Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-77

2003-11-25

Hardware-Based Dynamic Storage Management for High-
Performance and Real-Time Systems

Victor H. Lai

Most modern application programs depend on dynamic storage management to handle
allocation and deallocation of memory. Unfortunately conventional software-based storage
managers are relatively low performance due to the latency associated with accessing DRAM
memory. Consequently, developers of programs with very specialized memory requirements,
such a real-time systems, often choose to manage memory manually at the application-code
level. This practice can greatly increase performance but it can also significantly complicate the
development process. In this thesis we present the design, VHDL implementation and
performance evaluation of hardware-based storage manager called the Optimized Hardware
Estranged Buddy System (OHEBS). The OHEBS implements... Read complete abstract on page
2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Lai, Victor H., "Hardware-Based Dynamic Storage Management for High-Performance and Real-Time
Systems" Report Number: WUCSE-2003-77 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1123

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1123?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1123

Hardware-Based Dynamic Storage Management for High-Performance and Real-
Time Systems

Victor H. Lai

Complete Abstract:

Most modern application programs depend on dynamic storage management to handle allocation and
deallocation of memory. Unfortunately conventional software-based storage managers are relatively low
performance due to the latency associated with accessing DRAM memory. Consequently, developers of
programs with very specialized memory requirements, such a real-time systems, often choose to manage
memory manually at the application-code level. This practice can greatly increase performance but it can
also significantly complicate the development process. In this thesis we present the design, VHDL
implementation and performance evaluation of hardware-based storage manager called the Optimized
Hardware Estranged Buddy System (OHEBS). The OHEBS implements four distinct hardware-specific
optimizations, as well as an algorithmic optimization, to greatly enhance storage management
performance. The system is general-purpose, yet offers exceptionally good average-case performance
and ensures that the worst-case execution times of storage-management instructions are reasonably
bounded, making it a prime candidate for use with both high-performance and real-time applications.

https://openscholarship.wustl.edu/cse_research/1123?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1123?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-77

Hardware-Based Dynamic Storage Management for High-Performance
and Real-Time Systems - Master's Thesis, December 2003

Authors: Lai, Victor H.

November 25, 2003

Abstract: Most modern application programs depend on dynamic storage management

to handle allocation and deallocation of memory. Unfortunately conventional software-based storage managers
are relatively low performance due to the latency associated with accessing DRAM memory. Consequently,
developers of programs with very specialized memory requirements, such as real-time systems, often choose to
manage memory manually at the application-code level. This practice can greatly increase performance but it
can also significantly complicate the development process.

In this thesis we present the design, VHDL implementation and performance evaluation of a hardware-based
storage manager called the OHEBS. The OHEBS implements four distinct hardware-specific optimizations, as
well as an algorithmic optimization, to greatly enhance storage management performance. The system is
general-purpose, yet offers exceptionally good average-case performance and ensures that the worst-case
execution times of storage-management instructions are reasonably bounded, making

it a prime candidate for use with both high-performance and real-time applications.

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Short Title: Hardware Storage Management Lai, M.Sc. 2003

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

HARDWARE-BASED DYNAMIC STORAGE MANAGEMENT FOR
HIGH-PERFORMANCE AND REAL-TIME SYSTEMS
by
Victor H. Lai, B.S. CS, B.S. CoE

Prepared under the direction of Dr. Ron K. Cytron

A thesis presented to the Sever Institute of
Washington University in partial fulfillment
of the requirements for the degree of

Master of Science
December, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

HARDWARE-BASED DYNAMIC STORAGE MANAGEMENT FOR
HIGH-PERFORMANCE AND REAL-TIME SYSTEMS

by Victor H. Lai

ADVISOR: Dr. Ron K. Cytron

December, 2003

Saint Louis, Missouri

Most modern application programs depend on dynamic storage management to
handle allocation and deallocation of memory. Unfortunately conventional software-
based storage managers are relatively low performance due to the latency associated
with accessing DRAM memory. Consequently, developers of programs with very
specialized memory requirements, such as real-time systems, often choose to manage
memory manually at the application-code level. This practice can greatly increase
performance but it can also significantly complicate the development process.

In this thesis we present the design, VHDL implementation and performance
evaluation of a hardware-based storage manager called the Optimized Hardware Es-
tranged Buddy System (OHEBS). The OHEBS implements four distinct hardware-

specific optimizations, as well as an algorithmic optimization, to greatly enhance

storage management performance. The system is general-purpose, yet offers excep-
tionally good average-case performance and ensures that the worst-case execution
times of storage-management instructions are reasonably bounded, making it a prime

candidate for use with both high-performance and real-time applications.

Contents

List of Figureso vi
Acknowledgments Lo xii
1 Introduction. 1
1.1 General Storage Management 1
1.2 Hardware Storage Management 3
1.3 Optimized Hardware Estranged Buddy 3
1.4 Road Map e 4

2 Related Work: Storage Management Designs 6
2.1 Application-Specific Allocation 7
2.2 General-Purpose Allocation 8
2.2.1 Sequential-Fits Free-List Allocation 8

2.2.2 Segregated Free-List Allocation 9

3 Background: The Buddy System 11
3.1 Knuth Buddy System 00000 11
3.1.1 Block Decomposition and Recombination 12

3.1.2 Allocation e 14

3.1.3 Deallocation L Lo 15

iii

3.1.4 Internal Fragmentation 16

3.2 Estranged Buddy 0000, 17
3.2.1 External Fragmentation 20
Hardware Buddy System 22
4.1 Previous Worko 22
4.2 HBS Structure 23
4.3 Header Fields Lo 24
4.4 HBS Optimizations 27
441 Fast Find oo 27
442 Fast Returno 30
4.5 HBS Performance 0oL 32
4.6 Potential for Improvement L. 33
Optimized Hardware Estranged Buddy System 35
5.1 OHEBS Structure o oo 37
5.2 Header Fields o 39
5.3 OHEBS Optimizations 40
5.3.1 Estranged Buddy 000 40
5.3.2 Block Buffering / Pre-Fetching 41
5.3.3 Parallel Block Decomposition 45
5.4 OHEBS Hardware 48
5.4.1 Index Component 48
5.4.2 Interface Layer 56
5.5 Implementation Caveats 66
5.5.1 Parallel Block Decomposition 66
5.5.2 Allocation Cost 69

v

5.5.3 Deallocation Cost 70

6 Experiments. 72
6.1 Methodology 72
6.1.1 Testbench o000 72

6.1.2 Memory Sub-System o000 o L. 73

6.1.3 OHEBS Allocator 74

6.2 Base Performance oo o o000 75
6.2.1 Allocation 75

6.2.2 Deallocationo 76

6.3 Impact of Garbage Collection 79
6.3.1 MSA . . . 80

6.3.2 RCGC 80

6.3.3 Effects on the OHEBS 80

6.4 Fast Return Performance 86

7 Directions for Future Work00, 89
7.1 Free-Buffer Optimization 89
7.2 Fast Deallocation o o000 90
7.3 Pseudo-Aggressive Block Recombination 90
7.4 Advanced TAT and System Simulation 91
7.5 Hardware Synthesis and Evaluation 92

8 Conclusions 93
Appendix A Support Data for Experiments 95
References L 100

vi

List of Figures

1.1

1.2

2.1

2.2

2.3

3.1

3.2

3.3

An example of a free-list containing an unordered set of allocatable memory
blocks.
A diagram of a free-block with a header field used to store a pointer to

the next block in the free-list.

An example of an application-specific allocator for a program that requests
up to 256 128-byte blocks.o oL

An unorganized sequential-fits free-list that stores free-blocks of multiple

A size segregated free-list structure where all blocks in a given free-list are

the same size. L L

The Knuth Buddy free-list organization. Each free-list at index k stores
free-blocks of size 2%.
An example of Knuth Buddy block decomposition. A free-block can be
bisected and moved to the next lower index in the free-list hierarchy. The
L and R subscripts indicate left and right buddy-blocks.
An example of Knuth Buddy block recombination. Any free buddy-block
pair can be recombined and moved to the next higher index in the free-list

hierarchy. L

vil

10

12

13

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

An example of a Knuth Buddy allocation where a 16-byte block is allocated
through decomposition of a 128-byte block.
An example of Knuth Buddy deallocation where a deallocated 16-byte
block results in the recombination of a 128-byte block.
The Estranged Buddy data structure maintains two distinct free-lists at
each index of the hierarchy. The Buddy-Busy list stores single free-blocks,
and the Buddy-Free list references free buddy-block pairs. The L and R
notation indicates left and right buddy-blocks.
An example of an allocation of a free buddy-block pair from the Buddy-
Free list. Since both buddies are address-adjacent and of size 2%, the
operation is identical to allocating a single block of size 2¢+1.
An example of an allocation of a single block from the Buddy-Free list.

The right buddy is subsequently moved to the Buddy-Busy list.

The HBS allocator is connected to the CPU with an opcode bus and shares
the primary memory bus.o
A simplified block diagram of the HBS. The head pointers to the free-lists
are stored in an on-chip register file.
The header of a free-block stored in the free-lists is 12-bytes in length.

The header for an allocated memory block is only 4-bytes in length since
the Previous and Next fields are not necessary, and the fields can be used
to store applicationdata.
Fast Find uses a single 32-bit vector to represent all available free-blocks
in the HBS allocator. A bit is clear if its corresponding free-list is empty,

and set if itis non-empty. oL

viii

4.6

4.7

4.8

4.9

4.10

5.1

5.2

9.3

5.4

2.5
2.6

An example of the Fast Find operation. In the actual HBS, the vectors are
32-bits in length as each bit corresponds to an index in the Knuth Buddy
hierarchy.o
An example of a block allocation through decomposition. The allocated
block is simply the first portion of the decomposed block, and therefore
has the same address. L.
The standard allocation time-line. Application execution is delayed while
a free-block is located, decomposed, and returned.
The Fast Return allocation time-line. Application execution will only be
delayed while a free-block is located and returned. The decomposition
process completes in parallel with continued application execution.
An example of IAT for allocator operations. If the execution time of the
block phase of an allocation is shorter than the corresponding IAT, Fast

Return can complete the block decomposition without delaying the CPU.

A simplified block diagram of the OHEBS. Each Index Component imple-
ments a single index in the Estranged Buddy hierarchy.

The OHEBS lies between the processor and memory controller, allowing

29

31

31

31

33

the allocator to communicate with both the CPU and memory simultaneously. 38

The header format for left buddy-blocks stored in the Buddy-Free list.
Since the Buddy-Free list is singly-linked, the Previous field is not used. .
The header format for the right buddy of free buddy-block pairs in the
Buddy-Free list. The right buddy-blocks have no explicit references, hence
both the Previous and Next fields are unused.
An example of Free-Buffer pre-fetching and emptying.
Blocks stored in the Free-Buffer can be allocated without updating block

headers.

ix

39

5.7

2.8

2.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Blocks freed by an application can be deallocated directly to the Free-
Buffer without updating block headers.
Blocks that have been deallocated into the Free-Buffer can be used to
satisfy subsequent allocation requests, completely eliminating free-list in-
volvement. Lo L
A block decomposition can be seen as a multi-step sequence involving an
allocation from the top index, followed by deallocations to all intermediate
indices and the target index.o Lo
Using Free-Buffers, all intermediate blocks produced by a decomposition
can be deallocated in parallel without accessing memory.
A simplified block diagram of the Index Component circuit.
Free-blocks that are referenced in the Free-Buffer are marked busy, despite
the fact that they are intrinsically free.
A pre-fetch from the Buddy-Free list fetches both buddies concurrently. .
Bi-directional indexing in the Free-Buffer attempts to maximize the like-
lihood that the CPU Index and RAM Index do not reference the same
Free-Buffer position.
An example of a Free-Buffer indexing conflict. Conflicts occur because the
CPU IC can execute allocations and deallocations more quickly than the
RAM IC can move free-blocks to and from the free-lists.
A simplified block diagram of the Interface Layer circuit.
For allocations and heap initialization, Index Components are enabled using
the requested block-size as an enable vector.
The intermediate-index vector is generated with a simple 32-bit subtraction

of the requested block size from top-index.

43

44

46

47

63

5.19

5.20

5.21

5.22

5.23

6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

The computation of selected-request is similar in operation to Fast Find.
In the actual OHEBS the vectors are 32-bits in length as each bit represents
anindex. e e e 65
The request-mask vector is updated so that each active Index Component

in a snapshot is given access to memory. Here again, the actual data

vectors in the OHEBS are 32-bits inlength. 66
Intermediate blocks produced by a decomposition will have invalid header
fields. 67
An example of a possible Free-Buffer configuration after execution of the
decomposition shown in Figure 5.21. 68
When the left buddy is deallocated, the right buddy will still have an invalid

header if it was never moved out of the Free-Buffer. 69

A flow diagram of the simulation environment used to evaluate the per-

formance of the OHEBS. 73
Mean Allocation Time w/o Fast Return. 76
Maximum Allocation Time w/o Fast Return. 7
Mean Deallocation Time. 78
Maximum Deallocation Time. o0, 79
Mean Deallocation Timew/ RCGC. 81
Maximum Deallocation Time w/ RCGC. 82
Mean Allocation Timew/ RCGC. 83
Maximum Allocation Timew/ RCGC. 84
OHEBS Allocation Distribution using MSA. 85
OHEBS Allocation Distribution using RCGC. 86
Comparison of minimum IAT and maximum block times. 87
Maximum Allocation Time w/ Fast Return. 88

xi

7.1 An example of pseudo-aggressive block recombination. The presence of

the Free-Buffers can be used to ensure a deallocated block will not be

immediately recombined.o o 0oL 91
A.1 Allocation times (ns) for the OHEBS allocator using MSA. 95
A.2 Allocation times (ns) for the HBS allocator using MSA. 96
A.3 Allocation times (ns) for the software Knuth Buddy allocator. 96
A4 Allocation times (ns) for the JVM allocator. 96
A.5 Deallocation times (ns) for the OHEBS allocator using MSA. 97
A.6 Deallocation times (ns) for the HBS allocator using MSA. 97
A.7 Allocation times (ns) for the OHEBS allocator using RCGC. 97
A.8 Deallocation times (ns) for the OHEBS allocator using RCGC. 98
A9 Allocation distribution in the OHEBS under MSA and RCGC. 98
A.10 Minimum IAT (ns) vs. Maximum Block Time (ns). 98
A.11 Maximum allocation times (ns) for the OHEBS using Fast Return.. . . . 99

xii

Acknowledgments

I thank my advisor, Dr. Ron K. Cytron, for his intellectual guidance throughout the
past two years. He was a source of great knowledge and inspiration, and without
his support my studies would have been both less beneficial and far less gratifying.
I would also like to thank the two other members of my committee, Dr. Roger
D. Chamberlain and Dr. Jason E. Fritts, who have generously donated their time,
experience and expertise to the evaluation of my research.

I never would have been able to complete my graduate studies without the ben-
efit of my friends within the CSE Department. 1 owe a great debt to Steve Donahue,
Matt Hampton, Dante Cannarozzi, Morgan Deters, Chris Hill, Lucas Fox, Delvin
Defoe, Mike Henrichs and all of my other DOC Group colleagues. Their technical in-
sight and advice was greatly beneficial and their presence made the graduate research
environment more enjoyable than I could have envisioned. Additionally I cannot ne-
glect many individuals outside the DOC Group including Joseph Tucek, Dave Lim,
Chris Neely, and Chris Zuver who have helped me immensely by offering their time
and knowledge.

I would like to acknowledge the tireless efforts of the members of the CSE
department staff and the technical support group at CTS. Without their aid my re-
search efforts would have undoubtedly ground to a halt. Being a student for seven
years doesn’t necessarily mean you know how to get things done within the depart-
ment and studying computer science and engineering doesn’t necessarily mean you
know how to get a machine running or keep it running.

Finally, I offer my gratitude to my family for their unending love and support,
for without it, my accomplishments to this day would not have been possible.

Victor H. Lai

Washington University in Saint Louis
December, 2003

xiil

Chapter 1

Introduction

1.1 General Storage Management

Storage management is an essential part of most modern computing systems. An
application is generally initialized with access to a space of contiguously addressable
memory called the heap. Executing programs then request exclusive access to finite-
sized portions of the heap, called blocks of memory, by issuing allocation requests to
the storage manager. When an allocated block is no longer of use, the application
can issue a deallocation request, which returns the block to the free-memory pool for
reallocation.

Most allocators ! are implemented as software within a system’s run-time en-
vironment. Generally a small portion of each memory block is used to store allocator-
specific meta-data that organizes the heap into a logical structure. This meta-data is
then continually updated throughout run-time to reflect the status of the heap and

to maintain heap integrity.

'We will generically refer to all storage managers as allocators and use the term allocator opera-
tions to refer to both allocation and deallocation.

2

We can illustrate this concept with a simplified example. Many allocators store

free memory blocks in linked lists, called free-lists as shown in Figure 1.1 [20].

Head —| A - 8 c | D |

Figure 1.1: An example of a free-list containing an unordered set of allocatable memory
blocks.

These free-lists can be implemented by adding a header to each free memory
block, or free-block, to store a pointer to the next block in the list as shown in

Figure 1.2.

| Pointer to Next Block I Application Space

Figure 1.2: A diagram of a free-block with a header field used to store a pointer to the
next block in the free-list.

Blocks can then be allocated to an application by removing them from the
free-list, and deallocated blocks can be added to the head of the list.

The implementation of allocators in software is advantageous as the flexibility
of software allows for the creation of multiple allocators tuned for use with applications
that have specific memory behaviors and requirements [10]. Unfortunately, software-
based allocation is often low performance because allocator operations must access
memory to read or update the meta-data stored in the block headers and maintain
the heap structure.

In the simplified example above, a single block header must be read whenever
a block is removed from the free-list for allocation, and a single block header must
be written whenever a deallocated block is added to the free-list. In reality however,
allocators typically have to update multiple block headers with each allocation or

deallocation, and a single block header can be multiple data words in length, requiring

3

more than one memory access per block. Since DRAM memory is slow, the primary
system processor may stall while waiting for allocator operations to complete.
Furthermore, continual advances in circuit fabrication processes have resulted
in dramatic gains in logic performance but far less substantial gains in memory per-
formance [12]. The consequence of this is that the penalty for DRAM accesses be-
comes increasingly severe with each passing generation of hardware, and software-
based memory management becomes increasingly less ideal for Real-Time (RT) and

performance-oriented systems.

1.2 Hardware Storage Management

We propose that the memory management duties could be effectively moved to ded-
icated hardware through the use of Intelligent Random Access Memory (IRAM) [8],
which integrates logic and memory together. Such an allocator would be advanta-
geous not only because hardware is fast, but also because hardware can be used to

parallelize portions of the memory allocation process.

1.3 Optimized Hardware Estranged Buddy

In this thesis we present the design, VHDL implementation and performance analysis
for a hardware-based memory allocator called the Optimized Hardware Estranged
Buddy System (OHEBS). The system offers significant performance gains over both
software-based allocation, as well as a previous hardware allocator, through the im-
plementation of a modified Knuth Buddy [15] allocation algorithm called Estranged
Buddy [7], and through application of four distinct hardware-specific optimizations

that can greatly parallelize the operations of the Estranged Buddy algorithm.

4

The OHEBS guarantees completion of all allocations and deallocation in rea-
sonably bounded time. Additionally, in many cases the allocator can complete an
allocation or deallocation in the time required to respectively write or read a single
data word from memory. Taken together, these attributes result in a dynamic-memory

manager that is exceptionally well suited for both high-performance and RT systems.

1.4 Road Map

This thesis is organized as follows:

e Chapter 2 presents previous work that is relevant to dynamic storage manage-
ment. We introduce some of the most common allocator designs and briefly

compare and contrast their merits.

e Chapter 3 presents a more in-depth review of the Knuth Buddy and Estranged
Buddy algorithms. The binary buddy system used by these algorithms is im-
plemented within the OHEBS and we will discuss its operation and detail the

advantages and disadvantages of its use.

e Chapter 4 presents a brief overview of a previously developed hardware allocator
called the Hardware Buddy System (HBS). The primary goal of the OHEBS is
to improve upon the weaknesses of the HBS, and the two systems share many

of the same techniques and constructs.

e Chapter 5 presents an in-depth description and analysis of the OHEBS alloca-
tor. We discuss the functionality and architecture of the system and detail the
advancements and optimizations that were implemented to improve upon the

original HBS design.

5
e Chapter 6 presents the performance evaluation of the OHEBS system. We

discuss the experimental methodology and evaluate benchmark results.

e Chapter 7 presents some directions for future work.

e Chapter 8 presents our conclusions about the OHEBS system.

Chapter 2

Related Work: Storage

Management Designs

The creation of an ideal storage allocator [20] that can be used across a broad range of
applications is a difficult problem not only because of the constraints of a software or
hardware implementation, but also because the attributes that characterize an ideal
allocator can vary dramatically between different applications.

For example, consider a critical Real-Time (RT) system that would suffer catas-
trophic failure if specific hard deadlines for all operations are not met. An allocator
for such a system must ensure that all allocations complete in reasonably bounded
time. On the other hand, a general-purpose application on a commodity PC may have
no hard deadlines and its allocator may thus be strictly concerned with average-case
performance. Similarly, performance may be secondary to minimization of memory
footprint for an allocator in a small embedded system.

This great variability in allocator requirements has led to the development of
a multitude of different types of storage allocators. In this section we discuss a few

of the most common design categories [20].

2.1 Application-Specific Allocation

Application-specific allocators are built to function explicitly with an associated ap-
plication program. This is advantageous since developers can use a priori knowledge
about an application’s memory behavior to customize the allocator, maximizing the
performance of the most critical attributes [10].

Consider a program where fast, constant-time allocation is important and

imagine we know that program has the following characteristics:
e The largest block ever requested by the application is 128-bytes in size.
e The program allocates a maximum of 256 concurrent objects.
e Any deallocated block will be the most recently allocated.

An allocator for this program with essentially perfect performance is reasonably
easy to implement. As shown in Figure 2.1, one possibility is to create a pointer to
a reserved memory block of size 128 x 256 bytes. For each allocation request, the
allocator only needs to return the value of the pointer, then increment the pointer by
128 bytes. Likewise, deallocations could be managed by decrementing the pointer by

128 bytes.

0 255
128 128 128 128 128 128

T

Allocate

Figure 2.1: An example of an application-specific allocator for a program that requests
up to 256 128-byte blocks.

Since the program will never request more than 128 x 256 bytes, the size of the

initial memory block is sufficient. Furthermore, allocation complexity is O(1) and all

8

allocations can be completed in constant-time with a simple, logic-speed arithmetic
operation.

The clear weakness of this allocator is that a significant amount of system
memory can be wasted. The allocator reserves the maximum block size of 128 bytes
for every object, regardless of whether the object actually requires that amount of
space. However, while this allocator may be improved, inefficient memory use may
not be a major concern for this application. The critical concept is that use of an
application-specific allocator allows the developer to tailor allocator behavior and
performance to match the needs of the application.

Unfortunately the inherent drawback to application-specific allocation is the
close coupling between the application and allocator. The allocator described above
would be almost certainly useless to a another application with different allocation
behavior. Reliance on application-specific allocators can therefore greatly increase

the complexity of application development.

2.2 General-Purpose Allocation

In contrast, general-purpose allocators are designed for use with a broad spectrum of
applications and can greatly simplify application development. Here we discuss two

of the most common general-purpose allocation algorithms.

2.2.1 Sequential-Fits Free-List Allocation

Sequential-fits free-list allocators chain together all free memory blocks into a single,
linear free-list, as shown in Figure 2.2. Typically the list is unorganized and neither

size nor address have any bearing on a block’s position in the list.

Head _>| |_>| I_;D_;| I_,| |

Figure 2.2: An unorganized sequential-fits free-list that stores free-blocks of multiple
sizes.

To service an allocation request, the allocator simply returns a block from the
free-list of the appropriate size. The definition of what size is appropriate and which
block is actually returned is implementation dependent, but a common approach is
to perform a linear search on the list and return a block based on a first-fit or best-fit
criterion. To service a deallocation request, the deallocated block is simply added to
the head of the list.

Sequential-fits allocators are both simple to implement and have been known
to perform quite well in the average-case. However, the drawback of these allocators
is poor worst-case performance. Since sequential-fits allocators rely on linear search
through an unordered list of free-blocks to find an allocatable block of the correct size,
they have an allocation complexity of O(n) where n is the number of free-blocks in
the list. This makes sequential-fits allocators especially ill-suited for RT applications

where budgeting is usually done for the worst-case scenario.

2.2.2 Segregated Free-List Allocation

A solution to the poor worst-case performance of sequential-fits allocation is segregated
free-list allocation. These allocators segregate free-blocks by size and ensure that all
blocks stored in a specific free-list are equal (or similar) in size. An example of this
structure is shown in Figure 2.3.

The clear advantage of size segregation is that it greatly reduces the number
of blocks that must be searched through to locate an appropriately sized free-block.

If an application requests a block of size s, the allocator can ignore all free-lists that

10

Head 3 — = |
Head 2 —)| = ! |
Head 1 —| ! ! — |
Heado —{ |—{ [I [|

Figure 2.3: A size segregated free-list structure where all blocks in a given free-list are
the same size.

only contain blocks smaller than s. Slightly more advanced allocators can also ignore
all free-lists that contain large blocks if there are non-empty lists that contain smaller
block closer to s in size. Some segregated free-list implementations avoid sequential
search completely by allocating from lists where all blocks are of sufficient size to
satisfy the allocation request.

Segregated free-list allocators have significantly better worst-case performance
than sequential-fits allocators. Allocation complexity has been shown to be O(log(n))
where n is the size of the heap [20].

Although general-purpose allocators are designed to be suitable across a broad
range of applications, their corresponding weakness is that their performance may not
suffice for systems with highly specialized memory requirements. A general purpose
allocator may miss the hard allocation deadlines of an RT system, or exceed a required
memory-footprint for a small embedded system.

We seek to create an allocator that offers the performance of an application spe-
cific allocator, but also maintains the implementation simplicity of a general-purpose
allocator. Specifically, our goal is to create a general-purpose allocator that is very
suitable for both RT and high-performance systems, offering reasonably bounded

worst-case performance as well as exceptional average-case performance.

11

Chapter 3

Background: The Buddy System

The Optimized Hardware Estranged Buddy System (OHEBS) allocator that we present
in this thesis implements an allocation algorithm known as Estranged Buddy [7],
which is a modification of the Knuth Buddy algorithm [15]. In this chapter we present
the original Knuth Buddy algorithm and describe the differences between it and the

Estranged Buddy variant, discussing the advantages and disadvantages of each.

3.1 Knuth Buddy System

The Knuth Buddy allocation algorithm [15] is a general-purpose, segregated free-list
allocator. The most significant advantage of the algorithm is its O(log(n)) allocation
time, achieved through complete avoidance of sequential search.

While there are multiple variants of Knuth Buddy including Fibonacci, weighted
and double [20] we focus primarily on the binary buddy algorithm [14] as its properties
make it especially well suited for implementation in binary systems.

Knuth Buddy (binary buddy) constrains all memory blocks to be 2F in size
where £ > 0. The upper bound of k is limited by the maximum heap size addressable

by the system and the lower bound is generally the smallest power of 2 large enough

12

to contain the meta-data block headers. For example, the upper bound of £ in a
32-bit byte-addressable system would be 32, since total memory space is limited to
232 bytes. Likewise, an allocator that requires a 7 byte header in each block would
have a k lower bound of 3, as the minimum block-size would be 291 or 8 bytes.
The algorithm maintains separate free-lists for each possible value of k£, and
the free-lists are hierarchically ordered by block-size. This memory organization, as
illustrated in Figure 3.1, ensures that all blocks in the free-list at an index £k are of

uniform size 2% and exactly double the size of blocks in the free-list at index k — 1.

2k+3 _,| |

= K |

o L H]

e OO

Figure 3.1: The Knuth Buddy free-list organization. Each free-list at index k stores
free-blocks of size 2F.

3.1.1 Block Decomposition and Recombination

To understand Knuth Buddy, it is important to detail the processes of block decom-
position and recombination and the notion of buddy-blocks.

The entire heap itself is a power of 2 in size and is initialized as a single,
large free-block. To create the smaller free-blocks that service allocation requests,
this single block can be divided into two logical halves that are moved to the free-list

at the immediately preceding index of the free-list hierarchy. Each of these halves

13

can subsequently be bisected again and moved to the next lower index and so on
down the free-list hierarchy as shown in Figure 3.2. This process is known as block

decomposition.

2 k+3

2k+1

_.l
22 | B, i B, |
_’I

> l

Figure 3.2: An example of Knuth Buddy block decomposition. A free-block can be
bisected and moved to the next lower index in the free-list hierarchy. The L and R
subscripts indicate left and right buddy-blocks.

Notice that any two blocks that are created from a single block decomposition
are necessarily address-adjacent. These pairs of blocks are referred to as buddy-blocks,
where the block with the lower address is the left buddy and the higher address block
is the right buddy. The addresses of any two buddy-blocks differ by only a single bit.
For buddy-blocks of size 2*, bit k is clear on the left buddy, and set on the right
buddy.

Buddy blocks are important because the Knuth Buddy algorithm can efficiently
rejoin two free buddy-blocks into a single block in a process called block recombination.
The recombined block is then moved to the free-list at the proceeding index where it
can again be recombined if its buddy-block is free. As with block decomposition, the
recombination process can be iteratively repeated up the free-list hierarchy as shown

in Figure 3.3.

14

2 k+3

2 k+2

2k+1

2k

Figure 3.3: An example of Knuth Buddy block recombination. Any free buddy-block pair
can be recombined and moved to the next higher index in the free-list hierarchy.

3.1.2 Allocation

Since Knuth Buddy deals only with memory blocks of fixed size 2%, when an allocation
request for a block of size s is received, the allocator actually returns a free-block of
size 2[109(5)] the smallest power of two greater than or equal to s. For simplicity we
assume all allocations are 2* in size for k& > 0.

Allocation in Knuth Buddy is broken into three logical phases:

e find : In the find phase the algorithm searches for the smallest free-block that

is at least as large as the requested size.

e block : In the block phase, the located block, if larger than the requested block-
size, is progressively decomposed into smaller blocks until a block of appropriate

size is created.

e return: In the return phase, the free-block is returned to the application.

15
Figure 3.4 depicts a typical block allocation under Knuth Buddy where a block

of size 16 is allocated through the decomposition of a block of size 128. As can be

seen, the left buddy of the final block pair is returned for allocation.

27 —>| 128 |

| }
26 —>| 64 H 64 |

25—»|32'—»|32|

Allocate

Figure 3.4: An example of a Knuth Buddy allocation where a 16-byte block is allocated
through decomposition of a 128-byte block.

Since all blocks in a free-list are uniform in size and identical in terms of
allocation suitability, the find phase is executed by simply searching up the free-list
hierarchy for the first non-empty free-list that contains blocks larger than or equal to
the requested block-size. The block phase is then executed by iteratively decomposing
the first block in the chosen free-list. This behavior is beneficial since a free-block can
be located and allocated list-by-list, instead of block-by-block as in a standard free-
list allocator. This reduces allocation complexity from O(n) where n is the number

of free-blocks, to O(log(n)) where n is the size of the heap [20].

3.1.3 Deallocation

To service a deallocation request, Knuth Buddy first checks if the deallocated block’s

buddy is free. If the buddy-block is busy then the deallocated block is simply added

16
to the head of the appropriate free-list, based on the size of the block. However if

the buddy-block is free, then the blocks are recombined and the process repeats at
the proceeding index, potentially cascading up the free-list hierarchy as shown in

Figure 3.5.

27 128 |

26 —>| 64 H 64 |

25 —»| 32 '—»| 32 |
24 l

Deallocate

Figure 3.5: An example of Knuth Buddy deallocation where a deallocated 16-byte block
results in the recombination of a 128-byte block.

Unlike allocation where blocks are decomposed when necessary, Knuth Buddy
recombines deallocated blocks whenever it is possible. This type of aggressive block

recombination results in O(log(n)) deallocation complexity

3.1.4 Internal Fragmentation

The Knuth Buddy algorithm significantly improves worst-case allocation performance.
Unfortunately, the algorithm does pay a price for the benefits of free-list segregation
and uniform block sizes. Since an allocation request for a block of size s is satisfied
with a free-block of size 2[*9()1 some free space can be wasted with every allocate.
This is called internal heap fragmentation. In the worst-case, the amount of wasted

space can approach half the size of the allocated block in a single allocation. In

17

practice internal fragmentation is believed to consume up to 33 percent of the total
allocated memory [16, 15].

Fortunately, some methods have been proposed that may help to address this
issue. One possibility is allocation of free-blocks that are sums of powers of two [1].
For example, an request for a block of size 48 would normally be allocated a block
of size 64. An allocator that operates with sums of powers of 2 could allocate two

adjacent blocks, one of size 32 and one of size 16, assuming such blocks are available.

3.2 Estranged Buddy

The Estranged Buddy allocation algorithm is a modified version of Knuth Buddy
based on the concept of delayed block recombination [7]. In most aspects Estranged
Buddy is identical to standard Knuth Buddy. Allocation operations are still executed
in terms of the find, block and return phases. However, under Estranged Buddy a
block deallocation will never result in a series of sequential block recombinations, even
if free buddy-blocks are available.

Estranged Buddy recombines free blocks only when the recombined block can
be used to service an allocation request at-hand. The immediate benefit of this behav-
ior is that deallocations are limited to constant-time, O(1) complexity. Additionally,
it is believed that most programs tend to use many blocks of the same size. Under
such conditions, aggressive recombination policies may recombine free buddy-block
pairs, only to immediately decompose them again to satisfy a subsequent allocation
requests. Delayed recombination is likely to help reduce the number of these extra-
neous operations.

The Estranged Buddy data structure is identical to that of Knuth Buddy with
the exception that Estranged Buddy maintains two distinct free-lists at each index

instead of one: the Buddy-Busy list and the Buddy-Free list, as shown in Figure 3.6.

18
The Buddy-Busy list is the same as the free-list in Knuth Buddy and simply maintains

a list of free-blocks for the given index. However, instead of recombining free buddy-
blocks at the point of deallocation, Estranged Buddy keeps track of free buddy-block

pairs using the Buddy-Free list.

T

2 k+2

e L e I

R R R
o
2k+1
BF |—¥ L —
R R

BB

1
1

2k

BF

l

Figure 3.6: The Estranged Buddy data structure maintains two distinct free-lists at each
index of the hierarchy. The Buddy-Busy list stores single free-blocks, and the Buddy-
Free list references free buddy-block pairs. The L and R notation indicates left and right
buddy-blocks.

The Buddy-Free list is a list of left buddies who also have free right buddies.
These free pairs can then be separated and allocated individually, or recombined and
allocated as a single block. An allocation request for a block of size 2* can be satisfied
by allocating a free pair from the Buddy-Free list at index £ —1 in an operation called
a pair allocation. Upon the subsequent deallocation of the block, the pair is returned
as a single free-block to index k, finalizing the recombination. Note that there are
no explicit references to the right buddies in the Buddy-Free list. Rather, a right
buddy is implicitly free based on the presence of its left buddy in the Buddy-Free list.

This simplifies pair allocation as allocation of a left buddy without actively moving

19
the right buddy to the Buddy-Busy list allocates both blocks in unison. Conversely

a single block can also be allocated from the Buddy-Free list by allocating the left
buddy and moving the right buddy to the Buddy-Busy list. These behaviors are

illustrated in Figure 3.7 and Figure 3.8.

T

BF—% L +—¥ L —¥ L

2k

]

BF) L — L

2k

L
R

)

Allocate

Figure 3.7: An example of an allocation of a free buddy-block pair from the Buddy-Free
list. Since both buddies are address-adjacent and of size 2¥, the operation is identical to
allocating a single block of size 2F+1.

The priority in which blocks from the Buddy-Busy or Buddy-Free lists are
allocated or decomposed can be dependent on the implementation. However, it is
preferable to avoid separation of free buddy-block pairs on the Buddy-Free list if
another block is available, since the pair could be recombined to satisfy a subsequent
request for the next larger block-size [7].

Note that the Estranged Buddy algorithm will only service an allocation re-
quest for a block of size 2¥ from index k£ — 1 and above. In theory the allocation could
also be serviced by allocating two free buddy-block pairs from index k£ — 2 or four

pairs from index k — 3 and so on. However, pair allocation from any index lower than

20

BB —»

2k

BF » L L »
R R R

2k

BF L — L

R R

_3J

Allocate

Figure 3.8: An example of an allocation of a single block from the Buddy-Free list. The
right buddy is subsequently moved to the Buddy-Busy list.

k — 1 becomes progressively more complex. A pair allocation from the Buddy-Free
list at index £ — 1 is simple because buddy-blocks are necessarily address-adjacent
and effectively identical to a single free-block of size 2. On the other hand, mul-
tiple buddy-block pairs are not necessarily address-adjacent, making recombination

difficult.

3.2.1 External Fragmentation

The behavior of Estranged Buddy is clearly advantageous because deallocations are
limited to O(1) complexity. Additionally, the algorithm can reduce unnecessary block
recombination and decomposition operations. Unfortunately, the disadvantage of
the algorithm is that it can introduce problems with ezternal heap fragmentation.
External fragmentation occurs when large blocks are decomposed into smaller buddy-
block pairs, and single blocks from those pairs are allocated, while their buddies

remain free. If the heap has a high degree of external fragmentation, it may be

21

unable to service an allocation request for a large memory block, even if enough free-
space is actually available, as the free-space may be distributed across several smaller
blocks that are not address-adjacent and cannot be recombined.

External fragmentation is problematic in both the Estranged Buddy and the
original Knuth Buddy algorithms, but Knuth Buddy’s policy of aggressive recombina-
tion helps to minimize its effects. Since Estranged Buddy delays block recombination
and cannot recombine blocks through multiple indices in a single operation, the al-
gorithm is more susceptible to the problem.

Donahue et al. propose a solution to this problem with an operation referred
to as Panic Mode [7]. When implemented, if the allocator cannot satisfy an allocation
request for a block of size 2¥ from any index k& — 1 or above it will panic, at which
point it iteratively searches through all of its Buddy-Free lists from the lowest index
upwards attempting to recombine as many blocks as possible and move them up the
free-list hierarchy. Once the panic operation completes, the algorithm continues as
normal. The clear drawback to panic mode is that the allocator must halt to execute
it, and its runtime is not reasonably bounded.

Fortunately, research has been done by Cholleti which shows that Knuth Buddy
never needs defragmenting provided a larger, but still reasonably sized heap is used.
More specifically, Cholleti proves that Knuth Buddy will run without defragmentation
provided the heap is at least twice as large as the maximum amount of memory
required by the application at any given time [2]. Since the proof is also applicable
to Estranged Buddy, the Estranged Buddy algorithm, with O(log(n)) allocation and
O(1) deallocation, becomes an ideal candidate for use in high-performance and Real-
Time (RT) systems, provided they are not severely restricted to a small memory

space.

22

Chapter 4

Hardware Buddy System

The Optimized Hardware Estranged Buddy System (OHEBS) is actually an en-
hanced redesign of an existing hardware allocator called the Hardware Buddy System
(HBS) [5, 6]. Though the two systems are architecturally dissimilar, the OHEBS
borrows many of the concepts and constructs developed for the original HBS. In this
chapter we present a high level discussion of the HBS, with particular emphasis on
the aspects of the allocator that have carried over into the OHEBS. Furthermore we
discuss how the HBS could be improved, a topic that leads into the next chapter

where we describe the OHEBS system in detail.

4.1 Previous Work

The HBS and the OHEBS share the same original motivation, to enhance dynamic
memory management performance such that it is more suitable for Real-Time (RT)
and high-performance systems. Such topics are indeed somewhat conventional. A
publication by Demaine and Munro [4] is particularly comparable as it deals explicitly
with how the Knuth Buddy algorithm could be enhanced to allow for constant time

allocation and deallocation. In addition, Grunwald [10] proposes a unique solution in

23

the form of CustoMalloc, which is software that can be used to automatically generate
allocation code based on a set of input parameters that specify the desired allocator
characteristics. However, most previous papers have focused on the development of
software-based allocators. The implementation of memory management in hardware
has not been a frequently visited topic, and a hardware implementation offers very
significant performance benefits that may not be otherwise achievable.

Relevant existing research into hardware allocators include work done by Put-
tkamer [17], who designed a simple hardware buddy allocator. The concept was
later advanced by Chang and Gehringer [1], as well as Cam et al. [9], who devel-
oped hardware allocators designed to minimize internal fragmentation. Shalan and
Mooney [18] took the concept in a new direction with research on RT enabled memory
allocation for a System-On-Chip (SOC). Most recently Donahue [5, 6] introduced the
HBS which is specifically designed for use with RT systems and targeted for potential

implementation in Intelligent Random Access Memory (IRAM).

4.2 HBS Structure

Donahue presented two different versions of the HBS, a reference implementation
and an optimized implementation. The reference HBS is simply a direct translation
of the Knuth Buddy algorithm into hardware. The reference HBS directly models
the operations of a software Knuth Buddy allocator that Donahue implemented for
the SUN Microsystems Java Virtual Machine (JVM) [6]. Conversely, the optimized
HBS adds two hardware-specific enhancements to the reference design. Called Fast
Find and Fast Return, these enhancements helped to greatly increase the system’s
allocation performance and helped to increase the allocators suitability for RT use.
The HBS unit is controlled by a dedicated opcode bus to the system processor,

and shares the primary memory bus, as shown in Figure 4.1. In traditional software

24

Knuth Buddy, free-lists are stored in memory and allocator operations are executed
by the CPU via coordinated reads and writes. The HBS still maintains the free-lists
in memory, but allocator operations are off-loaded to the HBS hardware. The CPU
issues allocate, deallocate and heap initialize instructions to the HBS, which then

executes the necessary memory operations independently of the CPU.

Address /
. /
Primary Data A 32 / Memory
CPU / Controller
Memory Opcode | L 32 /
/
1
2 Allocator
Opcode HBS

Figure 4.1: The HBS allocator is connected to the CPU with an opcode bus and shares
the primary memory bus.

Internally the HBS stores the head pointers to each of the segregated Knuth
Buddy free-lists in an on-chip register-file and control-logic is implemented to support
allocation from, and deallocation to, the free-lists. A simplified illustration of the HBS

structure is shown in Figure 4.2.

4.3 Header Fields

Both the HBS and the OHEBS implement free-lists as doubly-linked lists in memory.
A doubly-linked list is necessary because a deallocated block may have a free buddy
at an arbitrary position in the list, and that buddy must be removed from the free-list

to allow for block recombination.

25

Address

Data & FL_31
Control
Memory Opcode & FL_30
Y O Logic [erso]

Allocator Opcode

&FL_5

Free Lists

Figure 4.2: A simplified block diagram of the HBS. The head pointers to the free-lists
are stored in an on-chip register file.

The link-list references are stored in header space in each memory block. The
header can occupu up to 12 bytes, hence the minimum block-size supported by the

HBS allocator is 2/°9(12)] 16-bytes. The data stored in the header is as follows:

o Size/Free:

The Size/Free field is the first word of the header and encodes the size and state

(busy / free) of the memory block.

The upper 31-bits of the field are a one-hot representation of block-size. If
bit(8) of this field is set, this indicates that the block is of size 2% bytes. The
representation limits the maximum block-size to 23'-bytes, which is sufficient
for most practical applications and is suitable for the evaluation of the original

HBS and the OHEBS.

The number of bits required for size representation could be decreased, or the
maximum supported heap size expanded, if a different encoding scheme, such as
the log of the heap size, was used. However, such optimizations were originally
not implemented to remain consistent with the header overhead of the software

Knuth Buddy allocator implemented by Donahue [6]. Additionally, since both

26
the original HBS and the OHEBS are connected to memory via a 32-bit data

bus, the use of a full data word to represent the Size/Free field is not detrimental

to allocator performance and helps to preserve simplicity.

Since the minimum block-size supported by the HBS is 16-bytes, the four low
order bits of the field are essentially inconsequential. The HBS therefore uses
bit(0) to represent the state of the block as either busy (1) when a block is

allocated, or free (0).

e Previous:

This field is a 32-bit reference to the previous free-block in the free-list. Since
only free memory blocks are stored in the list, the field is not required for

allocated blocks and application data can be stored in this location.

e Neut:

This field is a 32-bit reference to the next free-block in the free-list. As with the
Previous reference, this field is not required for allocated blocks and application

data can be stored in this location.

The header is thus 12 bytes (3 words) in length for any free-block residing on a
free-list and 4 bytes (1 word) in length for an allocated block as shown in Figure 4.3
and Figure 4.4.

Bit : 31

Size | F | Previous Next Free Space
Byte: 0 4 8 12

Figure 4.3: The header of a free-block stored in the free-lists is 12-bytes in length.

Since the allocator requires a 4-byte header for allocated blocks, all allocation

requests for blocks of size s are treated as requests for a block of size s + 4 rounded

27

Bit : 31
Size | F | Application Space
Byte: 0 4 8 12

Figure 4.4: The header for an allocated memory block is only 4-bytes in length since the
Previous and Next fields are not necessary, and the fields can be used to store application
data.

up to the nearest power of two. The actual address returned to the application is
likewise the address of the usable application space within the block, the address of

the block itself plus 4-bytes.

4.4 HBS Optimizations

The Fast Find and Fast Return optimizations added to the HBS are exceptionally ben-
eficial for allocation performance. In many cases, the optimizations provide constant-

time allocation at the speed of a single-word memory read [5, 6].

4.4.1 Fast Find

The Fast Find optimization is used to enhance the find phase of allocation. Where
a traditional software implementation of Knuth Buddy services an allocation request
for a block of size 2% by executing a list-by-list search from free-list & upwards, the
Fast Find optimization employs a Leading-Zero-Detector (LZD) [21] circuit to search
all free-lists in parallel.

To implement Fast Find, a bit-vector is simply added to the system such that
each bit in the vector corresponds to one of the Knuth Buddy free-lists as shown
in Figure 4.5. A bit is clear if its respective free-list is empty and set if the list is
non-empty. This bit-vector can then be considered a representation of all free-blocks

available for allocation.

28

1| | 2

0 2 k+2 —e

T T

Figure 4.5: Fast Find uses a single 32-bit vector to represent all available free-blocks in
the HBS allocator. A bit is clear if its corresponding free-list is empty, and set if it is
non-empty.

When an allocation request is issued, the bit-vector is masked with a bit-mask
derived from the requested block-size. This masking process eliminates all free-lists
that only contain blocks that are smaller than the requested block. The resulting
masked vector is then passed to a LZD, which produces a one-hot output vector
indicating which free-list contains the smallest free-block larger than or equal to the
size of the requested block. This process is illustrated in Figure 4.6. (Note that
an LZD circuit produces a one-hot output vector that indicates the position of the
highest order bit that is set to 1 in the input. As such, the masked bit-vector is
inverted before it is passed through the LZD.)

Fast Find does not necessarily improve find time in the average-case, however
it dramatically improves worst-case execution time, a critical component for RT sys-
tems. The LZD itself is considered to be a O(log(n)) operation where n is the number
of bits in the bit-vector. Therefore, the optimization reduces the complexity of the
find stage from O(log(n)) in traditional Knuth Buddy to O(log(log(n))), where n is

the size of the heap. Note that while O(log(log(n))) is technically not constant, it can

29

Requested Size 0000000001000000

Bit Vector 1111100000101010
AND Bit Mask 1111111111000000

Masked Vector |1111100000000000 |

Leading Zero

Index Vector ~ [0000100000000000 |

Figure 4.6: An example of the Fast Find operation. In the actual HBS, the vectors are
32-bits in length as each bit corresponds to an index in the Knuth Buddy hierarchy.

be considered effectively constant. Specifically, assuming any realistic heap size, the
value is bounded within a small interval. For example, if an application can address
the full memory space of a 32-bit system, the worst-case execution time of Fast Find
is O(log(32)). Even more significant, however, is that since the entire bit-vector is
stored in an on-chip register, the Fast Find optimization eliminates the necessity of
accessing memory and executes completely at logic-speed.

The notion of the discrepancy between logic-speed and memory-speed is critical
as it illustrates one of the primary advantages of a hardware allocator implementation.
The use of Big O notation is adequate for a description of algorithmic complexity,
but is not well suited to describe implementation performance. In this case, the
traditional O(log(n)) refers to log(n) free-list accesses. In a software implementation
of Knuth Buddy, each free-list access could require a number of memory accesses.
Conversely the O(log(log(n))) of Fast Find refers to the logic depth of the Fast Find
operation. As such, Fast Find can execute within a fixed number of clock cycles that

can be far faster than a single memory access.

30
4.4.2 Fast Return

Though it is not a drawback of the Knuth Buddy algorithm itself, block decompo-
sitions that occur in the block phase of allocation are often significantly detrimental
to the performance of Knuth Buddy allocators due to the limitations of a software
implementation. The decomposition of a large free-block into multiple smaller blocks
necessitates the update of free-block headers stored in memory, and as we mentioned
in Chapter 1, memory accesses are slow.

When the HBS services an allocation through decomposition of a large block,
each of the smaller blocks produced by the decomposition must subsequently be
validated with correct header values. Generally, application execution is stalled while
these header updates take place. However, Fast Return is an optimization that,
when paired with Fast Find, can often allow for immediate, constant-time allocation
regardless of the degree of block decomposition.

As seen in Figure 4.7, an allocated block is simply the first portion of the de-
composed block. Since the HBS stores head pointers to the free-lists in an on-chip
register-file, the address of the block that is allocated is available prior to execut-
ing the decomposition process. Fast Return returns this address to the application
immediately, then decomposes the block afterwards. The only operation that must
necessarily be executed before returning the block to the application is a single-word
memory read of the block’s Next field to update the free-list head-pointer, as the field
is overwritten with application data.

Fast Return essentially hides the decomposition operations that are performed
in the block phase such that they are executed by the HBS hardware after the allo-
cated block is returned. Where an allocation typically follows the find, block, return
sequence, the implementation of Fast Return allows allocations to execute in find,

return, block order as shown in Figure 4.8 and Figure 4.9.

31

Allocate

Figure 4.7: An example of a block allocation through decomposition. The allocated block
is simply the first portion of the decomposed block, and therefore has the same address.

Allocation
Request

Application —‘ :|_
Allocator 4{ Find ‘ Block ‘Return }—

Figure 4.8: The standard allocation time-line. Application execution is delayed while a
free-block is located, decomposed, and returned.

Allocation
Request

Allocator 4{ Find ‘ Return ‘ Block }—

Figure 4.9: The Fast Return allocation time-line. Application execution will only be
delayed while a free-block is located and returned. The decomposition process completes
in parallel with continued application execution.

32

This behavior is very advantageous since the system processor can proceed
with application execution immediately, while the HBS updates the headers of the
free-blocks produced by the decomposition. Furthermore, actual implementation of
Fast Return is relatively simple and essentially a matter of reordering the states of

the HBS controller.

4.5 HBS Performance

Donahue showed that the optimized HBS allocator implemented with Fast Find and
Fast Return can successfully satisfy allocation requests in constant-time for many
cases [6]. The HBS was simulated using trace-files of the allocation and deallocation
behavior of a set of Java benchmarks ' selected from the SPECjvm98 benchmark
suite [3]. The results of these simulations were then evaluated by comparing the
maximum execution time for a block phase exhibited in a benchmark to the minimum
Inter-Arrival Time (IAT) between allocations in the benchmark.

The TAT is defined as the amount of time that exists between each alloca-
tion instruction when the system processor executes non-allocator operations such as
register-register computations and standard memory loads and stores. An example
of IAT is shown in Figure 4.10.

Since the Fast Return optimization allows the HBS hardware to execute the
block phase during the TAT, successful constant-time block allocation is guaranteed
to occur for every allocation request in a given application if the minimum IAT in

the application is longer than the maximum block time exhibited by the HBS.

1 Java benchmarks were used to facilitate performance comparisons between the HBS and the
software Knuth Buddy allocator implemented for the Sun JVM.

33

Allocation Allocation
Request Request

Application - ———————{ eramvaitme o |
Allocator 4{ Find ‘Retum ‘ Block }—{ Find ‘Return ‘ Block ‘

Figure 4.10: An example of IAT for allocator operations. If the execution time of the block
phase of an allocation is shorter than the corresponding IAT, Fast Return can complete
the block decomposition without delaying the CPU.

4.6 Potential for Improvement

The HBS is an effective and efficient dynamic memory allocator, however there are
two aspects of the HBS where further enhancement is possible: block decomposition
and deallocation.

The weakness of Fast Return is that it does not actually reduce the time
required to execute the block phase. After an allocation, the allocator is unable to
respond to further requests until the block decomposition operations have completed.
That is, if an allocation is immediately followed by another allocator request, the CPU
will stall until the HBS completes the block phase from the previous allocation. As
such, Fast Return can guarantee that all allocations in an application are satisfied in
constant-time only when that application meets a specific qualification for minimum
IAT.

We seek to shorten the amount of time required for block decomposition. It
would be most beneficial for RT systems if block time could be reduced to a small con-
stant, such that it is not influenced by the degree of block decomposition. If this can
be accomplished, significantly shorter maximum block times will correspond directly
to relaxing the minimum required IAT, allowing the system to guarantee constant-

time allocation performance for a greater range and larger number of applications.

34

The HBS allocator is also not optimized for deallocation operations, and as
such, deallocations in the system can be slow. Since the HBS uses the Knuth Buddy
algorithm, a single deallocation request can result in a large number of iterative block
recombinations that progress up the free-list hierarchy. A single-level block recombi-
nation may require up to eight distinct memory operations, and, in the worst-case, a
deallocation of a 16-byte block can result in continual successive recombinations such
that the single block representing the entire heap is reformed. Since block dealloca-
tions are an integral part of dynamic memory management, we would like to optimize
these operations as well.

In the next chapter we will show how the OHEBS allocator accomplishes these
goals through the use of the Estranged Buddy allocation algorithm and the imple-

mentation of some additional hardware-specific optimizations.

35

Chapter 5

Optimized Hardware Estranged

Buddy System

We now turn our attention to the primary focus of this thesis and discuss the Op-
timized Hardware Estranged Buddy System (OHEBS) and the optimizations the
allocator offers that make it especially well suited for Real-Time (RT) and high-
performance applications.

The OHEBS incorporates the principles of the original Hardware Buddy Sys-
tem (HBS) into a completely redesigned hardware unit. The system implements an
algorithmic optimization as well as two new hardware-specific optimizations in addi-

tion to Fast Find and Fast Return to improve allocator performance:

e FEstranged Buddy Algorithm
e Block Buffering / Pre-Fetching

e Parallel Block Decomposition

The use of the Estranged Buddy allocation algorithm, as described in Chap-

ter 3, allows the allocator to guarantee bounded execution time for worst-case block

36

deallocations by ensuring that no deallocation can result in successive block recom-
binations.

The Block Buffering and Pre-Fetching optimization is analogous to write buffer-
ing and data pre-fetching. The optimization introduces fast, on-chip buffers to store
deallocated free-blocks, and implements logic to pre-fetch free-blocks from the free-
lists in memory. Blocks stored in these buffers can quickly and efficiently satisfy
allocation requests, and deallocated blocks can be quickly stored in empty buffer lo-
cations. Block Buffering is beneficial for average-case allocation and deallocation as
it can significantly reduce the number of header updates that occur with each opera-
tion. Additionally, when the system is in a state of equilibrium, the optimization also
allows the allocator to guarantee k-tolerance for allocation and deallocation requests.
That is, given the presence of k£ pre-fetched blocks, the allocator can ensure that &
sequential allocation requests can be satisfied without the system processor experi-
encing any additional wait time, regardless of the Inter-Arrival Time (IAT) between
each allocation. Likewise, the allocator can also ensure that k& sequential deallocation
requests can be satisfied given the presence of k£ empty locations in the on-chip buffer.
Block Buffering is also a critical component of Parallel Block Decomposition.

Parallel Block Decomposition is a hardware optimization that allows all the
steps of the block phase to occur in parallel without the necessity of updating block
headers in memory. As a result, all block decompositions execute in logic-speed
constant-time, regardless of the degree of decomposition. The optimization signifi-
cantly improves worst-case allocation performance since allocations that require de-
composition of a larger block have effectively the same block phase execution time
as allocations that are directly satisfied with smaller blocks. When paired with Fast
Return, the optimization can relax the minimum IAT required for the allocator to

guarantee constant-time allocation performance.

37
5.1 OHEBS Structure

The OHEBS allocator is composed of two main module designs: the Index Component
and the Interface Layer.

The Index Component is a fully self-sufficient unit that handles allocation and
deallocation of memory blocks of a single size. Each Index Component independently
manages a Buddy-Busy list and Buddy-Free list from which it can allocate and deal-
locate. The OHEBS allocator thus instantiates 28 individual Index Components, one
for each index of the Estranged Buddy free-list hierarchy (block sizes 2% up through
931).

The Index Components are instantiated within the Interface Layer, which is
connected to the system processor and system memory. The Interface Layer accepts
allocator requests from the CPU and translates those requests into operations that
are executed by one or more of the Index Components. For example, the Interface
Layer may receive an allocation request for a block of size 2% from the CPU, and
forward the allocation request to the Index Component at index k. Conversely if
the allocation requires a block decomposition, the Interface Layer will translate the
single allocation request into multiple Index Component operations that, when ex-
ecuted together at the appropriate indices, successfully complete the decomposition
and allocation processes. A basic structural block diagram for the OHEBS system is
shown in Figure 5.1.

The OHEBS resides between the system processor and system memory. Unlike
the HBS which shares the memory bus with the CPU, the OHEBS allocator is the only
component directly connected to memory. This organization is shown in Figure 5.2.

This placement was chosen as separation of the buses to the system processor
and to main memory helped to simplify the OHEBS design. It may also be a more

accurate model for Intelligent Random Access Memory (IRAM) implementations.

38

Index Component 31

Memory
Arbiter

Control
Logic

Index Component 30

Index Component 29

Index Component 5

Index Component 4

=

Interface Layer

Figure 5.1: A simplified block diagram of the OHEBS. Each Index Component implements
a single index in the Estranged Buddy hierarchy.

Address /

Primary Data 32 /
CPU OHEBS

N

Allocator Opcode 82 /

3

eleq
sselppy

/v

/

w \ apood O AlowaN

N

AN

32

Memory
Controller

Figure 5.2: The OHEBS lies between the processor and memory controller, allowing the
allocator to communicate with both the CPU and memory simultaneously.

39

Additionally, this placement may be moderately beneficial for allocator performance
since the OHEBS can interface with memory and the CPU simultaneously. The
practical consequence of this design, however, is that the allocator must actively
support pass-through of standard load and store operations and memory intensive
applications have the potential to cause congestion within the allocator.

The OHEBS performs three explicit storage management functions: heap ini-
tialization, allocation and deallocation. These operations as well as standard load
and store operations are initiated by the system processor with a 3-bit opcode bus.
The system matches the original HBS specifications using 32-bit address and data

buses connected to a byte-addressable memory.

5.2 Header Fields

The allocator implements the Estranged Buddy free-lists using the same block struc-
ture as the HBS. Free-blocks stored in the Buddy-Busy list as well as allocated blocks
have the same header configuration specified in Chapter 4. The Buddy-Free list how-
ever is implemented as a singly linked list, and free left buddies on the Buddy-Free
list correspondingly do not have valid Previous fields and exhibit the header structure
shown in Figure 5.3.

Bit: 31

Size | F | Unused Next Free Space
Byte: 0 4 8 12

Figure 5.3: The header format for left buddy-blocks stored in the Buddy-Free list. Since
the Buddy-Free list is singly-linked, the Previous field is not used.

The Buddy-Free list is not doubly-linked because blocks in the list are already
recombined, hence no other recombinations can take place that will result in the re-

moval of arbitrarily positioned blocks from the list. Blocks are added to, and removed

40

from, the Buddy-Free list only at the list head. Removal of the Previous reference is
a simple optimization that helps to reduce the number of memory operations that are
required when manipulating free buddy-block pairs. Similarly, the right buddies of
pairs stored in the Buddy-Free list have no explicit references at all and have neither
valid Previous nor Next fields as shown in Figure 5.4.

Bit: 31

Size | F | Free Space
Byte: 0 4 8 12

Figure 5.4: The header format for the right buddy of free buddy-block pairs in the Buddy-
Free list. The right buddy-blocks have no explicit references, hence both the Previous and
Next fields are unused.

5.3 OHEBS Optimizations

5.3.1 Estranged Buddy

The Estranged Buddy allocation algorithm is used in the OHEBS to ensure constant-
time deallocation. As discussed in Chapter 4, the aggressive block recombination
of Knuth Buddy can be detrimental to deallocation performance since deallocated
blocks may be iteratively recombined up the free-list hierarchy. Additionally, ag-
gressive block recombination may also result in redundant operations if a recently
recombined block is simply decomposed again to satisfy a subsequent allocation re-
quest. Because block decomposition has been parallelized in the OHEBS, redundant
block recombinations would not directly affect allocation performance, but they would
still create unnecessary memory traffic and device congestion. The use of Estranged

Buddy allows the OHEBS to avoid both of these weaknesses entirely.

41
5.3.2 Block Buffering / Pre-Fetching

The Block Buffering / Pre-Fetching optimization is based upon a single small hard-
ware buffer called the Free-Buffer. A Free-Buffer is added to each Estranged Buddy
index and acts as fast temporary storage for references (pointers) to free-blocks. In
the actual OHEBS a Free-Buffer is implemented in every Index Component.

The Free-Buffer simultaneously behaves as a pre-fetch buffer for block alloca-
tion and as a write buffer for deallocation. As seen in Figure 5.5, logic can be used to
pre-fetch blocks from the free-lists to the buffer or remove free-blocks from the buffer

and place them in the free-lists .

Free Buffer Free Lists
BB A C
BF B, .
BR R
Pre-Fetch Tr
Empty

BB » C
BF B, 9 D,
A BR R

Figure 5.5: An example of Free-Buffer pre-fetching and emptying.

A free-block that has been pre-fetched prior to an allocation request can then
be allocated directly from the Free-Buffer as shown in Figure 5.6. This is beneficial as

an allocation can be satisfied without updating block headers in memory at the time

!Note that the actual Free-Buffer contents are pointers to free-blocks, not free memory space
itself. When we speak of adding and removing free-blocks from the Free-Buffer, we are actually
referring to adding and removing free-block addresses.

42

of the allocation request, thus the CPU will experience considerably less wait time.
Similarly a block deallocation request can be satisfied by directly deallocating the
block to an unoccupied position in the Free-Buffer, as shown in Figure 5.7, without

the necessity of updating headers at the point of deallocation.

Free Buffer Free Lists

BB > C
BF B, L
A Bn R

\,7

BB q C
BF B, L
A B, R

)

Allocate

Figure 5.6: Blocks stored in the Free-Buffer can be allocated without updating block
headers.

Ideally the Free-Buffer would always be kept in a partially full state such that
the buffer is able to satisfy both allocations and deallocations. As such, the logic that
moves free-blocks between the Free-Buffer and the free-lists should attempt to keep
the buffer capacity above some desired minimum content-level and below a desired-
mazximum content-level. These Free-Buffer maintenance operations can be done in
parallel with application execution, hence it may be possible for the Free-Buffer to
satisfy every allocator request, assuming the application has a suitable allocation /

deallocation behavior.

43

Free Buffer Free Lists

BB # C
BF B, L
E A Bg Dg

Deallocate
v

BB C
E BF B, L
BR R

Figure 5.7: Blocks freed by an application can be deallocated directly to the Free-Buffer
without updating block headers.

An important point we should emphasize is that free-blocks referenced in the
Free-Buffer are marked as busy in their headers, despite the fact that the blocks are
allocatable. This requirement forces the system to update block headers when the
blocks are moved from the free-lists to the Free-Buffer and vice-versa, but also allows
blocks to be allocated from, or deallocated to, the Free-Buffer without updates. This
behavior is necessary to maintain the integrity of the Free-Buffer in actual implemen-
tation. We will discuss this issue further in Section 5.4.

Figure 5.8 shows what is one of the most significant advantages of the Free-
Buffer architecture. Since a single hardware buffer is used for both allocation and
deallocation, blocks that have been deallocated to the Free-Buffer can immediately
be used to service subsequent allocation requests, resulting in exceptionally efficient
memory block reuse and redistribution and potentially eliminating free-list involve-

ment entirely.

44

Free Buffer Free Lists
BB 3 C
BF B, L
E A By Dy
Deallocate
v
BB Y (3
E [BF | B,]
A BR R
| BB C
BF B, .
E A B, o
Allocate

—

Figure 5.8: Blocks that have been deallocated into the Free-Buffer can be used to satisfy
subsequent allocation requests, completely eliminating free-list involvement.

As an example, consider a case where n deallocations are immediately followed
by n allocations. Provided the Free-Buffer is large enough, all n free-blocks could be
deallocated directly to the Free-Buffer. Subsequently, all n allocations could then be
satisfied directly from the Free-Buffer with the same blocks that were freed in the
immediately preceding deallocation sequence. An ancillary benefit of this behavior
is that blocks allocated by the Free-Buffer are the most recently deallocated blocks,

and there is a greater likelihood that those addresses will already be referenced in a

45

system’s memory cache, potentially improving cache performance for the executing

application and reducing primary memory traffic.

5.3.3 Parallel Block Decomposition

The operations of the block phase of a Knuth or Estranged Buddy allocation can
be logically thought of as a two-step process: the decomposition step and the update
step. If an allocation request for a free-block of size 2 is directly satisfied with a block
from the free-list at index k, the only work that is done is in the update step where
the header of the block is updated to ensure the allocated block displays the correct
size and is correctly marked as busy. However, if a decomposition does occur, work is
also done in the decomposition step, where the large block is iteratively decomposed
into smaller blocks.

Since the decomposition step is typically sequential, a greater degree of decom-
position usually corresponds directly to increased block phase execution time. The
update step on the other hand is a simple constant-time operation for every alloca-
tion. The most apparent method of actually shortening the execution time of the block
phase is then to shorten the execution time of the decomposition process, and with
hardware support, all block decompositions can be executed in parallel and complete
in logic-speed constant-time regardless of the degree of decomposition.

To illustrate, consider Figure 5.9 which shows an allocation where a request
for a block of size 2% is satisfied by decomposing a block of size 2. Note that the
allocated block is simply the first portion of the block that is decomposed, hence
both the decomposed block and the allocated block have the same address. Since a
block at index 7, which we call the top index, is selected for decomposition, both of
the intermediate indices 5 and 6 are necessarily empty prior to the decomposition

process. (If either intermediate index had not been empty, a smaller block from the

46

non-empty intermediate index would have been selected for decomposition.) After
the block decomposition is complete, the intermediate indices 5 and 6, as well as

target index 4, all contain a single free-block.

/Allocate &A A I 5 | = 5 |

Deallocate
Ve

N|
QA +2°6 2° d D |

&A

Deallocate

4 5 N
&A+25 1.2 " c

Deallocate

an+2 | e |

Allocate

Figure 5.9: A block decomposition can be seen as a multi-step sequence involving an
allocation from the top index, followed by deallocations to all intermediate indices and
the target index.

As shown, an allocation that requires a block decomposition can effectively be
broken down into an allocation from the top index, followed by a number of dealloca-
tions to all intermediate indices and the target index. Furthermore, the addresses of
all intermediate blocks are easily computed by simply adding the block-size of each
index to the address of the allocated block. Subsequently, we can execute the block
decomposition process in parallel if by implementing independent hardware adders
at each index that can add the size of the blocks contained in the index to any deal-
located address. In the actual OHEBS, this is accomplished by including an adder in
each Index Component.

This behavior is still problematic if the blocks deallocated to the intermediate
indices are placed in free-lists, as the parallel deallocations would result in several

sequential memory operations to update block headers, negating the benefit of the

47

parallelized decomposition. However, if the parallel decomposition logic is combined
with the Block Buffering optimization, parallel deallocations to intermediate indices
are guaranteed to complete at logic-speed since the Free-Buffers at all intermediate
indices are necessarily empty, and therefore capable of supporting immediate deallo-

cation. This process is shown in Figure 5.10.

Free Buffer Free Lists
/Allocate ~ | 58 |_’| ¢ |
&A |eF | 8. | b
A Br Dg
Deallocate | BB |_.
&A +2°
[}
/Deallocate | BB |_. Empty
&A +2°
g
/Deallocate | BB |_.
&A +2* >
(o}

Figure 5.10: Using Free-Buffers, all intermediate blocks produced by a decomposition can
be deallocated in parallel without accessing memory.

(We may notice that there is still a problem with this solution as we had
specified that blocks in the Free-Buffer are marked as busy, but free-blocks produced
through decomposition have completely invalid headers. This issue is not problem-
atic in actual implementation and we will discuss it in detail in Section 5.4 and

Section 5.5.)

5.4 OHEBS Hardware

We will discuss the OHEBS hardware using a bottom-up approach, describing its

internal Index Components and external Interface Layer respectively.

5.4.1 Index Component

The Index Component circuit intelligently manages the Buddy-Busy and Buddy-Free
lists of a single index of the Estranged Buddy hierarchy. As such, all blocks in a

given Index Component are homogeneous in size. Figure 5.11 shows a simple block

diagram of the Index Component.

CPU Opcode

CPU Dgta

CPU
IC

Free Buffer

RAM
IC

&C

&A

&B

&D

RAM Opcode
RAM Address
Free List RAMN Data
&BB_0
&BF 1

Figure 5.11: A simplified block diagram of the Index Component circuit.

The Index Component consists of four primary modules:

Free-Buffer

Free-List Headers

CPU Index Controller (CPU IC)

RAM Index Controller (RAM IC)

49

The Free-Buffer is the hardware buffer used for temporary storage of references
to free-blocks as described in Section 5.3. The Free-Lists Headers are two 32-bit
registers used to store the head pointers for the Buddy-Busy and Buddy-Free lists.
The CPU IC is responsible for single block allocations from, and deallocations to,
the Free-Buffer and the RAM IC attempts to keep the Free-Buffer above the desired
minimum content-level and below the desired maximum content-level. Additionally,
the RAM IC controls allocation of free buddy-block pairs directly from the Buddy-
Free list. These components work cooperatively to provide support for four distinct
operations that are initiated with a 2-bit opcode issued by the external Interface

Layer:

o Index Allocate:

This operation is a simple direct block allocation. Index Allocations are exe-
cuted by the CPU IC and always occur directly from the Free-Buffer. If the
Free-Buffer is empty the system stalls until the RAM IC can move a free-block
from one of the free-lists into the Free-Buffer, at which point the block can be

allocated.

e Index Deallocate:

This operation is a simple direct block deallocation. As with Index Allocations,
Index Deallocations are executed by the CPU IC and always occur directly to

the Free-Buffer. If the Free-Buffer is full, the system stalls until the RAM IC

can move a free-block from the Free-Buffer to the free-lists.

o Index Pair Allocate:

The Index Pair Allocate operation is used for Estranged Buddy pair allocations
where a request for a block of size 2% is satisfied by allocating a free buddy-

block pair from index k£ — 1. This operation is executed by the RAM IC and

50
allocates the first pair in the Buddy-Free list. Allocations of free buddy pairs

occur directly from the free-list and do not involve the Free-Buffer.

e Index Decompositional Deallocate:

As described in Section 5.3, the block decomposition process can effectively
be thought of as an allocation from the top index followed by deallocations
to all intermediate indices and the target index. The Index Decompositional
Deallocate operation provides support for these intermediate deallocations. The
operation is identical to a standard Index Deallocate except the block-size for
the index is added to the address presented for deallocation before the address

is stored in the Free-Buffer.

We should specify that when a free-block is requested from an Index Compo-
nent, the circuit will return a reference to a valid free-block, however the circuit does
not ensure that the actual header of the block is valid. The Size/Free field of the
block is validated by the Interface Layer with a single-word memory write after the

block is allocated by the Index Component.

CPU Index Controller

The CPU IC is implemented as a finite-state machine and executes the Index Allocate,
Index Deallocate and Index Decompositional Deallocate operations. All of the CPU
IC instructions are executed directly from or to the Free-Buffer and can subsequently
all complete in logic-speed provided that allocation requests are not encountered
when the Free-Buffer is empty and deallocation requests are not encountered when

the Free-Buffer is full.

51
RAM Index Controller

The RAM IC is implemented as a finite-state machine and is responsible for perform-
ing all free-list management and Free-Buffer maintenance operations. Additionally
Index Pair Allocate operations are executed by the RAM IC as the free buddy-block
pair must be allocated directly from the head of the Buddy-Free list.

To allow for buffering of both allocation and deallocation requests the RAM IC
continually operates in an effort to keep the Free-Buffer above the desired-minimum
content-level and below the desired-maximum content-level, which, in our implemen-
tation, were fixed at 2 blocks and 6 blocks respectively. Maximum buffer capacity
was set at 8 blocks. If the Free-Buffer enters a state in which it holds less than 2
valid free-blocks and either of the free-lists is non-empty, the RAM IC attempts to
pre-fetch a block from the free-lists into the Free-Buffer. Likewise if the Free-Buffer
enters a state where it contains more than 6 valid free-blocks the RAM IC attempts
to move a free-block from the Free-Buffer to the free-lists.

Though the effect of using different values for the desired-maximum and desired-
minimum content levels was not investigated for this thesis, it is logical to assume
that these values should not be identical. The use of the same value for both the
desired-maximum and desired-minimum results in a single target content-level from
which any deviation results in active movement of free-blocks and a large number of,
potentially unnecessary, memory operations.

Since blocks are deallocated directly to the Free-Buffer, the process of emp-
tying the Free-Buffer entails updating the block header and checking for possible
recombination. Whenever a block is moved from the Free-Buffer to the free-lists, the
RAM IC first updates the block header then checks if the buddy-block is free. If the

buddy-block is marked busy the block is simply moved to the Buddy-Busy list. If

52
the buddy-block is marked free the buddy-block is moved out of the Buddy-Busy list

and the left buddy is added to the Buddy-Free list.

Note that if the RAM IC finds that a buddy-block is marked as free, it must be
in the Buddy-Free list and not stored in a Free-Buffer. As described in Section 5.3,
free-blocks referenced in the Free-Buffer are actually marked busy. The header is
updated to reflect the busy state when free-blocks are pre-fetched into the Free-
Buffer. Block headers are likewise marked free when a free-block is removed from the

buffer and placed in the free-lists as shown in Figure 5.12.

Free Buffer Free Lists
(e {~ H{ <]
Marked
Busy F |BF|—O B, — D,
E Br Dr

Marked
Free

Figure 5.12: Free-blocks that are referenced in the Free-Buffer are marked busy, despite
the fact that they are intrinsically free.

Buffered blocks are subsequently not free in the typical sense, they are intrin-
sically allocatable but they are not available for recombination. As will be detailed in
the next section, this behavior is required to maintain the integrity of the Free-Buffer
as the process of moving a single block from the Free-Buffer to the free-lists cannot
result in the removal of a second block that may exist in the Free-Buffer at an arbi-
trary position, an event that could otherwise occur if there was a free buddy-block

pair stored in the Free-Buffer.

93

The process of pre-fetching a free-block from the free-lists simply involves mov-
ing the first block in a list into the Free-Buffer and updating the block header to reflect
a busy state. Pre-fetching from the Buddy-Busy list is preferable so that we do not
unnecessarily split free pairs and increase external fragmentation. However, if the
Buddy-Busy list is empty, a pair of blocks can be pre-fetched from the Buddy-Free

list simultaneously as shown in Figure 5.13.

Free Buffer Free Lists
BB |—e
BF L L
R DR
Pre-Fetch
BB [—=
B, BF L
BR R

Figure 5.13: A pre-fetch from the Buddy-Free list fetches both buddies concurrently.

Implicitly pre-fetching two blocks at a time from the Buddy-Free list is desirable
since it avoids the necessity of adding a block to the Buddy-Busy list, and the Free-

Buffer receives two allocatable free-blocks from a single pre-fetch operation.

Free-Buffer

Ideally the Free-Buffer would be large enough to manage any possible sequence of

allocation and deallocation operations. Since such goals are clearly not feasible, the

o4

Index Component attempts to approximate ideal behavior by wiring the Free-Buffer
to the Buddy-Busy and Buddy-Free lists with the RAM IC.

This architecture adds additional complexity as the Free-Buffer becomes a
shared resource as the CPU IC and the RAM IC may access the buffer simulta-
neously. To efficiently arbitrate Free-Buffer access, we propose a fine-grain level of
buffer sharing that offers a performance advantage over more generic mutual-exclusion
methods.

All of the Free-Buffers in the current OHEBS have a fixed capacity and can hold
a maximum of 8 32-bit block references at a given instance. To allow for concurrent
access to the Free-Buffer by both the CPU IC and RAM IC, the buffer is actually
implemented with a set of 8 independent 32-bit registers. Register access is moderated
using a bi-directional indexing scheme that attempts to keep the registers referenced
by the CPU IC and RAM IC distinct.

The CPU IC and the RAM IC index into the Free Buffer using two separate
3-bit counters that are both initialized at system reset to 0b000. We refer to these
counters as the CPU Index and RAM Index respectively. The counters are updated

with each buffer operation as follows:

Allocation: Allocate *CPU Index - Decrement CPU Index

Deallocation: Increment CPU Index - Deallocate *CPU Index

Buffer Pre-Fetch: Pre-Fetch *RAM Index - Decrement RAM Index

Buffer Empty : Increment RAM Index - Empty *RAM Index

The resulting behavior is somewhat reminiscent of a circular queue where full 2

buffer positions are adjacent within the buffer. The CPU Index (head) points to the

2We describe the contents of a position in the Free-Buffer as full when it contains the address of
a valid free-block and empty when it does not.

55
highest full position and the RAM Index (tail) points to the empty position imme-

diately trailing the valid segment as shown in Figure 5.14. However, the structure
differs from a queue in that buffer positions can be filled or emptied at both the CPU
Index and at the RAM Index.

Allocate Deallocate
CPU Index
R — E
D
CPU Index
E— (03 C
B
Stable A A
RAM Index RAM Index
—— —
CPU Index
D
+—Allocate —Deallocate
C
B Pre-Fetch Empty
RAM Index
A
RAM Index
e
CPU Index CPU Index
— D Em—
C
B
RAM Index
A —
E

Empty
Pre-Fetch ____

Figure 5.14: Bi-directional indexing in the Free-Buffer attempts to maximize the likelihood
that the CPU Index and RAM Index do not reference the same Free-Buffer position.

This indexing behavior attempts to maximize the likelihood that the CPU
Index and RAM Index do not concurrently reference the same Free-Buffer position,
thereby ensuring that the CPU IC and the RAM IC have simultaneous Free-Buffer
access. If the CPU IC adds blocks to the buffer and the RAM IC removes blocks
or vice-versa, the RAM Index trails the CPU Index in an effort to keep the Free-

Buffer within the desired content-levels. Conversely if both controllers add blocks

56
to the buffer, or remove blocks from the buffer, the CPU Index and RAM Index

iterate in opposite directions such that they do not refer to the same position until
the Free-Buffer is either completely empty or filled to maximum capacity.

It is critical to emphasize that indexing conflicts will arise since the CPU IC can
execute Free-Buffer operations at a much faster rate than the RAM IC. For example,
consider the case where the Free-Buffer contains only 1 valid free-block. Since the
buffer is below the desired minimum capacity of 2 free-blocks, the RAM IC will begin
a pre-fetch operation. However, while a block is being fetched from the free-lists, a
string of sequential deallocations may occur and the Free-Buffer could be filled to
capacity before the pre-fetch has completed. This conflict is shown in Figure 5.15.

To resolve this issue, the CPU IC will stall and defer Free-Buffer access to the
RAM IC if the CPU Index and the RAM Index reference the same buffer position

and the RAM IC is in a non-idle state 3.

5.4.2 Interface Layer

The external layer of the OHEBS is the Interface Layer, which is connected to the
system processor on one side and system memory on the other. The Interface Layer
houses 28 separate instantiations of the Index Component as well as four other pri-

mary modules:

e CPU Interface
e Enhanced Fast Find Module
e RAM Interface
e RAM Priority Module
3For block deallocations, the CPU Index and the RAM Index are also in conflict when the CPU

Index has a value that is 1 less than the RAM Index. The RAM IC is capable of adding two
free-blocks to the Free-Buffer with a single pre-fetch operation from the Buddy-Free list.

o7

Free Buffer Start Pre-Fetch

A

Free Lists

|BF|—> B, ¥ D,

B D
CPU Index : 2
—H A
RAM Index
—
Deallocate _—¥ | E | | G | | : | | K |
NN
Free Buffer Jl
J
| Pre-Fetch Conflict Free Lists
: N\
5
F | BF |—> B, ¥ D
E By D.
A
K

CPU Index RAM Index
—’ ‘—

Figure 5.15: An example of a Free-Buffer indexing conflict. Conflicts occur because the
CPU IC can execute allocations and deallocations more quickly than the RAM IC can
move free-blocks to and from the free-lists.

The CPU Interface and the Enhanced Fast Find module work together to
translate and forward CPU allocator requests such that the correct operations are
executed by the appropriate Index Components. Similarly the RAM Interface and
the RAM Priority module work cooperatively to arbitrate access to memory between
the CPU IC and all of the Index Components. A block diagram for the Interface

Layer circuit is shown in Figure 5.16.

o8

Allocator Opcode RAM Opcode
CPU Address 3 cPU RAM 1 RAM Address
Interface Interface
CPU Data 32 Index Component 30 2 RAM Data

32
| | inaoxcomponent 20 |- | =

I
|
Enhanced | RAM Priority
Fast Find | Select
|
|

Index Component 5

Index Component 4

I

Figure 5.16: A simplified block diagram of the Interface Layer circuit.

The CPU Interface accepts the three storage allocation instructions from the
system processor (heap initialize, allocate and deallocate) and translates them into

one of four distinct operations:

e Direct Allocate:

The Direct Allocate operation corresponds to an allocation that does not de-
compose or recombine blocks. A Direct Allocate occurs if an allocation request
for a block of size 2* arrives and the Index Component at index k£ has one or
more available free-blocks. Direct Allocate operations are the highest priority

allocation method.

To execute a Direct Allocate, the CPU Interface simply issues an Index Allocate
instruction to the appropriate Index Component at k. Once the Index Compo-
nent returns the block address, the CPU Interface forwards the block address

to the CPU.

We should specify that, for all allocation operations, the CPU Interface performs

a single-word memory write to validate the Size/Free field of the block returned

99

by the Index Components. All allocation operations therefore require at least

a single-word memory write to complete.

Pair Allocate:

Pair Allocate is the second priority allocation method in the OHEBS and corre-
sponds directly to the Estranged Buddy pair allocation. If an allocation request
arrives for a block of size 2 and the Index Component at index k is empty, a
free buddy-block pair can be allocated from the Index Component at £ — 1,

provided it has a non-empty Buddy-Free list.

The CPU Interface executes Pair Allocate by issuing an Index Pair Allocate
instruction to the Index Component at £ — 1. Once the Index Component
returns the block address, the CPU Interface updates the block header and

forwards the block to the CPU.

We could help minimize external fragmentation if Pair Allocate operations were
set as the first priority allocation method. However, as described in the previous
section, the Index Pair Allocate operation does not take advantage of the Free-
Buffer and therefore does not offer any performance improvements over the
original HBS. We define Pair Allocate to be second priority in an effort to
enhance performance. This prioritization is also consistent with the Estranged

Buddy algorithm as originally described by Donahue [7].

Decompositional Allocate:

Decompositional Allocate is the third priority allocation method and corre-
sponds to an allocation that is serviced through decomposition of a larger block.
A request for a block of size 2F is serviced with a Decompositional Allocate if
the Index Component at k£ is empty and the Index Component at £ — 1 has an

empty Buddy-Free list.

60
To execute a Decompositional Allocate, the CPU Interface employs the En-

hanced Fast Find module to locate the nearest Index Component with a free-
block of suitable size. An Index Allocate instruction is then issued to that
Index Component. As in the original HBS, Fast Find locates the block in effec-
tively constant time. However, the Enhanced Fast Find module also produces
a secondary output which indicates the intermediate and target indices. Once
the initial Index Allocate returns a block reference, the CPU Interface issues
a Decompositional Deallocate instruction to the intermediate and target Index
Components, using the address of the allocated block. Upon completion, the
CPU Interface updates the header of the allocated block and returns the block

to the CPU.

Since the deallocations that occur at the intermediate and target Index Com-
ponents complete in logic-speed constant-time, Decompositional Allocate oper-
ations can complete in essentially the same amount of time as Direct Allocate
operations. It would be more beneficial for performance to specify the Decom-
positional Allocate as the first or second priority allocation method. However,
increasing the frequency of block decomposition can also increase the amount of
external heap fragmentation. Decompositional Allocates are therefore defined
as the third priority allocation method. This prioritization is again consistent

with the original Estranged Buddy specification [7].

Direct Deallocate:

All deallocation requests are serviced with the Direct Deallocate method. The
CPU Interface deallocates a block by first initiating a single-word memory read
of the Size/Free field of the block to determine size. The block is then given to
the corresponding Index Component module with an Index Deallocate instruc-

tion.

61

e Heap Initialize:
This is a simple method used only for heap initialization. Initialization is iden-
tical to block deallocation except the value specified with the initialize request

is the requested heap-size instead of the deallocated block address.

Since the Estranged Buddy algorithm initializes the heap as a single free-block,
this method is executed by the CPU Interface by issuing an Index Deallocate
instruction to the Index Component that corresponds to the total heap-size.
The address given to the Index Component is the base address of the heap and

is assumed to be 0h00000000.

CPU Interface

The purpose of the CPU Interface is to translate allocator requests into operations
executable by the Index Components. The module is implemented as a finite-state
machine and operates independently in the execution of Direct Allocate, Pair Al-
locate, Direct Deallocate and Heap Initialize operations. The circuit operates in
cooperation with the Enhanced Fast Find module for execution of Decompositional
Allocate operations.

Allocation and initialization requests arrive from the system processor with a
32-bit one-hot data value representing the requested block-size. For Direct Allocate
and Heap Initialize, the CPU Interface uses the vector as an opcode-enable for the
Index Components as shown in Figure 5.17. The four low order bits of the vector are
inconsequential since the minimum block-size supported by the OHEBS is 16-bytes.
The requested block-size is also used as an enable vector for Pair Allocate, but the
vector is first shifted one position to the right so the correct index is specified.

An analogous enable scheme is used for Direct Deallocate, but since deallo-

cation requests are issued with the address of the deallocated block and not the

62

Index
Component
Enable Vector
Requested Index Component 31
Block Size cPU 0

001 00 Index Component 30
Index Component 29

|

|

|

|

|

|

|

|

|

|

O 1
Index Component 5
0 Index Component 4

Figure 5.17: For allocations and heap initialization, Index Components are enabled using
the requested block-size as an enable vector.
block-size, the CPU Interface uses the value of the Size/Free field of the deallocated
block as the enable vector.

The enable scheme for Decompositional Allocate is somewhat more involved
as it issues instructions to multiple Index Components. The CPU Interface uses the

Enhanced Fast Find module to generate the appropriate enable vectors.

Enhanced Fast Find Module

The Enhanced Fast Find module implemented within the OHEBS is essentially the
same as the Fast Find module of the optimized HBS described in Chapter 4. However,
the Enhanced Fast Find module adds additional functionality to support parallel
block decomposition.

The module produces two 32-bit output vectors called the top-indexr vector

and the intermediate-indexr vector. The top-inder vector is a one-hot value that

63

indicates the index from which a block will be allocated. The intermediate-indez
vector indicates all intermediate indices as well as the target index for subsequent
deallocation of free-blocks produced by the block decomposition.

To generate top-index, each of the Index Component circuits outputs a single
bit indicating if any free-blocks are available at that index. These 28 bits are input
into the Enhanced Fast Find module as a single vector, representing all free-blocks
available for allocation. As in the original HBS Fast Find, the module then masks the
bit-vector with the requested block-size, and the result is passed through a Leading-
Zero-Detector (LZD) *.

Generation of intermediate-inder is then accomplished with a simple unsigned
32-bit binary subtraction of the requested block-size from the top-index vector as

shown in Figure 5.18.

Top Index 000010000000000O
- Requested Size 0000O0O0O0O0O0O10000O0O

Intermediate Index [0000011111000000

Figure 5.18: The intermediate-index vector is generated with a simple 32-bit subtraction
of the requested block size from top-index.

RAM Interface

The RAM Interface is implemented as a finite-state machine and operates coopera-
tively with the RAM Priority module to arbitrate access to memory between each
of the Index Components and the CPU Interface. The goal of the RAM Interface

and RAM Priority module together is to arbitrate memory requests such that CPU

4The VHDL implementation of the LZD was borrowed from a publicly available VHADL arithmetic
library. [21]

64

wait time is minimized. To this end, any operation on which the CPU Interface is
waiting is given maximum priority for access to memory. If the CPU Interface is idle,
access to memory is shared among the Index Components using an enhanced round-
robin scheduling algorithm. Memory access is granted with single-word read/write
atomicity.

The RAM Interface itself is a simple component that translates and forwards
memory requests from the CPU Interface and the Index Components to the system
memory controller. The RAM Interface has only two modes of operation, memory
access is either granted to the CPU Interface, or to the set of all Index Components.
The CPU Interface always has precedence over the Index Components since all of its
memory operations involve updating or reading block headers at the point of alloca-
tion or deallocation, and will result in stalling the CPU if they are not immediately
executed.

When memory access is given to the set of Index Components, the RAM

Interface determines prioritization through the use of the RAM Priority module.

RAM Priority Module

The RAM Priority module outputs a 32-bit one-hot data vector that indicates the
Index Component with maximum memory-access priority. Priority is based on CPU
Interface dependence as well as the time of memory request.

Specifically, the system processor is stalled not only when the CPU Interface
itself executes memory operations, but also when the CPU Interface must wait for
an Index Component to complete a memory operation. An example of this an Index
Allocate instruction to an index that has free-blocks available in the free-lists, but not
in the Free-Buffer. The RAM Priority module therefore assigns maximum priority to

any Index Component on which the CPU Interface is immediately dependent.

65
If the CPU Interface is not dependent on any Index Component, priority is

assigned using a customized scheduling algorithm that is derived from simple round-
robin, but allows for a rough degree of temporal prioritization. The module assigns
priority in round-robin order based on snapshots of Index Component memory re-
quests. A snapshot of all Index Components actively requesting memory is taken,
and each Index Component in the snapshot is sequentially granted access to memory.
Once all the active Index Components in the snapshot have completed their memory
operations, a new snapshot is taken and the process is repeated.

The implementation of the snapshot logic is similar to the Fast Find optimiza-
tion. Each Index Component outputs a single bit that is set whenever it needs to
execute a memory operation. These bits are input into the RAM Priority module
as a bit-vector called current-requests. The current-requests vector is then masked
with a second vector called request-mask to generate the masked-requests vector. The
request-mask vector is initialized to OhFFFFFFFF.

The masked-requests vector is then passed through a LZD to generate the
selected-request vector, which indicates which index has priority access. This process

is illustrated in Figure 5.19.

Current Requests |0010100111010010
AND Request Mask 111111211111111111

Masked Requests [0010100111010010 |
Leading Zero

Selected Request [0010000000000000 |

Figure 5.19: The computation of selected-request is similar in operation to Fast Find. In
the actual OHEBS the vectors are 32-bits in length as each bit represents an index.

66

Once the selected Index Component has completed its memory operation, the
request-mask vector is updated the next time the RAM Priority module is enabled.
The new request-mask is generally calculated as the logical X0R of the previous masked-
requests and selected-request vectors as shown in Figure 5.20. An exception to this is if
the logical XOR equates to 0h00000000, at which time the request-mask is re-initialized

to OhFFFFFFFF.

Masked Requests 0010100111010010
XOR Selected Request 00100000000000060

New RequestMask [0000100111010010]

Figure 5.20: The request-mask vector is updated so that each active Index Component in
a snapshot is given access to memory. Here again, the actual data vectors in the OHEBS
are 32-bits in length.

This behavior provides a very course grain temporal prioritization and en-
sures that all Index Components actively requesting memory in a given snapshot are
granted access prior to any memory request asserted after the snapshot. In addition,
the use of a LZD to locate the next Index Component actively requesting memory

access helps to improve the performance of round-robin scheduling.

5.5 Implementation Caveats

5.5.1 Parallel Block Decomposition

In Section 5.3 we specified that the Parallel Block Decomposition optimization can
result in deallocation of blocks with invalid headers into the Free-Buffers of the Index

Components. This is an aspect of the OHEBS that warrants further discussion.

67

Recall that block decompositions can occur in parallel and at logic-speed be-
cause all intermediate Index Components are empty, and therefore capable of sup-
porting logic-speed deallocation of the free-blocks generated by the decomposition.
The problem that arises is that since these intermediate blocks are derived from a
larger block, the values stored in the Size/Free header fields for the intermediate

blocks will not be valid, as shown in Figure 5.21.

/Allocale &A A | 5 | c | 5 |

Deallocate
Ve

&A +2° 2 ;IS| P |
=]

&A

Deallocate

7
&A +2°5

Deallocate

4 4
&A +24 E

Figure 5.21: Intermediate blocks produced by a decomposition will have invalid header
fields.

This seems problematic as blocks stored in the Free-Buffers are marked as busy
to maintain Free-Buffer integrity. Additionally validating each header for these blocks
is not an option as it would require a memory write per block, effectively negating
the benefits of parallel decomposition.

However, upon analysis we find that this issue will not result in undesired
operation. Specifically, a block with an invalid header can be stored in a Free-Buffer
provided the block’s logical buddy is not already present in the buffer. This will
necessarily be the case for free-blocks produced by block decomposition because the
intermediate Index Components will always be empty.

Figure 5.21 shows that all of the intermediate blocks produced in a block

decomposition are right buddy-blocks and that they all have the same left buddy

68
address, the address of the allocated block. Figure 5.22 shows a possible Free-Buffer

configuration after the decomposition has completed.

Free Buffer
Allocate
&A
Deallocate
Ve
&A +26
&A+26
Deallocate
Ve
&A+25
&A+25
Deallocate
Ve
&A+24
&A+24

Figure 5.22: An example of a possible Free-Buffer configuration after execution of the
decomposition shown in Figure 5.21.

The invalid headers of these intermediate blocks will only be a problem if they
are evaluated for possible recombination. This can only occur if their logical left
buddy, which is the block that was originally allocated, is returned to the allocator.

When the left buddy is returned to the allocator, the corresponding right buddy
(which is the smallest of the blocks originally produced by the decomposition) will
either be allocated, stored in the Buddy-Busy list, or stored in the Free-Buffer.

If the right buddy has been allocated or moved to the Buddy-Busy list, its
header was re-validated when the block was moved out of the Free-Buffer, so these

states are not problematic. The right buddy could still have an invalid header only if

69

it was never removed from the Free-Buffer as is shown in Figure 5.23. (Note that an
arbitrary number of other deallocations could take place between the allocation and

deallocation of the left buddy.)

Free Buffer Free Lists Free Buffer
| BB |—- | BB |—o
| BF |— | BF |
CPU Index
AL
CPU Index
C C
B B
=55
AR AR
RAM Index RAM Index
i L ——

Deallocate

Figure 5.23: When the left buddy is deallocated, the right buddy will still have an invalid
header if it was never moved out of the Free-Buffer.

However, based on behavior of Free-Buffer indexing described in Section 5.4,
the left buddy could never be moved out of the Free-Buffer and into the free-lists
before the right buddy. If a set of blocks is deallocated into the buffer, and the RAM
IC subsequently moves those blocks into the free-lists, the RAM IC will process the
blocks in FIFO order. As a result, because the right buddy was necessarily deallocated
into the buffer (through block decomposition) before the left buddy, the right buddy
will be the first block moved out of the Free-Buffer, ensuring that the invalid header

of the right buddy will never be evaluated.

5.5.2 Allocation Cost

In the best-case, an allocation request can be satisfied with a free-block stored in a

Free-Buffer, an operation that requires a single-word memory write to update the

70

Size/Free field of the allocated block. However, memory sharing and arbitration po-
tentially increases allocation latency by (up to) the time required for a single memory
access. As such, in the ideal case an allocation request can be satisfied by the OHEBS
allocator in the time required to execute 1 + 1 memory operations °.

In the worst-case an allocation request may be issued to an Index Component
with an exhausted Free-Buffer and the CPU would need to wait while a free-block
is fetched from the free-lists. Worst-case allocation therefore requires an additional
memory write to update the Size/Free header of the block as it is fetched into the
Free-Buffer, and an additional write to update the Previous header of the next block
in the free-list. (If a free buddy-block pair is fetched from the Buddy-Free list, the
Size/Free header of both blocks are updated, but the Previous header of the next
block is not updated as the list is not doubly-linked.)

Allocation cost in the OHEBS is as follows:
e Best-Case : 1+ 1 Memory Operations

e Worst-Case : 3 + 1 Memory Operations

5.5.3 Deallocation Cost

For deallocation, in the best-case a deallocated blocks would be written directly to an
empty position in a Free-Buffer. This operation requires a single-word memory read
of the Size/Free field of the deallocated block in addition to the memory arbitration
penalty. Ideal deallocation operations then complete in the time required to execute
1+ 1 memory operations.

Worst-case deallocation is unfortunately significantly slower as deallocation to
a Free-Buffer that is filled to capacity may lead to a buddy-block pair recombination.

When this occurs, a free buddy-block is removed from an arbitrary position in the

5We use the +1 notation to specify overhead imposed by memory arbitration

71
Buddy-Busy list, and then the recombined block is added to the Buddy-Free list. In

total this process can add an additional 7 memory operations to the ideal deallocate.

Deallocation cost in the OHEBS is as follows:

e Best Case : 14+ 1 Memory Operations

e Worst Case : 8 + 1 Memory Operations

72

Chapter 6

Experiments

6.1 Methodology

To quantify the performance offered by the Optimized Hardware Estranged Buddy
System (OHEBS) we chose to use the same testing methodology used by Donahue [6]
for the original Hardware Buddy System (HBS) design. Performance is measured
in the Mentor Graphics ModelSim simulation environment [19] using a set of Java
benchmarks selected from the SPEC jvm98 benchmark suite [3].

As shown in Figure 6.1, the simulated components include the OHEBS, which is
implemented using synthesizable VHDL, as well as the complete memory sub-system,
and a non-synthesizable VHDL testbench that is used to emulate the functionality of

the system processor.

6.1.1 Testbench

The testbench is used to signal heap initialization, allocation and deallocation. The
SPEC jvm98 benchmarks are first executed on a specially instrumented version of

the Java Virtual Machine (JVM) that outputs a trace-file of all allocator requests

73

e
Address
= 7
Test 2
—

Data OHEBS

Bench
Log-File <:I Allocator Opcode 32 /

3

elreq
ssalppy

apood O Alows |y

1 32 32

Memory

Controller [| SDRAM

Figure 6.1: A flow diagram of the simulation environment used to evaluate the perfor-
mance of the OHEBS.

executed during the benchmark. The trace-file is then used as input for the test-
bench, which correspondingly translates the operations logged in the trace-file into
the signals required to drive the OHEBS. As the allocator completes each operation,
the testbench records the execution time of each request into a log-file. All SPEC
jvm98 benchmarks were set at Size-1 to minimize the runtime of the simulations, and

a 32 MB heap is used to ensure adequate memory space.

6.1.2 Memory Sub-System

The VHDL implementation of the memory sub-system is borrowed directly from
Donahue’s original performance evaluation platform [6]. The module is designed
to be a simple, yet accurate reflection of a DRAM memory system. The design
implements four Micron 128 Mb, 32-bit SDRAM chips [13] and connects them to a
memory controller to create a single 64 MB DRAM bank. The memory controller

manages DRAM refresh and all other memory specific details.

74
6.1.3 OHEBS Allocator

The OHEBS is simulated at 200 MHz with a 100 MHz memory clock. Both frequen-
cies were originally chosen to reflect the SUN Ultra 5 workstation used to execute
benchmarks for the software Knuth Buddy allocator developed by Donahue [6]. The
200 MHz clock rate is reasonably selected as half the speed of the 400 MHz UltraSparc
CPU in the workstation, and the 100 MHz memory clock matches the workstation’s
100 MHz memory bus.

The performance metrics we present are as follows:

e Mean Allocation / Deallocation Time: This is the average time period required
to execute a single allocate or deallocate instruction in a given benchmark.
The value is calculated as the total time spent in execution of allocation or
deallocation, divided by the total number of allocation or deallocation requests.
Mean operation times are useful for determining the allocators suitability for

high-performance systems.

e Mazimum Allocation / Deallocation Time: This is the longest time period re-
quired to execute a single allocate or deallocate instruction in a given bench-
mark. Maximum operation times are used to evaluate the allocators suitability

for Real-Time (RT) systems.

o Mazimum Block Time: This is the longest time period required to execute the
block phase of a single allocate instruction. The testbench logs all allocations
in terms of find, block, and total time, and this value is simply the maximum of
all block periods in a benchmark. Maximum block times are used to quantify

the effectiveness of the Fast Return optimization.

75
6.2 Base Performance

Since the use of Fast Return can obscure the base-line benefits of the the new opti-
mizations developed for the OHEBS, we first directly compare the OHEBS and the
HBS without the Fast Return optimization. Fast Find is present for both hardware

allocators.

6.2.1 Allocation

Figure 6.2 and Figure 6.3 show the mean and maximum allocation times for the
allocators. Though performance of software allocation was not explicitly measured
for the purposes of this thesis, for reference we include the benchmark results of
both the software Knuth Buddy allocator and the default JVM allocator as originally
presented by Donahue [6]. The default JVM allocator uses a standard sequential-fits
free-list algorithm.

For average-case allocation, the OHEBS optimizations yields a factor of five
increase in performance over both the software allocators and the HBS, for all bench-
marks. Mean allocation time benefits from both the Block Buffering optimization as
well as the Parallel Block Decomposition optimization as worst-case allocations have
a smaller impact on average performance.

The OHEBS exhibits worst-case allocation performance that is over an order-
of-magnitude better than software across all benchmarks, and approximately a factor
of three better than the HBS.

Worst-case allocation in the OHEBS occurs when the Free-Buffer at a specified
index has been exhausted, and the allocation requires that a block be fetched from
the free-lists. In such cases, the performance benefits of the Free-Buffers are nullified
and the system reverts to functionality that is analogous to a standard allocation in

the HBS that does not require a decomposition. Worst-case allocation performance in

76

Mean Allocation Time
w/o Fast Return

10,000

1,000] B M - - - -

OOHEBS
EHBS
OKnuth
OJvm

100

Time (ns)

&
& o
N
Benchmark

Figure 6.2: Mean Allocation Time w/o Fast Return.

the OHEBS is actually somewhat slower than standard block allocations in the HBS
due to overhead imposed by memory arbitration, but this is more than compensated

for by the parallelization of block decomposition.

6.2.2 Deallocation

Figure 6.4 and Figure 6.5 show the mean and maximum deallocation times for the
HBS and OHEBS allocators. The performance of the software allocators was not
evaluated for deallocation, but it is reasonable to assume that the HBS should offer
equal or better performance than software Knuth Buddy.

The impact of the Estranged Buddy algorithm is immediately apparent in Fig-

ure 6.5 as worst-case deallocation time is far more consistent, and significantly better,

7

Maximum Allocation Time
w/o Fast Return

1,000,000

100,000 - — B — - 1] - -

10,000 B

OOHEBS
EHBS
OKnuth
OJvm

1,000 -

Time (ns)

100 -

10

) 4@00 K4 gi"bo vg&o
@) v
N

Benchmark

Figure 6.3: Maximum Allocation Time w/o Fast Return.

across all benchmarks. Use of the Estranged Buddy algorithm is more desirable for
RT as it eliminates the possibility of iterative block recombinations.

However, the OHEBS actually offers slightly poorer average-case deallocation
performance than the HBS, despite the presence of the Free-Buffers. This is an
effect of the deallocation behavior of the SPEC jvm98 benchmarks. Specifically,
deallocations in the SPEC benchmarks are instigated by the standard Java garbage
collector, which implements an algorithm that produces long, contiguous sequences of
deallocations. These sequences can almost immediately fill a Free-Buffer to capacity,
completely negating the benefits provided by the Block Buffering optimization and
resulting in numerous worst-case deallocations.

Worst-case deallocations in the OHEBS occur when a block is deallocated to

an index with a Free-Buffer that is filled to capacity, and the system processor must

78

Mean Deallocation Time

3,000

2,500 -

2,000 -

DOHEBS
BEHBS

Time (ns)
%
8

1,000 —

500

©
S N v9& « <
<& & v

N
Benchmark

Figure 6.4: Mean Deallocation Time.

wait while a free-block is moved from the Free-Buffer to the free-lists. As is the
case with allocations, a worst-case deallocation in the OHEBS is comparable to a
standard deallocate in the HBS that does not result in block recombination, but
again, memory arbitration causes a noticeable amount of overhead per operation,
resulting in deallocations that are less efficient.

The behavior of the Java garbage collector results in multiple worst-case deal-
locations in the OHEBS that, in the HBS, are executed as standard deallocations that
do not result in block recombination. As such, we can build a more complete picture
of OHEBS deallocation performance by executing the benchmarks with a different

garbage collection algorithm that has different characteristics.

79

Maximum Deallocation Time

25,000

20,000

15,000 +

DOHEBS
BEHBS

Time (ns)

10,000

5,000

Benchmark

Figure 6.5: Maximum Deallocation Time.

6.3 Impact of Garbage Collection

Generally it easier to keep discussions about memory allocation and Garbage Col-
lection (GC) separate. While the allocator actually frees memory blocks that are
no longer useful, it does not have to concern itself with determining which memory
blocks are deallocated, which is the job of the garbage collector.

In our case however, the deallocation behavior of an application can greatly
impact the performance of the OHEBS, and deallocation behavior is a direct result
of the GC algorithm employed by the JVM. We therefore evaluated the deallocation
performance of the OHEBS using SPEC jvm98 trace-files when executed with two

very different GC algorithms.

80
6.3.1 Mark-Sweep Algorithm (MSA)
MSA is the standard Java GC algorithm and is the algorithm used for the benchmark
results given in Section 6.2. The MSA is an offline GC algorithm. Whenever the JVM
runs out of memory, application execution is halted and the JVM runs the MSA
collector.

Garbage collection in the MSA consist of two phases: mark and sweep. In the
mark phase, the collector traverses the entire heap searching for all objects that can
be reached by the application. Since memory blocks associated with these objects
can still be accessed, they are considered live and marked by the collector. The
collector then knows that all unmarked objects are dead and no longer used. All the
allocated memory blocks for dead objects are then freed in the sweep phase, after

which application execution can continue.

6.3.2 Reference Counting Garbage Collector (RCGC)

RCGC is an effective GC algorithm that differs significantly from MSA. RCGC is
online and runs continuously, allowing for collection of dead objects without delaying
the application [11].

When RCGC is employed, every object has an additional header that keeps
track of the number of references to the object. If the object is referenced, the count
is incremented. If a reference to the object is deleted, the count is decremented. If
the count reaches 0, the object is dead and the memory block associated with the

object is deallocated.

6.3.3 Effects on the OHEBS

The GC algorithm can influence the performance of OHEBS because the capacity

of the Free-Buffers is finite. In an ideal case, application programs would exhibit

81
short, integrated bursts of allocations and deallocations such that deallocated blocks

would be written to the Free-Buffers, then be immediately reallocated by a subsequent
sequence of allocations.

However, with the MSA garbage collector, program traces consist of very
lengthy sequences of allocation, followed by lengthy sequences of deallocation. In
some cases, the collector is not run at all until the application terminates, whereupon
all objects are freed. Use of RCGC on the other hand results in shorter, more highly

integrated sequences of allocation and deallocation.

Mean Deallocation Time

w/ RCGC
3,000
2,500 -
2,000 -
n
£ D OHEBS (MSA)
o 1,500 HOHEBS (RCGC)
E THBS (MSA)
i
1,000 -
500 = == H H HE |
o ‘ ||
o o @ Q O o L N @
Q@a NG & S g & & é\& N3 &
» K
o & P ¥
&

Benchmark

Figure 6.6: Mean Deallocation Time w/ RCGC.

Figure 6.6 and Figure 6.7 show the mean and maximum deallocation times
for the OHEBS allocator when using RCGC. RCGC significantly improves average

deallocation performance across all benchmarks as reducing the length of deallocation

82

Maximum Deallocation Time

w/ RCGC
25,000
20,000 -| —
15,000 -
£ D OHEBS (MSA)
o B OHEBS (RCGC)
E 10,000 CIHBS (MSA)
5,000
04 d
o o @ Q O O A X 3
& N & © & ¢ & N
& > o 3
o <)
N

Benchmark

Figure 6.7: Maximum Deallocation Time w/ RCGC.

sequences, and integrating them with allocation, allows deallocation requests to ben-
efit from the Block Buffering optimization present in the OHEBS. Mean deallocation
performance in the OHEBS when using RCGC is significantly better than either the
HBS or the OHEBS when using the standard MSA collector.

Interestingly, worst-case deallocation performance is somewhat poorer with
RCGC than with the MSA collector, though it still exhibits bounded time characteris-
tics. This slight performance degradation is likely the result of the greater integration
of allocation and deallocation as instruction ordering has an effect on performance
due to memory arbitration and the independent pre-fetch and write-buffering logic
present in the system.

The use of RCGC, however, also slightly decreases allocation performance in

both average-case and worst-case as seen in Figure 6.8 and Figure 6.9. Though online

83

Mean Allocation Time

w/ RCGC
1,600
14004 []] (]
1,200 -
1,000 4
2 TIOHEBS (MSA)
o 800 B OHEBS (RCGC)
£ CIHBS (MSA)
[
600 -
400
i ﬂ ﬂﬂ H jﬂ
o0l L
o Q O O AL g 3
Q&a & {é,bo N ‘ & & & & ,@‘&
0°& @® & ¥
N

Benchmark

Figure 6.8: Mean Allocation Time w/ RCGC.

block deallocation would appear beneficial for allocation performance as it fills Free-
Buffers with memory blocks that can be immediately re-allocated, it is detrimental
to performance in the current OHEBS configuration because of the small size of
the Free-Buffers and the method in which the allocator prioritizes Direct, Pair, and
Decompositional Allocate operations.

Even though allocation / deallocation sequences produced by RCGC are shorter
and more integrated, RCGC still produces allocation and deallocation sequences of
equivalent-size blocks that are much longer than the small 8 block capacity of the
Free-Buffers in the OHEBS allocator. This being the case, deallocation sequences
result in Free-Buffer overflow and the generation of extensive free-lists. Subsequent
allocations are then more often satisfied with either Direct Allocate or Pair Allocate

operations as opposed to Decompositional Allocate operations.

84

Maximum Allocation Time
w/ RCGC

18,000

16,000 -|
14,000 -|

12,000 +

10,000 + D OHEBS (MSA)
B OHEBS (RCGC)
OHBS (MSA)

Time (ns)

o
=3
=1
=)

6,000 -
4,000 -

2,000 -

O S & @
4}@ 504 vgp‘ ég@ O D
<& “‘Qeq v

Benchmark

Figure 6.9: Maximum Allocation Time w/ RCGC.

Figure 6.10 and Figure 6.11 show the number of Direct Allocate, Pair Allocate,
and Decompositional Allocate operations that occur in each benchmark when using
the standard MSA collector and when using RCGC. Averaged across all benchmarks,
Direct and Pair Allocate operations account for approximately 80 percent of allocation
requests when using RCGC, but only 50 percent of requests when using the MSA
collector.

While a high frequency of Pair Allocates is clearly detrimental to performance
since buddy-block pairs are allocated directly from the free-lists, large numbers of
Direct Allocates as opposed to Decompositional Allocates may also degrade perfor-
mance. Specifically, when the allocator experiences sequences of deallocations and

allocations that are longer than the Free-Buffer capacities, Direct Allocates are likely

85

OHEBS (MSA) Allocation Distribution

100%

90% -

%+ — — — - —

60% -

O Decompositional Allocate

50% - — — .] — — — W Pair Allocate
DO Direct Allocate
40% -
30% -
20% +
10% -
0% T T
o o 3 Q O O s X @
& £ & g S & N
O&Q Q:b* y 3
¢ @Qq‘
Benchmark

Figure 6.10: OHEBS Allocation Distribution using MSA.

serviced by indices with blocks stored in the free-lists that have not been pre-fetched
into a Free-Buffer.

Decompositional Allocates are also beneficial for allocation sequences of blocks
that are similar in size because a single decomposition deallocates a free-block to
the Free-Buffers at every intermediate index. If an allocation request that results
in a decomposition is immediately proceeded by a second request for a block that
is equivalent or slightly larger in size, the second allocation will be satisfied with a
buffered free-block. Additionally, the initial block allocation of a Decompositional
Allocate is inherently more likely to be satisfied with a buffered free-block simply

because larger blocks are fewer in number.

86

OHEBS (RCGC) Allocation Distribution

100%
90%
—
80% - —
70%
=] - =]
60% -
i — ODecompositional Allocate
50% - B Pair Allocate
ODirect Allocate

40%+— ——1 —1 —1 —1 —1 1 —1 —1 [
30%
20%+— ——1 —1 —1 —1 —1 ——1 —1 —1
10%

0% T

& & & & & &° «é & &
& » 3 3 N & Y &
&) \a Q
° o “‘Qo@ \d

Benchmark

Figure 6.11: OHEBS Allocation Distribution using RCGC.

6.4 Fast Return Performance

The use of Fast Return is exceptionally beneficial because parallelization of block
decomposition and application execution can yield enormous improvements in average
allocation performance. Additionally, if Fast Return is paired with an allocator that
can ensure sufficiently short block times, the optimization can also be used to offer
virtually ideal allocation performance. To quantify the benefits of Fast Return, we
compare the worst-case allocator block times to the minimum Inter-Arrival Time
(IAT) for allocation requests in each benchmarks as shown in Figure 6.12.

IAT times for the SPEC jvm98 benchmarks was measured in Donahue’s soft-
ware implementation of Knuth Buddy by calling the C function gethrutime() at the

beginning and end of the allocation function [6].

87

Minimum IAT vs. Maximum Block Time

18,000

16,000 -|

14,000 + — — — M

12,000 +]

10,000 + OIAT

BOHEBS
8,000 OHBS

Time (ns)

6,000

4,000 -
2,000 -]
0

Compress Jess Raytrace DB Javac Mpeg MTRT Jack
Audio

Benchmark

Figure 6.12: Comparison of minimum |IAT and maximum block times.

Under this set of benchmarks the maximum block time for the original HBS
exceeds the minimum IAT for a number of applications. However, the optimizations
implemented in the OHEBS significantly reduce block times such that the OHEBS
can offer ideal allocation performance for all evaluated benchmarks.

As shown in Figure 6.13 !, the OHEBS allocator can guarantee exceptionally
fast, bounded-time allocation. For all benchmarks worst-case allocation times are
over three orders-of-magnitude faster than the software Knuth Buddy allocator and

up to two orders-of-magnitude faster than the original HBS.

'We should specify that allocation times of 110 ns for the HBS are equivalent to 25 ns allocation
times for the OHEBS. This offset is the result of differences in the Fast Find implementation, as
execution of Fast Find requires more clock cycles to complete in the HBS than in the OHEBS. The
offset is not large enough to significantly impact the other results presented in the thesis.

88

Maximum Allocation Time
w/ Fast Return

1,000,000

100,000 -

10,000

OOHEBS
OHBS
EKnuth
aJvm

1,000

Time (ns)

100 -

0] {
1+ T
) 4&00 K4 5-5‘00 v\é\o
@) v
N
Benchmark

Figure 6.13: Maximum Allocation Time w/ Fast Return.

The OHEBS shows a convincing improvement in both average-case and worst-
case allocation and deallocation performance. Additionally, when used with the Fast
Return optimization, the system proves to be a virtually ideal allocator for the SPEC
jvm98 benchmarks presented here. For all applications the Parallel Block Decompo-
sition optimization should yield significantly lower block times than previous alloca-
tors, and the system should therefore require a significantly shorter IAT to guarantee
constant-time allocation performance. Additionally, given a state of equilibrium, the
presence of the Block Buffering / Pre-Fetching optimization allows the allocator to
tolerate k£ subsequent requests with TATs shorter than what is required. Taken to-
gether, the new optimizations can make the allocator viable for use with a broader

spectrum of RT and high-performance systems.

89

Chapter 7

Directions for Future Work

Throughout this thesis we have shown how the additional optimizations implemented
in the Optimized Hardware Estranged Buddy System (OHEBS) can help to signifi-
cantly improve the performance of the original Hardware Buddy System (HBS) [5, 6].
However, there are several areas for continual refinement within the OHEBS. In this

chapter we briefly survey some of these topics as possible directions for future work.

7.1 Free-Buffer Optimization

Perhaps the most apparent topic that deserves further study is modification and op-
timization of the Free-Buffers. In the current OHEBS configuration, the Free-Buffers
at every index of the Estranged Buddy hierarchy are homogeneous in size with a
small fixed capacity of 8 free-blocks, and desired-maximum and desired-minimum
content-levels of 6 and 2 blocks respectively. This configuration was chosen for sim-
plicity and is clearly not optimal. For example, an 8 block capacity is redundant at
the higher indices where fewer than 8 blocks may represent the entire memory space.

Additionally, most applications tend to operate on small memory blocks, and it could

90

be advantageous to use small buffers at the high indices in favor of larger buffers at
lower indices.

Modification of the Free-Buffers not only has the potential to increase average
performance, but it could also be used as a technique to ensure the allocator meets
Real-Time (RT) requirements. Free-Buffer configurations could be dynamically spec-
ified such that they perfectly compliment the allocation / deallocation behavior of
a particular application, yielding ideal allocator performance with minimal redesign
effort. Such a concept is especially viable if the allocator hardware is implemented in

an FPGA or other reprogrammable hardware device.

7.2 Fast Deallocation

While the Fast Return optimization has shown to be beneficial for allocation perfor-
mance, it may be feasible to implement a similar optimization for deallocation where
the CPU issues a deallocate request, then immediately proceeds with application

execution while the allocator hardware executes the required deallocation operations.

7.3 Pseudo-Aggressive Block Recombination

The Estranged Buddy algorithm was initially chosen for the OHEBS as it ensures
block deallocations are restricted to O(1) complexity. However, as mentioned in
Chapter 3, use of Estranged Buddy can adversely affect the degree of external heap
fragmentation. A potential work-around for this is pseudo-aggressive block recombi-
nation. Specifically, if the original Knuth Buddy algorithm was implemented in the
OHEBS such that free buddy-blocks are not recombined until they are moved into
the free-lists, the presence of the Free-Buffers would ensure that a single deallocation

would not result in immediate iterative recombinations up the free-list hierarchy.

91

Index k+1 Index k+1
Free Buffer Free List Free Buffer Free List
BB }—a BB }—o
CPU Index ‘ CPU Index ‘
— F — F
G G
RAM Index RAM Index
— Lc | —
~_
Index k Deallocate Index k
Free Buffer Free List Free Buffer Free List
A |88 o c. | A (BB o
B B
c 7 :
CPU Index . RAM Index CPU Index RAM Index
—_— D — 1 D —
T Deallocate

Figure 7.1: An example of pseudo-aggressive block recombination. The presence of the
Free-Buffers can be used to ensure a deallocated block will not be immediately recombined.

As shown in Figure 7.1, a deallocated block would still be placed in the Free-
Buffer initially, and it would only be recombined with its buddy when it is moved out
of the Free-Buffer.

Iterative block recombinations could still occur if the proceeding Free-Buffer is
full, however a specific block would never be recombined at the point of deallocation.
As such, the CPU would only need to wait for the initial deallocate to complete, and
with hardware support, all subsequent block recombinations could execute in parallel

with the application.

7.4 Advanced Inter-Arrival Time (IAT) and Sys-
tem Simulation

A significant drawback of our performance evaluation methodology as described in
Chapter 6 is that the simulation of allocation / deallocation traces does not actually

model system events that occur between allocator operations.

92

During the IAT, the system processor executes application instructions. These
instructions may be register-register operations that do not impact the hardware
allocator, they may be load-store operations that access a system cache, or they
may be load-store operations that access main memory and cause memory traffic
and congestion. While memory congestion during the IAT would typically seem
detrimental to performance of the allocator, in some cases it may actually improve
performance as it could prevent the allocator from fetching blocks into a Free-Buffer
to which several blocks will be subsequently deallocated. Likewise it could prevent
the allocator from emptying a Free-Buffer at an index from which several blocks will
be subsequently allocated.

Because of the complexity of predicting the effects of system events that occur
during the IAT, development of a more comprehensive simulation environment would

be very beneficial.

7.5 Hardware Synthesis and Evaluation

In this thesis we presented the architectural design for the OHEBS, but the research
does not extend into design synthesis for implementation in actual custom or repro-
grammable hardware. Physical implementation of the OHEBS should be evaluated,
and the allocator should be optimized to improve resource consumption and maxi-
mize logic-speed. A modification that is likely to be beneficial is implementation of
the Free-Buffers using on-chip block RAM, SRAM or some other high-performance

storage technology that would be more area and cost efficient than data registers.

93

Chapter 8

Conclusions

Dynamic storage management is very useful because it efficiently manages system
memory and can significantly simplify application development. Unfortunately, a
serious drawback to dynamic storage management is that it typically does not offer
the best performance, nor dies it usually ensure that Real-Time (RT) constraints are
met.

In this thesis we have discussed a hardware allocator called the Optimized
Hardware Estranged Buddy System (OHEBS) that offers bounded-time allocation
through several hardware-specific optimizations. Fast Find allows for bounded-time
free-block location, and Parallel Block Decomposition provides support for constant-
time decomposition. Block Buffering provides small storage buffers from which blocks
can be efficiently allocated or deallocated, resulting in increased average-case perfor-
mance as well as k-tolerance for sequential allocator requests with short Inter-Arrival
Time (IAT)s. When paired with Fast Return, these optimizations allows the alloca-
tor to offer essentially ideal allocation performance for a broad range of applications.
Additionally, the use of Estranged Buddy allows the OHEBS to offers constant-time

deallocation.

94

Though moving dynamic memory allocation logic to hardware represents a
significant shift in terms of classical system architecture, the concept is well suited
for specialized or embedded applications and the potential performance benefits are
significant. Future work has the potential to show that the OHEBS allocator it-
self could be dynamically reconfigured to provide performance sufficient for an even

greater diversity of RT and high-performance systems.

Appendix A

Support Data for Experiments

95

Find Time Block Time Total Time
Benchmark | Min | Max | Mean Min | Max | Mean Min | Max | Mean
Compress 10 40 | 21.781 205 3980 | 279.165 230 4005 | 315.946
Jess 10 40 | 22.394 230 2855 | 248.773 255 2880 | 286.167
Raytrace 10 40 | 22.466 205 8580 | 246.076 230 8605 | 283.542
DB 10 40 | 22.108 230 3830 | 266.666 255 3855 | 303.774
Javac 10 40 | 22.221 230 6430 | 264.919 255 6455 | 302.140
MpegAudio 10 40 | 21.982 205 4005 | 269.132 230 4030 | 306.115
MTRT 10 40 | 22.494 230 2855 | 245.457 255 2880 | 282.951
Jack 10 40 | 22.491 230 2855 | 245.254 255 2880 | 282.745
[Average 10 | 40 | 22.242 | 220.625 | 4423.750 | 258.180 | 245.625 | 4448.750 | 295.423 |

Figure A.1: Allocation times (ns) for the OHEBS allocator using MSA.

96

Find Time Block Time Total Time
Benchmark | Min | Max | Mean Min | Max | Mean Min | Max | Mean
Compress 60 65 | 60.002 525 | 13975 | 1348.440 640 14085 | 1463.440
Jess 60 65 | 60.000 525 | 13975 | 1359.070 640 14085 | 1474.070
Raytrace 60 65 | 60.000 505 | 15375 1359.89 640 15490 | 1475.890
DB 60 65 | 60.001 525 | 13975 | 1352.520 640 14085 | 1467.520
Javac 60 65 | 60.001 525 | 13975 | 1350.250 640 14085 | 1465.250
MpegAudio 60 65 | 60.001 525 | 13975 | 1352.540 640 14085 | 1467.530
MTRT 60 65 | 60.000 525 | 15575 | 1360.080 640 15690 | 1475.080
Jack 60 65 | 60.000 525 | 15575 | 1360.140 640 15690 | 1475.140
| Average | 60 | 65 | 60.000 | 522.500 | 14550 | 1355.366 | 637.500 | 14751.875 | 1470.365 |

Figure A.2: Allocation times (ns) for the HBS allocator using MSA.

| Benchmark | Min | Max | Mean |
Compress 718 78030 1634
Jess 703 91020 1605
Raytrace 702 95430 1390
DB 703 71240 1524
Javac 692 88470 1542
MpegAudio 702 86800 1524
MTRT 697 205700 1391
Jack 697 119800 1474

| Average | 701.75 | 104448.75 | 1510.5 |

Figure A.3: Allocation times (ns) for the software Knuth Buddy allocator.

| Benchmark | Min | Max | Mean |
Compress 827 11210 1151.48
Jess 772 88171 1209.12
Raytrace 827 112205 1157.74
DB 812 82933 1193.17
Javac 822 104274 1210.46
MpegAudio 802 96969 1110.51
MTRT 828 122029 1081.87
Jack 827 88162 1135.39

Average [814.625 | 88244.125 | 1156.2175 |

Figure A.4: Allocation times (ns) for the JVM allocator.

Benchmark | Min | Max | Mean |
Compress 280 3080 1938.800
Jess 280 3080 2318.930
Raytrace 280 3080 2347.670
DB 280 3080 2271.800
Javac 280 3405 2240.670
MpegAudio | 280 3080 1969.920
MTRT 280 3080 2348.380
Jack 280 3080 2260.310
Average | 280 | 3120.625 | 2212.060 |

Figure A.5: Deallocation times (ns) for the OHEBS allocator using MSA.

| Benchmark | Min | Max | Mean |
Compress 1390 7015 1842.640
Jess 1390 17340 2445.320
Raytrace 1390 19815 1988.55
DB 1390 15090 2361.080
Javac 1390 11715 2169.230
MpegAudio | 1390 9265 1858.850
MTRT 1390 19290 1989.060
Jack 1390 4965 1928.010

| Average | 1390 | 13061.875 | 2072.843 |

Figure A.6: Deallocation times (ns) for the HBS allocator using MSA.

97

Find Time Block Time Total Time
Benchmark | Min | Max | Mean Min | Max | Mean Min | Max | Mean
Compress 10] 40 [21177 205 4130 | 264.017 230 4155 | 300.194
Jess 10 | 40 [13.241 205 5980 | 433.679 230 6005 | 461.920
Raytrace 10 | 40 | 18.067 205 6905 | 452.491 230 6930 | 485.557
DB 10 | 40 [18.952 205 3980 | 295.237 230 4005 | 329.189
Javac 10 | 40 [19.133 205 4480 | 26.469 230 4505 | 302.602
MpegAudio | 10 | 40 | 21.595 205 5130 | 260.100 230 5155 | 296.695
MTRT 10 | 40 [17.975 205 5455 | 451.405 230 5480 | 484.380
Jack 10 | 40 [10.903 200 9030 | 364.700 225 9055 | 390.603
| Average | 10 [40 [17.630 | 204.375 | 5636.250 | 348.762 | 229.375 [5661.250 | 381.393 |

Figure A.7: Allocation times (ns) for the OHEBS allocator using RCGC.

| Benchmark | Min | Max | Mean |
Compress 280 5255 680.176
Jess 280 5305 796.833
Raytrace 280 5305 1645.130
DB 280 5255 1229.920
Javac 280 5105 405.632
MpegAudio 280 3405 332.988
MTRT 280 5305 1652.880
Jack 275 5355 578.303

[Average | 279.375 | 5036.250 | 915.233 |

Figure A.8: Deallocation times (ns) for the OHEBS allocator using RCGC.

MSA RCGC
Benchmark | Direct | Pair | Decomp | Direct | Pair | Decomp
Compress 0.518 | 0.011 0.471 | 0.552 | 0.001 0.447
Jess 0.503 | 0.001 0.496 | 0.854 | 0.017 0.130
Raytrace 0.501 | 0.000 0.499 | 0.647 | 0.030 0.323
DB 0.509 | 0.007 0.484 | 0.642 | 0.000 0.358
Javac 0.510 | 0.002 0.489 | 0.634 | 0.001 0.365
MpegAudio | 0.515 | 0.006 0.479 | 0.536 | 0.001 0.464
MTRT 0.500 | 0.000 0.500 | 0.651 | 0.030 0.319
Jack 0.500 | 0.000 0.500 | 0.958 | 0.006 0.036
| Average | 0.501 | 0.000 | 0.499 | 0.776 | 0.019 | 0.205 |

Figure A.9: Allocation distribution in the OHEBS under MSA and RCGC.

| Benchmark | Min TAT | Max Block (OHEBS) | Max Block (HBS) |

Compress 14785 3980 13975
Jess 13035 2855 13975
Raytrace 15062 8580 15375
DB 14821 3830 13975
Javac 13271 6430 13975
MpegAudio 14165 4005 13975
MTRT 13316 2855 15575
| Jack | 12315 | 2855 | 15575 |

Figure A.10: Minimum IAT (ns) vs. Maximum Block Time (ns).

98

Benchmark | OHEBS + Fast Return | OHEBS | HBS + Fast Return | HBS |

Compress 25 4005 110 14085
Jess 25 2880 1050 14085
Raytrace 25 8605 428 15490
DB 25 3855 110 14085
Javac 25 6455 814 14085
MpegAudio 25 4030 110 14085
MTRT 25 2880 2374 15690
Jack 25 2880 3375 15690
| Average 25 | 4448.750 | 111.875 | 14661.875 |

Figure A.11: Maximum allocation times (ns) for the OHEBS using Fast Return.

99

100

References

[1] J. M. Chang and E. F. Gehringer. A high-performance memory allocator
for object-oriented systems. IEEE Transactions on Computers, 45(3):357-366,

March 1996.

[2] Sharath Reddy Cholleti. Storage allocation in bounded time. Master’s thesis,

Washington University, 2002.

[3] SPEC Corporation. Java SPEC benchmarks. Technical report, SPEC, 1999.
Available by purchase from SPEC.

[4] Erik D. Demaine and J. Ian Munro. Fast allocation and deallocation with an
improved buddy system. In Foundations of Software Technology and Theoretical

Computer Science, pages 84-96, 1999.

[5] S. Donahue, M. Hampton, R. Cytron, M. Franklin, and K. Kavi. Hardware
support for fast and bounded-time storage allocation. Second Annual Workshop

on Memory Performance Issues (WMPI 2002), 2002.

[6] Steven M. Donahue. Specialized hardware support for dynamic storage alloca-

tion. Master’s thesis, Washington University, 2003.

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

101
Steven M. Donahue, Matthew P. Hampton, Morgan Deters, Jonathan M. Nye,

Ron K. Cytron, and Krishna M. Kavi. Storage allocation for real-time, embed-
ded systems. In Thomas A. Henzinger and Christoph M. Kirsch, editors, Embed-
ded Software: Proceedings of the First International Workshop, pages 131-147.

Springer Verlag, 2001.

David Patterson et al. Intelligent RAM (IRAM): Chips that remember and
compute. In IEEE International Solid-State Circuits Conference, San Francisco,

CA, February 1997.

H. Cam et al. A high-performance hardware efficient memory allocation tech-
nique and design. In International Conference on Computer Design, pages 274—

276, October 1999.

Dirk Grunwald and Benjamin Zorn. CustoMalloc: efficient synthesized memory

allocators. Software Practice & Experience, 23(8):851-869, August 1993.

Matthew P. Hampton. Automatic storage reclamation for real-time systems.

Master’s thesis, Washington University, 2003.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-

tative Approach. Morgan Kauffman Publishers, San Francisco, California, 1990.

Micron Technology Inc. MT48LC4MS32B2 128Mb: © 32 SDRAM Data Sheet,
August 2002.

Kenneth C. Knowlton. A fast storage allocator. Communications of the ACM,
8(10):623-625, October 1965.

Donald E. Knuth. Fundamental Algorithms, Volume 1, The Art of Computer

Programming, Second Edition. Addison-Wesley, 1973.

[16]

[17]

18]

[19]

[20]

[21]

102

James L. Peterson and Theodore A. Norman. Buddy systems. Communications

of the ACM, 20(6):421-431, 1977.

E. V. Puttkamer. A simple hardware buddy system memory allocator. IEEFE
Transaction on Computers, 24(10):953-957, October 1975.

M. Shalan and V. Mooney. A dynamic memory management unit for embedded
real-time system-on-a-chip. In International Conference on Compilers, Architec-

ture and Synthesis for Embedded Systems, pages 180-186, November 2000.
Model Technology. Optimizing ModelSim Performance, December 2002.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In Henry Baker, editor, Proceed-
ings of International Workshop on Memory Management, volume 986 of Lecture

Notes in Computer Science, Kinross, Scotland, September 1995. Springer-Verlag.

Reto Zimmermann. VHDL library of arithmetic units. Technical report, Inte-

grated Systems Laboratory, ETH Ziirich, 1998.

103

Vita

Victor H. Lai

Date of Birth October 25, 1977
Place of Birth Dayton, Washington

Degrees B.S. Computer Science, May 2000,
from University of Puget Sound.
B.S. Computer Engineering, December 2001,
from Washington University.

Publications

December, 2003

	Hardware-Based Dynamic Storage Management for High-Performance and Real-Time Systems
	Recommended Citation
	Hardware-Based Dynamic Storage Management for High-Performance and Real-Time Systems

	tmp.1471023011.pdf.2SitQ

	Abstract: Abstract: Most modern application programs depend on dynamic storage management

to handle allocation and deallocation of memory. Unfortunately conventional software-based storage managers are relatively low performance due to the latency associated with accessing DRAM memory. Consequently, developers of programs with very specialized memory requirements, such as real-time systems, often choose to manage memory manually at the application-code level. This practice can greatly increase performance but it can also significantly complicate the development process.

In this thesis we present the design, VHDL implementation and performance evaluation of a hardware-based storage manager called the OHEBS. The OHEBS implements four distinct hardware-specific optimizations, as well as an algorithmic optimization, to greatly enhance storage management performance. The system is general-purpose, yet offers exceptionally good average-case performance and ensures that the worst-case execution times of storage-management instructions are reasonably bounded, making

it a prime candidate for use with both high-performance and real-time applications.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: November 25, 2003
	Author: Authors: Lai, Victor H.
	Title: Hardware-Based Dynamic Storage Management for High-Performance and Real-Time Systems - Master's Thesis, December 2003
	ReportNumber: 2003-77
	DepartmentName: Department of Computer Science & Engineering

