
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

McKelvey School of Engineering Theses & 
Dissertations McKelvey School of Engineering 

5-14-2024 

Stimulation of Peripheral Nerves in M. Mulatta for Somatosensory Stimulation of Peripheral Nerves in M. Mulatta for Somatosensory 

Psychophysics and VNS Applications Psychophysics and VNS Applications 

Tyler Schlichenmeyer 
Washington University – McKelvey School of Engineering 

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds 

Recommended Citation Recommended Citation 
Schlichenmeyer, Tyler, "Stimulation of Peripheral Nerves in M. Mulatta for Somatosensory Psychophysics 
and VNS Applications" (2024). McKelvey School of Engineering Theses & Dissertations. 1055. 
https://openscholarship.wustl.edu/eng_etds/1055 

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses & 
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/1055?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Biomedical Engineering

Dissertation Examination Committee:
Daniel W Moran, Chair

Dennis Barbour
Harold Burton
Ilya Monosov
Wilson Z Ray

Stimulation of Peripheral Nerves in M. Mulatta for Somatosensory Psychophysics and VNS
Applications

by
Tyler Schlichenmeyer

A dissertation presented to
the McKelvey School of Engineering

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2024
St. Louis, Missouri



© 2024, Tyler Schlichenmeyer



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 An Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Neural Interfaces for Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Neural Plasticity After Injury . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Long-Term Variation in Neural Interface Characteristics . . . . . . . 7
2.1.3 Neural Adaptation During Tool Usage . . . . . . . . . . . . . . . . . 8
2.1.4 The Macaque Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 The Sensorimotor Feedback Loop . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Vagus Nerve Stimulation (VNS) . . . . . . . . . . . . . . . . . . . . . 9

2.2 Peripheral Nerve Interface (PNI) Design . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Advanced Stimulation Strategies . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Limits of PNI Control . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Assessing Interface Designs and Stimulation Strategies . . . . . . . . 12

2.3 Psychophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Foundations - Fechner and Weber . . . . . . . . . . . . . . . . . . . . 14
2.3.2 The Curse of Dimensionality and Non-Stationarity . . . . . . . . . . 16
2.3.3 Bayesian Inferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3: Detection and Discrimination of Electrical Stimuli from an Up-
per Limb Cuff Electrode in M. Mulatta . . . . . . . . . . . . . . . . . . . 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Ethical Treatment of Animals . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Surgical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



3.2.3 Implant Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Psychophysical Procedures . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Detection Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Stability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Strength-Duration Findings . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Weber Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.5 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4: PsychoAnalyze: An Open-Source Toolset for Psychophysics Anal-
ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Comparable Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Core Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Python Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Future Direction and Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5: Vagus Nerve Stimulation, Fear Extinction, and Post-Traumatic
Stress Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Vagus Nerve Stimulation (VNS) . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Parameterization of the Electrical Stimulus Delivered to the Vagus

Nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 The Fear Extinction Model . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Ethical Treatment of Animals . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Stimulus Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Surgical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.4 Delivering VNS During Learning and Extinction . . . . . . . . . . . . 61
5.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Retrospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.2 Status of VNS as a Clinical Intervention for PTSD . . . . . . . . . . 64

iii



Chapter 6: Discussion: Towards a Performant, Integrated Model of Periph-
eral Nerve Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Modern Data Practices and the Bayesian Paradigm . . . . . . . . . . 70
6.1.2 The Hybrid Model of the Peripheral Nerve and its Limitations . . . . 71
6.1.3 Finite Element Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.4 Neuron Compartment Model . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Bayesian Methods and their Applications in Neural Engineering . . . . . . . 73
6.2.1 Psychometric Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.2 “Smart” Bayesian Sampling of the Parameter Domain . . . . . . . . . 75
6.2.3 The Open Road Ahead: Novel Applications of Bayesian Methods in

Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Software Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.1 All-in-One/Integrative Software . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Probabilistic Computing . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.3 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.4 Psychophysical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.5 Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.6 Neuron Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.7 Finite Element Modeling Software (and Related Tooling) . . . . . . . 86
6.3.8 Honorable Mentions to other Programming Languages . . . . . . . . 87

6.4 A Bayesian Workflow Proposal to Guide Next Steps . . . . . . . . . . . . . . 88
6.4.1 Choosing an Initial Model . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.2 Scaling and Transforming the Parameters . . . . . . . . . . . . . . . . 88
6.4.3 Prior Predictive Checking . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.4 Running the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.5 Trying Other Stimulus Dimensions . . . . . . . . . . . . . . . . . . . 90
6.4.6 Tuning the Model for a Single Session . . . . . . . . . . . . . . . . . . 90
6.4.7 Introducing Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

iv



List of Figures

Figure 1.1: PNIs in closed-loop feedback control . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1: Spatial resolution vs invasivity . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 3.1: Electrode geometry and impedance data. . . . . . . . . . . . . . . . . . 21

Figure 3.2: A typical pulse train delivered by the cuff nerve interface. . . . . . . . . 23

Figure 3.3: Yes/No joystick task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.4: Summary of fitted parameters - Detection experiments . . . . . . . . . . 30

Figure 3.5: Amplitude detection thresholds . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.6: Strength-duration characteristics of behavioral thresholds . . . . . . . . 33

Figure 3.7: Discrimination and Weber coefficients . . . . . . . . . . . . . . . . . . . 36

Figure 4.1: A screenshot of the PsychoAnalyze dashboard. . . . . . . . . . . . . . . 47

Figure 4.2: Screenshot of PsychoAnalyze documentation. . . . . . . . . . . . . . . . 52

Figure 5.1: Schematic views of cranial nerves and the vagus nerve . . . . . . . . . . 55

Figure 5.2: Conditioning Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.3: Matching task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.4: Photographs of the vagus nerve before and after implant placement. . . 61

Figure 5.5: Eye Tracker Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.6: Distributions of Conditioning Metrics across trials . . . . . . . . . . . . 65

v



Figure 5.7: Pupillometry Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.8: Behavioral Measurements from an Appetitive/Aversive Task . . . . . . . 67

vi



List of Tables

Table 3.1: Experimental sessions performed by each monkey . . . . . . . . . . . . . 29

Table 3.2: Strength-Duration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 3.3: Weber’s Law estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



Acknowledgments

Portions of Chapters 2 and 3 are recreations of previously published work in the Journal

of Neural Engineering [87]. A special thank you to Dr. Harold Burton, who assisted with

many revisions of the manuscript and provided valuable feedback and guidance throughout

the project.

Portions of Chapter 4 are recreations of work submitted for publication in the Journal of

Open Source Software.

Portions of this work were sponsored by the Defense Advanced Research Projects Agency

(DARPA) Biological Technologies Office (BTO) Hand Proprioception and Touch Interfaces

(HAPTIX) program under the auspices of Dr. Doug Weber through the DARPA Contracts

Management Office Cooperative Agreement No. HR0011-15-2-0007.

This work was also supported by funding from the Cognitive, Computational, and Systems

Neuroscience (CCSN) training grant (NIH-T32) from the CCSN Pathway at Washington

University in St. Louis.

My colleague Kara Donovan contributed significantly to the VNS data analyses presented in

Chapter 5.

Myelinated nerve SVG art in Figure 1.1 was sourced from Reactome[32] and brain cross

section in Figure 2.1 is from DBCLS1. Fig 5.1 of thoracic features from Jkwchu 2. These

images and other clip art images are available for use under the Creative Commons License3.

Tyler Schlichenmeyer

Washington University in St. Louis

May 2024

1https://togotv.dbcls.jp/en/pics.html - Frontal plane of the brain amygdala
2https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons
3https://creativecommons.org/licenses/by/4.0/

viii

https://creativecommons.org/licenses/by/4.0/
https://togotv.dbcls.jp/en/pics.html
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by/4.0/


A very special thanks to:

My parents for their unconditional love.

The best vet tech in the world, Donna Reedy, for her mentorship and companionship.

Maintainers of open source software everywhere.

Cody “Codes” Murray and the “Couple More Crew” for the background soundtrack to this

disseration and a community that made long nights in the COVID era just a bit less

isolating.

My advisor, Dr. Dan Moran, and my collaborators and mentors, Dr. Harold Burton and

Dr. Erik Zellmer, whose collective kindness, brilliance, and unwavering support kept me

going through this journey.

ix



ABSTRACT OF THE DISSERTATION

Stimulation of Peripheral Nerves in M. Mulatta for Somatosensory Psychophysics and VNS

Applications

by

Tyler Schlichenmeyer

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2024

Professor Daniel W Moran, Chair

Cuff-style peripheral nerve interfaces (PNIs) communicate with the central nervous sys-

tem and offer interesting advantages when compared with other neural interfaces, including

brain-computer interfaces (BCIs) and non-cuff PNI designs. PNI development must con-

sider design factors such as volume of neural activity being driven or recorded, specificity

of stimulus activation, and longevity of the device. This dissertation provides an analytical

framework for PNI experiments, showcasing two experiments where PNIs were implanted in

highly trained macaque monkeys. We applied foundational psychophysical procedures and

other behavioral paradigms to examine the relationship between the input electrical stim-

ulus delivered by a cuff electrode and the resulting behavioral response during a classical

conditioning task. We studied somatosensory encoding in three monkeys in a longitudinal

study over several months. Additionally, we studied vagus nerve stimulation (VNS) in a

single monkey in a study to examine the effects of VNS stimulation during trace extinction,

since the facilitation of fear extinction might improve outcomes for VNS treatment given

to patients with post-traumatic stress disorder (PTSD). To support data analysis for these

experiments, I developed the open source Python package PsychoAnalyze, which powers

an interactive dashboard for navigating psychophysical datasets. As researchers integrate

modern data engineering approaches, tools, and workflows with our existing protocols and

x



models, there is significant opportunity for researchers to build increasingly sophisticated

computational models that improve VNS outcomes and our understanding of the peripheral

nervous system.
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Chapter 1

Introduction

The peripheral nerve interface (PNI) lies at a curious intersection of neuroscience and en-

gineering. For context, the PNI may be considered alongside its well-recognized functional

counterpart, the brain-computer interface (BCI) (Figure 1.1). Both technologies have been

developed in an effort to relieve individuals experiencing various degrees of neurological dam-

age and affliction. The applications of neural interfaces are not restricted to sensorimotor

pathologies such as amputation and spinal cord injury: neuromodulatory devices have shown

to be effective for afflictions of higher-order neural processes such as Parkinson’s, epilepsy,

depression, PTSD, and more. Furthermore, the promise of a closed-loop sensorimotor pros-

thetic limb device capable of volitional control and haptic feedback has attracted public

curiosity4 and significant funding efforts from veterans’ organizations and federal programs

[84]. Still, challenges remain as engineers seek to develop neural interfaces that are per-

formant, accessible, and cost-effective enough to sustain widespread clinical use and obtain

acceptable rates of adoption among amputees and other patients [13]. What should our

expectations be for the performance ceiling of these devices? How can we leverage engi-

neering principles to guide us through growing complexity as we seek to understand the

neural systems involved and “close the feedback loop?” This dissertation aims to address

these questions and more by blending simple and traditional experimental frameworks with

cutting-edge data architecture and tooling.

In many practical applications, including clinical contexts, PNIs can supplement or replace

functionality provided by BCIs. While both device categories are generally responsible for

obtaining input signals (via recording) and delivering output signals (via stimulation) to

the neural system, with control processing usually mediated via a computational algorithm,

their respective positions in the neural pathway make comparing them somewhat “apples-

to-oranges.” Understanding the ways that they complement each other is important when

4https://en.wikipedia.org/wiki/Prosthetics_in_fiction
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determining experimental design or clinical aims. In comparison to BCIs, PNIs demonstrate

improved device longevity and signal stability while maintaining clinically-relevant perfor-

mance. BCIs often sacrifice this durability for more direct access to the signals from the

brain, where, depending on device architecture, they might either record stochastic ensem-

ble signals from a subset of the billions of neurons and quadrillions of synapses in the brain,

or obtain high-resolution single unit recordings from intracortical microelectrode arrays. In

contrast, PNIs record signals from a subset of only hundreds to thousands of electrically

aligned and topographically organized neurons.

A performant neural interface would feature a closed-loop, bidirectional mechanism which

executes both the decoding of afferent signals and encoding of efferent signals. The reduced

complexity of PNI systems suggests they may provide a tractable model for some clinical

applications and research questions in this regard. Additionally, the exceptional adaptive

capabilities of the nervous system often dovetail nicely with modern machine-learning ap-

proaches which, among other adaptive procedures, are able to “intelligently” sample and

stimulate sensorimotor fields. When these developments are integrated in tandem, it be-

comes feasible to achieve device adaptability and generalizability that promotes successful

outcomes across a wide range of users. While peripheral nerve anatomy and neural path-

ways vary considerably from subject to subject, a certain degree of functional topographic

organization of the nerve relaxes the selectivity requirements of the interface. If researchers

seek to replicate natural-feeling sensorimotor function via computationally-managed control

signals, the properties of PNI systems make them a worthy area of our engineering focus,

providing an opportunity to develop sophisticated models with a growing degree of accuracy.

In addition to clinical benefits, the reduced complexity of the PNI system makes it a useful

tool for neuroscientific inquiry in general. To assess quality and progress in our device designs,

we must undertand the limits of our biology, our materials, and more generally, the physical

laws that govern our universe5. How can we utilize engineering principles and the scentific

method to contextualize and quantify the generally subjective experience of sensation, to

assess the performance of neural interfaces and the design trade-offs that must be made

during their development? How can our models of neural systems inform our treatment

and control strategies? In so many words, we must rigorously examine and understand the

fundamental models of the sensory experience. To begin to answer these questions, we might

turn to the rich history in the field of psychophysics–a subfield of psychology and neuroscience

5https://xkcd.com/435/
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Figure 1.1: PNIs in closed-loop feedback control. Simplified examples of closed-loop feedback
control using peripheral nerve interfaces (PNIs) and brain-computer interfaces (BCIs) in
instances of amputation (A) and spinal cord injury (B). Red lines convey site of injury. A.
In a simple example of a prosthetic limb device for amputees, a BCI implant sends motor
signals to an actuator on the prosthetic limb device, while pressure sensors send sensory
signals to intact peripheral nerve proximal to injury. B. In cases of spinal cord injury, The
brain sends volitional motor signals to an PNI implant, which stimulates the peripheral nerve
to drive muscle fiber activation. Sensory signals are recorded from the PNI device and are
sent to a BCI device which stimulates the sensory cortex.

3



devoted to the art and science of measuring sensation–where surprisingly simple principles

have led to outsizingly impactful discoveries.

1.1 An Outline of This Thesis

In Chapter 2, I review foundational research related to the design of peripheral nerve inter-

faces, including an introduction to psychophysics, historical challenges in PNI design, and

the current state of the art of PNI development.

In Chapter 3, I describe a long-scale study of somatosensory encoding via a PNI in three

monkeys over several months.

In Chapter 4, I describe the development of the open source Python package PsychoAnalyze,

a software suite capable of automating data analyses for psychophysics experiments, designed

with customizability and extensibility in mind.

In Chapter 5, I describe a brief pilot study assessing the effects of vagus nerve stimulation

(VNS) on trace conditioning and extinction in a single monkey.

In Chapter 6, I conclude my arguments with an exposition on modern data engineering

approaches, toolsets, and workflows, notably Bayesian workflows, to demonstrate how we

may leverage modern computational advancements to facilitate exploration of new frontiers

in neuroengineering.

In summary, this dissertation describes preliminary results and methodological findings from

exploratory behavioral experiments involving non-human primates fitted with peripheral

nerve interfaces. Particularly, we provide insight on the challenges researchers may face

during peripheral nerve interface development. In addition to reporting raw measures from

model parameter estimation for the NHP models studied, I argue that combining tradi-

tional psychophysical methods and models with modern analysis techniques would facilitate

improvements in device design and experimental protocols.

4



Chapter 2

Background

2.1 Neural Interfaces for Rehabilitation

Neural interfaces, by the nature of the electrochemical processes that enable their function

as a neuroscientific tool, are capable of both stimulating the nervous system and recording

from it. Many high-profile breakthroughs in neural interface development were developments

in the area of motor BCIs; the convenient location of the M1 atop the central sulcus and the

functionally topographic arrangement of the cells in response to motor signals made it an

appealing area for development. However, neural interfaces are functionally limited without

robust sensory feedback mechanisms in place. The development of sensory interfaces has

introduced unique challenges related to the decoding/encoding of neural signals related to

sensation. Regardless, progress in the field has brought us closer to “closing the feedback

loop” – an important, albeit nebulous, milestone wherein somatosensory feedback is strong

enough, localized enough, and fast enough to provide the entire nervous system with the

adequate level of control it needs to perform everyday tasks.

PNIs and BCIs have been most notably applied to the restoration of sensorimotor function

after injury such as amputation or spinal cord injury [98, 102, 99, 34, 18, 109], but appli-

cations for these interfaces extend to other sensory domains such as with cochlear implants

for hearing loss [114] and retinal implants for vision loss [63]. Additionally, we have seen

remarkable treatments in the form of dynamic neuromodulation devices such as in deep brain

stimulation for the treatment of Parkinson’s; meanwhile, PNIs have shown a similar ability

to treat “higher-order” ailments (e.g. mood disorders) via vagus nerve stimulation (VNS)

[86, 69].
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2.1.1 Neural Plasticity After Injury

To understand how engineered devices can replace lost neural function due to injury or

disease, we should first understand how the nervous system responds to such disruptions

in cases of natural healing and existing treatments. The nervous system adapts to injury

through so-called plasticity, the ability of the nervous system to change its structure and

function in response to changes in the environment [27]. Structural changes occur in the

morphology of synapses and axons, which manifest new neural pathways in response to

patterned input from the subject’s environment. These changes are how the nervous system

adapts to change, including injury. These morphological changes are largely responsible for

adaptive processes in the nervous system, including classical conditioning and other forms

of learning, skill acquisition such as with the usage of tools, and their and subsequent bodily

“incorporation” [56]. These new pathways are designed to encode patterns in the sensory

experience to help us navigate the world. As the adage goes, neurons that fire together, wire

together (i.e. Hebbian learning).

Previous studies have shown clear evidence of neural plasticity in somatosensory systems in

response to peripheral nerve damage [52, 78]. Merzenich et al. transected the median nerve

in several non-human primates and measured the effects of nerve transection via cortical

recordings. They demonstrated that cortical representations of the hand rearrange them-

selves in response to the lack of neural input after nerve transection [60] and amputation

[61]. When nerves were blocked from regenerating, neighboring cortical representations of

the hand expanded into the cortical area that was previously occupied by the deafferented

area. When the nerves were allowed to regenerate, the cortical representations of the hand

returned to their original locations, albeit in a slightly abnormal manner [107]. For example,

65% of responsive neurons were responsive to multiple receptive fields, and 25% of the re-

maining responsive neurons had receptive fields scattered across the cortical map. Neurons

in both of these groups featured receptive fields smaller than pre-injury receptive fields. An

additional 4% of responsive neurons in Area 3b had sensitive, “pacinian-like” behavior with

large receptive fields, behavior not observed in normal macaques in this area. Even still,

some receptive field areas did indeed end up mirroring their pre-injury counterparts. Areas

3b and 1 in the same animals showed different reorganization patterns indicating cortical

mechanisms independent of the state of the periphery. Interestingly, nerves recovering from

crush injury do not seem to recover as abnormally as what is seen in cases of complete nerve

transection [106].
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In summary, these results indicate that that there is a wide degree of reorganization hap-

pening on relatively short time scales in response to perturbations of the peripheral nervous

system, and while neural recovery mechanisms are sometimes capable of returning to pre-

injury state, the degree to which recovery is possible may be limited by neurobiological

circumstances of the healing process. When modeling these processes, changes happening in

the cortex need to be reconciled with changes simultaneously happening in the periphery. For

example, we might ask to what degree these abnormal cortical patterns are a result of shuf-

fling the connection mappings between mending peripheral fibers, as opposed to adaptation

happening solely in the central nervous system. These differences in recovery mechanisms

may be further examined and differentiated by inspecting the course of changes in observed

qualities over time, not only in the observation of receptive fields via neural recordings, but

through observation of behavior as well.

2.1.2 Long-Term Variation in Neural Interface Characteristics

A 1990 study measured long-term fluctuations in the ability of monkeys to detect a sound

stimulus during usage of a cochlear implant after induced deafness, as measured by a detection

threshold [77]. These fluctuations came in a variety of patterns that likely convey similar

adaptation mechanisms as seen in peripheral nerve transection. In the discussion of these

results, Pfingst hypothesizes that the observed changes were not due to changes in tissue

morphology near the electrode, supported by a lack of frequency-dependent fluctuations and

correlations between threshold and impedance measurements. Additionally, sharp decreases

in threshold observed in the initial stages of observations are likely not due simply to learning

of the electric stimulus, since we know that changes related to plasticity usually happen on

much longer time scales. In many ways, the experiment described in Chapter 3 of this

dissertation provides a corrolary to these experiments, applying related lines of questioning

to the somatosensory system.

The existence of neural reorganization patterns months and years after injury and device im-

plantation demonstrate a clear clinical need for calibration mechanisms available to patients

who expect to use neuroassistive devices on a long-term basis. A deeper understanding of

neural mechanisms of recovery and plasticity will help researchers developing interfaces that

do not require frequent manual calibration from clinicians or technicians.
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2.1.3 Neural Adaptation During Tool Usage

Maravita & Iriki [56] demonstrate how our neural system adapts to tools outside of its

preconceived notion of physical self, examining receptive fields during tool use in non-human

primates, normally-functioning humans, and humans with brain damage. We can refer to

this study and similar studies to conceptualize how the nervous system adapts to the use

of a prosthetic device and how interfacing with peripheral nerves can be used to facilitate

this adaptation. Remapping in response to targeted peripheral nerve simulation results in

downstream remapping in the cortex. This remapping is consistent with the remapping

observed in response to natural sensory input.

The ability of our nervous system to adapt to injury, and its highly adaptible nature in

general, adds an interesting and encouraging characteristic of open-endedness when it comes

PNI design and engineering. By understanding the ways that the neural system adapts

to change, we can better emulate or replace these mechanisms using the signals recorded

and emitted from our devices to induce the creation of pathways that close the sensimotor

feedback loop. However, research indicates we do not have to perfectly model or mimic

naturalistic mechanisms in order to create functional devices, especially when adaptation

from the nervous system can “meet us halfway” (or whichever percentage of the way that

biology dictates). Rouse et al. [85] demonstrated that a monkey could gain 2D control of a

cursor by learning to modulate neural signals from a relatively “naive” choice of electrode

placement above the cortex. Additionally we might experiment with “virtual” anatomies

and non-naturalistic prosthetic designs which might adapt more fittingly to the PNI system.

2.1.4 The Macaque Model

Non-human primates (NHPs) are a common model organism for neural interface research.

NHPs are used in research for a variety of reasons, including their close evolutionary rela-

tionship to humans, their similar nervous system and upper limb/hand anatomy, and their

ability to be trained to perform complex and repetitive tasks. In the sensory domain, the

macaque model offers a convenient anatomical advantage; in humans, many important areas

of primary somatosensory cortex (Areas 2 and 3) are obscured by their location within the

sulci of the brain. However, macaque brains do not feature similar sulci and their primary so-

matosensory cortex is more easily accessed for recording and stimulation. One characteristic
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of macaque studies, especially in recent decades, is that of “low n”: the number of subjects

in a study is often by necessity lower than what is expected for studies with adequate statis-

tical power to generalize results within that species. This must be taken into consideration

during experimental design, where principles that can be deduced “within-subject,” such as

temporal developments, are of particular importance. Despite “low n” when measured by

number of subjects, macaques can complete thousands of trials per experimental session over

many consecutive days, providing high-frequency feedback that is often prohibitively difficult

and expensive to obtain with human studies. In summary, while macaque experiments are

generally costly, they provide key advantages over both human and non-primate studies [73].

2.1.5 The Sensorimotor Feedback Loop

The sensorimotor feedback loop is the mechanism by which the nervous system continuously

receives sensory input from the environment and uses it to update its internal model of the

world, which is then used to generate motor commands and behavior in general. Sensory

feedback is an important component of both simple and complex behavior, voluntary and

involuntary. The circuits involving this control loop are extremely complex both anatomically

and in the context of engineering control systems [101]. Importantly, adequate sensory

feedback has been demonstrated to be a key indicator of successful prosthetic limb use [13].

2.1.6 Vagus Nerve Stimulation (VNS)

The vast majority of peripheral nerves in the human body mediate sensorimotor processes

and are connected to the brain via the spinal cord. However, there are a specialized subset of

twelve nerves that interface directly with the brain, which are designated as cranial nerves.

The nerve designated as the tenth cranial nerve (cranial nerve X) is the vagus nerve, which

mediates several connections along the throat, heart and stomach. The nerve consists of

about 80% afferent fibers and 20% efferent fibers that are said to convey various sensory

information about visceral organs [6].

Within the past few decades, researchers have discovered that electrical stimulation of the

vagus nerve, delivered in a similar manner as with spinal nerve stimulation, can alleviate
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neurological disorders such as epilepsy, major depression, and other anxiety disorders [25, 76].

Further background relevant to our studies are discussed in Chapter 5.

2.2 Peripheral Nerve Interface (PNI) Design

There are clear engineering tradeoffs when it comes to peripheral nerve interface design. By

examining popular interface designs in the literature, we can better understand the tradeoffs

and design decisions that must be made when designing a peripheral nerve interface and

optimizing for performance.

PNIs encounter many of the same high-level performance tradeoffs as seen in BCIs (Figure

2.1). BCIs can measural neuronal activity in the cortex at a high spatial resolution, but

they require invasive surgical procedures. The most invasive BCI electrodes, intracortical

arrays, penetrate the cortex and induce inflammatory responses that limit the lifetime of

the device [115]. Other BCI designs such as electrocorticography (ECoG) implants and elec-

troencephalography (EEG) implants are less invasive, but they record with lower spatial res-

olution as the signal degrades across the dura and the skull. PNIs face similar considerations

regarding penetration of the epineurium: implants that penetrate the outer fascicular layer

of the nerve obtain higher spatial resolution at the cost of durability (e.g. TIME implants),

while implants that circumvent the epineurium tend to achieve lower spatial resolution but

are more durable (e.g. cuff electrodes).

Helpfully, axon bundles in human peripheral nerve, especially in the upper limbs, are topo-

graphically organized; bundles of nerve fibers are spatially organized into functionally similar

and anatomically distinct regions called fascicles (See outlines of subregions in peripheral

nerve schematic drawing in Figure 2.1). Thus, selectivity at the individual neuron level is

likely not necessary for functional feedback from the device. It is unclear from our current

models what degree of selectivity is sufficient to achieve naturalistic sensations.

2.2.1 Advanced Stimulation Strategies

One approach employed to achieve higher spatiotemporal selectivity with cuff electrodes is via

the use of multi-electrode implants to shape the electric field across the nerve. The timing and

10



Figure 2.1: Relative invasivity of neural interface designs.A. Three examples of brain-
computer interface (BCI) designs that demonstrate the tradeoffs between device invasivity
and signal quality and/or stability. Electroencephalographic (EEG) signals may be ac-
quired noninvasively, but signal quality is diminished through the skull. Electrocoricographic
(ECoG) signals may sit above the dura or be placed below the dura at a higher risk of in-
flammation response. Intracortical arrays penetrate neural tissue but can record single-unit
activity at hundreds of electrode sites. B. Similar design trade-offs occur in peripheral
nerve devices. Cross-sections of two representative electrode designs are shown here. In a
spiral cuff design (outer trace, yellow areas indicate electrode sites), one or multiple elec-
trodes are placed in silicone tubing that circumvents the outer layer of the peripheral nerve
(epineurium). Conversely, an intrafascicular design such as the Transverse Intrafascicular
Multichannel Electrode (TIME), penetrate the perineurium but provide a higher degree of
spatial selectivity.
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amplitude of each electrode contact can be adjusted to achieve a desired spatial distribution of

the current field, inducing pockets of higher and lower current densities delivered to different

functional areas [104, 14]. This technique is referred to as multipolar current steering or

current focusing. Multipolar stimulation has been shown to be effective in achieving a wide

range of spatial distributions of current fields [5].

While neural interface stimulation is stereotypically parameterized as a charge-balanced

biphasic square pulse, other unique stimulation strategies have been deployed with inter-

esting results, including periodic envelopes [99].

2.2.2 Limits of PNI Control

Some limitations of PNI performance are consequences of electrode engineering and design, as

discussed in the previous section. The accuracy and precision of the functionality delivered by

the devices are limited by the spatiotemporal selectivity provided by the electrode or implant,

whose design is constrained by the physics and biology of the electrode-tissue interface.

However, there are further limitations imposed by our lack of understanding of the neural

code. Even presupposing a magic device that offers high spatiotemporal selectivity and

longitudinal stability, the question remains if we have a detailed enough understanding of

the sensory code such that we could develop a “training program” that could efficiently and

sufficiently train the central nervous system to interpret and embody the appropriate signals

delivered by the interface. With this in mind, how should we try to model the input-output

relationship of information transfer happening between the components of this system? How

can we characterize downstream perceptual effects of modulating input stimulation patterns,

particularly in a high-dimensional input space where practical concerns and limitations of

experimentation quickly obfuscate the path forward?

2.2.3 Assessing Interface Designs and Stimulation Strategies

Comprehensive reviews and comparisons of various PNI and BCI designs are plentiful in

the literature. A couple example designs are provided here to illustrate particular design

trade-offs.
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Consider the current focusing technique introduced earlier. The physical mechanisms of this

technique can be easily demonstrated using simple electrostatic modeling; the gradient of

the electric field is made larger while the cross-sectional area of activation is made smaller.

While we can accurately characterize the manner in which parameterization of the device

modulates this phenomenon at the electric output of the interface, it is more difficult to

characterize how the output of the device affects the downstream perceptual experience. In

the case of current focusing, we can imagine that sensation is some multiplicative combination

of the intensity and spatial spread of activation, and a “current-focused” stimulus would

create higher volage gradients over smaller spatial area. However, in vivo experimentation is

necessary to model a relationship between these variables and the resulting sensation, since

sensation is a subjective experience.

Consider another set of common design choices: the size, number, and spacing of the elec-

trode contacts in the device. The size of the electrode contact is a trade-off between the

spatial resolution of the device and the current density at the interface. Smaller electrodes

provide higher spatial resolution, but they are not able to activate as many fibers, and also

increase the current density at the interface, which can lead to tissue damage and electrode

corrosion. Additional electrode contacts may allow for higher spread of neural activation,

but come with additional engineering constraints such as algorithmic performance and power

draw. Spacing electrodes too close together may lead to cross-talk between electrodes, but

spacing them too far apart may result in less functional control of topographically organized

fibers. In experimental settings, these choices are often hastily made, governed by intuition

and precedent.

However, a principled approach to experimental design can help us better understand the

downstream effects of these design choices. Firstly, we should be interrogating computational

models to inform aspects of experimental design such that we can narrow down our input

parameter space and thus obtain more relevant feedback earlier in the experiment. By

supplementing in silico models with real, induced behavioral measurements, we can hone in

on mechanistic hypotheses instead of wandering aimlessly in the 6th-dimensional plane. To

address these challenges we should apply appropriate statistical methods to our experimental

design; in Chapter 6 I examine how Bayesian models and methods are powerful tools in this

regard.
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Ultimately, we have the opportunity to build more powerful computational models that can

build upon the elegant simplicity of a centuries-old, tried-and-true, first-principles approach

to the measurement of sensation, a domain of psychology and neuroscience referred to as

psychophysics.

2.3 Psychophysics

Psychophysics generally refers to a foundational set of experimental methods and theoretical

models developed as part of an ongoing effort to accurately and meaningfully quantify the

subjective sensory experience. In essence, in order to quantify the entire realm of sensory

experience on an interpretable scale, we must meticulously manipulate the conditions under

which we observe a subject’s response to modulations in sensory input. For example, a

cornerstone of psychophysical research is the “two-alternative” design, wherein experimenters

do not concern themselves with the complexities of measuring sensations in how they relate

to 2D or 3D space, but instead reduce the subjective response of the experimental subject

to a binary outcome (e.g. “yes” or “no”, “left” or “right”).

Helpfully, the psychophysical framework allows us to attempt to measure and quantify the

sensory experience both within and between sensory modalities, e.g. vision, audition, and

somatosensation. Mathematically, it attempts to probabilistically model the mechanism of

response from our sensory systems by formulating a relationship between the evoked response

and the form and intensity of the sensation-evoking stimulus.

While simple experiments and models have provided foundational explanations of our sensory

systems, challenges inherent in the data structure of more complex experiments have provided

roadblocks in the quest for a comprehensive model, such as one that might be part of

a sensorimotor prosthetic feedback system that can realistically recreate the sensorimotor

experience of a lost limb.

2.3.1 Foundations - Fechner and Weber

In the late 19th and early 20th century, a paradigm shift around some of these questions

evolved out of the seminal work of Gustav Fechner and Ernst Weber. Weber’s Law, first
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proposed in 1834[38], is a simple model that describes the relationship between the intensity

of a stimulus and the intensity of the sensation it evokes. In essense, the “law” states that the

just-noticeable difference (JND) in stimulus intensity is proportional to the original stimulus

intensity.

∆I

I
= k (2.1)

where delta I is the just-noticeable difference (JND) in stimulus intensity, I is the original

stimulus intensity, and k is a constant.

The Weber-Fechner Law has stood the test of time as an illustrative, if incomplete, example

of psychophysical principles. It comfortably balances accuracy with utility, as many simple

models do. For example, it is easy to conceptualize the classic example demonstrated by

Weber that a person might feel a 2% difference in weight; if the 2% ratio is accurate, they

would notice if 0.2 pounds were added to the weight of carrying 10 pounds, would notice

if 2 pounds were added to the weight of 100 pounds, etc. It’s also fairly straightforward to

surmise the limitations of this model at its extremes.

In the history of psychophysics, the experimental methods that developed over time have

been as impactful as the models that were derived from them. Weber began to articulate a

formal relationship between stimulus and sensation in parallel to thoughtfully and method-

ically developing the experimental protocols necessary to properly evaluate such proposals.

At a high level, experiments quickly revealed the predictive value of the model, while par-

icularities of the model were refined over time by his student Gustav Fechner and again

later by SS Stevens[96]. For example, while the system clearly modeled some exponential

relationship, the formulation of this relationship had limitations at edge cases; SS Stevens

improved the precision of the model by identifying the relationship governing the “Weber

Fraction” constant as “power law” relationship.

Despite, or perhaps because of, the simplicity of the framework, the application of psy-

chophysics directly led researchers to groudbreaking validations of many different hypothe-

ses in sensory neuropsychology. While still subject to all of the higher-order and potentially

non-linear neural processing that occurs between sensation and behavioral response, the

paradigm is adept at unearthing patterns in neural systems that require no invasive pro-

cedure or neural recordings of any kind. For example, in the visual system, psychophysics
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has predicted properties of the physiology of the system well before they were verified with

histology or cortical recordings. By testing subjects’ ability to detect a visual stimulus at

varying durations of time spent in the dark, Hecht et al. provided convincing evidence of

two separate types of receptor cells in the eye: rods and cones [105]. The trichromatic

theory of vision was similarly discovered in 1802 [117]! In the somatosensory domain, psy-

chophysical experiments allowed us to deduce, very early on, that there are multiple types

of mechanoreceptors in the skin that respond differently to different types of stimuli [46].

From Weber-Fechner to the present-day, countless applications of these basic psychophysical

principles have amassed a wide body of evidence applicable to various neural models [82].

Psychophysics conveniently also provides us with a framework to translate certain behavioral

lines of questioning to animal models. For example, while it’s naturally difficult to infer qual-

itative dimensions of sensation such as wetness or dryness from animals, adhering to the psy-

chophysical framework enables researchers to make reasonable inductions about subjective

experiences by compiling responses to systematically administered yes/no or same/different

tasks.

2.3.2 The Curse of Dimensionality and Non-Stationarity

The high-impact psychophysical studies described in the previous sections were executed in

tightly controlled lab conditions. However, as researchers seek to model more complex pro-

cesses, we might need to assess if the psychophysical paradigm is sufficient to model sensory

processes at higher levels of complexity. Although the aim sould be to model a variety of

stimulation strategies that might represent real-world processes, the complexity of the data

collected from more complex experiments can quickly become overwhelming, for both the

computational algorithms involved and the humans trying organize and process the data

in order to run such analyses. The number of experimental conditions and stimulus pa-

rameterizations which can be manipulated in a psychophysical experiment (herefore referred

to collectively as dimensions) can quickly grow to the point where the number of samples

needed to provide valuable information is much greater than the number of trial samples that

can be obtained in a reasonable amount of time. This mathematical conundrum is known as

the curse of dimensionality, and cannot be overcome with naive experimental design. In this

way, a robust computational model built on foundational hypotheses may help us navigate

the multidimensional space.
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The essence of the bias-variance tradeoff, colloquially referenced in terms of overfitting and

underfitting, is the tendency of more complex models to find an “optimum” solution in terms

of describing the training data at the cost of its generalizable predictive power. Simpler

(think: linear) models tend to generalize fairly well in machine learning for a wide variety of

problems. We clearly observe nonlinear relationships at various stages of neural processing,

but perhaps by interfacing with a manageable number of organized neurons on one end, and

by restricting our behavioral measurements to binary outcomes on the other, we can reduce

the system to one that is linear in performance, if not in reality.

One other experimental condition that has limited the application of the psychophysical

approach to more complicated experiments, alluded to previously but here made explicit, is

that of non-stationarity in longitudinal experiments. Non-stationarity is a term in statistics

and probability that simply conveys change in the nature of a probabilistic distribution over

time. In the context of psychophysical experiments, we might observe (or infer) changes in

the distribution of an estimated measure such as threshold over time, and the corresponding

violation of assumptions of stationarity make it that much more difficult to isolate neural

mechanisms and biological properties during our deduction process [21]. Additionally rel-

evant to longitudinal psychophysical studies is the idea of a time-balanced study; in order

to calculate simple correlations (e.g. Pearson’s) in observations between study subjects, for

example, it is very helpful mathematically to have made the observations on the same time

scale. For example, if we take psychophysical measurements on days 1, 5, and 10 for one

subject, our correlations will be more accurate if we take them on days 1, 5, and 10 in

another subject. For many obvious reasons, this is difficult to coordinate as the number of

observations and the length of the study increases, although there are various, more complex

approaches to try to circumvent this limitation [83]. Developing an analytical framework

that takes these time-related considerations into account is crucial to the future application

of these methods to longitudinal experiments, where we may want to ask more complex

questions about mechanisms of learning and adaptation.[31].

2.3.3 Bayesian Inferencing

The results of psychophysical studies are surprisingly deterministic when there is a high

level of precise control over laboratory conditions, resulting in curve fits with extremely small

residual errors. However, in a majority of cases where these careful conditions are not applied
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but we still would like to obtain some knowledge about the system, there are often many

potential sources of variance that may contribute to the overall observed variance. In this

context, Bayesian statistics is an appropriate framework to not only provide deeper insight

into the various sources of uncertainty but to utilize this information to make more robust

predictors. Bayesian methods have become the predominant framework for curve-fitting for

the most predominant software libraries designed to assist with this task, and more advanced

application of Bayesian methods such as the hierarchical variety are beginning to be applied

to analyses as well [79, 62, 40, 54, 39]. In Chapter 6, I will clearly demonstrate the utility

of Bayesian methods for psychophysics and neural engineering and its direct application to

state-of-the-art models. First, however, the following chapter will outline a comprehensive,

multi-year study monitoring PNI usage in non-human primates.
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Chapter 3

Detection and Discrimination of

Electrical Stimuli from an Upper

Limb Cuff Electrode in M. Mulatta

3.1 Introduction

Peripheral nerve interfaces seek to restore nervous system function through electrical stim-

ulation of peripheral nerves. In clinical use, these devices should function reliably for years

or decades. In this study, we assessed evoked sensations from multi-channel cuff electrode

stimulation in macaque monkeys up to 711 days post-implantation.

Three trained macaque monkeys received multi-channel cuff electrode implants at the median

or ulnar nerves in the upper arm. Electrical stimuli from the cuff interfaces evoked sensations,

which we measured via standard psychophysical tasks. We adjusted pulse amplitude or

pulse width for each block with various electrode channel configurations to examine the

effects of stimulus parameterization on sensation. We measured detection thresholds and

just-noticeable differences (JNDs) at irregular, near-daily intervals for several months using

Bayesian inferencing from trial data. We examined data trends using classical models such

as Weber’s Law and the strength-duration relationship using linear regression.

Detection thresholds were similar between blocks with pulse width modulation and blocks

with pulse amplitude modulation when represented as charge per pulse, the product of the

amplitude and the pulse width. Conversely, Weber fractions—calculated as the slope of

the regression between JND charge values and reference stimulus charge—were significantly

different between pulse width and pulse amplitude modulation blocks for the discrimination

task.
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Weber fractions were lower in blocks with amplitude modulation than in blocks with pulse

width modulation, suggesting that pulse amplitude modulation allows finer resolution of

sensory encoding above threshold. Consequently, amplitude modulation may enable a greater

dynamic range for sensory perception with neuroprosthetic devices.

3.2 Materials and Methods

We directly stimulated nerves using multi-channel cuff-style electrodes in previously trained

macaques. Cuff electrodes durably surround fascicles located proximal to an injury or tran-

section and tend to cause minimal nerve damage compared to intrafascicular electrodes [30].

Standard psychophysical measures assessed how stimulus parameterization affected behav-

ioral outcomes. We adjusted independent variables of pulse amplitude, pulse width, and

electrode selection in pursuit of estimates of detection thresholds and just-noticeable dif-

ferences (JNDs) at near-daily intervals across extended study on a clinically relevant time

scale. We evaluated longitudinal patterns in the data and examined effects of stimulus

parameterization based on established sensory models such as Weber’s Law [28] and the

strength-duration relationship [8].

3.2.1 Ethical Treatment of Animals

The Institutional Animal Care and Use Committee approved the experimental paradigm

design, surgical procedures, neurophysiological stimulations, and daily animal care, following

all guidelines set by the Association for Assessment and Accreditation of Laboratory Animal

Care and the Society for Neuroscience. We sedated animals with ketamine, intubated, and

anesthetized with isoflurane before and during surgery under the supervision of Department

of Comparative Medicine veterinary staff at Washington University in St Louis.

3.2.2 Surgical Procedure

Implant cuffs occupied a different upper arm location for each of three rhesus macaques.

Monkey Y had a 2 mm electrode implanted at the ulnar nerve (Figure 3.1C). Monkeys

20



Figure 3.1: Electrode geometry and impedance data. A. Spiral cuff implants had four proxi-
mal (P1-4) electrodes and four distal (D1-D4) electrodes evenly spaced on a silicon conduit.
Dimensions not to scale. B. Impedance measurements at 1 kHz before and during exper-
iments. Measurements were from each electrode channel and summarized by the mean of
impedances from all channels from a given session. Impedances remained generally stable
through the course of experiments with some increase in Monkey Y’s implant towards the
end of experiments. C. The implant in Monkey Y surrounded the ulnar nerve. D. The
implant in Monkey U surrounded a surgically isolated sensory branch of the median nerve
at a proximal location. E. The implant in Monkey Z surrounded the median nerve.
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U and Z had 3 mm electrodes implanted at the median nerve (Figures 3.1D and 3.1E).

During the surgical procedure in Monkey U, we blunt dissected the sensory branch of the

median nerve away from the nerve trunk, in the proximal portion of the upper arm where

topographical organization of the nerve enabled such separation. The electrode encircled the

entire nerve bundle in Monkeys Y and Z. We subcutaneously routed wire leads connecting

cuff electrodes in the arm to a connector port embedded in an acrylic head cap at the scalp.

Experiments began several weeks following cuff implantation surgeries.

3.2.3 Implant Characteristics

We utilized multi-contact spiral cuff electrodes (Ardiem Medical, Indiana, PA) with inner

diameters of 2- and 3-mm and lengths of 10 mm (Figure 3.1A). The electrodes had eight

circular channel sites placed equidistant in four quadrants of the electrode’s inner surface.

These channel contacts were 0.75 mm in diameter and each set of four channels occupied

a circular plane on either the proximal or distal side of the conduit. We monitored elec-

trode impedances before and periodically after surgical implantation to assess predicted

bioelectrical properties of the interface. An Autolab Potentiostat/Galvanostat PGSTAT12

(Eco Chemie, Utrecht, Netherlands) with a built-in frequency response analyzer (FRA2,

Brinkmann Instruments, Westbury, NY) measured impedances at 1 kHz.

3.2.4 Stimulation

Figure 3.2 displays a typical electrochemical pulse delivered at one or more electrode channels

in the interface. Platinum electrode sites delivered pulse trains to the nerves generally of 500

ms duration. Pulses were biphasic, consisting of a leading cathodic phase and a zero-delay

charge-balancing anodic phase [33]. The pulse waveform of the charge-balancing phase was

of 10x decreased amplitude and 10x increased pulse width to mitigate formation of virtual

cathodes. One or more proximal electrodes (P1-P4 in Figure 3.1A) served as the current

sink (delivering cathodic stimulation) for all four distal electrodes (D1-D4), which served as

current sources and provided an anode block. We designed and administered stimuli using

hardware and software from Tucker-Davis Technologies (Alachua, FL).
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Figure 3.2: A typical pulse train delivered by an electrode channel. A. Pulse train param-
eters were governed by a programmable pulse train generator (Tucker-Davis Technologies,
Alachua, FL). B. The parameterized waveform was delivered at one or multiple electrode
sites at the nerve/device interface. C A single pulse train, usually lasting 500 milliseconds,
was delivered as a test stimulus. The frequency of pulse repetition was generally set to 50 Hz.
D. We primarily parameterized the waveform with pulse width and amplitude parameters.
Inter-pulse interval was determined by the frequency parameter as shown in C. Each pulse
consisted of a cathodic activation phase (-) followed by an anodic recovery phase (+). We
arbitrarily chose a ratio of 10 to scale the pulse width and amplitude appropriately during
the anodic phase. Figure emphasizes waveform features and is not drawn according to scale.
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3.2.5 Psychophysical Procedures

Training on a Yes/No Task

Before implantation of the cuff device, each monkey learned to use a joystick in a standard

center-out task through training with positive reinforcement operant conditioning. Following

cuff implantation, we ascertained a safe baseline current amplitude prior to the next phase

of training by gradually increasing the current amplitude from zero in increments of 10 to

50 µA until we observed slight muscle twitching in the fingers and hand. We established this

baseline maximum at about 1 mA, using a 500 ms pulse train of 50 pulses per second and a

200 µs pulse width. Training on the subsequent task began slightly below this level.

Next, each monkey learned a yes-no detection task (Figure 3.3). The monkeys initiated a

sequence by using a joystick to move the cursor to a circular target centered on the screen. A

ring surrounded the cursor upon arrival at the center target. The monkey was then able to

initiate a trial by maintaining the cursor in the center position for 750 to 1500 ms. We then

delivered a test trial stimulus or a catch trial non-stimulus with equal probability. There

were one of four trial outcomes. For test trials, the monkey received 1) a reward for moving

the cursor to the outer ring (Hit), or 2) a time-out penalty of 1 to 3 seconds for remaining in

the center of the ring (Miss). For catch trials, the monkey received 3) a reward for retaining

the cursor in the center of the ring (Correct Rejection), or 4) a penalty for moving the cursor

to the outer ring before trial conclusion (False Alarm). We applied a post-trial delay of 2

seconds before allowing initiation of the next sequence.

Each monkey trained for several weeks on the yes/no task, beginning at stimulation levels

just below the motor twitch threshold and with a visual cue. We noted successful task

learning when each monkey rapidly improved performance to at least 90% for all trials,

including catch trials. Once a monkey reliably performed the prior task, we removed the

visual cue and gradually decreased the current amplitude to levels near threshold, as observed

by declining performance. During all training and experiments, each monkey executed the

task for approximately 1000 trials per day.
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Figure 3.3: Yes/No joystick task. Monkey initiated a trial by moving a cursor to a circular
target displayed in the center of the screen, at which point a reference stimulus was delivered
(I=0 for detection experiments, I ̸=0 for discrimination experiments). After a brief delay
period, a comparison stimulus was presented. In 50% of trials, designated catch trials, we
delivered a comparison stimulus equivalent to the test stimulus. In the other 50% of trials,
designated test trials, the comparison stimulus was one of eight stimulus levels higher than
the reference stimulus. Proportions of four outcomes (Hit, Miss, False Alarm, and Correct
Rejection) conveyed task performance.
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Method of Constant Stimuli (Detection Task).

Fully trained monkeys performed detection threshold experiments administered using the

method of constant stimuli as follows. We chose conditions of each block of trials such as the

modulated dimension and electrode channel configuration in an exploratory fashion. The

stimulus level for a given trial was chosen randomly from a set of 8 or 9 evenly spaced

stimulus levels over a designated range in the modulated dimension while the other stimulus

dimension was held constant. We held pulse width constant during amplitude modulation

blocks, usually at 200 µs. For pulse width modulation blocks, we held amplitude constant

at whichever intensity allowed us to sweep the range of pulse width values bound by the

frequency of the pulse train and hardware limitations. At the beginning of each session, we

monitored responses to the task in real time and determined an appropriate stimulus range,

usually beginning with the previous session’s range and making operational adjustments to

the stimulus range when necessary. Adjusted stimulus ranges resulted in hit rates near 100%

at maximum stimulus levels and near 10% at minimum levels.

Discrimination Task.

After months of detection experiments, we adjusted the method of constant stimuli to admin-

ister discrimination experiments by concurrently delivering a reference stimulus upon trial

initiation and before the delay period. Thus, the behavioral outcomes conveyed whether

the monkey could reliably discriminate between the reference and test stimuli, in contrast

with the previous set of sessions where responses conveyed detection of the test stimulus

or lack thereof. This study refers to the difference between the absolute stimulus level at

the estimated threshold Ithresh and the corresponding reference stimulus level Iref as a just-

noticeable difference (JND), although other terms are in the literature such as difference

threshold or difference lumen.

JND = Ithresh − Iref (3.1)

We administered multiple trial blocks at different reference stimulus levels or electrode chan-

nel configurations for most sessions. We chose reference stimulus levels for discrimination

blocks from a range beginning near the detection threshold level and working up to previously
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elicited motor activation levels, avoiding higher stimulus levels where the monkey became

hesitant to initiate trials, suggesting discomfort. We inspected the shape and consistency of

each resulting psychometric curve before proceeding to the next parameter set.

3.2.6 Analysis

We used hit rate (proportion of hits from test trials) as the performance metric for each

block of trials. We estimated the parameterization of the psychometric function (Figure

3.4A) using Bayesian inferencing [50]. These estimations, provided by the psignifit4 Python

package [88], fit the results to the equation:

Ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F (x;α, β) (3.2)

where Ψ is the chosen performance metric, x is the magnitude of the stimulus along the

modulated dimension, α is the threshold, β is the width of the function between 5% and

95% performance, γ is the guess rate, λ is the lapse rate and F is a sigmoid function (we

used the cumulative Gaussian function). We used psignifit4 ’s default prior distributions.

We analyzed aggregate data with lab-developed Python data visualization software to detect

anomalies, identify trends, and compare experimental conditions6. Each data point that was

fed to regressions represented a maximum-a-posteriori (MAP) point estimate of the threshold

from each experimental block, and we explain limitations of this choice in the Discussion

section of this chapter. We performed regressions using the statsmodels Python package and

performed Analysis of Covariance (ANCOVA) tests with the aoctool function in MATLAB’s

Statistics and Machine Learning Toolbox. We then used the MATLAB tool multcompare to

perform a Tukey-Kramer multi-comparison on the results.

We analyzed strength-duration patterns of nerve activation by estimating amplitude thresh-

olds at several fixed pulse width levels and, inversely, estimating pulse width thresholds at

several fixed amplitude levels. We used these estimates to perform ordinary least squares

(OLS) linear regression, adaptingWeiss’s linear formulation for the strength-duration curve [8]:

6Repository at https://github.com/psychoanalyze/psychoanalyze
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Qp = I0(tPW + τSD) (3.3)

where tPW is the pulse width and Qp is charge per pulse (tPW × I). The regression provides

estimates of strength-duration time constant τSD and an asymptotic current level I0. When

thresholds represent stimulation levels that trigger action potentials from single nerve fibers

or compound action potentials from fiber populations, τSD is historically referred to as the

chronaxie and I0 is referred to as the rheobase. Our study extended this line of analysis

through the central nervous system by measuring thresholds via learned behavior [91].

Finally, we examined the results of discrimination experiments using Weber’s Law. Weber’s

Law is regarded as a generalized principle, which states that the perceived difference between

stimuli is proportional to the size of the stimuli. Often, modeling this principle uses the

equation:

k ∝ ∆I/I ≈ JND/Iref (3.4)

where k is the Weber fraction/coefficient, and ∆I/I is interpreted as JND/Iref for our

experimental context. We can rearrange this equation into the familiar y = mx+ b form as:

JND = I0 + kIref (3.5)

While potential mechanisms behind Weber’s Law and its general applicability for sensory

models are debated in neuroscience and psychology [1, 47, 97], our study utilizes the model

as a simple, linear approach to contextualize data in a variety of circumstances which likely

conveys some true subjective experience by the monkey.

3.3 Results

We conducted more than 400 experimental sessions ranging from 87 to 711 days post-

implantation. Table 3.1 lists the number of experimental sessions performed by each monkey,

the number of days since implantation on the first day of experiments, and the number of
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Table 3.1: Experimental sessions performed by
each monkey

Monkey Number of Sessions Start Day* End Day*

U 236 94 711
Y 170 174 630
Z 25 87 126

* Start Day and End Day relative to day of implant
surgery

days since implantation on the last day of experiments. Implants in Monkeys U and Y

delivered detectable signals through 1-2 years of chronic usage. The implant in Monkey Z

exhibited stable signals up to 4 months post-implantation until lead failure near the site of

the head cap terminated further experiments in this case.

Figure 3.1B shows average electrode site impedance data at 1 kHz for the three implants

across the experiments. Average electrode site impedance increased by approximately an

order of magnitude from the days before and after implantation. Trends showed stable

implant impedances for more than hundreds of days, but the implant in Monkey Y exhibited

higher impedances near the end of the experiments. All electrode sites remained functional

throughout experiments for obtaining psychophysical data.

Figures 3.4B-D show the empirical cumulative distribution functions (eCDFs) that sum-

marize the parameter fit estimates from all blocks. The parameters of guess rate (γ) and

lapse rate (λ) were generally low and in line with previously reported rates in animal ex-

periments [95]. Low values for these “nuisance” parameters served as indicators that the

monkey was performing the task honestly and reliably. For example, Monkey Y exhibited

higher guess rates on average than Monkey U, but still maintained a guess rate below 10%

for approximately 80% of sessions (Figure 3.1B).

3.3.1 Detection Thresholds

Figure 3.5 shows trends in detection thresholds from each monkey over the course of am-

plitude modulation experiments. Monkey U (split median nerve) completed the greatest

number of experimental sessions over the longest period. This monkey’s thresholds de-

creased from initial levels >1 mA down to about 200 µA, interrupted by sharp threshold

increases near days 140, 210, and 260. Monkey Y (ulnar nerve) needed less current to detect
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Figure 3.4: Summary of fitted parameters - Detection Experiments A. Stereotyped psycho-
metric function. Four parameters—threshold (Threshold), pulse width w, guess rate (γ),
and lapse rate (λ)—determined the shape of the function. We chose hit rate—(n hits / n
test trials)—as our performance metric (P(Correct)). B. Empirical cumulative distribution
functions (eCDFs) for γ and λ estimates. eCDFs convey the raw distribution of observed
measurements. The eCDF value at x communicates the proportion of blocks where the fitted
value was less than or equal to x. For example, the highlighted example in B shows that
Monkey Y had a guess rate less than 5% for 70% of blocks. All monkeys showed guess rates
and lapse rates near zero for >40% of sessions (lower left of figure) and showed rates below
10% for >80% of sessions (upper right of figure). C, D. eCDFs of threshold (solid lines)
and width parameters (dotted lines) for amplitude modulation blocks (C ) and pulse width
modulation blocks (D) for all detection blocks.
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Figure 3.5: Amplitude detection thresholds. Longitudinal plot of detection thresholds for
amplitude modulation blocks. Point estimates represent maximum a posteriori estimates of
the parameters from curve fitting, and error bars represent 95% confidence intervals. For the
data shown, pulse width was held constant at 200 µs. Monkey U (red circles) performed for
nearly two years and showed highly fluctuating thresholds that settled to a steady state at
about 350 days. Monkey Y (blue diamonds) maintained much lower thresholds for nearly a
year of experiments. Monkey Z (green squares) exhibited the lowest thresholds, but experi-
ments ended prematurely due to a lead failure near the site of the head cap.
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Table 3.2: Strength-duration estimates, visualized in Fig3.6

Monkey Date Range Rheobase (µA) Chronaxie (µs) R2

U 62-75 48.5 18.5 0.983
U 110-114 53.1 4.46 0.959
U 131, 195 20.2 8.41 0.993
U 201-210 38.0 9.11 0.990
Y 56-71 5.91 10.4 0.939

threshold, averaging pulse amplitudes of 115 ± 31 µA at threshold from the beginning of

experiments. Monkey Z (intact median nerve) had the lowest detection thresholds (36 ± 13

µA) across all experiments, however, these experiments ended prematurely due to an electric

lead failure at the head-cap.

Figure S1 in the supplemental materials of the publication presenting this work[87] shows the

same data as in Figure 3.5 delineated by the channel configuration chosen for each block, with

data shown on a log scale to emphasize within-subject differences across time. Thresholds

in Monkey U displayed correlation between channel thresholds despite large fluctuations

in threshold. We could not perform typical correlation tests because the time series data

was unbalanced, meaning that they were sampled at different relative time points for each

condition. However, the appearance of correlation in Monkey U paired with the stability

and spread of data seen in Monkey Y suggests that the choice to pool data across channel

configurations did not introduce significant levels of bias in the measurements.

Figure 3.6 conveys thresholds estimated similarly for various choices of a) modulated stimulus

dimension (amplitude or pulse width) and b) the fixed stimulus level in the non-modulated

dimension. Figure 3.6A (amplitude blocks) and Figure 3.6B (pulse width blocks) convey

the inverse relationship between amplitude and pulse duration traditionally observed in

strength-duration data. The same data from Figures 3.6A and 3.6B are shown transformed

and regrouped on the shared charge axis in Figures 3.6C (Monkey U) and Figure 3.6D

(Monkey Y) according to Equation 3. Strength-duration coefficients (slopes and intercepts,

Figures 3.6C, 3.6D) were nearly identical between amplitude blocks and pulse width blocks

within subjects across time within the observed time bins. Table 3.2 provides the regression

coefficients for strength-duration time constant τSD and an asymptotic current level I0 for

these time bins.
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Figure 3.6: Strength-duration characteristics of behavioral thresholds. A-B. We employed
the method of constant stimuli at a range of fixed pulse widths for amplitude modulation
blocks (A) and at a range of fixed amplitudes for pulse width modulation blocks (B)
in both monkeys. Error bars indicate standard deviations around the mean threshold when
pooled at each stimulus level. Each trace indicates an iso-contour at detection threshold
between waveform parameters amplitude and pulse width. These contours displayed the
hallmark inverse relationship observed in strength-duration data. C-D. Weiss (linear) for-
mulation of the strength-duration relationship. We combined thresholds for each monkey
from the previous two subplots and displayed data from both amplitude modulation and
pulse modulation sessions on a shared charge axis according to Weiss’s linear formation of
the strength-duration relationship (Equation 3.3). Linear regression coefficients (slope and
intercept) for blocks with amplitude and pulse width modulations were nearly identical and
correlated across time within subjects.
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3.3.2 Discrimination

Figure 3.7A shows average JND values against reference charge levels over all discrimination

blocks, pooled at each reference stimulus level for plotting only. The slope of the fitted

lines represents the Weber fraction over all pooled data for each monkey and each stimulus

dimension (solid lines/markers = amplitude modulation blocks, dotted lines/open markers

= pulse width modulation blocks). Figure 3.7B shows the results of an ANCOVA test

on the data from Figure 3.7A. Under the assumptions of the test, the aggregate Weber

fraction was significantly lower in blocks with amplitude modulations than with pulse width

modulations for both monkeys, as demonstrated by non-overlapping comparison intervals in

Figure 3.7B. Additionally, the Weber fractions were not significantly different for the same

dimension across different monkeys, as demonstrated by overlapping intervals. Table 3.3

shows the precise values for Weber fractions estimated from each experimental configuration

and monkey. Supplemental Figure S2 from the publication presenting this work [87] shows

the distribution of Weber fractions from all individual blocks.

We pooled data across all channel configurations, as with data from detection experiments.

Supplemental Figure S3 from the publication presenting this work [87] shows data from

Figure 3.7 grouped by channel configuration. We observed simultaneously that a) many

configurations had similar outcomes, demonstrated by the proximity of the fits to each other

in relation to the error bars, while b) some configurations still showed deviations from the

rest—e.g. Monkey Y, Channel 2—that indicate some variance is introduced by choice of

channel configuration.

3.4 Discussion

Electrical stimulation, administered through cuff electrodes around upper arm peripheral

nerves, evoked durable sensations in three different macaques. The findings demonstrated

long-term durability of a sensory cuff electrode in the upper limbs of macaques during psy-

chophysical experiments for months to years. Three monkeys showed graded sensory activa-

tion from stimulus patterns scaled by pulse width and current amplitude, despite differences

between cases including nerve anatomy, electrode diameter, and location of the implant.

We took these measurements with a frequency on the scale of days, i.e., with high enough
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Table 3.3: Weber’s Law regression coefficients for data shown in figures

Monkey Channel Intercept Slope

Amplitude

U average 73.7 0.1

Y

1 -6.78 0.17
2 -1.007 0.129
3 4.97 0.0886

average 3.46 0.109

Pulse duration

U

1 -28.2 0.500
3 -18.9 0.364
4 -49.0 0.631

average -29.4 0.453

Y

1 -61.7 0.638
2 -100.0 1.00
3 -14.0 0.427
4 -35.3 0.548

average -35.3 0.548

Charge

U

1 14.4 0.129
2 -26.6 0.719
3 -7.54 0.364
4 -13.9 0.450

Y

1 -4.20 0.311
2 -17.3 0.874
3 2.39 0.0743
4 3.76 0.0873

Charge (Amp)
U average 22.6 0.0752
Y average 0.913 0.102

average 11.8 0.0888

Charge (PW)
U average -14.8 0.507
Y average -13.4 0.776

average -14.1 0.642
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Figure 3.7: A. Discrimination and Weber coefficients. We assessed the monkeys’ abilities to
discriminate between stimulus levels by observing responses and estimating JNDs at various
reference stimulus levels. Plots show JNDs relative to reference stimulus levels according
to Weber’s Law. Marker size indicates the number of sessions at each reference stimulus
and error bars show standard deviations of each grouped set of sessions. The slope of each
regression line represents the group-level Weber coefficient. B. Results of an analysis-of-
covariance (ANCOVA) test on the Weber fractions from A. The width of the lines represents
comparison intervals such that non-overlapping bars are statistically significant. Weber
fractions were significantly different between amplitude blocks and pulse width blocks but
did not show significant differences for each dimension across monkeys.
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frequency to inform speculation on potential mechanisms of variation in the data, including

between- and within-subject differences, across months.

Almost all electrode channels remained functional throughout the experiments. Only ir-

reparable damage to a percutaneous lead compromised enduring results from Monkey Z.

However, collected data indicated excellent sensory detections even in this truncated case.

Future experiments and clinical applications might utilize wireless implant technology to

mitigate the risk of lead damage and increase PNI durability.

Our study suggests that the ratio of pulse width to pulse amplitude in the stimulus waveform

may not affect detection thresholds, but the choice of modulating amplitude vs pulse width

at stimulation above threshold has significant effect (see Limitations for caveats). If this

conclusion holds, then amplitude modulation may have more resolution and dynamic range

than pulse width modulation, e.g. for simple 1-D prosthetic control.

3.4.1 Stability Assessment

Thresholds in Monkey U, compared to Monkeys Y and Z, showed greater day-to-day variabil-

ity and larger, slower fluctuations. Only Monkey U underwent a different surgical procedure

to isolate sensory nerve bundles (see Methods). The major discrepancies in threshold char-

acteristics between Monkey U and the other monkeys, including sudden perturbations in

threshold, might have reflected ongoing inflammation, nerve damage, and healing in the

nerve and surrounding tissue in Monkey U stemming from the surgical procedure or abnor-

mal stimulation [12]. By isolating the sensory branch, we reduced the fiber count contained

within the cuff electrode. The potentially increased distance from the electrode contacts

to the nerve fibers in closest proximity might cause electrical shunting and high, unstable

thresholds. In addition to or separate from this effect, axonal damage possibly occurred

during the implant procedure. Alterations in fiber properties resulting from axonal damage

could increase activation thresholds to stimuli applied from a cuff electrode transiently or

permanently [22, 65]. This would assume the cuff was around a section of the nerve where

such damage had occurred. Over time, inflammation and subsequent encapsulation of loose

extraneural space [37], in addition to the recovery of axonal properties, might contribute to

the gradually stabilizing stimulus amplitudes we see in Monkey U (Figure 3.5). However,
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we did not observe a significant increase in impedances (Figure 3.1B). We also did not ob-

serve significantly higher thresholds in Monkey U compared to the other monkeys once they

stabilized (right side, Figure 3.5), as expected for encapsulated tissue.

3.4.2 Strength-Duration Findings

We applied the Weiss strength-duration formula (Figures 3.6C-D, Equation 3.3), which previ-

ously modeled thresholds for single axon activation [8] and compound action potentials [64].

Roughly, we observed fits from these regressions that were similar or nearly identical on short

time scales of fewer days within a monkey, but coefficients drifted in a correlated manner

over the span of weeks or months.

As is the case with strength-duration parameters from single fibers and compound action

potentials, these estimates may convey some present state of the system, potentially rapidly

measurable for calibration of peripheral nerve devices [100]. The apparent correlation be-

tween the strength-duration coefficients and detection threshold (Figures 3.5, 3.6C) warrants

further examination.

The estimated strength-duration coefficients gleaned from detection thresholds were remark-

ably similar for each monkey on a given day or short span of days regardless of the modulated

stimulus dimension. Thus, a model for simple detection threshold phenomena may be able

to collapse the dimensions of amplitude and pulse width into a single dimension, charge-per-

pulse (Qp).

3.4.3 Weber Analysis

We compared the Weber coefficients obtained from blocks of amplitude modulation vs pulse

width modulations. This analysis examined the hypothesis that stimulus intensity, encoded

by charge per pulse Qp, was independent of the ratio of amplitude to pulse width. While

the structure of this study did not lend itself to straightforward hypothesis testing (see

Limitations), we generally observed lower Weber fractions when modulating amplitude vs

pulse width in both monkeys.
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In contrast with the effects of modulated dimension on strength-duration estimates, signfi-

cant differences in the Weber fraction between amplitude-modulation blocks and pulse-width-

modulation blocks in discrimination experiments suggested that the relative contributions of

amplitude and pulse width may affect the quality of sensations and/or the nerve recruitment

function at levels above the detection threshold. This evidence suggests the two modulation

approaches would result in different fiber recruitment profiles in the nerve [33, 36, 59, 15, 89].

If amplitude modulation shows lower Weber fractions than pulse width modulation across

comparable conditions and various experimental and clinical contexts, practical application

would suggest amplitude modulation would be more energy efficient and allow for more dy-

namic range than pulse width modulation for simple (i.e. 1-D) sensory feedback engineering.

3.4.4 Limitations

We applied linear regressions and ANCOVA tests to marginal MAP estimates for each block

of data. Grouping choices only weakly attempted to account for violations of test assump-

tions such as temporal non-stationarity, within-subject pooling, and cross-channel pooling.

The data thus reflected this series of grouping decisions, which likely biased the statistical

estimates. For example, grouping data across channel configurations violated the test as-

sumption that each measurement came from the same natural probability distribution; our

data showed some systematic variation across channels. Similarly, performing regressions

against MAP point estimates for threshold did not relay the uncertainty present in these

estimates due to sampling size, etc. We attempted to group measures visually if the spread

of the data appeared to revolve around a consistent mean and standard deviation to simplify

preliminary analysis without introducing extreme biases. However, caveats of overconfidence

and Type 1 errors apply to all statistical test measures reported in this study. Notably, we

did not exclude groups when performing such pooling to hedge against “data snooping.”

While the statistical outcomes of this study come with these caveats, they will be useful for

guiding the design of future PNI experiments, which may be used to make stronger assertions

about sensory models, including the classical models tested here as well as more advanced

models that attempt to explain the component mechanisms of the interface. Follow-up analy-

ses of our data set might apply a hierarchical Bayesian model (or its frequentist counterpart,

a Linear Mixed Model) that would more fully account for violations of our test assump-

tions [40, 71]. Additionally, analyses that incorporate signal detection theory may leverage

39



the estimated values for our “nuisance” parameters to more fully account for variation in-

troduced by the attentive or motivational state of the monkey [53].

We did not adjust pulse rate (50 pulses per second) or the overall length of the pulse train

(0.5 seconds). However, follow-up experiments that examine these parameters may discover

further stimulation strategies for PNIs. Particularly, examining the effects of modulating

the overall stimulus duration may more fully account for potential adaptation effects not

considered in our experimental design.

Monkeys may have partially reacted to efferent-to-afferent volleys resulting from muscle

twitching when making judgements. Such effects may only have been applicable for Mon-

keys Y and Z, whose cuff implants circumscribed the whole nerve, including motor fascicles.

Conversely, segregating the sensory branch of the median nerve in Monkey U likely mini-

mized effects from potential muscle twitching. We provide three considerations that suggest

minimal contamination from motor activation, even in Monkeys Y and Z:

Context from literature. Early studies have presented data suggesting lower stimulation

thresholds for sensory fibers compared to motor fibers [17]. Recent studies have at-

tributed such discrepancies to phenotype-specific differences in axonal membrane con-

ductivities [41]. Computational models of axons with membrane properties that rep-

resent each phenotype suggest substantially lower recruitment thresholds for sensory

fibers of a given caliber compared to motor fibers [23].

Anode block. We used the distal set of electrodes as anodes, which hyperpolarized axon

membranes distal to activation, theoretically further increasing the threshold for motor

activation.

Visual inspection. We detected no muscle twitches during experiments or during stimu-

lation sessions where we attentively observed the forearm movements of each monkey.

However, it was difficult to observe the monkeys’ arms consistently during experimen-

tation.
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3.4.5 Future Directions

We provide our data analysis software as an open-sourced Python package (see next chap-

ter) and provide a browser-based data visualization dashboard for simple and responsive

psychophysics data analysis, particularly suited for longitudinal and multidimensional data

sets. The software may analyze novel data from similarly designed studies to execute com-

mon psychophysics analyses performed here and elsewhere. More advanced psychophysical

procedures—such as adaptive sampling of multidimensional space to efficiently gain infor-

mation via Bayesian methods—would effectively supplement the Bayesian components of

this study [108]. Additionally, future studies may combine aspects of our approach with

brain, nerve, or muscle recordings to supplement behavioral results, possibly enabling usage

of more detailed peripheral nerve integration models [66].

Macaque upper limb nerve experiments enabled acquisition of large data sets resulting from

stimulation applied to a system similar to human peripheral nerves in size, dexterity, cortical

mappings, and re-mappings [10]. Animal data sets may help validate or tune sensory encod-

ing models that would be directly applicable to a human interface. However, the empirical

measurements derived from model parameters would likely vary across species. In particu-

lar, the increased number of fascicles in the human compared to monkeys would likely result

in different thresholds and recruitment profiles [10]. However, some consequences of the

anatomical differences between species may be advantageous to clinical translation in this

instance. Inducing graded sensations might be less challenging in the larger, more fascicular-

ized human nerve in comparison with the macacque nerve. Specifically, the low conductivity

of the perineurium and the spatial separation between fascicles facilitates fascicle-specific ac-

tivation and may easily reflect distinct sensations due to topographical organization within

the nerve.

The larger human nerve trunk may furthermore increase activation thresholds due to the

larger size of an appropriately sized cuff and the potentially larger distance between electrode

sites and axons. In contrast, the larger fiber calibers present within the human nerves [23, 11]

relative to those of found in the macaque [3] would decrease the activation thresholds. The

effect of these discrepancies would counteract in sum. It is therefore difficult to speculate

about the overall effects of these differences absent supporting data from further studies.
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Neural interfaces in use today commonly require calibration routines before daily use. The

experimental and statistical groundwork of our study may provide a clearer picture of the

calibration requirements of assistive devices and open the door for sophisticated, targeted

calibration routines that account for the dynamics of the system.

3.4.6 Conclusion

Successful demonstration of long-term usage of a peripheral nerve interface in a macaque

model encourages future experiments with cuff-style peripheral nerve interfaces. The current

study had monkeys calibrate a nuanced sensorimotor behavior involving a varied parame-

ter space and identifying matching stimuli. We used simple linear models and common

assumptions to examine the effects of many stimulation configurations in a longitudinal

study, which more closely resembled clinical usage and time scale than many shorter studies.

Sensory feedback from a prosthetic device might similarly utilize electrical nerve stimulation.
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Chapter 4

PsychoAnalyze: An Open-Source

Toolset for Psychophysics Analysis

4.1 Introduction

Several software packages exist that provide tools for fitting the psychometric function to

experimental data, but few provide tools for data manipulation and visualization that acco-

modate more complex experimental setups that require intricate data flows.

PsychoAnalyze aims to make more advanced psychophysical analysis accessible to researchers

without extensive software or data engineering background [35], and to provide an accessi-

ble development platform to encourage contributors from all backgrounds to build custom

features and plugins for the package.

Because Python has rapidly gained popularity in both data science and the natural sciences,

a Python package that properly utilizes and integrates the wealth of developer tools and

data tools available in the Python ecosystem7 can provide researchers and developers with

stronger mental models and a tighter feedback loop.

In an effort to address data management challenges encountered in psychophysics exper-

iments, I developed an open-source tool, PsychoAnalyze, which is published at https:

//github.com/psychoanalyze/psychoanalyze. I developed PsychoAnalyze with the fol-

lowing goals in mind:

� Provide a Python package for querying, manipulating, and analyzing psychophysical

data. The package should be pip-installable and otherwise adhere to modern Python

7https://numfocus.org/sponsored-projects

43

https://github.com/psychoanalyze/psychoanalyze
https://github.com/psychoanalyze/psychoanalyze
https://numfocus.org/sponsored-projects


packaging and distributing conventions. The package should be well-documented; doc-

umentation should be built with a static site generator documentation framework and

be available on the internet. Additionally, relevant tutorials and demonstrations should

be provided in common “notebook” formats such as Jupyter and Quarto. The package

should adhere to semantic versioning or a similarly justified versioning scheme when

possible.

� Provide a web-hosted dashboard for interactive exploration of psychophysical data,

including the ability to simulate or upload custom data sets, and to provide simple

plots describing the data with common psychophysical metrics. This tool should be

accessible to researchers and students with minimal coding expertise or background in

psychophysics theory. The dashboard should be provided both as a no-code tool so

that anybody may utilize its features, but also as a documented example of how to

effectively use the package and perform the relevant data manipulations at each point

of the process.

� Project structure, tooling, and documentation should prioritize beginner-friendliness to

facilitate code contributions from the community and the ability to deploy self-hosted

versions of the application. Agile software development practices, including test-driven

development, should be prioritized to facilitate rapid prototyping and iteration of new

features upon publication of the software. Students and researchers at all levels of

programming and data engineering practices should still be able to contribute to the

project via proposal and testing of new features. The quality of the code base should be

evaluated by the time to production of new features, bug fixes, and UI improvements.

The following sections provide detailed descriptions of the software in the context of the above

goals at the time of the publication of this dissertation. Readers interested in the current

state of the project should visit the project’s home page at https://psychoanalyze.io.

4.1.1 Comparable Work

There are several existing software packages that provide tools for psychophysical analysis.

PsychoAnalyze seeks to bridge the gap in the data pipeline between experimental design soft-

ware such as PsychoPy/PsychToolbox and model-fitting software such as Palamedes/psignifit.
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� PsychoPy [75] is a Python package that provides a complete suite of tools for designing

and running psychophysical experiments on a personal computer device.

� PsychToolbox [9] a MATLAB package that similarly provides routines for stimulus

presentation and data collection.

� Palamedes [80] is a MATLAB toolbox that provides an advanced set of curve-fitting

procedures, including procedures that use subject-level data to use hierarchical Bayesian

methods for more accurate estimates.

� psignifit [88] is primarily developed in MATLAB, but there is a Python port of the

implementation. It mainly provides methods for fitting the psychometric function using

Bayesian methods.

� BayesFit [90] is a Python-first model-fitting library, but is inconsistently maintained

by an individual contributor.

4.2 Core Features

PsychoAnalyze provides data manipulation and visualization tools built on modularity and

extensibility, aiming to empower researchers to more fully explore and contextualize their

data, while minimizing time spent wrestling with custom analysis scripts.

In addition to providing a Python package and a command-line tool, PsychoAnalyze offers

a web-hosted dashboard demonstrating the capabilities of the package. On its own, the

dashboard provides researchers with a no-code interface to fit their data to a psychometric

function and visualize the results in an interactive setting. Further, developers may examine

the dashboard code to contextualize the API of the package/library functions.

For example, PsychoAnalyze provides convenient methods to:

� Aggregate trial-level data to an appropriate format (e.g., grouped by intensity level of

the stimulus) for model-fitting procedures.

� Generate simulation data according to common psychophysical experimental proce-

dures.
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� Export results to a variety of formats such as CSV, Parquet, and DuckDB (tables) or

PNG, SVG, and PDF (figures).

� Transform model parameters between parameterizations, e.g. location µ / scale σ form

to intercept β0 / slope β1 form:

ψ(x) =
1

1 + e−
(x−µ)

σ

⇐⇒ 1

1 + e−(β0+β1x)
(4.1)

4.2.1 Dashboard

One of the challenges of multi-dimensional and longitudinal data analysis is the ability to

quickly and interactively explore the data. As the number of “dimensions” of the input stim-

ulus parameterization and/or the number of experimental conditions being tested grows, the

complexity of the data manipulation code needed to properly contexualize and visualize ex-

perimental effects becomes ever greater, as complex patterns of abstractions and inheritance

become necessary, and the challenges of analyzing and visualizing higher-dimensional data

manifest themselves. Interpretability and complexity are at odds, both in the code base and

in the resulting analysis.

Development of the software was driven via the dashboard. New features were designed in the

dashboard first, and constant operation of the dashboard alongside developments allowed it

to serve as a proxy evaluation of “end-to-end” behavior. The dashboard’s skeleton can easily

be constructed using mock or hard-coded components, and features can be developed in a

way that provides quick and integrated visual feedback to developers (helpful for data-centric

test-driven development !) and prioritizes user friendliness.

The current iteration of the dashboard is built in Python using the Dash framework, which

runs in the browser and is powered by the Plotly data visualization package. The dashboard

is currently hosted using the Heroku platform, and a link is provided in the README for

interested parties to deploy their own self-hosted version of the application.

The dashboard is composed of three main panels, one for user input of experimental and

model parameters, one for the visualization of data, and one for table-formatted output and

export options (Figure 4.1).
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Figure 4.1: A screenshot of the PsychoAnalyze dashboard for v1.0.0 of the PsychoAnalyze
package.

47



The Input Panel provides the user to determine the data processed by the dashboard, either

via upload or selection of model parameters and experimental conditions. The first compo-

nent in the input panel column allows anyone to upload a dataset to be processed by the

dashboard. The dataset must be a table either in .csv or .parquet format, and for now is

restricted to be in the form of a very simple schema similar to other model-fitting libraries

in the ecosystem.

By default, the dashboard displays the results from a simulation of a hypothetical yes-no

experiment. A sequence of randomly-sampled trial outcomes are generated, processed, fit

to the psychometric function, and visualized, with assistance from PsychoAnalyze’s package

functions. The simulation estimates the psychometric function’s location and scale parame-

ters according to the chosen link function F (x), which is the logistic equation by default:

ψ(x) = F (x) =
1

1 + e−
x−µ
σ

(4.2)

µ is the location parameter, which represents the psychophysical “threshold”. σ is the scale

parameter, which represents the slope (i.e., sensitivity) of the psychometric curve near the

threshold.

In an upcoming release, PsychoAnalyze will support a variety of link functions. For now,

the only supported link function is the logit function. You can toggle the visibility of the

equation for the logit function by clicking the Show/Hide button.

You may adjust the parameters µ and σ for model simulations using the sliders and input

boxes in the panel. The simulation is completely regenerated in the browser’s memory each

time any parameter in the Input Panel is adjusted. However, a new feature of Dash has been

released where incremental updates to the figure are possible; this will be implemented in a

future release.

The Visualization Panel is the central column of the dashboard. It contains the plot of the

psychometric function fitted to the simulated or uploaded data. The psychometric function

plot is generated using the Plotly Python library. It is an interactive plot that allows the

user to zoom in and out, pan, and hover over data points to see their values. Click a legend

item to toggle the visibility of the corresponding data series, or double-click a legend item

to isolate the trace.
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4.2.2 Python Package

The code emerging from the development of the dashboard was translated into a Python

package, which is published on PyPI8. The package provides a Python API for querying,

manipulating, and analyzing psychophysical data. The package is built on top of the Pandas

data analysis library, which provides a powerful and expressive API for manipulating and

analyzing tabular data. While notebooks provide a popular format for data exploration

and visualization, users of PsychoAnalyze should be encouraged to share their notebooks

and scripts with the community and to integrate their custom use cases into the package.

The nbdev package provides an interesting framework for adhering to software engineering

principles in a notebook-first development workflow. Early experience with nbdev has been

positive and it will likely be adopted in future releases.

4.2.3 Notebooks

Notebooks are a popular format for sharing code and data analysis workflows, providing a

browser-centric IDE with the ability to organize “cells” of code, Markdown-rendered text,

and data visualizations.

PsychoAnalyze has been released with an example notebook that demonstrates the use of

the package to analyze data from an example experiment. It is contained in its own GitHub

repository at https://github.com/psychoanalzye/notebooks. At the time of this dis-

sertation, notebooks in the repository are hosted on a deployed instance of JupyterHub

at https://nb.psychoanalyze.io on an Azure Kubernetes Service, enabling anyone with

Internet acccess to have direct access to an interactive development environment with psycho-

analyze and its dependencies installed. Hosted notebooks may be distributed via a different

service such as Binder as the cost of hosting is considered, but the notebook files will always

be available in the GitHub repository.

8https://pypi.org/project/psychoanalyze/
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4.3 Development Environment

The setup of a local environment, including the installation of library dependencies, can be

a major barrier to entry for new developers unfamiliar with the mechanics and installation

processes of the specific tooling necessary to run the software, whether they are aiming to

run the software locally or need to set up a development environment to make contributions

to the code base. Thus, the project takes an opinionated approach to developer tooling with

an emphasis on automation and reproducibility.

Python, MATLAB, and R are three high-level languages capable of implementing the robust

data workflows necessary for psychophysical data analysis. MATLAB is particularly common

in academic engineering departments. The included IDE and ease of development setup also

makes it a popular choice. Accordingly, the robust MATLAB library Palamedes provides

sophisticated analysis procedures to fit psychophysical models to data. However, licensing

costs to use MATLAB essentially limit its use to corporations or academic institutions.

While the open-source Octave project provides a free alternative, it often lacks the robust

third-party library support of MATLAB, as well as core features such as the MATLAB IDE.

The R programming language provides many of the same benefits as MATLAB, including a

robust, data-centric IDE (RStudio) and a large library of packages for data analysis (tidy-

verse). Recently, a robust package, MixedPsy, was published on the R package repository

CRAN and provides many similar tools as I seek to provide here, which may be helpful for

those used to programming in R.

In summary, however, Python’s general-purpose utility for tasks such as web deployment,

machine learning, and everything in between give it a leg up on the competition, to say noth-

ing of its very nice collection of general-purpose scientific computing libraries. MATLAB and

R’s limited capabilities are often a barrier to more robust software development practices. Al-

though they serve a purpose as scripting languages for one-off analyses by non-programmers,

in many instances it is beneficial to have common analyses performed by software packages

tailored for the job and more thoroughly tested. In these cases, general-purpose program-

ming languages provide libraries and tools that are needed to develop software that can

be shared, managed, and developed across the whole scientific community. PsychoAnalyze

contains many such more features to facilitate this developer friendliness, including:

50

Palamedes


� Dev Containers. PsychoAnalyze is configured to run in a Dev Container, which

provides “one-click” development environment setups in Visual Studio Code and other

IDEs, including a cloud environment in GitHub Codespaces. Dev Containers allow

developers to define a Docker container that contains all of the necessary dependencies

to run the software. They allows developers to run the software in a consistent envi-

ronment regardless of the host operating system, various versions of Python that may

be installed, they facilitate collbaration by making development environments more

portable between users.

� pytest. The pytest testing framework provides a structured and flexible approach to

automated testing and test-driven development, which is essential to bug-free code,

iterable design, and confident collaboration. Having a robust test suite allows devel-

opers to refactor code with confidence, knowing that the tests will catch any breaking

changes. Test-driven development is a specific method of software design that has

proven effective, and goes hand in hand with the ideas of continuous integration and

continuous delivery, which enable developers to rapidly iterate on new features and

bug fixes. PsychoAnalyze utilized GitHub Actions and pre-commit hooks to perform

many of these sorts of tasks in an automated fashion.

� Poetry. Modern package managers such as Poetry allow the software to integrate

with more sophisticated and customizable third-party packages while performing de-

pendency resolution and virtual environment management. They also make it easier

to publish and distribute the package on PyPI.

� Documentation. The documentation for PsychoAnalyze is written in simple Mark-

down, but is translated into beautiful HTML via the MkDocs static-site generator and

the mkdocs-material theme. The documentation is hosted on GitHub Pages and routed

to the custom domain https://psychoanalyze.io via a CNAME file in the reposi-

tory. Finally, API documentation is automatically configured using the mkdocstrings

extension, which parses the docstrings in the Python code and injects them into the

documentation.
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Figure 4.2: Screenshot of PsychoAnalyze documentation.
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4.4 Future Direction and Roadmap

The release of PsychoAnalyze corresponding to this submission is labeled as an alpha release

(tagged v1.0.0), primarily conveying that the software is not feature complete. Software

development in the pre-alpha phase focused on architecture and extensibility over supporting

a wide range of customizable options from the start, although the ability to incorporate

such options was factored into project architecture. For example, care has been taken to

incorporate abstractions for the link function such that other link functions may easily be

substituted for the logistic function. Integration of developer tooling and careful project

architecture were priorities, with the intention of enabling rapid iteration of features in

the next release phase. Development will likely prioritize “plug-in” modules for the software

packages in the previous Comparable Work section as well as more advanced features outlined

in the project roadmap on GitHub.

PsychoAnalyze was developed in support of the research performed in Chapter 3 [87]. Ex-

perience from these experiments, in addition to feedback and requests from the community,

will inform the next iteration of development.
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Chapter 5

Vagus Nerve Stimulation, Fear

Extinction, and Post-Traumatic Stress

Disorder

5.1 Introduction

5.1.1 Vagus Nerve Stimulation (VNS)

The majority of discussion in the previous chapters was focused on peripheral nerve stimula-

tion in the context of the somatosensory system. Most sensorimotor functions in the human

nervous system are mediated by spinal nerves, which are the majority subset of peripheral

nerves and interface with the spinal cord. Additionally, the human body contains twelve

nerves generally designated as cranial nerves, which connect peripheral organs directly to

structures in the brain. Cranial nerves are responsible for a variety of functions including

sensorimotor and autonomic functions. The “tenth” cranial nerve (Cranial Nerve X), is

more commonly referred to as the vagus nerve. It is the longest cranial nerve and transmits

feedback signals for a variety of autonomic functions including heart rate, digestion, and

respiration. It provides one of the primary information channels from visceral organs to the

brain and is composed mostly of afferent fibers[20].

Many of the principles and techniques of peripheral nerve stimulation in the sensorimotor

system are directly translatable to vagus nerve stimulation (VNS). Originally, VNS was

administered as a treatment for intractable epilepsy, but clinicians noticed beneficial side

effects for depression in some cohorts. After some years of further research, VNS was ap-

proved by the FDA for the treatment of depression in 2005. The last couple of decades in
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Figure 5.1: A. A view of the cranial nerves from the ventral side of the brain. B. Diagram
of the vagus nerve against other thoracic features. Images are from the public domain and
are reprinted under the Creative Common License (see Acknowledgements).
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VNS research have also proposed some interesting applications for other anxiety and mood

regulation disorders such as PTSD [26][94].

5.1.2 Parameterization of the Electrical Stimulus Delivered to the

Vagus Nerve

From a clinical standpoint, the course of action for VNS therapy is quite broad, in large

part due to a lack of understanding regarding how the parameterization and timing of the

delivered electrical stimulus affects downstream neural processes during VNS. Commonly, a

cuff electrode is placed around the vagus nerve, and the electrode is connected to a pulse

generator that is implanted in the chest. The pulse generator is programmed to deliver a

fixed stimulation pattern, typically for long durations of seconds to minutes. The device

is typically implanted in the left chest and the leads are wrapped around the left vagus

nerve to minimize cardiac side effects. Generally, a limited set of stimulation parameters are

programmed for treatment. Often, higher stimulus intensities are administered when more

aggressive treament is desired, at the cost of inducing side effects such tingling or pain in the

neck, hoarseness, coughing, or cardiac arrhythmias. While some general conclusions can be

drawn towards the extremes of the clinically-relevant stimulus parameter space, there is a

broad lack of understanding how the stimulus parametrization might have differential effects

on various potential neural pathways according to the functional topography of the vagus

nerve [45].

5.1.3 The Fear Extinction Model

The primary hypothesis behind PTSD-motivated VNS research is that VNS boosts fear ex-

tinction processes, perhaps by facilitating the consolidation of replacement memories via

changes to global state such as attention or criticality. Extinction is the process of dis-

associating a conditioned stimulus (CS) with an unconditioned stimulus (US). Extinction

displays distinct mechanistic differences from other forms of classical conditioning, particu-

larly in ways that CS-US disassociation is context-dependent or time-bound, weakening the

effectiveness of targeted extinction treatments when the goal is complete or near-complete

56



disassociation[68]. Thus, strengthening the fear extinction process during targeted behav-

ioral therapy, such as exposure therapy, is a key aim of VNS research in the context of PTSD

treatment.

Exposure to a particularly traumatic event causes the formation of emotional memories

associated with stimuli surrounding the event. In some circumstances, these memories are

easily inhibited by extinction processes, and the traumatic event no longer causes severe

emotional distress. However, in PTSD, the traumatic event causes the formation of emotional

memories, but these emotional memories are not extinguished over time. VNS affects many

brain regions that are involved in the formation and extinction of emotional memories, and

thus may be able to help regulate emotional memories in PTSD patients.

A wealth of research is available on Pavlovian fear extinction models and the correspond-

ing neural dynamics in various animal models including rodents, non-human primates, and

humans[111, 16]. These experiments have implicated the basolateral complex of the amyg-

dala (BLA), the ventromedial prefrontal cortex (vmPFC), and the hippocampus, among

other neural structures, as key contributors to the neural circuits involved in fear extinction[57,

19, 2]. These conditioning experiments have examined how patterns of conditioning develop

in these structure during association or disassociation and have begun delineating differ-

ential roles for the various brain structures in the conditioning process. Importantly, the

rate of conditioning might be modulated by various models of nervous system state such as

excitability, criticality, attention, or arousal.

While there are many experiments that elucidate the role of various neural structures and be-

havioral processes involved in fear extinction, we can focus our discussion in the context of our

research towards a series of experiments from University of Texas-Dallas researchers where

this model of VNS action has been extensively examined in the rodent model[70, 92, 93],

and for the most part has validated conventional hypotheses about VNS and fear extinction.

These experiments applied straightforward conditioning protocols and assessed correspond-

ing processes at various levels of the nerobiological hierarchy, establishing important conse-

quences of input parameterization in the context of VNS and fear extinction. While many

of these studies were performed after our research took place, they provide helpful context

regarding the aims and potential outcomes of our study.

Work in Dr. Monosov’s lab at Washington University in St Louis has established mature

experimental protocols and laboratory infrastructure for examining neural mechanisms of
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conditioning. Generally, macaque monkeys in the Monosov lab are well-trained in visuotem-

poral learning tasks administered and monitored via eye-tracking software, and the lab in-

corporates single-unit studies to asses various mechanisms of neural models, including those

involving deep brain structures. We thus initiated a pilot study for investigating mecha-

nisms of associative learning during VNS in the macaque model. While we only analyzed

behavioral outcomes of the experiment, omitting neural recordings, we hoped that this ex-

ploratory study would provide greater understanding, context, and practical experience for

future studies that might incorporate such data.

We executed a brief pilot study wherin we administered basic trace association conditioning

protocols and monitored eye movements and pupil behavior during a oculomotor task with

a macaque monkey. In contrast with our upper limb experiments which utilized operant

conditioning, trace conditioning does not rely on “correct” responses from the subject in order

to deliver reward and thus develop the conditioning association, it simply does so regardless

of any action from the subject. We applied vagus nerve stimulation and compared outcomes

between treatment and sham blocks to investigate effects of VNS on associative learning.

Our protocol closely resembles experiments performed in Peck, Peck and Salzman (2014)

[74]. They presented basic visual cues, structuring stimulus presentation in a such a way

that enables the disentanglement of the roles of various brain structures during associative

learning (such as whether or not the location of the stimulus on the screen, or whether trace

or operant conditioning was performed, has an effect on learning rates and outcomes). They

examined the affects of these experimental conditions on neural firing in the amygdala and

gaze patterns such as the amount of time that the subject spent fixating on the unconditioned

stimulus. Because the amygdala is both heavily involved in fear extinction and is a major

structure activated by VNS, we examined a similar model of visual association in the macaque

during VNS.

5.2 Methods

5.2.1 Ethical Treatment of Animals

The Institutional Animal Care and Use Committee approved the experimental paradigm

design, surgical procedures, neurophysiological stimulations, and daily animal care, following
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Figure 5.2: After a brief inter-trial interval (ITI), a fixation point was presented to the
monkey. After the monkey fixated on the point for 0.75s, a conditioned stimulus (CS) was
presented for 2s. Then, the stimulus was removed and a liquid reward was presented as the
unconditioned stimulus (US), or was not presented depending on the fractal pattern for the
trial. The figure shows two selected examples out of several possible stimulus configurations
that include the location of the stimulus, the familiarity of the fractal pattern, or whether or
not fixation on the fractal was required for a reward (i.e. in operant conditioning). However,
our analysis focused on the simple case of novel vs familiar stimuli during trace conditioning.

all guidelines set by the Association for Assessment and Accreditation of Laboratory Animal

Care and the Society for Neuroscience. We sedated animals with ketamine, intubated, and

anesthetized with isoflurane before and during surgery under the supervision of Department

of Comparative Medicine veterinary staff at Washington University in St Louis.

5.2.2 Stimulus Conditioning

We continuously measured the gaze of a macaque monkey using eye-tracking software (SR

Research, Ottowa, Canada) while administering trace conditioning on visual cues. Figure

5.2 conveys two simple example trial configurations out of several combinations of stimulus

configurations that were administered. The monkey was trained to fixate on a central point

on the screen for 0.75s, at which point a visual stimulus in the form of a fractal pattern was
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Figure 5.3:
An example of an alternative stimulus presentation in the conditioning experiment. One fa-
miliar stimulus was presented alongside several unfamiliar stimuli. This configuration might
require increased attentiveness to learn the CS and anticipate the US; this may provide evi-
dence for or against theories of VNS mechanisms that facilitate attention during conditioning
and/or extinction.

presented on the screen. The stimulus was chosen from a small set of randomly-generated

isoluminant fractal patterns, and trials were administered in blocks such that the monkeys

were presented with controlled portions of novel and learned stimuli. After 2 seconds of

presentation of the fractal, an unconditioned stimulus was delievered in the form of liquid

reward. This process was repeated over several experimental sessions with various exper-

imental protocols, including brief forays into alternate protocols such as those involving

aversive stimuli (which were delivered via air puff to the eye area), operant conditioning

protocols (which required target fixation for reward), and “matching” tasks where several

stimuli were presented simultaneously (e.g. Figure 5.3). Data for these alternate protocols

are not included in this analysis but may be available upon request.

5.2.3 Surgical Procedure

Once the monkey had been trained in the conditioning task, an experienced neurosurgeon

implanted a VNS device (LivaNova, London, UK) in the monkey’s neck over the left vagus
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Figure 5.4: Photographs of the vagus nerve before and after implant placement.

nerve. The electrodes were cuff-style electrodes 2-mm in diameter and with 5 mm interelec-

trode spacing between the proximal and distal electrode sites. Images in Figure 5.4 show

the site of the implant before and after the device’s placement over the vagus nerve.

5.2.4 Delivering VNS During Learning and Extinction

After the monkey had recovered from surgery, we conditioned the monkey on a new fractal set

in week 1 and subsequently performed extinction on half of the conditioned stimuli (Figure

5.3). In week 2 we repeated the process but administered VNS for half of the fractal set .

Experiments were ended after two weeks when impedance readings on the interface suggested

implant failure, likely due to poor/severed connections from the wired leads that connected

the implant to the stimulation device.
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5.2.5 Analysis

Data was analyzed using eye tracking measurements that recorded the x and y positions of

the monkey’s focal point, sampled at 1000 Hz. We derived a “time fixating” measure that

represents the amount of time that the monkey was fixated on the fractal during CS presen-

tation, measured by counting the samples where the focal point occupied the 2D space on the

screen where the fractal was located during the corresponding time bin. We also calculated

the “response time” as the time between CS onset and first fixation. Other measures such as

those from pupillometry data (Figure 5.7) and reaction times were performed but were not

a focus of the study; the cursory analysis performed on data from these particular sessions

was inconclusive.

Similarly to previous chapters, the analysis code was written in Python and is available on

GitHub; the code can be run as an interactive dashboard where one may interactively browse

the results9. My colleague Kara Donovan significantly contributed to the data processing

performed and the analyses presented here.

5.3 Results

An example of data acquired from eye-tracking measurements in a single trial be seen in

Figure 5.5. We calculated a “proportion fixating” measure similar to Peck et al. [74] and

assessed the measure for each grouping of stimulus type: novel fractals that represented a

compltely new fractal pattern, novel learning fractals that were new for an experimental

session but were repeatedly presented over the course of the session, familiar fractals that

were learned in a previous session, and familiar learning fractals that represent the extin-

guishing scenario. The box-and-whisker plots in Figure 5.6 convey the distributions of the

time fixating and reaction time measures. T-tests performed between equivalent groups from

before and after VNS administration yielded insignificant results.

Analysis of looking and blinking behavior during sessions that contained aversive stimuli

demonstrated clear conditioned response patterns, however, these results are of limited util-

ity without further investigation. One interesting finding was the nonmonotonicity in the

9https://github.com/schlich/vns
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Figure 5.5:
A selected example of eye tracking measurements during a single trial; several of these traces
were aggregated to serve as conditioning measures for our analysis. Fixation can clearly be
seen at the point (0,0) during the fixation period (blue dot) and at the point (1,0) during CS
presentation, coinciding with the center of the fractal image. The “time fixating” measure
was derived from measurement samples contained in the 1x1 square (dimensionless units)
that the fractal occupied.
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conditioned response with respect to the stimulus “value;” both appetitive and aversive

stimuli elicited stronger conditioned responses than neutrally-coded stimuli 5.8.

5.4 Discussion

5.4.1 Retrospective

While our pilot study did not yield actionable results, subsequent studies from other re-

searchers administered in the time since this experiment took place have continued to justify

the inquiry of fear extinction processes as it relates to vagus nerve stimulation and potential

avenues of PTSD treatment. I am personally currently unaware of literature that establishes

the nonmonotonic pattern of the conditioned responses with respect to aversive and appet-

itive stimuli (Fig 5.8), but this finding may warrant further investigation if it is a novel or

controversial finding. Similarly to the experiments in the Moran lab with (spinal) peripheral

nerve stimulation, this was a completely new line of study for all collaborators involved.

Many practical obstacles were learned and encountered in the course of this pilot study. Fu-

ture researchers are encouraged to formulate clear causal hypotheses from the outset; when

employed in combination with a Bayesian approach to experimental design and more so-

phisticated data management practices, this line of research still has tremendous potential

to provide breakthroughs in our mechanistic understanding of well-established neural pro-

cesses such as classical conditioning and inform approaches that may improve the outcomes

of VNS administered in the clinic. Speculation about the nature of such methodological

improvements is the focus of the remainder of this dissertation.

5.4.2 Status of VNS as a Clinical Intervention for PTSD

While initial applications of VNS in a fear-extinction paradigm have shown positive re-

sults in laboratory settings for a range of species from rodents to humans, researchers have

ultimamtely had difficulty translating positive results in animal models into clinical method-

ologies that reliably produce positive and maintainable results. Notably, experiments from

non-invasive transcutaneous vagus nerve stimulation have returned limited results. Also

notably, there has been progress with other methods of treating therapy-resistant anxiety
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Figure 5.6: Distributions of Conditioning Metrics across trials. A. We calculated a “pro-
portion fixating” measure from the fractiion of time the monkey gazed at the conditioned
stimulus (CS) during its presentation. We assessed the measure for each grouping of stimulus
type: novel fractals that represented a compltely new fractal pattern, learning fractals that
were new for an experimental session but were repeatedly presented over the course of the
session, familiar fractals that were learned in a previous session, and extinction fractals that
represent the fractals which replaced the Conditioned Stimulus, thereby inhibiting it and
causing extinction. Figure 5.6 conveys the distributions of the time fixating and reaction
time measures. T-tests performed between equivalent groups from before and after VNS
administration yielded insignificant results.
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Figure 5.7: Pupillometry data from conditioning experiment. Panels A and B show pupil-
lometry measurements during conditioned stimulus (CS) presentation in VNS and no-VNS
conditions. Measurements from the eye tracking device were recorded as the raw voltage of
the input read by the sensor, and thus were not easily interpretable. While the VNS=Off
condition seems more patterned, we did not statistically test directly on the traces in the
panel. Instead, we calculated the time spent fixating during CS presentation for each trial
and took the mean across all trials; a histogram of these means are presented in C. In D, we
examine the spread of these means across sessions, comparing each of the four trial types.
No statistical tests showed significant p values from t-tests performed between VNS and no
VNS conditions.
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Figure 5.8: Behavioral Measurements from an Appetitive/Aversive Task. For some sessions,
monkeys were presented with an air puff to the eye to obtain responses to an aversive
unconditioned stimulus. Data shows clear differences in behavioral outcomes; the monkey
clearly spent more time looking at appetitively-conditioned stimuli (A) and spent more
time blinking for aversely-conditioned stimuli (B). Interestingly, blinking behavior shows a
non-monotonic relationship to stimulus “value.”

disorders such as neurochemical approaches and transcranial magnetic stimulation. Re-

searchers should seek a more comprehensive mechanistic understanding of VNS action and

seek to apply more targeted treatment with a fuller understanding of how stimulus param-

eterization modulates the effects of VNS. This level of scientific understanding seems like a

crucial requirement to justify the continued exploration of VNS for PTSD treatment, but

these goals are still eminently obtainable. The evidence is clear that vagus nerve stimulation

modulates activity in key areas of interest in a graded and optimizable manner.

More specifically, clinical application of VNS for anxiety disorders should understand how the

timing, intensity, and characteristics of the electrical stimulus from the VNS implant maps

to the desired clinical effects as well as undesired side effects of the treatment (including but

not limited to discomfort, hoarseness in the voice/throat, or cardiac arrhythmias). Our pilot

experiment performed a very coarse and rudimentary parameterization of VNS delivery that

has been utilized in clinical trials for depression; this parameterization, which involve long,

continuous pulse trains, could have been adequate enough to yield results, but alternatively

might have precluded any significant results from the study, even if all other methods were

adequately executed. While calibration of device stimulation parameters for a majority of

VNS studies thus far have been coarse, progress continues to be made – one recent study
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implements a Bayesian approach to estimate optimal parameterization of VNS in a porcine

model of heart failure, and the results and methodology provide a convincing path forward

in this area[110]. It stands to reason that more targeted stimulation of the vagus nerve can

improve clinical results and provide more precise data on downstream activated pathways

during treatment. Studies to this aim are already well under way [14][116]. One particular

challenge that may be faced when it comes to paramater optimization is that downstream

effects of interest during VNS likely develop at a much longer temporal scale than what

is commonly modeled with the peripheral nerve in sensorimotor circuits, which generally

operate on the order of milliseconds.

In summary, we can apply many similar PNI techniques developed in the somatosensory

system to study the effects of VNS [44]. Modeling studies have assessed stimulation methods

designed to target clinically-relevant fibers in the vagus nerve [4]. In the Monosov Lab, we

used highly trained monkeys to examine macaque monkeys’ performance during an extinction

task to see if we could observe any effects of VNS on the monkeys’ performance. Results

from this study might inform future studies that include single-unit nerve recordings to draw

further conclusions from the experimental paradigm[76].
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Chapter 6

Discussion: Towards a Performant,

Integrated Model of Peripheral Nerve

Encoding

6.1 Introduction

The previous chapters outlined two experimental paradigms for peripheral nerve stimulation

in macaques. The first focused on sensory stimulation in a longitudinal study, while the

second focused on vagus nerve stimulation in a shorter study. Although these exploratory

experiments were moderately successful in achieving their objectives, they began without

clearly defined hypotheses or expected outcomes related to specific, significant questions

about the underlying physiology, which might have enabled more targeted experimental

design. Thus, I will discuss the importance of computational modeling when it comes to

experimental ideation and design, especially in situations where success is critical and re-

sources are expensive. Modern computational models, and particularly, as I will argue,

Bayesian computational models, have the ability to build and tune neuroscientific models,

particularly peripheral nerve models, to additional levels of sophistication and complexity.

In addition to the above, I provide a basic overview of the most cutting-edge and effective

data processing tools available to data practitioners and neuroengineers in 2024. Ideally,

this overview provides readers with an adequate understanding of the landscape and the

ability to make effective tooling choices when sophisticated data management and processing

techniques are warranted.

To conclude this chapter and this dissertation I will outline a very specific proposal for

a Bayesian model workflow. When implemented, this workflow may provide additional
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insight into the data sets we have collected and provide context for the design of effective

experimental protocols for future iterations of this research.

Interested readers may want to monitor the PsychoAnalyze GitHub organization page for

future attempts at developing the ideas and proposals in this chapter into actual code.

In the context of the neuroengineering community, several researchers have already made

significant progress in executing many different components of Bayesian analysis in a wide

range of neuroscientific and psychophysical studies, including VNS studies, peripheral nerve

studies, studies for neuroprosthetic control, etc. Taken together, these developments mark

an exciting period for neuroengineering research.

6.1.1 Modern Data Practices and the Bayesian Paradigm

Modern data processing software and techniques, undoubtedly accelerated by developments

in AI technology and the widespread availability of large datasets, can make complex scien-

tific and statistical analyses both accessible and enjoyable. The significant increases in raw

computational power available to researchers in recent decade have unlocked a whole new

set of tools and research paths.

One set of these tools are advanced simulation methods that have been developed for

Bayesian computation. Bayesian methods may provide guidance for inexperienced and ex-

perienced researchers alike who may be asking fundamental question about experimental

design and statistical power such as:

� “How many trials are ‘good enough’ for a session?”

� “How many sessions or subjects are enough for my experiment?”

� “How can I minimize the costs and duration of my experiments to obtain reasonable

estimates of the effects of my experimental manipulation?”

� “Which experimental interventions are most likely to uncover impactful results?”

� “How can I evaluate and compare my favorite models of sensory coding?”
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Bayesian methods are particularly apt at answering these types of questions. Before going

into how this is the case, let’s examine how computational peripheral nerve models are

currently built.

6.1.2 The Hybrid Model of the Peripheral Nerve and its Limita-

tions

The hybrid model is a generally popular and effective method of modeling the peripheral

nerve [81]. In essence, the hybrid model combines an electrostatic finite element model of

the nerve, governed by fundamental equations from calculus and physics, with a neuron

compartment model that simulates the nerve’s response to stimulation. The finite element

method is used to determine the distribution of electric potential in the nerve, while the

neuron cable/compartment model is used to determine the recruitment of fibers in the nerve

based on the simulation of models that govern neuronal firing such as the famous Hodgkin-

Huxley model. Historically, these models are very expensive to compute and have very

loose applicability to biological systems that are many orders of magnitude more complex.

This presents a problem when, in order to create tighter sensory feedback loops delivered

via a PNI, we need to perform predictive computations in near-real time. A detailed and

performant model must seek alternatives or improvements to the hybrid model.

Implementation considerations of these two components of the hybrid model are discussed

in the next two sections.

6.1.3 Finite Element Modeling

The finite element method (FEM) is a numerical method for solving partial differential equa-

tions when analytical solutions are not readily available It is commonly used in engineering

to solve problems in heat transfer, fluid dynamics, and electromagnetism. In the context of

peripheral nerve stimulation, the FEM is commonly used to solve the Laplace equation for

the cross-sectional field electric potential in the nerve resulting from applied electrical stim-

uli. Here are some important components/parameters of FEM that researchers are tasked

with specifying, in the context of some of the limitations and trade-offs encountered during

model building:
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� Geometry: Although non-invasive, in-vivo imaging of the peripheral nerve is an ac-

tive area of research [55], usually the anatomy of the peripheral nerve is not known a

priori, despite anatomy’s sizeable impact on the function of the interface. Performant

peripheral nerve interfaces should be able to rapidly adapt to individual differences in

anatomy. Researchers must make decisions about representations of both the interface

and the nerve itself that provide “good-enough” insights given the limited computa-

tional resources available during research and/or the computational resources available

to the engineered devices. Aspects of peripheral nerve anatomy that are most funda-

mental to the finite element model include the location, size, and shape of the implant,

the nerve, and the fascicles within; usually these are simplified to simple gemotric

shapes that make both modeling and computation easier. Histological samples may

be used to assess peripheral nerve anatomy with more accurate geometry, however

these samples are often obtained posthumously, thus information obtained from these

samples would only be applicable in a probabilistic sense.

� Boundary conditions: One of the necessary tradeoffs of using a discrete solution

to the Laplace equation instead of an analytical one, as modeling software allows us

to do, is that the boundary condition, i.e., the electric potential at the boundary of

the model, must be specified (in analytical solutions it is modeled as V=0 (ground) at

infinity). The boundary for peripheral nerves is usually represented with some volume

of area around the implant with a saline medium. Generally, the larger the boundary,

the more accurate the model, but the more computationally expensive it is to solve.

� Material properties: Both the nerve and the implant have inherent electrical prop-

erties that partially govern the course of charge through the medium. These properties

are usually represented with constants from the literature derived from a combination

of model and experimentation.

� Initial conditions: Generally, the initial condition of the model is needed to perform

the computation. In peripheral nerve models, this generally means the current level

delivered by the implant electrode channel, including which channels are active in

multi-channel implants.

Almost all FEM models in peripheral nerve research represent static snapshots of

the system, but temporal dynamics are an important component of peripheral nerve

signaling that cannot be completely ignored.
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6.1.4 Neuron Compartment Model

The neuron compartment model is a numerical method for simulating the response of a

neuron to an electric field based on sodium-conductance equations found in the literature.

It is commonly used in neuroscience to simulate the response of a neuron to an electric field.

In the context of peripheral nerve stimulation, the compartment model is used to determine

the recruitment of fibers in the nerve based on the simulation of the model. Here are two

common specifications of the model that must be chosen by the researcher:

� Governing equations: Generally, a set of differential equations describes the elec-

trochemistry of the neuronal membrane,derived from properties of ion channels in

the membrane and physical equations governing electrical circuits and diffusion. The

McIntyre-Richardson-Grill (MRG) model [58] is commonly cited as a standard.

� Distribution of fiber types: There are some fundamental properties of nerve fibers

that make them more or less prone to excitation by an electric field. These properties

include the fiber’s diameter, myelination, and the distance of Nodes of Ranvier from the

electrode site. As with in the finite element model, the distribution of these properties

within the nerve is not known a priori, but can be estimated from the literature.

6.2 Bayesian Methods and their Applications in Neu-

ral Engineering

The idea of applying Bayesian methods and principles to neuroscience and neural engineer-

ing is certainly nothing new. As I explain further, their usage is actually quite widespread,

and yet still there are entire domains where there is tremendous headroom for further devel-

opment.

6.2.1 Psychometric Curve Fitting

Many researchers, especially those familiar with psychophysical protocols, are likely already

familiar with an extremely common Bayesian method: utilization of a generalized linear
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model (GLM) with a sigmoidal link function to perform linear regression on datasets from

two-alternative experiment designs for estimation of the psychometric curve (specifically, its

parameters, which include threshold and slope). We used this technique to provide estimates

of sensory threshold in Chapter 3, and there is quite sophisticated tooling available for

this purpose, including the modest implementation described in Chapter 4 which currently

borrows its curve-fitting procedure from the psignifit library.

However, I suspect that the majority of researchers that use Bayesian tools for curve-fitting

treat these tools as so-called black boxes that spit out parameter estimates and don’t have

significant consequences that differentiate it from traditional regression models and similarly

simple curve-fitting approaches. This is certainly not a shortcoming of the researchers who

use these tools (I, myself, did not understand the mechanics of Bayesian models until well

after I was using them to fit curves, and arguably still don’t). However, a lack of appropriate

emphasis on the Bayesian paradigm within the field has shielded us from understanding the

underutilized features of these methods.

The authors of the Palamedes Toolbox have compiled excellent resources to supplement their

implementation of Bayesian inferencing for psychometric curve-fitting. I recommend these

resources to readers who are interested in a practical introduction to the theory behind the

methods, although some familiarity with Bayesian statistics in general might be advisable10.

Importantly, Palamedes is the only tool to my knowledge that comes with a turn-key im-

plementation for hierarchical Bayesian modeling, which can be insufficiently described as

a statistically “conscious” method for pooling psychometric curve fits in experiments with

multiple subjects or cohorts. Notably, the publication accompanying the Palamedes imple-

mentation of hierarchical modeling was only recently published in 2024, further demonstrat-

ing the broad-but-shallow application of Bayesian methods in neuroscience as well as the

green pastures ahead11. For better or for worse, Palamedes is MATLAB-only software and

thus is limited in all of the usual ways that MATLAB programs are limited in comparison

to implementations in general-purpose programming languages such as Python.

At this point, we can begin to formulate a response to the class of questions posed at the

beginning of this chapter which relate to experimental design, particularly the questions

10For complete Bayesian novices, I recommend Statistical Rethinking by Richard McElreath and its ac-
companying YouTube series.

11Regarding the “broad” aspect of this statement: a canonical work on Bayesian curve fitting in psych-
physics by Wichmann and Hill (2001)[112], has over 2700 citations as indexed by Google Scholar
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about sample size (whether in terms of number of trials or number of participants). Re-

searchers may be familiar with the frequentist “power analysis”, but the Bayesian approach

to these questions operates on fundamentally different assumptions (see Kruschke and Liddell

(2017)[49]). Because a hierarchical model can precisely model how probabilistic uncertainty

should be incorporated into the model both within and across subjects, it should improve

the model’s ability to represent the probabilistic landscape of the input domain. For exam-

ple, a sampling algorithm might choose a point in the parameter space that maximizes the

“expected”12 gain in information, such as in how much each additional trial or participant

reduces the uncertaintly in the estimation of our parameters of interest, and we may then

make an informed decision on the costs and trade-offs of additional sampling.

6.2.2 “Smart” Bayesian Sampling of the Parameter Domain

The next most likely Bayesian method a neuroengineer is likely to encounter in their research

might be from the family of adaptive sampling algorithms. These algorithms rely on online

updates to the model as additional data comes in; after each iteration, the sampling algorithm

(referred to in the literature as the acquisition function) is able to calculate the point in

the parameter domain that is most likely to provide meaningful information that improves

our estimates and reduces uncertaintly in estimations. Here at Washington University in

St Louis, research out of the Barbour lab has utilized these algorithms to effectively sample

parameters online in a non-parametric, audiometric setting. Acquisition function algorithms,

perhaps the most notable being the “Expected Improvement” (EI) algorithm, are fairly

common in research settings as an alternative to nave grid search and are particularly useful

in domains where data acquisition is resource-intensive.

Wernisch et al. [110] demonstrate a modern, sophisticated implementation of Bayesian Op-

timization (a general term for methods that use acquisition functions and other techniques

to “optimally” estimate the parameters given the data) applied to vagus nerve stimulation

specifically – in a porcine model of heart failure (yet another application of VNS treat-

ment under active research), they demonstrate not only how Bayesian methods can vastly

outperform grid search when attempting to estimate model parameters during active data

collection, but they also demonstrate how they used Bayesian simulation models to guide

12Expected is used here in the probabilistic sense, such as in “expected value”.

75



their experimental work in-vivo. This leads us to the following discussion on Bayesian meth-

ods that are more rare in neuroscience and psychology but can help researchers design and

plan their experiments to be efficient before acquiring a single data point.

Pre-existing algorithmic implementations such as the Quest+ method[108] might be helpful

in detemining how adaptive sampling can be performed online during experiments.

6.2.3 The Open Road Ahead: Novel Applications of Bayesian

Methods in Neuroscience

To conclude this overview of Bayesian methods in neuroscience, I will briefly describe po-

tential applications that I have not seen implemented in the literature, primarily:

� Simulation-based Experimental Design. The design of experiments based on

Bayesian simulations, sometimes referred to as “optimal experimental design” (OED),

is a line of inquiry that heavily utilizes simulation-centric Bayesian methods in concert

with well-established but computationally expensive models, precisely like those that

utilize differential equations such as those discussed in the hybrid model. The result

is a clear picture of the range of possible outcomes of an experiment in response to

modulation of parameters of interest, assisting researchers in avoiding acquisition of

uninformative data points and arriving to premature conclusions from early stages of

data acquisition that have the potential to hijack the experiment. A good overview of

OED, including an application of the model to a biochemical signaling pathway, can

be found in Vanlier et al. 2012 [103]. Huan and Marzouk describe how this process

can be utilized for nonlinear models in particular[42].

� Hierarchical, multi-modal/multi-model integration. Kass and Steffey[48] pre-

cisely outline an approach to hierarchical Bayesian modeling designed specifically to

address the type of shortcut we were forced to take in our reporting of threshold

values in Chapter 3. Namely, at the “top” level(s) of the hierarchy, it is common

for researchers, in search of aggregate estimates of a parameter e.g. threshold for a

cohort, do so from point estimates of experiments from each individual, instead of

incorporating estimates of uncertainty at the individual level that ultimately improve

the performance of the model. While a remedy to this statistical sleight-of-hand, in
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the form of hierarchical models, has been established for decades, they are tricky to

implement and require detailed knowledge of both statistics and the problem domain.

However, as we refine the hierarchical Bayesian model for the peripheral nerve, we can

conceptualize a model that actually incoporates several levels of natural hierarchies in

neural processing. In no particular order, potential hierarchical “levels” can include:

cell receptor type (e.g. Type I vs Type II mechanoreceptors), spinal reflex, anatomical

brain regions, single unit responses, LFPs, ECoG/ EEG signals, sensory modality (e.g.

sight vs touch), genetics, emotional state, demographics, anatomy, and so on. Obvi-

ously, incorporating additional level of hierarchy introduces complexity to the model.

If interactions between layers of the hierarchy are poorly specified, introducing layers

to the model can increase the chance of non-convergence from the model (meaning the

size and topography of the parameter space becomes too large and complex to navigate

efficiently). However, as we refine our models and interactions between components

of neural processing, we can begin formulating increasingly complex Bayesian models,

and instead of introducing costs of additional complexity, the additional layers actually

contrain our problem set and our parameter space to make optimization even more ef-

ficient. One can imagine a model that probabilistically incorporates a large body of

scientific knowledge from multiple experimental sources, if scientists can find the moti-

vation to collaborate in such a manner. Similarly to the way that multimodal sensory

encoding (e.g. devices that incorporate visual signals in addition to touch/pressure

signals) improve encoding models, careful integration of disparate neuroscientific mod-

els may push the boundaries of the sophistication of neural models in ways that were

previously inconceivable.

� Time-series/longitudinal models. Another family of Bayesian models yet to be

fully explored in modern neuroscience are those that incorporate non-stationary fluc-

tuations across time. While valiant efforts have been made to identify and quantify

such stability and their effects on Bayesian estimates, I have not seen a satisfactory

implementation of a Bayesian model which investigates any of several time-dependent

influences on neural function, such as learning, plasticity, and other forms of adapation.

Such models would clearly be applicable to situations such as what we saw in Chap-

ter 3 with Monkey U’s unstable threshold estimates. By incorporating time-gnostic

Bayesian models, which are quite developed in the form of models such as Gaussian

Processes and Hidden Markov Models, we can investigate causes of variation in model
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parameters across time and develop more robust devices that can more easily adapt to

or incorporate causes of nonstationarity into the model.

� Refinement of neural encoding models. Despite Bayesian models’ impressive abil-

ity to peform robust model comparisons [29] and to make claims of causality in models

[51], these advantages are not commonly implemented. To illustrate an example of

how we might apply model comparison techniques, consider that our somatosensory

experiments investigated the roles of pulse width and amplitude in sensory threshold

experiments; in light of the fact that these variables’ interactions the almost certainly

violate assumptions of independence in the detection model, to improve the model,

we might use Bayesian model-comparison measures to compare different hypotheses

or model equations that specify how amplitude and pulse width each contribute to

detection thresholds. As an example of how we might investigate causal models in

a Bayesian analysis, consider how we might want to run experiments that help us

determine how behavioral learning mechanisms e.g. classical conditioning, might con-

tribute to fluctuations in threshold, as opposed to fluctuations you might see due to

healing processes in the nerve, or inflammation tissue forming around the implant elec-

trodes. By designing our experiments under a Bayesian framework we might be able

to provide definitive (but probabilistic) answers to these questions about fundamental

components of the model, which in effect might lay the foundation for more performant

online adaptive procedures capable of executing tight feedback loops.

6.3 Software Tooling

Having provided extensive justification for Bayesian methods in neural engineering research,

I now to turn to an examination of software tooling and methods that have enabled, and

will continue to enable, more robust and performant computational models including but

not limited to the types of models that are described above. Despite the fact that most

scientists do not have the capacity to invest in learning modern best practices for software

engineering and data management/processing, it becomes more and more essential that

the sciences incorporate these tools and processes one way or another as our models and

data sets become increasingly complex. This section presents a drive-by overview of critical
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categories of software relevant to neuroengineering research13. These tools range from tools

that are already see widespread usage in academia, tools that have not found widespread

adoption but should still be accessible to academic researchers, and tools that likely require

domain-specific knowledge in data engineering or software engineering to be able to utilize

effectively. However, I refrain from positing which of these categories each tool might belong

to. It should be noted that the landscape of software tooling is rapidly changing at the time

of this writing, and the specific evaluations listed here will likely become outdated sooner

than later.

6.3.1 All-in-One/Integrative Software

Software that integrates functionality from multiple external dependencies for domain-specific

functionality. These libraries may or may not be available as installable software apart from

the source code.

� Automated Simulations to Characterize Electrical Nerve Thresholds (AS-

CENT). ASCENT was developed out of the Grill lab at Duke University and was

validated on a comprehensive example of vagus nerve stimulation. ASCENT inte-

grates many components of peripheral nerve modeling based on the hybrid model. It

integrates a few external dependencies (such as COMSOL and NEURON) in addition

to some internally-developed modules. Key features include segmentation of histolog-

ical images of peripheral nerve cross-section, parameterized simulation of anatomical

characteristics of the nerve (e.g. number of fascicles or distribution of fiber sizes), preset

but customizable COMSOL models of real PNI devices, compartment model activation

simulation, stimulus waveform generation, FEM solving, and visualization of results.

Perhaps the most comprehensive general-purpose “hybrid model” tool available for

researchers is the ASCENT tool that serves as a connector between COMSOL and

NEURON and helps researchers with common-sense defaults for some parameters and

utilities for determining others. For example, it provides default (but customizable)

13Unless otherwise noted, I have at least some level of direct experience with the tools I describe in
this section, either through academic settings, industry employment, hobby projects, or various trials and
attempts at integrating tools with the research outlined in this dissertation. That means that this list is
fairly Python-heavy.
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material properties for the nerve and the implant, and provides utilities for determin-

ing the number and size of the fascicles in the nerve, generating COMSOL models

from such parameters. It also provides a convenient interface for running simulations

and post-processing the results. It is also free-and-open-source and well-documented,

and is likely to continue to be actively maintained and developed. At the time of this

writing, the authors of the tool have published two papers demonstrating how to apply

the tool to VNS studies, which is of particular relevance to this dissertation [43, 7].

� PyPNS. This library offers a thin interface to NEURON functionality designed par-

ticularly for models of peripheral nerve. While this package is rarely updated, it can

provide a soft introduction to the NEURON package for novice peripheral nerve re-

searchers.

� TxBDC Cuff Lab dashboard. While this library has also not seen recent mainte-

nance, it powers an impressive, fully-parameterizable, interactive dashboard for simu-

lating peripheral nerve stimulation. Currently, an instance of the dashboard is hosted

at https://nervestimlab.utdallas.edu/.

� RatInABox. RatInABox is a Python program that simulates a rat locomotion model

and corresponding neural activity. For example, you can simulate neural activity of

the kind you might observe in “place cells” in the hippocampus as a rodent explores a

2D environment. Impressively, RatInABox only relies on minimimal dependencies that

are common to the Python “scientific stack” such as matplotlib and scipy. While the

project was definitely developed with a rat locomotive model in mind, various compo-

nents of the project are clearly useful in other experimental paradigms. Particularly,

many components can be applied to the vagus nerve stimulation paradigm presented

in Chapter 5, and we can apply the 2D-locomotion functions to eye tracking.

6.3.2 Probabilistic Computing

� Stan receives first mention in this section due to its unique status as a “domain-specific

language” that is not tied to any particular programming language or operating system.

However, most users interface with Stan code via bindings in Python and R, making

execution of STAN code quite accessible. The language was specifically designed to

simulate and evaluate Bayesian models. Stan documentation not only provides useful
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instructions on how to use the library, but also contains a helpful introduction to

Bayesian computation in general.

� PyMC is a powerful and mature Python package for Bayesian analyses powered by

Monte Carlo simulations and is an excellent tool for beginners and experts alike to

implement their own Bayesian models.

� Bambi is a novice-friendly interface to the PyMC library with a focus on a symbolic

syntax and common model configurations. While bambi is nowhere near as customiz-

able as PyMC, it can be a great way for beginners to quickly develop their own Bayesian

model instances for commonly-implemented Bayesian models.

� bibat is a Python package that helps users create templates for Bayesian projects,

inspired by Bayesian workflow. It also includes some Python utilities for executing

stages of Bayesian workflows.

6.3.3 Data Visualization

Data visualization is an essential part of data analysis, particularly when it comes to data

exploration. Developing one’s knowledge of the various data visualization approaches and

libraries can greatly increase researcher productivity by providing fast, interpretable feedback

to data processing steps or model/simulation outcomes.

� The HoloViz ecosystem is a collection of various intercompatible data visualization

tools which are listed at https://holoviz.org/. The most useful of these tools likely

includes Panel, a highly performant and interactive dashboard framework that lever-

ages “reactive”-style programming that makes it easier to visualize complex datasets

using several representations and visualizations at once, and HoloViews, a framework

that focuses on the semantics of data visualization (e.g. specifying dependent vs inde-

pendent variables) instead of just the raw specifications of the visualizations (e.g. x axis

vs y axis). The result of combining these packages is the ability to rapidly prototype

higly complex and performant dashboards that can convey critical information much

more quickly and clearly than existing solutions. These and other tools in the HoloViz

ecosystem are powered by a Param, a library that provides syntactical methods to

effectively declare and process “parameters” in your Python code which represent the
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primary variables and controls of interesting in data processing and performant data

visualization.

� Plotly/Dash. The Plotly visualization library and the Dash interactive dashboard

framework provide simple and accessible APIs for the generation of nicely-formatted

figures from structured datasets (specifically, the Plotly Express module is designed

to generate a variety of plot types from “tidy”[113] Pandas DataFrames). Dash is an

extremely accessible dashboarding framework and their documentation provides an ex-

cellent introduction to the concepts and mechanisms that power its style of interactive

dashboarding. Dash serves the dashboard via a Flask service, and running it locally

displays the dashboard on “localhost” in your browser (this structure makes it easier

to deploy to production on the Internet if desired).

� Quarto/Shiny. Quarto applies the “reactive” programming style to notebook-centric

development and is capable of publishing extremely professional-looking data reports.

Instead of executing individual notebook cells and introducing invisible state to your

analysis, Quarto notebooks run all cells at once so that the notebooks can be deter-

ministically executed. They have first-class support for interactivity, including in the

form of dashboard frameworks. The Shiny dashboard framework, originally developed

for R but now fully available for Python, provides an alternative API to Dash but

operates on similar principles. Quarto also supports the Observable framework for

the rare data practitioner that is proficient in JavaScript; these types of programmers

usually specialize in highly interactive animations and UIs.

� Matplotlib is perhaps the most commonly used Python visualization package, par-

ticulary among beginners. While it does not provide as clean of a syntax as some of

the aforementioned data visualization packages, it is generally more configurable for

plots that need special formatting spcifications, such as formatting specifications from

scientific journals. Additionally, it is the most powerful Python library available if you

wish to build performant custom data animations that can be displayed in the browser

or saved as a .gif or .mp4 video.

� ArViz Arviz is a visualiztion package specifically designed to interpret and display

results from Bayesian analyses executed in PyMC or Bambi.
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6.3.4 Psychophysical Modeling

A full comparison of psychophysical modeling libraries is provided in Chapter 4.

6.3.5 Data Manipulation

Data manipulation and preprocessing is an inevitable component of any data analysis. Un-

fortunately for researchers who are not experienced or trained in these areas, particularly

people unfamiliar with tabular and relational data models and their representation in SQL

or DataFrame libraries, it is extremely easy to get bogged down in data cleaning and waste

valuable time that could be spent building/tweaking models or reviewing data more fre-

quently.

� SQL/DuckDB. First, a note on SQL: it is my experience that academic researchers,

particularly those with less computational background, are more comfortable perform-

ing data analysis in prodecural, impearative programming languages such as Python,

MATLAB, and R. However, it seems to me that most researchers would be able to

perform analyses much more quickly with just a small committment to learning the

basics of SQL. Some benefits of using SQL: 1. The limited number of keywords al-

lowed in the language syntax, whose purpose mostly correlates with their meanings in

English, simplifies initial learning of the language. 2. Only a few new concepts need to

be understood to write effective SQL, namely the basics of tabular and relational data

organization principles, how they relate to the most common transformation patterns

such as GROUP BY and JOIN. 3. SQL is a declarative programming language that

optimizes the way that certain steps in the data transformation process are performed

before actually executing those steps. This has largely beneficial implications for re-

searchers less experienced in proper data manipulation and management techniques,

such as performing filtering on large table selections before joining that selection with

another table; SQL will evaluate how you’ve defined the data you want via the query

syntax and make that optimization for you. However, these optimizations can break

down for more complex data pipelines if they haven’t been carefully structured.
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Having provided justification for the usage of SQL in data processing, I now explain

why I strongly believe that DuckDB should be the first choice for analytics in the sci-

ences. Unless you have specific infrastructural or contractual reasons to use a different

SQL dialect, I strongly recommend DuckDB as your one-stop-shop for everything SQL.

First, installation of DuckDB is very simple and most people can get started making

queries in minutes if not seconds. Second, DuckDB comes with very performant and

accessible data I/O utilities that include reading and writing from CSV or Parquet files.

(As an aside, Parquet files are generally orders of magnitude more performant than

CSV for I/O operations and should almost always be preferred to CSV unless you have

specific requirements for CSV, such as a human-readable raw data file or a collaborator

who only can only process data in Excel). Additionally, the database is implemented on

disk as a single file, similarly to SQLite. While this means that researchers should take

extra care to create backups and otherwise protect the integrity of the orginal (raw)

representations of the data that were recorded, but they are afforded a vastly simpler

way to interact with and port the database without relying on dedicated servers, net-

work connections, or complicated authentication protocols. Just point DuckDB to the

local file and you’re ready to make queries. Finally, DuckDB is an excellent choice

for researchers because it was specifically designed to be an analytical database so-

lution, unlike traditional SQL dialects (including SQLite) that were designed to be

transactional databases, optimizing for speed and integrity when inserting, modify-

ing, or deleting entire rows of data. Instead, data analysis pipelines are often more

concerned with the columns of the dataset, which represent a specific attribute of an

entity across all (or many) instances of said entity (rows). Column-oriented databases

such as DuckDB leverage these assumptions about analytical queries and workflows to

represent the data on disk in a way that makes it very fast for analytical queries (e.g.

averaging data from millions or billions of rows).

� Pandas. Pandas is by far the most commonly-used dataframe library in the Python

ecosystem. While its overly permissive syntax leaves much to be desired, researchers

coming from MATLAB should find that picking up Pandas’ table-oriented syntax to

be a natural transition. Additionally, its implemenation of the Apache Arrow backend

starting with version 2.0 primarily addressed existing performance concerns about the

library. Pandas is an excellent choice for researchers new to the Python data ecosystem.
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� Polars. Researchers seeking a highly performant DataFrame library that sits more on

the cutting edge of tooling may be interested in Polars, a DataFrame library written in

the highly performant Rust programming language. Polars boasts a much clearer and

simplified syntax when compared to Pandas, and imporantly features a LazyFrame API

that executes queries similarly to the declarative approach used by SQL that usually

makes it a more performant choice than Python for data querying.

� Dask. Finally, researchers with a clear need for paralellizable data processing steps

should turn to Dask. In most of the important ways, Dask’s syntax mirrors Pandas’

sytnax, but its adantage comes with its built-in methods to parallelize processing across

many cores on your laptop or machines in a cloud cluster. Additionally, Dask bundles

with an extremely illustrative dashboard that can be monitored during the execution

of Dask queries; in real time, it displays the queueing, scheduling, and execution of

tasks as they are distributed across multiple nodes of computation (e.g. CPU cores).

Interested readers are pointed to Dask’s YouTube tutorial that introduces the library.

� xarray. Scientific data commonly adheres to hierarchical data patterns and multi-

dimensional data scenarios. Unlike 2D DataFrames e.g. Pandas DataFrames, xarray

data structures elegantly labels data in many dimensions and provides an API that

leverages this data representation to provide a way to slice by different dimensions more

easily, visualize the data from different dimensional perspectives, etc. The syntax is a

bit tricky to internalize, but mastery of this framework can save significant effort when

dealing with complex multidimensional datasets14.

6.3.6 Neuron Simulation

� NEURON. NEURON is the most popular software package in existence for simulating

neuronal activation patterns and can model networks of neurons in addition to single

neuron responses. It is available as both a Python package and as a GUI program.

It is widely used in neuroscience research (over 3100 citations on Google Scholar) and

extensively documented. While it provides abstractions over many low-level biological

and computational mechanistic decisions, it is also highly configurable if you find their

sensible defaults unsatisfactory for your use case.

14See Thinking with Xarray
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6.3.7 Finite Element Modeling Software (and Related Tooling)

� COMSOL. COMSOL is a commercial finite element modeling (FEM) tool that is

commonly used in peripheral nerve interface research in addition to research across

engineering disciplines in general. It provides an intuitive graphical interface for the

computer-aided design (CAD) aspects of model-building, and includes many pre-set

material properties and model equations that alleviate the need to construct such com-

ponents from scratch. It also provides some helpful utilities for model parameterization

and post-processing. Perhaps the most outstanding feature of COMSOL is the way

that it seamlessly integrates various aspects of 3D modelings, such as handling mathe-

matical calculations, 3D graphical rendering, mesh generation, etc. Other ecosystems

for 3D modeling often require you to develop implementations of these components

independently and require custom code to integrate the components. One significant

downside of COMSOL is that it is commercial software. In contrast with “free and

open source” (FOSS) software, COMSOL costs money and is not customizable if you

would like to make changes to the source code or extend its functionality. I am tan-

gentially aware COMSOL provides API access points for programmatic scripting, but

I am unfamiliar with of the mechanics of the API and its general accessibility.

� COMSOL alternatives. While there is no software to my knowledge that can match

COMSOL’s capabilities one-for-one, alternative FOSS software for 3D modeling in-

cludes FreeCAD and Blender.

� dolfinx (formerly FEniCS) A performant and flexible PDE solver in Python that

uses the finite element method. However, a decent amount of domain knowledge with

respect to PDE solvers and the finite element method itself is likely a prerequisite for

effective usage.

� Mesh generators in Python. There are several adequate Python packages available

for 3D mesh generation, however gmsh is a common choice and is officially recom-

mended by the developers of dolfinx.
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6.3.8 Honorable Mentions to other Programming Languages

While almost all of the software tools presented in this chapter are part of the Python

ecosystem, mostly because it is my strongest programming language and in part because it’s

by far the most leveraged programming language in the modern data science community, I

must give honorable mentions to the developments in other programming languages, namely

Julia and Rust, as well as give a nod to the historical significance of R.

R. There is a large community of very skilled scientists and statisticians who use R as their

primary programming language for data analysis. This is certainly an acceptable choice,

often particularly justified given specialized statistical libraries or subject domains. R is an

extremely powerful language for statistical analysis and is more than capable of fulfilling a

similar set of benefits as the other tool suggestions in this section.

Julia. Julia’s status as a performant language for scientific programming is well-known, but

my initial impressions of the language have led me to believe that its benefits are undersold.

Core decisions made by the language, reinforced by the ethos of the community, clearly

prioritize a disciplined and maintainable style of programming that make it a great choice

for researchers who find themselves running into common frustrations with Python and are

in invested in learning more powerful, scalable, and maintainable code architectures. I am

looking forward to learning more Julia.

Rust. Rust is a relatively new programming language with a rapidly growing community. It

provides not-too-unfamiliar syntax for experienced Python programmers, making it capable

of implementing the same kinds of high-level APIs that have enabled Python’s popularity,

but it can also perform the role of a low-level systems language that is challenging C’s

ubuiquity as the go-to language for highly performant applications. Programs that are built

with Rust are, more often than not, blazingly fast. For example, Rust has been used to create

performant alternatives to critical Python developer tools– namely, the linter/code formatter

Ruff (replacing flake8/black in the ecosystem), and the package manager uv (replacing pip

in the ecosystem). These tools are so performant and easy to implement that they have been

adopted by the Python community at unprecedented rates. While packages exist that are

more tailored for scientific analysis and data processing, they are still quite behind what is

available in Python. However, it is entirely within the realm of possibility that data tools

built with Rust completely take over the ecosystem in the next 5 to 10 years.
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6.4 A BayesianWorkflow Proposal to Guide Next Steps

Now that we have a general idea of the kinds of software tools that are available to us, what

should we do with them?

The following Bayesian workflow proposal is adapted from the general Bayesian workflow

suggestions established in Gelman et al. 2020[24]. It attempts to provide context on how

one might implement the models we have discussed to perform follow-up analyses on our

data sets or plan new experiments with methods that resemble the ones here.

6.4.1 Choosing an Initial Model

Choosing an initial model is simple in this instance: we may start with the Bayesian curve

fits as is common in the field. As previously described, this is usually implemented via a

generalized linear model with a sigmoid link function e.g. the logistic curve. Although we

could theoretically rely on an existing psychophysics curve-fitting library to obtain these

estimates, we should construct our own implementation to ensure that the results from the

estimation are compatible with ensuing steps in the workflow.

This initial model should be implemented in PyMC. PyMC contains an accessible tutorial

on the implementation of a GLM binomial regression model in their example documentation
15.

For the first iteration of the model, stimulus amplitude should be chosen as the value that

is modulated along the abscissa.

6.4.2 Scaling and Transforming the Parameters

We have some choices to make when it comes to scaling and transforming our model param-

eters. According to Gelman et al.[24], our parameters should be in units that either enable

informative priors or facilitate hierarchical modeling. In the context of the psychometric

15https://www.pymc.io/projects/examples/en/latest/generalized_linear_models/

GLM-binomial-regression.html
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curve, this might determine whether we use a “slope” or “spread” parameterization for the

parameter that represents the sigmoid’s rate of growth.

6.4.3 Prior Predictive Checking

Bayesian modeling requires the establishment of prior distributions that represent our knowl-

edge of the distribution of the parameter space before data is acquired. In existing psychome-

tric curve fitting libraries, priors are often broad and simply represent the range of allowable

values (such as restricting the values of threshold to be a positive number). Prior predic-

tive checks simulate experimental runs based on the priors we have established. We may

then assess the model output, based on the priors alone, and make sure that the predicted

outcomes make intuitive sense.

There is a golden opportunity on the table to develop more targeted specifications for priors

in psychophysical data analysis; doing so would narrow the range of potential outcomes of

model simulations by introducing stricter rules into the simulation’s universe. For example, if

we have a model that includes a random variable for a neuron’s firing rate, instead of setting

a prior distribution that samples a neuron’s firing rate from all the real-valued numbers, we

can introduce well-established and well-modeled concept of a refractory period of an action

potential into the model so that the simulations don’t attempt to sample values of firing rate

that violate the refactory period.

If we decide to adjust model parameters at this step, to avoid “data snooping,” we must sure

that our adjustments come from data or scientific claims that preclude the data obtained in

the experiments.

6.4.4 Running the Model

Because our experimental design is a natural use case for a common Bayesian GLM, running

the default number of “warm up” and simulation samples provided by PyMC should be

sufficient to avoid divergence or other model evalutation failures in early stages of model

development, but a smaller number of iterations may be chosen as complexity is instroduced

in order to maintain or facilitate speed of development and frequency of model iteration.
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It is a good idea at this stage to run the canonical “checks” on model validity, such as the

spread of residuals and posterior predictive checks, using pre-configured analysis in the Arviz

library before moving on to more complex stages of model development. A few “hard-coded”

values of “known” underlying parameter values might be carefully selected to provide further

sanity checks and implement simulation-based calibration (SBC) if our posterior predictive

checks do not feature maximum likelihood estimates around the hard-coded value. Such

instances would likely necessitate adjustment of priors.

6.4.5 Trying Other Stimulus Dimensions

Once we are satisfied with the results of the above model, we should try a similar process

using pulse width as the modulated value along the abscissa. Following that, we might try

other parameterizations of the stimulus waveform such as the product of pulse width and

amplitude that might align with established theories of peripheral nerve stimulation coding.

At this point, we might try to model various linear or non-linear combinations of multiple

parameters from the original model, and adjust the model to accommodate multiple input

dimensions. We can then try out different models of peripheral nerve encoding on for size

and utilize canonical model-comparison methods to determine which model is more likely to

be accurate given the priors and your data set.

6.4.6 Tuning the Model for a Single Session

In tandem with these methods, at this point we should explore many different angles of

model adjustments; Gelman et al. [24] provides well-illustrated examples of the practical

considerations involved in this process. Here we should take the time to thoughtfully consider

what kinds of useful information we want to obtain from the model, and where certain

“shortcuts” we take during modeling might be biasing the outcomes.

For example, we might consider replacing a simple binomial model with a “beta-binomial”

model if we believe that there is evidence of non-stationarity within a session[88]. As another

example, we might want to introduce variables from latent mechanisms such as fiber size

distribution, estimates from simulation models such as ASCENT[67] or TouchSim[72], or
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related biological hypothesis, and examine how the addition of these variables affect our

model’s behavior, such as simulation divergence, long runtimes, poor fit, prior and posterior

checks, etc.

This stage of the process is the one that will likely ultimately require careful thought and a

good deal of experience with probabilistic programming.

6.4.7 Introducing Hierarchy

When we are confident that our model for a single session is well-posed, then it will likely

be a good idea to introduce hiearchy to the model, namely in the form of individuals or

cohorts (such models would be stronger in non-monkey experiments), or the time dimension

(implementing probability models and concepts appropriate for our time-series representa-

tion such as random walks, learning rates, asymptotal behavior, models that incorporate

sudden perturbations, etc. Here, we can leverage repeated in-subject measurements to make

assertions about within-subject variance). If our single-session model is robust, then the

addition of hierarchy is very likely to make the explanatory power of our model and data

much stronger. If our single-session model is weak, introducing hierarchy is very likely to

lead to errant behavior during the model-fitting process, particularly in the form of diverging

samples.

There are a good handful of studies that provide precedent for the application of Bayesian

hierarchical models to psychophysical experiments; Houpt and Bittner is recommended as a

model example which includes Stan source code [40]

6.5 Conclusion

The peripheral nerve provides an extremely useful system for implementing and measuring

changes to our neural systems while avoiding a lot of the complexity that is natural to

measurements or stimuluation taken directly from the brain. Research on the peripheral

nerve, and specifically, a wholistic understanding of the neural mechanisms operating at the

level of the periphery, are well-poised to deliver significant breakthroughs in neural interfaces

and our understanding of our sensory systems in general. Techniques new and old may be
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integrated to make the most out of our inquiries and experiments; my hope is that the work

presented here can provide a humble signpost towards a more sophisticated and powerful

approach to neural engineering and data processing.
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