9179b(k) (16)

u(k) = [−0.4424]x̂(k) + 0.4424b0 (17)

With this rate control rule, we also run experiments through paths with large RTT. Figure 12 shows
the result of streaming from wombat.ee.mu.oz.au to elm.cs.wustl.edu (with an average TCP bandwidth of
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Figure 12: Experiment over Path with Large RTT

1.12 Mbps and an average RTT of 228 ms). We can see that sending rate and receiver buffer level is well
controlled from Figure 12(a) and Figure 12(c). The result also shows that the rate control rule is not
sensitive to the value of RTT, which is a desirable property since a control rule can be applied for different
network paths. In Figure 12(b) and Figure 12(d), we show the result of streaming using TCP protocol.
Since the average TCP bandwidth is not enough, we can’t streaming the real video sequence of 1.4 Mbps.
Instead, we use a playback simulator to consume data at 0.8 Mbps. We can see when buffer level is stable,
which means the available network bandwidth is greater than the playback rate and TCP flow control
takes effect, sending rate fluctuates severely.

Note although our rate control rule relies on the feedback information in adjusting sending rate, it does
not depend on ACK clock, which is used in TCP. So if an acknowledgment packet is lost, rate control uses
old value in current time period, which might introduce some disturbance, but certainly does not cause
severe problem.

3 Two-State Adaptive Rate Control Mechanism

3.1 Introduction

In last section, the primary goal of applying feedback rate control rule is to keep relatively stable sending
rate, as well as maintaining certain receiver buffer level. However, in a rapidly changing network environ-
ment, we might not always get enough network bandwidth as the feedback control rule demands. Thus,
although it’s reasonable to assume that during the entire streaming session, the average available network
bandwidth is larger than the playback rate, it makes less sense to assume that we will always have enough
network bandwidth at any instant time point. If we force sending rate to be as high as the feedback control
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rule requires, then it is not much different from using encoding rate as sending rate, which actually steals
network bandwidth share from cross traffic. To be fair to other traffic in the network, a streaming session
should be compatible to TCP traffic, which is the most common traffic in the Internet nowadays.

3.2 TCP-Friendly Rate Control(TFRC) Protocol

TFRC[6] is an equation-based rate control mechanism, proposed by M. Handley et al., and is now under
standardization process. It uses a TCP response formula[10] as following:

T =
s

R

√

2p

3
+ tRTO(3

√

3p

8
)p(1 + 32p2)

(18)

This gives an upper bound on the sending rate T, as a function of packet size s, round-trip time R,
steady-state loss event rate p, and TCP retransmit timeout value tRTO.

TFRC is responsive to network congestion over longer time period and changes sending rate in a slowly-
responsive manner. This is desirable to streaming media, as the purpose of its design. It also gives the
application knowledge of sending rate upper bound. As long as the application is sending within the bound,
it is considered to be compatible to TCP flows, i.e., TCP-friendly.

These are exactly features that we need in our rate control scheme to achieve TCP-friendly feature.
By integrating TFRC with our feedback rate control rule, we propose a two-state adaptive rate control
mechanism.

3.3 Two-State Adaptive Rate Control Mechanism

Rate control operates in tow states: the STABLE state and the UNSTABLE state. Normally, it operates
in the STABLE state and switches to the UNSTABLE state in two cases: 1) available network bandwidth
is not enough; 2) the receiver buffer level is low. In the UNSTABLE state, sending rate is set to an upper
bound given by TFRC. In case 1, the draining rate of client buffer is minimized so that it can last longer
network congestion period. In case 2, receiver buffer level is pushed up quickly to the control level by
the sender sending more data than consumed by the receiver. When the available network bandwidth is
enough and the receiver buffer level is high, rate control switches to the STABLE state, where the feedback
rate control rule takes over.

3.4 Experiment

We implement TFRC in our streaming system, integrate it with our feedback rate control rule to get the
two-state adaptive rate control mechanism and run experiments over the Internet. Figure 13 is the result
of a typical streaming session. This experiment is streaming from hip.caltech.edu to elm.cs.wustl.edu (with
an average RTT of 66 ms), using the same video sequence. We can see from Figure 13(a) that, during
three time periods, rate control operates in the UNSTABLE state, where sending rate matches the upper
bound given by TFRC. The three time periods are the startup period, 400∼500 sec and 600∼700 sec. In
other times, the feedback rate control rule takes effect. From Figure 13(b), we can see that receiver buffer
builds up at the startup period quickly. And during two other UNSTABLE period, buffer drains first and
returns to target level later. During the STABLE periods, sending rate and receiver buffer level are well
controlled within a small range.

Figure 14(a) shows the loss event rate p, which is driven by the actual packet loss pattern shown in
Figure 14(b). We can see that the value of p is not directly associated with packet loss number, but with
the density of loss event. This is the essential reason of TFRC’s slow responsiveness and desirable feature
for streaming.

Notice here in our experiment, there are some jitters during 300∼400 sec, where the TFRC sending rate
bound is actually below real sending rate. This happens because in our real implementation, when rate
control is in the STABLE state, it doesn’t immediately switch to the UNSTABLE state when the sending
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Figure 14: Loss Pattern

rate upper bound is lower than real sending rate. The sender waits to see packet loss before it changes
state. One reason of doing this is to stay in the STABLE state whenever possible so as to avoid unnecessary
sending rate fluctuation. Another reason is because the sending rate upper bound is limited to two times
of receiving rate reported by the receiver. On systems (such as Linux used in our experiment) with clock
tick about 10 ms, the feedback receiving rate fluctuates considerably due to measurement disturbance. By
filtering the feedback receiving rate through certain anti-aliasing filter and not switching state too rapidly,
we can decrease this effect.

4 Conclusions

In this paper, we describe a control-theoretic approach to regulate sending rate of streaming media and
also present a two-state adaptive rate control mechanism. We show their effectiveness by real Internet
experiments.

There remain several issues to be addressed. Our feedback control model does not take transmission
delay into account. When a sample time period is significantly larger than RTT, our experiments show
the effect of RTT is minor. For long distance data streaming, however, we need to investigate how a large
RTT affects rate control rules. It is also interesting to explore how to extend our rate control algorithms
to multi-layered data streaming, when there is at least one more state (rate switching) to consider.
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