
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-8

2003-02-14

Twinscan: A Software Package for Homology-Based Gene Twinscan: A Software Package for Homology-Based Gene

Prediction Prediction

Paul Flicek

A complete mapping from genome to proteome would constitute a foundation for genome-

based biology and provide targets for pharmaceutical and therapeutic intervention. This is one

reason gene structure prediction has been a major subfield of computational biology for over 20

years. Many of the widely used gene prediction systems were developed in the 1990s and are

unable to take advantage of the revolution in comparative genomics brought on by the

sequencing of the entire genomes of an increasing numbers of vertebrates. Twinscan is a new

system for high-throughput gene-structure prediction that exploits the patterns of conservation

observed in alignments... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Flicek, Paul, "Twinscan: A Software Package for Homology-Based Gene Prediction" Report Number:
WUCSE-2003-8 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1126

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1126?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1126

Twinscan: A Software Package for Homology-Based Gene Prediction Twinscan: A Software Package for Homology-Based Gene Prediction

Paul Flicek

Complete Abstract: Complete Abstract:

A complete mapping from genome to proteome would constitute a foundation for genome-based biology
and provide targets for pharmaceutical and therapeutic intervention. This is one reason gene structure
prediction has been a major subfield of computational biology for over 20 years. Many of the widely used
gene prediction systems were developed in the 1990s and are unable to take advantage of the revolution
in comparative genomics brought on by the sequencing of the entire genomes of an increasing numbers
of vertebrates. Twinscan is a new system for high-throughput gene-structure prediction that exploits the
patterns of conservation observed in alignments between a target genomic sequence and its
homologous sequence in other organisms. The approach employs a symbolic conservation sequence
that effectively combines many local alignments into a single global alignment. This has several
important properties that make Twinscan particularly useful for high-throughput gene prediction. For
mammals, Twinscan has been shown to be significantly more accurate and reliable by all measures than
any non-comparative genomic method. Twinscan is based on, and includes as a component, the same
hidden Markov model topology as Genscan, a popular non-homology based gene prediction program.
Twinscan has an object-oriented design and is implemented in the C++ programming language.
Twinscan’s three major components consist of probabilistic models of both the DNA sequence and the
conservation sequence as well as a dynamic programming framework. Both the models and the
computational structure are complicated aggregate classes. In this report, the design and implementation
of Twinscan is described at the source-code level for the first time.

https://openscholarship.wustl.edu/cse_research/1126?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1126?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages

TWINSCAN: A SOFTWARE PACKAGE FOR

HOMOLOGY-BASED GENE PREDICTION

Paul Flicek

Department of Computer Science and Engineering

Washington University

Saint Louis, Missouri 63130

Technical Report WUCSE-2003-8

Prepared under the direction of Professor Michael R. Brent
Presented in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

December, 2002

2

copyright by
Paul Flicek

2002

3

Abstract ...8

Chapter 1. Introduction ...9

Chapter 2. How Twinscan Works..14
2.0 Hidden Markov Models ...14

2.1 A Parse of the Sequence...14

2.2 HMM Topology...15

2.3 Component Models..16
2.3.1 Fifth Order Markov Chain..16

2.3.2 Weight Matrix Model...16

2.3.3 Weight Array Model ..17
2.3.4 Maximal Dependence Decomposition ..18

2.4 Conservation Sequence ..19

2.5 Conservation Models ...20

2.6 Parameters ...20

2.7 Scoring Possible Exons..21

2.8 Determine the Optimal Parse ...23

Chapter 3. Overview of the Code Base ..24
3.0 Introduction ...24

3.1 Read in the Target Sequence ..26

3.2 Parse the genome parameter file and instantiate a
 GenomeModel class object...26

3.3 Read in the Conservation Sequence..34

3.4 Parse the Conservation Parameter File and Instantiate
 an SpsConsModel Class Object ...34

3.5 Instantiate the Appropriate Trellis Class Object ..35

4

3.6 Calculate the Most Probable Path Through the Trellis
 with the Viterbi Algorithm...42

3.7 Output the Result ...43

Chapter 4. Class Reference ..45
4.0 Introduction ...45

4.1 Cell..48

4.1.1 ModelCell ..49

4.1.1.1 ViterbiCell ...50

4.2 ExonInfo..51

4.3 GenomeModel ...55

4.4 Matrix..57

4.5 Parser...58

4.5.1 ParaParser ..59
4.5.2 SmatParser ...67

4.6 State...72
4.6.1 ModelState...74

4.6.1.1 CState...75

4.6.1.1.1 InitialExon..82
4.6.1.1.2 InternalExon...84

4.6.1.1.3 PolyA ...85
4.6.1.1.4 Promoter...87

4.6.1.1.5 SingleExon ...89

4.6.1.1.6 TerminalExon...90
4.6.1.2 DState ..91

4.7 TransitionMatrix ..93

4.8 Trellis ..95

4.8.1 ModelTrellis...96

4.8.1.1 NonConsViterbi ...104

5

4.8.1.1.1 UtrCdsViterbi ...108

4.8.1.1.1.1 SpsConsViterbi..111

4.9 UtrCdsModel ...114

Chapter 5. Known Bugs and Other Information ..119

Glossary of Terms ...120

Acknowledgments..122

References..123

Appendix A..126
Integrating genomic homology into gene-structure prediction. Ian Korf, Paul Flicek,
Daniel Duan, and Michael R. Brent. Bioinformatics. 17(S1) S140-S148. 2001.

Appendix B ..136
Leveraging the mouse genome for gene prediction in human: from whole-genome

shotguns reads to a global synteny map. Paul Flicek, Evan Keibler, Ping Hu, Ian Korf,

and Michael R. Brent. Genome Research. 13(1) 46-54. 2003.

6

Figures
Figure 1. RNA Splicing ..11

Figure 2. Alignment of 8000 bp of human and mouse DNA. ..12
Figure 3. HMM Structure for Genscan and Twinscan ...15

Figure 4. MDD implementation of the donor splice site..18

Figure 5. Table of all exon types and the models that are used for both the DNA
sequence model and the conservation model. ...22

Figure 6. Twinscan activity diagram...25
Figure 7. The relationship between SmatParser and GenomeModel.28

Figure 8. The State class heiarchy...29

Figure 9. The aggregate structure of the GenomeModel class..33
Figure 10. The conservation model classes ...34

Figure 11. The structure of the Trellis class. ..35

Figure 12. The ExonInfo Class...36
Figure 13. ModelTrellis and the Viterbi trellis object showing major attributes and

member functions ..41
Figure 14. The Cell Class ..48

Figure 15. The ModelCell Class...49

Figure 16. The ViterbiCell Class...50
Figure 17. The ExonInfo Class...51

Figure 18. The GenomeModel Class...55
Figure 19. The Matrix Class ..57

Figure 20. The Parser Class ..58

Figure 21. The ParaParser Class...59
Figure 22. State Diagram for ParaParser object ..61

Figure 23. State Diagram for Parsing state showing substates62
Figure 25. The State Class ..72

Figure 26. The ModelState Class...74

Figure 27. The CState Class ..76
Figure 28. The InitialExon Class...82

7

Figure 29. The InternalExon Class ...84

Figure 30. The PolyA Class ..85
Figure 31. The Promoter Class...87

Figure 32. The SingleExon Class...89
Figure 33. The TerminalExon Class ...90

Figure 34. The DState Class ..91

Figure 35. The TransitionMatrix Class ...93
Figure 36. The Trellis Class ..95

Figure 38. The NonConsViterbi Class ...104
Figure 39. The UtrCdsViterbi Class ...108

Figure 40. The SpsConsViterbi Class ...111

Figure 41. The UtrCdsModel Class...114
Figure 42. The SpsConsModel Class ...116

8

Abstract

A complete mapping from genome to proteome would constitute a foundation for
genome-based biology and provide targets for pharmaceutical and therapeutic

intervention. This is one reason gene structure prediction has been a major subfield of

computational biology for over 20 years. Many of the widely used gene prediction
systems were developed in the 1990s and are unable to take advantage of the revolution

in comparative genomics brought on by the sequencing of the entire genomes of an
increasing numbers of vertebrates. Twinscan is a new system for high-throughput gene-

structure prediction that exploits the patterns of conservation observed in alignments

between a target genomic sequence and its homologous sequence in other organisms.
The approach employs a symbolic conservation sequence that effectively combines many

local alignments into a single global alignment. This has several important properties that

make Twinscan particularly useful for high-throughput gene prediction. For mammals,
Twinscan has been shown to be significantly more accurate and reliable by all measures

than any non-comparative genomic method.

Twinscan is based on, and includes as a component, the same hidden Markov model

topology as Genscan, a popular non-homology based gene prediction program. Twinscan
has an object-oriented design and is implemented in the C++ programming language.

Twinscan’s three major components consist of probabilistic models of both the DNA
sequence and the conservation sequence as well as a dynamic programming framework.

Both the models and the computational structure are complicated aggregate classes. In

this report, the design and implementation of Twinscan is described at the source-code
level for the first time.

9

Chapter 1
Introduction

In the past five years biology has embraced the genomic era. The first multicellular

organism to have its genome sequence published was Ceanorhabditis elegans (The C.

elegans Sequencing Consortium 1998). In the following years, the genome sequences of

increasing complex animals have been published, including Drosophila melanogaster

(Adams et al. 2000), Tetraodon nigroviridis (Crollius et al. 2000), Mus musculus (Mouse

Genome Sequencing Consortium 2002), and Homo sapiens (International Human

Genome Sequencing Consortium 2001; Venter et al. 2001). Today the complete
genomes of nearly 700 organisms have been published or are being sequenced (Bernal et

al. 2001; Kyrpides 1999). But there would be little value in all this biological sequence

data without high-speed computational methods to analyze it.

One of the most common forms of computational analysis is the search for protein coding
genes on long sequences of deoxyribose nucleic acid (DNA), the linear polymer that

makes up the genome. In its native state, DNA is a double helix of two anti-parallel

strands of nucleotides (the forward and reverse strands) held together by hydrogen bonds
between complementary base pairs (bp) (Lodish et al. 2000). DNA nucleotides normally

exhibit Watson-Crick base pairing: adenine (A) with thymine (T) and cytosine (C) with
guanine (G).

DNA was known to be the molecule of heredity before its structure was determined
(Watson and Crick 1953). Later the degenerate genetic code was solved; one codon

(three bases of DNA) translates to one of 20 amino acids. The central dogma of
molecular biology states that genetic information is transcribed from DNA to RNA and

translated from RNA into a protein. The messenger RNA (mRNA) is extensively

processed between transcription and translation. The DNA for any organism contains the

10

instructions for synthesizing all of its proteins, but only a small fraction of the total DNA

actually codes proteins (in humans about 1-2% of the genome is coding).

The shotgun method of DNA sequencing was introduced by Sanger and co-workers
(Sanger and Coulson 1978; Sanger et al. 1977). The procedure involves randomly

breaking the DNA molecules into 400-800 bp pieces that are individually sequenced.

These fragments of the total sequence are called reads. By matching overlapping
sections, the reads are assembled into the final sequence. To ensure an adequate

assembly, the reads must include approximately 5-10 times the number of bases as the
original DNA molecule. Any gaps remaining in the assembly are closed through a

process called finishing.

Computational gene finding is possible because genomic DNA includes coded signals to

the cell’s protein production machinery. Especially important for accurate gene

prediction are the signals related to pre-mRNA splicing. The availability of genomic
DNA sequence allows for computational searching for these patterns. For example, in a

typical mammalian gene as shown in Figure 1, the protein coding sequence is broken into
separate exons by non-coding introns, while intergenic regions (not shown) separate

complete genes. On both ends of the introns are strong splice site consensus sequences,

while specific codons represent both translation initiation and termination: ATG for
initiation and TAG, TGA, or TAA for termination. In the coding region, the sequence of

codons running from an ATG to a stop codon is called the reading frame of the sequence.
Flanking the coding region are additional signals regulating transcription, including

promoter sequences that may bind regulatory proteins to enhance or diminish the rate of

protein production. These signals lead to several classes of probabilistic models to be
implemented by any gene prediction program.

11

Figure 1. RNA Splicing

Because of its importance and the need to annotate newly sequenced DNA quickly and

accurately, computational gene-structure prediction is active area of research. A number
of approaches to this problem have been developed with generally increasing amounts of

success. However, the fundamental algorithms have changed little since 1997 (Zhang

2002) when the Genscan (Burge and Karlin 1997) program, featuring an explicit-state
duration hidden Markov model (HMM) was introduced. Genscan’s performance far

exceeded other available gene prediction programs, and it dispensed with many of the
restrictive and unrealistic assumptions (e.g. one complete gene per sequence) of other

programs. Although there are limits to its accuracy, Genscan continues to be widely used

and it has become synonymous with gene prediction for many people.

Genscan’s most serious limitation is that the model does not account for evolutionary
conservation. This is a critical source of information because there is strong selective

pressure for exons to be conserved while introns accumulate random mutations. When

homologous sections of two genomes (e.g. human and mouse) are aligned, the alignment
in coding regions differs from the alignment in non-coding regions. This difference

contains information about the evolutionary history of the organisms. The availability of

12

complete genomes from related organisms allows computational gene prediction guided

by evolutionary conservation for the first time. This idea is closely related to that of
comparative anatomy, which has long been used to describe the similarities and

differences among the physical structures of organisms. It is assumed that organisms
closely related in their evolutionary history will exhibit close correspondence of these

physical structures and that similar structures are likely used in similar ways. Using this

idea to compare fully sequenced genomes of various organisms provides a much more
powerful tool for determining gene structure.

Twinscan (Korf et al. 2001) is a new system for high-throughput gene-structure

prediction that extends the probability model of Genscan and exploits patterns of

evolutionary conservation to improve prediction of protein-coding genes. Its key
advance is the use of a symbolic conservation sequence that effectively combines many

local alignments into a single global alignment. As an example of the importance of a

local alignment strategy, consider the mouse and human sequence alignment in Figure 2.
A single portion of the upper mouse sequence, participates in five local alignments with

the lower human sequence. Any global alignment method would require that the mouse
sequence align to only one place in human. Twinscan’s algorithm is able to use all five

local alignments to improve predictive accuracy.

Figure 2. Alignment of 8000 bp of human and mouse DNA.

For mammals, Twinscan has been shown to be significantly more accurate and reliable

by all measures than any gene prediction program that does not use comparative

13

information (Flicek et al. 2003). Additionally, it offers several advantages over

previously published comparative genomics algorithms that employ a global alignment
between a pair of presumed homologous sequences. These approaches generally carry

with them two assumptions: that there is exactly one gene on the sequence of interest, and
that synteny (i.e. gene order) is maintained between the sequences. Twinscan can handle

the more realistic situation of multiple, incomplete or no genes on the target sequence. It

also allows for inversions, duplications and changes in exon-intron structure between the
target sequence and its homologs. Furthermore, homologs may come from multiple

sources, and may be of high or low quality, which allows Twinscan to take advantage of
the earliest products of a sequencing project well before sequence assembly or finishing

(Flicek et al. 2003). Finally, the system can easily be extended to take into account

protein and transcript homologies. These features make Twinscan particularly useful for
high-throughput gene prediction.

However, several complications for effective prediction remain. Memory limitations
prevent chromosome-sized sequences from being analyzed without fragmentation, a

process that splits real genes. Highly expressed genes are more likely to have the
compositional biases used by gene finders, likely making unusual genes or those with

tissue-specific expression patterns more difficult to find. Indeed, the state of

computational gene prediction in absolute terms remains relatively poor, reflecting the
difficulty of the problem.

14

Chapter 2
How Twinscan Works

[Twinscan is directly based on Genscan and any description of the Twinscan algorithm

must include a description of Genscan. Some of the following is summarized from Burge

(1997)1 and describes the methods for modeling protein-coding genes.]

2.0 Hidden Markov Models
Hidden Markov models were first introduced to biological sequence analysis by David

Haussler and his colleagues in 1992 from the field of speech processing where they had

been used for twenty years (Durbin et al. 1998). An HMM can be described as a model
for generating sequence. Each state of the model has ability to both generate bases A, C,

G, or T and transition to another state in the model. Both the probability of generating
specific bases and which transitions are allowed may be specified for each state. At the

end of the process, a sequence of bases is produced and visible, but the underlying

sequence of states remains hidden (Eddy 1998). If the states of the HMM are defined to
include intergenic regions, introns, exons, and other parts of genes, then the HMM can be

used to model gene structure. Gene prediction involves the analysis of a given DNA
sequence to determine the most likely sequence of states from the HMM.

2.1 A Parse of the Sequence
The goal of the Twinscan algorithm is to determine the most likely parse of a given DNA
sequence. A parse is the classification of every base in the input sequence, S, into an

ordered set of functional states

†

ˆ q = q1,q2,q3,L,qn{ } with an associated set of durations

†

ˆ d = d1,d2,d3,L,dn{ } where the length of S is

†

L = di
i=1

n

Â .

1 Interested readers are encouraged to read Christopher Burge’s brilliant and highly
readable Ph.D. Thesis in its entirety.

15

Several steps are required to generate a parse: (1)

†

q1 is determined from an externally

defined initial probability distribution on the states,

†

r
p . As will be described below, there

are 27 states in the model. (2)

†

d1 is generated conditional to

†

q1 from length distribution

†

fq1
 (3) A sequence segment

†

s1 of length

†

d1 is generated conditional to both

†

q1 and

†

d1

according to the sequence generating model

†

Pq1
. (4) The next state,

†

q2 , is generated

conditional to

†

q1 from the Markov state transition matrix, and

†

d2 and

†

s2 are generated as

above. The process continues until

†

di
i=1

n

Â ≥ L .

2.2 HMM Topology
The parse is dependent on the topology of the HMM.
Twinscan uses the Genscan model topology shown in

Figure 3. Arrows indicate state transitions with non-

zero probability for genes on the forward strand.

States Exon 0, Exon 1, and Exon 2 represent internal

exons, states I0, I1, and I2 represent introns following
exons with 0, 1, or 2 bases after the last complete

codon. Init Exon and Term Exon represent,

respectively, the first and last exons in a multi exon

gene. The Exon Sngl state is used for genes

consisting of a single exon. The upstream
untranslated region (UTR) and the downstream UTR

are represented by 5’ and 3’ states, respectively. The

gene promoter region is represented by Prom and the

poly-adenylation signal is represented by Poly A. An

analogous model is used to represent genes on the
negative strand. Following the terminology of Burge

(1997), the states in the model designated with circles

Figure 3. HMM Structure for
Genscan and Twinscan

16

are referred to as c-states, while those designated by diamonds are d-states. Note that a

parse must alternate between c-states and d-states.

Each c-state in the model is itself composed of a number of component models that will
be described in detail below. The exon models include both characteristics of the exons

such as length distribution and composition as well as the splice site signals that are

found immediately adjacent to the exons within the introns. D-states have generally
simpler models.

In the model, all obligatory transitions are assigned probability 1.0 (e.g. the transition

from Promoter to 5’ UTR). Other transition probabilities are parameterized.

2.3 Component Models
Five related models are used for the components of the c-states.

2.3.1 Fifth Order Markov Chain
The best measure to discriminate whether an exon-sized segment of DNA (approximately

100 bp) is coding or non-coding is the reading frame-specific hexamer (i.e. six bases of
DNA) composition (Fickett and Tung 1992). This leads to a model of coding regions as

an inhomogeneous 3-periodic fifth-order Markov chain in which each position in the
codon has a specific fifth-order Markov chain. For example, the coding positions of an

internal exon whose first base is the second position in a codon are modeled using

Markov chains C2C3C1C2C3 etc.

The coding model does not apply to the positions at the edges of the exons that overlap
the splice signal models. These models are described in the next several sections.

2.3.2 Weight Matrix Model
The weight matrix model (WMM) is the simplest probabilistic model used by Twinscan

to describe finite-length biological signals. In the positive model nucleotides of a true

17

signal (e.g. the translation initiation signal) of length

†

l are assumed to be generated

independently according to the position-specific probability distribution. Then the
probability of generating any particular sequence, x, under the positive model is given by:

†

P{x +} = PWMM
+ (x) = Pxi

(i)

i=1

l

’

which is typically estimated from observed frequencies.

The probability of generating the same sequence, x, under the analogous negative model
derived from a population of pseudo-sites is also created. This allows for the

differentiation of the real sites from pseudo-sites using a signal ratio:

†

r =
PWMM

+ (x)
PWMM

- (x)

The WMM is used in several ways. It scores the entire 6-bp poly-A state. It is also used
for the 12-bp translation initiation signal, used at the start of the initial exon and single

exon states, which includes six bases prior to the ATG and three after it. Similarly, the

score for the 6-bp translation termination signal includes one of the three stop codons and
three downstream bases. The WMM is also used as a component of the maximal

dependence decomposition model (explained further below).

A special variation of the WMM is used for the 19-codon signal peptide. This model is a

bipartite “codon-level” WMM that generates a codon (rather than a single base). The first
part of the model applies to the first 4 codons and the second part applies to the final 15

codons. This is implemented for the initial and single exon states as a mixture model
after the translation initiation signal, with 20% of the total probability from the signal

peptide model and 80% from the fifth-order Markov chain used in coding sequence.

2.3.3 Weight Array Model
The weight array model (WAM) (Salzberg 1997; Zhang and Marr 1993) is a natural
generalization of the WMM to an inhomogeneous n-th order Markov model. This allows

for dependencies between adjacent positions.

18

Donor Site
XXXGTXXXX

XXXGTXXGX XXXGTXXHX

XXGGTXXGX XXHGTXXGX

XAGGTXXGX XBGGTXXGX

XAGGTXXGT XAGGTXXGV

†

P{x +} = PWAM
+ (x) = Pxi

(1) Pxi-1 ,xi

(i-1,i)

i= 2

l

’

As with the WMM, this probability is estimated from observed frequencies. Again, an

analogous negative model is created. The WAM will capture adjacent nucleotide (i.e.
dinucleotide) biases in bulk genomic DNA. Real sites may be distinguished from

pseudo-site using a signal ratio as above.

2.3.4 Maximal Dependence Decomposition
The maximal dependence decomposition (MDD)

model combines a binary decision tree with

multiple WMMs to describe the donor splice
site. This model is useful when significant non-

adjacent dependencies exist.

The MDD is a collection of WMMs connected

by a tree that branches based on the existence of
specific nucleotides near the donor splice site.

As shown in the adjacent figure, the donor splice
site requires a GT consensus. The presence of

specific additional bases allows tracking through

the tree toward one of the shaded leaves. Each
of these leaves contains a WMM that is used to

score the donor splice site.

For example, if CAGGTTAGT is a potential

donor splice site, the WMM located at the leaf on the lower left of the diagram will be
used.

This implementation performs better than a simple WMM or WAM, especially in the
ability to give low scores to incorrect splice sites.

Figure 4. MDD implementation
of the donor splice site.
Nucleotide symbol H means
A,C, or T. Symbol B means
C,G, or T. Symbol V means A,
C, or G.

19

2.4 Conservation Sequence
Sequence similarity is modeled by a symbolic representation that pairs one of three

symbols with each nucleotide of the target sequence. A conservation symbol is assigned
to a specific base in the target sequence depending on whether that base is part of an

alignment. Twinscan normally incorporates gapped alignments from WU-BLAST
(Gish), but could use any local alignment method. Alignments are sorted, so that bases in

the target sequence are assigned conservation symbols based on the best local alignment.

Target sequence bases are assigned one symbol if they are within an alignment and
exactly match the aligned base in the informant sequence; another symbol if they are

within an alignment, but do match the corresponding base in the informant sequence; or a
third symbol if they are unaligned. Gaps in the informant sequence become mismatch

symbols in the conservation sequence, while gaps in the target sequence are ignored. For

example, consider the following sequence:
123456789 position

GAATTCCGT target sequence

The alignment yields the following
345 6789 target position

ATT-CCGT target alignment

|| || | alignment match symbols

ATCACC-T informant alignment

In this case the first two nucleotides in the target sequence are not aligned. Therefore, the
resulting conservation sequence is
123456789 position

GAATTCCGT target sequence

..||:||:| conservation sequence

In the Twinscan implementation, the symbols in the conservation sequence are
represented by numbers (i.e. 0,1,2).

20

2.5 Conservation Models
Twinscan combines the probability model of Genscan (i.e. the probability of generating a

specific DNA sequence) with the probability of generating a specific conservation
sequence. Twinscan uses the same set of component models to describe the conservation

sequence, but not necessarily the same models for the same states.

Coding, UTR, intron, and intergenic states all model stretches of conservation sequence

using homogenous fifth-order Markov chains. The translation initiation and termination
sites are also modeled with fifth-order Markov chains. Models of conservation sequence

at splice donor and acceptor sites are based on second-order WAMs. Following
Genscan’s definition, the donor site window is fixed at 9 bp and the acceptor site window

is fixed at 43 bp.

2.6 Parameters
The entire model requires thousands of parameters, which must be specified before the

calculation of a parse. Ideally these parameters are determined from the analysis of a
training set that represents the distribution of examples over which the performance of

the system will be measured (Mitchell 1997). In the case of Twinscan essentially all of

the parameters are estimated from real data based on published methods (Burge 1997), or
calculated from previous data analysis (Bucher 1990). Certain parameters have been

tuned manually.

Like the size of a genome, the number of genes varies from species to species, as does the

average length and average number of exons. Characteristics such as intron length are
also species-specific, and within a species these values may vary depending on the

regional GC content. For example, in the human genome, intron length decreases
dramatically with increasing GC content, while exon length is essentially unchanged.

(International Human Genome Sequencing Consortium 2001). Twinscan’s predictive

accuracy also varies depending on the GC content of the sequence (Flicek et al. 2003).

21

One model to address variations in the sequence with GC content considers the genome

to be a “mosaic of isochores” – containing large regions of locally homogenous GC
content and variations between disjoint regions (Bernardi 1989; Bernardi 2000; Bernardi

et al. 1985). A modified version of this model with four isochores was introduced by
Burge (1997) with some parameters taking on different values based on the total GC

content of the sequence. The Twinscan model supports any number of isochors.

All d-states have geometric length distributions. Both the intergenic (N) and intron (Ix)

states have isochore-specific geometric length parameters, while the 3’ and 5’ UTR states
use the same parameter for all isochores. The promoter and poly A states have fixed-

length distributions that will be discussed below. Exon length distributions are also

independent of isochore and use an explicit distribution.

Non-coding states (5’,3’, N, Ix) are modeled using a homogenous fifth-order Markov

matrix with transition probabilities derived from the non-coding portions of the genes.

2.7 Scoring Possible Exons
Almost all possible exons are scored according to appropriate models as discussed above
(See Figure 5 for details). A possible exon has a number of specific characteristics. (1) It

is defined as starting with either a start codon (initial exons and single exons) or
immediately following an AG acceptor site (internal exons and terminal exons). (2)

Possible exons end with one of the three stop codons (terminal exons and single exons) or

immediately before a GT donor splice site. (3) Possible exons neither contain in-frame
stop codons nor have non-canonical splice sites.

The score values are stored for use in the optimal parse determination. Twinscan uses a
two-pass method to determine possible gene structures on the forward and reverse

strands. This allows the code and the parameters that model the forward strand to be
used twice. A bit of bookkeeping is required to ensure that all of the possible exons are

properly stored for the optimal path determination.

22

Exon Type Sequence Signal Model Used

Initial Exon DNA Translation initiation WMM

DNA Donor splice site MDD

DNA Signal Peptide Codon-level WMM

DNA Coding sequence 3-periodic 5th order MC

Conservation Translation initiation Homogenous 5th order MC

Conservation Coding sequence Homogenous 5th order MC

Conservation Donor splice site 2nd order WAM

Internal Exon DNA Acceptor splice site 3rd order WWAM

DNA Donor splice site MDD

DNA Coding sequence 3-periodic 5th order MC

Conservation Acceptor splice site 2nd order WAM

Conservation Donor splice site 2nd order WAM

Conservation Coding sequence Homogenous 5th order MC

Terminal exon DNA Acceptor splice site 3rd order WWAM

DNA Translation termination WMM

DNA Coding sequence 3-periodic 5th order MC

Conservation Acceptor splice site 2nd order WAM

Conservation Translation termination Homogenous 5th order MC

Conservation Coding sequence Homogenous 5th order MC

Single Exon DNA Translation initiation WMM

DNA Signal Peptide Codon-level WMM

DNA Coding sequence 3-periodic 5th order MC

DNA Translation termination WMM

Conservation Translation initiation Homogenous 5th order MC

Conservation Coding sequence Homogenous 5th order MC

Conservation Translation termination Homogenous 5th order MC

Figure 5. Table of all exon types and the models that are used for both the DNA
sequence model and the conservation model.

23

To facilitate the optimal parse determination, possible exons are stored at the

downstream—with respect to the forward strand—sequence index. This is accomplished
by first finding and storing possible exon begin positions (acceptor sites or translation

initiation sites) and then looking for possible exon end sites (donor sites or translation
termination sites) and reconciling them with previously stored and still valid exon begin

sites. In this way, exons with in-frame stop codons are not included in the list of

possible exons. It is possible to introduce an in-frame stop codon across a splice site
when exons are joined. This possibility is eliminated with the optimal parse

determination below.

2.8 Determine the Optimal Parse
To determine the optimal parse of the sequence, the most probable path through the

hidden states of the model must be determined. This process is termed “decoding” and is
done with the Viterbi algorithm, a dynamic programming algorithm commonly used with

HMMs.

The last step in determining the optimal parse of the sequence is the trace back. In this

portion the most probable parse of the sequence is recorded. Safeguards are implemented
at this step to ensure that in-frame stop codons are not introduced when adjacent exons

are joined.

24

Chapter 3
Overview of the Code Base
3.0 Introduction
Twinscan is generally run from the command line or as part of an automated analysis

pipeline. This section is meant to follow the inputs to the program and the actions of the

code base through the analysis of a sequence with the full conservation model described
in Chapter 2. Analysis of a sequence with the DNA only (Genscan-compatible) model or

with the UtrCds model is similar to the presentation below and the details are left to the
reader.

Twinscan requires four inputs: a genome parameter file, a conservation parameter file,
the conservation sequence, and the target genomic sequence.

The major steps in the process as displayed in the activity diagram of Figure 6 are

1. Read in the target sequence.

2. Parse the genome parameter file and instantiate a GenomeModel class object.
3. Read the conservation sequence.

4. Parse the conservation parameter file and instantiate an SpsConsModel class object.
5. Instantiate the appropriate Trellis class object.

6. Calculate the most probable path through the trellis with the Viterbi algorithm.

7. Output the result.

Note that the activity diagram includes paths for all three Twinscan models, but the text

will discuss only the full conservation (i.e. SpsCons) model.

25

Read Target Sequence

Parse Genome Parameter File

Instantiate GenomeModel Class Object

Read Conservation Sequence

Read Conservation Parameter File

[Conservation Sequence Used]

Instantiate UtrCdsModel Class Object

Instantiate SpsConsModel Class Object

Calculate Most Probably Path with Viterbi Algorithm

Output Result

[SpsCons Model]

[UtrCds Model]

Instantiate UtrCdsViterbi Class Object

Instantiate NonConsViterbi Class Object

Instantiate SpsConsViterbi Class Object

[DNA Sequence Only]

Figure 6. Twinscan activity diagram

26

3.1 Read in the Target Sequence
The target sequence in fasta format is read by functions found in

int main()2

located in

Twinscan.cpp

to

string target_sequence;

The sequence is transformed to be all lowercase before the c+g percentage is determined.

Sequences must be longer than 500 bp and the sequence cannot be all “N.” The c+g

percentage is the only required parameter for the instantiation of the SmatParser3 object:
SmatParser parameter_parser(cg_percent);

The c+g percentage is specified so that the correct isochore-specific parameters will be
copied from the genome parameter file into

GenomeModel genome_model;

object, which is instantiated as a friend of the

SmatParser

object.

3.2 Parse the genome parameter file and instantiate a

GenomeModel class object.
The goal of this step is to ensure that all of the information in the genome parameter file
is assigned properly within the genome_model object. The aggregate structure of the

GenomeModel class is shown in Figure 9 at the end of this section.

2 Following the style of Lippman and Lajoie (Lippman, S.B. and J. Lajoie. 1998. C++
Primer. Addison-Wesley, Reading, Massachusetts.) references to filenames, class names,
and other C++ code will be typeset in Monaco font and generally set off from the rest of
the text.
3 There are different subclasses of the Parser class based on whether the genome
parameters are read in from HunamIso.smat (Burge, C. New GENSCAN Web Server at
MIT.) or from the Brent Lab format. Both subclasses have the same function.

27

Parsing the parameter file is accomplished by the following SmatParser member

function called from int main():
parameter_parser.parse_genome_para_file(genome_para_filename,

genome_model);

The tasks of reading the text from the parameter file are handled by methods in the

Parser class:

void filter_text();

void seperate_words();

The constructor for the SmatParser object invokes a number of additional methods

including:
set_state_type();

to create
set<string> c_state_name

set<string> d_state_name

Each of the 27 state-names of the model is hard-coded in one of the two sets.

set_command_type();

creates

map<string,int> command_map

a method to distinguish whether the current line is a command, i.e. one of the
various sections of the parameter file. The command_map attribute is also hard-

coded with the details of the parameter file.

Two generic attributes are created and destroyed several times as information is ferried

from the parameter file to the genome_model object:

Matrix<int>* score_matrix

vector<double>* exon_length

Although GenomeModel is an aggregate class made up of all the details of the HMM
described in Chapter 2, it has only two attributes:

TransitionMatrix<CState> c_states

28

TransitionMatrix<DState> d_states

The relationship among the GenomeModel, TransitionMatrix and Parser classes is
shown in Figure 7.

TransitionMatrix
ModelState

-state_list:map_type

+enter_state(): void
+enter_state_transition(): void

GenomeModel
-c_states:TransitionMatrix<CState>
-d_states:TransitionMatrix<DState>

+enter_c_state(): void
+enter_d_state(): void
+enter_c_state_trasnition(): void
+enter_d_state_transition(): void

SmatParser
-c_state_name:set<string>
-d_state_name:set<string>
-command_map:map<string,int>
-score_matrix:Matrix<int>
-exon_length:vector<double>

+parse_gename_para_file(): void
+set_state_type(): void
+set_command_type(): void

Parser
+filter_text(): void
+separate_words(): void

Friend

Figure 7. The relationship between SmatParser and GenomeModel.

The TransitionMatrix class instantiates the state objects and manages the interactions
between them.

TransitionMatrix is a template class with the following attribute:
map <string, state pointer>

and method:
enter_state_transition (in_state_ptr, out_state_ptr,

transition_prob)

29

Both State and TransitionMatrix are very general and should be able to be used in
any HMM application.

As shown in Figure 8, State is the base class of ModelState, which is the base class of

both CState and DState.

Figure 8. The State class heiarchy.

State class attributes include the state name and a list of all preceding and subsequent
states with non-zero transition probabilities:

string state_name

state_list prev_states;

state_list post_states;

.
The state_list type is implemented through an internally defined member-class of

State:

StatePair.

30

which has one attribute to store a pointer to a state and a transition probability:

class StatePair: private pair<State*, double> {

Although ModelState adds only a small amount of functionality
bool forward_strand_direction;

it is the first place in the State class hierarchy that include attributes specific for
biological sequence analysis.

The DState class contains the parameters associated with the d-states. Recall that d-

states are modeled with geometric distributions, so only a single parameter is required for

each states and is used to determine probabilities and scores as follows:

double intron_length; // L: Mean Length of the D state;

double intron_continue_prob; // L/(L-1): Real Prob Value;

double intron_continue_score; // 10*log2(L/(L-1)): Corresponding

Score;

double intron_stop_prob; // 1/L: Real Prob Value;

double intron_stop_score; // 10*log2(1/L): Corresponding Score;

Thus, if the state has length N, the probability of continuing in that state is N/(N+1) and

the probability of ending the state is 1/(N+1)

Note: The content model (i.e the null model) used in the intergenic and intron states in

not explicitly stated in the parameter file. Only the log ratios (i.e. the scores) of the d-
states are known. The probabilities are not known.

CState class is the base class for a number of specialized objects that represent the
various c-states in the Genscan prediction model. These include the following:

class InitialExon : public CState{

class TerminalExon : public CState{

class InternalExon : public CState{

31

class SingleExon : public CState{

class Promoter: public CState{

class PolyA: public CState{

Although an abstract class, CState is one of the largest classes. Almost all of the
functionality of its subclasses is contained within Cstate. It defines most of the

probability models associated with the program. The various probability models in
CState work together with the models defined in SpsConsModel to determine the total

exon score, which the key value used by the Viterbi algorithm. The models are described

in detail above and their function names are briefly noted here:
int wmm_model(Matrix<int>*, const string&, const int&, const int&);

int third_order_wam(Matrix<int>*, const string&, const int&, const

int&);

int markov_coding_region_score(const string&, const int&, const

int&);

int donor_score(const string& s, const int& pos);

Related functions may pull together several models to report the score associated with a

single biological signal:
int signal_peptide_score(const string&);

int acceptor_score(const string& s, const int& pos);

int trans_init_score(const string& s, const int& pos);

int trans_term_score(const string& s, const int& pos);

The following two CState virtual functions take as input a pointer to the target sequence

and a position within the sequence:
virtual int begin_score(const string& s, const int& pos) {

virtual int end_score(const string& s, const int& pos) {

An addition virtual function takes sequence start and end points as well as the sequence

itself:
virtual int content_score(const string&, const int&, const

int&) {

32

These functions are redefined in all of the subclasses of CState to return scores from the
appropriate model. For example in the InternalExon class:

int begin_score(const string& s, const int& pos) {

return acceptor_score(s, pos) ;

}

int end_score(const string& s, const int& pos) {

return donor_score(s,pos);

}

int content_score(const string& s, const int& start_pos,

const int& end_pos) {

return markov_coding_region_score(s, start_pos+6, end_pos-3);

};

CState also keeps track of the reading frame, which is, for the purposes of the program,

defined as the intron that each exon state transitions to. The reading frame for any given
exon is determined by the previous intron. The initial exon has a reading frame defined

as zero. Given both the identity of a c-state and its length, unique preceding and

following d-states con be determined. The following functions return these states:
string& prev_d_state_name(const int& length);

string& post_d_state_name(const int& length);

33

ModelState
-forward_strand_direction
-nucle_base_index_map

+set_strand_direction
+is_forward_strand
+nucle_base_index

TransitionMatrix
-state_list

+enter_state
+enter_state_transition

GenomeModel
-c_states
-d_states

+enter_c_state
+enter_d_state
+enter_c_state_transistion
+enter_d_state_transition

CState
-length_distribution_prob
-length_distribution_score
-end_site_matrix
-coding_site_matrix
-begin_site_matrix
-signal_pept

+begin_score
+end_score
+coding_region_score
+length_prob
+length_score
+wmm_model
+third_order_wam
+markov_coding_region_score
+signal_peptide_score
+acceptor_score
+trans_init_score
+trans_term_score
+donor_score

State
-state_name
-prev_states
-post_states

+name
+get_post_trans_prob
+get_prev_trans_prob
+get_post_trans_score
+get_prev_trans_score
+push_back_prev_state
+push_back_prev_state
+push_back_post_state
+push_back_post_state
+prev_states_num
+post_states_num
+prev_states_begin
+prev_states_end
+post_states_begin
+post_states_end

StatePair
-StatePair
-transitional_prob_score

DState
-intron_length
-intron_continue_prob
-intron_continue_score
-intron_stop_prob
-intron_stop_score

InitialExon
+begin_score
+end_score
+coding_region_score

TerminalExon
+begin_score
+end_score
+coding_region_score

SingleExon
+begin_score
+end_score
+coding_region_score

InternalExon
+begin_score
+end_score
+coding_region_score

Promoter
+begin_score
+end_score
+coding_region_score

PolyA
+begin_score
+end_score
+conding_region_score

Figure 9. The aggregate structure of the GenomeModel class.

34

UtrCdsModel
#cds_cons_score_matrix
#utr_cons_score_matrix

+read_matrix
+cds_cons_score
+get_utr_score

SpsConsModel
-intron_cons_score_matrix
-trans_init_cons_score_matrix
-trans_tern_cons_score_matrix
-acc_site_cons_score_matrix
-donor_site_cons_score_matrix

+wam2_cons_score
+init_cons_score
+term_cons_score
+acc_cons_score
+donor_cons_score

3.3 Read in the Conservation Sequence
The conservation sequence is read in by int main() to

string cons_sequence;

 The conservation sequence is a one-line text file. Twinscan will exit
 if (cons_sequence.size() != target_sequence.size()) {

3.4 Parse the Conservation Parameter File and Instantiate

 an SpsConsModel Class Object
The SpsConsModel class object is instantiated within int main():

SpsConsModel* sps_cons_model = new SpsConsModel(cons_para_filename);

UtrCdsModel is the base class of SpsConsModel and

it contains the methods required to parse the
conservation parameter file and to organize the data

within sps_cons_model.

The component models associated with the

conservation sequence are pre-defined (see Section
2.5) and the size of each of the parameter matrices is

known at compile time from the value of CON_BITS.

This allows the matrices of the conservation
parameters to be read in a far more straightforward

way than the genome parameters. For example:
cds_cons_score_matrix = new Matrix<int>

(size, CON_BITS) ;

utr_cons_score_matrix = new Matrix<int>

(size, CON_BITS) ;

allocate memory for the parameter matrices associated
with the coding sequence and untranslated regionFigure 10. The conservation

model classes

35

conservation models, while the following function calls read the data from the file:

read_matrix ("UtrConsScore", *utr_cons_score_matrix);
read_matrix ("CdsConsScore", *cds_cons_score_matrix);

Note that since the command_map data structure is not used, the order of the parameter

matrices is more important with the conservation parameters than with the genome

parameters.

3.5 Instantiate the Appropriate Trellis Class Object
Figure 11 displays the Trellis class hierarchy. The NonConsViterbi class is a subclass

of the ModelTrellis class, which itself is a subclass of Trellis class. The trellis
associated with the full conservation model, SpsConsViterbi, is a subclass of

UtrCdsViterbi, which is a subclass of NonConsViterbi.

Figure 11. The structure of the Trellis class.

As in the State class hierarchy, the Trellis base class is very general and could be used

for any HMM application. However, unlike the State class hierarchy, ModelTrellis
has tremendous functional importance. It is the major computational worker in the code.

The methods and attributes that are described below are used for the implementation of

the full conservation model. The specific class where each method or attribute resides
will be noted in the discussion. A more detailed diagram follows the discussion.

36

The trellis is composed of Cell class objects and the base Trellis class contains the
data structure of the trellis itself:

template<class CellType>

class Trellis {

private:

Matrix<CellType> score_matrix;

The size of the trellis is 11 times the length of the sequence because only the d-states are

part of the trellis.

The Trellis hierarchy is closely tied to the Cell hierarchy. Like Trellis and State,

the base Cell class is very general and could be used with any HMM application.
ModelCell is the first place in the hierarchy that includes data structures or methods

related to biological sequence analysis. ViterbiCell is designed to interact with any of
the three Viterbi classes for the Trellis hierarchy. See Section 4.1 for detailed

information about the Cell class hierarchy.

ModelTrellis data structures:

The most import data structure is
exon_vec *forward_exon_info;

a composite type to store the details for all of the possible

exons. The exon_vec is defined as follows:

typedef list<ExonInfo*> exon_list;

typedef vector<exon_list*> exon_vec;

An ExonInfo object exists for every possible exon. They are

created during the preprocessing of the sequence and used by
the Viterbi algorithm. The key attribute of ExonInfo is

ExonInfo
-name
-begin_pos
-end_pos
-length
-begin_score
-end_score
-real_coding_score
-conservation_score
-exon_score

Figure 12. The
ExonInfo class

37

exon_score. The score calculation contains several parts and, for the full conservation

model, is calculated in several places. The following is located in the ModelTrellis
class and calculates the portion of the score from the DNA model:

exon_score = state->length_score(exon_length) +

prev_intron_stop_score +

trans_score –

exon_length * intergenic_continue_score +

real_coding_score;

if (state->exon_name() == "P")

exon_score += forward_promoter->real_promoter_score(

end_score, begin_score);

else

exon_score += begin_score + end_score;

The score is modified by the real_exon_score() function in the SpsConsViterbi class
as follows:

new_exon_score = noncons_exon_score + conservation_score;

exon_info->set_exon_score(new_exon_score);

The exon_score and all of the other information related to the possible exon is stored at

the downstream sequence index (with respect to the forward strand of the input
sequence). For example, the information from a possible terminal exon on the forward

strand is stored at the final base of the stop codon, and a possible terminal exon on the

reverse strand is stored at the coding base immediately preceding the acceptor splice site.

map<CState*, list<int>> exon_begin_pos

stores locations of current possible exon begin positions (i.e. locations of AG or ATG

sequences). If in-frame stop codons appear, possible exon start positions will be removed
from this list. The procedure to remove no-longer-viable exons means that

exon_begin_pos never gets very large.

38

map<CState*, ivec*> *begin_score_saved; //C-state begin scores

stores the scores associated with the beginning of the c-states. For the cases of the exons,

the begin score is either the accepter site score or the translation initiation score. In the
case of the promoter and the Poly A, the begin score is defined as zero. Exon begin

scores are stored whenever an AG or ATG appears in the sequence. Promoter and Poly
A scores are calculated and stored at every position in the sequence from the end_score

function. For example, in the following sequence:

NNNNAGNNNNNNAGNNNNNNAGNNNNN

The begin_score_saved [E0+] vector will have three elements (one at each start),

which will have begin score at each appropriate position.

map<CState*, ivec*> *end_score_saved; //C-state end scores

stores the scores associated with the ending of the c-states. For the case of the exons, the
end score is either the donor site score or the translation termination score. In the case of

the promoter the end score is
int end_score(const string& s, const int& pos) {

if (pos < CAPSITE_BEGIN_BOUND || pos > (int)s.size()-

CAPSITE_END_BOUND)

return ZERO_PROB;

return wmm_model(end_site_matrix,s.substr(pos-2,8),0,7);

}

For the poly A, the end score is:

int end_score(const string& s, const int& pos) {

if (pos<POLYA_BEGIN_BOUND)

return ZERO_PROB;

return wmm_model(coding_site_matrix,s.substr(pos-5,6), 0, 5) ;

}

39

Exon end scores are stored whenever a GT or stop codon appears in the sequence.

Promoter and Poly A scores are stored at every position in the sequence.

Matrix<bool> *term_exon_begin

is used to determine whether a possible terminal exon is valid. This structure prevents

the inclusion of terminal exons with in-frame stop codons.

vector<bool> *sngl_exon_begin

is used to keep track of the whether a possible single exon gene is valid (does not have an

in-frame stop codon). Because all single exons have phase 0 by definition, a vector can

be used rather than a 3-row matrix as is used with term_exon_begin.

Matrix<int> *coding_score_saved

is three times the size of the sequence and is the running fifth-order Markov coding score

for each frame. The coding score for any subsequence is calculated by another function
that takes as inputs the appropriate c-state and its start and end points:

template<class CellType>

int ModelTrellis<CellType>::restore_coding_score(

CState* state, const int& begin_pos, const int& end_pos) {

The value of coding_score_saved at the beginning of the subsequence is subtracted

from the value at the end to get the correct score.

ModelTrellis methods:

template<class CellType>

void ModelTrellis<CellType>::pre_processing(){

pre-computes all of the probabilities associated with the DNA sequnece including the
scores all possible promoters. It also calculates the coding score at all positions for all

three phases and stores this information in the data structures described above.

Note that in the following two methods the term “exon” actually refers to any c-state:

40

template<class CellType>

void ModelTrellis<CellType>::detect_reverse_exon_begin(const int&

pos)

template<class CellType>

void ModelTrellis<CellType>::detect_reverse_exon_end(const int& pos)

The forward and reverse strands are processed in two passes. This allows the code that

runs the forward model to be used twice. A complicated bit of bookkeeping is required

to ensure that all of the possible exons are arranged for the Viterbi algorithm.

There data structures related to scores from the conservation sequence are contained in
both UtrCdsViterbi:

UtrCdsModel* utr_cds_model ;

vector<int>* forward_cds_cons_score;

vector<int>* reverse_cds_cons_score;

and SpsConsViterbi:

SpsConsModel* sps_cons_model;

vector<int>* forward_init_cons_score;

vector<int>* reverse_init_cons_score;

vector<int>* forward_term_cons_score;

vector<int>* reverse_term_cons_score;

vector<int>* forward_acc_cons_score;

vector<int>* reverse_acc_cons_score;

vector<int>* forward_donor_cons_score;

vector<int>* reverse_donor_cons_score;

All of the scores are pre-computed by methods found in their respective classes. For
example, SpsConsViterbi contains these methods

void pre_process_init_cons_score();

void pre_process_term_cons_score();

void pre_process_acc_cons_score();

void pre_process_donor_cons_score();

41

After the pre-processing step in which all of the possible exons are scored and stored.

ModelTrellis
-model:GenomeModel*
-exon_begin_pos:map<CState*, list <int>>
-begin_score_saved:map<CState*, ivec*>
-end_score_saved:map<CState*, ivec*>
-term_exon_begin:Matrix<bool>
-sngl_exon_begin:vector<bool>
-coding_score_saved:Matrix<int>
-forward_exon_info:exon_vec
-tata_box_score_saved:Matrix<int>

+adjust_phase(): void
+pre_processing(): void
+create_exon_info(): void
+detect_forward_exon_begin(): void
+detect_forword_exon_end(): void
+detect_reverse_exon_begin(): void
+detect_reverse_exon_end(): void
+push_back_exon_info(): void
+promoter_detect(): void
+pre_process_coding_score(): void

NonConsViterbi
-optimal_path:list<ExonInfo*>

+set_optimal_path(): void
+viterbi_algorithm(): void
+track_back(): bool

UtrCdsViterbi
#utr_cds_model:UtrCdsModel*
#forward_cds_cons_score:vector<int>*
#reverse_cds_cons_score:vector<int>*

+pre_process_forward_conserve_score(): void
+pre_process_reverse_conserve_score(): void

SpsConsViterbi
-sps_cons_model:SpsConsModel*
-forward_init_cons_score:vector<int>*
-reverse_init_cons_score:vector<int>*
-forward_term_cons_score:vertor<int>*
-reverse_term_cons_score:vector<int>*
-forward_acc_cons_score:vector<int>*
-forward_donor_cons_score:vector<int>*
-reverse_donor_cons_score:vector<int>*

+pre_process_init_cons_score(): void
+pre_process_term_cons_score(): void
+pre_process_acc_cons_score(): void
+pre_process_donor_score(): void

Figure 13. ModelTrellis and the Viterbi trellis object showing major attributes
and member functions

42

3.6 Calculate the Most Probable Path Through the Trellis

with the Viterbi Algorithm
The Viterbi algorithm is invoked from int main():

viterbi_trellis->viterbi_algorithm(0);

All of the values in the trellis are calculated before trace_back() is called.

The complete implementation is shown here:

void

NonConsViterbi::viterbi_algorithm(const int& startfrom) {

DStateIter it = model->get_dstate_matrix().state_list_begin();

DStateIter it_end = model->get_dstate_matrix().state_list_end();

unsigned int i;

// Initialization:

if (startfrom == 0) {

while (it != it_end) {

set_cell(d_state_index(*it), 0, (*it)->init_score() +

(*it)->continue_score());

++it;

}

i = 1;

}

else

i = startfrom;

//Induction :

for (; i < sequence->size(); i++) {

it=model->get_dstate_matrix().state_list_begin();

while (it != it_end) {

viterbi_type trellis = cal_trellis_cell(i, *it);

set_cell(d_state_index(*it), i, trellis.first);

43

set_cell_path(*it, i, trellis.second);

++it;

}

}

}

Immediately following the calculation of the trellis, the trace_back method is called:

bool good_trace = false;

while (! good_trace)

good_trace = viterbi_trellis->trace_back();

Because certain exons may be removed from the set of all possible exons if their addition
to the optimal path creates a stop codon across a splice site, the trace_back method may

re-invoke viterbi_algorithm from the point that the exon is removed:

remove_exon(test_name, last_base_pos, first_base_pos); }

viterbi_algorithm(sequence_index);

optimal_path.clear();

While the potential for computational explosion exists in the repeated calling of the
Viterbi algorithm, clearing of the optimal path, and running the trace back; in practice on

the whole human genome this procedure adds an insignificant amount of time.

3.7 Output the Result

Results are printed to standard out with the following
cout << *viterbi_trellis << endl;

The output operator in this case is overloaded by a ModelTrellis method
ostream&

operator << (ostream& os, const NonConsViterbi& gvt) {

44

The output from Twinscan is designed to be “parsably-equivalent” to Genscan’s output.

This format is normally converted to GTF before it is used in other analyses.

45

Chapter 4
Class Reference

4.0 Introduction

The class reference contains full class diagrams for all of the classes in Twinscan. These
are meant to supplement the diagrams and the discussion in Chapter 3 with a more

complete documentation of the class, their attributes and functions. They are presented in
hierarchical order with base classes in alphabetical order. The behavior and

characteristics of each class will be explained generally before presentation of attributes

and operations. For those class hierarchies that have similar functionality in super- and
sub-classes, explanations will only be given once. Additionally, if the general

explanation makes clean the role of an attribute or function of an operation these will not
be further discussed.

A number of files that are part of the total source code, but are not classes. They will be
described briefly here.

BenchMark.h

BenchMark.cpp

Provides two functions used to determine the clock-time required for various portions of
the code

diffstr()

clockdiff()

Templates.cpp

Defines the templates for the TransitionMatrix class.

46

Twinscan.cpp

The home of int main() and the central controlling routine for Twinscan. Also sets

default values for all of the compiler and command line options and contains the

Twinscan help text. The most important attribute is viterbi_trellis, a variable of type
NonConsViterbi that is assigned the return value of getTrellis(), the major function

in Twinscan.cpp.

getTrellis() calls the functions required to parse the parameter files, instantiate the

GenomeModel object, and instantiate the appropriate Trellis class
object.

checks that the number of arguments on the command line are

appropriate to the model type selected.

measures the size of the target sequence and allocates the memory for

the sequence in advance of reading in the data.

opens the target sequence file, discards the first line of the fasta file

and reads the DNA sequence.

determines the cg percentage.

checks to make sure that the size of the target sequence is greater than

500 bp.

reads the first line of the parameter file to determine the source of the

parameter file and instantiates the appropriate Parser class object.

calls parse_genome_para_file() from the appropriate Parser
subclass.

47

reads and parses the conservation sequence and conservation

parameter file, if the conservation model is used.

calls the constructor for the appropriate Trellis class and returns its
value.

Once getTrellis() has returned, the following code directs the final portion of the
analysis.

viterbi_trellis->viterbi_algorithm(0);

bool good_trace = false;

while (! good_trace)

good_trace = viterbi_trellis->trace_back();

cout << *viterbi_trellis << endl;

48

4.1 Cell

Files: Cell.h
Parent of: ModelCell, ViterbiCell

Cell
-value:double
-state_map:int
-residue_map:int

+Cell():
+Cell(val: const double&, row: const int&, column: const int&):
+set_cell_value(val: const double): void
+get_cell_value(): double
+set_state_map(r: const int&): void
+set_residue_map(c: const int&): void
+get_state_map(): int
+get_residue_map(): int

Figure 14. The Cell Class

Cell is the base unit for the trellis. A Trellis class object is made up of Cell class

objects. Each Cell object is aware of its location in the trellis and knows its value. The
interface allows for the location and value to be changed and reported.

Attributes:
value cell value

state_map row location in the trellis. In Twinscan there are 11 rows (d-states).
residue_map column location in the trellis. This is the length of the sequence.

Operations:
set_* assigns argument to the appropriate attribute.

get_* returns the value of respective attribute.

Constructor:
Cell() all three values can be initialized to zero or set to any value through

the two constructor functions.

49

4.1.1 ModelCell

Files: ModelCell.h
Inherits from: Cell

Parent of: ViterbiCell

ModelCell
-exon_name:string

+ModelCell():
+ModelCell(val: const double&, row: const int&, column: const int&):
+set_exon_name(name: string): void
+get_exon_name(): string

twinscan::Cell
-value:double
-state_map:int
-residue_map:int

+Cell():
+Cell(val: const double&, row: const int&, column: const int&):
+set_cell_value(val: const double): void
+get_cell_value(): double
+set_state_map(r: const int&): void
+set_residue_map(c: const int&): void
+get_state_map(): int
+get_residue_map(): int

Figure 15. The ModelCell Class

ModelCell inherits almost all of its behavior from Cell. It includes only an exon name
and the ability to set the name and return the value of the name as its interface.

Constructor:
ModelCell() when called, initializes value, state_map, and residue_map in Cell.

50

4.1.1.1 ViterbiCell

Files: ViterbiCell.h
Inherits from: Cell, ModelCell

Used by: ViterbiTrellis

ViterbiCell
-path_ptr:ViterbiCell*
-overhang:string

+ViterbiCell():
+ViterbiCell(val: const double&, row: const int&, column: const int&):
+set_path(viterbi_cell: ViterbiCell*): void
+get_path(): ViterbiCell*
+set_overhang(over: string): void
+get_overhang(): string

twinscan::ModelCell
-exon_name:string

+ModelCell():
+ModelCell(val: const double&, row: const int&, column: const int&):
+set_exon_name(name: string): void
+get_exon_name(): string

Figure 16. The ViterbiCell Class

ViterbiCell is used by the three subclasses of VirterbiTrellis: NonConsViterbi,

UtrCdsViterbi, and SpsConsViterbi. Like ModelCell it inherits most of its

functionality. It adds two functional pieces, only one of which is actually used.

path_ptr a pointer to another ViterbiCell class object.

overhang not used.

Constructor:
ViterbiCell() calls the ModelCell() constructor and initializes path_ptr to 0.

51

4.2 ExonInfo

Files: ExonInfo.H
Used by: ModelTrellis to store all possible exons, NonConsViterbi to store optimal parse.

Figure 17. The ExonInfo Class

52

The ExonInfo class stores the relevant information about the possible and predicted
exons. It is the key part of the exon_vec data structure: a length of the sequence vector

that is composed of a list ExonInfo objects at each position. The exon_vec data

structure is defined in the ModelTrellis class and populated by all possible exons (see
Section 2.7). It this case exon name, begin position, end position and total exon score are

stored.

A more expressive instance of ExonInfo is used to store the optimal path (i.e. exons

identified by NonConsViterbi::traceback()). In addition to the above attributes, the
signal scores, the coding score, and the conservation score are stored. The more

expressive representation is primarily used for the output of the final gene prediction.

Attributes:
name state name.
begin_pos defined as the five prime end of the exon (lower index on the

forward strand and higher index on the reverse strand). Note that
all internal positional references take the first base of the sequence

to have index 0. Annotation representations define the first base in

the sequence as having index 1.
end_pos the three prime end of the sequence.

length one end point minus the other plus 1.

begin_score the score associated with the signal model at the begin_pos end of
the exon. For example, on the forward strand, begin_score for an

initial exon is the start of translation signal; for internal exons
begin_score is the acceptor splice site score.

end_score the score associated with the end_pos end of the exon.

disp_coding_score the coding score that is displayed in the output. Comes from the
5th-order Markov chain model. (See section 2.3 for more

information).
conservation_score the conservation score from the coding sequence model only.

53

 The other aspects of the coding score are included in exon_score,

but not here. This value is displayed in the output.
exon_score the total score for the exon. See Figure 5 for the source of the

score in exons.

Operations:
The following functions return the appropriate attribute. All values are set by one of the
two ExonInfo constructors.

exon_begin_pos()

exon_end_pos()

exon_begin_score()

exon_end_score()

disp_coding_score()

get_conservation_score()

exon_name()

get_exon_score()

There are two operations able to modify attributes; both reassign their respective

attributes with the passed value.
set_exon_score()

set_conservation_score()

Constructors:
ExonInfo(const string& exon_name, const int& begin_pos_value,

 const int& end_pos_value, const double& exon_score_value)

Called from ModelTrellis for storing all possible exons in the exon_vec data

structure.

ExonInfo(const string& exon_name, const int& begin_pos_value,

const int& end_pos_value, const int& begin_score_value,

const int& end_score_value,

const int& coding_score_value_1,

54

const int& conservation_score_value,

const double& exon_score_value)

Called from NonConsViterbi for storing the optimal parse in
NonsConsViterbi::optimal_path.

55

4.3 GenomeModel

Files: GenomeModel.h, GenscanModel,cpp

GenomeModel
+SmatParser:friend class
-c_states:TransitionMatrix<CState>
-d_states:TransitionMatrix<DState>

+GenomeModel():
+get_dstate_matrix(): TransitionMatrix<DState>&
+get_cstate_matrix(): TransitionMatrix<CState>&
+get_c_state(name: const string&): CState*
+get_d_state(name: const string&): DState*
+enter_c_state(name: const string&): void
+enter_d_state(name: const string&): void
+enter_c_state_transition(in_state_name: const string&, out_state_name: const string&, trans_prob: const double&): void
+enter_d_state_transition(in_state_name: const string&, out_state_name: const string&, trans_prob: const double&): void
+d_state_number(): int
+c_state_number(): int

Figure 18. The GenomeModel Class

GenomeModel is the large aggregate class that includes the structure and details of the

model for the DNA sequence. See Figure 9 and Section 3.2 for more information about

the structure of a GenomeModel object. The attributes are two instances of the
TransitionMatrix class, one for the c-states and one for the d-states. The methods of

GenomeModel allow for access of the states in the model by the objects from the Trellis
class hierarchy as well as their initialization and creation by the Parser class objects.

The parsers are friend classes to GenomeModel. GenomeModel is independent of the

topology of the model and of the models of the states. However, it does require the
concept of two kinds of states.

Although functions from the TransitionMatrix class manage the list of states in the

model and the allowed transitions between them, each State class object contains its

own models and allowed transitions.

Operations exist that return all of the states (get_cstate_matrix() and

get_dstate_matrix()) or just one state (get_c_state() and get_dstate()).

56

Other operations:
enter_c_state_transition()

enter_d_state_transition() are called by the Parser class objects. Both work in

approximately the same way:

As state information is parsed from the parameter file, the function
appropriate to the current state is called with the state name, a

transition probably to another state, and the name of that following

state. These functions call both enter_c_state() and
enter_d_state() (described below) with either the current state

of the following state, depending on whether the current state is a
c-state or a d-state.

Once the states have been instantiated, the
TransitionMatrix::enter_state_transition() function is

called to store the transition probability.

enter_c_state() takes as its argument the name of the state, checks to see if that

state object exists and, if not, instantiates the appropriate c-state
sub-class (e.g. InitialExon or PolyA) by calling the

TransitionMatrix::enter_state() function.

enter_d_state() takes as its argument the name of the state, checks to see if that
state object exists and, if not, instantiates a DState object by

calling the TransitionMatrix::enter_state() function.
d_state_number() returns the number of d-states in the model. This is used in trellis

management.

c_state_number() returns the number of c-states in the model. This function is not
used.

57

4.4 Matrix
Files: Matrix.h

Used by: Trellis, SmatParser, ParaParser, CState, ModelTrellis, UtrCdsModel,
SpsConsModel

Matrix
-matrix:bas_type
-v_height:typename bas_type::size_type
-v_width:typename row_type::size_type

+Matrix(height: typename bas_type::size_type, width: typename row_type::size_type):
+height(): typename bas_type::size_type
+width(): typename row_type::size_type
+operator[](n: typename bas_type::size_type): reference
+operator[](n: typename bas_type::size_type): const_reference
+operator=(rhs: Matrix&): Matrix&
+display(): void

Figure 19. The Matrix Class

Matrix is a library class used in various ways by Twinscan. As a template class, it stores

everything from integers in parameter score matrices to the Cell class objects that make

up the Trellis class object. Individual values or objects in the Matrix data structure can
be accessed using the following syntax (see note below):

 matrix[i][j]

Attributes include the matrix itself as well as its dimensions.

Operations allow for the return of the height and width of the matrix, the access of the

data, and the ability to determine if two Matrix class objects are the same.

IMPORTANT NOTE:
Matrix is implemented “backwards” in so far as standard mathematical notation has the

subscript for the row before the column as in Matrix(row,column). In this

implementation, the subscripts are Matrix(column,row). Because of this all of the
methods and attributes in Twinscan that use or interact with Matrix have this

“backward” character. It’s a feature, really.

58

4.5 Parser
Files: Parser.h, Parser.cpp

Parent of: ParaParser, SmatParser

Parser
#filt_elems:string
#text_line:string
#words:list<string>*

+Parser():
+~Parser():
+filter_text(): void
+seperate_words(): void
+is_empty_line(string: const&): bool

Figure 20. The Parser Class

Parser is an abstract class that provides basic text processing functionality for use by its
subclasses.

Attributes:
filt_elems characters that are filtered from parsed text. They are ",;:[]<>{}()

text_line the current line from the parameter file.
words a list the data or text created from text_line.

Operations:
filter_text() removes by string::erase() characters from filt_elems.

separate_words() separates text_line at spaces or tabs and stores result in words.

is_empty_line() allows skipping of blank lines.

Constructor/Destructor:
Parser() allocates memory for words.

~Parser() garbage collection for words.

59

4.5.1 ParaParser

Files: ParaParser.h, ParaParser.cpp
Inherits from: Parser

ParaParser
-c_state_names:set<string>
-d_state_names:set<string>
-command_map:map<string,int>
-cg_range:pair<double, double>
-cg_percent:double
-para_list:slist*
-command_line:slist*
-score_matrix:Matrix< int>*
-exon_length:vector< double>*

+ParaParser(_cg_percent: double):
+~ParaParser():
+command_index(s: const string&): int
+state_type(name: const string&): StateType
+set_state_type(): void
+set_command_type(): void
+is_command(string: const&): bool
+command_process(: GenomeModel&): void
+command_detect(: GenomeModel&): void
+parameter_input(: GenomeModel&): void
+set_score_matrix(: const int, : const int&&): void
+trash_score_matrix(): void
+set_transition_matrix(: GenomeModel&): void
+set_state_connection(: GenomeModel&): void
+set_init_probability(: GenomeModel&): void
+set_intron_length(: GenomeModel&): void
+set_sig_pept(: GenomeModel&): void
+set_end_site(: GenomeModel&): void
+set_exon_length(: GenomeModel&): void
+trash_exon_length(): void
+set_inside_site(: GenomeModel&): void
+set_begin_site(: GenomeModel&): void
+parse_genome_para_file(string: const, GenomeModel: &&): void
+parse_text_line(: GenomeModel&): void

twinscan::Parser
#filt_elems:string
#text_line:string
#words:list<string>*

+Parser():
+~Parser():
+filter_text(): void
+seperate_words(): void
+is_empty_line(string: const&): bool

Figure 21. The ParaParser Class

ParaParser is used to parse the genome parameter files created by the Brent Lab Group
and ensure that the parameter data is stored in the correct structure within the

GenomeModel class object. For example, the acceptor splice site model parameters are
stored by begin_site_matrix, an inherited CState attribute, in InternalExon and

TerminalExon. ParaParser implicitly assumes the topography of the HMM (see

60

Section 2.2) and contains a number of other hard-coded features that inhibit the flexibility

of the rest of the code.

Parsing involves the concept of commands—header lines set off from the rest of the file
with angle brackets (<>)—that define a section of the file and, if necessary, the

corresponding c-states. For example, the command line for the translation initiation

model is
<StartCodon [12 4] Einit+ Esngl+ Einit- Esngl->

Reading across the command line the information in a command line is the model name,
size of the model, relative location of the first base in the model to the first base in the

sequence, and the c-states that use the model.

Commands are nested for the case of parameters that vary based on the CG percentage of

the target sequence. The commands used and their functions are
TransitionMatrix defines the transitions between all of the states. The format for

these lines is
current state (transition probability next state).

InitialProbability the initial probability value for each of the d-states.
IntronLength the geometric length distribution parameters for the d-states.

DonorSite parameters associated with the MDD model of the donor site

(see Section 2.3.4).
ExonLength matrix of probability values for the four exon states. Each of

the values corresponds to the length of a codon.
CodingRegion parameters associated with the 5th-order Markov chain.

AcceptorRegion parameters for the WAM model of the acceptor splice site.

PolyASignal parameters for the WMM of the poly A signal.
StartCodon parameters for the WMM model of the translation initiation

signal.

StopCodon parameters for the WMM model of the translation termitation
signal.

61

TATA parameters for the WMM model of the TATA portion of the

promoter model.
PB_CAP parameters for the WMM model of the cap portion of the

promoter model.
C+G defines the CG percentage range for the parameters, i.e.

<C+G 57.0 100.0>.

End the end of a section. Always used with a section name. i.e.

<End C+G> and <End TransitionMatrix>.

SigPept parameters for the WMM model of the signal peptide (see
Section 2.3.2).

Figure 22 shows the state diagram for the ParaParser object. Most of the time is spent

in the Parsing state, which is shown in much more detail in Figure 23.

Initializing
entry/ assign cg_percent
do: define c_state_names

define d_state_names
initialize command_map
initialize cg_range
allocate memory for para_list
allocate memory for command_line
allocate memory for score_matrix
allocate memory for exon_length

Define Parser class object

Parsing
entry/ call parse_genome_para_file
exit/ No additional text lines

Parsing

Set Connections

do: CState::set_possible_prev_state
CState::set_possible_post_state

exit/ state_iter == state_iter_end

Getting Next Line

do: Parser::filter_text
Parser::separate_words

Process Text

do: Determine if command

Read Parameters
entry/ check cg_range
do: push back parameter values

 [!isCommand]

command_detect

 [isCommand]

command_process

Store cg_range

 [C+G Command]

 [End Section Command]

set_transition_matrix
entry/ command ==TransitionMatrix
do: GenomeModel::enter_c_state_transition

GenomeModel::enter_d_state_transition

set_init_probability
entry/ command == InitialProbability
do: DState::set_init_prob

set_intron_length
entry/ command == IntronLength
do: DState::set_geometric_para

set_end_site
entry/ command == DonorSite ||

command == StopCodon ||
command == PB_CAP

do: copy para_list to score_matrix
CState::set_end_prob_score

exit/ trash_score_matrix

set_exon_length
entry/ command == ExonLength
do: copy para_list to exon_length

CState::set_length_prob
exit/ trash_exon_length

set_inside_site
entry/ command == CodingRegion ||

command == PolyASignal
do: copy para_list to score_matrix

CState::set_coding_prob_score
exit/ trash_score_matrix

set_begin_site
entry/ command == AcceptorRegion ||

command == StartCodon ||
command == TATA

do: copy para_list to score_matrix
CState::set_begin_prob_score

exit/ trash_score_matrix

set_sig_pept
entry/ command == SigPept
do: copy para_list to score_matrix

CState::set_signal_pept
exit/ trash_score_matrix

Figure 22. State Diagram for ParaParser object

62

Initializing
entry/ assign cg_percent
do: define c_state_names

define d_state_names
initialize command_map
initialize cg_range
allocate memory for para_list
allocate memory for command_line
allocate memory for score_matrix
allocate memory for exon_length

Define Parser class object

Parsing
entry/ call parse_genome_para_file
exit/ No additional text lines

Parsing

Set Connections

Getting Next Line

do: Parser::filter_text
Parser::separate_words

Process Text

do: Determine if command

Read Parameters
entry/ check cg_range
do: push back parameter values

 [!isCommand]

command_detect

 [isCommand]

command_process

Store cg_range

 [C+G Command]

 [End Section Command]

set_transition_matrix
entry/ command ==TransitionMatrix
do: GenomeModel::enter_c_state_transition

GenomeModel::enter_d_state_transition

set_init_probability
entry/ command == InitialProbability
do: DState::set_init_prob

set_intron_length
entry/ command == IntronLength
do: DState::set_geometric_para

set_end_site
entry/ command == DonorSite ||

command == StopCodon ||
command == PB_CAP

do: copy para_list to score_matrix
CState::set_end_prob_score

exit/ trash_score_matrix

set_exon_length
entry/ command == ExonLength
do: copy para_list to exon_length

CState::set_length_prob
exit/ trash_exon_length

set_inside_site
entry/ command == CodingRegion ||

command == PolyASignal
do: copy para_list to score_matrix

CState::set_coding_prob_score
exit/ trash_score_matrix

set_begin_site
entry/ command == AcceptorRegion ||

command == StartCodon ||
command == TATA

do: copy para_list to score_matrix
CState::set_begin_prob_score

exit/ trash_score_matrix

set_sig_pept
entry/ command == SigPept
do: copy para_list to score_matrix

CState::set_signal_pept
exit/ trash_score_matrix

Figure 23. State Diagram for Parsing state showing substates

63

Attributes:
c_state_names an stl::set of strings for storing c-state names.
d_state_names an stl::set of strings for storing d-state names.

command_map an stl::map from a command string to an integer.
cg_range an stl::pair for storing the boundaries for the C+G%

range of the current section of parameter file.

cg_percent the C+G percentage of the target sequence.
para_list a list of strings for temporary storage of the parameter

values read from the parameter file.
command_line a list of strings for storage of beginning command line

of the current section of the parameter file.

score_matrix a Matrix class object for temporary storage of the
parameter matrices.

exon_length a vector for temporary storage of the exon length

probability values.

Operations:
set_state_type() initializes c_state_names and d_state_names with

the names of the c-states and the d-states. This is done

by creating a string array with the state names and
inserting the array elements into the set.

set_command_map() initializes the mapping (i.e. command_map) from the 15
commands to integers.

parse_genome_para_file() opens the parameter file and while lines remain in the

file, calls Parser::filter_text(),
Parser::separate_words(), and

parse_text_line() for each line. When the
parameter file has been completely read, calls

set_state_connection().

parse_text_line() calls command_detect() if return value of
is_command() is true. Calls para_input() if return

64

value of is_command() is false.

is_command() returns true if parameter is an element of command_map
and false if not.

command_detect() calls command_process() if command line contains an
end command. Clears para_list if command line is

the beginning of a section. Assigns cg_range at a

beginning C+G command and re-initializes cg_range
at an end C+G command.

command_process() a large case statement to control which of the following
functions are called. See Figure 23 for a graphical

representation of this and the previous two functions.

parameter_input() copies from words to para_list if the cg_percent is
within the cg_range.

set_transition_matrix() calls GenomeModel::enter_c_state_transition()

and GenomeModel::enter_d_state_transition()
with state and transition information from the

<TransitionMatrix> section of the parameter file.
set_state_connection() ensures that the connections between all of the states in

the model are correctly set. Repeatedly calls

CState::set_possible_prev_state() and
CState::set_possible_post_state(). The state

connections are hard coded in this function.
set_init_probability() determines state_name and init_prob from

para_list. Calls DState::set_init_prob() with

init_prob.
set_intron_length() determines state_name and intron_length from

para_list. Calls DState::set_geometric_para()
with intron_length.

set_score_matrix() allocates memory for score_matrix. Copies data from

para_list into score_matrix.

65

set_end_site() calls set_score_matrix() with the size of the matrix.

Determines the appropriate c-states from
command_line and calls

CState::set_end_prob_score() with score_matrix
for each appropriate c-state. Calls

trash_score_matrix().

set_sig_pept() calls set_score_matrix() with the size of the matrix.
Determines the appropriate c-states from

command_line and calls
CState::set_signal_pept() with score_matrix for

each appropriate c-state. Calls

trash_score_matrix().
set_exon_length() allocates memory for exon_length and copies data

from para_list to exon_length. Determines the

appropriate c-states from command_line and calls
CState::set_length_prob() with exon_length for

each appropriate c-state. Calls trash_exon_length().
set_inside_site() calls set_score_matrix() with the size of the matrix.

Determines the appropriate c-states from

command_line and calls
CState::set_coding_prob() with score_matrix

for each appropriate c-state. Calls
trash_score_matrix().

set_begin_site() calls set_score_matrix() with the size of the matrix.

Determines the appropriate c-states from
command_line and calls CState::set_begin_prob()

with score_matrix for each appropriate c-state. Calls
trash_score_matrix().

trash_score_matrix() de-allocates memory for score_matrix.

trash_exon_length() de-allocates memory for exon_length.

66

Constructor:
Assigns cg_percent the value calculated in Twinscan.cpp. Calls set_state_type()

and set_command_type(). Initializes cg_range. Allocates memory for para_list and
command_line. Initializes elements of score_matrix and exon_length to zero.

The following attributes are hard-coded by functions in the constructor:
c_state_names

d_state_names

command_map

67

4.5.2 SmatParser

Files: SmatParser,H, SmatParser.cpp
Inherits from: Parser

Used by: GenomeModel

SmatParser is used to parse Genscan’s genome parameter file: HumanIso.smat. This

class should be able to parse any parameter file constructed in the style of

HumanIso.smat, but that functionality has not been tested and is not supported.

Like ParaParser, the overall goal of SmatParser is to harvest required information from
the parameter file and put it into the appropriate GenomeModel data structures. However,

because the Twinscan code was designed to read part of the model structure from the

parameter file, a number of additional assumptions about the structure of the model are
hard-coded into SmatParser to facilitate getting parameter information from

HumanIso.smat to the GenomeModel data structures.

SmatParser is closely related to ParaParser and shares many of the same attributes

and operations. Only those attributes and operations that are unique to SmatParser will
be noted here; the reader is referred to the previous section for details on the others.

Attributes:
format_map an stl::map from header lines in the parameter file to

integers. Supplements the information in command_map
transitions a list of stl::string to temporarily store state names.

States names are stored in pairs to mimic the format used in
the <TransitionMatrix> portion of the Brent Lab Group

parameter file format. Then

GenomeModel::enter_c_state_transition() and
GenomeModel::enter_d_state_transition() are called

as appropriate with consecutive elements of the list.

68

SmatParser
-c_state_names:set<string>
-d_state_names:set<string>
-command_map:map<string, int>
-format_map:map<string, int>
-cg_range:pair<double, double>
-cg_percent:double
-transitions:slist*
-command_line:slist*
-para_list:slist*
-intron_length:slist*
-initial_probability:slist*
-states:set<string>
-score_matrix:Matrix< int>*
-exon_length:vector< double>*
-isochore:int
-SYMBOLS:int
-pESngl:double
-pETerm:double
-counter:int

+SmatParser(_cg_percent: double):
+~SmatParser():
+command_index(s: const string&): int
+state_type(name: const string&): StateType
+set_state_type(): void
+set_format_type(): void
+set_command_type(): void
+is_command(string: const&): bool
+command_process(: GenomeModel&): void
+command_detect(: GenomeModel&): void
+check_organism(: GenomeModel&): void
+isochore_boundries(: GenomeModel&): void
+set_constants(: GenomeModel&): void
+set_formats(: GenomeModel&): void
+parameter_input(: GenomeModel&): void
+set_score_matrix(: const int, : const int&&): void
+set_transition_matrix(: GenomeModel&): void
+set_constant_states(: GenomeModel&): void
+set_other_states(: GenomeModel&): void
+set_state_connection(: GenomeModel&): void
+set_init_probability(: GenomeModel&): void
+set_intron_length(: GenomeModel&): void
+store_initial_probability(: GenomeModel&): void
+store_intron_length(: GenomeModel&): void
+set_sig_pept(: GenomeModel&): void
+set_end_site(: GenomeModel&): void
+set_exon_length(: GenomeModel&): void
+set_inside_site(: GenomeModel&): void
+set_begin_site(: GenomeModel&): void
+parse_genome_para_file(string: const, GenomeModel: &&): void
+parse_text_line(: GenomeModel&): void
+trash_score_matrix(): void
+trash_exon_length(): void
+int_pow(: const int, : const int&&): int

twinscan::Parser
#filt_elems:string
#text_line:string
#words:list<string>*

+Parser():
+~Parser():
+filter_text(): void
+seperate_words(): void
+is_empty_line(string: const&): bool

Figure 24. The SmatParser Class

69

intron_length a list of stl::string to temporarily store d-state names

and their associated geometric parameter values. Like

transitions, intron_length stores pairs of values in
successive elements. The set_intron_length() function

uses the values in intron_length when making repeated
calls to the Dstate::set_geometric_para() function.

initial_probability a list of stl::string to temporarily store d-state names,

an initial probability value related to that state, and two
correction factors necessary to correctly compute all of the

initial probability. This complicated structure is required to
mimic the d-state initial probability table in the Brent Lab

Group genome parameter file. All of the initial probability

values are not explicitly specified in HumanIso.smat, but
the values required to determine them are. Thus when all

of the required data is stored in initial_probability by
store_initial_probability(), the

set_init_probability() function is called. Eventually

the correct values are used to call
Dstate::set_init_prob().

states an stl::set of stl::string to temporarily store the c-
state names associated with each parameter matrix in

HunamIso.smat. This data structure is used to reproduce
the list of c-states in the command lines in the Brent Lab

Group genome parameter files.

isochore an integer to store the isochore of the sequence to ensure
that the isochore-dependent parameters are parsed

correctly.

SYMBOLS set to 4 (for a,c,g,t).
pESngl transition probability value read from the parameter file

pETerm transition probability value read from the parameter file

70

counter keeps track of the number of lines since one of

command_map or format_map values has been seen to
signal when the entire parameter matrix has been stored.

The size of each of the parameter matrices is hard coded.

Operations:
set_format_type() a list of keywords from the header lines between

different section of the HumanIso.smat file. This

 function is closely related to
ParaParser::set_command_map().

isochore_boundries() sets the value of isochore.
set_formats() a large case statement. Compare to

ParaParser::command_process().

check_organism() checks that the file is actually HumanIso.smat.

Twinscan does not support the use of the other

parameters that come with the standard Genscan
distribution (Arabopsis.smat and Maise.smat).

set_constant_states() sets transition probabilities between those states
with constant probability (e.g. 1.0) transitions

through repeated calls to

GenomeModel::enter_c_state_tranition() and
GenomeModel::enter_d_state_transition().

set_other_states() sets transition probabilities between those states
with isochore-dependent probability distributions

through repeated calls to
GenomeModel::enter_c_state_tranition() and

GenomeModel::enter_d_state_transition().

store_initial_probability() stores information in initial_probability.

store_intron_length() stores information in intron_length.

71

The following operations were extensively rewritten for SmatParser and no longer

function the same as the identically named functions in ParaParser. The new
functionality is described.

set_command_type() rewritten for two stage procedure that includes both

command_map and format_map.

set_transition_matrix() transition matrix is taken to be known rather than
partly read from the parameter file as is the case in

ParaParser.

set_init_probability() rewritten to interact with initial_probability.

set_end_site() rewritten to use information from the FORMAT
lines in HumanIso.smat to determine the height of

score_matrix.

72

4.6 State
Files: State.h State.cpp

Parent of: ModelState, DState, CState, InitialExon, InternalExon, PolyA, Promoter,
TerminalExon

State
-StatePair:StatePair
-state_name:string
-prev_states:list<StatePair>
-post_states:list<StatePair>

+name(): string&
+get_post_trans_prob(out_state_name: const string): double
+get_prev_trans_prob(in_state_name: const string): double
+get_post_trans_score(out_state_name: const string): double
+get_prev_trans_score(in_state_name: const string): double
+push_back_prev_state(state: State&, prob: double): void
+push_back_prev_state(state: State*, prob: double): void
+push_back_post_state(state: State&, prob: double): void
+push_back_post_state(state: State*, prob: double): void
+prev_states_num(): int
+post_states_num(): int
+prev_states_begin(): list<StatePair>::iter
+prev_states_end(): list<StatePair>::iter
+post_states_begin(): list<StatePair>::iter
+post_states_end(): list<StatePair>::iter

StatePair
-StatePair:pair<State,double>
-transition_prob_score:double

+StatePair():
+StatePair(state: State*, prob: double):
+transition_state(): State*
+transition_probability(): double
+transition_score(): double

Figure 25. The State Class

The State class is the base class of all the states in the model. It contains basic
functionality for defining the state and connections to other states. Within the State

class is the member class StatePair data structure, a class that contains a State object,
a transition probability, and a transition score calculated from the transition probability.

Attributes:
prev_states a list of StatePair objects containing all states with non-zero

transition probabilities to the State object.
post_states a list of StatePair objects containing all states with non-zero

transition probabilities from the State object.

state_name name of the state.

73

Operations:
The interface for State provides for access to prev_states and post_states one
element at a time.

get_post_trans_prob() returns transition_probability from the appropriate
StatePair object.

get_prev_trans_prob() returns transition_probability from the appropriate

StatePair object.
get_post_trans_score() returns transition_score from the appropriate

StatePair object.
get_prev_trans_score() returns transition_score from the appropriate

StatePair object.

push_back_prev_state() adds additional StatePair object to prev_states.
push_back_post_state() adds additional StatePair object to post_states.

The interface for State supports iterator access over prev_states and post_states:
prev_states_num() size of the prev_states list.

post_states_num() size of the post_states list.
prev_states_begin()

prev_states_end()

post_states_begin()

post_states_end()

74

4.6.1 ModelState

Files: ModelState.h, ModelState.cpp
Inherits from: State

Parent of: DState, CState, InitialExon, InternalExon, PolyA, Promoter, SingleExon,

TerminalExon

ModelState
-nucle_base_index_map:map<char, int>
-forward_strand_direction:bool

+ModelState(model_state_name: const string&):
+nucle_base_index(c: const char&): int
+is_forward_strand(): bool
+set_strand_direction(string: const&): void

twinscan::State

Figure 26. The ModelState Class

ModelState, like ModelCell, inherits most of its functionality from the base class. The

added characteristic in ModelState is the notation of strand direction and a mapping
from the four bases to numerical values. This mapping allows for subclasses to

efficiently look up information from parameter scoring matrices.

Attributes:
nucle_base_index_map a mapping between a,c,g,t and 0,1,2,3.
forward_strand_direction true if state is on the forward strand.

Operations:
nucle_base_index() returns numerical mapping from character base.

is_forward_strand() returns forward_strand_direction.
set_strand_direction() strand direction is determined from the state name.

Constructor:
Takes a state name, instantiates a State object, calls set_strand_direction() with the

state name and defines the nucle_base_index_map.

75

4.6.1.1 CState

Files: Cstate.h, Cstate.cpp
Inherits from: State, ModelState

Parent of: InitialExon, InternalExon, PolyA, Promoter, TerminalExon

The Cstate objects contain the majority of the models associated with scoring exons.

The data for these models is read from the genome parameter file into the appropriate

locations

Attributes:
length_distribution_prob matrix read in from the genome parameter file.

length_distribution_score calculated score associated with the length distribution.

begin_site_matrix the parameter matrix associated with the signal model
at the start of the c-state. Depending on the state, this

data structure may contain the parameter matrix
associated with the acceptor site, the translation

initiation site, or the TATA box model.

end_site_matrix the parameter matrix associated with the biological
signal at the end of the c-state.

coding_site_matrix the 5th order Markov coding parameters from the
genome parameter file.

signal_pept the parameter matrix associated with the signal peptide

model.
possible_prev_state a vector of the allowed previous d-states.

possible_post_state a vector of the allowed following d-states.
exon_name_without_strand the state name without the last character (“+” or “-”).

mm5_index_map a mapping from a sequence of 5 bases to the line in the

parameter file containing the corresponding
information. Compare to

UtrCdsModel::mm5_index_map.

76

CState
+ZERO_PROB:const int=-1000
+SIGNAL_PEPT_LENGTH:const int=20
#length_distribution_prob:dvec
#length_distribution_score:dvec
#end_site_matrix:Matrix< int>*
#coding_site_matrix:Matrix< int>*
#begin_site_matrix:Matrix< int>*
#signal_pept:Matrix< int>*
#possible_prev_state:vector<string>*
#possible_post_state:vector<string>*
#exon_name_without_strand:string
#mm5_index_map:map<string, int>

+CState(name: const string&):
+~CState():
+exon_name(): const string&
+get_phase(pos: const int&): int
+get_frame(pos: const int&): int
+prev_d_state_name(length: const int&): string&
+post_d_state_name(length: const int&): string&
+begin_score(s: const string&, pos: const int&): int
+end_score(s: const string&, pos: const int&): int
+length_prob(len: const int&): double
+length_score(len: const int&): double
+get_single_markov_score(string: const, : const int&&): int
+get_trans_score(prev_state_name: const string&, post_state_name: const string&): const double
+set_possible_prev_state(string: const&): void
+set_possible_post_state(string: const&): void
+set_possible_prev_state(string: const, string: const&, string: const&&): void
+set_possible_post_state(string: const, string: const&, string: const&&): void
+set_length_prob(prob_vec: const dvec&): void
+set_end_prob_score(m: Matrix< int>&): void
+set_coding_prob_score(m: Matrix< int>&): void
+set_begin_prob_score(m: Matrix< int>&): void
+set_signal_pept(m: Matrix< int>&): void
+wmm_model(: Matrix< int>, string: const*, : const int, : const int&&&): int
+third_order_wam(: Matrix< int>, string: const*, : const int, : const int&&&): int
+markov_coding_region_score(string: const, : const int, : const int&&&): int
+signal_peptide_score(string: const&): int
+coding_region_score(string: const, : const int, : const int&&&): int
+real_coding_region_score(): double
+acceptor_score(s: const string&, pos: const int&): int
+trans_init_score(s: const string&, pos: const int&): int
+trans_term_score(s: const string&, pos: const int&): int
+donor_score(s: const string&, pos: const int&): int
+create_mm5_index_map(): void
+int_pow(: const int, : const int&&): friend int
+length(begin_pos: const int&, end_pos: const int&): int
+log2(v: const double&): double
+find_third_order_pos(: char, : char, : char): int

ModelState
-nucle_base_index_map:map<char, int>
-forward_strand_direction:bool

+ModelState(model_state_name: const string&):
+nucle_base_index(c: const char&): int
+is_forward_strand(): bool
+set_strand_direction(string: const&): void

twinscan::State

Figure 27. The CState Class

77

Operations:
Parser class objects call a number of the CState functions as the information from the
parameter files populates the GenomeModel class object. These provide the interface for

incorporating the model parameters into the CState class objects.
set_possible_prev_state() has two interfaces; the first takes a single previous

d-state for those c-states that have a unique previous

 state (such as the forward strand initial exon). The
second interface takes three previous d-states as is

the case with the forward strand terminal exon.
set_possible_post_state() has two interfaces; the first takes a single following

d-state for those c-states that have a unique next

state (such as the forward strand terminal exon).
The second interface takes three following d-states

as is the case with the internal exons.

set_length_prob() stores the length probability data from the
parameter file in length_distribution_prob and

converts the probability values to scores that are
stored in length_distribution_score.

Probability values for exons up to 2000 codons

(6000 bp) are contained in the parameter file. This
function expands length_distribution_prob and

length_distribution_score to 6000 codons
(18000 bp), with minimal probability and score,

based on (International Human Genome Sequencing

Consortium 2001). ModelTrellis functions
prevent longer exons from being considered.

set_end_prob_score() allocates memory for and copies parameter file data
to end_site_matrix.

set_begin_prob_score() allocates memory for and copies parameter file data

to begin_site_matrix.

78

set_coding_prob_score() allocates memory for and copies parameter file data

to coding_site_matrix.
set_signal_pept() allocates memory for and copies parameter file data

to signal_pept.

There are several virtual functions defined in CState and redefined as necessary in each

of the CState subclasses.
virtual int get_phase() returns the phase of the exon.

virtual int get_frame() returns the reading frame of the exon.
virtual int begin_score() returns the value of the score of the signal assuming

that the c-state itself, rather than the respective

signal, begins at the parameter position.
virtual int end_score() returns the value of the score of the signal assuming

that the c-state itself, rather than the respective

signal, ends at the parameter position.
virtual double length_prob() returns the probability value from the parameter

file, if one is given in the parameter file.
virtual double length_score() returns the log odds score associated with the length

probability.

virtual const double

get_trans_score() returns difference between the return values of

State::get_prev_trans_score() and

State::get_post_trans_score().

virtual int content_score() returns the portion of the c-state score not

associated with the length, biological signals, or
transitions.

virtual double

real_coding_region_score() returns the score for the entire coding region

including the signal peptide score, if appropriate.

79

Functions that define all of the c-state component models are defined in the CState class

(see Section 2.3 for descriptions of the models).
wmm_model() iterates through the sequence and the WMM

parameter matrix to determine the total score of the
signal. For every “n” in the signal, –1 is added to

the total score.

third_order_wam() iterates through the sequence and the WAM
parameter matrix to determine the total score of the

signal. If an “n” is the current position or one of the
previous three bases, a score of –1 is added to the

total score. Thus a single “n” will result in –4

added to the total score.
markov_coding_region_score() determines the codon position of the first base of

the exon, repeatedly calls

get_single_markov_score() with 6-bp
sequences until the last position in the exon and

returns the total score.
get_single_markov_score() takes a 6-bp sequence and codon position and

returns the appropriate score from

coding_site_matrix. If the sequence contains an
“n,” –10 is returned.

Related to the model functions are the functions that define the signal scores. These

functions call one or more of the above component model functions.

acceptor_score() returns ZERO_PROB if the two nucleotides prior to
the current position are not “ag.” Otherwise returns

 third_order_wam() with begin_site_matrix and
the 46-bp sequence starting 43 bases before the

current position.

80

trans_init_score() returns ZERO_PROB if the three nucleotides starting

at the current position are not “atg.” Otherwise
returns wmm_model() with begin_site_matrix and

12-bp sequence starting six bases before the current
position.

trans_term_score() returns ZERO_PROB if the three bases ending at the

current position are not one of the three stop
codons. Otherwise returns wmm_model() with

end_site_matrix and 6-bp sequence starting two
bases before the current position.

donor_score() returns ZERO_PROB if the two bases following the

current position are not “gt.” Otherwise, returns
wmm_model() with appropriate portion of

end_site_matrix (see Section 2.3.4 for more

information) and the 9-bp sequence starting two
bases before the current position.

signal_peptide_score() iterates through the sequence codon by codon and
return the total score. The total score is the sum of

appropriate scores from signal_pept. If a codon

contains an “n,” nothing is added to the total score.

The following auxiliary functions are required to support the CState core functionality
create_mm5_index_map() create mapping from sequences of five bases to a

line in the parameter matrix (e.g. AAAAA – line 1).

Compare to UtrCdsModel::create_mm5_index_map()
find_third_order_pos() returns the line in the third order WAM matrix that

corresponds to a given DNA triplet.

81

Constructor:
Calls ModelState constructor with the state name. Calls create_mm5_index_map().
Initializes exon_name_without_strand from state name. Initializes following attributes:

end_site_matrix

coding_site_matrix

begin_site_matrix

signal_pept

Allocates memory for following attributes:

possible_prev_state

possible_post_state

82

4.6.1.1.1 InitialExon

Files: InitialExon.h, InitialExon.cpp
Inherits from: State, ModelState, CState

Used by: TransitionMatrix, GenomeModel

InitialExon
-signal_pept_score:int
-overlap_markov_score:int
-rear_markov_score:int

+InitialExon(name: const string&):
+~InitialExon():
+get_frame(length: const int&): int
+begin_score(s: const string&, pos: const int&): int
+end_score(s: const string&, pos: const int&): int
+content_score(s: const string&, start_pos: const int&, end_pos: const int&): int
+real_coding_region_score(): double
+length_prob(length: const int&): double
+length_score(length: const int&): double
+get_trans_score(prev_state_name: const string&, post_state_name: const string&): const double

Figure 28. The InitialExon Class

InitialExon (like all of the subclasses of CState) is fairly small and represents a small

amount of objectification. It does, however, make the implementation of CState cleaner

in that it moves the calculation of functions that are calculated in a different way for at
least two of the CState subclasses into the subclasses.

InitialExon and SingleExon states both include the signal peptide model, which is
applied over the first 20 codons of the exon. This length is specified by the

SIGNAL_PEPT_LENGTH constant in CState. If the exon is less than 20 codons, the signal
peptide model is applied over the entire exon. The signal peptide model does not “carry

over” into internal exons. The nucleotides scored with the signal peptide model are also

scored by the 5th-order Markov Chain model for coding sequence to determine the
overlap_markov_score. These nucleotides are represented in the total exon score by a

mixture model of 20% of the signal peptide score and 80% of the Markov coding score.
The rear_markov_score is the 5th-order Markov Chain coding model calculated for that

part of the exon sequence not covered by the signal peptide model.

83

Attributes:
signal_pept_score WMM-based score from the signal peptide model.

overlap_markov_score 5th-order Markov coding score from the signal peptide
region.

rear_markov_score 5th-order Markov coding score from the coding region

following the signal peptide region.

Operations:
get_frame() for the initial exon the frame is simply the length mod 3.

begin_score() calls CState::trans_init_score().

end_score() calls CState::donor_score().
content_score() returns the value of the rear_markov_score added to

the greater of the signal_pept_score or the

overlap_markov_score. This function is used to
determine the initial exon coding score that is displayed

in the output. It also has the effect of initializing the
three attributes by calling

CState::signal_peptide_score() and

CState::markov_coding_region_score() as
appropriate.

real_coding_region_score() returns the mixture model score for the signal peptide
region (see above) added to the rear_markov_score.

 Cannot be called without fist calling

 content_score().

Constructor:
Calls CState constructor with exon name.

84

4.6.1.1.2 InternalExon

Files: InternalExon.h
Inherits from: State, ModelState, CState

Used by: TransitionMatrix, GenomeModel

InternalExon
-phase_no:int

+InternalExon(name: const string&):
+~InternalExon():
+get_phase(length: const int&): int
+get_frame(length: const int&): int
+begin_score(s: const string&, pos: const int&): int
+end_score(s: const string&, pos: const int&): int
+content_score(s: const string&, start_pos: const int&, end_pos: const int&): int
+length_prob(length: const int&): double
+length_score(length: const int&): double

Figure 29. The InternalExon Class

InternalExon is the simplest of the CState subclasses because all of its operations are

fully implemented by CState.

Attributes:
phase_no phase number designation from the exon name.

Operations:
get_phase() returns phase_no.
get_frame() returns exon length mod 3.

begin_score() returns CState::acceptor_score().
end_score() returns CState::donor_score().

content_score() returns CState::markov_coding_region_score().

Constructor:
Calls CState constructor with exon name and determines phase_no from exon name.

85

4.6.1.1.3 PolyA

Files: PolyA.h
Inherits from: State, ModelState, CState

Used by: TransitionMatrix, GenomeModel

PolyA
+POLYA_BEGIN_BOUND:const int=5

+PolyA(name: const string&):
+~PolyA():
+begin_score(s: const string&, pos: const int&): int
+end_score(s: const string&, pos: const int&): int
+content_score(s: const string&, start_pos: const int&, end_pos: const int&): int
+length_prob(length: const int&): double
+length_score(length: const int&): double
+get_trans_score(prev_state_name: const string&, post_state_name: const string&): const double

Figure 30. The PolyA Class

PolyA objects are defined at every position in the sequence except the number of bases at

the beginning of the sequence defined by POLYA_BEGIN_BOUND. The Poly A model is a 6-

bp WMM (see Section 2.3.2 for more details).

Attributes:
POLYA_BEGIN_BOUND defined as 5.

Operations:
begin_score() returns 0.

end_score() returns CState::wmm_model() with the Poly A specific
parameters.

content_score() returns 0.

length_prob() returns 1 if length is 6, 0 otherwise.
length_score() returns 0 if length is 6, CState defined ZERO_PROB otherwise.

86

get_trans_score() returns the sum of State::get_prev_trans_score() and

State::get_post_trans_score() minus a correction factor
of 5. The correction factor was derived by a comparison to the

Genscan output.

Constructor:
Calls CState constructor with state name.

87

4.6.1.1.4 Promoter

Files: Promoter.h
Inherits from: State, ModelState. CState

Used by: TransitionMatrix, GenomeModel

Promoter
+TATA_END_BOUND:const int=15
+CAPSITE_BEGIN_BOUND:const int=38
+CAPSITE_END_BOUND:const int=6

+Promoter(name: const string&):
+~Promoter():
+tata_box_score(s: const string&, pos: const int&): int
+begin_score(s: const string&, pos: const int&): int
+end_score(s: const string&, pos: const int&): int
+content_score(s: const string&, start_pos: const int&, end_pos: const int&): int
+real_promoter_score(maximum_tata_box_score: const int&, cap_site_score: const int&): double
+length_prob(length: const int&): double
+length_score(length: const int&): double

Figure 31. The Promoter Class

The promoter model contains two distinct parts separated by between 14 and 20 bases of

intergenic region. The upstream part of the model is the 15-bp TATA box model. The

downstream portion of the model is the 8-bp CAP site. Between these two portions of
the promoter is the 14-20 base pair stretch modeled by the intergenic model.

A significant portion of the Promoter score calculation occurs in the ModelTrellis class

operation promoter_detect() (see Section 4.8.1).

Attributes:
TATA_END_BOUND defined as 15.
CAPSITE_BEGIN_BOUND defined as 38.

CAPSITE_END_BOUND defined as 6.

88

Operations:
tata_box_score() returns CState::wmm_model() with the TATA portion of

the parameter file.

begin_score() returns 0.
end_score() returns CState::wmm_model() with the cap site portion of

the parameter file.

content_score() returns 0.
real_promoter_score() returns the result of the promoter mixture model. In the

model, 70% of the promoters contain the TATA-box
structure, which may be at one of seven positions.

length_prob() returns 1 if length is 40, 0 otherwise.

length_score() returns 0 if length is 40, CState defined ZERO_PROB
otherwise.

Constructor:
Calls CState constructor with state name.

89

4.6.1.1.5 SingleExon

Files: SingleExon.h, SingleExon.cpp
Inherits from: State, ModelState, CState

Used by: TransitionMatrix, GenomeModel

SingleExon
-signal_pept_score:int
-overlap_markov_score:int
-rear_markov_score:int

+SingleExon(name: const string&):
+~SingleExon():
+get_frame(length: const int&): int
+begin_score(s: const string&, pos: const int&): int
+end_score(s: const string&, pos: const int&): int
+content_score(s: const string&, start_pos: const int&, end_pos: const int&): int
+real_coding_region_score(): double
+length_prob(length: const int&): double
+length_score(length: const int&): double

Figure 32. The SingleExon Class

Like InitialExon, SingleExon contains the single peptide model. It is implemented in

exactly the same way as InitialExon (see Section 4.6.1.1.1) and will not be described

again. The only difference in the two classes is the return value for the end_score()
function. Here end_score() returns CState::trans_term_score().

90

4.6.1.1.6 TerminalExon

Files: TerminalExon.h, TerminalExon.cpp
Inherits from: State, ModelState, CState

Used by: TransitionMatrix, GenomeModel

TerminalExon
+TerminalExon(name: const string&):
+~TerminalExon():
+get_phase(length: const int&): int
+get_frame(length: const int&): int
+begin_score(s: const string&, pos: const int&): int
+end_score(s: const string&, pos: const int&): int
+content_score(s: const string&, start_pos: const int&, end_pos: const int&): int
+length_prob(length: const int&): double
+length_score(length: const int&): double

Figure 33. The TerminalExon Class

Like the other CState sub-classes, TerminalExon mostly redefines CState virtual

functions to appropriate CState model functions.

Operations:
get_phase() returns 1 if length mod 3 is 2,

2 if length mod 3 is 1,

0 if length mod 3 is 0.

get_frame() same as get_phase().
begin_score() returns CState::acceptor_score().

end_score() returns CState::trans_term_score().
content_score() returns CState::markov_coding_region_score().

Constructor:
Calls CState constructor with exon name.

91

4.6.1.2 DState

Files: DState.h, DState.cpp
Inherits from: State, ModelState

Used by: TransitionMatrix, GenomeModel

DState
-init_prob_value:double
-init_score_value:double
-intron_length:double
-intron_continue_prob:double
-intron_continue_score:double
-intron_stop_prob:double
-intron_stop_score:double

+DState(name: const string&):
+init_prob(): double
+init_score(): double
+set_init_prob(v: const double&): void
+set_geometric_para(v: const double&): void
+length(): double
+continue_prob(): double
+stop_prob(): double
+continue_score(): double
+stop_score(): double

twinscan::ModelState
-nucle_base_index_map:map<char, int>
-forward_strand_direction:bool

+ModelState(model_state_name: const string&):
+nucle_base_index(c: const char&): int
+is_forward_strand(): bool
+set_strand_direction(string: const&): void

Figure 34. The DState Class

The d-states (i.e. non-coding states) in the Twinscan model are much simpler than the c-

states. All are modeled with geometric length distributions. The initial probability and

geometric length parameter are specified in the genome parameter file, all other values
are calculated by DState operations called from one of the Parser class objects.

Attributes:
init_prob_value value from the genome parameter file.

init_score_value 10 log2 (init_prob_value).
intron_length geometric parameter from the genome parameter file.

intron_continue_prob intron_length ÷ (intron_length – 1).
intron_continue_score 10 log2 (intron_continue_prob).

intron_stop_prob 1 ÷ intron_length.

intron_stop_score 10 log2 (intron_stop_prob).

92

Operations:
The following are called from Parser class objects:

set_init_prob() sets attributes associated with init_prob_value.
set_geometric_para() sets attributes associated with intron_length.

Additional operations exist that return each of the attributes.
init_prob()

init_score()

length()

continue_prob()

continue_score()

stop_prob()

stop_score()

Constructor:
Calls ModelState constructor with state name and initializes init_prob_value,
intron_continue_score, and intron_stop_score to zero.

93

4.7 TransitionMatrix

Files: TransitionMatrix.h, TransitionMatrix.cpp
Used by: GenomeModel

TransitionMatrix
StateType

-state_list:map<string,State>

+TransitionMatrix(:):
+enter_state(state: State*): void
+enter_state_transition(in_state: State*, out_state: State*, trans_prob: const double&): void
+get_state(name: const string&): StateType
+state_list_begin(): TransitionMatrixIter
+state_list_end(): TransitionMatrixIter
+state_number(): int

TransitionMatrixIter
-curr:map<string,State>::iterator

+operater++(): TransitionMatrixIter&
+operator==(i: TransitionMatrixIter, j: TransitionMatrixIter): bool
+operator!=(i: TransitionMatrixIter, j: TransitionMatrixIter): bool
+operator*(): StateType

Figure 35. The TransitionMatrix Class

The TransitionMatrix class is responsible for managing the states, but it is not

responsible for their creation or destruction. After the states have been instantiated,
information regarding the state name and its allowed transitions is added to the lone

attribute state_list.

TransitionMatrix is parameterized based on whether the states are CState objects or

DState objects. Two instances of the TransitionMatrix class are the only attributes of
the GenomeModel class. Within the class definition a specialized iterator class is also

defined.

Attribute:
state_list a map from state names to State class objects.

94

Operations:
enter_state_transition() calls State::push_back_post_state() and

State::push_back_prev_state() to store transition
information within the State class objects.

enter_state() adds a state to state_list.

get_state() returns State class object given a state name.
state_number() returns the number of states.

The following operations as well as the TransitionMatrixIter class give iterator
functionality to state_list:

state_list_begin()

state_list_end()

95

4.8 Trellis
Files: Trellis.h

Used by: ModelTrellis, NonConsViterbi, UtrCdsViterbi, SpsConsViterbi

Trellis
-score_matrix:Matrix<CellType>

+Trellis(length: int, width: int):
+set_cell(row: int, column: int, value: double): void
+get_cell(row: int, column: int): CellType&

Figure 36. The Trellis Class

Trellis is the base class for the Viterbi objects that are actually instantiated. The
attribute is the actual trellis matrix constructed of Cell class objects in a Matrix class

data structure. Operations are available to set the Cell object’s value and to return an

individual Cell object. The Trellis constructor sets the state_map and residue_map
attributes of each Cell object.

96

4.8.1 ModelTrellis

Files: ModelTrellis.h, ModelTrellis.cpp
Inherits from: Trellis

Parent of: NonConsViterbi, UtrCdsViterbi, SpsConsViterbi

ModelTrellis is one of the largest and most functional classes. A large portion of the

methods used by NonConsViterbi, UtrCdsViterbi, and SpsConsViterbi are

implemented here. The major goal of ModelTrellis is to find, score, and store all of the
possible exons. As such, the most important ModelTrellis data structure is

forward_exon_info, a length-of-the-sequence vector containing a list of ExonInfo
objects at each position in the sequence. All possible exons are stored in

forward_exon_info.

The operations and attributes in ModelTrellis support a “two-pass” methodology for

scoring all possible exons. The forward and reverse strands are scored separately using
sequence and complement_sequence, respectively (the reverse strand is scored first).

This allows much of the same computational machinery to be used for both strands,

although the controlling functions detect_reverse_exon_begin()
detect_forward_exon_end() are strand specific.

Additional data structures store the scores associated with the biological signals and the

coding region.

97

ModelTrellis
-d_state_to_index:map<DState* int>
-index_to_d_state:vector<DState*>
-exon_begin_pos:map<CState*,list<int>>
#model:GenomeModel*
#sequence:string*
#complement_sequence:string*
#forward_exon_info:exon_vec*
-begin_score_saved:map<CState*,ivec*>*
-end_score_saved:map<CState*,ivec*>*
-term_exon_begin:Matrix<bool>*
-sngl_exon_begin:vector<bool>*
-tata_box_score_saved:vector< int>*
-coding_score_saved:Matrix< int>*
#intergenic_ptr:DState*
#forward_intr_exon_0:InternalExon*
#forward_intr_exon_1:InternalExon*
#forward_intr_exon_2:InternalExon*
#reverse_intr_exon_0:InternalExon*
#reverse_intr_exon_1:InternalExon*
#reverse_intr_exon_2:InternalExon*
#forward_init_exon:InitialExon*
#reverse_init_exon:InitialExon*
#forward_term_exon:TerminalExon*
#reverse_term_exon:TerminalExon*
#forward_sngl_exon:SingleExon*
#reverse_sngl_exon:SingleExon*
#forward_promoter:Promoter*
#reverse_promoter:Promoter*
#forward_polya:PolyA*
#reverse_polya:PolyA*

+ModelTrellis(m: GenomeModel&, s: string&):
+~ModelTrellis():
+set_d_state_index(m: GenomeModel&): void
+d_state(i: const int&): DState*
+d_state_index(d: DState*): int
+remove_begin_pos(state: CState*, pos: const int&): void
+get_begin_pos(state: CState*): list< int>&
+begin_iter(state: CState*): list< int>::iterator
+end_iter(state: CState*): list< int>::iterator
+size_of_begin_list(state: CState*): int
+adjust_phase(state: CState*, phase: const int&, pos: const int&): void
+pre_processing(): void
+detect_forward_exon_begin(pos: const int&): void
+detect_forward_exon_end(pos: const int&): void
+detect_reverse_exon_begin(pos: const int&): void
+detect_reverse_exon_end(pos: const int&): void
+create_exon_info(state: CState*, pos: const int&): void
+get_forward_exon_info(end_pos: const int&): exon_list*
+get_backward_exon_info(begin_pos: const int&): exon_list*
+push_back_exon_info(CState: , : const int, : const int, : const double, : const double*&&): void
+remove_exon(state: const string&, begin_pos: const int&, end_pos: const int&): void
+restore_begin_score(state: CState*, pos: const int&): int
+restore_end_score(state: CState*, pos: const int&): int
+save_begin_score(state: CState*, pos: const int&, value: const int&): void
+save_end_score(state: CState*, pos: const int&, value: const int&): void
+forward_exon_info_vec(): exon_vec*
+set_forward_exon_info(e: exon_vec*): void
+promoter_detect(s: const string&): void
+pre_process_coding_score(s: const string&, phase_no: const int&): void
+restore_coding_score(CState: , : const int, : const int*&&): int

Figure 37. The
ModelTrellis
Class

98

ModelTrellis attributes include pointers to all of the c-states in the model:

DState* intergenic_ptr;

InternalExon* forward_intr_exon_0;

InternalExon* forward_intr_exon_1;

InternalExon* forward_intr_exon_2;

InternalExon* reverse_intr_exon_0;

InternalExon* reverse_intr_exon_1;

InternalExon* reverse_intr_exon_2;

InitialExon* forward_init_exon;

InitialExon* reverse_init_exon;

TerminalExon* forward_term_exon;

TerminalExon* reverse_term_exon;

SingleExon* forward_sngl_exon;

SingleExon* reverse_sngl_exon;

Promoter* forward_promoter;

Promoter* reverse_promoter;

PolyA* forward_polya;

PolyA* reverse_polya;

Other Attributes:
sequence stl::string read as input.
complement_sequence stl::string created by ModelTrellis constructor.

index_to_d_state a vector containing all of the DState objects.

d_state_to_index a map from each DState class object to an integer.
exon_begin_pos a map from each CState class object to a list of

sequence positions that can create valid possible exons.
The size of this list grows at each beginning signal (e.g.

acceptor splice site signal) and shrinks at every stop

codon.
forward_exon_info a size-of-the-sequence vector. Each vector position

99

contains an stl::list of ExonInfo objects.

begin_score_saved a map from each CState class object to a size-of-the-
sequence vector that stores the value returned by

begin_score() for each of the CState subclasses.
end_score_saved a map from each CState class object to a size-of-the-

sequence vector that stores the value returned by

end_score() for each of the CState subclasses.
term_exon_begin a size-of-the-sequence by three Matrix object used to

prevent identical terminal exons from being stored in
forward_exon_info. The matrix structure is required

because of the three reading frames.

sngl_exon_begin a size-of-the-sequence vector to prevent identical single
exons from being stored in forward_exon_info.

tata_box_score_saved a size-of-the-sequence vector for storing TATA scores.

coding_score_saved a size-of-the-sequence by three Matrix object used to
store the running 5th-order Markov coding score for

each of the three reading frames.
THRESHOLD defined as –100. Biological signals with values less

than this value will not be considered.

Operations:
set_d_state_index() creates index_to_d_state from the GenomeModel

class object.

d_state_index() returns d_state_to_index.

get_begin_pos() returns exon_begin_pos.
size_of_begin_list() returns the number of values in exon_begin_pos.

begin_iter() returns the first list::iterator of exon_begin_pos.
end_iter() returns the last list::iterator of exon_begin_pos.

adjust_phase() removes values from exon_begin_pos to prevent exons

with in-frame stop codons from being included in
forward_exon_info. From begin_iter() to

100

end_iter(), if the observed stop codon would be in-

frame, the possible begin position is removed.
pre_processing() the major operation of ModelTrellis. First for

complement_sequence and then for sequence, calls
promoter_detect(), pre_process_coding_score()

with each of the three phases,

detect_*_exon_begin() and detect_*_exon_end().
Also initializes every element of term_exon_begin

and sngl_exon_begin to false.
detect_forward_exon_begin()

detect_reverse_exon_begin()

find the signals that begin possible exons (i.e.

translation initiation at the start of initial and single
exons and the acceptor site at the start of the internal

and terminal exons) and store their scores and positions.

These controlling functions call other methods (as
described below) with the c-state pointers and

sequence or complement_sequence as appropriate to
the forward or reverse strand.

- Poly A State: Calls save_begin_score() with 0

- Promoter State: Determines maximum_tata_score by
comparing the value stored by tata_box_score_saved

at the sequence index that parameterizes these functions
and the next 5 index positions. If

maximum_tata_score is greater than THRESHOLD,

save_begin_score() is called and the sequence index
position is stored in exon_begin_pos for *_promoter.

- Internal and Terminal Exon States: If

InternalExon::begin_score() is greater than
THRESHOLD, save_begin_score() is called and the

sequence index position is stored in exon_begin_pos

101

for *_intr_exon_0, *_intr_exon_1, *_intr_exon_2,

*_term_exon.
- Initial and Single Exons States: If

InitialExon::begin_score() is greater that
THRESHOLD, save_begin_score() is called and the

sequence index position is stored in exon_begin_pos

for *_init_exon and *_sngl_exon.
detect_forward_exon_end()

detect_reverse_exon_end()

find the signals that end possible c-states (i.e.

translation termination at the start of terminal and single
exons and the donor site at the end of the initial and

internal exons) and call functions to store their scores
and c-state information. These controlling functions

call other methods (as described below) with the c-state

pointers and sequence or complement_sequence as
appropriate to the forward or reverse strand.

- Poly A State: If PolyA::end_score() is greater than
THRESHOLD, both save_end_score() and

create_exon_info() are called for *_polya.

- Promoter State: If Promoter::end_score() is greater
than THRESHOLD, both save_end_score() and

create_exon_info() are called for *_promoter.
- Internal and Initial Exon States: If

InternalExon::end_score() is greater than

THRESHOLD, both save_end_score() and
create_exon_info() are called for *_intr_exon_0,

*_intr_exon_1, *_intr_exon_2, and *_init_exon.

- Terminal and Single Exon States: If
TerminalExon::end_score() is greater than

THRESHOLD, both save_end_score() and

102

create_exon_info() are called for *_term_exon and

*_sngl_exon.
create_exon_info() a complex function that organizes the information about

each c-state and calls push_back_exon_info().
get_forward_exon_info() returns forward_exon_info.

push_back_exon_info() a complex function that determines exon_score,

creates a new ExonInfo object if exon_score >
EXON_THRESHOLD, and adds the ExonInfo object to

forward_exon_info.
remove_exon() removes a possible exon from forward_exon_info.

restore_begin_score() returns begin_score_saved for the given CState

object and sequence index.
restore_end_score() returns end_score_saved for the given CState object

and sequence index.

save_begin_score() stores value for given CState object and sequence
index in begin_score_saved.

save_end_score() stores value for given CState object and sequence
index in end_score_saved.

promoter_detect() calls CState::tata_box_score() at every position in

the sequence except the 40 bases at each end of the
sequence. Saves the return result in

tata_box_score_saved.
pre_process_coding_score() calls CState::get_single_markov_score() with the

first five bases in the sequence and the phase parameter.

Continues along sequence, one base at a time, calling
CState::get_single_markov_score() with

consecutive, overlapping 6-mers and with successive
phase values. The return value added to the value at the

previous position and saved for each sequence index in

coding_score_saved. Thus the coding score between
and two sequence positions is the difference between

103

the their coding_score_saved values. Compare to

UtrCdsViterbi::pre_process_forward_conserve_score().

restore_coding_score() returns the coding score of an exon when given the start

and end points of the exon. The score is calculated
from six bases beyond the start point to three bases

before the end point. Exons less than 9 base pairs are
assigned score 0.

Constructor:
Calls Trellis constructor with number of d-states and the size of the sequence. Creates

pointers to the target sequence and to the GenomeModel class object. Calls
set_d_state_index(). Creates complement_sequence. Allocates memory for the

following attributes

forward_exon_info

term_exon_begin

sngl_exon_begin

begin_score_saved

end_score_saved

coding_score_saved

tata_box_score_saved

term_exon_begin

begin_score_saved

end_score_saved

Casts all of the object pointers for the CState subclasses and calls pre_processing().

104

4.8.1.1 NonConsViterbi

Files: NonConsViterbi.h, NonConsViterbi.cpp
Inherits from: Trellis, ModelTrellis

Parent of: UtrCdsViterbi, SpsConsViterbi

NonConsViterbi
-optimal_path:list<ExonInfo*>

+operator<<(ostream: , NonConsViterbi: const&&): ostream&
+NonConsViterbi(m: GenomeModel&, s: string&):
+maximum(vec: const vector< max_pair>&): max_pair
+real_exon_score(exon_info: ExonInfo*): double
+real_intron_score(post_state_ptr: DState*, pos: const int&): double
+cal_trellis_cell(position: const int&, state: DState*): viterbi_type
+set_cell_path(state: DState*, position: const int&, prev_cell: ViterbiCell*): void
+set_optimal_path(name: const string&, begin_pos: const int&, end_pos: const int&): void
+viterbi_algorithm(startfrom: const int&): void
+trace_back(): bool

ModelTrellis<ViterbiCell>

Figure 38. The NonConsViterbi Class

NonConsViterbi contains the code for the Viterbi algorithm as well as the trace back.

As such, much of the computation time is spent here. The trace_back() function

contains almost all of the code to deal with unexpected in-frame stop codons. The only
attribute, optimal_path, stores the gene prediction. The gene prediction is output by the

overloaded << operator.

Attribute:
optimal_path an stl:list of ExonInfo objects.

105

Operations:
viterbi_algorithm() dynamic programming algorithm. The initialization step calls

 Trellis::set_cell() with the sum of the return values from

DState::init_score() and DState::continue_score().
The induction step calls call_trellis_cell(),

Trellis::set_cell(), and set_cell_path() for every cell

in the trellis matrix. The function may be called multiple times
if in-frame stop codons are found by trace_back(). In these

cases, viterbi_algorithm() will be called from some
intermediate point in the sequence and the initialization step is

not performed.

trace_back() actually determines and stores the optimal parse (see Sections
2.8 and 3.8) of the sequence after the calculations of

viterbi_algorithm(). This operation has the additional task

of ensuring that in-frame stop codons are not introduced across
splice site boundaries. The tasks of optimal parse storage and

in-frame stop codon avoidance will be described separately.
For the optimal parse the ViterbiCell object associated with

the final d-state of the highest scoring path is determined with

maximum() at the final sequence index. Starting from the final
cell, the most-likely path will either continue in the same d-

state to the ViterbiCell object at the previous sequence index
or transition through an allowed c-state to a ViterbiCell

object representing the same or another d-state (see Chapter 2).

A c-state transition occurs if the value for
Cell::get_residue_map() of the current

ViterbiCell::get_path() is not the previous sequence index
value. Each c-state transition found results in a call to

set_optimal_path(). To prevent gene-structure predictions

with in-frame stop codons, after the discovery of each c-state
transition, the top ExonInfo object of optimal_path is

106

queried. Based on the c-state name, the appropriate number of

bases from the exons on each side of the intron is combined to
form the in-frame codon across the splice site. If this codon is

one of the three stop codons, ModelTrellis::remove_exon()
is called with the ExonInfo object with the lower return value

of ExonInfo::get_exon_score(). After the ExonInfo object

is removed from ModelTrellis::forward_exon_info,
viterbi_algorithm() is called from the point of the removal.

set_optimal_path() stores the final gene prediction in optimal_path. The lower
sequence index is always assigned to ExonInfo::begin_pos.

set_cell_path() part of viterbi_algorithm() implementation. Calls

ViterbiCell::set_path() with current cell.
call_trellis_cell() returns the value and index of the most probable exon or the

value and index of the previous cell. This is accomplished at

each sequence index by iterating through the list returned by
ModelTrellis::get_forward_exon_info() to find those c-

states (if any) compatible with each d-state. For each d-state,
the maximum score of the compatible c-states is compared

with the return value of real_intron_score(). The

information associated with the larger of these scores is
returned.

real_intron_score() returns the value of Cell::get_cell_value() from the
previous cell in the same row of the trellis added to the value

returned by DState::continue_score() for the d-state

associated with the current trellis row.
maximum() returns the maximum value and index of a vector.

operator<< prints the gene prediction (i.e. optimal parse)
to standard out in a format that is “parsably-equivalent” to

Genscan’s output. This operator is defined as a friend to

NonConsViterbi.

107

Constructor:
Calls the ModelTrellis class constructor with ViterbiCell template and a reference to
both the GenomeModel class object and the target DNA sequence.

108

4.8.1.1.1 UtrCdsViterbi

Files: UtrCdsViterbi.h, UtrCdsViterbi.cpp
Inherits from: Trellis, ModelTrellis, NonConsViterbi

Used by: SpsConsViterbi

UtrCdsViterbi
#utr_cds_model:UtrCdsModel*
#cons_sequence:string*
#reverse_cons_sequence:string*
#forward_cds_cons_score:vector< int>*
#reverse_cds_cons_score:vector< int>*

+UtrCdsViterbi(g_model: GenomeModel&, c_model: UtrCdsModel&, target_seq: string&, cons_seq: string&):
+~UtrCdsViterbi():
+pre_process_forward_conserve_score(): void
+pre_process_reverse_conserve_score(): void
+get_forward_cds_cons_score(begin_pos: const int&, end_pos: const int&): int
+get_reverse_cds_cons_score(begin_pos: const int&, end_pos: const int&): int
+real_exon_score(exon_info: ExonInfo*): double
+real_intron_score(post_state_ptr: DState*, pos: const int&): double

twinscan::NonConsViterbi
-optimal_path:list<ExonInfo*>

+operator<<(ostream: , NonConsViterbi: const&&): ostream&
+NonConsViterbi(m: GenomeModel&, s: string&):
+maximum(vec: const vector< max_pair>&): max_pair
+real_exon_score(exon_info: ExonInfo*): double
+real_intron_score(post_state_ptr: DState*, pos: const int&): double
+cal_trellis_cell(position: const int&, state: DState*): viterbi_type
+set_cell_path(state: DState*, position: const int&, prev_cell: ViterbiCell*): void
+set_optimal_path(name: const string&, begin_pos: const int&, end_pos: const int&): void
+viterbi_algorithm(startfrom: const int&): void
+trace_back(): bool

Figure 39. The UtrCdsViterbi Class

The UtrCdsViterbi class contains the attributes that store the conservation sequence and

the reverse conservation sequence. In contrast to the DNA sequence where the reverse
strand contains bases complementary to the forward strand (i.e. A on the forward strand

is T on the reverse strand), conservation sequence is identical on both strands. Thus, for

109

the reverse strand the DNA sequence is both reversed and complemented, while the

conservation sequence is simply reversed.

Attributes:
cons_sequence the conservation sequence read in from file.

reverse_cons_sequence reversed cons_sequence.

forward_cds_cons_score a length-of-the-sequence vector containing the
running sum of the forward strand coding sequence

conservation score.
reverse_cds_cons_score a length-of-the-sequence vector containing the

running sum of the reverse strand coding sequence

conservation score.

Operations:
pre_process_forward_conserve_score()

pre_process_reverse_conserve_score()

These operations work in a similar manner to

ModelTrellis::pre_processing(). In this case
UtrCdsModel::cds_cons_score() is called

repeatedly with overlapping 6-mers of conservation

symbols starting with the 6th position in the
sequence. The return value added to the value at

the previous position and saved for each sequence
index in forward_cds_cons_score or

reverse_cds_cons_score depending on the

function. Thus the conservation score between any
two sequence positions is the difference between

the their *_cds_cons_score values.

get_forward_cds_cons_score() returns the difference between two index positions
in forward_cds_cons_score.

110

get_reverse_cds_cons_score() returns the difference between two index positions

in reverse_cds_cons_score.
real_exon_score() returns the total exon score including the

information from the genome and coding sequence
conservation model. Based on the name of the exon

and its strand designation, the appropriate

conservation score is added to the value returned by
NonConsViterbi::real_exon_score(). (See

Figure 5 for details about the association between
conservation models and exons.) Also calls

ExonInfo::set_exon_score() with the return

value. This version of the function is superceded by
the version in SpsConsViterbi when the full

conservation model is used.

real_intron_score() returns the total intron score for the 5’ UTR state
and the 3’ UTR state by adding the return value

from NonConsViterbi::real_intron_score() to
the value returned by

UtrCdsModel::get_utr_score().

Constructor:
Calls the NonConsViterbi constructor and assigns utr_cds_model and cons_sequence.
Creates reverse_cons_sequence and allocates memory for forward_cds_cons_score

and reverse_cds_cons_score. Calls pre_process_forward_conserve_score() and
pre_process_reverse_conserve_score().

111

4.8.1.1.1.1 SpsConsViterbi

Files: SpsConsViterbi.h, SpsConsViterbi.cpp
Inherits from: Trellis, ModelTrellis, NonConsViterbi, UtrCdsViterbi

SpsConsViterbi
-sps_cons_model:SpsConsModel*
-forward_init_cons_score:vector< int>*
-reverse_init_cons_score:vector< int>*
-forward_term_cons_score:vector< int>*
-reverse_term_cons_score:vector< int>*
-forward_acc_cons_score:vector< int>*
-reverse_acc_cons_score:vector< int>*
-forward_donor_cons_score:vector< int>*
-reverse_donor_cons_score:vector< int>*

+SpsConsViterbi(g_model: GenomeModel&, c_model: SpsConsModel&, target_seq: string&, cons_seq: string&):
+~SpsConsViterbi():
+pre_process_init_cons_score(): void
+pre_process_term_cons_score(): void
+pre_process_acc_cons_score(): void
+pre_process_donor_cons_score(): void
+real_exon_score(exon_info: ExonInfo*): double

twinscan::UtrCdsViterbi
#utr_cds_model:UtrCdsModel*
#cons_sequence:string*
#reverse_cons_sequence:string*
#forward_cds_cons_score:vector< int>*
#reverse_cds_cons_score:vector< int>*

+UtrCdsViterbi(g_model: GenomeModel&, c_model: UtrCdsModel&, target_seq: string&, cons_seq: string&):
+~UtrCdsViterbi():
+pre_process_forward_conserve_score(): void
+pre_process_reverse_conserve_score(): void
+get_forward_cds_cons_score(begin_pos: const int&, end_pos: const int&): int
+get_reverse_cds_cons_score(begin_pos: const int&, end_pos: const int&): int
+real_exon_score(exon_info: ExonInfo*): double
+real_intron_score(post_state_ptr: DState*, pos: const int&): double

Figure 40. The SpsConsViterbi Class

112

Like the other Viterbi Trellis classes, almost all of the functionality of SpsConsViterbi

is managed through its constructor. For each of the pre-processing methods, first
cons_sequence and then reverse_cons_sequence is considered. The only redefined

ModelTrellis method is real_exon_score(). All of the attributes are integer vectors
that are the length of the sequence.

Operations:
pre_process_init_cons_score() calculates the score for the translation initiation

signal in the conservation sequence at the
location of every “atg” in the target DNA

sequence. The value is stored at the appropriate

index in forward_init_cons_score or
reverse_init_cons_score. Because of the

length of the signal, the 11 bases at each end are

not considered.
pre_process_term_cons_score() calculates the score for the translation termination

signal in the conservation sequence at the
location of every stop codon in the target DNA

sequence. The value is stored at the appropriate

index in forward_term_cons_score or
reverse_term_cons_score. Because of the

length of the signal, the 5 bases at the start of
the sequence and the 6 bases the end of the

sequence are not considered.

pre_process_acc_cons_score() calculates the score for the acceptor site in the
conservation sequence at the location of every

“ag” in the target DNA sequence. The value is
stored at the appropriate index in

forward_acc_cons_score or

reverse_acc_cons_score. Because of the
length of the signal, the 43 bases at the start of

113

the sequence and the 6 bases the end of the

sequence are not considered.
pre_process_donor_cons_score() calculates the score for the donor site in the

conservation sequence at the location of every
“gt” in the target DNA sequence. The value is

stored at the appropriate index in

forward_donor_cons_score or
reverse_donor_cons_score. Because of the

length of the signal, the 8 bases at the start of
the sequence and the 9 bases the end of the

sequence are not considered.

real_exon_score() returns the total exon score including the
information from the genome and conservation

models. Based on the name of the exon and its

strand designation, the appropriate conservation
scores are added to the value returned by

NonConsViterbi::real_exon_score(). (See
Figure 5 for details about the association

between conservation models and exons.) Also

calls ExonInfo::set_exon_score() with the
return value.

Constructor:
Calls UtrCdsViterbi constructor and assigns sps_cons_model. Allocates memory for

all eight attributes. Calls the following functions:
pre_process_init_cons_score()

pre_process_term_cons_score()

pre_process_acc_cons_score()

pre_process_donor_cons_score()

114

4.9 UtrCdsModel
Files: UtrCdsModel.h, UtrCdsModel.cpp

Used by: SpsConsModel

UtrCdsModel
#cds_cons_score_matrix:Matrix< int>*
#utr_cons_score_matrix:Matrix< int>*
#para_file:string
#mm5_index_map:map<string, int>

+UtrCdsModel(para_file_name: const string):
+~UtrCdsModel():
+read_matrix(keyword: const string&, m: Matrix< int>&): void
+create_mm5_index_map(): void
+cds_cons_score(s: const string&): int
+get_utr_score(s: const string&): int
+int_pow(: const int, : const int&&): int

Figure 41. The UtrCdsModel Class

UtrCdsModel is the base class of the conservation model structure. The conservation
model classes are much simpler than the GenomeModel class. Both UtrCdsModel and its

subclass, SpsConsModel are designed to work closely with GenomeModel.

Attributes:
para_file name of the conservation parameter file.
mm5_index_map a mapping from a sequence of conservation symbols to the

line in the parameter file containing the corresponding

information. Compare to CState::mm5_index_map.
cds_cons_score_matrix

utr_cons_score_matrix

Operations:
read_matrix() reads parameter matrix from the conservation parameter

file. The size of the matrix is known in advance.

115

create_mm5_index_map() create mapping from sequences of conservation symbols to

a line in the parameter matrix. Compare to
CState::create_mm5_index_map().

cds_cons_score() returns appropriate score from the
cds_cons_score_matrix when given 6 conservation

symbols.
get_utr_score() returns appropriate score from the

utr_cons_score_matrix when given 6 conservation

symbols.

Constructor:
Defines the size of the parameter matrices as the value of CON_BITS raised to the fifth

power. Assigns para_file to the name of the conservation parameter file. Calls

create_mm5_index_map().

Allocates memory for the cds_cons_score_matrix and utr_cons_score_matrix.
Reads the data from the conservation parameter file into the attributes using

read_matrix().

116

4.9.1 SpsConsModel

Files: SpsConsModel,h, SpsConsModel.cpp
Inherits from: UtrCdsModel

SpsConsModel
-intron_cons_score_matrix:Matrix< int>*
-trans_init_cons_score_matrix:Matrix< int>*
-trans_term_cons_score_matrix:Matrix< int>*
-acc_site_cons_score_matrix:Matrix< int>*
-donor_site_cons_score_matrix:Matrix< int>*

+SpsConsModel(para_file_name: const string):
+~SpsConsModel():
+mm5_cons_score(string: const, : & int Matrix<>&): int
+wam2_cons_score(string: const, : & int Matrix<>&): int
+init_cons_score(string: const&): int
+term_cons_score(string: const&): int
+acc_cons_score(string: const&): int
+donor_cons_score(string: const&): int

twinscan::UtrCdsModel
#cds_cons_score_matrix:Matrix< int>*
#utr_cons_score_matrix:Matrix< int>*
#para_file:string
#mm5_index_map:map<string, int>

+UtrCdsModel(para_file_name: const string):
+~UtrCdsModel():
+read_matrix(keyword: const string&, m: Matrix< int>&): void
+create_mm5_index_map(): void
+cds_cons_score(s: const string&): int
+get_utr_score(s: const string&): int
+int_pow(: const int, : const int&&): int

Figure 42. The SpsConsModel Class

SpsConsModel contains the data structures for implementing the Twinscan conservation
model. The sizes of the various score matrices are based on the value of CON_BITS. For

all of the biological signals modeled in SpsConsModel, the 5th-order Markov model of

the conservation sequence in intron sequence is used as the null model. Thus, the
conservation score returned for the translation initiation and termination signals is the

117

5th-order Markov score from the signal model subtracted by the 5th-order Markov score

from the intron model. For the case of the splice site models, the score returned is the
score from signal-specific second-order WAM model subtracted by the 5th-order Markov

score from the intron model.

Attributes:
intron_cons_score_matrix

trans_init_cons_score_matrix

trans_term_cons_score_matrix

acc_site_cons_score_matrix

donor_site_cons_score_matrix

Operations:
mm5_cons_score() returns the score given a sequence and a 5th-order Markov

model parameter matrix.

wam2_cons_score() returns the score given a sequence and a second order Weight
Array Model parameter matrix.

init_cons_score() returns the mm5_cons_score() from the

trans_init_cons_score_matrix subtracted by the
mm5_cons_score() from the intron_cons_score_matrix.

term_cons_score() returns the mm5_cons_score() from the
trans_term_cons_score_matrix subtracted by the

mm5_cons_score() from the intron_cons_score_matrix.

acc_cons_score() returns the wam2_cons_score() from the
acc_site_cons_score_matrix subtracted by the

mm5_cons_score() from the intron_cons_score_matrix.

donor_cons_score() returns the wam2_cons_score() from the
donor_site_cons_score_matrix subtracted by the

mm5_cons_score() from the intron_cons_score_matrix.

118

Constructor:
Calls UtrCdsModel constructor with the name of the file containing the conservation
parameters. Allocates memory for all of the SpsConsModel attributes and reads the data

from the conservation parameter file into the attributes using
UtrCdsModer::read_matrix().

119

Chapter 5
Known Bugs and Other Information
1. In rare cases (approximately 1 in 4000 predictions on the human genome) Twinscan

will predict genes that do not translate in any frame. In these cases the phase is

inconsistent across the exons. This may be a rare trace back problem, but its actual cause
and location are not currently known.

2. In the Genscan compatibility mode, Twinscan does not predict promoters at the same

locations as Genscan. In addition, some exons do not get the same score as they do in

Genscan. This is believed to be associated with long introns. We have shown that these
minor differences do not significantly alter performance (Korf et al. 2001).

120

Glossary of Terms

aggregation – a specific type of association in which one class is a component of
another.*

association – a relationship between two classes.*

attribute – a property of a class. An attribute describes a range of values the property
may hold in objects.*

class – a category or group of things that have similar attributes and common behavior;

it’s a template for creating objects.*

codon – sequences of three consecutive nucleotides in DNA or mRNA that specifies a
particular amino acid during protein synthesis.+

conservation bits – number of distinct symbols in the conservation sequence.
exon – segments of a eukaryotic gene that reach the cytoplasm as a part of a mature

mRNA+

fasta format – a standard format for biological sequence information consisting of an
initial single line description beginning with the greater-than symbol (“>”) followed by

line of sequence data.

genome – total genetic information carried by an organism.+

GFF – General Feature Format: a protocol to transfer biological sequence annotation
information (Durbin and Haussler).

GTF – Gene Transfer Format. A restrictive subset of GFF.
intron – part of the DNA encoding a gene that is removed by splicing during RNA

processing and is not included in the mature, functional mRNA.+

mRNA (messenger RNA) – any RNA that specifies the order of amino acids in a

protein. It is produced by transcription of DNA.+

object – an instance of a class that has values for each of the class’s attributes.*

* Definition taken or adapted from Schmuller Schmuller, J. 2002. Sams Teach Yourself
UML in 24 Hours. Sams Publishing, Indianapolis, Indiana.
+ Definition taken or adapted from Lodish et al. Lodish, H.F., A. Berk, S.L. Zipursky, p.
Matsudaira, D. Baltimore, and J. Darnell. 2000. Molecular cell biology. W.H. Freeman,
New York.

121

proteome – the complete catalog of all of an organism’s proteins.

read – the sequence of a small piece of DNA.
synteny – the conservation of gene order between two species.

transcription – process whereby one strand of a DNA molecule is used as a template for
synthesis of an mRNA.+

translation – the production of a polypeptide chain whose amino acid sequence is

specified by an mRNA.+

122

Acknowledgments

I’d like to thank the following for their help and support during the course of this project.
Melissa Norton provided unending support including comments on early drafts of this

document. Michael Brent and Ian Korf developed many of the critical ideas that made

Twinscan a reality. Daniel Duan wrote most of the code bases’ initial classes. Matt
Snover created the first usable version of Twinscan.cpp to tie together all of the

probability models. Chris Burge answered just about every question we asked (which
wasn’t too many) and his answers were instrumental in getting the scoring for the initial

exon correct. All of the UML diagrams were created with Object Plant 3.1.x (Arctaedius

2002). Twinscan is currently developed using Project Builder on Mac OS X.

123

References

GTF2: Mouse/Human Annotation Collaboration: Submission Format.
Adams, M.D. S.E. Celniker R.A. Holt C.A. Evans J.D. Gocayne P.G. Amanatides S.E.

Scherer P.W. Li R.A. Hoskins R.F. Galle R.A. George S.E. Lewis S. Richards M.
Ashburner S.N. Henderson G.G. Sutton J.R. Wortman M.D. Yandell Q. Zhang
L.X. Chen R.C. Brandon Y.H. Rogers R.G. Blazej M. Champe B.D. Pfeiffer K.H.
Wan C. Doyle E.G. Baxter G. Helt C.R. Nelson G.L. Gabor J.F. Abril A.
Agbayani H.J. An C. Andrews-Pfannkoch D. Baldwin R.M. Ballew A. Basu J.
Baxendale L. Bayraktaroglu E.M. Beasley K.Y. Beeson P.V. Benos B.P. Berman
D. Bhandari S. Bolshakov D. Borkova M.R. Botchan J. Bouck P. Brokstein P.
Brottier K.C. Burtis D.A. Busam H. Butler E. Cadieu A. Center I. Chandra J.M.
Cherry S. Cawley C. Dahlke L.B. Davenport P. Davies B. de Pablos A. Delcher
Z. Deng A.D. Mays I. Dew S.M. Dietz K. Dodson L.E. Doup M. Downes S.
Dugan-Rocha B.C. Dunkov P. Dunn K.J. Durbin C.C. Evangelista C. Ferraz S.
Ferriera W. Fleischmann C. Fosler A.E. Gabrielian N.S. Garg W.M. Gelbart K.
Glasser A. Glodek F. Gong J.H. Gorrell Z. Gu P. Guan M. Harris N.L. Harris D.
Harvey T.J. Heiman J.R. Hernandez J. Houck D. Hostin K.A. Houston T.J.
Howland M.H. Wei C. Ibegwam M. Jalali F. Kalush G.H. Karpen Z. Ke J.A.
Kennison K.A. Ketchum B.E. Kimmel C.D. Kodira C. Kraft S. Kravitz D. Kulp
Z. Lai P. Lasko Y. Lei A.A. Levitsky J. Li Z. Li Y. Liang X. Lin X. Liu B. Mattei
T.C. McIntosh M.P. McLeod D. McPherson G. Merkulov N.V. Milshina C.
Mobarry J. Morris A. Moshrefi S.M. Mount M. Moy B. Murphy L. Murphy D.M.
Muzny D.L. Nelson D.R. Nelson K.A. Nelson K. Nixon D.R. Nusskern J.M.
Pacleb M. Palazzolo G.S. Pittman S. Pan J. Pollard V. Puri M.G. Reese K. Reinert
K. Remington R.D. Saunders F. Scheeler H. Shen B.C. Shue I. Siden-Kiamos M.
Simpson M.P. Skupski T. Smith E. Spier A.C. Spradling M. Stapleton R. Strong
E. Sun R. Svirskas C. Tector R. Turner E. Venter A.H. Wang X. Wang Z.Y.
Wang D.A. Wassarman G.M. Weinstock J. Weissenbach S.M. Williams
WoodageT K.C. Worley D. Wu S. Yang Q.A. Yao J. Ye R.F. Yeh J.S. Zaveri M.
Zhan G. Zhang Q. Zhao L. Zheng X.H. Zheng F.N. Zhong W. Zhong X. Zhou S.
Zhu X. Zhu H.O. Smith R.A. Gibbs E.W. Myers G.M. Rubin and J.C. Venter.
2000. The genome sequence of Drosophila melanogaster. Science 287: 2185-
2195.

Arctaedius, M. 2002. Object Plant, Stockholm.
Bernal, A., U. Ear, and N. Kyrpides. 2001. Genomes OnLine Database (GOLD): a

monitor of genome projects world-wide. Nucleic Acids Research 29: 126-127.
Bernardi, G. 1989. The isochore organization of the human genome. Annual Review of

Genetics 23.
Bernardi, G. 2000. Isochores and the evolutionary genomics of vertebrates. Gene 241: 3-

20.
Bernardi, G., B. Olofsson, J. Filipski, M. Zerial, J. Salinas, G. Cuny, M. Meunier-Rotival,

and F. Rodier. 1985. The mosiac genome of warm-blooded vertebrates. Science
228: 953-958.

124

Bucher, P. 1990. Weight matrix descriptions of four eukaryotic RNA polymerase II
promoter elements derived from 502 unrelated promoter sequences. J Mol Biol
212: 563-578.

Burge, C. New GENSCAN Web Server at MIT.
Burge, C. 1997. Identification of genes in human genomic DNA. Stanford University.
Burge, C. and S. Karlin. 1997. Prediction of Complete Gene Structures in Human

Genomic DNA. Journal of Molecular Biology 268: 78-94.
Crollius, H.R., O. Jaillon, C. Dasilva, C. Ozouf-Costaz, C. Fizames, C. Fischer, L.

Bouneau, A. Billault, F. Quetier, W. Saurin, A. Bernot, and J. Weissenbach. 2000.
Characterization and repeat analysis of the compact genome of the freshwater
pufferfish Tetraodon nigroviridis. Genome Res 10: 939-949.

Durbin, R., S. Eddy, A. Krogh, and G. Mitchenson. 1998. Biological Sequence Analysis.
Cambridge University Press.

Durbin, R. and D. Haussler. The Sanger Institute: GFF.
Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics 14: 755-763.
Fickett, J.W. and C.S. Tung. 1992. Assessment of protein coding measures. Nucleic Acids

Res 20: 6441-6450.
Flicek, P., E. Keibler, P. Hu, I. Korf, and M.R. Brent. 2003. Leveraging the Mouse

Genome for Gene Prediction in Human: From Whole-Genome Shotgun Reads to
a Global Synteny Map. Genome Research 13.

Gish, W. 2002. WU-BLAST Archives.
International Human Genome Sequencing Consortium. 2001. Initial sequencing and

analysis of the human genome. Nature 409: 860-921.
Korf, I., P. Flicek, D. Duan, and M.R. Brent. 2001. Integrating Genomic Homology into

Gene-structure Prediction. Bioinformatics 17: S140-S148.
Kyrpides, N.C. 1999. Genomes OnLine Database (GOLD): a monitor of complete and

ongoing genome projects world-wide. Bioinformatics 15: 773-774.
Lippman, S.B. and J. Lajoie. 1998. C++ Primer. Addison-Wesley, Reading,

Massachusetts.
Lodish, H.F., A. Berk, S.L. Zipursky, p. Matsudaira, D. Baltimore, and J. Darnell. 2000.

Molecular cell biology. W.H. Freeman, New York.
Mitchell, T.M. 1997. Machine Learning. McGraw-Hill, New York.
Mouse Genome Sequencing Consortium. 2002. Initial Sequencing and Comparative

Analysis of the Mouse Genome. Nature 420: 520-562.
Salzberg, S. 1997. A method for identifying splice sites and translational start sites in

eukaryotic mRNA. Computer Applications in the Biosciences 13: 365-376.
Sanger, F. and A.R. Coulson. 1978. The use of thin acrylamide gels for DNA sequencing.

FEBS Lett 87: 107-110.
Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating

inhibitors. Proc Natl Acad Sci U S A 74: 5463-5467.
Schmuller, J. 2002. Sams Teach Yourself UML in 24 Hours. Sams Publishing,

Indianapolis, Indiana.
The C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C.

elegans: a platform for investigating biology. Science 282: 2012-2018.
Venter, J.C., M.D. Adams, and others. 2001. The sequence of the Human Genome.

Science 291: 1304-1351.

125

Watson, J.D. and F.H.C. Crick. 1953. Molecular Structure of Nucleic Acids: A Structure
for Deoxyribose Nucleic Acid. Nature 171: 737-738.

Zhang, M.Q. 2002. Computational prediction of eukaryotic protein-coding genes. Nat
Rev Genet 3: 698-709.

Zhang, M.Q. and T.G. Marr. 1993. A weight array method for splicing signal analysis.
Comput Appl Biosci 9: 499-509.

126

Appendix A
Integrating genomic homology into gene-structure prediction.

Ian Korf, Paul Flicek, Daniel Duan, and Michael R. Brent.
Bioinformatics. 17(S1). S140-S148. 2001.

136

Appendix B
Leveraging the mouse genome for gene prediction in human: from whole-genome
shotguns reads to a global synteny map.
Paul Flicek, Evan Keibler, Ping Hu, Ian Korf, and Michael R. Brent.
Genome Research. 13(1). 46-54. 2003.

146

Class Index
Cell ...48

CState ...75

DState ...91
ExonInfo ...51

GenomeModel...55

InitialExon ..82
InternalExon..84

Matrix ...57
ModelCell ...49

ModelState ..74

ModelTrellis..96
NonConsViterbi ..104

ParaParser ...59
Parser ..58

PolyA..85

Promoter ...87
SingleExon..89

SmatParser ..67
SpsConsModel ..116

SpsConsViterbi ...111

State ..72
TerminalExon ...90

TransitionMatrix ...93
Trellis..95

UtrCdsModel...114

UtrCdsViterbi..108
ViterbiCell ..50

	Twinscan: A Software Package for Homology-Based Gene Prediction
	Recommended Citation
	Twinscan: A Software Package for Homology-Based Gene Prediction

	tmp.1471023011.pdf.idHnJ

	Abstract: Abstract: A complete mapping from genome to proteome would constitute a foundation for genome-based biology and provide targets for pharmaceutical and therapeutic intervention. This is one reason gene structure prediction has been a major subfield of computational biology for over 20 years. Many of the widely used gene prediction systems were developed in the 1990s and are unable to take advantage of the revolution in comparative genomics brought on by the sequencing of the entire genomes of an increasing numbers of vertebrates. Twinscan is a new system for high-throughput gene-structure prediction that exploits the patterns of conservation observed in alignments between a target genomic sequence and its homologous sequence in other organisms. The approach employs a symbolic conservation sequence that effectively combines many local alignments into a single global alignment. This has several important properties that make Twinscan particularly useful for high-throughput gene prediction. For mammals, Twinscan has been shown to be significantly more accurate and reliable by all measures than any non-comparative genomic method.

Twinscan is based on, and includes as a component, the same hidden Markov model topology as Genscan, a popular non-homology based gene prediction program. Twinscan has an object-oriented design and is implemented in the C++ programming language. Twinscan™s three major components consist of probabilistic models of both the DNA sequence and the conservation sequence as well as a dynamic programming framework. Both the models and the computational structure are complicated aggregate classes. In this report, the design and implementation of Twinscan is described at the source-code level for the first time.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: February 14, 2003
	Author: Authors: Flicek, Paul
	Title: Twinscan: A Software Package for Homology-Based Gene Prediction
	ReportNumber: 2003-8
	DepartmentName: Department of Computer Science & Engineering

