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ABSTRACT
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ADVISOR: Professor W. Zhang

December, 2003

Saint Louis, Missouri

Single Nucleotide Polymorphism (SNP) Genotyping is an important molecu-
lar genetics process in the early stages of producing results that will be useful in
the medical field. Due to inherent complexities in DNA manipulation and analy-
sis, many different methods have been proposed for a standard assay. One of the
proposed techniques for performing SNP Genotyping requires amplifying regions of
DNA surrounding a large number of SNP loci. In order to automate a portion of
this particular method, it is necessary to select a set of primers for the experiment.
Selecting these primers can be formulated as the Multiple Degenerate Primer Design
(MDPD) problem.

In this thesis, we describe an iterative beam-search algorithm, Multiple, It-
erative Primer Selector (MIPS), for MDPD. Theoretical and experimental analyses

show that this algorithm performs well compared to the limits of degenerate primer



design. Furthermore, MIPS outperforms an existing algorithm which was designed
for a related degenerate primer selection problem. Further analysis shows that, due
to the composition of the human genome, the results from MIPS may not be realized
in practice. Consequently, we address the challenges involved in selecting a suitable

set of degenerate primers and possible future improvements to the algorithm.
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Chapter 1

Introduction

Single Nucleotide Polymorphisms (SNPs) are singular base differences among DNA
sequences from the same species that are partially responsible for individualization.
Figure 1 shows an example of a SNP between two sequences. It is estimated that there
are roughly three million SNPs in the human genome [15]. Research investigating as-
sociations between SNPs and various diseases, along with studies of differences in how
individuals respond to common therapies, promise to revolutionize medical science
in the coming years [2]. Another interesting biological facet of SNPs is that recent
work suggests there may be only a few hundred thousand ”blocks” of SNPs in the
human genome rather than a random dispersion. These “blocks” provide most of the
variability seen in human populations [6]. In spite of all this effort, it is still a daunt-
ing task to identify the specific genetic variations occurring in specific individuals in

order to determine their associations with important phenotypes. Currently, there

CGGTACTI|ITIGAGGCTA Pasonl
CGGTACTICCGAGGCTA Pason?2

Figure 1.1: Single Nucleotide Polymorphism (SNP) diagram
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are many proposed techniques for the process of determining the SNP composition
of a given genome, which is known as SNP Genotyping. In order for these assaying
techniques to be effective in large-scale genetic studies of hundreds or thousands of
SNPs, they must be scalable, automated, robust, and inexpensive [12].

One technique involves the use of Multiplex PCR (MP-PCR) to amplify the
regions around the SNP [12]. Polymerase Chain Reaction (PCR) [16] is a powerful
molecular genetics technique which rapidly amplifies a small segment of DNA using
two additional DNA fragments known as primers. Figure 1.2 shows how PCR cycli-
cally creates a large number of DNA fragments. MP-PCR is a variation of PCR where
multiple DNA fragments are replicated simultaneously. MP-PCR, like all PCR varia-
tions, makes use of oligonucleotide primers to define the boundaries of amplification.
For each region of DNA that is to be amplified, two primers, generally referred to as
the forward and reverse primers, are needed. In MP-PCR, it is necessary to select
a pair of forward and reverse primers for each of the regions to be replicated, and
for the large-scale amplification required in SNP Genotyping, there can be hundreds,
or perhaps thousands, of those regions. The process of selecting such a large set of
primers by current methods, including trial-and-error [12], can be time-consuming
and difficult.

In this thesis, we begin with a description of the related work in the area.
Next, we describe the Multiple Degenerate Primer Design (MDPD) problem and
present an algorithm, the Multiple, Iterative Primer Selector (MIPS) [24], to solve this
problem. We continue by showing how MIPS performs relative to another solution in
the domain on real and simulated data. Next, we discuss the difficulty of solving this
problem in general by calculating the theoretical limits of any solution and dealing
with the issue of erroneous amplification. Finally, we conclude with comments about

avenues for possible improvement.
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Chapter 2

Related Work

There are two problems in primer selection similar to the main problem of this thesis,

the Primer Selection Problem and the Degenerate Primer Design Problem.

2.1 Primer Selection Problem

The Primer Selection Problem [20] involves minimizing the number of primers needed
to amplify regions of DNA in a set of sequences. It has been shown that this is an
NP-hard problem [7] in reductions from other hard problems, including Set Cover
and Graph Coloring [4]. There have been a number of proposed heuristics to solve
this problem, including a branch-and-bound search algorithm [19]. Also, algorithms
have been proposed which incorporate biological data about the primers into the

search [17, 5].

2.2 Degenerate Primer Design Problem

Figure 1.2 from the previous chapter shows that in order to perform PCR both forward

and reverse primers are needed for the fragment being amplified. Therefore, in a
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typical MP-PCR experiment where, the number of primers needed is equal to twice
the number of sequences in the input set. In general, the algorithms mentioned above
reduce the number of primers needed to 25-50% of this value, which can still be rather
high for the large-scale amplification needed for SNP Genotyping.

The desire to design fewer primers leads to the use of degenerate primers.
Degenerate primers [13] are primers that make use of the degenerate nucleotides [3],
which can be found in Table 2.1. The number of primers that a degenerate primer
represents is referred to as its degeneracy. For example, consider this degenerate
primer, ACMCM, where M is a degenerate nucleotide which represents either of the
bases, A or C. This degenerate primer is actually representative of the set of 4 primers
{ACACA, ACACC, ACCCA, ACCCC?}, and so its degeneracy is 4.

Degenerate primers are as easy to produce as regular primers, and therefore
save the molecular biologist time during the primer design phase of the experiment.
The use of degenerate primers, however, introduces two new problems. First, the ef-
fective concentration of the desired primers is decreased by the presence of undesired
primers. Second, the presence of undesired primers can lead to erroneous amplifica-
tion. Therefore, it is important to use primers of relatively low degeneracy to realize
the inherent benefits of degenerate primer design while minimizing the effects of these
two problems.

The Degenerate Primer Design (DPD) Problem, is the decision problem of
determining whether or not there exists a single degenerate primer below some given
degeneracy threshold which can amplify regions of DNA for some number of a set of
input sequences. There are two variations of DPD. Maximum Coverage DPD (MC-
DPD) is the related maximization problem where the goal is to find the maximum
number of sequences that can be amplified by a degenerate primer whose degeneracy

falls below some threshold. Minimum Degeneracy DPD (MD-DPD) is the second



Table 2.1: TUPAC-IUB symbols for nucleotide nomenclature
Symbol Meaning
A
C
G
T
U
AorC
Aor G
AorT
Cor G
CorT
GorT
AorCor G
AorCorT
AorGorT
CorGorT
GorAorTorC
GorAorTorC

Q>

ZAWIOI<A<n=ITZASQ

variation of DPD whose goal is to find the degenerate primer of minimum degeneracy
that amplifies all of the input sequences. Both MC-DPD and MD-DPD have been
shown to be NP-Hard problems [14].



Chapter 3

Problem Description and

Complexity

Some of the notation from [14] is used to describe this problem. To maintain consis-
tency, lower-case symbols (e.g. [, b, ) represent numerical values, counting variables,
or individual characters (possibly degenerate) in a sequence. Upper-case symbols (e.g.
P, S) denote primers, sequences, or subsequences. Finally, calligraphic symbols (e.g.
S, C) represent sets of sequences or primers.

Let ¥ = {A,C, G, T} be the finite fixed alphabet of DNA. A degenerate primer
is a string P with several possible characters at each position, i.e., P = pips---py,
where pilg ¥,p; # 0 and [ is the length of primer P. The degeneracy of P is
d(P) = H |pi|. Consider the degenerate primer P’ = {A}A,C}H{A,C}H{A,C}. The
length 0%215/ is 4 and d(P’) = 8. For the sake of clarity, we use the IUPAC symbols from
Table 2.1 for degenerate nucleotides to represent degenerate primers. Therefore, P’
can be represented as AMMDM where M is the degenerate nucleotide which represents
{A,C}. Degenerate primers can be constructed by primer addition. For any two

primers, P! and P2, their sum P? equals (p; Up?)(psUp3) - - (pi Up?).
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For any sequence S; in an input set S, we say that a degenerate primer P
covers S; if there is a substring F' of length [ in S; where for each character f; in F,

fi € p;. We now describe the three problems at the heart of this thesis.

Problem 1 (Multiple Degenerate Primer Design(MDPD)). Given a set of n
sequences over an alphabet ¥ and integers | and k, is there a set of primers, P, for

which each element is of length [ that covers all of the input sequences, where |P| < k?

We now describe two optimization problems that are variants of the MDPD

problem which add additional constraints to the final solution P.

Problem 2 (Primer-Threshold MDPD (PT-MDPD)). Given a set of n se-
quences over an alphabet ¥ and integers | and «, find a set of primers, P, for

which each element is of length | that covers all of the input sequences, where VP; €

P,d(P) < a.

In PT-MDPD, we want a small set of degenerate primers where the degeneracy
of each primer in that set is less than some threshold. In the next variation, TT-
MDPD, we want a small set of degenerate primers where the sum of the degeneracies

of the set is below some threshold.

Problem 3 (Total-Threshold MDPD (TT-MDPD)). Given a set of n sequences
over an alphabet ¥ and integers | and «, find a set of primers, P, for which each

element is of length | that covers all of the input sequences, where Z d(F) <a.
P,eP

We now show that optimal, efficient algorithms for these problems do not likely
exist since both are NP-complete [7]. In order to show the necessary proofs, we will
restate each problem as a decision problem where we wish to determine whether the
solution set, P, has size less than a given value, k.

For PT-MDPD, we will use a reduction from the Primer Selection Problem

(PSP) [20]. The input to PSP is a set of input sequences &" and a threshold &', and
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the goal is to find a set of (non-degenerate) primers P’ which cover all the sequences

in &’ and where |P'| < k.
Theorem 1. PT-MDPD is NP-complete.

Proof. To show that PT-MDPD € NP, given an input set S, we use the solution P
as a certificate for §. Checking whether the primers in P cover all of the sequences
in § can be accomplished in polynomial time in the number of sequences, given the
observation that |P| < |S].

We next prove that PSP <p PT-MDPD, which shows that our problem is NP-
Complete. The reduction begins with an instance of PSP = < &', k' >. To construct
an instance of PT-MDPD = < S, o, k >, we simply let S =8', a =1, and k = k.

At this point, it should be obvious that a valid solution for PSP yields a valid
solution for this construction of PT-MDPD, and vice-versa. Therefore, the remainder

of the proof is trivial and therefore omitted. O

For TT-MDPD, we will use a reduction from the related primer design problem,
Degenerate Primer Design (DPD), which has been shown to be NP-Complete [14].
An instance of DPD is a set S’ of n’ strings, and integers I, o/, and m’. A solution is
a degenerate primer of length " and degeneracy at most o’ that matches at least m

input strings. For this reduction, we consider a special case of DPD where m’ = n/.
Theorem 2. TT-MDPD is NP-complete.

Proof. To show that TT-MDPD € NP, given an input set S, we use the solution P

as a certificate for S. Checking whether the primers in P cover all of the sequences

in & and the total weight is less than « can be accomplished in polynomial time.
We next prove that DPD <p TT-MDPD, which shows that our problem is

NP-Complete. The reduction begins with an instance of DPD = < &' n/,l',a/ >.
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The instance of TT-MDPD = < S, a, [, k > is constructed as follows. We simply let

S=8,a=d,l=10and k=1.

In this special case of DPD where m’ = n/ and k = 1 for TT-MDPD, the goal
of each problem is identical: to find a single degenerate primer of length [ = [’ with
degeneracy o = o’ which covers all of the sequences. Therefore a valid solution for

one problem yields a valid solution for the other. O
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Chapter 4

Multiple, Iterative Primer Selector

To overcome the difficulty caused by the NP-hardness of MDPD problems, we propose
an iterative beam search heuristic, the Multiple, Iterative Primer Selector (MIPS) to
make a tradeoff between optimality and tractability. In order to solve PT-MDPD
and TT-MDPD, MIPS can run in either of two modes, MIPS-PT and MIPS-TT,
respectively. This chapter focuses on MIPS-TT. However, we will highlight how
MIPS-PT operates differently.

MIPS progressively constructs a set of primers that covers all the input se-
quences. Define a k-primer to be a degenerate primer that covers k input sequences.
The basic algorithm first generates a set of candidate 2-primers, each having some
degeneracy value, then iteratively extends all candidate k-primers into (k+1)-primers
by generalizing them to cover an additional sequence. Generalization stops when no
primer can be extended without exceeding the degeneracy threshold a.. At this point,
the set of remaining primers cover k;,s; sequences, so we retain the primer of minimum
degeneracy, remove the input sequences it covers from consideration, and repeat the
algorithm until all sequences are covered.

To guide the search, MIPS uses the degeneracy of a primer as a scoring func-

tion. The set of primers that are stored for further extension are known as a beam.
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Beam search [1] differs from greedy or best-first search in that multiple nodes, de-
generate primers in this case, are saved for extension instead of just one. This model
of progressively adding to a beam of degenerate primers and updating the scoring
function is similar to the Consensus motif-finding model [10].

It is important to note that the degeneracy of a given k-primer increases or
remains the same with the addition of new sequence fragments. This observation
encourages us to employ a strategy which ignores degenerate primers with high de-
generacy, in order to speed up the algorithm. Therefore, the search is restricted only
to the primers with the lowest degeneracy. In this algorithm, the number of the can-
didate primers to restrict the search to at each level can be specified. This constant,
b, describes the number of k-primers to save for each level. Increasing b can possibly
improve the quality of the solution, but lengthens the running time of the algorithm.
In section 6.1, we examine the effect of this parameter, b, on the speed and quality of
the solution produced by MIPS.

The constructive search continues until one of two cases occurs. In the first
case, all sequences are covered by a single n-primer, where n is the number of se-
quences in the input set. The algorithm then terminates with that primer as the
result. In the second case, no k-primer can be extended to a (k + 1)-primer without
exceeding the degeneracy threshold and there exists at least one sequence uncovered.
At this point, k.. sequences have been covered. The algorithm chooses the best
degenerate (kjqs)-primer, Py, from the set P of primers sorted by degeneracy value.
The problem then reduces to a smaller instance where the input set is the original
set of sequences minus those covered by F,. In MIPS-PT, the degeneracy threshold
for this subproblem is equivalent to the original threshold, . In MIPS-TT, the de-
generacy threshold is reduced by the degeneracy of Py. The algorithm then restarts

on the reduced problem.



13
For MIPS-PT, iteratively applying this procedure will eventually return a set

of primers to cover the set of input sequences. However, this is not necessarily the case
for MIPS-TT. After P, is discovered and its sequences are removed from consideration,
the new threshold may be too low to cover the rest of the sequences. In this case,
MIPS-TT backtracks to the previous level, ks — 1, and selects the next best primer
Py as part of the final solution. Again, MIPS restarts on the sequences that Pj has
not covered and with a degeneracy limit that is the original o minus the degeneracy
of Pj.

Sequences
Covered

Figure 4.1: Pruning of the search space by MIPS-TT

Figure 4.1 shows, schematically, an execution of MIPS-TT. For these graphs,
the depth of a node represents the number of sequences from the input set covered and
the number in a node represents the number of degenerate primers that will be used
to cover those sequences. Each node can be expanded into two child nodes. The left
child represents covering an additional sequence using an existing degenerate primer
and the right child represents covering an additional sequence using a new degenerate
primer. The left tree in Figure 4.1 shows a full search. The right tree shows the
pruning that takes place in MIPS-TT during the backtracking phrase. Consider the
two bold nodes. Both of these cover the same number of sequences with the same

number of primers. MIPS-TT will therefore only expand the node whose total score



14

is better. While this greedy choice may not be optimal, it avoids the exponential
expansion seen on the full tree by not exploring the nodes represented by dotted
circles.

The pairwise comparison of two sequence fragments is the dominating oper-
ation and a rate-limiting step of the algorithm. A majority of these comparisons
are between two fragments that share few, if any, nucleotides. To avoid comparisons
between dissimilar fragments, the exhaustive pairwise comparison is replaced with
a similarity lookup. All of the primer candidates are added to a FASTA-style [18]
lookup table. In general, for DNA, a FASTA table fragment length of 6 is recom-
mended [9]. Using the table, each fragment is compared only to the other fragments
that are returned.

A pseudo-code description of the MIPS algorithm is given in Appendix A.
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Chapter 5

Algorithm Complexity

We now examine the theoretical bounds of MIPS and compare these values to the
computing resources consumed in practice. Consult Table 5.1 for a list of variables

used in the chapter and what they represent.

Table 5.1: Properties of an execution of the MIPS algorithm

Variable Represents
n number of input sequences
m average sequence length
b beam size
l primer length

5.1 Space

From the input set, each primer is stored individually which requires space O(nml).
In the implementation, there are four n x n matrices that are needed for back-tracking
and storing degenerate primers that could eventually become part of the final solution.
This adds an additional O(n?) of storage. Therefore, the total amount of space is

O(n? + nml).
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5.2 Time

The time complexity is analyzed in a bottom-up fashion. The procedure of com-
paring the fragments in the beam to the remaining sequences is called ONE_PASS
which is described in Algorithm 3 of Appendix A. ONE_PASS makes O(bnm) primer
additions, since there are O(nm) total fragments and b fragments in the beam. Each
primer addition requires comparing every character in each of the two primers. There-
fore, this portion requires O(bnml) time.

The process of generating new beams of k-primers, for increasing k, is called
MIPS_SEARCH, which is described in Algorithm 2 of Appendix A. MIPS_.SEARCH
uses ONE_PASS to build new beams, and could, in the worst case, build n
beams. Therefore, the overall time complexity is O(bn?ml). The number of times
MIPS_SEARCH is executed depends on the amount of back-tracking. This is directly
related to the number of primers in the final solution. In the best case, if the solution
only requires one primer, there will be only one call to MIPS_SEARCH. In the worst
case, if the solution requires n primers (one primer for each input sequence) there
will be n?/2 calls to MIPS_SEARCH. Let p be the number of primers in the final
solution. The best approximation to the number of MIPS_SEARCH calls is O(pn).
This brings the overall time complexity to O(bnmlp).

The graphs in Figure 5.1 show how the running time of MIPS changes when
various parameters of the input set are manipulated. These graphs correlate with the

theoretical predictions of time dependencies. All of these experiments were run on a

computer running Red Hat Linux 7.3 with an AMD 1.6GHz CPU and 2GB RAM.
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Chapter 6

MIPS Experiments

MIPS has been applied to both human DNA sequences and randomly generated
datasets. The primary dataset is a database of sequences containing regions of human
DNA surrounding 95 known SNPs. The sequences varied in length from a few hundred
nucleotides to well over one thousand. The location of a SNP on a sequence was
marked in order to provide a reference for the forward and reverse primers. To ensure
effective PCR product analysis, each primer could not be located within 10 bases of
the SNP and the entire PCR product length could not exceed 400 bases.

In this chapter, we perform three experiments. First, we show how the beam
size affects the speed and quality of the solution produced by MIPS. Second, we show
some results of MIPS on the human dataset of 95 sequences. Finally, we compare

MIPS to an algorithm designed to solve the DPD problem considered in [14].

6.1 Beam Size Parameter

Figure 6.1a shows that increasing the beam size linearly increases the running time
of the algorithm. Figure 6.1b shows the effect of beam size on the solution quality,

or number of primers. These figures show the trade-off between the quality of the
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Figure 6.1: The effect of beam size on the (a) running time of the algorithm and (b) number
of primers discovered.

solution and the running time of the algorithm. For this particular dataset, there was
a decrease of two degenerate primers in the final solution when the beam size was
increased from 10 to 100. Moreover, only a slightly better solution was discovered
when the beam size was increased to 250. For the average desktop computer, beam
sizes larger than a few hundred result in impractical running times. For the input
set we used, which contained 95 human DNA sequences, using a beam size of 100
produced solutions that did not significantly improve as the beam size increased.
Empirically, a beam size close, in value, to the number of sequences in the input set

seems to produce a solution that is balanced in running time and quality.

6.2 Human Dataset

In an unpublished laboratory experiment, a set of degenerate primers of length 20 was
manually constructed where each primer was a mixture of 8 specific bases and 12 fully
degenerate nucleotides (e.g. AGTCGGTANNNNNNNNNNNN.) For this experiment,
the total degeneracy would be ~ 4'2. MIPS was originally designed to automate this
procedure and, possibly, reduce the total degeneracy and/or number of primers used.
In practice the desired accuracy in the experiment determines the actual parameter

values used for MIPS. Table 6.2 shows the results. For 95 sequences, 190 primers
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Table 6.1: Results on a dataset of 95 human SNP regions.

PT-MDPD TT-MDPD
Degeneracy | # Primers || Degeneracy | # Primers
45 ~ 4K 53 49 ~ 262K 44
4" =~ 16K 44 410 ~ 1M 37
48 ~ 64K 36 4N~ AM 30
4% ~ 262K 29 42 ~ 16M 23

would be needed in the general case. MIPS-PT decreased the total number of primers
to 15% of this unoptimized value for a degeneracy limit of 4° = 262, 144. Table 6.2

includes the similar results for PT-MDPD and TT-MDPD.

6.3 Comparison to HYDEN

The HYDEN algorithm [14] is a heuristic designed for finding approximate solutions
to the DPD problems. Recall that DPD is a set of problems where the general goal is
to find a single degenerate primer that either covers the most sequences while having
a degeneracy value less than a specified threshold or covers all of the sequences with
minimum degeneracy. The DPD problem is the most closely related one to our MDPD
problem.

HYDEN can solve the PT-MDPD problem indirectly by iteratively solving the
MC-DPD problem on smaller and smaller sets. After selecting a pair of degenerate
primers under a given bound that covers a certain subset of the sequences in an
input set, the algorithm runs again on the remaining sequences. For the reasons
described below, iteratively solving MC-DPD is not the most effective way to solve
the PT-MDPD problem. However, this was the most reasonable comparison that
was possible given the implementation available to us at the time of testing. The

graphs in Figure 6.2 shows the number of primers that each algorithm found from
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a randomly generated set of sequences of varying lengths with varying degeneracy
thresholds. They are uniformly-distributed i.i.d. sequences of equal length. Each
program searched for degenerate primers without allowing any mismatches at any
positions.

In general, HYDEN produced more primers than MIPS in attempting to solve
PT-MDPD. For a primer degeneracy value of 100,000 and over 100 sequences, the
difference was as large as 60% more primers. These results can be partially explained
by the differing design requirements of the DPD and MDPD problems. Even when
applied iteratively, the goal of the DPD problems is to have a result which could
be divided into distinct PCR experiments. The goal of the MDPD problems is to
have a set of primers for one large-scale PCR experiment. Specifically, to solve the
DPD problem, the HYDEN algorithm must ensure that for any given degenerate for-
ward primer that is discovered, exactly one degenerate reverse primer is used to cover
the sequences covered by the forward primer. Therefore, a given degenerate forward

primer is restricted to which sequences it is reported to cover based on the presence
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of a suitable degenerate reverse primer, and vice-versa. Moreover, the HYDEN algo-
rithm has an additional restriction in which any given degenerate primer is limited

to covering either a set of forward or reverse primers, but not both.
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Chapter 7

Degenerate Primer Design

The results of the previous chapter suggest that MIPS and other algorithms in the
domain can be useful in selecting a set of degenerate primers. However, as previously
mentioned, the use of degenerate primers generally introduces problems into the bio-
logical assay. In this section, we will discuss these problems in depth, show how they
are amplified when the background base composition is non-random (such as in the
human genome), re-examine the quality of the solutions MIPS produces, and finally
suggest improvements to MIPS.

Representing an unnecessarily large set of primers is a problem introduced by
the use of degenerate primers. For this discussion, we define target primers to be
primers that are intended to be used in the PCR assay, and auziliary primers to be
primers represented by degenerate primers, which may or may not bind to fragments
in the input set, but are not intended to be used in the PCR assay. The two main
problems associated with degenerate primer usage are a decrease in the effective
concentration of the target primers and an increase in the possibility of amplifying
an unexpected region, or mispriming. In order to explore these problems, in the next

two sections we consider the following questions:
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e How effective do we expect a given degenerate primer to be? In other words,
for the set of primers that a given degenerate primer represents, what is the

ratio of target primers to auxiliary primers?

e Given the presence of these auxiliary primers, how often do we expect to see an

unexpected PCR product?

7.1 Degenerate Primer Efficacy

Multiplex primer design demands that many input sequences share sites complemen-
tary to some common (possibly degenerate) primer. In the general case, the sequences
to be co-amplified are not related, so their complementarity to a common primer is
largely a matter of chance. We therefore explore the chance-imposed limits of mul-
tiplexing, that is, how many unrelated DNA sequences are likely to be covered by a
single PCR primer of a given degeneracy?

Let S be a collection of n DNA sequences of common length m. Call a primer P
an (I, v, k)-primer for S if it has length [ and degeneracy at most a and covers at least
k sequences of S. A natural way to quantify the limits of multiplexing is to compute
the probability that an (I, o, k)-primer exists for S. However, this probability is
difficult to compute, even assuming that S consists of i.i.d. random DNA with equal
base frequencies. We instead compute the expected number of (I, a, k)-primers for
S. If this expectation is much less than one, Markov’s inequality implies that & is
unlikely to contain any such primer.

We do not count the total number of (I, i, k)-primers for S but only the number
of mazximal primers. A primer P of degeneracy at most « is said to be mazimal if
increasing P’s degeneracy at any position would cause its total degeneracy to exceed

a. The expected number of maximal (I, o, k)-primers for S is in general less than the
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total number of (I, o, k)-primers, but a primer of this type exists for S if and only if a
maximal primer exists. Hence, the former expectation is more useful than the latter

for bounding the probability that at least one (I, o, k)-primer exists.

7.1.1 Occurrence probability for one fixed primer

Let P be a primer of length [, such that the jth position of P permits |p;| different
bases. Let S be a collection of n i.i.d. random DNA sequences of common length m
with equal base frequencies, and let T" be a single [-mer at a fixed position in some

sequence S; € 8. Say that P matches T if P would hybridize to T'. We have that

Ipil
1

1

(P)

T

EN

Pr[P matches T] =

<.
Il

=

The probability that P covers S;, i.e., that it matches at least one [-mer of S;, depends
in a complicated way on P’s overlap structure, but if S; is not too short and d(P)/4' <

1 (both of which are typically true), then using Poisson approximation [26],

Let ¢ be the probability that P matches somewhere in a single sequence of length
m, and let ¢(P) be P’s coverage of S, i.e., the number of sequences of S in which P
matches at some position. Because the sequences of S are independent, the proba-

bility that P matches in at least k sequences given by the binomial tail probability

Pr[c(P) > k] =1 —Pr[B(n,q) < k],
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where B(n,q) is the sum of n independent Bernoulli random variables, each with

probability ¢ of success.

7.1.2 Computing the expectation

Let II(I, ) be the set of all maximal primers of length [ and degeneracy at most «.

To count the expected number £, of (I, «, k)-primers for S, observe that

Biop= Y Prle(P)> k]
PeT(l,0)
Enumerating all P € II(/, «) to compute this expectation would be computationally
expensive, but this enumeration is not needed for i.i.d. sequences with equal base
frequencies. Given these assumptions about S’s sequences, the probability that P
matches a given [-mer does not change if we rearrange its positions (e.g. “AMC” ver-
sus “MCA”) or change the precise nucleotides matched (e.g. “RT'G” versus “MCA”).
Let W be a multiset of | values drawn from {1, 2,3, 4} that lists the degeneracies n;
(in any order) of a primer from II(l,«). Then every primer described by the same
W has the same probability of covering at least k sequences in §. Hence, the desired

expectation is given by
Eior= Z #(W) Prlc(P) > k | P described by W].
w

where the sum ranges over all feasible W for I1(l, ) and #(W) denotes the number of
degenerate primers described by W. The probability is computed as described above,
so we need only describe how to compute #(W).

Let W be a multiset with n, 1’s, ny 2’s, nz 3’s, and ny 4’s. If we fix which

positions in P permit 1, 2, 3, and 4 nucleotides respectively, then there are 4™ x
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62 x 4™ ways of assigning nucleotide sets to these positions. Hence,

z
(W) = gransgne,

ny Mg N3

Enumerating all feasible W for II(I, «) is straightforward, so the expectation can be

computed.

7.1.3 Results

The theoretical estimates of the previous section can be used to evaluate whether a
particular primer-design algorithm performs well on the MC-DPD problem, that is,
whether it finds degenerate primers with coverage close to the maximum predicted
for a given set of input sequences. We evaluated the MIPS algorithm’s performance
on MC-DPD by comparing the primers it found in random DNA with those expected
to exist in theory. For these experiments, we generated test sets of i.i.d. random
DNA sequences with equal base frequencies with n = 190, and m = 211, so that the
number and average length of the test sequences roughly matched those of the human
DNA test sequences.

We used MIPS to find a single primer with maximum coverage in each test set,
subject to varying degeneracy bounds «. Table 7.1 compares the average coverage of
primers found by MIPS in 20 trials to the largest coverage k such that Ej , j for test
sets of the specified size is > 1. Primers with coverage exceeding this value of k are
not expected to occur in the test sets, while primers with slightly smaller coverage
may or may not occur frequently.

MIPS proved adept at finding primers close to the maximum predicted cov-
erage for relatively small degeneracies (a < 10000). We therefore have considerable

confidence in its ability to find high-coverage primers if they are present. The gap
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Table 7.1: Actual and predicted coverage of 20-mer primers found on sets of 190
random sequences of length 211. Avg Coverage: average coverage of primer found
over 20 random trials. Max Predicted: largest coverage m such that Fay o pm > 1.

degeneracy « || Avg Coverage | Max Predicted
1000 6.30 7
10000 10.55 12
100000 19.30 26

between the best primers found by MIPS and those predicted to occur in theory
grows with the degeneracy bound, but we cannot say with certainty whether this fact
represents a limitation of the algorithm or of the theoretical estimates, since primers
with expectation greater than one may with significant probability still fail to occur.
Moreover, the high degeneracies where MIPS might perform poorly are of less practi-
cal interest, since single primers with such high degeneracies are experimentally more
difficult to work with.

Overall, MIPS appears to be operating close to the theoretical limit for MC-
DPD problems of small degeneracy. Although our analysis does not directly address
the MDPD problems, any large gap between the most efficient design and the designs
produced by MIPS is unlikely to arise from failure to find single high-coverage primers

when they exist.

7.2 Mispriming

Due to the presence of auxiliary primers, it is possible that a pair of primers binds
to an undesired location and results in an erroneous amplification. Mispriming is the
occurrence of this event where the unwanted PCR product is indistinguishable, by
size, from the targeted products.

Suppose we design a set of degenerate primers with length [, such that the total

degeneracy of the set is a. We wish to estimate the expected number of mispriming
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events when our primer set is applied to a genome of length g. The background model
greatly influences the calculations, therefore, we will consider two models separately,
an i.i.d. random genome with equal base frequencies and the human genome.

A pair of [-mers cause a mispriming event if and only if they bind to the genome
within 0 bases of each other, in the appropriate orientations to permit amplification
of the sequence between them. Let ¢ index the positions of the genome on its forward
strand. Let the 0-1 random variable x; indicate the event that an {-mer from our
primer set is complementary to the forward strand at position ¢, and let T; be the
event that an [-mer is complementary to the ge;ferse—complement strand at . We say

s
that a mispriming event occurs at ¢ if T; N b x; = 1. Denote this event by the 0-1

j=i
indicator M;. The total number of mispriming events M in a genome of size ¢ is

simply 29: M;.

i=1
7.2.1 Mispriming in i.i.d. Random and Human Genome

In this section we consider the background model where the genome consists of i.i.d.

random sequence with equal base frequencies. For the expectation of a matching
o
E.
Note that the two matching events are independent in an i.i.d. random DNA

event to occur at a position ¢ we have that E[x;] = E[z;] =

sequence when the two primers do not overlap. To simplify our calculations, we ignore
the effect of overlapping primer boundaries. Using Poisson approximation to estimate

the probability of the matching event on the forward strand, we have that
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Finally, setting p = a/4!, we derive the expected mispriming rate as

M) = > EM

gp (1 — 6_5”) .

Q

To test the accuracy of these calculations, we constructed a human-size genome
(g ~ 3 x10?) of i.i.d. random sequence of equal base frequencies. We obtained results
from MIPS-PT on the human dataset used in Chapter 6. Finally, we simulated a PCR
experiment using both the test genome and the human genome (10 Apr 2003) [25, 11],
assuming that the primers in the solution would all bind to complementary fragments,
thus ignoring inexact binding. In accordance with the calculations, we considered a
mispriming event an instance of a matching event occurring in one strand and another
matching event occurring on the opposite strand within 6 = 500 bp. Table 7.2 shows
the total degeneracy of the solution, the number of predicted mispriming events, and
finally the number of mispriming events seen in the simulation of the test and human
genomes.

Table 7.2: Predicted and actual mispriming rates in simulated PCR experiments with i.i.d.
random and human genome.

Total Degeneracy | Predicted | Random Genome | Human Genome
84720 0.009 0 82254
321456 0.133 1 112162

1262260 2.063 6 64938
4824870 30.12 81 201209

The model predicts the mispriming rate well for the test genome, however fails
to predict the same for the human genome. In the next section we discuss implica-
tions of these results, the complexity involved in properly calculating the expected
human mispriming rate and possible heuristics that can be employed to select effective

degenerate primers which do not misprime with such high frequency.
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Early data from the results of the Human Genome Project [25] strongly suggest

that the sequence and frequency of the bases of the human genome is not random.
The evidence lies in the presence of interspersed repeats and regions of low-complexity
sequence [21, 22]. The presence of repetitive elements in the human genome can affect
the mispriming rate of the MIPS solver by violating the implicit assumption that a
degenerate primer’s mispriming rate is solely determined by the degeneracy of the

primer.

7.2.2 Reducing Mispriming Events

Consider an input sequence that contains fragments which are overrepresented in the
genome. If MIPS selects any of these loci as the primer binding site in the final
solution, the likelihood of a mispriming event increases when screened against the
sequence of the human genome. The solution to this problem, therefore, is not to
allow MIPS to select these fragments. For this, we processed the input sequences
with RepeatMasker [23], which masks sequence fragments which are overrepresented
in certain genomes, in our case ‘Primates’. Using the human SNP input set, Figure 7.1
shows the results of applying RepeatMasker and the percentage of bases that were
masked by the algorithm.

A side effect of using the masked input set was that two of the sequences of
the input set were rendered unusable. The masking process effectively reduces the
size of the input sequences and therefore the possible binding sites. Two of the input
sequences did not contain 20 consecutive unmasked bases, or any possible binding
sites, so they were omitted. Table 7.3 shows the reduction in mispriming events when
the input sequences are masked by comparing the mispriming rates of the results of

MIPS-PT on the unmasked input set versus the masked input set.



Repeat Masker summary:

file nane: Rvenmil 6411. seq

sequences: 190
total length: 34874 bp (34874 bp excl N-runs)
GC | evel : 40.59 %
bases masked: 2756 bp ( 7.90 %
nunber of | engt h per cent age
el enent s* occupi ed of sequence
SI NEs 14 1217 bp 3.49 %
ALUs 8 601 bp 1.72 %
M Rs 6 616 bp 1.77 %
LI NEs: 4 493 bp 1.41 %
LI NE1 3 392 bp 1.12 %
LI NE2 1 101 bp 0.29 %
L3/ CR1 0 0 bp 0.00 %
LTR el enents: 5 551 bp 1.58 %
MaLRs 2 289 bp 0.83 %
ERVL 1 97 bp 0.28 %
ERV_cl assl 2 165 bp 0.47 %
ERV_cl assl | 0 0 bp 0.00 %
DNA el ements: 2 109 bp 0.31 %
MER1_t ype 0 0 bp 0.00 %
MER2_t ype 1 78 bp 0.22 %
Uncl assi fi ed: 0 0 bp 0.00 %
Total interspersed repeats: 2370 bp 6.80 %
Smal | RNA: 2 218 bp 0.63 %
Satellites: 0 0 bp 0.00 %
Sinpl e repeats: 3 95 bp 0.27 %
Low conpl exity: 3 73 bp 0.21 %

* most repeats fragnmented by insertions or del etions
have been counted as one el enent

The sequence(s) were assunmed to be of primate origin.
Repeat Masker version 07/07/2001 , default node

run with cross_match version 0.990329

RepBase Update 6.3, vs 05152001

Figure 7.1: Results of RepeatMasker on human SNP input dataset.
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Table 7.3: Mispriming rates in simulated PCR experiments with original and masked input
sets

Degeneracy Threshold || Original | Masked
45 ~ 4K 82254 164
47 =~ 16K 112162 1104
48 ~ 64K 64938 2043

49 ~ 262K 201209 | 17337

Empirically, these results seem to indicate that simply removing overrepre-
sented fragments from the input set render the results of MIPS far more useful in
practice by reducing the number of predicted PCR artifacts.

Another interesting result of masking the input sequences for this particular
dataset is the resulting solution from MIPS-PT. Intuitively, it is expected that reduc-
ing the size of the input set would likely increase both the size and total degeneracy
of the final solution when compared to the original data set since the likelihood of
finding similar fragments is decreased. Table 7.4 shows the number of primers se-
lected and total degeneracy of the final solutions for both the original and masked
input set. The full output of MIPS-PT for both of these input sets can be found in
Appendix B. For each degeneracy threshold tested, MIPS-PT selected fewer primers
for the masked data set and on two occassions the total degeneracy of those primers

was also less than that of the original set.

Table 7.4: Comparison of MIPS-PT results on original and masked input sets.

Original Masked
Threshold || # Primers | Degeneracy || # Primers | Degeneracy
45 ~ 4K 53 84720 49 128144
4" ~ 16K 44 321456 42 319872
48 ~ 64K 36 1.262 % 10° 34 1.299 * 10°
49 ~ 262K 29 4.824 % 106 28 4.277 % 106
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7.2.3 Alternate Strategies to Mispriming

Using RepeatMasker on the input set dramatically reduces the number of expected
mispriming events by eliminating input sequence fragments which are overrepresented
in the genome. However, it is still possible that one or more of the degenerate primers
selected represents an overrepresented fragment which does not occur at all in the
input set. Consider this simple example where the sequence ACACACAC'is a repet-
itive element in the human genome. If the final solution of MIPS includes the primer
MMMMMMMM where M is the degenerate nucleotide which represents {4, C%}, then
this solution could lend itself to a large number of mispriming events even though the
particular repetitive sequence is not necessarily a part of the input set.

The problem is that certain degenerate primers represent overrepresented se-
quence fragments and it is not desirable to select these primers in any final solution.
Therefore, we want a method to determine whether or not a given degenerate primer
is likely to cause a large number of mispriming events before it is selected as part of
a final solution. A simple workaround would be to maintain a list of each degener-
ate primer and its frequency in the human genome. A scoring function could then
be generated to calculate the likelihood of a degenerate primer being involved in a
mispriming event. However, there are over 10?* degenerate primers of length 20 and
maintaining such a data structure is currently infeasible.

Another workaround would be to dynamically calculate such a likelihood for
each primer as they are encountered in the beam search. It is feasible to estimate the
probability of a degenerate sequence appearing in a complex background model such
as the human genome using a high-order Markov model and a dynamic programming

algorithm, similar to the Viterbi algorithm [§].
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Chapter 8

Conclusions

SNP Genotyping is poised to become an important procedure in the future of human
genomics. Based on sound theoretical principles, the application ideas in various
domains are on the verge of implementation. One of the final barriers to realizing
this promise rests in a practical, cost-efficient technique for large-scale DNA analysis.
The work of this thesis focuses on a problem that arises in high-throughput multiplex
PCR experiments, which is a major part of one of the proposed SNP Genotyping
techniques.

We developed an iterative beam-search heuristic, MIPS, for this problem which
can be used to select a set of degenerate primers for a given set of sequences. This
algorithm compares favorably to an existing algorithm for similar problems. Using
both theoretical calculations and experimental analysis, we have shown that MIPS
provides results which are close to the theoretical limits of degenerate primer design.
We also discussed the practical limitations of the algorithm and the modifications that
can be employed to improve upon the solutions. MIPS is neither time nor memory
intensive and could conceivably be used as a desktop tool. The overall effectiveness
of this algorithm will ultimately be determined by the application of the resulting

primers in biological experiments.
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Appendix A

MIPS Pseudocode

Algorithm 1 MIPS(S, a)

1. Initialize Global variables (2-D matrices): BEST - candidate fragments;
COVERED - sequences covered; ALLOWABLE - remaining degeneracy,
ALLOWABLE(0,0) = a.

2: for p = 1 to the number of degenerate primers that will be used do

3:  Let ¢ = the maximum number of sequences that the (p-1) primers covered

4:  while ¢ > 0 do

5 MIPS SEARCH(S —COVERED(p—1,¢), ALLOWABLE(p—1,c¢),p,c)

6: if this search covers S, print solution and exit

7

8

9:

else c=c-1
end while
end for
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Algorithm 2 MIPS SEARCH(S, «, p, ¢)

1:

NN N KN N KN = o s = = e e e e
A R S T A e B S AN e O wal

Input: Sequence set S, degeneracy bound «, primer number p, sequences covered
c.
Output: total number of sequences covered
Initialize priority queue @ of size b;
Perform pair-wise comparisons.
for all sequence S; € S do
for all substring S;[j, (] do
Let C = { z|(f,z) € T and f is a k-length substring of S;[j,{] }
for all fragment C} € C do
D = S5, L] + Cg
Insert D into queue ()
end for
end for

: end for
s Let d = ¢
: while queue @ is not empty do

Let P = the best element of ()

if degeneracy(P) < degeneracy(BEST(p,c)) then
BEST(p,d)=P
ALLOWABLE(p,c) = a— degeneracy(P)
COVERED(p,d) = COVERED(p — 1, ¢)U covers(P,S)
QQ =ONE_PASS(Q,S,«)

end if

d=cd+1

: end while
. return (¢ + 1)

Algorithm 3 ONE_PASS(Q, S, «)

1:
2:
3:
4:

10:
11:
12:
13:

Input: Priority queue @), set of sequences S, degeneracy bound «a.
Output: Priority queue ()’
for all primer P € @) do
for all sequence S; € § do
if S; ¢ covers(P) then
for all substring S;[j,[] do
D =S+ P
Insert D into queue Q'
end for
end if
end for
end for
return '’
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Appendix B

Supplemental Data

The following figures are the full output of MIPS-PT on a dataset of regions of human

DNA surrounding 95 known SNP locations.



M PS- PT Cut put
Prinmer Size: 20

Primer Degeneracy Threshol d: 4100

Beam Si ze: 100
Pai r Fragment Size: 6

Nunmber of Sequences:

Total # Priners: 53
Prinmers

GARAT MACWAYWRMAGAAAT
GAAYATAGTARGSYYTCWKT
YRTSCATTTATMI TRGASTG
TCYKSMI'STGAAAYYTRSIMWK
ACYTKKRARTYCCTTHSYST
ARRWGGKGCWRGRTSYTGRY
CAYWAGSCARGABYWRRKGT
GHWGSARYHTVTRTCACCCC
TCASMI GKMCAWCAVASTSY
MASCWYMVATYSTGTGKCTG
CWSTHTCTRMAT CTGYCMIM
TABAMACHT TYMACAWCAKT
KATTAKTW/TAAYNVAATDAW
AVBKATGCTSWDTTTTGISY
CCTYKNACWIWT MANAASAG
TRRCTRARAYAAGWYKCAKG
CCWMYTCTRSTGRSYKTGCA
CASARAKSAGGNGECMAVGW
AKNVBACAGAKDKBTTTGCYG
AGMCAGAGGTVRGAKIVHKRG
AVRWIWGAAVBRVAAKRTTT
TTCTTTYKMATWGVRATSYC
WEKHYKTTYCTSWBTHTAAA
VWAAWCMT AWBCMCMCASRSA
TKWCTGYRDKYYTBTSCTTG
WIVAWAHT AWGCAWT KARTA
GDAKKGGGWGAYWTYCCTTM
WGEDDRARGAAAKT GAGRWR
WKHAAVARKTYWI VAADATT
SCCWKTCTCWI TCAVRCCAR
VWAWCCTBYWACMT CTCTKMI
WHTCT CCACDYCNDMCTSYY
AKGRRNAAAGGRAAGWGVW
YTASRRTTTHCWHTYTKCAW
YTWSAAWNWAT TACARHVAS
KTTKSWEGKTYTTHMVWACTR
TAAVAWNRRTSAYTGWWDTT
AGAVRAGCARARRGRBSW\A
WSAAKAWRCYKADGVTTWAA
ATRKKRGRMCTKTGGTRRRW
CTGVYTKGARRRANMSWCAMT
ATWABTWCTKTKGSYMITTR
MVARAACAVAMACASRYVSA
MAKBMARAGVAWNT CATWAA
CTTYYYWCCHCCCCTBYYWK
WGTGYTSSSWIMASWGSYGT
WIATTBYCAMVAMKYTTTSW
TAGGCADYVAANAAABAWAT
TTKARKDAACT TVHT YWAWG
AWWRARARGRARAANVANRKW
WVBAT TKTKHDTWI TTAWMT
TWKTTTDTTDKTHTDTBTKA
AGACYSTGT YWSHWAAAAAD

Total Degeneracy:

190

Degener acy Cover ed
512
128
64
2048
1536
2048
1536
864
512
768
768
576
576
576
512
512
512
512
576

Figure B.1: MIPS-PT output with o = 4.



M PS- PT Qut put

Primer Size: 20

Pri mer Degeneracy Threshol d: 16400
Beam Si ze: 100

Pair Fragnment Size: 6

Nunber of Sequences: 190

Total # Primers: 44
Primers Degeneracy # Covered
TGNMDWAABTVHYDARKVAA 10368
WWIVKCYCADCTRDSTKCYTS 9216
AARYCVKSAABATVKTADKS 4608
CMYSRWRT CCWGSYTCCCWG 1024
BMIBTSAARGSAACYRYWCA 2304
VBMHAKMCCTWBACT GTHCA 1728
ASMACYTBHT STKAAATTWG 1152
KKRDDGT GCDGTRARVRKRAA 13824
ARTASSWDRHGDRRGATCMC 13824
TYMAVWRACT GAKDYMAKWIT K 12288
TDWIAGAAANRVAADDWY TW 6912
CTCTYWBHWGYYTGKDTCYW 6912
TKTNRSDKATGAGAGCDRW\G 6912
ASTYTCWASAYCAKYMVIMAY 8192
MAGCYTCTKBCMAHYWCABA 6912
COWWTYWRSTGRVYKTGCW 6144
AMANYKWAKGAAHDTSTTTMY 4608
TRAAWYYYSTYTMIGABWTW 6144
TTCTTYYKMAYWGVRATBYC 4608
MAYTGVIT TWI GHRWANT KWA 3072
YHTMATCWKMTKTYWYWI TT 3072
ASACAKARGKVASRDCYWRG 4608
SYCWKYCTCHTYCWRCCAR 4608
AKTAABTWATATYTSYWYWN 3072
KBTWAAYAGM TADGWHWAT 3456
SCCAKWGNCWGADWTYYTTB 2304
YWWCMCTBYWACHTCTCYYM 9216
KGDAKKGRSWEAYWTYCYTT 3072
YTASRRTYTHCWHTYTBYAW 13824
AGAVRAGCARARRGRBSWAA 2304
CTGVYTKGARRRAMVSWCAMI 1536
WAAVAWNADRT SAYTGWWDYT 9216
VRWGYTSSSWIMABWGSYGT 12288
CRDGAAABKKARRBTKTAWD 10368
SCTKNYYWYCWCMYCTVYCA 12288
ATWANTWYTKTKGBHMI TTR 9216
TYMITYARAHWSAVRRYAVA 6144
MVIWAACAVAYRVASRSVCA 13824
TTKADKDAWMT TWHT YWAWG 6912
KAKGVAATBARDRVHDAAVT 15552
VWWBAT TKTKHDTWIY YAWMT 13824
AWWARARSRARAANVAMRKW 12288
TVWKTTTDTTDKTHTDTBTKA 3888
AKWYYYTKTYTCHWAAAHVD 13824

Total Degeneracy: 321456

NOOOOUUUUUUVUURRMORNORNAARNDNDRARNDDOOAARNDRIOARNDNRNWWWWWWW

Figure B.2: MIPS-PT output with a = 47.



M PS- PT Qut put

Prinmer Size: 20

Pri mer Degeneracy Threshol d: 66000
Beam Si ze: 100

Pair Fragnment Size: 6

Number of Sequences: 190

Total # Primers: 36
Prinmers Degeneracy # Covered
TGCTATGCCCAGGT GGCCAG 1
YHYAGTWI MAAVBKRYWRVA 18432
TDABRMVRYTTTMATKATSA 4608
YMYMCMI TBYBSHRHYAACT 41472
VHTVWWCCVWHYYKBCTSTSAG 20736
SMRABCWNHT BWACAKRWAT 55296
DATGRHTRTCYTBWIBHABT 11664
YTVWWCEDKGARKAANMDT SAVA 10368
CTCTYHBHVKYYTGBDTCYD 46656
CASAVAKVAGCHRGSHHHRW 46656
HGTSDVSVWKGRARGVSCYSC 41472
TTBCYDTVVCYMYWAHVWABC 41472
RTKTGAVKWRNRTGDRWAT R 24576
YTSDBAGCHARRSSWASKWG 55296
MDGGARRCCTBYKSMYWYMAN 36864
SADRSTRASTKYTYCCHDRW 27648
MT TCAHSIVHTV\RRWI KDRSA 27648
TSTCTKYDKKYMYBTVCTTK 13824
KHAMANART AHKAARMAKT T 18432
VWDCVWKHTYTMIYTVAAVDYH 41472
RWATYHAHWRATATWAHKTB 41472
WARMCCT BYWAHMT MTCWKNT 36864
TKMIRKTYTBVAWAWMT DKS 27648
CTGVYTKKARRRAVSWYVHT 18432
V\RADDVKCIVRAAABKSBAAV 62208
TMACANTGDTKMYKNDADT T 27648
WAHWNTHYTKTDKGAMT TTR 55296
VHADAHVAVWCAMAVRCNSA 62208
VDYYMCMYTCCHVCYWSHCC 41472
MYTKYAVWKDAVWAAY AVWAAA 36864
TYBAVWKKADCHT RCWI HWAK 41472
TATTNBCAMAAHBTWY TVHH 23328
VAVANT KHRAKWAT KTADAT 55296
AVWRRRARGRARWAMAHDKW 36864
TVWKTYYDTTDKKHTNTNTKA 55296
AKWYYYTKYYTYHWNAAAHWD 55296

Total Degeneracy: 1.26226e+06

OCO~N~NOOCOOOOOOOOOO GO~ owweeE

Figure B.3: MIPS-PT output with o = 48.



M PS- PT Qut put
Priner Size: 20

Primer Degeneracy Threshol d: 262200

Beam Si ze: 100

Pair Fragnent Size: 6

Nurmber of Sequences:

Total # Priners: 29
Prinmers

KKRWAVWAVWMT DYWSAARDVA
STHTTGKEKWKKYWBYMYY
YW YWDCVWKHRAWVHYTKSA
MVARDAHBWGAVKYVRGTKD
GASDDRSHAVRKGMIBHYAG
CWEKASRHAGNSYDDGVMI'S
ARHWDWIVKYWCKSMT TYBT
GWDCWRRDAKGW/RMGGVH
RYHWBMATKKHTATKWBNMVDT
KBHDTTTCYDYWCHYWKNKG
MIGWAT STSHVHWASAHDNR
HHVWMABHTHCCYYTCTDHT
WADKARVATBKYHBWI BSAY
ASAVADWRRKVANVDCYWRG
AKTAAYWNHDHT TTNNWSNW
GTGDGCYACHGHNYVDDKYY
VWHHAVRHYWAGVAVWAKANT W
YVKGDNBCTMVBYYTCHTSH
BNNTKVTKKTCTBVAWRDMI
WRSKKKBARRKAWGVBWBTS
VWHAWBHHTKTKKSYHTWI G
DSNAKDGRSDGANWTYYYTK
WINAT YWRAVWAYRWRRHWA
HVIVNAMCABAYDCHSRCVCA
WDYYNMSMYTCCHVSYWSHCC
WRKHHWT BAWRNWADWAATD
AVWWRRARSRARWAMAHDKW
HHBWI TNDKWDTWI T TVWARW
WAVBYYTBTYTYHWAAAHWD

Degeneracy # Covered
36864

110592
221184
124416
93312

82944

55296

186624
165888
248832
165888
209952
124416
165888
221184
93312

221184
248832
248832
221184
124416
221184
147456
62208

165888
248832
110592
248832
248832

PP ONOOONNN~NO0OONOOOODOODOOOOO U110l W

Total Degeneracy: 4.82487e+06

Figure B.4: MIPS-PT output with o = 4°.

42



M PS- PT Qut put

Primer Size: 20

Pri mer Degeneracy Threshol d: 6600
Beam Size: 100

Pair Fragnent Size: 6

Number of Sequences: 188

Total # Primers: 49

Primers Degener acy # Covered
GWEEKGCTRGGTGCTGRCAG 16 2
TATGAATWI MBTKATKHAKT 288 3
TATGAATWIMBTKATKHAKT 288 3
TATGAATWIMBTKATKHAKT 288 3
CWSTHTCTRMAMTCTGYCMITM 768 3
AVAYRGAGHRWWARAAAAAA 768 3
ATAAMATGRRAGSMAMRTVA 768 3
CCWYDAACWI TTMAKAAYAK 768 3
CMRCACRAAKMAGGWGRCMW 512 3
YWARAGGAWKAGCTRTGBTS 384 3
MRGTYAWSTTBATAAKMICT 384 3
SWKTTTCYKYTSMCWKKGGM 4096 4
AMITCTSSCVMRDKRWMTGRY 6144 4
MYHTTTTWWKHAARAWMTG 4608 4
VDWSTGAKTGAVCVWKGRASG 4608 4
RWATGHVATATTKTWRATBH 1728 4
ATWIRSYTWIBCAKTTSHAM 2304 4
GGAWWATRABVAYATBRAWS 3456 4
AMAYKWAKGAAHDTSTTTMY 4608 4
ASACAKARGKVASRDCYWRG 4608 4
WGTWYBTTTMAKAHTDTAWA 3456 4
RTBCYSWDTBTAWAAATRYA 3456 4
RGMWTYTTSMCKWAGSMAGM 4096 4
CMYAGWCTSWYYSARRSCAR 4096 4
TRRATTYTBTBDCTGWMRWM 3456 4
TONWIYWIVDATATHWAKT 2304 4
YWAANAVWAMAMWKVATTTART 3072 4
AGHVAWNRT TMAYAMAAAYY 3072 4
TWYAAWTARTKACWDAVWED 3456 4
ARMITTTYTHTHTSAHTWIB 2592 4
YTASRRTTTHCWHTYTKCAW 2304 4
WACCCTBYWACHTCTCYYMK 2304 4
KTTKSWEKTYTTHMMWACTR 3072 4
RTAAVMATWAKCCCHSASRBA 2304 4
TAAVAWARRTSAYTGWWDTT 1536 4
CHCHCARGYCASYTWYSWIT 2304 4
AGAVRAGCARARRGRBSWAA 2304 4
ATRKKRGRMCTKTGGTRRRW 2048 4
ATWMBTWCTKTKGSYMITTR 1536 4
CVADAMVARWCAMARRCNCA 3072 4
MIKKMARWGRAWDTCATWAM 3072 4
TTVHAT TAAAWNWRVGRWAWN -~ 6144 5
MICYYCMYTCYHDCCWCYCC 2304 4
TYTBYWNAMIGTAATADRW 2304 4
TTTYYCWWKYYWAWCCTTTW 2048 4
TTKARKDAACTTWHTYWAWG 1152 4
AKSHAATKAVDAAVWDRAAWG 5184 5
WVBATTKTKHRTATYYAWMI 4608 5
AVWRARARGRARAANVAMRKW 4096 5

Total Degeneracy: 128144

Figure B.5: MIPS-PT output on masked input set with o = 45.



M PS- PT Qut put

Primer Size: 20

Pri mer Degeneracy Threshol d: 16400
Beam Si ze: 100

Pair Fragment Size: 6

Number of Sequences: 188

Total # Priners: 42
Prinmers Degeneracy # Covered
ADAYRGARHDHWAWAAAAAA 7776
RAAANAMAAAAT GRSSRHVS 9216
TATDWOWKWY TWIWAAT VIVH 13824
ARGMIYATSAAANBVWWMYMT KT 6144
KVRADGGRHAAARGRAVGAY 3456
YTKVCCTVTGTGNSDCCBBT 7776
YTW/TRAMYWYCTTTMIVTH 6912
RCARAASSAVBWGYKDT GDT 6912
CTRWAM STSYCYWAGANKHA 6144
WRCMCTSHTWCYTCTSYYMK 6144
VWDWSTGNKT GAVCWKGRASG 4608
ASACAKARCGKVASRDCYWRG 4608
GKDMYCAKKRT ADAVWMI GCW 4608
YABAVWHKVDTTYTTMAAAAW 3456
GGAWVATGNBSACAKSVMAS 4608
VWY TDWN VT VWKVRTTWI TTA 3072
VRHATKYAYRAATATMATKW 3072
RAYYTCTBBCCAKTMIMYRR 4608
CMYAGACT SWYYSARRSCAR 4096
AKTAAY TWAKWT KKSYWCWA 4096
WIWYT THAVWAW/AVKDT KWA 13824
YTWCADWI AT TVWHWAAMAH 3456
W TW/TMACTYVATATYAYK 2304
AGAVRAGCARARRGRBSWAA 2304
MANNMAWAMY RWGVAT YWVRT 16384
KGDAKKGRSWGAYWTYCYTT 3072
TMIKTGKKTVKDYRCHTBTS 13824
WIWTHYTDTWE Y TAWAAHWY 6912
CHCHVARGHCABYTVW\VWT T 15552
TTKYDKKDCWIHAAAAYTDK 10368
TGGKGHCYVHRKYTYWSCYC 13824
WA TWYTKTKGKWMTKTR 12288
RDAACATWI KYSMVIVAVRBA 13824
TYTHTCTYTYTDDAYYKWYT 6912
TTVWHWT TAAAWANVRWCRWANY 6144
TYTBBWANAMI GTAATWDDIVH 15552
HT TDVRDARRAWAM MATWAA 6912
CTKNYYWYCWCMYCTVYCAS 12288
TTKADKDAWMT TVHT YWAWG 6912
AKSHAATKAVDAAVDRAAVG 5184
VWWBATTKTKHRTATYYAWMI 4608
AWRARARGRARWAVAHRKW 12288

Total Degeneracy: 319872

oo, RMNAOARARMDMDIAMDRAMDIMDIMNDIMADMDMNIANDIMDMNDIMIAMNOOSMS

Figure B.6: MIPS-PT output on masked input set with o = 47,



M PS- PT Cut put

Prinmer Size: 20

Pri ner Degeneracy Threshol d: 66000
Beam Si ze: 100

Pair Fragment Size: 6

Nurmber of Sequences: 188

Total # Primers: 34
Priners Degeneracy # Covered
GVBRRAVRDHTRHSCTKTST 62208
AGBABVTRRMAWTDCYCTWB 46656
YNSHRCAMVAAKHAGRWRRC 55296
YWIKBAYTKDYRAMIKYMIK 36864
CHRKGDMWAADBRCAKRWET 41472
KBBTYTWAAAARMIBVKBYR 41472
CASHSWSRBTSAGCHTBWA 31104
TBTTHWAT GVAYKTKDMAYW 27648
AAWY/RMI GAKSYVKKDT GGK 27648
AAADHYDDNDCMI TNMAAAT 31104
RKDVBCAKKRKADAWMT GCW 27648
HAHTRDTKYWGHRKTHTKTM 62208
AVAARYAVMYHT MTKHHTKT 20736
VWAT TVRMAARHATKHYTNVA 36864
YTVBVATWNAT TABARDVAB 20736
RVARDVWKWAGDARAAARBVA 62208
YVWANAVWAMANNKNAT YT RRT 65536
DAANVAT HWBCMCMCVKGKVK 20736
CCYASTSTSWYBVARVSMMG 18432
GVCVWKDGHCWGRDDTBTTTK 15552
RGARRDGBADAARGRNVVDA 62208
TMNNWETTHMAHWS TWCAYA 36864
TTKBDKDNYTHHAAAAYTRK 62208
W DKMDDKAHT DWRGWAAAW 62208
VWKSKGACTGHRDTYYTSHBC 41472
WEWAYAAY TKTKGKWHTKTR 36864
SNAKKGRSDGAHWT YYYTTV 55296
CTKNYYWYCWCMYCTVYCAS 12288
THTBTSTYTYTDNAYYTWYY 27648
TYTBHWAAMT GKAAWADRIVH 41472
ADVHAATKAVNAADDRAAWS 23328
VHBAT TKTKHRKATYYMAMT 27648
TTKADKDAVHT YWHT YWAWG 20736
AWMWARARSRARWAMAHRKW 36864

Total Degeneracy: 1.29923e+06

NOOOOOUIOOOOO0OO0OOOOUITOITUIoOOOITO U1O)U1U1 010101010101 010101

Figure B.7: MIPS-PT output on masked input set with o = 48,



M PS- PT Qut put

Prinmer Size: 20

Pri mer Degeneracy Threshol d: 262200
Beam Si ze: 100

Pair Fragment Size: 6

Number of Sequences: 188

Total # Prinmers: 28
Priners Degeneracy # Covered
GKDMY CAKKRT ADAWMT GCW 4608
WIDYCYTKHHYT TVWDVWHWA 186624
VMADKAVHHAT KRHAGADNT 186624
AWARHHWARDVRT TNHVART 165888
AWYTBHBHTWKMWYWATYTA 124416
TWDRHANRVAWTATTNYNVRM 73728
VNDRGVAAARDGMACVBVKS 248832
TDWAT KNRHRAANVWKAWT DW 221184
BVADMWYBYTHCCCAMMYSH 186624
BHHHW/TTBAKAVWKMI STSK 186624
AKHAVHT TKYNMDWI BNMCWR 165888
NWASWANTWADKAMAAAMAH 147456
ADBTWI'WINCAKYWADHDVW 186624
CYTBYHYWSSWYCCCW/HCM 82944
YWADAWNMAHVKNAT BT RRT 221184
ATWIYHT DWHWHYWRNAAHA 124416
DAANAYHWBMMCMCOVKGKVK 82944
WABVDTTTMVDHT Y TNV 124416
CMCAGWBKNVWHKVARRCIVHR 165888
ATDKKRGRMMYNKGGKRRVW 147456
WIMDVWADY TKTKGKHHTKTR 124416
DSNAKDGRSDGANWTYYYTK 221184
MYTKHANVWKDAVWDWY AVWAAA 110592
HBSKGWCTCGHRDTYYTSHBC 93312
TTKHNDDAWMT TVWHY YHAVR 248832
RRSNRAKGRDDAARKRRAWS 147456
VHBAT TKTKHRDAWHYHWM/T 186624
AWWWRARSRARDAMAHRKW 110592

Total Degeneracy: 4.27738e+06

oo ~N~NOO~N~N~NNONNONNODOONNOOOOO OO N

Figure B.8: MIPS-PT output on masked input set with o = 4°.
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	Abstract: Abstract: Single Nucleotide Polymorphism (SNP) Genotyping is an important molecular genetics process in the early stages of producing results that will be useful in the medical field. Due to inherent complexities in DNA manipulation and analysis, many different methods have been proposed for a standard assay. One of the proposed techniques for performing SNP Genotyping requires amplifying regions of DNA surrounding a large number of SNP loci. In order to automate a portion of this particular method, it is necessary to select a set of primers for the experiment.  Selecting these primers can be formulated as the Multiple Degenerate Primer Design

(MDPD) problem.



In this thesis, we describe an iterative beam-search algorithm, Multiple, Iterative Primer Selector (MIPS), for MDPD. Theoretical and experimental analyses show that this algorithm performs well compared to the limits of degenerate primer design. Furthermore, MIPS outperforms an existing algorithm which was designed for a related degenerate primer selection problem. Further analysis shows that, due to the composition of the human genome, the results from MIPS may not be realized in practice. Consequently, we address the challenges involved in selecting a suitable

set of degenerate primers and possible future improvements to the algorithm.
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