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ABSTRACT OF THE DISSERTATION

Regulation of the pro-tumorigenic senescence-associated secretory phenotype
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Doctor of Philosophy in Biology and Biomedical Sciences
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Dr. Sheila A. Stewart, Chair

Tumorigenesis results from the convergence of cell autonomous mutations and

corresponding stromal changes that promote tumor cell growth.  Mutations and stromal

changes both accumulate with age and together account for the dramatic increase in

cancer incidence with age.  One change that occurs with age is the accumulation of

stromal senescent cells. Senescent stromal cells secrete pro-tumorigenic factors

collectively termed the senescence-associated secretory phenotype (SASP).  The

SASP impacts every stage of tumorigenesis and is a promising therapeutic target.  As

such, it is important to understand how the SASP is regulated.

Many but not all SASP factors are regulated transcriptionally by NF-kB and its upstream

activator p38MAPK.  However, many pro-tumorigenic SASP factors, including

osteopontin (OPN), are not dependent on NF-κB or other canonical SASP regulators

such as ATM, leaving the regulation of these factors an open question.  Here, I report

that the transcription factor c-Myb regulates OPN, IL-6, IL-8 and other SASP factors.
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The regulation of OPN is direct as c-Myb binds to the OPN promoter in senescent cells,

and this binding is required for promoter activation. Further, OPN is also regulated by

the known SASP regulator C/EBPβ.  In response to senescence, the full-length

activating C/EBPβ isoform LAP2 increases binding to the OPN, IL-6, and IL-8

promoters. Using a microarray and RNAi approach, we identified 57 additional putative

c-Myb-dependent SASP factors and 125 additional putative C/EBPβ SASP factors.

There is a high degree of overlap between c-Myb- and C/EBPβ-dependent factors. The

importance of both c-Myb and C/EBPβ is underscored by our finding that the depletion

of either factor reduces the ability of senescent fibroblasts to promote the growth of

preneoplastic epithelial cells.

Furthermore, I describe a post-transcriptional SASP mRNA stability regulator pathway.

This pathway is dependent on p38MAPK, but is distinct from p38MAPK’s role in NF-κB

transcription of SASP factors.  In fully senescent fibroblasts, p38MAPK regulates the

removal of mRNA-destabilizing protein AUF1 from the 3’-UTRs of numerous SASP

factor mRNAs, resulting in increased mRNA stability.  Given p38MAPK’s role in both

transcriptional and post-transcriptional regulation of the SASP, we tested the ability of

p38MAPK inhibitors to inhibit tumor growth.  Treatment of mice with an orally-

administered p38MAPK inhibitor significantly decreased tumor growth in senescent

fibroblast-supported xenograft models.  Importantly, p38MAPK inhibition acts upon the

microenvironment by removing stromal support of tumor growth.  Interestingly,

p38MAPK inhibition also inhibits the tumor promoting activities of cancer-associated

fibroblasts (CAFs).  CAFs have a secretory profile similar to senescent fibroblasts.  This
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work indicates that p38MAPK inhibition is a viable therapeutic for targeting both

senescent fibroblast and CAF stromal support of tumor cell growth.
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CHAPTER 1

Introduction and Significance
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Cellular senescence is a stress-response

Eukaryotic cells have evolved numerous strategies to overcome the insults and stresses

presented by the environment, repeated DNA replication and cell division, and DNA

mutations.  In multicellular organisms, it is critical to maintain functional tissues and

avoid proliferation of dysfunctional cells.  One method organisms have developed is the

induction of senescence.  Senescence, a permanent cell cycle arrest characterized by a

number of phenotypic changes, was first observed in vitro by Leonard Hayflick in 1965

(1).  Although it had previously been believed that mammalian cells could undergo an

unlimited number of cell divisions in vitro, Hayflick demonstrated that normal human

cells will no longer divide after approximately 40-60 divisions.  This limit is known as the

Hayflick limit and was the first description of cellular senescence. Although it was

widely assumed to be an artifact of tissue culture, it is now known that senescence

occurs both in vitro and in vivo, where it plays important roles. It was later shown that

the senescence Hayflick observed was induced by the shortening and eventual loss of

telomeric DNA (2).  More recent findings indicate that it is the loss of telomeric integrity,

and not telomeric shortening per se, that can drive entrance into senescence. In the

decades since it was first described, significant progress has been made in

understanding the phenotypes associated with senescence, the mechanisms driving

senescence, and the physiological and pathological roles of senescence.

In addition to telomere shortening or dysfunction, cellular senescence can be caused by

DNA double strand breaks, epigenetic alterations to chromatin, oxidative or metabolic

stress, tumor suppressor expression, and oncogene activation (3). When it occurs in
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incipient tumor cells, senescence is a potent anti-tumor mechanism which prevents

continued proliferation of cells with dysfunctional telomeres, extensive and persistent

DNA damage, oncogene activation, or other stresses which could lead to the formation

of tumors.  Interestingly, senescent cells are resistant to apoptosis, another important

tumor suppressive mechanism (4).  Although senescent cells do not divide, they remain

metabolically active and generally adapt a number of senescence-associated

phenotypes, including a flattened morphology, the presence of heterochromatic foci

(SAHFs), positive senescence-associated β-galactosidase staining, and an altered gene

expression and secretion profile termed the senescence-associated secretory

phenotype (SASP; ref. 8–12).

Although many cellular insults can induce senescence, they all converge on two related

pathways which activate the senescence program.  The tumor suppressors p53 and Rb

are both critical for the induction of senescence in most contexts. p53 is commonly

activated in response to DNA damage, excessive reactive oxygen species (ROS), or

activation of oncogenes such as Ras (9).  In turn, p53 activates p21Cip1, a cyclin-

dependent kinase inhibitor, which arrests the cell cycle (10).  Likewise, Rb, which

prevents progression of the cell cycle from G1 to S, is activated by p16 INK4A in response

to a variety of stresses.  Although p16 is not required for the induction of senescence,

p16 is often used as a marker of senescence, particularly in vivo.  While the p53 and Rb

pathways are interconnected, they act mostly independently to induce senescence and,

in the right context, activation of either pathway alone is sufficient to induce

senescence.
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Senescence plays important physiological and pathological roles

While senescence was first described and characterized in vitro, it is now known to

occur in vivo, where it impacts a diverse and growing list of physiological processes and

is implicated in multiple pathologies.  For instance, senescent cells are important for

normal mammalian development, including in the apical ectodermal ridge and structures

in the ear (11, 12).  A recent report also indicates that senescence can also act as an

antiviral mechanism (13). Further, clearance of senescent cells from mice inhibits

wound repair (14).  Interestingly, while short-lived senescent cells seem to be important

for wound healing, the persistent presence and accumulation of senescent cells can

contribute to tissue dysfunction.  While many senescent cells are rapidly cleared by the

immune system, senescent cells do accumulate with age (15–17), potentially altering

the microenvironment and contributing to many age-related diseases.

Indeed, work using various senescent cell clearing models in mice has indicated that

clearance of senescent cells reverses multiple aging phenotypes.  Using a transgenic

mouse model which activates a suicide gene in response to AP20187 (AP) treatment in

p16INK4A-expressing cells (INK-ATTAC), Baker et al. selectively removed p16-positive

senescent cells from young and old mice (18).  Treatment of progeroid mice with AP

starting at weaning resulted in significantly delayed aging phenotypes such as

sarcopenia, cataracts, and loss of adipose tissue.  Further, starting AP treatment at five

months of age in the same progeroid mice significantly increased adipose tissue, the

size of muscle fibers, and resulted in increased treadmill exercise test performance at
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ten months, indicating that elimination of senescence cells in this setting can not only

delay but also rescue aging phenotypes associated with this mouse model.

Similar results were obtained in naturally aged mice (19).  Indeed, clearance of

p16INK4A-positive cells resulted in increased lifespan and healthspan as measured by

numerous metrics including delayed cataracts and increased activity and exploratory

behavior. These studies and others indicate that senescent cells play an important role

in aging and can contribute to diverse aging phenotypes including cardiac aging,

glomerulosclerosis, decreased motor activity, cancer, and overall lifespan (20, 21).

Further, not only can elimination of senescent cells inhibit or delay aging phenotypes, it

can also reverse some aging phenotypes, making senescent cells an appealing

therapeutic target.

Indeed, in the last two years there has been increasing research on “senolytic” drugs,

those that target and selectively kill senescent cells (20–23).  Senescent cells are

resistant to apoptosis (4).  Most senolytic drugs sensitize senescent cells to apoptosis

by targeting apoptotic proteins such as Bcl-2 family members (22).  Treatment with two

senolytic drugs which target Bcl-2 proteins can improve cardiovascular function and

reduce aortic calcification, phenocopying improvements seen in genetic models of

senescent clearance (23).  Likewise, a recent report indicates FOXO4 is elevated in

senescent cells and is required for senescent cell resistance to apoptosis (20).

Treatment with a peptide which blocked interaction between FOXO4 and p53 resulted in

selective apoptosis of senescent cells.  Treatment with this peptide improved multiple
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measures of health in both progeroid and naturally aged mice, including restoring hair

growth and improving renal function.  Further, treatment reduced chemotherapy side-

effects such as liver damage.  Together with models of genetic clearance of senescent

cells, research using senolytic drugs has demonstrated that in addition to the important

physiological and anti-tumor roles of senescent cells, senescent cells contribute to

numerous aging phenotypes and pathologies.  Further, while senolytic drugs are far

from use in the clinic, recent work has demonstrated that it is possible to selectively

target senescent cells and that senolytic drugs hold great promise in the treatment of

many diseases.

Therefore, it is important to understand the mechanisms by which senescent cells

promote the varied aging phenotypes described.  Senescent cells may contribute to

aging and tissue function decline simply by taking the place of a healthy, proliferating

cell, particularly progenitor and stem cells (24).  However, while the mere accumulation

of non-dividing cells may play a role, there is significant evidence that senescent cells

play an active role in many disease states.  In fact, senescent cells have an altered

secretory profile known as the senescence-associate secretory phenotype (SASP; ref

8).  The SASP can alter local tissue homeostasis and promote disease states through a

diverse set of mechanisms (5–8, 17, 24–26).

The senescence-associated secretory phenotype is pro-tumorigenic

The SASP consists of numerous inflammatory, mitogenic, and ECM-remodeling factors

that are upregulated at the mRNA and protein levels and can promote tumor initiation



7

and development (6, 27, 28).  The specific factors which are upregulated depends on

the cell and tissue type as well as the means of senescence induction (29, 30).

However, many “canonical” SASP factors, such as IL-6 and IL-8, are commonly

upregulated in many contexts.  Taken together, the known functions of SASP factors

can impact every stage of tumorigenesis and progression, including tumor initiation,

expansion, vascularization, local invasion, and metastasis (6, 7, 24, 25, 28).

Senescence is a potent tumor suppressive mechanism and yet, through the SASP, is

also potently tumor promoting.  This apparent paradox is explained by the differing

effect of senescence in a cell autonomous versus a cell non-autonomous setting.

Senescence does prevent cancer initiation in incipient tumor cells that senesce.

However, when they arise in the stromal compartment senescent cells can promote

tumor development in other nearby cells.  Indeed, work over the last decade has

demonstrated the importance of the stroma in tumorigenesis (31).

Traditionally, cancer has been thought of as a disease of a single, typically epithelial,

cell which accumulates mutations and begins to proliferate uncontrollably.  However,

more recent work has indicated that a carcinoma arises and progresses through a

complex process of communication between the incipient tumor cell and its

microenvironment, which consists of stromal cells such as fibroblasts, immune cells,

vasculature, the extracellular matrix, and other epithelial cells.  Furthermore,

communication between the incipient tumor cell and the microenvironment is

bidirectional (32). Clearly nascent tumors can shape their microenvironment in many
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ways such as inhibiting the immune response and promoting vascularization.  However,

stromal cells also direct the evolution of nascent tumors.  For instance, when non-tumor

forming pre-neoplastic epithelial cells are injected into a mouse either alone or with

normal fibroblasts, they are unable to establish tumors.  However, if the same pre-

neoplastic epithelial cells are coinjected with tumor-educated cancer-associated

fibroblasts (CAFs), which themselves are not cancerous, the CAFs will promote the

formation of tumors by the pre-neoplastic cells (33).  This work indicates that the stroma

plays an active role and can drive epithelial cells to form tumor cells when they

otherwise would not.

Interestingly, fibroblasts can also restrain tumor growth.  Coinjection of tumor-forming

epithelial cells with normal fibroblasts can inhibit tumor formation. Perhaps even more

strikingly, injection of blastocysts with teratocarcinoma cells will form mosaic mice

which, despite containing teratocarcinoma cells, are tumor free (34). Thus, stromal

fibroblasts can either promote or repress tumor initiation and growth, indicating that the

stroma and tumor microenvironment plays an important role in cancer biology.  Indeed,

senescent stromal cells also promote tumorigenesis.  Coinjection of senescent

fibroblasts with pre-neoplastic epithelial cells will drive increased tumor initiation and

growth in a similar manner to coinjection of CAFs (7, 8, 28).  So while senescence can

prevent tumor formation in a cell autonomous manner, this mechanism comes at a cost

to the organism as senescent stromal cells can promote the development of tumors in

nearby tissue.
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The evolution of a senescence mechanism which provides a benefit to the organism but

is also detrimental can be explained by the hypothesis of antagonistic pleiotropy.

Antagonistic pleiotropy suggests that natural selection favors traits that increase fitness

during reproductive years even if they come at a cost later in life.  Cancer is a disease

of aging, with the vast majority of cases occurring after peak reproductive years (35).

Senescence helps prevent the formation of tumors in younger individuals, allowing them

to have a healthy reproductive lifespan.  However, as the individual ages senescent

cells accumulate in their tissues and begin to affect physiology, including promoting

tumorigenesis (17, 36). Because this cost is delayed until after reproduction it is not

strongly selected against during evolution. Thus, cancer is a disease of the aged in part

because senescence both prevents cancer formation in young individuals and can

promote it cell non-autonomously in aged individuals.

Senescence, via the SASP, can promote cancer via multiple mechanisms. For

instance, senescent fibroblasts can directly promote cell growth as well as promote

EMT, an important step in metastasis (7, 28). In addition, senescent fibroblasts can

induce local immune invasion, resulting in increased myeloid cell populations and

immunosuppression (17). This occurs even in the absence of a tumor and creates a

tumor-permissive environment. Senescence can also promote migration and invasion

of tumor cells (8, 37). This work and more, along with studies demonstrating that

clearance of senescent cells can positively impact multiple aging phenotypes, suggests

that targeting senescent stromal cells via the SASP may be a powerful therapeutic

opportunity.
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The SASP is regulated by multiple pathways

In order to target the SASP therapeutically, it is vital to understand how it is regulated.

The regulation of SASP induction is complex and incompletely understood.  One potent

inducer of senescence is persistent DNA-damage and the subsequent DNA-damage

response (DDR) signaling.  ATM is a central mediator of the DDR and is required for the

induction of many SASP factors, including IL-6 and IL-8 (38).  However, many SASP

factors do not require ATM for their induction.  For instance, the induction of

Osteopontin (OPN) does not require ATM activity (39).  Many SASP factors are

transcriptionally activated by NF-κB and C/EBPβ (39–42).  NF-κB seems to act in the

same pathway as ATM, as ATM depletion decreases NF-κB activity in senescent cells

(40).  As with ATM, a subset of SASP factors, including OPN, are NF-κB-independent

(39).  NF-κB is also downstream of another important SASP regulator, the stress-

induced kinase p38MAPK (40).  Depletion of p38MAPK prevents the induction of many

SASP factors, and constitutive activation of p38MAPK signaling results in SASP

induction even in the absence of additional senescence cues.  Further, ATM is not

required for p38MAPK activation or activation of the SASP by p38MAPK, suggesting

that ATM and p38MAPK act in parallel pathways to activate NF-κB signaling.  While

p38MAPK induces many SASP factors, at the protein level only 25 of 37 SASP factors

studied required p38MAPK signaling, suggesting that, like ATM and NF-κB, it is far from

a universal SASP regulator (40). Many of the SASP factors regulated by ATM,

p38MAPK, and NF-κB are inflammatory genes, while many matrix remodeling proteins

and growth factors are independent of these pathways.
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NF-κB, while not a universal SASP regulator, is a key regulator of the SASP.  The

regulation of NF-κB in senescent cells is complex, however.  In addition to the roles

ATM and p38MAPK play in activating NF-κB in response to senescence, feedback

loops also modulate NF-κB activity.  In response to senescence, NF-κB promotes

transcription of SASP factors such as IL-6 and IL-1α.  These factors are important for

reinforcing senescence and promoting the SASP (41, 43).  IL-1α in particular is

upregulated by senescent cells and further promotes NF-κB and C/EBPβ activity,

leading to further activation of the SASP (43).  This positive feedback loop is mediated

in part by mTOR, which promotes IL-1α translation (44).  Inhibition of mTOR suppresses

the upregulation of many NF-κB-dependent SASP factors.  Thus, the NF-κB-dependent

arm of the SASP is regulated by many factors at numerous levels.  Still, NF-κB-

dependent SASP factors represent only a subset of all SASP factors.  For instance, only

35% of studied factors are mTOR-dependent, all of them also being NF-κB-dependent

(44).  Thus, there is considerable need to understand how NF-κB-independent SASP

factors are regulated.

OPN is protumorigenic and distinctively regulated

The lack of broad SASP regulators on which nearly all SASP factors are dependent

suggests that the SASP is not regulated by a single program but rather many

overlapping regulatory mechanisms. This notion is further supported by the diversity of

specific SASP factors which are conditionally upregulated depending on the cell type

and senescence inducer.  One such factor is osteopontin (OPN), a protumorigenic

protein which has numerous physiological and pathological roles, including regulating
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bone turnover, cell adhesion and migration, and inflammation (45–48).  OPN is a

secreted matrix protein that may anchor osteoclasts to the matrix (47), is upregulated in

response to wounds, acts to recruit immune cells, can suppress apoptosis, and is

upregulated in a number of cancer types (46, 49–52).  OPN is also robustly upregulated

in response to stress-induced, replicative, and oncogene-induced senescence in human

cells (28).

Previous work in our lab demonstrated that in a two-stage skin carcinogenesis model,

stromal cells stained positive for SA-βgal and p16INK4A prior to the appearance of

hyperplasia.  This work further demonstrates that senescent cells can play a role in

promoting carcinogenesis and are not simply a by-product of tumor formation.

Importantly, stromal cells staining positive for p16INK4A also stained positive for OPN,

indicating that in vivo senescent mouse skin cells express OPN and that it may be

playing a role in promoting tumorigenesis (28).  Further, human AK and SCC skin

lesions displayed coincident stroma cell staining for p16INK4A and OPN, suggesting that

in human pre-neoplasias and neoplasias, stromal senescent cells express OPN and

that OPN may be important in human tumorigenesis (53).  Using in vitro cocultures

assays and in vivo xenografts, our lab demonstrated that knocking down OPN in BJ

fibroblasts eliminated the ability for senescent fibroblasts to promote the growth of

preneoplastic HaCaT skin epithelial cells.  Thus, OPN is necessary for senescent-

fibroblast promoted preneoplastic cell growth in this context.
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Additionally, treatment of pre-neoplastic HaCaT or N.p.c.T epithelial cells with

recombinant human OPN (rhOPN) is sufficient to induced growth in vitro in the absence

of senescent fibroblasts (28).  In this context, rhOPN acts to promote cell growth via the

MAPK pathway via the CD44 receptor (53). However, the growth induction using rhOPN

did not recapitulate the magnitude of growth induction by senescent fibroblasts,

suggesting that either additional factors secreted by senescent cells also play important

roles, or that, given OPN is a highly modified protein, the rhOPN lacked some important

post-translational modifications to achieve maximal growth promotion.  These data

together demonstrate that, at least in this skin carcinoma context, OPN is an important

SASP factor for the promotion of pre-neoplastic cell growth by senescent cells.  OPN is

an extracellular matrix-associated protein and can promote cell migration (48).  In fact,

its expression correlates with tumor cell migration and invasion in squamous cell

carcinoma (54), raising the possibility that senescent fibroblast-derived OPN may

promote tumor invasion and metastasis in addition to cell proliferation.  However, this

possibility remains an untested area for future study.

Given senescent-derived OPN’s ability to promote tumorigenesis, it is important to

understand how OPN is regulated in senescent cells.  However, the regulation of OPN

in response to senescence is not understood.  SASP regulators ATM and NF-κB are not

required for OPN induction in response to senescence (39). Other SASP regulators,

such as C/EBPβ, have not been studied in conjunction with OPN.  Indeed, there are no

known regulators of OPN in response to senescence.
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The transcription factor C/EBPβ has three isoforms and regulates the SASP

One possible regulator of OPN is the transcription factor C/EBPβ.  C/EBPβ belongs to

the C/EBP family of transcription factors which also includes C/EBPα, C/EBPγ, C/EBPδ,

C/EBPε, and C/EBPζ, each representing a distinct gene locus (55, 56).  C/EBP

transcription factors bind to DNA as a dimer and can do so as homodimers or as

heterodimers consisting of two different C/EBP isoforms (57).  C/EBPβ itself consists of

three different isoforms translated from the same mRNA using alternative translation

start sites.  Two of the isoforms, LAP and LAP2 (Liver Activating Protein 1 and 2,

respectively), contain the transactivation domain and activate transcription when they

bind to promoters (55, 56).  Although there is evidence for unique roles between LAP

and LAP2 and distinct molecular targets, little is known about these differences nor their

functional importance.  The third isoform, LIP (Liver Inhibitory Protein), lacks the

transactivation domain and acts in a dominant negative fashion to inhibit the activity of

LAP and LAP2 (58).  LIP can bind both to DNA as well as to the LAP and LAP2

isoforms.  A C/EBPβ heterodimer consisting of LIP and one of the activating isoforms is

unable to activate transcription (58). In addition to its known ability to regulate numerous

genes such as cytokines as well as SASP factors specifically, C/EBPβ has been shown

to regulate OPN in liposarcomas and lung cancer cells (59, 60).  In addition to

dimerizing with itself or other C/EBP family members, C/EBPβ also frequently interacts

with other transcription factors, including the proto-oncogene c-Myb (61).  With c-Myb,

C/EBPβ coactivates transcription of several genes, including mim-1 and ChAT (62–64).
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The transcription factor c-Myb is a proto-oncogene

One possible regulator of SASP factors is the transcription factor c-Myb.  C-Myb is a

proto-oncogene and is the mammalian homologue of the Avian myeloblastosis virus

(AMV) v-myb oncogene (65, 66).  V-myb is a 45 kD truncation of c-Myb and causes

leukemia in various bird species (65, 67).  Normal, endogenous, cellular c-Myb is highly

conserved in animals, and Myb family members and homologues are present in a wide

variety of species, including plants (68, 69).

Human c-Myb is a 75 kD DNA-binding protein consisting of three major domains: a

DNA-binding domain (DBD), a negative regulatory domain (NRD), and a transactivation

domain (TAD; ref. 65).  C-Myb has multiple isoforms due to alternative splicing and is

subject to numerous post-translational modifications, including phosphorylation and

sumoylation, which can regulate its localization and activity (70–74).  In addition, c-Myb

cooperates and interacts with many other transcription factors to regulate transcription

(75).

In mammals, c-Myb is best studied in hematopoietic development (76).  c-Myb is critical

for hematopoietic differentiation, including that of B cells and T cells (77–81).

Additionally, it plays important roles in proliferation and expansion of certain cell

lineages and low expression results in a myeloproliferative phenotype (82).  Importantly,

the role of c-Myb varies among different cell types, with many different transcriptional

targets depending on context (83).  More recent work has shown that c-Myb has roles in
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differentiation, proliferation, and stem cell maintenance in settings such as colon crypt

epithelial cells (84–86), neural progenitors and stem cells (87), and melanocytes (88).

Additionally, c-Myb is a known regulator of OPN in hepatocellular carcinoma and

melanoma models (89, 90).  However, c-Myb is poorly characterized in fibroblasts and

has not been studied in mammalian cell senescence.  C-Myb was first characterized as

being expressed and having roles in fibroblasts in 1997, where it was shown to regulate

cell-cycle progression and intracellular calcium levels (91).  C-Myb has not been studied

as a regulator of OPN in fibroblasts.

As a transcription factor, c-Myb binds to DNA as monomer (92).  In a manner somewhat

unusual for a transcription factor, however, c-Myb often binds to promoter regions

without activating transcription (93).  Instead, it may serve to prime promoters for co-

activation by other transcription factors (94).  Supporting this idea, c-Myb is known to

interact with a number of other transcription factors including CBP, p300 and, as

mentioned, C/EBPβ (61, 95).  Given their previously reported abilities to regulate OPN

in other contexts, I hypothesized that c-Myb and C/EBPβ regulate OPN in response to

senescence.  In addition, I hypothesized that other SASP factors may also be activated

by c-Myb and C/EBP in response to senescence.

This thesis work focuses on better understanding the regulation of the SASP.  I

investigate the transcriptional regulation of SASP factors including OPN by the novel

SASP regulator c-Myb.  In addition, I describe a post-transcriptional regulatory role for
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p38MAPK.  Further, I investigate the potential efficacy of using drugs that target the

p38MAPK pathway as a cancer therapy.  This work expands the understanding of

SASP regulation and advances our ability to understand and combat the contributions

of the SASP to diseases of aging.
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c-Myb and C/EBPβ regulate OPN and other senescence-associated secretory

phenotype factors
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INTRODUCTION

Age is a major risk factor in the development of cancer (1).  In addition to the

accumulation of epithelial cell mutations, age-dependent changes in the stromal

compartment play an important role in tumor promotion (2–7).  One of these changes is

the accumulation of senescent stromal cells that possess the ability to stimulate

preneoplastic and neoplastic cell growth. First described as an in vitro phenomenon

caused by repeated cell divisions, senescence can also be caused by a number of

genotoxic stresses including telomere shortening or dysfunction, DNA double strand

breaks, oxidative stress, tumor suppressor expression, and oncogene activation (8).

Senescent cells are associated with a flattened morphology, the presence of

heterochromatic foci (SAHFs), positive senescence-associated β-galactosidase

staining, and an altered gene expression and secretion profile termed the senescence-

associated secretory phenotype (SASP; ref. 8–12).  Significantly, senescence is now

known to occur both in vitro and in vivo (9, 13) where it impacts a diverse number of

biologic processes including cancer.

Senescence acts as a potent tumor suppressive mechanism in a cell autonomous

setting by preventing the proliferation of cells with activated oncogenes or excessive

DNA damage.  However, as individuals age, senescent cells accumulate within tissues

where they are postulated to contribute to aging phenotypes (9, 10).  Aged mice cleared

of p16Ink4a-positive senescent cells have reduced incidences of several age-related

pathologies (2, 14). Further, senolytic drugs that target senescent cells can ameliorate

many age-related maladies, underscoring the importance of these cells in age related
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diseases (15–17). Additionally, the largest risk factor for cancer is age, and there is

significant evidence that accumulating senescent cells paradoxically contribute to

cancer development and progression in a cell non-autonomous fashion.  As with other

age-related diseases, elimination of senescent cells reduces spontaneous tumor rates

in naturally aged mice (14, 17).  The SASP can promote growth and transformation of

epithelial cells in numerous models, suggesting that secretion of the SASP by

accumulating senescent cells may contribute to age-related tumorigenesis (3, 4, 7, 11,

12, 18–20).

The SASP consists of numerous secreted factors including cytokines, mitogens, and

extracellular matrix remodelers that are upregulated at the mRNA and protein levels (7,

12). The regulation of SASP expression is complex and incompletely understood but

recent work has revealed that both the cell type and senescence inducer can

significantly impact the mechanisms that regulate SASP expression as well as the

specific SASP factors expressed (21). The expression of many factors, including the

canonical SASP factors IL-6 and IL-8, requires p38MAPK, ATM, and NF-κB for

transcriptional activation (5, 8, 12).  Additionally, p38MAPK regulates many SASP

factors via post-transcriptional stabilization of their mRNA (Chapter 3, ref. 6).  However,

not all SASP factors are regulated by these same pathways.  For instance, while

p38MAPK is an important regulator of the SASP, one study found that it regulated only

25 of 37 factors studied at the protein level while we previously reported that it regulates

only 50 of 248 factors at the mRNA level in our model (5, 6).
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One such factor is osteopontin (OPN), a pro-tumorigenic protein which has numerous

physiological and pathological roles, including regulating bone turnover, cell adhesion

and migration, and inflammation (22–25). OPN is a secreted matrix protein that is

upregulated in response to wounds, acts to recruit immune cells, can suppress

apoptosis, and is upregulated and diagnostically relevant in a number of cancer types

(24, 26–28).  OPN is also robustly upregulated in response to senescence.  Previously

we showed that senescent BJ skin fibroblasts lose the ability to promote preneoplastic

cell growth when they are depleted of OPN.  Furthermore, recombinant OPN induces

preneoplastic cell growth in the absence of senescent cells (7, 29).  While the

importance of senescent fibroblast-derived OPN is underscored by its ability to promote

preneoplastic cell growth, the regulation of OPN in response to senescence is not

understood.  SASP regulators ATM and NF-κB are not required for OPN induction in

response to senescence (30).  Other SASP regulators, such as C/EBPβ, have not been

studied in conjunction with OPN.  Indeed, there are no known regulators of OPN in

response to senescence.  Because of senescent-derived OPN’s ability to promote

preneoplastic cell proliferation, it is important to understand how OPN is regulated in

this context.  Additionally, elucidating the regulation of OPN may provide insights into

the regulation of other SASP factors that are regulated in a similar manner.

To identify regulators of OPN, we used an OPN promoter reporter to identify a

senescence response element (SRE) that was required for activation of the OPN

promoter in response to senescence.  Using Transfac® to analyze the SRE for

transcription factor binding motifs, we identified a number of putative regulators of OPN
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in senescence, including C/EBPβ and c-Myb.  C/EBPβ is a transcription factor known to

regulate IL-6 and IL-8 in response to senescence (31).  Likewise, it has been shown to

regulate OPN in a lung cancer cell line (32).  c-Myb is a proto-oncogene important for

hematopoietic development (33).  Additionally, c-Myb is a known regulator of OPN in

hepatocellular carcinoma and melanoma models (24, 34).  However, c-Myb is poorly

characterized in fibroblasts and has not been studied in mammalian cell senescence.

Further, c-Myb and C/EBPβ can collaborate to activate transcription of a number of

genes, including mim-1 and ChAT (35–37). Therefore, we hypothesized that c-Myb and

C/EBPβ regulate OPN and other SASP factors.

METHODS

Cell lines and treatments

Human foreskin BJ fibroblasts and 293T cells were cultured as previously described (7).

HaCAT preneoplastic keratinocyte cells stably expressing click beetle red (CBR)

luciferase (HaCAT-CBR) and HEK 293T cells were grown in DMEM containing 10%

heat-inactivated FBS and 1% penicillin/streptomycin (Sigma; ref. 7). All cells were

cultured at 37°C in 5% carbon dioxide and 5% oxygen.

Cells were treated with 0.1 U/mL bleomycin sulfate (Sigma) for 24 hours.  Cell pellets

were collected 96 hours after the start of bleomycin treatment and RNA was isolated

using TRI Reagent (Life Technologies) and Ambion RNA Isolation kit (ThermoFisher).

Plasmids
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OPN promoter luciferase constructs consisted of a fragment of the OPN promoter

driving expression of luciferase in the pGL3 vector (38).  Fragments used were OPN80

(nucleotide [nt] -80 to nt +86), OPN108 (nt -108 to nt +86), OPN135 (nt -135 to nt +86),

OPN190 (nt -190 to nt +86), and OPN400 (nt -400 to nt +86). The nt reported

correspond to those upstream (-) or downstream (+) of the transcriptional start site.  The

OPN-LUC promoter constructs were a gift from the Paul C. Kuo Lab (38). OPN190-

LUC mutant c-Myb binding site was created using QuikChange II Site-Directed

Mutagenesis (Agilent) and by following manufacturer’s protocol.  The c-Myb binding site

was changed from 5’-ttaactgtagatt-3’ to 5’-ttgctagtagact-3’. pCMV-FLAG-LAP2

(Addgene plasmid #15738) and pBabe-puro LIP  (Addgene plasmid #15713) were gifts

from Joan Massague (39). pCDNA3.1-Myb was a gift of Dr. Robert Rosenberg. pWZL

hygro H-Ras V12 was a gift from Scott Lowe (Addgene plasmid # 18749, ref. 37).

shMyb_2 (pSIREN-RetroQ-MYB-shRNA) was a gift from Judy Lieberman (Addgene

plasmid # 25790; ref. 37). All other shRNA constructs were obtained from the

Children’s Discovery Institute’s viral vector-based RNAi core at Washington University

in St. Louis and were supplied in the pLKO.1-puro backbone.  The sequences are as

follows: shLUC (5’-TCACAGAATCGTCGTATGCAG-3’), shCEBP_1 (5’-

CGACTTCCTCTCCGACCTCTT-3’), shCEBP_2 (5’-GCACAGCGACGAGTACAAGAT-

3’), shMYB_2 (5’-CCAGATTGTAAATGCTCATTT-3’).

SA-βgal

Senescence-associated-β-galactosidase staining was carried out as previously

described (7).
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Growth Assay

50,000 untreated or bleomycin-treated BJ fibroblasts expressing the indicated short

hairpins were plated 96 hours after the start of treatment as previously described.  Cell

number was counted daily for four days using a hemocytometer.  Significance was

determined using  a 2-way ANOVA with Bonferroni post-test.

Western Blot

Cell pellets were lysed in buffer containing 50 mM Tris pH 8.0, 5 mM EDTA, 0.5% NP-

40, and 100 mM sodium chloride for 20 minutes at 4°C. Protein concentration was

quantified using the Bradford Protein Assay (Bio-Rad). Membranes were blocked for

one hour in 5% milk in TBS-T. The primary antibodies used were mouse monoclonal

anti-FLAG M2 (Sigma; catalog number F1804) diluted 1:1000; rabbit polyclonal anti-

C/EBPβ (Santa Cruz sc-150) diluted 1:2500; rabbit polyclonal anti-c-Myb rabbit

polyclonal (Santa Cruz sc-517) diluted 1:250; and anti-γ-actin (Novus; catalog number

NB600-533) diluted 1:5000. All secondary antibodies from the appropriate species

were horseradish peroxidase–conjugated (The Jackson Laboratory) and diluted at

1:10,000.  All antibodies were diluted in 2% BSA (Sigma-Aldrich) in TBS-T or 1% milk in

TBS-T.

Viral transduction

Viral transduction was performed as previously described (7). All constructs were stably

expressed using viral transduction unless otherwise noted.



34

Luciferase Reporter Assay

BJ fibroblasts were transiently co-transfected with pGL3-Renilla and pGL3-OPN

constructs using Lipofectamine 2000 (Thermo Fisher Scientific) and promoter activity

was determined using Promega Dual Luciferase Reporter Assay (Promega) by following

manufacturer’s protocol.

Chromatin Immunoprecipitation

Cells were transiently transfected with pcDNA-c-Myb WT (Myb), pGL3-OPN190

(OPN190), pGL3-OPN190 mutant c-Myb binding site (OPN190 Mut), or pCMV-Flag-

LAP2 in 15 cm plates using 7 µg DNA and the TransIT® LT1 Reagent transfection

system (Mirus).  Cells were fixed 48 hours later using 1% formaldehyde in PBS for 20

minutes.  Fixation was quenched with 125 mM glycine for 5 minutes with gentle rotation,

cells were washed with PBS and collected by scraping and centrifugation at 200xg for 5

minutes at 4°C.  Cells were lysed in 2 mL lysis buffer (1% SDS, 10 mM EDTA, 50 mM

Tris pH 8.1) containing protease inhibitors (pepstatin, 1 μg/mL; aprotinin, 1 μg/mL;

leupeptin, 1 μg/mL; PMSF, 100 μM) for 15 minutes.  The lysate was sonicated at 50

Amps with 30 s on, 30 s off for 6 rounds to achieve DNA fragments approximately 200-

500 bp in length as measured by electrophoresis.  One mg protein was used for each

immunoprecipitation.  Lysate was diluted fivefold into ChIP dilution buffer (0.01% SDS,

1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.1, 167 mM NaCl) and

incubated at 4°C overnight with 5 μg appropriate antibody with vertical rotation.

Antibodies used: anti-Myb (Santa Cruz sc-517); anti-C/EBPβ (Santa Cruz sc-150);
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Rabbit IgG (Cell Signaling 2729); anti-Flag M2 (Sigma F1804); mouse IgG1 (for Flag

ChIPs, Cell Signaling 5415).

Quantitative PCR

cDNA synthesis and quantitative PCR was performed using manufacturer’s instructions

(SYBR Green, Life Technologies and Taqman, Applied Biosystems).  Primers used:

GAPDH (F: GCATGGCCTTCGGTGTCC, R: AATGCCAGCCCCAGCGTCAAA), IL-6 (F:

ACATCCTCGACGGCATCTCA, R: TCACCAGGCAAGTCTCCTCA), IL-8 (F:

GCTCTGTGTGAAGGTGCAGT, R: TGCACCCAGTTTTCCTTGGG), OPN (F:

TTGCAGCCTTCTCAGCCAA, R: AAGCAAATCACTGCAATTCTC), c-Myb (IDT

PrimeTime® Std qPCR assay #Hs.PT.58.264008, Probe: 5’-56-

FAM/CCTTCCGAC/ZEN/GCATTGTAGAATTCCAGT/3IABkFQ/-3’, F: 5’-

CTCCTGCAGATAACCTTCCTG-3’, R: 5’-GCAGAAATCGCAAAGCTACTG-3’), C/EBPβ

(Taqman assay # Hs00270923_s1), OPN TSS (Taqman assay # AJRR84Z), OPN190

(F:CTTTATGTTTTTGGCGTCTTCCA, R: CTAGCAAAATAGGCTGTCCC), IL-6

promoter (F: 5’-GCCATGCTAAAGGACGTCACA-3’, R: 5’-

GGGCTGATTGGAAACCTTATTAAGA-3’), IL-8 promoter (F: 5’-

AAGTGTGATGACTCAGGTTTGC-3’, R: 5’-GCACCCTCATCTTTTCATTATG- 3’),

MMP1 (IDT PrimeTime® Std qPCR assay #Hs.PT.58.38692586, Probe: 5’-56-

FAM/TCCGTGTAG/ZEN/CACATTCTGTCCCTG/3IABkFQ/-3’, F: 5’-

GCCAAAGGAGCTGTAGATGTC -3’, R: 5’-GACAGAGATGAAGTCCGGTTT -3’),

CXCL5 (IDT PrimeTime® std qPCR assay #Hs.PT.58.41058007.g, Probe: 5’-

/56/FAM/CGGGGAGGG/ZEN/CAGGGAAGATG/3IABkFQ/-3’, F: 5’-
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GAACAGGCTTTACATTCAGACAG-3’, R: 5’-GGGTTAGAGGATTGCAGAAGA-3’), IL1β

(IDT PrimeTime® std qPCR assay #Hs.PT.58.1518186, Probe: 5’-/56-

FAM/AGAAGTACC/ZEN/TGAGCTCGCCAGTGA/3IABkFQ/-3’, F: 5’-

GAACAAGTCATCCTCATTGCC-3’, R: 5’-CAGCCAATCTTCATTGCTCAAG-3’).

Microarray

Microarray analysis was performed by the Genome Technology Access Center at

Washington University.  Cells expressing shLUC were senesced using bleomycin or

Ras expression.  Further analysis was restricted to genes that were either significantly

up- or down-regulated in both bleomycin and Ras groups.  Fold changes in bleomycin

relative to untreated groups were then compared between the shLUC, shCEBP_2, and

shMYB_1 groups.  Two biological replicates for each group were analyzed.  Statistical

analysis was done using linear model fitting and the R package limma using an adjusted

p-value<0.05 as the cutoff for significance (42, 43).  GO Term Enrichment Analysis was

performed using the Gene Ontology Consortium PANTHER software version 11.1

(released 2016-10-24) and the PANTHER Overrepresentation Test (released 2016-07-

15).  The PANTHER protein class annotation was used and our datasets were

compared to the Homo Sapiens reference list with Bonferroni correction for multiple

comparisons (44).

Coculture

Coculture experiments were performed as previously described with the following

modifications (7).  A total of 1.3 × 104 fibroblasts were plated in black-walled 96-well
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plates (Fisher Scientific).  Cells were incubated in starve medium (DMEM + 1%

penicillin/streptomycin) for 3 days before the addition of HaCAT-CBR cells.  HaCAT-

CBR cells were cultured in starve medium for 24 hours before plating on fibroblasts.  A

total of 1.0 × 103 HaCAT-CBR cells were plated on fibroblasts and incubated for six

days. On day six, live-cell bioluminescence imaging was performed on an IVIS 50

(PerkinElmer; Living Image 4.3, 1 min exposure, bin8, FOV12cm, f/stop1, open

filter). D-luciferin (150mg/ml; Gold Biotechnology, St. Louis, MO) was added to black-

walled plates 10 min prior to imaging.

Statistical analysis

Data is presented as the mean ± SEM. Student’s t-test was used to determine

significance when comparing two groups.  When comparing three or more groups, one-

way ANOVA with Dunnett’s post-test was used, except where noted.  In all cases, a p-

value less than 0.05 was considered significant.

RESULTS

The OPN promoter contains a senescence response element

Given the pro-tumorigenic nature of OPN and its unique regulation among studied

SASP factors, we sought to determine the mechanism of OPN regulation during

senescence.  To do so, we used promoter reporter constructs composed of regions of

the OPN promoter driving transcription of luciferase to identify sequences in the OPN

promoter required for transcriptional activation during senescence (38).  To carry out

these analyses, BJ fibroblasts were transfected with the reporter constructs and induced
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to senesce by treatment with bleomycin for 24 hours.  Four days after the start of

bleomycin treatment, when cells displayed a senescent phenotype as demonstrated by

a flattened morphology and staining positive for senescence-associated β-galactosidase

(SA-βgal; Fig. 2.1A), we assessed luciferase activity. We used regions of the OPN

promoter spanning from the +86 nucleotide to the upstream site indicated (Fig. 2.1B).

While the +86 to -135 nucleotide region of the promoter had only ~two-fold increase in

luciferase activity in bleomycin treated cells relative to non-senescent cells, the region

spanning from +86 to -190 nucleotide had 4.9-fold increased expression in senescent

compared to non-senescent fibroblasts. The increased induction of expression

observed in response to senescence when the -135 to -190 nucleotide region was

present suggested that this region, which we termed the senescence response element

(OPN-SRE), contains important senescence-associated transcription factor binding

motifs (Fig. 2.1C).

Transfac® analysis of the OPN-SRE promoter region revealed numerous putative

binding sites for a variety of transcription factors, including HNF1, ZBTB16, HMGA1,

SOX, FOXH1, C/EBPβ, and c-Myb.  Preliminary data suggested that many of these

factors were not required for OPN induction in response to senescence (data not

shown).  Therefore, we focused on the transcription factors C/EBPβ and c-Myb.

C/EBPβ regulates the induction of numerous SASP factors including IL-6 and IL-8 in

response to oncogene induced senescence (31).  In contrast, while c-Myb

transcriptionally activates OPN in several epithelial cell models (24, 34), its roles in

fibroblasts and in senescence are poorly studied. However, c-Myb and C/EBPβ can
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interact and have been shown to co-activate transcription of several genes in other

settings (45–47). Given these data, we examined C/EBPβ and c-Myb as possible

regulators of OPN in response to senescence.

C/EBPβ is required for robust OPN expression in response to senescence

C/EBPβ regulates the induction of several SASP factors including IL-6 and IL-8 in

response to oncogene induced senescence (31, 48) and has been implicated in control

of OPN expression in other systems (32, 49, 50).  To test whether C/EBPβ was required

for the induction of OPN in response to senescence, we depleted BJ fibroblasts of

C/EBPβ using two independent shRNAs (Fig. 2.2A).  Upon the induction of

senescence, C/EBPβ-depleted cells displayed reduced OPN expression relative to

fibroblasts expressing a control short hairpin.  Indeed, shC/EBPβ cells had 42% and

77% reduced OPN induction (shCEBP_1 and shCEBP_2, respectively) compared to

shLUC expressing cells (Fig. 2.2B).  In agreement with previous studies (31), we found

that C/EBPβ depletion also reduced IL-6 (39% and 78%, shCEBP_1 and shCEBP_2,

respectively) and IL-8 (78% and 97%, shCEBP_1 and shCEBP_2, respectively)

induction in response to senescence.  Interestingly, depletion of C/EBPβ did not affect

senescence induction in our system as measured by SA-βgal and cell growth

measurement (Fig. 2.2C-D).

To confirm C/EBPβ’s role in regulating OPN, we inhibited C/EBPβ in BJ fibroblasts by

stably expressing a dominant negative form of C/EBPβ, LIP.  C/EBPβ has three

isoforms: LAP1, LAP2, and LIP (51).  LAP1 and LAP2 are transcriptional activators



40

while LIP, which contains the DNA binding domain but lacks the transactivation domain,

is an inhibitory isoform that acts as a dominant negative to the activating isoforms.

Compared to empty vector controls (Vector), OPN induction was reduced by 59% and

IL-6 induction by 75% in LIP-expressing cells (DN-CEBP) in response to senescence

(Fig. 2.2E).  Importantly, inhibition of C/EBPβ did not affect senescence induction as

measured by SA-β-gal (Fig. 2F).  Thus, C/EBPβ is required for OPN, IL-6, and IL-8

induction in response to senescence, but depletion or inhibition does not prevent the

induction of senescence in our system.  C/EBPβ, therefore, represents a common factor

of the previously distinct regulatory pathways of OPN and SASP factors such as IL-6

and IL-8.

C/EBPβ binds to the OPN promoter

The promoters of OPN, IL-6 and IL-8 all contain C/EBPβ binding sites.  To test whether

C/EBPβ directly binds the OPN promoter, we used chromatin immunoprecipitation

(ChIP) in non-senescent and bleomycin-treated 293T cells. In response to bleomycin,

there was robust induction of senescence as measured by SA-βgal staining (Fig. 2.3A).

Because the upregulation of many SASP factors is transcription-dependent early after a

senescence-inducing treatment but less dependent on transcription once senescence is

fully established, we collected cells 48 h after the start of bleomycin treatment when

transcription was robust (6). Immunoprecipitation with an anti-C/EBPβ antibody that

recognizes all three C/EBPβ isoforms revealed binding of C/EBPβ to the IL-6 and IL-8

promoters as has been previously shown (Fig. 2.3B; ref. 28).  In addition, there was

significant binding to the OPN promoter in both non-senescent (0.05% input) and



41

senescent (0.07% input) cells. Interestingly, binding of exogenous Flag-tagged LAP2,

the full length activating isoform of C/EBPβ, to the OPN, IL-6, and IL-8 promoters

increased in response to senescence (Fig. 2.3C). We observed this effect despite

measuring greater Flag-LAP2 expression in non-senescent cells than in senescent cells

(Fig. 2.3E).

c-Myb is required for robust OPN expression in senescent cells

Having established C/EBPβ as a regulator of OPN, we asked whether there were

additional regulators in response to senescence.  Thus, we returned to our promoter

analysis to identify additional regulators of OPN.  In addition to the C/EBPβ binding site,

the SRE of the OPN promoter contains a putative c-Myb binding sequence.  C-Myb is a

proto-oncogene transcription factor but has never been implicated in mammalian

senescence.  Furthermore, while c-Myb is not well studied in fibroblasts, it has been

shown to regulate fibrosis and many factors upregulated in fibrosis are also upregulated

in senescence (52, 53), raising the possibility that it may play a role in regulating SASP

factor expression. Importantly, c-Myb and C/EBPβ can interact and co-activate

transcription in other contexts, suggesting they may act in a similar manner in response

to senescence (45–47).

To establish a role for c-Myb in the regulation of OPN during senescence, human

fibroblasts were depleted of c-Myb using two independent short hairpins.  Using

bleomycin to induce senescence (Fig. 2.4A), we measured OPN mRNA expression by

qRT-PCR. Using two hairpins to deplete c-Myb, we observed a 37% and 45%
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(shMYB_1 and shMYB_2, respectively) reduction in c-Myb protein levels relative to γ-

actin (Fig. 2.4B), which resulted in a 64% and 77% decrease in OPN mRNA induction

relative to shLUC control (Fig. 2.4C). Importantly, depletion of c-Myb did not inhibit

senescence-induction, as measured by SA-βgal and cell growth assays, indicating that

c-Myb is necessary for OPN induction but not senescence induction (Fig. 2.4A,D),

C-Myb has not previously been reported to regulate the SASP.  Therefore, we asked

whether c-Myb regulates other SASP factors in addition to OPN.  Knockdown of c-Myb

resulted in significantly reduced IL-6 (90% and 78%, shMYB_1 and shMYB_2,

respectively) and IL-8 (89% and 84%, shMYB_1 and shMYB_2, respectively) mRNA

expression in response to senescence (Fig. 2.4C), indicating that c-Myb regulates

multiple SASP factors and suggesting that it may broadly regulate C/EBPβ-dependent

SASP factors.

c-Myb regulates OPN via direct binding and activation of the OPN promoter

To test whether c-Myb directly regulates OPN transcription, we used chromatin

immunoprecipitation (ChIP) in 293T cells ectopically expressing c-Myb. ChIP analysis

of c-Myb revealed that it is significantly bound to the OPN promoter relative to IgG

control in both non-senescent (0.007 percent input Myb relative to 0.003 IgG) and

senescent (0.014 percent input relative to 0.002 IgG; Fig. 2.5A) cells.  Additionally, c-

Myb also bound the IL-6 and IL-8 promoters at similar levels, indicating that c-Myb

directly regulates SASP factors other than OPN. Further, in senescent cells c-Myb

significantly bound the WT OPN190-luciferase promoter reporter construct compared to
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IgG controls (0.34 c-Myb percent input relative to 0.18 IgG; Fig. 2.5B).  However,

mutation of the putative c-Myb binding site on the OPN190 reporter (OPN190-MUT

MBS) eliminated c-Myb binding (0.10 Myb percent input relative to 0.08 IgG), indicating

that c-Myb binds specifically to this site.  While WT OPN190 promoter activity is

activated 4.3-fold following bleomycin treatment, OPN190-MUT MBS is not activated

(1.3-fold; Fig. 2.5C), indicating that c-Myb binding to the OPN promoter is required for

the transcriptional induction of OPN following senescence induction.

c-Myb and C/EBPβ regulate overlapping subsets of the SASP

While it has been snown that C/EBPβ regulates the SASP, c-Myb has not previously

been implicated as a SASP regulator.  To determine whether c-Myb regulates additional

SASP factors beyond OPN, IL-6, and IL-8, we performed a microarray comparing

transcript levels in non-senescent and senescent BJ fibroblasts expressing either a

control short hairpin (shLUC) or a hairpin targeting either c-Myb or C/EBPβ (shMyb_1 or

shCEBP_2, respectively).  We restricted our analysis to 834 SASP genes, those which

were significantly upregulated both by bleomycin-induced senescence and Ras-induced

senescence (Supplemental Table 2.1).  We compared the gene fold-upregulation in

bleomycin-treated cells relative to untreated cells in the shLUC, shMYB_1, and

shCEBP_2 groups.  Comparing the fold-upregulation between groups, we found that

127/834 genes were C/EBPβ-dependent (Fig. 2.6A, Supplemental Table 2.2).

Importantly, 59/834 genes were c-Myb-dependent (Supplemental Table 2.3).

Interestingly, 47/59 c-Myb-dependent genes were also C/EBPβ-dependent, suggesting

c-Myb largely regulates C/EBPβ-dependent genes.  We performed GO Term
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enrichment analysis on the SASP, C/EBPβ-dependent, and c-Myb-dependent gene

sets. There were no significant enrichments among these gene sets relative to each

other.  However, the SASP was enriched for expected terms such as chemokine,

cytokine, and extracellular matrix glycoprotein relative to the genome.  Further, both

C/EBPβ and c-Myb were similarly enriched for the terms chemokine, cytokine, and

serine protease inhibitor.

In accordance with our qPCR findings, IL-6 and IL-8 are among the C/EBPβ- and c-

Myb-dependent genes (Fig. 2.6B). However, while OPN induction was reduced in

shC/EBPβ and shMyb cells, this reduction was not significant.  This difference was

significant when measured by qPCR (Fig. 2.4C), suggesting that the microarray data

lacks sufficient power to find significance for genes with smaller changes.  Therefore,

our analysis likely underestimates the number of genes regulated by both C/EBPβ and

c-Myb.

In addition to the genes we had already studied, we used qPCR to validate CXCL5,

IL1β, and MMP1, three genes which were significantly dependent on both C/EBPβ and

c-Myb in our microarray data.  All three genes recapitulated the microarray results (Fig.

2.6C).  These data suggest that c-Myb is an important regulator of many C/EBPβ-

dependent SASP genes in addition to OPN, IL-6, and IL-8.

c-Myb and C/EBPβ knockdown inhibits preneoplastic cell growth promotion by

senescent fibroblasts
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Senescent fibroblasts promote the growth of neoplastic and preneoplastic epithelial

cells in coculture and xenograft models via secretion of SASP factors (7, 29).  Depletion

of OPN in senescent BJ skin fibroblasts is sufficient to eliminate the growth promotion

that senescent BJ fibroblasts provide to HaCAT preneoplastic keratinocytes.  Because

c-Myb and C/EBPβ regulate OPN and other SASP factors, we tested whether depletion

of c-Myb and C/EBPβ would reduce the growth advantage provided by senescent cells

using this same skin carcinoma coculture model.

HaCAT cells stably expressing click beetle red luciferase were plated on top of a

confluent monolayer of either non-senescent or senescent fibroblasts in serum-free

media and allowed to grow for six days.  Recapitulating previous work, senescent

fibroblasts dramatically increased HaCAT cell growth as measured by live cell imaging

(7, 29). However, this growth was significantly lower for HaCAT cells cocultured with

either shC/EBPβ or shMyb expressing fibroblasts (Fig. 2.7A), indicating the importance

of C/EBPβ and c-Myb in regulating the SASP and its downstream pro-tumorigenic

effects.

DISCUSSION

The SASP plays important roles in wound healing and pathology, including the

promotion of tumor development. Thus, understanding the complex regulation of the

SASP will provide opportunities for therapeutic intervention.  Many regulators of the

SASP have been identified.  However, it is clear that not all SASP factors are regulated

by the same pathways. The SASP factor OPN is a potent pro-tumorigenic factor and is
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involved in numerous other physiological and pathological pathways such as bone

turnover and the development of kidney stones (23, 54).  Previous work by our

laboratory found that OPN is not dependent on the canonical SASP regulators ATM and

NF-κB (30), illustrating that SASP factors are not subject to a single regulatory program.

We have identified C/EBPβ and c-Myb as critical regulators of the pro-tumorigenic

SASP factor OPN. Depletion of C/EBPβ using shRNA and dominant negative inhibition

significantly decreased OPN induction in response to senescence (Fig. 2.2B,E).  As has

been previously reported, C/EBPβ is also required for the induction of IL-6 and IL-8 (31).

However, in contrast to that study which used an oncogene-induced senescence model,

we did not observe a decrease in senescence induction in response to C/EBPβ

depletion or inhibition (Fig. 2.2A,D,F).  While the cause of this difference is not clear, it

may be due to differences in cell type, senescence-induction, or the level of C/EBPβ

depletion.  Nonetheless, the robust senescence induction observed, together with our

ChIP data (Fig. 2.3B-C), indicate that OPN is directly regulated by C/EBPβ and is not

simply induced indirectly by the senescence program.

While C/EBPβ has previously been reported as an important SASP regulator, very little

has been published about the mechanism of C/EBPβ activation of SASP genes.  We

observed that although there is no significant change in total C/EBPβ binding to the

OPN, IL-6, or IL-8 promoters, binding of an exogenously expressed, activating form of

C/EBPβ, Flag-LAP2, significantly increases in response to senescence (Fig. 2.3C, Fig.
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2.7B).  These data suggest that C/EBPβ regulation of SASP factor transcription may be

more complex than simple binding, but require changes in specific isoform binding.

Our data establish that c-Myb is a novel regulator of components of the SASP.

Depletion of c-Myb using shRNA significantly decreased the induction of OPN, IL-6, and

IL-8 in response to senescence (Fig. 2.4C).  An additional 57 putative target factors

were identified via microarray (Fig. 2.6A), and three of these putative targets (MMP1,

CXCL5, and IL1B) were validated with qRT-PCR (Fig. 2.6C).  The regulation of at least

some of these genes is direct, as c-Myb binds directly to the OPN, IL-6, and IL-8

promoters in both non-senescent and senescent cells (Fig. 2.5A). Interestingly, there is

an increase in promoter occupancy in senescent cells relative to non-senescent, which,

while non-significant, raises the possibility that c-Myb may increase binding to the

promoters of some SASP factors in response to senescence.  Mutation of the c-Myb

binding site on the OPN promoter disrupts this binding and abrogates promoter

activation in response to bleomycin (Fig. 2.5B-C). Together these data indicate that c-

Myb is critical for the induction of not only OPN, but a larger subset of the SASP.

Although c-Myb has not been extensively studied in fibroblasts, one of its known roles is

regulating fibrosis (52, 53).  Here we show that c-Myb regulates SASP factors, including

matrix proteins OPN and MMP1, suggesting that c-Myb plays an important role in

regulating the extracellular matrix in multiple physiological contexts.

C/EBPβ and c-Myb commonly act as co-activators of transcription (35–37).  Our data

indicate that both transcription factors are required for the induction of OPN.  In addition,
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via microarray analysis, we identified 47 additional SASP genes which are dependent

on both C/EBPβ and c-Myb (Fig. 2.6A).  Only 12 c-Myb-dependent factors were not

also C/EBPβ-dependent, indicating that c-Myb generally regulates C/EBPβ-dependent

factors.  We hypothesize that C/EBPβ and c-Myb interact to activate a cohort of SASP

factors, but more work is needed to investigate whether these mechanisms studied in

other contexts are also at play in senescent cells.

While OPN upregulation in senescence is independent of ATM and NF-κB, it does

require C/EBPβ and c-Myb for expression.  C/EBPβ and c-Myb also regulate IL-6, IL-8,

and other NF-κB-dependent genes, suggesting that there are not simply distinct SASP

master regulatory pathways, but multiple SASP regulators which act together and

separately in a complex network to regulate the individual factors that are collectively

the SASP.  More work is needed to understand the interplay among the various

regulatory pathways and which factors they regulate.
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Figure 2.1: The senescence-responsive region of the OPN promoter contains c-

Myb and C/EBPβ binding sites

A) Treatment of BJ fibroblasts with bleomycin induces a significant increase in

senescence as indicated by increased senescence-associated β-galactosidase staining,

n=3, *p<0.05. Scale bar=100 μm B) Schematic of expression of luciferase reporter

constructs that were driven by fragments of the OPN promoter spanning from nucleotide

+86 to the indicated number of bases upstream from the transcription start site (TSS;

top). BJ fibroblasts expressing the indicated promoter reporter constructs were treated

with vehicle or bleomycin to induce senescence. Relative luciferase activity in

senescent relative to non-senescent fibroblasts indicates a senescence-responsive

element (SRE) between -135 and -190 bases upstream of the TSS (bottom), n=3. C)

Schematic of OPN promoter.  The SRE includes putative binding sites for the

transcription factors c-Myb and C/EBPβ.
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Figure 2.2: C/EBPβ is required for OPN induction in response to senescence



52

A) C/EBPβ protein was measured in control or shCEBP-expressing cells via Western

blot.  shCEBP_1 had 64% reduced levels of activating C/EBPβ isoforms (LAP1&2) while

shCEBP_2 had 59% reduced activating C/EBPβ isoforms, n=3. B) OPN, IL-6, and IL-8

mRNA expression were decreased in senescent shCEBP_1 and shCEBP_2 BJs

relative to control (shLUC), n=3, *p<0.05. C) Senescence-associated β-galactosidase

(SA-βgal) staining was used to measure senescence induction in BJ fibroblasts

expressing one of two independent shRNAs targeting C/EBPβ (shCEBP_1, shCEBP_2)

or a control hairpin (shLUC) and treated with bleomycin (Bleo, left).  There is no

significant difference in percent SA-βgal+ cells among any of the hairpins (right), n=3,

n.s.=non-significant, *p<0.05. Scale bar=100 μm D) Cell proliferation over four days in

non-senescent or bleomycin-treated fibroblasts was not affected by depletion of

C/EBPβ, n=3, *p<0.05. E) Expression of OPN and IL-6 are significantly reduced in

senescent cells expressing dominant negative C/EBPβ (DN-CEBP) relative to empty

vector control, n=4, *p<0.05 F) SA-βgal staining indicates no change in senescence

induction following bleomycin treatment in vector compared to DN-CEBP fibroblasts,

n=3, n.s.=non-significant, *p<0.05, ***p<0.001. Scale bar=100 μm.



53

Figure 2.3: C/EBPβ isoform binds SASP promoters in senescent cells

A) Treatment of 293T HEK cells with bleomycin induces a significant increase in

senescence as indicated by increased senescence-associated β-galactosidase staining,

n=3, *p<0.05. Scale bar=100 μm. B) Chromatin immunoprecipitation (ChIP) using a

C/EBPβ antibody which recognizes all three C/EBPβ isoforms or a non-specific control



54

(IgG) indicates that C/EBPβ binds to the OPN, IL-6, and IL-8 promoters in both vehicle

and bleomycin-treated 293Ts, representative experiment, n=3, *p<0.05. C) ChIP in

293Ts transfected with a Flag-tagged full length C/EBPβ isoform (Flag-LAP2).  An

antibody recognizing all three C/EBPβ isoforms (CEBP) or an anti-Flag antibody was

used to detect binding of the total C/EBPβ relative to exogenous Flag-LAP2 to the OPN,

IL-6 and IL-8 promoters in vehicle (Non-Sen) and bleomycin-treated (Sen) 293Ts.

While there was little change in total C/EBPβ bound to the OPN, IL-6, or IL-8 promoters,

Flag-LAP2 binding to all three promoters was significantly increased in senescent cells,

representative experiment, n=3, *p<0.05. D) Western blotting using an anti-Flag

antibody indicated that Flag-LAP2 expression is significantly higher in non-senescent

293Ts than senescent 293Ts, n=3.
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Figure 2.4: c-Myb regulates OPN, IL-6, and IL-8 in response to senescence

A) Senescence-associated β-galactosidase (SA-βgal) staining was used to measure

senescence induction in bleomycin-treated BJ fibroblasts expressing one of two

independent shRNAs targeting c-Myb (shMYB_1, shMYB_2) or a control hairpin

(shLUC; left).  There is no significant difference in percent SA-βgal+ cells among any of

the hairpins (right), n=3, n.s.=non-significant, *p<0.05. Scale bar=100 μm B) c-Myb

protein was measured in control or shMYB-expressing cells via Western blot.  shMYB_1



56

had 37% reduced levels of c-MYB while shMYB_2 had 45% reduced c-Myb, n=3. C)

OPN, IL-6, and IL-8 mRNA expression were decreased in senescent shMYB_1 and

shMYB_2 BJs relative to control (shLUC), n=3, *p<0.05. D) Cell proliferation over four

days in non-senescent or bleomycin-treated fibroblasts was not affected by depletion of

c-Myb, n=3 *p<0.05, ***p<0.001.
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Figure 2.5: OPN induction in senescent cells requires c-Myb binding to the OPN

promoter

A) Chromatin immunoprecipitation was used to measure c-Myb binding to the OPN, IL-

6, and IL-8 promoters in 293T cells expressing exogenous c-Myb cDNA.  C-Myb

significantly binds to all three endogenous promoters, representative experiment, n=3,

n.s.=non-significant, *p<0.05. B) c-Myb binds the OPN190 promoter reporter construct

relative to IgG control.  Mutation of the c-Myb binding site eliminates binding to the

OPN190 construct, n=3, n.s.=non-significant, *p<0.05. C) Luciferase activity is

increased in senescent BJ fibroblasts expressing the WT OPN190 construct relative to

non-senescent cells, but not in fibroblasts expressing the mutant c-Myb binding site
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OPN190 construct (OPN190MUT MBS), n=4, n.s.=non-significant, *p<0.05.
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Figure 2.6: c-Myb and C/EBPβ regulate a subset of the SASP

A) A microarray was performed to compare gene expression and induction in response

to senescence among control, shCEBP_2 and shMYB_1 expressing fibroblasts.  834

genes were identified as SASP factors.  Of these, 127 were solely C/EBPβ dependent,

12 were solely c-Myb dependent, and 47 were dependent on both transcription factors.

GO Term enrichment analysis was performed. Genes were considered dependent if

their induction in response to senescence was significantly reduced in the experimental
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hairpin condition relative to control, p<0.05. B) The log2 fold change in induction

(bleomycin over non-senescent) of shLUC relative to shCEBP_2 or shMYB_1 is plotted

relative to the negative log10 of the p-value.  Genes with significantly higher (bright

colors, right) or lower (pale colors, left) induction in shLUC relative to shCEBP (circles)

or shMYB (open boxes) are indicated. C) The C/EBPβ- and c-Myb-dependent SASP

factors MMP1, CXLC5, and IL1B were validated using qRT-PCR.  Depletion of C/EBPβ

or c-Myb with two different hairpins each significantly reduced induction of these SASP

factors.
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Figure 2.7: Depletion of c-Myb or C/EBPβ inhibits preneoplastic cell growth

promotion by senescent fibroblasts

A) HaCAT keratinocytes expressing CBR luciferase were cocultured with non-

senescent or senescent BJs expressing either a control shRNA (shLUC) or shRNAs

targeting C/EBPβ (shCEBP_1 and shCEBP_2) or c-Myb (shMYB_1 and shMYB_2).

HaCAT proliferation was measured using bioluminescent imaging after six days of

coculture, shown as fold growth when cocultured with senescent fibroblasts relative to

non-senescent fibroblasts.  Depletion of either C/EBPβ or c-Myb in senescent BJs

significantly reduces the ability to promote HaCAT cell growth, n=3, *p<0.05. B)

Schematic showing the proposed model of regulation of OPN and other SASP factors

by c-Myb and C/EBPβ.  In response to senescence, the activating isoform of C/EBPβ,

LAP2, increases occupancy on the SASP promoter, inducing transcription.
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CXCL5 59.6 28.5
CXCL8 26.8 27.6
SERPINB4 98.9 25.0
IL1B 22.1 14.2
CLDN1 14.2 13.2
IL24 6.5 11.0
IL13RA2 38.9 7.9
CXCL1 3.1 7.6
EREG 16.0 6.9
IL1A 29.4 6.6
GDF15 3.9 6.5
SERPINB2 9.3 6.2
C3 2.0 6.1
LOC105369848 20.4 6.1
MMP3 9.5 5.8
ESM1 9.0 5.7
CTSS 7.5 5.4
LOC541472 2.6 5.4
SLC16A6 40.9 5.2
RRAD 4.9 4.8
ITGA2 12.5 4.7
TFPI2 6.1 4.7
C15orf48 5.1 4.5
ACPP 29.8 4.4
KCTD4 14.9 4.4
MIR222 1.9 4.3
CSF3 8.2 4.2
IL6 1.9 4.1
SPP1 4.9 4.0
HIST1H2BG 5.5 3.9
C1QTNF1 1.4 3.9
AMPD3 6.6 3.9
TMEM158 6.6 3.8
LIF 4.4 3.8
TM4SF1 11.5 3.8
LINC01021 1.5 3.7
SLC22A4 2.7 3.7
KRTAP2-3 2.0 3.7
ULBP1 4.0 3.7
KRTAP3-1 2.9 3.6
ACER2 1.5 3.5
LINC01291 2.2 3.4
PRLR 2.1 3.3

ENC1 4.3 3.3
SAT1 5.1 3.3
PAPPA 1.5 3.3
TREM1 1.4 3.3
CXCL3 2.7 3.3
CCL20 1.9 3.3
CD24 1.5 3.3
STC1 5.8 3.2
CDCP1 12.4 3.2
LRRC15 7.5 3.2
PSTPIP2 1.9 3.2
P3H2 2.9 3.2
CSF2 21.5 3.2
NFKBIZ 3.7 3.1
CYFIP2 2.2 3.1
PI3 3.1 3.1
LOC105374003 43.9 3.0
C10orf55 17.5 3.0
THSD1 1.6 3.0
CES2 1.4 3.0
IFI30 1.7 3.0
PAG1 3.6 3.0
LCE1F 416.1 2.9
TNFAIP3 2.9 2.9
DUSP4 9.2 2.9
WDR63 2.0 2.9
STEAP1 5.2 2.9
MMP1 4.3 2.9
PTGS2 2.0 2.9
PTPN22 2.7 2.9
SEC11C 3.4 2.9
LRRN3 1.7 2.8
CHST7 2.6 2.8
LPXN 4.7 2.8
PLAU 15.0 2.8
DLGAP1-AS2 2.3 2.8
ERN1 3.3 2.8
COL10A1 36.4 2.7
IRAK3 1.6 2.7
DTNA 2.3 2.7
POU2F2 5.7 2.7
MAMDC2 1.5 2.7
HIST1H2BC 3.2 2.7

LOC105374171 4.7 2.7
RRM2B 2.2 2.7
IRAK2 4.6 2.7
EHF 7.8 2.7
VTRNA1-3 1.9 2.6
HIST1H4H 2.7 2.6
TSPAN13 7.2 2.6
TNFRSF10A 2.0 2.6
STAT4 1.9 2.6
APLP1 1.3 2.5
NEFM 4.0 2.5
HIST1H2BN 2.0 2.5
CDKN1A 1.4 2.5
AOX1 1.4 2.5
GADD45A 1.7 2.5
SOD2 1.7 2.5
PHLDA1 4.7 2.5
LOC105369808 2.3 2.5
AKR1B1 2.0 2.5
LOC105369893 29.2 2.4
HSD11B1 1.6 2.4
DUSP6 9.1 2.4
TMEM132A 2.4 2.4
PMAIP1 7.0 2.4
ANOS1 19.2 2.4
RAB27B 2.3 2.4
CYP3A7 2.4 2.4
LOC105376374 9.6 2.4
RNF152 4.7 2.3
SERPINB3 5.6 2.3
TIGAR 2.0 2.3
42797 2.6 2.3
SEMA3A 5.7 2.3
MLLT11 6.3 2.3
TMEM68 1.5 2.3
INA 3.0 2.3
FJX1 3.0 2.3
SHC4 2.0 2.3
EVI2A 1.4 2.2
IL11 6.0 2.2
PARM1 1.6 2.2
STEAP2 4.0 2.2
LCE2A 39.8 2.2
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EPG5 1.9 2.2
ZC3H12C 4.1 2.2
DYRK3 2.2 2.2
ADRB2 1.8 2.2
NRG1 4.4 2.2
DHRS7 2.3 2.1
LOC105369340 2.0 2.1
POPDC3 5.9 2.1
GM2A 1.8 2.1
RHBDF2 2.5 2.1
HIST2H2BE 2.2 2.1
RNF19B 1.7 2.1
GK 2.9 2.1
MAP3K5 3.4 2.1
EPHA2 2.1 2.1
BCL2L1 2.0 2.1
ITGA6 4.6 2.1
PID1 3.1 2.1
LOC105376626 7.5 2.1
IER3 2.9 2.1
CASP3 3.6 2.1
ABL2 2.6 2.1
DGKA 1.4 2.1
PCDH9 4.2 2.1
FOLR3 1.8 2.1
GDNF 2.2 2.1
ARHGEF28 5.0 2.1
ANGPTL4 1.3 2.1
SMURF2 3.2 2.1
C8orf4 1.8 2.1
OR51A4 1.6 2.0
ZC3H12A 2.2 2.0
DLL4 4.6 2.0
RAP1GAP2 2.0 2.0
ATP6V0A1 2.7 2.0
FAM180A 1.8 2.0
LOC105374433 1.6 2.0
PLK3 2.5 2.0
SNORA14B 2.7 2.0
THEMIS2 3.0 2.0
HERC5 1.8 2.0
FBXL19-AS1 1.4 2.0
NPC1 2.0 2.0

DOCK5 1.9 2.0
NCEH1 2.0 2.0
LOC105376236 1.5 2.0
ATP13A3 2.4 2.0
SVIL 3.4 2.0
PIM2 2.0 2.0
HBEGF 1.4 2.0
ANPEP 3.8 2.0
PLD1 1.4 2.0
NT5E 3.4 2.0
ABCA1 3.2 2.0
TNFRSF10D 3.3 2.0
SUSD6 1.5 2.0
DUSP5 4.8 2.0
PGF 1.5 2.0
PLAT 2.1 2.0
OGFRL1 2.3 1.9
FBXO22-AS1 2.0 1.9
ODC1 3.5 1.9
TNFRSF10B 1.4 1.9
MIR4482 2.5 1.9
DNER 2.0 1.9
BCL2A1 4.4 1.9
NOMO1 1.5 1.9
MMP16 2.4 1.9
SNORD66 2.9 1.9
ABLIM3 3.6 1.9
LOC100507006 1.7 1.9
SLC39A14 1.7 1.9
TM7SF3 1.5 1.9
SLC9A1 2.3 1.9
ITGA3 2.5 1.9
LOC105373723 1.6 1.9
LAPTM5 2.0 1.9
SERPINB7 1.8 1.9
TAF13 3.0 1.9
SIPA1L3 3.3 1.9
ABTB2 1.4 1.9
PTCHD4 1.5 1.9
DAZL 7.1 1.9
METTL6 1.8 1.9
PRKX 1.6 1.8
MT1L 4.9 1.8

LOC105379676 1.9 1.8
CPEB4 1.9 1.8
LOC105376694 5.0 1.8
TP53I3 1.5 1.8
STYK1 2.0 1.8
C16orf52 2.2 1.8
LOC101926893 1.9 1.8
TMEM154 6.9 1.8
CCND1 2.1 1.8
PNP 3.4 1.8
MYDGF 1.4 1.8
TRIB1 3.4 1.8
FBXO22 1.5 1.8
HIPK2 1.9 1.8
EML2 1.7 1.8
CYB5R2 2.0 1.8
SQRDL 1.7 1.8
LRP8 3.0 1.8
LUCAT1 1.7 1.8
GXYLT1 1.4 1.8
IGF2R 2.5 1.8
TPCN1 1.7 1.8
LOC105379695 2.3 1.8
SGTB 1.7 1.8
ERO1B 1.6 1.8
RASSF8 2.4 1.8
SLC8A1-AS1 2.0 1.8
HSPH1 2.0 1.8
CYB5R1 1.5 1.8
FBXO32 1.9 1.8
NEFL 9.2 1.8
KYNU 4.0 1.8
ATG4A 2.2 1.8
EDA2R 1.3 1.8
RETSAT 1.4 1.8
AIM1 2.0 1.8
TMEM38B 2.8 1.7
CYLD 1.7 1.7
LOC105369568 3.9 1.7
MIR146A 9.4 1.7
RPSAP52 1.6 1.7
SLC20A1 4.6 1.7
NMNAT2 1.6 1.7
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PLAUR 2.4 1.7
MIR4451 2.2 1.7
INHBA 6.1 1.7
ARHGAP22 3.6 1.7
PLA2G4C 2.0 1.7
HAGH 1.3 1.7
TNIP1 1.7 1.7
GRAMD1B 1.9 1.7
EMC7 1.5 1.7
MMP12 13.1 1.7
ADGRE2 3.5 1.7
LOC105374745 3.8 1.7
DCBLD2 5.3 1.7
MAFF 2.0 1.7
HAS2 3.3 1.7
GSTO1 2.4 1.7
LINC01002 2.0 1.7
WDFY2 2.1 1.7
TSSC2 1.6 1.7
RND3 1.3 1.7
CPED1 2.3 1.7
MYOCD 1.6 1.7
SLC11A2 1.3 1.7
PLCB4 1.4 1.7
LAMC2 2.9 1.7
ADAM23 1.6 1.7
ABCA13 1.5 1.7
ASB5 3.3 1.7
POMGNT1 1.7 1.7
C9orf72 2.4 1.7
MYO6 1.4 1.7
SRA1 1.9 1.7
PROCR 2.1 1.7
CDIP1 1.5 1.7
DPP4 1.5 1.7
SERPINB10 1.4 1.7
CD274 6.9 1.7
AGTRAP 1.3 1.7
DCUN1D3 2.0 1.7
SESN2 1.4 1.7
MAP7 1.4 1.7
LOC101929470 1.8 1.7
NEDD4L 1.8 1.7

NFKBIA 1.4 1.7
C17orf89 1.3 1.7
PGPEP1 1.5 1.7
GPR183 3.5 1.7
PLEK2 15.7 1.7
ORMDL2 1.8 1.6
RAB3B 1.4 1.6
CITED4 4.0 1.6
DNAJB9 1.6 1.6
EVC 1.3 1.6
RRS1 1.7 1.6
GLA 2.6 1.6
LOC644135 2.2 1.6
UXS1 1.5 1.6
HK2 1.7 1.6
UCN2 3.7 1.6
CDA 1.7 1.6
WTAPP1 2.7 1.6
NOMO2 1.4 1.6
STK4 1.6 1.6
CABYR 1.4 1.6
YRDC 2.3 1.6
MTHFD2L 1.9 1.6
ETV1 4.3 1.6
MAP4K3 1.5 1.6
ATP2B1 2.5 1.6
PTP4A1 1.6 1.6
TNFRSF21 16.8 1.6
MICA 2.0 1.6
LOC101927121 1.7 1.6
DAGLB 1.4 1.6
NOMO3 1.4 1.6
PSMD2 2.3 1.6
DYNC1H1 2.0 1.6
ZNF468 1.3 1.6
KCTD1 1.3 1.6
SLC31A2 1.6 1.6
SRXN1 1.8 1.6
SLC4A7 1.4 1.6
ZCCHC6 2.1 1.6
RALA 3.4 1.6
E2F7 10.3 1.6
KIF21A 1.8 1.6

ELK3 1.6 1.6
MRPL39 1.5 1.6
UHRF1BP1L 1.6 1.6
NSF 1.6 1.6
MAP2K3 2.0 1.6
AEN 1.5 1.6
EPT1 2.1 1.6
OSGIN2 2.4 1.6
GPR4 6.7 1.6
TMEM63B 1.3 1.6
MYCT1 1.7 1.6
FEZ1 1.6 1.6
OSTM1 1.7 1.6
ETV4 3.1 1.6
PNPO 1.5 1.6
HERC4 1.4 1.6
ZNF267 1.6 1.6
HMGA2 2.5 1.6
WDR66 1.6 1.6
EAF1 1.8 1.6
SDC1 1.5 1.6
NOG 3.3 1.6
PSME4 1.8 1.6
C2orf81 2.2 1.6
NFKB2 1.6 1.6
TOP1 2.2 1.6
ITPRIP 2.6 1.6
ZPR1 2.1 1.6
LOC105377023 1.3 1.6
CHMP5 1.8 1.6
FCRLB 1.6 1.6
PPP1R15A 1.8 1.6
LOC101928820 2.1 1.6
LOC105369844 3.3 1.6
RABGGTA 1.4 1.6
PDGFC 1.4 1.6
GSAP 2.4 1.6
WDR43 1.4 1.6
MCTP1 7.7 1.5
ZNF432 1.4 1.5
ADIRF 1.7 1.5
KIF3B 1.6 1.5
FAM214B 2.1 1.5
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UCHL3 2.0 1.5
EIF5A2 1.4 1.5
SOWAHC 1.6 1.5
ITPR3 1.7 1.5
BCAP31 1.6 1.5
RPLP0P2 12.1 1.5
SRPX2 1.6 1.5
C6orf1 1.3 1.5
MCC 1.5 1.5
HYOU1 2.0 1.5
GLRX 2.0 1.5
PPP3CC 1.4 1.5
PI4K2A 1.6 1.5
MYO5A 2.5 1.5
LINC00589 1.5 1.5
CREM 1.6 1.5
MAFK 1.5 1.5
FXR2 1.7 1.5
TNFAIP2 1.3 1.5
PAK2 1.4 1.5
ELL 1.9 1.5
ANKRD31 1.5 1.5
LOC105369313 2.8 1.5
LINC01204 2.1 1.5
FOSL1 1.7 1.5
LOC101928461 1.9 1.5
STEAP3 5.0 1.5
SCARB1 2.1 1.5
PARD6B 2.2 1.5
CORO2A 1.6 1.5
SLC35G2 1.5 1.5
TCEB3 1.5 1.5
STX3 1.5 1.5
DGKE 2.1 1.5
ARID3A 1.7 1.5
TRMT6 2.3 1.5
DNAJB11 1.4 1.5
MKLN1-AS 1.3 1.5
ATP6AP1 1.2 1.5
DDA1 2.0 1.5
NDUFAB1 2.0 1.5
GSS 1.9 1.5
DNAJC3 1.3 1.5

EGFR 1.4 1.5
GFM2 1.9 1.5
42798 1.3 1.5
AK5 1.9 1.5
LOC105369204 1.5 1.5
UBA6 2.1 1.5
NCLN 1.7 1.5
CLCA4 1.4 1.5
POLR3A 2.3 1.5
HSPA13 1.5 1.5
UBASH3B 1.6 1.5
ETNK1 1.9 1.5
FUCA2 1.3 1.5
DOCK4 12.8 1.5
NAV3 3.6 1.5
SPRY2 5.1 1.5
RIPK2 2.1 1.5
CNST 1.4 1.5
LURAP1L 1.3 1.5
PPFIBP1 1.5 1.5
ITPR2 2.0 1.5
PTPN1 1.9 1.5
UBE2M 1.9 1.5
ZNF276 1.5 1.5
FAM210B 3.5 1.5
NKX3-1 1.3 1.5
EDEM3 1.9 1.5
NR1D1 1.5 1.5
PWARSN 2.2 1.5
ABHD5 1.7 1.5
MYO10 2.6 1.5
PEX19 1.2 1.5
LOC100505622 1.5 1.5
MAP1A 1.8 1.5
ABHD3 1.7 1.5
PPP2R1B 1.5 1.5
NFKBIB 1.7 1.5
ATF3 1.4 1.5
BHMT2 2.9 1.5
GPR3 2.8 1.5
SCAMP3 1.3 1.5
LOC105376382 5.9 1.5
NEK10 1.6 1.5

LOC105379272 1.6 1.5
NEU1 1.7 1.5
SQSTM1 1.5 1.5
MAPKBP1 1.4 1.5
GDF11 1.3 1.5
SLFN5 1.6 1.5
LIG4 1.6 1.5
SMOX 1.7 1.5
PITPNC1 4.2 1.5
TLDC1 1.4 1.5
C15orf54 2.6 1.5
NCR3LG1 1.4 1.5
TNFAIP1 1.2 1.5
NIPA1 1.3 1.5
PRMT5 1.5 1.5
UHMK1 1.7 1.5
SATB2 2.6 1.5
DAP3 1.6 1.5
C3orf52 2.1 1.5
FLJ42627 1.4 1.5
METTL8 1.4 1.5
PDIA4 1.7 1.5
TBC1D9 1.7 1.5
DEDD2 1.4 1.5
FHOD3 2.5 1.5
G6PC 1.3 1.5
PFN2 1.3 1.5
ZNF622 2.1 1.5
C18orf8 1.4 1.5
TAB3 1.5 1.5
MAFG 1.6 1.5
ASB1 1.6 1.5
FAM214A 1.5 1.4
PNO1 2.0 1.4
ARFGEF2 1.4 1.4
MXD1 1.5 1.4
SLC22A1 1.4 1.4
TSPYL1 1.6 1.4
MSC 2.1 1.4
TOR1AIP2 1.4 1.4
PIP4K2C 1.5 1.4
MSI2 2.3 1.4
MFSD2A 1.6 1.4
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PTPRF 1.3 1.4
COQ10B 2.1 1.4
PSMC5 1.5 1.4
CHMP1B 1.6 1.4
PSMC4 1.8 1.4
NFKBIE 1.3 1.4
MYEF2 1.4 1.4
FRMD5 1.7 1.4
MORN4 1.5 1.4
BVES 2.6 1.4
LOC101928225 1.5 1.4
PAQR5 1.5 1.4
NFE2L1 1.3 1.4
LOC105373813 1.4 1.4
WIPI1 1.5 1.4
PTRH2 1.9 1.4
TUSC2 1.5 1.4
KLHL32 1.4 1.4
CEP104 1.3 1.4
CCBE1 2.4 1.4
GGT3P 1.6 1.4
TERF2IP 1.6 1.4
SLC37A2 2.5 1.4
ASCC3 1.4 1.4
SEC23B 2.2 1.4
ELOVL4 2.0 1.4
MCL1 2.0 1.4
HIVEP2 1.3 1.4
CMTM4 1.4 1.4
MTOR 1.8 1.4
ZNF121 1.6 1.4
ACSL4 1.5 1.4
ADGRA3 1.6 1.4
RGAG4 1.6 1.4
FIBCD1 1.9 1.4
ATG2A 1.5 1.4
PDLIM4 1.9 1.4
MIR2909 1.5 1.4
TMEM131 1.8 1.4
PPIF 3.4 1.4
EMC1 1.4 1.4
ASAP2 2.0 1.4
GTF2F2 1.5 1.4

PSMD14 2.0 1.4
LOC105372190 2.0 1.4
SUCO 1.6 1.4
PKIA 6.4 1.4
SLC39A2 1.5 1.4
LAMA1 1.5 1.4
MMP14 2.0 1.4
LOC105374556 2.7 1.4
UNC13B 1.6 1.4
SENP5 1.6 1.4
LRP10 1.2 1.4
GABARAPL2 1.7 1.4
HMGXB3 2.5 1.4
URB1-AS1 1.5 1.4
TRIM25 1.5 1.4
CEP170B 1.2 1.4
SREK1IP1 1.5 1.4
SPRY4 4.3 1.4
TRIM23 1.3 1.4
PLEKHB2 2.1 1.4
EMP1 1.9 1.4
SLC35D1 1.4 1.4
SPATA17 1.6 1.4
SERINC2 2.7 1.4
UBXN8 1.5 1.4
SEC61A2 1.7 1.4
FADS1 1.7 1.4
AMN1 2.3 1.4
UST 2.1 1.4
IGDCC4 1.6 1.4
ECE1 1.6 1.4
FMN1 2.0 1.4
SMTN 1.5 1.4
NRIP3 4.9 1.4
DENND2A 2.7 1.4
DKK2 2.5 1.4
GALNT15 1.7 1.4
SNORD116-12 1.4 1.4
IL4R 1.6 1.4
LARP4 1.4 1.4
SBNO1 1.7 1.4
EDEM1 2.4 1.4
HMGA1 2.0 1.4

PSMD3 1.6 1.4
ERRFI1 4.6 1.4
DPP9 1.9 1.4
NLRP1 1.7 1.4
FMNL2 3.8 1.4
GTPBP4 1.9 1.4
TANC1 1.3 1.4
PIKFYVE 1.5 1.4
BTBD9 1.3 1.4
G0S2 3.1 1.4
SDF2L1 1.9 1.4
CCNH 1.3 1.4
DBNDD1 1.7 1.4
HS3ST3B1 2.3 1.4
SAMD8 1.8 1.4
UBALD2 2.2 1.4
HTT 2.1 1.4
ATP1B3 1.4 1.4
CLDN12 1.3 1.4
STXBP1 2.0 1.4
OXSR1 1.6 1.4
RNF181 1.4 1.4
GDPD1 2.5 1.4
EFTUD1 1.6 1.4
FGFR1OP 1.4 1.4
HSPA5 1.7 1.4
ZFAND2A 1.5 1.4
SDE2 1.9 1.4
KLHL21 1.3 1.4
QSOX2 1.8 1.4
IDS 1.5 1.4
WNK4 1.4 1.4
ZMYND8 1.8 1.4
TMEM8A 1.4 1.4
SECISBP2 1.4 1.4
MAP4K4 1.5 1.4
PPTC7 1.6 1.4
ITPKC 1.3 1.4
PISD 1.4 1.4
TFRC 1.6 1.4
SELPLG 1.3 1.4
TMCO1 1.4 1.4
WWC3 1.4 1.4
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ZDHHC5 1.3 1.4
ATP6V1E1 1.6 1.4
CRADD 2.1 1.4
TOMM34 2.4 1.4
TMEM33 2.1 1.4
MTF1 1.4 1.4
GCC2 1.2 1.4
ANKRD52 1.7 1.4
LINC00884 1.2 1.4
PLCXD1 2.5 1.4
BAZ1A 1.6 1.4
CD109 1.3 1.4
GFPT1 1.7 1.4
NEDD4 1.4 1.4
GSG1 1.4 1.4
UAP1 1.4 1.4
LYST 1.8 1.4
FKBP4 2.0 1.4
BBS7 1.5 1.4
PIEZO1 1.3 1.4
RAB3IP 1.3 1.4
FBXO28 2.2 1.4
JARID2 1.8 1.4
RICTOR 1.5 1.4
AVL9 1.8 1.4
AUP1 1.4 1.4
TMEM2 1.8 1.4
MT2A 1.5 1.4
ARSG 1.8 1.4
NXPE3 1.3 1.4
ISOC1 3.1 1.4
PRKCD 1.6 1.4
RUSC2 1.4 1.4
BTN2A2 1.9 1.4
TSPAN14 2.9 1.4
GTF2B 1.5 1.4
HDAC9 1.5 1.4
VEPH1 3.0 1.4
JADE2 1.3 1.4
METTL13 1.3 1.4
DNAJC5 1.4 1.4
SLC3A2 1.5 1.4
RCL1 1.5 1.4

SLC17A5 1.4 1.4
UFD1L 1.6 1.3
CCL5 1.4 1.3
ORAOV1 1.7 1.3
BAZ2A 1.4 1.3
SLC33A1 1.7 1.3
RPRD1A 1.7 1.3
CHMP4C 1.4 1.3
BNC1 6.7 1.3
UGGT1 1.4 1.3
MAST4 1.4 1.3
CCND2 1.4 1.3
SLC2A6 2.0 1.3
TSTA3 1.2 1.3
ERLEC1 1.3 1.3
CD44 1.7 1.3
YIPF6 1.4 1.3
STYXL1 1.5 1.3
CUBN 1.9 1.3
KDSR 1.2 1.3
SMURF1 1.5 1.3
SRP54 1.6 1.3
PWAR5 2.6 1.3
ORAI1 1.5 1.3
SPTY2D1 1.5 1.3
COX7A2 1.5 1.3
TFAP2C 2.0 1.3
CDC37 1.6 1.3
CISD1 1.6 1.3
TRIM37 1.4 1.3
FAM91A1 1.7 1.3
HIST1H2AC 1.3 1.3
TOR4A 1.4 1.3
SERP1 1.3 1.3
AFF1 1.5 1.3
DESI1 1.8 1.3
PFKFB3 2.0 1.3
PLOD2 1.5 1.3
ARHGAP18 2.0 1.3
KLHL18 1.7 1.3
AKIRIN1 1.8 1.3
EIF1AY 1.6 1.3
EPB41L4B 1.5 1.3

PSMB7 1.5 1.3
HSPA9 1.7 1.3
TMED5 1.5 1.3
FAM96B 1.7 1.3
KIAA1217 1.3 1.3
TMED9 1.3 1.3
WSB2 1.3 1.3
ACO1 1.5 1.3
PTCHD3 1.4 1.3
ZBTB21 2.0 1.3
ATP6V1D 1.6 1.3
LOC105370145 1.3 1.3
PINK1 1.5 1.3
SLC4A4 2.8 1.3
IPPK 1.5 1.3
FAM129B 1.4 1.3
XPC 1.4 1.3
H2AFJ 1.3 1.3
ATP2C1 1.3 1.3
LHFPL2 1.8 1.3
ABHD2 1.5 1.3
CLCN3 1.4 1.3
BAK1 1.6 1.3
SMCR8 1.5 1.3
MOXD1 1.6 1.3
GSK3B 1.4 1.3
MBOAT7 1.3 1.3
CPNE3 2.3 1.3
LGALSL 1.5 1.3
CSRNP1 2.4 1.3
PRDM4 1.3 1.3
FLJ32255 1.4 1.3
TXNRD1 2.3 1.3
CANT1 1.4 1.3
SPIRE1 1.7 1.3
SFXN4 1.3 1.3
MCFD2 1.2 1.3
SEC14L2 1.3 1.3
PDHX 1.4 1.3
LRRC36 1.3 1.3
UBR4 1.5 1.3
SYNRG 1.4 1.3
UROD 1.4 1.3
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SYNE1 1.2 1.3
LOC102723721 1.4 1.3
PCNXL4 1.4 1.3
ACO2 1.4 1.3
SIK3 1.3 1.3
PHYH 1.4 1.3
PIN1 1.3 1.3
GAPVD1 1.6 1.3
MYBBP1A 1.6 1.3
RPTOR 1.3 1.3
PLAA 1.4 1.3
KCNMA1 1.7 1.3
PSEN2 1.3 1.3
DUSP1 1.4 1.3
CPEB1 1.9 1.3
TMEM120B 1.4 1.3
SERPINE1 2.1 1.3
KLC1 1.4 1.3
COQ6 1.3 1.3
TMEM57 1.4 1.3
ALG2 1.4 1.3

TMBIM1 1.2 1.3
GRPEL1 2.0 1.3
MLLT4 1.4 1.3
ATP6V1H 1.9 1.3
C2CD2L 1.8 1.3
PHLDA2 3.4 1.3
PVR 2.0 1.3
SLC19A2 1.4 1.3
CES1P1 1.3 1.3
PITRM1 1.3 1.3
DYRK1B 1.3 1.3
QPCTL 2.0 1.3
UEVLD 1.3 1.3
VEGFC 2.5 1.3
B4GALT7 1.2 1.3
VCP 1.4 1.3
BECN1 1.2 1.3
FXYD5 1.4 1.3
EIF4E 1.8 1.3
LOC727896 1.7 1.3
USP36 1.4 1.3

MICALL1 1.2 1.3
RASA2 1.3 1.3
ADIPOR1 1.3 1.3
SLAIN2 1.5 1.3
SLC22A5 1.2 1.3
CCT3 1.7 1.3
P4HA2 1.3 1.3
TRAF3IP2 1.3 1.3
TRMT1 1.7 1.3
DIS3 1.5 1.3
UCK2 1.7 1.3
ALAS1 1.6 1.3
CCNDBP1 1.2 1.3
ICOSLG 1.3 1.2
PTAR1 1.7 1.2
SLC30A7 1.7 1.2
GHITM 1.5 1.2
NRDC 1.4 1.2
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CXCL5
EREG
SERPINB2
CXCL8
IL13RA2
SERPINB4
CXCL1
MMP1
LPXN
TMEM158
IL24
TM4SF1
ESM1
LOC105376382
IL1B
STC1
TFPI2
LOC105376374
CTSS
ACPP
C3
PTGS2
CDCP1
CSF2
SLC22A4
MMP3
CYB5R2
PI3
RNF152
NFKBIZ
DENND2A
SOD2
FAM180A
CSF3
ANLN
C2orf81
LCE2A
DTNA
KIF2C

HMGA1
MAP3K5
AKR1B1
ITGA6
ODC1
LINC01291
PLAT
CPED1
SMURF2
TREM1
HAS2
PHLDA1
FJX1
CXCL3
CEP55
PLAU
ANPEP
TNFAIP3
DUSP6
FHOD3
CDK1
IRAK3
PID1
ITGA2
SEMA3A
VEPH1
LIF
IL1A
DLL4
AIM1
APCDD1
SPC24
PLK1
NT5E
FOSL1
CLDN1
AMPD3
CCL20
LOC105374171

RGCC
ERRFI1
SLC8A1-AS1
LOC105369848
CDKN3
OGFRL1
NCEH1
EMP1
COL10A1
SHCBP1
TOP2A
ELK3
SHC4
TMEM132A
PAQR5
ARHGAP18
RPSAP52
IL6
C10orf55
AOX1
IL11
PRLR
TRIM55
PLEK2
SERPINB3
ETV4
ANOS1
RASSF8
PDIA4
SLC39A14
WDFY2
HSD11B1
OR51A4
RIPK2
LCE1F
LMNB1
MARCH3
AK5
APLP1
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UAP1
INA
DUSP4
SLC16A6

SLC35G2
NEDD4L
CASP3
PDLIM4

ENC1
FCRLB
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CXCL5
IL24
SERPINB4
ACPP
SERPINB2
CXCL1
STC1
TM4SF1
IL13RA2
C3
EHF
CXCL8
CSF3
PI3
CTSS
CXCL3
COL10A1
EREG
CSF2
IL6
DTNA
PTGS2
IL1B
TMEM158
SLC16A6
TFPI2
CDCP1
LOC541472
C1QTNF1
SLC22A4
TMEM132A
SOD2
OR51A4
LOC105376374
FHOD3
P3H2
LCE1F
AMPD3
ANPEP

STEAP2
NFKBIZ
LCE2A
CCL20
LIF
MMP1
TREM1
TNFRSF21
GALNT15
RNF152
ATP13A3
SAT1
ARHGEF28
AOX1
SHC3
CPED1
LPXN
GM2A
IL11
MAP3K5
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INTRODUCTION

The critical role the tumor microenvironment (TME) plays in disease is underscored by

findings that changes within stromal cells can predict clinical outcome (1-3).  For this

reason, many groups have focused on how various stromal cell types impact

tumorigenesis.  For example, activated fibroblasts isolated from carcinomas (cancer-

associated fibroblasts or CAFs) promote preneoplastic cell growth and increase tumor

cell migration, invasion, and angiogenesis (4). Likewise, senescent fibroblasts, which

are also found in human tissue (5), support tumorigenesis through the promotion of

growth, invasion, and angiogenesis (6-8).  Intriguingly, both senescent fibroblasts and

CAFs express a plethora of pro-tumorigenic factors and in senescent cells this is

referred to as the senescence-associated secretory phenotype (SASP) (6, 9).

There is significant overlap between the pro-tumorigenic factors expressed in CAFs and

senescent cells.  Expression array analyses of human fibroblasts treated with granulin,

which renders a CAF-like phenotype (10), and fibroblasts isolated from human tumors

reveal that both populations express SASP factors ((11, 12) and reviewed in (13)). In

addition, CAFs isolated by laser capture micro-dissection (LCM) or via cell surface

marker expression similarly display SASP factor expression (1-4, 14).  Finally, cells that

fail to enter senescence following exposure to a senescence-inducing stress robustly

express SASP factors (15, 16), indicating that entrance into senescence is not a

prerequisite for SASP expression.  Together, these observations raise the possibility

that the mechanisms that govern SASP expression are conserved in many tumor-

promoting fibroblasts and are not dependent upon the induction of senescence.  Thus,
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identifying mechanisms that activate and sustain SASP expression will have a profound

impact on our understanding of the development of a pro-tumorigenic TME and the

identification of novel therapeutic targets.

Despite the profound impact the pro-tumorigenic SASP has on tumor cell growth and

progression, the mechanisms that lead to its activation and maintenance remain poorly

understood.  The majority of regulatory pathways elucidated thus far have focused on

SASP factor transcription, specifically by NFκB and C/EBPβ (15-19). NFκB’s

transcriptional activation of the SASP is dependent on the mitogen-activated protein

kinase p38 (p38MAPK) and the DNA-damage response protein ATM (19). However, in

other systems p38MAPK facilitates expression of cytokines including IL6 by impacting

post-transcriptional mRNA stability, possibly through the RNA binding-protein AUF1 (20-

22). Post-transcriptional regulation of the SASP by p38MAPK has yet to be

investigated.

Given the importance of the SASP on stromal-supported tumorigenesis, we investigated

the impact of p38MAPK on SASP-mediated tumor promotion.  We demonstrate that

inhibition of p38MAPK activity abrogates the tumor promoting capacity of senescent

fibroblasts.  Furthermore, inhibiting p38MAPK in CAFs inhibits their tumor promoting

abilities, demonstrating for the first time that regulatory mechanisms elucidated in

senescent stroma are applicable in CAFs.  Finally, we elucidate a p38MAPK-dependent

post-transcriptional SASP regulatory pathway that modulates RNA-binding protein

activity.
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METHODS

Cell lines and treatments

BJ human foreskin fibroblasts were obtained from Dr. Robert Weinberg (Massachusetts

Institute of Technology, Cambridge, MA) and were cultured as previously described

(23).  IMR90 human lung fibroblasts were purchased from ATCC (Manassas, VA) and

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10%

FBS (Sigma, St. Louis, MO) and 1% penicillin/streptomycin.  Patient-derived breast

cancer-associated fibroblasts were purchased from Asterand (Detroit, MI) and cultured

in DMEM supplemented with 10% FBS, 1 μg/mL hydrocortisone, 5 μg/mL transferrin, 5

μg/mL insulin, and 1% penicillin/streptomycin.  Fibroblasts were treated with bleomycin

sulfate (100 μg/mL, Sigma, St. Louis, MO) for 24 hours, followed by incubation in

normal culture medium for the time points indicated.  Fibroblasts were treated with

actinomycin D (10 μg/mL, Sigma, St. Louis, MO) for 24 hours, SB203580 (10 μM,

Millipore, Billerica, MA) for 48 hours, or CDD-111 (also referred to as SP-006, 1 μM,

Confluence Life Sciences, St. Louis, MO) for 48 hours unless indicated otherwise.

SB203580 and CDD-111 were replenished daily. Fibroblasts were treated with 2 fresh

changes of 4 mM sodium butyrate (NaB, Sigma, St. Louis, MO) for 72 or 120 hours.

RNA was isolated using TRI Reagent (Life Technologies, Carlsbad, CA) at the time

points indicated. HaCaT preneoplastic keratinocyte cells (obtained from Dr. Norbert E.

Fusenig, German Cancer Research Center, Heidelberg, Germany) stably expressing

click beetle red (CBR) luciferase (HaCat-CBR) (16) were grown in DMEM supplemented

with 10% heat-inactivated FBS and 1% penicillin/streptomycin (Sigma, St. Louis, MO).
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BPH1 preneoplastic prostate epithelial cells (obtained from Dr. Robert Weinberg,

Massachusetts Institute of Technology, Cambridge, MA) stably expressing CBR

luciferase (BPH1-CBR) were growth in DMEM supplemented with 10% non-heat

inactivated FBS and 1% penicillin/streptomycin.  All cells were cultured at 37 °C in 5%

carbon dioxide and 5% oxygen. No cell lines used were authenticated.

Plasmids

The luciferase reporter construct fused to the 3’ UTR of IL6 (lucIL6) was a gift from Dr.

Nicholas Davidson (Washington University School of Medicine, St. Louis, MO) and was

subcloned into the EcoRI site of pBABE-hygro.  Luciferase reporter constructs fused to

the 3’ UTR of GMCSF or GAPDH were purchased from Switch Gear Genomics (Menlo

Park, CA) and were subcloned in to pBABE-hygro using the SnabI and SalI restriction

sites.  Short hairpin RNA sequences targeting human AUF1 (shAUF1A: 5’-

AGAGTGGTTATGGGAAGGTAT-3’, shAUF1B: 5’-AGTAAGAACGAGGAGGATGAA-3’),

p38 (5’-GCCGTATAGGATGTCAGACAA-3’) and Hsp27 (5-

CCCGGACGAGCTGACGGTCAA-3’) were obtained from the Children’s Discovery

Institute’s viral vector-based RNAi core at Washington University in St. Louis, and were

supplied in the pLKO.1-puro backbone. Luciferase reporter assays were performed

using a plasmid containing an NFκB-responsive promoter driving expression of firefly

luciferase (NFκB-luc) and a plasmid encoding Renilla luciferase driven by the thymidine

kinase promoter, obtained from Dr. David Piwnica-Worms (Washington University

School of Medicine, St. Louis, MO).
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Senescence-associated β-galactosidase (SA-β-gal) staining

SA-β-gal staining was carried out as described previously (23).

Quantitative PCR

cDNA synthesis and quantitative PCR was performed using previously published

protocols and manufacturers’ instructions (42) (SYBR Green, Life Technologies,

Carlsbad, CA).  Primers for GAPDH (F: 5’-GCATGGCCTTCGGTGTCC-3’, R: 5’-

AATGCCAGCCCCAGCGTCAAA-3’), IL6 (F: 5’-ACATCCTCGACGGCATCTCA-3’, R:

5’-TCACCAGGCAAGTCTCCTCA-3’), IL8 (F:  5’-GCTCTGTGTGAAGGTGCAGT-3’, R:

5’-TGCACCCAGTTTTCCTTGGG-3’), MMP3 (F: 5’-

GTTTTGGCCCATGCCTATGCCCC-3’, R: 5’-GGAGTCAGGGGGAGGTCCATAGAGG-

3’), CCL20 (F: 5’-CTGCGGCGAATCAGAAGCAGC-3’, R: 5’-

CCTTCATTGGCCAGCTGCCGT-3’), lucIL6 (F: 5’-CGGGCGCGGTCGGTAAAGTT-3’,

R: 5’-AAACAACAACGGCGGCGGGA-3’), and lucGMCSF and lucGAP (F: 5’-

GAGAAACATGCGGAGAACGC-3’, R: 5’-AGCATGCACGATAGCCTTGA-3’) were

purchased from IDT.  GMCSF cDNA was amplified using a Taqman probe/primer set

(catalog number Hs00929873_m1, Life Technologies, Carlsbad, CA).

ELISA

Conditioned medium was generated by incubating cells for 24 hours in serum-free

medium.  Following collection, secreted IL6 protein levels were measured using the

human IL6 Quantikine ELISA kit (catalog number D6050, R&D Systems, Minneapolis,

MN).
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Western blot analysis

Cell pellets were lysed in buffer containing 50 mM Tris pH 8.0, 5 mM EDTA, 0.5% NP40

and 100 mM sodium chloride for 20 minutes at 4 C.  Protein concentration was

quantified using the Bradford Protein Assay (Bio-Rad, Berkeley, CA). The primary

antibodies used were: polyclonal AUF1 (Millipore, Billerica, MA, catalog number

07260MI) at 1:3000, polyclonal p-p38 (PhosphoSolutions, Aurora, CO, catalog number

p190-1802) at 1:1000, polyclonal p38 (Cell Signaling, Boston, MA, catalog number

9218) at 1:1000, monoclonal β-catenin (BD Biosciences, San Jose, CA, catalog number

610153) at 1:5000, and monoclonal α-tubulin (Abcam, Cambridge, MA, product number

ab6160) at 1:1000.  All secondary antibodies from the appropriate species were

horseradish peroxidase-conjugated (Jackson Laboratories, Bar Harbor, ME) and diluted

1:10000.

Virus Production

Virus was produced as described previously (23).

RNA-binding protein immunoprecipitation (RIP)

Cell pellets from 7x107 BJ fibroblasts were lysed in the same buffer used for western

blot analysis.  Protein concentration was analyzed using the Bradford Protein Assay

(Bio-Rad, Berkeley, CA).  Three mg of protein was used for each immunoprecipitation.

The following primary antibody was used: 30 μg of polyclonal AUF1 (Millipore, Billerica,

MA, catalog number 07260MI).  Equivalent amounts of normal IgG antibody (Cell

Signaling, Boston, MA) were used to control for specific immunoprecipitation.  Cell
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lysates were pre-cleared with 20 μL protein A Dynabeads (Life Technologies, Carlsbad,

CA) for 30 minutes at 4 C prior to immunoprecipitation.  100 μL Protein A Dynabeads

were used for each immunoprecipitation.  Beads were washed 3 times in 0.1 M

monosodium phosphate and then incubated in 0.1 M monosodium phosphate with the

appropriate antibody for at least 1 hour at room temperature.  Beads were then washed

3 times in Buffer A (1x PBS, 0.1% SDS, 0.3% sodium deoxycholate, 0.3% NP40),

followed by incubation for 30 minutes at room temperature in NT2 buffer (50 mM Tris

pH 7.4, 150 mM sodium chloride, 1 mM magnesium chloride).  Antibody-bound beads

were then added to pre-cleared cell lysates, and immunoprecipitated overnight at 4 C.

100 μL of cell lysate was removed from the IgG immunoprecipitation to be used for input

controls.  Immunoprecipitated beads were washed 2 times with each of the following

buffers: Buffer A, Buffer B (5x PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% NP40)

and Buffer C  (50 mM Tris pH 7.4, 10 mM magnesium chloride, 0.5% NP40).  Beads

were then resuspended in NT2 containing 0.1% SDS, 80 U RNase OUT (Life

Technologies, Carlsbad, CA), and 30 μg Proteinase K and incubated at 55 C for 30

minutes.  RNA was isolated from the beads by adding 1 mL of TRI Reagent (Life

Technologies, Carlsbad, CA).  Following cDNA synthesis, mRNA levels of SASP factors

were analyzed by qPCR using the primers and procedures described above.

Luciferase reporter assay

BJ fibroblasts were transiently transfected with plasmids encoding NFκB-luc and Renilla

luciferase. Renilla luciferase expression was used to standardize for transfection

efficiency. Transfection was performed using manufacturer’s protocol for the
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Lipofectamine 2000 reagent (Life Technologies, Carlsbad, CA).  Luciferase activities

were measured 48 hours post-transfection using live cell imaging as described (43).

Co-culture

Co-culture experiments were performed as previously described with the following

modifications (23).  1.3×104 fibroblasts were plated in black-walled 96 well plates

(Fisher Scientific, Pittsburgh, PA). Cells were incubated in starve medium (DMEM + 1%

penicllin/streptomycin) for 3 days before the addition of HaCat-CBR cells. SB203580

was refreshed daily until HaCaT-CBR plating. HaCat-CBR cells were cultured in starve

medium for 24 hours prior to plating on fibroblasts. 1.0×103 HaCat-CBR cells were

plated on fibroblasts and incubated for the indicated length of time.  At the times

indicated, D-luciferin (Biosynth, Naperville, IL) was added to a final concentration of 150

μg/mL.  After ten minutes, plates were imaged using an IVIS 100 camera (PerkinElmer,

Downers Grove, IL) using the following settings: exposure=10 s–5 min, field of view=15,

binning=16, f/stop=1, open filter.

Xenografts

1x106 BPH1-CBR preneoplastic prostate epithelial cells were co-injected with 1x106 BJ

human foreskin fibroblasts. Cells were injected subcutaneously in a 50:50 mixture of

DMEM:growth factor-reduced Matrigel (BD Biosciences, San Jose, CA) into the rear

flanks of female NcR nude mice (Taconic, Germantown, NY). In vivo bioluminescence

imaging was performed on the days indicated on an IVIS 100 (PerkinElmer, Downers

Grove, IL; Living Image 3.2, 1–60 s exposures, binning 4, 8 or, 16, FOV 15 cm, f/stop 1,
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open filter) following IP injection of D-luciferin (150 mg/kg; Biosynth, Naperville, IL). For

analysis, total photon flux (photons/sec) was measured from a fixed region of interest

over the xenografts using Living Image 2.6 (PerkinElmer, Downers Grove, IL).

RNA Sequence Analysis

Total RNA was isolated using TRI Reagent (Life Technologies, Carlsbad, CA) and the

RiboPure RNA isolation kit (Life Technologies, Carlsbad, CA) following the

manufacturer’s instructions. Ribosomal RNA was removed by poly-A selection using

oligo-dT beads. mRNA was then fragmented and reverse transcribed to yield double

stranded cDNA using random hexamers. cDNA was blunt ended, had an A base added

to the 3’ ends, and then had Illumina sequencing adapters ligated to the ends. Ligated

fragments were then amplified for 12 cycles using primers incorporating unique index

tags. Fragments were sequenced on an Illumina HiSeq-2000 (San Diego, CA) using

single reads extending 50 bases. Raw data was de-multiplexed and aligned to the

reference genome using TopHat.  Transcript abundances were then estimated from the

alignment files using Cufflinks. EdgeR was used for differential expression analysis.

Generation of CAFs

Primary breast tissue was collected without patient identifiers in compliance with a

protocol approved by the Brigham and Women’s Hospital (Institutional Review Board

93-085).  Fibroblasts were isolated (10, 11) and immortalized through expression of

hTERT-GFP (44) as previously described.
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To generate cancer-associated fibroblasts (CAFs), 3x106 human mammary fibroblasts

were co-injected with 1x106 MCF7-Ras tumor cells subcutaneously into nude mice.

After tumors reached 1 cm, mice were euthanized and CAFs were re-isolated by

digesting tissues in 1 mg/ml collagenase A for 1-4 hours at 37 °C with continuous

rotation.  Resulting cell suspensions were dispersed with an 18-gauge needle, washed

2 times with resuspension buffer (2% heat-inactivated fetal calf serum in sterile Hank’s

Balanced Salt Solution (HBSS)), and filtered through 70 m nylon mesh.  GFP+ CAFs

were then isolated by fluorescence-activated cell sorting and maintained under their

standard culture conditions. CAFs were confirmed to be human by staining with human

specific mitochondrial DNA (data not shown).

Oral dosage of p38MAPK inhibitor

The p38MAPK small molecule inhibitor CDD-111 (Confluence Life Sciences, Inc, St.

Louis, MO) was compounded at 516 ppm with Purina Rodent Chow #5001 (St. Louis,

MO) to generate a daily exposure of 80 mg/kg/day.  Female NcR nude mice (Taconic,

Germantown, NY) were fed ad libitum.

LPS challenge and TNFα ELISA

Female NcR nude mice (Taconic, Germantown, NY) were fed ad libitum for 3 days. 100

ng lipopolysaccharide (LPS) (Sigma, St. Louis, MO) was then administered by IP

injection.  Serum was collected 1 hour after LPS dosage.  TNFα levels were analyzed

by ELISA (R&D Systems, Minneapolis, MN)
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Staining of xenograft tumors

Following excision, tumors were fixed in 10% formalin and embedded in paraffin for

sectioning.  Standard H&E technique was used for all sections.  Serial sections were

stained for Ki67 (1:50, catalog number 550609, BD Bioscience, San Jose, CA), p16

(1:100, catalog number sc-1661, Santa Cruz Biotechnology, Dallas, TX) and vimentin

(1:700, catalog number ab45939, Abcam, Cambridge, MA).

Statistical Analysis

Data is presented as the mean ± SEM. Statistical significance was determined using the

Student’s t test, with a p value < 0.05 considered significant.  Percent mRNA remaining

was calculated as the fold mRNA in ActD-treated SIPS cells over untreated SIPS cells.

Overrepresented gene ontology terms in the expression data were identified using a

Fisher’s exact test, with a significance threshold of p < 0.05 as implemented in GOstat

(45).

RESULTS

p38MAPK activity controls the pro-tumorigenic properties of the SASP

SASP factors promote preneoplastic cell growth (6-8, 23, 24) and p38MAPK contributes

significantly to the initiation of SASP factor expression (25). To confirm this, senescent

fibroblasts (fibroblasts staining positive for senescence-associated β-gal, Supplemental

Fig. 3.1A) were treated with a highly specific small-molecule inhibitor of p38MAPK

(SB203580) (26).  Hsp27 is a direct downstream target of p38MAPK.  Therefore, to

confirm that our treatment inhibited the kinase activity of p38MAPK, we measured
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Hsp27 phosphorylation by Western blot analysis.  We found that SB203580 treatment

led to a reduction in Hsp27 phosphorylation, indicating successful inhibition of

p38MAPK activity (Fig. 3.1A).  As expected, SB203580 treatment of senescent

fibroblasts resulted in a significant reduction in the expression of SASP factors IL6, IL8,

and GMCSF (Fig. 3.1B).  To determine if p38MAPK activity was responsible for the

tumor-promoting activities of senescent cells, we performed co-culture experiments with

normal human fibroblasts induced to senesce by treatment with bleomycin (referred to

throughout as stress-induced premature senescence, SIPS) and preneoplastic HaCaT

keratinocyte cells expressing click beetle red (CBR) luciferase (HaCaT-CBR) (23).  Prior

to the addition of HaCAT-CBR cells, fibroblasts were treated with vehicle or SB203580

as indicated in Fig. 3.1C.  Senescent fibroblasts treated with vehicle increased the

growth of HaCaT-CBR cells compared to HaCaT-CBR cells cultured with young

fibroblasts (Fig. 3.1D), recapitulating our previously published observations (15, 23).

However, while inhibition of p38MAPK had no effect on HaCAT-CBR cells grown in the

absence of fibroblasts (Supplemental Fig. 3.1B), we found that p38MAPK inhibition

reduced the pro-tumorigenic activity of senescent fibroblasts by significantly reducing

HaCaT-CBR cell growth (Fig. 3.1D).

Given the potent impact of p38MAPK inhibition in co-culture experiments, we next

examined the impact of p38MAPK depletion on preneoplastic cell growth in xenograft

experiments.  P38MAPK was depleted from senescent fibroblasts (Fig. 3.1E), resulting

in a significant reduction in the level of p38MAPK-dependent SASP factor IL8 (Fig.

3.1F). To assess the impact of p38MAPK loss in vivo, young, senescent, or p38MAPK-
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depleted senescent fibroblasts were admixed with the preneoplastic epithelial cell line

BPH1 expressing CBR luciferase (BPH1-CBR) and injected subcutaneously into nude

mice.  Tumor growth was analyzed by bioluminescence imaging.  As expected,

senescent fibroblasts increased BPH1-CBR cell growth relative to young fibroblasts

(Fig. 3.1G).  However, depletion of p38MAPK and subsequent reduction in p38MAPK-

dependent SASP factor expression reduced tumor growth to the level observed when

BPH1-CBR cells were co-injected with young fibroblasts (Fig. 3.1G).  These results

indicate that expression of p38MAPK-dependent SASP factors within the TME plays a

pivotal role in preneoplastic cell growth in vivo.

The pro-tumorigenic SASP is subject to post-transcriptional regulation

We next sought to elucidate the mechanism by which p38MAPK regulates pro-

tumorigenic SASP factor expression.  Previous work demonstrated that p38MAPK

modulates NFκB-driven transcription of SASP factors including IL6 and IL8 (19).  To

determine that the effects of p38MAPK inhibition were transcriptionally based,

senescent fibroblasts were treated with the transcription inhibitor actinomycin D (ActD)

at several time points following bleomycin treatment.  SASP factor expression was

significantly inhibited when cells were treated with ActD 24 hours after bleomycin

treatment (Fig. 3.2A), a time point at which SASP factor mRNA was increased

(Supplemental Fig. 3.2A), but cells were not yet senescent (Supplemental Fig. 3.1A).

These results indicate that at this time point SASP factor expression is dependent on

transcription. Surprisingly, at 96 hours after bleomycin treatment, when cells displayed

morphological features characteristic of senescence including staining positive for SA-β-
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gal (Supplemental Fig. 3.1A), treatment with ActD failed to reduce SASP factor mRNA

levels (Fig. 3.2A).  These changes in mRNA were also reflected at the protein level.

Indeed, we found that IL6 protein levels in conditioned medium collected from cells

treated with ActD at 24 hours fell drastically compared to untreated cells.  In contrast,

when cells were treated with ActD at 96 hours, IL6 protein levels remained high (Fig.

3.2B).  Given p38MAPK inhibition at the later time point significantly reduced SASP

expression (Fig. 3.1B), these findings raised the possibility that p38MAPK impacts

SASP factor mRNA stability rather than NFκB-driven transcriptional activation upon the

acquisition of senescence.  To confirm that p38MAPK had no effect on NFκB-driven

transcription at the later time point, normal human fibroblasts were transduced with an

NFκB transcription reporter plasmid driving expression of luciferase (NFκB-luc).

Transduced cells were treated with bleomycin, and 72 hours later senescent cells were

treated with the p38MAPK inhibitor SB203580 for an additional 48 hours.  As expected,

when SB203580 treatment was initiated 72 hours after bleomycin treatment, there was

no significant effect on NFκB transcriptional activity (Fig. 3.2C). These results indicate

that after the establishment of senescence, p38MAPK has a profound effect on SASP

factor mRNA stability.

To address whether SASP factor mRNA stability was affected in cells undergoing

replicative senescence or other types of stress-induced senescence, normal human

fibroblasts were induced to senesce through telomere dysfunction (replicative

senescence, RS) or treatment with the histone deacetylase inhibitor sodium butyrate

(NaB).  Cells undergoing RS or NaB-induced senescence robustly induced expression
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of SASP factors, including IL6 and IL8 (Supplemental Fig. 3.2B and Supplemental

Fig. 3.2C, respectively).  Further, we found that SASP factor mRNAs were significantly

stabilized in cells that had undergone RS or NaB-induced senescence (Fig. 3.2D and

Supplemental Fig. 3.2D, respectively).  Significantly, SASP factor mRNA stabilization

was not limited to skin fibroblasts; when IMR90 human lung fibroblasts were treated

with bleomycin, they displayed a similar increase in SASP factor mRNA stability 96

hours post-bleomycin treatment (Supplemental Fig. 3.2E). Together, these data

indicate that SASP factor mRNAs are stabilized by a post-transcriptional regulatory

program that is active in fibroblasts from diverse tissues, regardless of the mechanism

through which senescence is induced.

p38MAPK post-transcriptionally regulates the SASP

Our results indicate that p38MAPK inhibition reduces SASP expression and TME-

dependent promotion of tumorigenesis but does not affect the activity of the primary

transcriptional regulator of the SASP, NFκB, following induction of senescence.

Interestingly, p38MAPK post-transcriptionally regulates IL6 and IL8 in other contexts

(20, 21). Thus, we investigated p38MAPK’s role in stabilizing SASP factor mRNA. We

first examined whether p38MAPK was active throughout the time course under

investigation. To assess p38MAPK activation, lysates were prepared from cells 24 or

96 hours after bleomycin treatment and examined for phosphorylated p38MAPK (p-p38)

by Western blot analysis. In agreement with previous findings (19), we observed that

phosphorylated p38MAPK increased from 24 to 96 hours following bleomycin treatment

(Supplemental Fig. 3.2F).  These kinetics were consistent with SASP factor mRNA
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stabilization, suggesting that p38MAPK activation regulates SASP factor mRNA

stability.

To elucidate p38MAPK’s role in regulating SASP factor mRNA stabilization, normal

human fibroblasts depleted of p38MAPK (shp38) were treated with ActD 24 or 96 hours

after bleomycin treatment (Fig. 3.2E). When treated with ActD 24 hours after bleomycin

treatment, cells expressing shSCR or shp38 displayed decreased SASP mRNA

stability, indicating that p38MAPK does not post-transcriptionally regulate SASP mRNAs

at this time point.  As expected, both IL6 and IL8 mRNA stability increased when shSCR

control cells were treated with ActD 96 hours after bleomycin treatment, although not to

the same extent as that observed in non-transduced fibroblasts.  In contrast, when

shp38 cells were treated with ActD 96 hours post-bleomycin treatment, they displayed

significantly reduced IL6 and IL8 mRNA stability when compared to cells expressing the

control hairpin (shSCR) (Fig. 3.2E). Similar results were obtained with a second

independent shRNA targeting p38MAPK (data not shown).

The 3’ UTRs of SASP factor transcripts control mRNA stabilization in stromal

cells

We next examined the mechanisms by which SASP factor mRNA was stabilized. The

3’ untranslated region (UTR) of many mRNAs contains protein binding motifs that alter

mRNA stability under diverse biological stimuli (27). To determine whether the 3’ UTRs

of SASP factor mRNAs govern post-transcriptional regulation, we utilized a luciferase

reporter cDNA fused to the 3’ UTR of IL6 (lucIL6) or GMCSF (lucGMCSF). A luciferase
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reporter cDNA fused to the 3’ UTR of GAPDH (lucGAP) was used as a control. Normal

human fibroblasts were stably transduced with the luciferase reporter constructs and

luciferase mRNA levels were monitored in response to ActD at the time points indicated

(Fig. 3.3A). Similar to our observations with the endogenous IL6 and GMCSF

transcripts, we observed that the stability of the lucIL6 and lucGMCSF transcripts

increased significantly when treated with ActD 96 hours compared to 24 hours after

bleomycin treatment (Fig. 3.3A). As expected, there was no significant change in the

stability of the lucGAP transcript (Fig. 3.3A), indicating that 3’ UTR-dependent mRNA

stabilization was specific for SASP factor mRNA and did not extend to all mRNAs in

response to senescence. These results indicate that the 3’ UTR of SASP factor

transcripts mediates increases in mRNA stability.

AUF1 directly binds to SASP factor mRNA and modulates their stabilization

AUF1 is a protein that binds the 3’ UTRs of many mRNAs including IL6, IL8, and

GMCSF and reduces their stability (28-30).  Furthermore, p38MAPK is known to impact

AUF1 activity in other settings (22), although a link between AUF1 and p38MAPK in the

post-transcriptional regulation of IL6 and IL8 has not been demonstrated. To examine

AUF1 binding to SASP factor mRNA in response to senescence, we utilized RNA-

binding protein immunoprecipitation (RIP) to examine AUF1 binding to SASP factor

mRNAs in response to senescence.  Cell lysates were collected 24 and 96 hours after

bleomycin treatment and subjected to immunoprecipitation with either an AUF1-specific

antibody or a nonspecific IgG; mRNA levels were normalized to the levels of each

transcript measured in the input fractions. We observed that AUF1 occupancy on IL6
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and IL8 mRNAs significantly decreased from 24 to 96 hours after bleomycin treatment

(Fig. 3.3B), corresponding with the increase in mRNA stability observed in Fig. 3.2. We

observed similar results for GMCSF and CCL20 mRNA, indicating that this mechanism

impacts many SASP factor mRNAs (Fig. 3.3B). This observation suggests that

decreased AUF1 binding leads to increased mRNA stability once senescence is

established.

We next sought to determine whether AUF1 was required to destabilize SASP mRNAs.

To address this question, we stably transduced normal human fibroblasts with two

independent short-hairpin RNA (shRNA) constructs targeting AUF1 (shAUF1a and

shAUF1b) (Fig. 3.3C).  AUF1-depleted cells were treated with bleomycin and 24 hours

later treated with ActD, a time at which AUF1 is bound to SASP factor mRNAs

displaying reduced stability (Fig. 3.3B).  In contrast to control cells, we found that AUF1

depletion significantly increased the stability of IL6 and IL8 mRNA at the early time point

when these mRNAs are normally unstable (Fig. 3.3D).  These data demonstrate that

before senescence is established, AUF1 destabilizes SASP mRNAs by binding to their

3’ UTRs.

To address whether the impact of p38MAPK on SASP mRNA stabilization was due to

modulation of AUF1–SASP mRNA binding, we carried out RIP analysis. Following

bleomycin treatment, normal human fibroblasts were treated with SB203580 or vehicle

control as described in Fig. 3.3E. In contrast to control cells in which AUF1 occupancy

decreased at the late time point, there was no decrease in AUF1 occupancy on IL8
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mRNA in p38MAPK-inhibited cells collected 96 hours after bleomycin treatment (Fig.

3.3E). Similar results were obtained for IL6 (data not shown). These observations

indicate that p38MAPK activation is required to release AUF1 from SASP factor mRNA.

Further, these studies suggest that loss of SASP factor mRNA stabilization in p38MAPK

inhibited cells (Fig. 3.2) is the result of a failure to remove AUF1 from SASP factor

transcripts.

p38MAPK-dependent factors are expressed in the TME of breast cancer lesions

The TME plays a pivotal role in tumor progression, and recent expression analyses

indicate that TME-specific expression changes are predictive of clinical outcome (1-3).

Both senescent fibroblasts and CAFs express pro-tumorigenic SASP factors, raising the

intriguing possibility that the regulatory mechanisms that control SASP expression in

senescent cells also operate in cancer-associated stroma.  Given the importance of

p38MAPK in SASP factor expression, we carried out a meta-analysis to establish a list

of p38MAPK-regulated genes in senescent fibroblasts and evaluated their expression in

the TME of human breast cancers (Fig. 3.4A).  We performed RNA sequence analysis

(RNA-seq) of young, senescent, and p38MAPK-inhibited senescent human fibroblasts

and observed that IL6 and IL8 expression was p38MAPK-dependent.  Along with

previously identified factors, we found that 50 additional SASP factors were p38MAPK-

dependent, including GMCSF, GCSF, IL1α, IL1β, CXCL1, CXCL2, CXCL5, CCL20,

MMP1, and MMP7 (Supplemental Table 3.1, Fig. 3.4A).  A subset of these factors was

validated by qRT-PCR (Supplemental Fig. 3.3A). Gene ontology (GO) process

analysis performed on the p38MAPK-dependent factors demonstrated that genes
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related to the regulation of inflammation, chemotaxis, cell adhesion, angiogenesis, and

proliferation were significantly enriched in this gene set (Fig. 3.4B).

We next compared our p38MAPK-dependent SASP list to factors significantly over-

expressed in the TME of breast cancer (BC) lesions.  We examined three data sets

generated from microarray analyses of normal stroma versus cancer-associated stroma

that had been obtained by laser capture micro-dissection of breast tissue (1-3) (Fig.

3.4A).  Of the 50 p38MAPK-dependent factors identified in senescent fibroblasts, we

found that 29 were expressed in the stroma of the Finak breast cancer dataset (1),

including CXCL2 and IL24.  Seventeen factors were expressed in the TME of the Ma

breast cancer data set (2), including IL1β.  Finally, 7 factors overlapped with the

Karnoub breast cancer data set (3), including CCL20 (Supplemental Table 3.1).

Furthermore, CCL20, CXCL5, IL11, IL1β, IRAK3, MMP1, MPP7, and SOD2 were

expressed in the BC-associated stromal compartment of at least two studies (Fig.

3.4C).  Of note, CCL20, CXCL5, IL11, IL1β, and MMP1 are factors with known pro-

tumorigenic activities (31-35). We observed that BC-associated stromal genes

compose a large percentage of the total number of p38MAPK-dependent SASP factors

involved in the regulation of inflammation, chemotaxis, angiogenesis, and cell adhesion

based on GO process analyses (Fig. 3.4B).  Given that these factors are associated

with disease progression, our findings raise the possibility that anti-p38MAPK therapy

could significantly impact tumor progression in humans.

Inhibition of p38MAPK abrogates the pro-tumorigenic activities of CAFs
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Expression of p38MAPK-dependent factors within the stroma of breast cancer lesions

raised the possibility that they contribute to the tumor promoting activities of CAFs.

Therefore, we examined whether inhibition of p38MAPK would abrogate the tumor-

promoting activities of CAFs as it did for senescent fibroblasts.  To generate CAFs, we

obtained normal human mammary fibroblasts from reduction mammoplasty (NMF),

admixed them with MCF7-Ras breast carcinoma cells and injected the cell mixture into

immunocompromised mice and allowed tumors to grow.  Human CAFs were isolated

from these tumors and we assessed their tumor-promoting potential by co-culturing

them with preneoplastic HaCaT skin keratinocytes expressing CBR luciferase (HaCaT-

CBR). As expected, CAFs significantly stimulated HaCaT-CBR cell growth compared to

HaCaT-CBR cells cultured with parental NMF fibroblasts (Fig. 3.4D).  To investigate the

importance of p38MAPK-dependent CAF factors, we inhibited p38MAPK in CAFs with

SB203580 and assessed their ability to promote preneoplastic cell growth.  Similar to

what we observed when senescent fibroblasts were treated with the p38MAPK inhibitor

SB203580 (Fig. 3.1C), CAFs treated with SB203580 failed to promote HaCaT-CBR cell

growth (Fig. 3.4D).  These results indicate that p38MAPK regulates the tumor-

promoting activity of CAFs.  Together with our meta-analysis and expression of

p38MAPK-dependent genes in the stromal compartment of human breast cancer

lesions, these observations suggest that p38MAPK plays a central role in sustaining the

expression of tumor-promoting factors.  Thus, stromal p38MAPK represents a novel

therapeutic target for senescent and non-senescent cancer-associated stromal

compartments in breast cancer.
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p38MAPK inhibition compromises the tumor-promoting capacity of the

microenvironment

The critical importance of SASP factor expression in our tumor models and our work to

uncover the mechanisms that sustain SASP factor expression identified p38MAPK as a

central player in SASP expression in senescent cells as well as in CAFs.  Given our

findings that p38MAPK-dependent factors are expressed in human breast cancer

lesions, we evaluated the feasibility of targeting p38MAPK in a preventative and

therapeutic setting.  Several p38MAPK inhibitors have entered phase II clinical trails for

rheumatoid arthritis and thus have proven safe in a nonlethal disease (36, 37). We

obtained a p38MAPK inhibitor (CDD-111, also referred to as SD-0006 (38), Confluence

Life Sciences) and compounded it into mouse chow.  CDD-111 was chosen because it

can be orally administered and shows high specificity for the p38MAPK α subunit (38).

Indeed, extensive analysis of CDD-111 revealed that it is selective for p38MAPK α over

fifty other kinases including p38MAPK β, γ, and δ.  Furthermore, the IC50 for inhibiting

tumor necrosis factor-α (TNFα) release in vitro and in vivo was less than 200 nM (38).

Treatment of senescent cells with CDD-111 in vitro revealed that it effectively reduced

SASP expression as evidenced by a significant reduction in IL6 and IL8 levels (data not

shown).

To establish the impact of orally administered CDD-111 on p38MAPK activity in our

system, mice were placed on CDD-111 (p38i) or control chow for three days,

challenged with LPS, and serum TNFα levels were measured.  We found that mice

receiving oral p38i failed to mount a robust TNFα response following an LPS challenge
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compared to animals receiving control chow (Supplemental Fig. 3.3B).  We also

verified that p38i inhibited SASP expression in vivo.  Senescent normal human

fibroblasts were injected subcutaneously into the rear flanks of nude mice maintained

on control or p38i chow.  Ten days after injection the cells were removed, RNA was

isolated, and the levels of human IL8 were analyzed by qRT-PCR.  Senescent

fibroblasts isolated from mice on p38i had significantly less IL8 mRNA than senescent

fibroblasts isolated from mice on control chow (Fig. 3E), demonstrating that CDD-111

inhibited SASP expression in vivo.

We next evaluated the p38MAPK inhibitor’s efficacy in a xenograft setting.  BPH1-CBR

cells admixed with young or senescent fibroblasts were subcutaneously injected into

mice maintained on control or p38i chow (Fig. 3.4F).  Bioluminescence analysis of

tumor growth revealed that p38i significantly reduced the growth of BPH1-CBR cells co-

injected with senescent fibroblasts (Fig. 3.4G & H).  Analysis of cellular proliferation

(Ki67 staining) revealed that senescent fibroblasts significantly increased BPH1 cell

proliferation compared to when BPH1 cells were co-injected with young fibroblasts (Fig.

3.5A).  Importantly, the increase BPH1 proliferation that was noted in the presence of

senescent fibroblasts was markedly reduced when mice were maintained on p38i

versus control chow (Fig. 3.5A). These data demonstrate that the reduced tumor size

observed in response to p38i administration was a result of decreased epithelial cell

proliferation.  Importantly, the difference in epithelial cell proliferation between tumors

containing senescent stroma from p38i- and control-fed mice was not due to differences

in stromal composition between these tumor types, as staining for a senescence
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marker, p16, and a fibroblast marker, vimentin, demonstrated that 1) senescent

fibroblasts persisted throughout the time course of the experiment regardless of

p38MAPK inhibition and 2) the stromal composition of treated and untreated tumors

was similar.  Vascularity and myeloid infiltration were also investigated in these tumors.

No significant differences in either vascularity or leukocyte infiltration were noted (data

not shown).  Administration of CDD-111 to mice injected with BPH1 cells admixed with

young fibroblasts also resulted in a decrease in epithelial cell growth, although not to the

same extent as that observed in tumors containing senescent fibroblasts.  Oral

administration of CDD-111 had no significant impact on BPH1-CBR cells injected alone

(data not shown).

To address the effectiveness of p38MAPK inhibition in a therapeutic setting, mice were

injected with BPH1-CBR cells admixed with senescent fibroblasts and tumors were

allowed to grow for one week until the average tumor volume reached 74 mm3.  Mice

were then administered control or p38i chow and bioluminescence imaging was used to

monitor tumor growth. Significantly, tumor growth was arrested in mice receiving p38i.

In contrast, tumors in mice receiving control chow continued to show significant growth

(Fig. 3.5B).

To investigate the applicability of orally administered p38i in CAF-containing

microenvironments, we obtained primary CAFs (pCAFs) from a lesion removed from a

patient with invasive breast cancer.  We subcutaneously injected BPH1 cells alone or

BPH1 cells admixed with pCAFs into nude mice fed either control or p38i chow as
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described for the experiments in Fig. 3.4F.  As expected, there was no difference in

BPH1 cell growth whether mice were fed control or p38i chow (Fig. 3.5C).  Importantly,

in mice receiving control chow, BPH1 cells admixed with pCAFs grew significantly more

than BPH1 cells injected alone, verifying that our patient-derived fibroblasts were bona

fide CAFs (Fig. 3.5C).  pCAF-mediated BPH1 growth was significantly inhibited in mice

receiving p38i (Fig. 3.5C), similar to what was observed with senescent fibroblast-

mediated BPH1 growth (Fig. 3.4G and H). These findings, combined with those from

p38MAPK inhibition of senescent-fibroblast driven tumors, suggest that p38MAPK is a

viable, stromal specific therapeutic target that may show efficacy in diverse tumor

microenvironments and diverse tumor types

DISCUSSION

The regulation of SASP expression is complex, involving the DNA damage response

(16), HDAC1 activity (15), and transcriptional regulation by NFκB and C/EBPβ (17-19).

p38MAPK perhaps best exemplifies the complexity of SASP regulation.  Previous

reports have shown that p38MAPK impacts NFκB-driven transcriptional control of SASP

expression immediately following exposure to a senescence-inducing signal (19).  In our

system, p38MAPK inhibition had no effect on NFκB transcriptional activity when it was

initiated after cells acquired the senescent phenotype as evidenced by SA-β-gal

staining.  However, p38MAPK inhibition did have a significant impact on SASP factor

mRNA stability.  Our data are consistent with p38MAPK playing a dual role in SASP

factor expression.  We hypothesize that SASP factor expression is achieved through
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early rounds of transcription followed by post-transcriptional mRNA stabilization, both of

which require distinct p38MAPK functions.

Inhibiting the SASP represents a novel stromal-specific therapeutic cancer modality that

could be beneficial at multiple stages of tumorigenesis.  We have demonstrated that

senescent cells are present in the microenvironment before the formation of

preneoplastic lesions and that SASP factors promote preneoplastic cell growth (15, 23).

The SASP also promotes more aggressive malignancies by increasing angiogenesis

and invasion (9, 39).  Finally, the SASP is hypothesized to promote later events in

cancer progression including metastasis and recurrence through its promotion of cancer

stem cell formation and chemo-resistant niches (7, 40, 41).  Together, these findings

suggest that inhibition of the SASP will prevent the development and/or progression of

malignancies.  p38MAPK could provide an ideal target as it impacts both the

transcriptional and post-transcriptional regulation of SASP (19) and may be particularly

effective because it can inhibit SASP expression after the stabilization of SASP mRNAs

has already occurred.

Our findings that oral administration of a p38MAPK inhibitor dramatically inhibits SASP-

mediated tumor growth driven by senescent fibroblasts and CAFs indicates for the first

time that the tumor-promoting capabilities of senescent and cancer-associated

fibroblasts are mediated through similar signaling pathways.  Furthermore, these

findings suggest that p38MAPK is an important therapeutic target with wide applicability

in a variety of tumor-promoting microenvironments.  This is strengthened by our in silico
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analysis of the stromal compartment of breast cancer lesions, which we show express

many p38MAPK-dependent genes.  These data are intriguing in light of the fact that

p38MAPK inhibitors have moved into phase II and III clinical trials for inflammatory

diseases including rheumatoid arthritis, Crohn’s disease, and psoriasis, demonstrating

their tolerability in patients (36, 37).  Given our findings, we suggest that p38MAPK

inhibitors warrant investigation for use as anti-neoplastic therapy.
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Fig. 3.1: p38MAPK activity controls the pro-tumorigenic properties of the SASP A)

Western blot analysis demonstrating that SB203580 treatment inhibits p38MAPK

activity. SB203580 treatment significantly impacts phosphorylation of p38MAPK’s direct

downstream target, Hsp27. B) Schematic of protocol to generate SIPS in BJ fibroblasts.
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Cells were treated with bleomycin for 24 hours.  SB203580 (SB) treatment or vehicle

control was initiated 48 hours after removal of bleomycin (bleo).  96 hours after

bleomycin treatment, cells were collected for expression analysis of IL6, IL8, and

GMCSF by qRT-PCR. Representative experiment, n=4. C) Timeline of bleomycin (bleo)

and SB203580 treatment of BJ fibroblasts in (D).  SB203580 was replenished daily until

co-culture with HaCAT-CBR cells was initiated. D) Growth of human keratinocytes

expressing click beetle red (HaCaT-CBR) measured 8 days following initiation of co-

culture with indicated fibroblast populations. Representative experiment, n=3. E) BJ

fibroblasts were depleted of p38MAPK through the expression of shRNA (shp38) or

control shRNA (shSCR). p38 depletion was verified by western blot analysis. F)

Expression of IL8 was analyzed by qRT-PCR 96 hours following bleomycin treatment in

p38MAPK-depleted (shp38) or control (shSCR) fibroblasts and represented relative to

young fibroblasts expressing shSCR control.  Representative experiment, n=3. G) BJ

fibroblasts expressing shp38 or shSCR were treated with bleomycin for 72 hours prior to

injection. Indicated fibroblast populations were admixed with preneoplastic epithelial

cells expressing click beetle red (BPH1-CBR cells) and injected subcutaneously into the

rear flanks of female NcR nude mice. Luciferase activity was measured using live,

whole-animal imaging to monitor BPH1 cell growth relative to baseline signal. Data

represents mean + SEM, n=8. Data represents mean + SD unless otherwise stated.  *

indicates p<0.05. SIPS: stress induced premature senescence.
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Fig. 3.2: p38MAPK post-transcriptionally regulates the SASP A) Schematic of

protocol to generate SIPS in BJ fibroblasts.  Cells were treated with bleomycin for 24

hours.  Cells were subsequently treated with actinomycin D (ActD) for 24 hours.  The

ActD treatment was initiated 24 or 96 hours after the completion of bleomycin treatment.
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IL6, IL8, GMCSF, and CCL20 mRNA levels were analyzed by qRT-PCR. To account

for changes in gene expression, levels mRNA in ActD-treated cells were normalized to

the levels observed in untreated cells from the respective time points (% mRNA

remaining). Representative experiment, n=3. B) ELISA analysis of IL6 protein levels in

conditioned media from cells treated as in (A). Representative experiment, n=4. C) BJ

fibroblasts were treated with bleomycin (bleo) for 24 hours and with SB203580 (SB) as

indicated. 96 hours post bleomycin treatment cells were transiently transfected with an

NFκB activity luciferase reporter. Luciferase activity was measured by live-cell imaging

48 hours post transfection. Representative experiment, n=2. D) Young BJ fibroblasts

(35 population doublings, PD) or replicatively senescent BJ fibroblasts (PD97) were

stained for senescence-associated β-galactosidase to confirm senescent phenotype

(left).  Cells were treated with ActD and IL6 mRNA levels were analyzed by qRT-PCR.

Representative experiment, n=3. E) BJ fibroblasts expressing a control hairpin (shSCR)

or shp38 were treated for 24 hours with ActD at 24 or 96 hours after the completion of

bleomycin treatment.  IL6 and IL8 mRNA levels were analyzed by qRT-PCR.

Representative experiment, n=2.

Data represent mean + SD.  * indicates p<0.05. SIPS: stress-induced premature

senescence.
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Fig. 3.3: AUF1 directly binds to SASP factor mRNA and modulates SASP factor

stabilization A) BJ fibroblasts were stably transduced with luciferase constructs fused

to the 3’ untranslated regions (UTR) of IL6, GMCSF, and GAPDH (lucIL6, lucGMCSF,

and lucGAP).  Cells were treated with ActD at 24 or 96 hours following bleomycin

treatment.  Luciferase mRNA levels were analyzed by qRT-PCR. Representative

experiment, n=3. B) RNA immunoprecipitation was performed for AUF1 using BJ

fibroblast cell lysates collected 24 or 96 hours after bleomycin treatment.  IL6, IL8,

GMCSF, and CCL20 mRNA levels in immunoprecipitations were analyzed by qRT-

PCR. Representative experiment, n=4. C) BJ fibroblasts were transduced with shRNAs

to deplete AUF1 (shAUF1A and shAUF1B) or a control shRNA (shSCR).  Protein levels
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were analyzed by western blot analysis. Note: there are four AUF1 isoforms present

and α-tubulin was used as a loading control. D) 24 hours following bleomycin treatment,

BJ fibroblasts expressing a control hairpin shSCR, shAUF1A, or shAUF1B were treated

with ActD for 1 hour. IL6 and IL8 mRNA levels were analyzed by qRT-PCR.

Representative experiment, n=2. E) RNA immunoprecipitation for AUF1 was performed

on BJ fibroblasts treated with bleomycin (bleo) and SB203580 (SB) as indicated.  The

level of IL8 mRNA in the AUF1 immunoprecipitation was measured by qRT-PCR.

Representative experiment, n=3. Data represent mean + SD. * indicates p<0.05.
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Fig. 3.4: p38MAPK-dependent factors are expressed in the TME of breast cancer

lesions A) RNA-seq analysis was performed on young fibroblasts, senescent

fibroblasts, and senescent fibroblasts treated with SB203580. RNA-seq results were
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analyzed to determine the number of factors upregulated in response to senescence

(SASP factors) and the number of p38MAPK-dependent factors. These results were

also analyzed for overlap with the expression profiles of breast cancer (BC)-associated

stroma. B) GO processes analysis was performed on p38MAPK-dependent SASP

factors. Results are presented as the percent of p38MAPK-depenedent genes assigned

to the processes shown. Black regions of the bars represent the percent of p38MAPK-

dependent SASP factors assigned to each process that are also expressed in BC-

associated stroma. The significance threshold was set at p < 0.05. C) p38MAPK-

dependent SASP factors that are expressed in more than one BC-associated stroma

data set. **indicates expression in 2 BC-associated stroma datasets, ***indicates

expression in 3 BC-associated stroma datasets. D) Tumor-educated human CAFs and

their normal isogenic counterparts (NMF) were treated with SB203580 (SB) or vehicle

as indicated and replenished daily until co-culture with HaCAT-CBR preneoplastic

keratinocytes was initiated. Luciferase activity was measured using live-cell imaging 4

days following initiation of co-culture to monitor HaCaT cell growth. Representative

experiment, n=2. E) Senescent BJ fibroblasts in matrigel were injected subcutaneously

into the rear flanks of nude mice fed either control or p38i chow.  Cells were removed 10

days after injection and IL8 mRNA levels were measured using qRT-PCR.

Representative experiment, n=4. F,G and H) Xenografts of BPH1-CBR cells co-injected

with senescent BJ fibroblasts (SIPS) into female NcR nude mice.  Control or the p38i

compounded chow were performed as outlined in (F).  Tumor are shown in (G).  Tumor

growth was analyzed by bioluminescence imaging (H). Data represent mean + SEM,

n=8.
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Data represent mean + SD unless otherwise stated. * indicates p<0.05. SIPS: stress

induced premature senescence.
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Fig. 3.5: p38MAPK inhibition is effective in both senescent fibroblast and CAF-

driven tumors A) Tumors were removed at the endpoint of the experiment described in

(Fig. 3.4F) and stained for Ki67 (dashed line demarks the margin between the mouse



117

and xenograft), p16, and vimentin.  H&E images were captured with a 10X objective, all

other images were captured with a 20X objective.  Representative images, n=2. B)

Xenograft growth of BPH1-CBR cells co-injected with senescent BJ fibroblasts (SIPS)

into female NcR nude mice.  Tumors were allowed to grow for 1 week after injection, at

which time mice were placed on control or p38i-compounded chow.  Tumor growth was

analyzed by bioluminescence imaging.  Data represent mean + SEM, n=16. * indicates

significance between 1 and 3 weeks post-injection in mice fed control chow. C)

Xenografts of BPH1-CBR cells co-injected with pCAFs into female NcR nude mice.

Mice were fed control or p38i chow as outlined for the experiment in Fig. 3.4F.  Tumor

growth was analyzed by bioluminescence imaging.  Data represent mean + SEM, n is

indicated for each sample. * indicates p<0.05. NS: not significant.
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3.1:
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Supplemental Fig. 3.1: p38MAPK activity controls the pro-tumorigenic properties

of the SASP A) BJ fibroblasts were fixed for senescence-associated -galactosidase 24

or 96 hours after treatment with bleomycin. n=3. B) HaCAT-CBR preneoplastic skin

keratinocytes were treated with SB203580 or vehicle for 72 hours. Representative

experiment, n=3. Data is presented as mean  SD. * indicates p  0.05.
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Supplemental Fig. 3.2: p38MAPK post-transcriptionally regulates the SASP A) BJ

fibroblasts were treated with bleomycin for 24 hours. Cells were collected either 24 or

96 hours after treatment with bleomycin and upregulation of SASP factors IL6, IL8 and

GMCSF was verified by qRT-PCR. Representative experiment, n=3. B) BJ fibroblasts

were induced to senesce through telomere attrition (replicative senescence, RS).
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Upregulation of SASP factors IL6 and IL8 was verified by qRT-PCR. Representative

experiment, n=3. C) BJ fibroblasts were treated with sodium butyrate (NaB) for 120

hours. Upregulation of SASP factors IL6 and IL8 was verified by qRT-PCR.

Representative experiment, n=3. D) BJ fibroblasts were treated with NaB for 72 or 120

hours followed by actinomycin D (ActD) at the time points indicated. IL6 and IL8

expression was quantified by qRT-PCR. Representative experiment, n=3. E) IMR90

human lung fibroblasts were treated with bleomycin and ActD as described in Fig. 3.2B.

IL6 and IL8 expression was quantified by qRT-PCR. Representative experiment, n=2. F)

BJ fibroblast cell lysates 24 or 96 hours post bleomycin treatment were analyzed for

phosphorylation of p38MAPK (p-p38). Total p38MAPK was used as a loading control.

Representative experiment, n=3. Data is presented as mean + SD. * indicates p  0.05.

SIPS: stress-induced premature senescence.
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Supplemental Fig. 3.3: p38MAPK-dependent factors are expressed in the stromal

compartment of breast cancer lesions A) A subset of p38MAPK-dependent SASP

factors was validated by qRT-PCR in young, senescent or senescent fibroblasts treated

with SB203580. Data represent mean + SD. B) Female NcR nude mice were given
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control or p38i chow for 3 days prior to challenging with 100ng LPS. 1 hour post LPS

injection, mice were sacrificed and serum was collected for analysis by TNF ELISA.

Data represent mean + SEM, n=3. * indicates p  0.05. SIPS: stress-induced premature

senescence.
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CHAPTER 4

Conclusions and Future Directions
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Conclusions

Over the last decade, extensive research has greatly increased our understanding of

the SASP, its physiological and pathological roles, and its regulation.  It is now apparent

that the SASP is not a uniform, unchanging phenotype, but rather a complex response

to various stresses which is highly context-dependent.  The factors that make up the

SASP vary depending on the cell type, the senescence-inducer, and the environment.

Further, the magnitude of induction of individual factors is also dependent on the

context.

The complexity and variability of SASP induction is reflected by the complexity of the

regulatory networks which induce and restrain the many SASP factors.  This work

further illustrates that the SASP is not regulated by any single pathway, but rather by a

complex network of interrelated stress-responders, kinases, transcription factors,

mRNA-stability proteins, and other signaling and effector molecules.  The SASP is

initially upregulated via transcription, and multiple transcription factors are required to

induce the many SASP factors.  NF-κB and C/EBPβ are the canonical SASP-inducing

transcription factors, but many SASP-factors are upregulated independently of their

action (1–4).  Chapter Two of this dissertation focuses on understanding the regulation

of the SASP factor OPN. OPN was previously known to be independent of NF-κB in

response to senescence (4).  We identified C/EBPβ as a necessary regulator of OPN,

illustrating that while NF-κB and C/EBPβ regulate many of the same SASP factors, their

target gene sets are not identical (Fig 2.2).  Further, we showed that C/EBPβ directly

binds to the OPN promoter and that binding of exogenous LAP2, the full-length
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activating C/EBPβ isoform, increases at the OPN promoter as well as the promoters of

known C/EBPβ targets IL-6 and IL-8 (Fig 2.3).

Given the potent pro-tumor potential of senescent stromal-derived OPN, I sought to

understand how it was regulated in senescent fibroblasts.  Through this work, we

identified the novel SASP regulator c-Myb (Fig 2.4).  C-Myb binds to the OPN promoter

and this binding is required for promoter activation in response to senescence (Fig 2.5).

C-Myb also binds to the promoters of IL-6 and IL-8.  Further, using a combination of a

microarray and RNAi approach, I identified 59 additional putative c-Myb targets (Fig

2.6).  Of these 59 putative c-Myb targets, 47 were also putative C/EBPβ targets.  The

high degree of overlap between these two gene sets suggests that c-Myb and C/EBPβ

often co-regulate many SASP factors.  Although it has not been shown in this system, c-

Myb and C/EBPβ can directly interact and co-activate transcription, raising the

possibility that such a mechanism may be at play here (5). Given the importance of this

interaction in other systems, a key avenue of future research will be to explore whether

c-Myb and C/EBPβ interact directly in senescent cells, whether this interaction is

required for transcriptional activation of SASP factors, and how this interaction is

regulated.  Underscoring the importance of c-Myb and C/EBPβ for the induction of many

important SASP factors, I found that fibroblasts depleted of either c-Myb or C/EBPβ had

significantly reduced ability to promote preneoplastic epithelial cell growth in cocultures

(Fig 2.7).
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While transcription plays a critical role in the induction of SASP factors, post-

transcriptional stabilization of SASP factor mRNA is also important for the robust

induction of the SASP.  In Chapter 3, we identified this post-transcriptional regulatory

mechanism and described its importance for the induction of SASP factors including IL-

6, IL-8, and GM-CSF (Fig 3.2).  It is not known whether OPN is regulated in this

manner, as OPN mRNA is extremely stable at basal conditions, making it difficult to

assess whether it is further stabilized in senescent cells (6, 7). Interestingly, while

transcriptional induction of SASP mRNA occurs relatively quickly following exposure to

a senescence-inducing stimulus, the stabilization of SASP factor mRNAs occurs only

after the full establishment of cellular senescence days later.

The increase in the stability of many SASP factor mRNAs is dependent on p38MAPK

(Fig 3.2).  In response to senescence, p38MAPK is activated by phosphorylation and

plays at least two distinct roles in SASP factor induction.  First, p38MAPK is important

for the transcriptional induction of SASP factors via initiation of NF-κB activity (2).

Second, p38MAPK is required for the stabilization of SASP factor mRNAs in fully

senescent cells.  However, the transcription pathway is distinct from the post-

transcriptional stabilization pathway, and p38MAPK is not required for the continued

activity of NF-κB once senescence is fully established.  In fully senescent cells,

p38MAPK activity results in the removal of AUF1 from the 3’UTRs of SASP mRNAs

(Fig 3.3).  AUF1 is an mRNA destabilizing protein which binds to 3’-UTRs and causes

mRNA ubiquitination and degradation.



133

Given the twofold nature of p38MAPK’s regulation of many important pro-tumorigenic

SASP factors, it is a promising potential therapeutic target.  We found that depletion or

inhibition of p38MAPK in senescent fibroblasts abrogates growth promotion of

preneoplastic epithelial cells by senescent fibroblasts in cocultures and xenograft

models (Figs 3.1).  Further, cancer-associated fibroblasts (CAFs) have a similar

expression profile to senescent fibroblasts and also promote growth of epithelial cells.

Treatment of CAFs with p38MAPK inhibitors inhibits their ability to promote the growth

of cocultured epithelial cells (Fig 3.4).  Furthermore, p38MAPK inhibitors are effective at

preventing the growth of established tumors growing in senescent fibroblast- or CAF-

supported microenvironments (Fig 3.5).  Many of the p38MAPK-dependent SASP

factors are present in human breast cancer patients’ stroma, suggesting that targeting

p38MAPK is a viable potential patient therapy (Fig 3.4).  The similarities between

senescent fibroblasts and CAFs in their expression profiles, shared regulation by

p38MAPK, and ability to promote epithelial cell growth underscore the notion that

senescent fibroblasts and CAFs are in essence two different types of activated

fibroblasts.

Future Directions

In Chapter 2, we established the transcription factor c-Myb as a regulator of a subset of

the SASP.  Further, we confirmed previous reports that C/EBPβ also regulates the

SASP, and we identified new SASP factor targets of C/EBPβ including OPN.  However,

the mechanism by which c-Myb and C/EBPβ regulate SASP factors remains

incompletely understood.  One important question is whether c-Myb and C/EBPβ are
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functioning independently to activate many of the same genes or whether they are

working in a coordinated fashion.  In other systems, c-Myb and C/EBPβ interact as a

heterocomplex between one c-Myb molecule and a C/EBPβ dimer (5).  It is not clear

whether c-Myb and C/EBPβ are interacting in our system, nor whether there is a

difference in the degree of interaction between non-senescent and senescent cells.  Co-

immunoprecipitations of c-Myb and C/EBPβ would help elucidate whether the genes are

interacting.  Further, we have synthesized a mutant form of C/EBPβ in which several of

the key residues in the c-Myb binding domain are mutated.  To test whether the putative

interaction between c-Myb and C/EBPβ is important, expression of this construct in an

endogenous C/EBPβ knockdown cell or mutation of the endogenous locus using

CRISPR/Cas9 would be followed by measurement of SASP factors such as OPN, IL-6,

and IL-8.  If the interaction is important, the SASP factor mRNA induction should be

inhibited.

While c-Myb and C/EBPβ both bind DNA separately, it is not clear whether this DNA

binding is required prior to the interaction between the two proteins, or if one or both of

the transcription factors can interact with and recruit the other protein to bind to the

DNA.  While there is no significant increase in c-Myb or C/EBPβ binding to the SASP

promoters we studied in response to senescence, exogenously expressed LAP2, a full

length isoform of C/EBPβ does increase binding in response to senescence. This

raises the possibility that in response to senescence there is a change in C/EBPβ

isoform binding to SASP promoters despite there being no change in overall C/EBPβ

binding. The isoforms derive from alternative translation initiation sites, and there are
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no available antibodies to carry out the needed ChIPs to answer this provocative

question, so alternative methods such as mass-spectrometry are needed.  This isoform

switch could facilitate activation of SASP genes if the inhibitory isoform LIP is replaced

by LAP2 or LAP1, both of which activate transcription.  If there is a change in C/EBPβ

isoform binding, a further question of interest is whether c-Myb facilitates or is

necessary for this switch.

Also of interest are the upstream activators of c-Myb and C/EBPβ.  C/EBPβ protein

levels increase in response to senescence (data not shown and ref. 3).  However, we

do not observe an increase in binding to SASP promoters. It has been reported that

ERK phosphorylates C/EBPβ in response to senescence.  This may activate C/EBPβ

and even drive interactions with c-Myb.  Likewise, c-Myb is subject to multiple post-

translational modifications, including phosphorylation, acetylation, and sumoylation (8–

12).  It remains to be seen if c-Myb is modified in response to senescence and whether

this modification is important for the activation of the SASP.

An additional question that remains unclear is whether p38MAPK regulates OPN in

response to senescence.  Preliminary data gave inconsistent results depending on the

means of p38MAPK depletion or inhibition, sometimes even yielding an increase in

OPN mRNA levels (data not shown).  P38MAPK regulates the SASP via a

transcriptional and a post-transcriptional mechanism and does so differentially

depending on the stage of senescence induction or maintenance.  This transition and

the importance of timing may explain the variable data.  Given that p38MAPK
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transcriptionally activates SASP factors via NF-κB, which does not regulate OPN in

senescence, it is unlikely that p38MAPK is required for transcriptional activation of OPN.

Further, OPN mRNA has a long half-life, and thus it is difficult to measure increases in

its stability (6, 7).  Nonetheless, it is possible that p38MAPK regulates OPN in response

to senescence.

Inhibiting p38MAPK does significantly reduce the induction of many SASP factors,

including IL-6, IL-8, and GM-CSF.  Further, this inhibition is a promising therapeutic

avenue and can significantly reduce primary tumor growth in xenograft models.  In

addition, preliminary data indicate that p38MAPK inhibition can reduce bone and

visceral metastasis in PyMT breast cancer metastasis model (data not shown). Around

90% of all cancer deaths are caused by metastasis.  In addition, bone metastases

dramatically decrease quality of life.  Thus, it is important to continue to study

p38MAPK’s role in metastasis and whether treatment with p38MAPK inhibitors, in

conjunction with chemotherapy, is an effective therapy option.  Importantly, our data

indicate that p38MAPK act on the tumor and metastatic microenvironment, not directly

on the tumor cells (Supp. Fig 3.1.b, Fig 3.1, & data not shown).

However, p38MAPK has also been reported to enforce tumor cell dormancy (13, 14).

Dormant tumor cells tend to be resistant to chemotherapy and may represent a

significant source of tumor recurrence.  While it is possible that inhibiting p38MAPK

could have negative outcomes via activation of otherwise dormant tumor cells, it is also

likely that treatment with p38MAPK inhibitors could sensitize dormant tumor cells to
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chemotherapy by limiting their stromal support and/or driving them into the cell cycle.

Effective targeting of dormant tumor cells may reduce the chances of tumor recurrence.

To better assess the potential for p38MAPK inhibitors as anti-cancer therapeutics, more

work is needed to understand tumor dormancy and the microenvironment’s role in it,

metastasis, and the effects of p38MAPK inhibition.
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