Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-75

2003-12-04

Resource Configuration and Network Design in Extensible
Networks

Sumi Y. Choi

The goal of packet-switched networks has conventionally been delivering data to users. This
concept is changing rapidly as current technologies make it possible to build network
processing engines that apply intermediary services to data traffic. This trend introduces an
extensive range of ways to develop and operate applications by allowing processing services
customized for applications' needs at intermediate network users, as it can relieve individuals
from the need to acquire, install, and maintain software in end systems to perform required
functions. As such network services become more widely used, it will become increasingly
important for service providers to have... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Choi, Sumi Y., "Resource Configuration and Network Design in Extensible Networks" Report Number:
WUCSE-2003-75 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1121

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1121?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1121

Resource Configuration and Network Design in Extensible Networks

Sumi Y. Choi

Complete Abstract:

The goal of packet-switched networks has conventionally been delivering data to users. This concept is
changing rapidly as current technologies make it possible to build network processing engines that apply
intermediary services to data traffic. This trend introduces an extensive range of ways to develop and
operate applications by allowing processing services customized for applications' needs at intermediate
network users, as it can relieve individuals from the need to acquire, install, and maintain software in end
systems to perform required functions. As such network services become more widely used, it will
become increasingly important for service providers to have effective methods to configure applications
sessions so that they use resources efficiently. On the other hand, it is equally important to design such
extensible networks properly in order to ensure desirable performance of applications. This dissertation
addresses these two key problems that arise in operation and provisioning extensible networks:
configuring application sessions and designing extensible networks. First, we present a general method,
called layered networks, for the problem of configuring application sessions that require intermediate
processing. The layered network method finds optimal configurations by transforming the session
configuration problem into conventional shortest path problem. We show, through a series of examples,
that the method can be applied to a wide variety of situations. We also discuss how to configure
applications that require reserved capacity and propose effective heuristic algorithms that are based on
the layered network method. Second, for designing extensible networks, we generalize the constraint-
based network design methods originally developed for conventional networks. We show how to
incorporate arbitrary requirements that are allowed by extensible networks in a flexible and general way.
We also show how to extend the original framework to dimension both processing resources and link
bandwidth. These results have been incorporated into software packaged the Extensible Network Planner
(XNP).

https://openscholarship.wustl.edu/cse_research/1121?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1121?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-75

Resource Configuration and Network Design in Extensible Networks -
Doctoral Dissertation, December 2003

Authors: Choi, Sumi Y.

December 4, 2003

Abstract: The goal of packet-switched networks has conventionally been delivering data to users. This concept is
changing rapidly as current technologies make it possible to build network processing engines that apply
intermediary services to data traffic. This trend introduces an extensive range of ways to develop and operate
applications by allowing processing services customized for applications' needs at intermediate network nodes.
The provision of such services is potentially a significant benefit for network users, as it can relieve individuals
from the need to acquire, install, and maintain software in end systems to perform required functions. As such
network services become more widely used, it will become increasingly important for service providers to have
effective methods to configure applications sessions so that they use resources efficiently. On the other hand, it
is equally important to design such extensible networks properly in order to ensure desirable performance of
applications. This dissertation addresses these two key problems that arise in operating and provisioning
extensible networks: configuring application sessions and designing extensible networks.

First, we present a general method, called layered network, for the problem of configuring application sessions
that require intermediate processing. The layered network method finds optimal configurations by transforming

the session configuration problem into a conventional shortest path problem. We show, through a series of
avamnlec that the methnd ran he annlied tn a wide varietv nf citiiatinne \We alen dicriiee hnw tn eanfiniire

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RESOURCE CONFIGURATION AND NETWORK DESIGN IN EXTENSIBLE
NETWORKS
by
Sumi Y. Choi

Prepared under the direction of Professor Jonathan S. Turner

A dissertation presented to the Sever Institute of
Washington University in partial fulfillment

of the requirements for the degree of
Doctor of Science
December, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

RESOURCE CONFIGURATION AND NETWORK DESIGN IN EXTENSIBLE
NETWORKS

by Sumi Y. Choi

ADVISOR: Professor Jonathan S. Turner

December, 2003

Saint Louis, Missouri

The goal of packet-switched networks has conventionally been delivering data
to users. This concept is changing rapidly as current technologies make it possible
to build network processing engines that apply intermediary services to data traffic.
This trend introduces an extensive range of ways to develop and operate applications
by allowing processing services customized for applications’ needs at intermediate
network nodes. The provision of such services is potentially a significant benefit for
network users, as it can relieve individuals from the need to acquire, install, and
maintain software in end systems to perform required functions. As such network
services become more widely used, it will become increasingly important for service

providers to have effective methods to configure applications sessions so that they

use resources efficiently. On the other hand, it is equally important to design such
extensible networks properly in order to ensure desirable performance of applications.
This dissertation addresses these two key problems that arise in operating and provi-
sioning extensible networks: configuring application sessions and designing extensible
networks.

First, we present a general method, called layered network, for the problem
of configuring application sessions that require intermediate processing. The layered
network method finds optimal configurations by transforming the session configura-
tion problem into a conventional shortest path problem. We show, through a series
of examples, that the method can be applied to a wide variety of situations. We
also discuss how to configure applications that require reserved capacity and propose
effective heuristic algorithms that are based on the layered network method.

Second, for designing extensible networks, we generalize the constraint-based
network design methods originally developed for conventional networks. We show
how to incorporate arbitrary application requirements that are allowed by extensible
networks in a flexible and general way. We also show how to extend the original
framework to dimension both processing resources and link bandwidth. These results
have been incorporated into a software package, the Extensible Network Planner

(XNP).

This thesis is dedicated to my family.

Contents

List of Tables

List of Figures

Acknowledgments Lo

1

2

3

Introduction
1.1 The extensible network environment
1.2 Configuring resources in extensible networks
1.3 Designing extensible networks

1.4 Dissertation overviewo o e

Resource Configuration 0L
2.1 Specifying the Session Format and Network
2.2 Configuring Generic Sessions oL
2.3 Configuring unicast sessions Lo

2.3.1 Layered networks for single step processing

2.3.2 Using layered networks for multiple processing steps
2.4 Applications with optional processing
2.5 Congestion Control Processing
2.6 Configuring single source multicast sessions
2.7 Related Worko

Resource Configuration in Capacity Constrained Networks
3.1 Generalized Resource Configuration Problem Redefined
3.2 Heuristics: Selective resource consideration
3.3 Heuristics: capacity tracking Lo

3.4 Simulation Results s

co Ot N =

10

12
13
16
19
21
23
25
27
29
37

4 Designing Extensible Networks, .. 60

4.1 Constraint-based Network Design 61
4.2 Introduction to Designing Extensible Networks 64
4.3 Designing Extensible Networks 70
4.3.1 Application Format 71
4.3.2 Traffic Constraints 71
4.3.3 Traffic Configuration L. 72
4.3.4 Routing Policy 0o 72
4.3.5 Load Factor L 73
4.3.6 The Resource Dimensioning Problem 74
4.3.7 Least-cost Routing Policy 75

4.4 Resource Dimensioning using Flow Graphs 7
4.5 Computing Lower Bounds on Network Cost 84
4.6 Computing Lower Bounds using Flow Graphs 86
4.7 Discussion oL 89
5 Extensible Network Planner 91
5.1 Obtaining and Starting XNP 0. 92
5.1.1 Imstalling XNPo oo oo 92
5.1.2 Running XNPo o o oo 92

5.2 Basics of Extensible Network Planning 93
5.2.1 Constructing anetwork 93
5.2.2 Application formatso o000 98
5.2.3 Describing traffic expectationso 99
5.2.4 Resource dimensioningo 102
5.2.5 Evaluating network configurations 104
5.2.6 Design Space e 105

5.3 Design Operations e 106
5.4 File Operationso 107
5.5 Algorithms implemented in XNP 00 108
5.5.1 Generating and modifying network topologies 108
5.5.2 Placing network nodeso 0oL 110
5.5.3 Generating traffic constraints 0. 111

6 Extensible Network Design Using XNP 112

6.1 Experimenting with Various Design Choices 112
6.2 Enbhancing the Trial Designs 126
7 Summary and Future Work 137
7.1 Session Configuration in Extensible Networks 137
7.2 Constraint-based Design of Extensible Network 139
References L 142
Vita e e 148

vi

List of Tables

4.1
4.2
4.3
4.4

4.5

6.1
6.2
6.3
6.4

Resulting Capacities after Dimensioning 66
Resource Capacities for Multiple Applications 69
Traffic constraints associated with Figure 4.5 for resource dimensioning 80
Load factor of the pairs whose path is routed through (Phili, NY),

relative to the initially configured session bandwidth 80
Traffic constraints associated with Figure 4.5 for computing a lower

bound 87

Sources and their receiver locations for the US network 113
Sources and their receiver locations for the Western Europe network . 121
Links added and removed for the US network 130
Links added and removed for the Western Europe Network 135

vii

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10
2.11
2.12
2.13
2.14

2.15

2.16

Current Network Uses 2
Example of communication between two corporate networks 3
Video transfer application with decompression processing 7
Example of network designo 0oL 8
Example of network design with processing 10
Session graphso 13
Processing types with location constraints 14
Network grapho oo 15
Session configurations 16
Unicast with single step processing 20
Session graph with a single processing step 22
Session configuration using a layered network 22
Session configuration using a layered network for multiple processing

StepS . . . e 24
Layered networks for optional compression/decompression 26
Transformed Network for Optional Processing 28
Multicast session graph for a video transfer application 29
Multicast session configurations 30
Layered network for multicast 31
Comparison of the tree costs resulting from the heuristic methods,

where the result of the shortest path tree method costs less than the

multi-step tree augmentationo L0000 32
Comparison of the tree costs resulting from the heuristic methods,

where the result of the multi-step tree augmentation costs less than

the shortest path tree method 33
Metro 50 Networko o oo 34

2.17
2.18

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3
5.4
2.5
2.6
5.7
2.8

Comparison of costs for resources in multicast trees 35

Comparison of diameters of multicast trees 36
Video transfer application with bandwidth requirements 41
Network graph with a cost and capacity specified for each resource . . 43
Session configuration in capacity constrained networks 44
Shortest path tree in a layered graph 49
Blocked path in capacity tracking 50
Torus network 51
Metro 20 Network 52
Metro 50 Network 53
Performance of heuristics for session configuration 5%)

Performance of heuristics for session configuration, the metropolitan

area networks Lo 55
Configuration Cost 57
Configuration Costs of the metroarea networks 57
Blocking rates at 75% trafficload 58
Configuration cost at 75% trafficload 58
Time requirements for session configurations 29
XNP snapshot for Acme corporation network 65
XNP snapshot with a lower cost design 67
XNP snapshot for video-on-demand application 68
Layered network with least-cost path 76
Least-cost route from Det to NYo . 7
Flow graph used for dimensioning (PhiliNY) 82
Flow graph used for computing a lower bound 88
XNP main menu and buttons 94
Example popup windows for addinganode 94
XNP snap shots while generating a topology 95
Popup window for entering a link cost 96
XNP snap shots for placing processing capability 97
Buttons for editing network configurations 97
Buttons for applications and traffic constraints 98
Popup window for adding an application format 98

ix

2.9

5.10
5.11
5.12
5.13

5.14

5.15
5.16
5.17
5.18
5.19
5.20
5.21

6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12
6.13
6.14
6.15

6.16

Popup window for describing an application format
Popup window for removing application formats
Popup window for selecting a traffic constraint type
Popup window for adding traffic constraint between two sets of nodes
Popup window for adding traffic constraint when the destinations in-
cludeallnodes
Popup window for adding traffic constraint when the sources include
allnodes Lo
Popup window for removing traffic constraints
Buttons for evaluating network configurations
XNP snap shots for dimensioning information
XNP snap shots for lower bound information
Two other viewsin XNP 000,
Buttons for managing designs oL oL

Buttons for file operations Lo

Traffic constraints for maximum incoming/outgoing traffic at Min-
neapolis, proportional to the population
Traffic constraints for the video on-demand application
Networks for the 20 largest metropolitan areas for US
Networks for the 20 largest metropolitan areas for US
Networks for the 20 largest metropolitan areas for US
Cost comparison for US topologies
Networks for the 20 largest metropolitan areas in Western Europe . .
Networks for the 20 largest metropolitan areas in Western Europe . .
Networks for the 20 largest metropolitan areas in Western Europe . .
Cost comparison for Western European topologies
Networks for the 20 largest metropolitan areas in US, processing at all
possible locationso
Networks for the 20 largest metropolitan areas
Networks for the 20 largest metropolitan areas
Modified hand-crafted topology, Placement C
Comparison of different placements on hand-crafted and modified hand-
crafted topologies for the US network

hand-crafted topology, processing at all possible locations

101

101

102
102
102
103
104
105
106
107

114
114
116
117
118
120
122
123
124
125

127
128
129
130

6.17 Networks for the 20 largest metropolitan areas in Western Europe . . 133
6.18 Networks for the 20 largest metropolitan areas in Western Europe . . 134
6.19 Comparison of different placements on hand-crafted and modified hand-

crafted topologies for the Western Europe network 135

xi

Acknowledgments

This dissertation would not have been possible without the help and the support
of many people. My foremost thanks go to my advisor, Dr. Jon Turner, who has
been incredibly patient with me for the past five years. He guided and encouraged
me throughout the study with his broad perspectives and continuous dedication for
research and teaching. I also thank my committee members, Dr. Dan Fuhrmann, Dr.
Chris Gill, Dr. Sally Goldman, and Dr. Ellen Zegura, for their valuable advice and
suggestions.

I thank all the professors and staff members in ARL and Computer Science
and Engineering, who have been always there for me with constant supports and
inspiration. I also thank my fellow students for their wit and humor, which cheered
me up immensely at my dissertation defense talk.

My special thanks go to Prof. Jim Ballard for guiding me patiently throughout
the dissertation writing process.

Finally and from the bottom of my heart, I thank Samphel, and the rest of my
family and future family for their unconditional love and support. Thank you.

Sumi Y. Choi

Washington University in Saint Louis
December 2003

xii

Chapter 1

Introduction

Conventionally, the goal of packet-switched networks has been delivering data to
users. To do this, each network node (switch or router) maintains information about
where to forward data packets, makes a routing decision for each packet, and fi-
nally forwards the packet according to the decision. In this paradigm, every node is
restricted to operating fixed protocols that have been agreed upon in advance. The
collaboration of all nodes in the network eventually ensures that all packets will arrive
at their intended destination. This restriction enables global Internet connectivity,
which improves many areas of human life, such as scientific research, medical collab-
oration, personal communication, and education. In the business realm, commercial
solutions for marketing and sales are making Internet-based applications ever more
appealing. In all of these areas, users expect networks to be a pervasive and flexible
environment in which they can use devices that vary in capability. Figure 1.1 shows
these current uses of networks.

However, the restriction of fixed processing limits the functionality of networks
considerably, making current network frameworks unsuitable for future network ap-
plications. In this dissertation, we consider more “extensible” network environments,
where new protocols and packet processing can be deployed at network nodes dynam-
ically. In such extensible networks, software developers can install packet processing

customized for their applications at network nodes, so that packets belonging to those

Network Access Medical facility
from homes @

Internet
Service
Provider

Special purpose network Sensor Network
overlaid upon Internet

Cel lular \

\‘\‘_L \\\\ /."‘___—"-"_;\17“‘"._‘.__/ NetWOrk

Figure 1.1: Current Network Uses

applications can be processed as they are forwarded. Now that there is significant
use of the Internet for many different purposes, extensible networks can play a crucial
role in providing advanced processing appropriate for varying application criteria.
There has been a substantial volume of research on realizing and efficiently
operating extensible networks. Many different approaches have been proposed for
the network framework and the node infrastructure. In this dissertation, we study
techniques for managing resources to ensure consistent performance of applications.

These techniques can be applied to most realistic approaches to extensible networks.

1.1 The extensible network environment

In order to better understand the resource management issues in extensible networks,
we begin by examining the core concepts and the currently available frameworks for
extensible networks in more detail. Two features are essential for extensible networks.

First, the network must provide programmable components on network nodes that

3

will facilitate the dynamic installation or the update of customized processing. Sec-
ond, the network must maintain information about the resources required for such
applications, and configure appropriate resources to individual application sessions as
needed.

Let us illustrate how applications might operate in such networks. Consider an
application which involves an enterprise network with multiple sites that communicate
over the Internet. As a matter of corporate policy, it is required that all communi-
cation between corporate sites be encrypted. This policy can be implemented by
installing encryption modules and decryption modules in programmable components
of the network nodes. Then, during the communication session, all packets are en-
crypted at one of the network nodes before leaving the remote corporate network and
decrypted at another of the network nodes after they enter a corporate network. To
conserve the use of network bandwidth, the encryption and decryption may be com-
bined with compression and decompression modules if the data is in a video format.
This example is shown in Figure 1.2, where each node with a programmable compo-

nent is highlighted and the processing module installed on it is specified. While a node

compressed data
transmission.
(less bandwidth isused)

data decrypted
here data decompressed

here
data encrypted

here
corporate

@ : encryption nodes : compression nodes
network
. i o . essi . .
@ : decryption nodes : decompression nodes of destination

Figure 1.2: Example of communication between two corporate networks

can contain multiple processing modules, we are showing a simplified case where only

one processing module is installed on each of the processing-enabled nodes. Once all

4

the necessary processing modules are installed at network nodes, to set up an appli-
cation session, we must configure appropriate resources. In our example, processing
resources are required to handle the compression, the encryption, the decryption, and
the decompression processing, while also satisfying the location restriction that main-
tains the secureness of the communication. Also, adequate bandwidth is required on
the route that connects the source and the destination via the selected processing
nodes in the given order. The links and the processing nodes used by the commu-
nication are shown using thick lines in Figure 1.2. Other application examples may
include congestion control, format conversion, and data caching, along with others
yet to be recognized.

There are several possible approaches to realizing the potential of this exten-
sible network technology. Active networking [1, 2, 3, 4] is one such approach. In
the best-known variant of active networking, the capsule model [5, 6, 7], packets are
interpreted by routers as programs to be executed, rather than just as data to be
forwarded. Such execution, however, poses serious security concerns. More realis-
tic variants of active networking involve the dynamic execution of trusted programs
on behalf of individual application sessions [8, 9], in response to signaling messages
exchanged at the start of a session [10]. Other forms of extensible networks include
overlay networks. Overlay networks have been exploited to introduce new services to
an existing network. Overlay networks comprise a subset of servers that communicate
through the underlying network, and can be viewed as extensible networks where the
servers act as extensible nodes, or programmable routers, capable of handling new
services. Because the servers will be shared only by applications supported by the
overlay network, we can effectively program and deploy new services customized for
the applications. This dissertation is oriented toward a view of extensible networks
where customized processing or services can be installed off-line into programmable

network elements, and can be used by individual application sessions, as in realistic

5

variants of active networks or overlay networks. Here, the use of programmable net-
work elements can be controlled either by administratively-determined policies or by
user-initiated signaling messages.

Now that we have briefly discussed our view of extensible networks, let us
look at the main resources to be considered and how to manage them in extensible
networks. As mentioned, conventional applications are passive in their use of network
resources: They conform to fixed protocols in the underlying networks, and only
the link bandwidth is considered a shared resource. However, the current trend in
applications, particularly in extensible networks, shows more comprehensive use of
network resources, requiring some network nodes to provide program modules and
associated processing resources. While link bandwidth media is still an essential
resource in extensible networks, new resources are necessary to perform customized
processing or advanced services on network nodes. There are two broad tasks in

supporting the applications requiring customized processing from networks.

e Configure each application session with resources sufficient to guarantee consistent

performance and efficient usage

e Provision the network with sufficient network resources to satisfy the application

requirements and also accommodate the maximum anticipated traffic

These tasks, configuring application sessions and provisioning the network, are studied

extensively in this dissertation. The next two sections introduce them in more detail.

1.2 Configuring resources in extensible networks

Let us first consider the task of configuring resources for application sessions in ex-
tensible networks. Here, application sessions are instances of network applications
that are initiated for individual users. Because of fixed protocol layers, every node
in conventional networks treats all packets in a homogeneous way. Each simply de-

cides where to route each packet, mainly based on its destination, and forwards it

6

according to the decision. Therefore, there is no need to distinguish individual ap-
plication sessions in conventional networks. In extensible networks, however, each
application session may need to be processed differently according to its processing
requirement. It may even need to be routed through a different path in order to en-
sure that the packets belonging to the session are routed through processing-capable
nodes. To meet these needs, two requirements must be satisfied. First, a route must
be determined for each application session that satisfies the processing requirement
(and possibly the bandwidth requirement) of the session. Second, to guarantee their
availability, resources must be secured for the duration of the session.

The issue of determining routes is not new. Even in conventional networks,
the routing decision must still be made for each packet, although no distinction is
necessary for different applications, and one routing method is sufficient for all appli-
cations. There has been a good deal of research on computing optimal routes. Most
algorithms employ either the distance vector approach or the link state approach [11].
The implemented protocols include the RIP protocol[12], OSPF[13], and PNNI[14].
The common goal of the routing algorithms is to find the optimal paths for potential
pairs of nodes that may need to communicate, given a metric for links in the net-
work. Each of these algorithms is based on a shortest path algorithm. In the routing
algorithms, the metric used to measure the quality of a route can be as simple as
the number of hops [12]. To achieve more specific goals, other metrics have also been
applied to routes, such as delay or available bandwidth [15, 16].

These routing algorithms are not, however, directly applicable to configuring
application sessions in extensible networks. For a given application session, it may
not be sufficient to find a shortest path to satisfy the processing requirement. The
shortest path computed in the conventional way may not include any processing-
capable node. A valid route, however, must include at least one set of nodes that
is capable of the processing. An optimal route must be one of those valid routes,
where, in addition to the impact of using link resources, the impact of using processing

resources is also considered. Furthermore, in a situation where the processing changes

7
the link bandwidth, the route selection may also need to reflect the effect of the

varying bandwidth. Figure 1.3 shows an example of such sessions, where compressed
video data is sent from a source to a receiver which is incapable of performing the
associated decompression processing. Here, the initial video stream, compressed by
10:1, is sent from the source and is decompressed at a processing node en route to the
receiver. Because decompression processing expands data bandwidth, it is preferred
to perform this processing close to the destination. The chosen route and processing

node are shown by thick lines in Figure 1.3. In general, routing methods in extensible

co de- decompressed video
) comp .
stream takes 10 times
mor e bandwidth
compressed video oo -
(ratio of 10:1) oy
stream sent from source
)) destination
video decompression
occurs here.

Figure 1.3: Video transfer application with decompression processing

networks must take into account the impact of using link resources, the impact of
using processing resources, the bandwidth variation due to processing, and other
application characteristics that affect the resource selection. Chapters 2 and 3 study
methods that can be applied to diverse applications and situations.

As mentioned, the second requirement in configuring application sessions is to
guarantee resource availability. Let us consider a situation where the resources re-
quired to configure an application session have been identified by the routing method.
In order to guarantee consistent performance for the session, proper capacity must
be maintained at each of the resources for the duration of the session. Signalling

is required to poll each resource for availability and to secure the required capacity.

8

We will briefly discuss possible ways to implement the signalling and the resource

reservation for extensible networks.

1.3 Designing extensible networks

In Chapter 4 of this dissertation, we consider a different perspective on resource
management in extensible networks, the network design. A well designed network is
crucial to delivering performance guarantees for applications. By carefully determin-
ing where to place resources and how much capacity to assign to each resource, one
can plan a network that will effectively serve the expected traffic while minimizing
the cost of deployment. Depending on the purpose of the network, the characteris-
tics of applications, and the traffic patterns of users, the optimal design may vary.
The objective is to design and configure extensible networks that are guaranteed to
have sufficient network bandwidth and processing resources to meet expected traffic

demands. Figure 1.4 shows a network composed of five locations in the northeastern

300Mb/ S at To satisfy the traffic expectation at all
Detroit cities, 800Mb/s required

for (New York, Cleveland)
300Mb/s
300M b&

300Mb/s at
Cleveland 800Mb/s

,/200Mb/s 500Mb/s/
/€OOM b/s

Total incoming and
outgoing traffic is at
most 500Mb/s, each

809&/5 at New York

200Mb/5/*'

200Mb/s
—>

4———
200Mb/s at 200Mbis 500Mb/s at
Indianapolis { Philadelphia

Traffic required for link
(Philadel phia, Indianapolis)

Figure 1.4: Example of network design

United States. In this network, the outgoing and incoming traffic is at most 500 Mb/s
at New York and Philadelphia, 300 Mb/s at Detroit and Cleveland, and 200 Mb/s at

9

Indianapolis. To accommodate any traffic that obeys these constraints, the network
must have bandwidth for each link as specified in the figure, assuming that traffic is
routed through shortest paths. Our approach extends this constraint-based network
design methodology [17] to extensible networks.

Constraint-based design of conventional networks starts with a set of network
locations, or sites, and a set of traffic constraints. In the simplest case, the traffic
constraints simply place upper bounds on the amount of traffic that can originate
or terminate at each site [18, 19, 20, 21], as exemplified in Figure 1.4. In addition
to simple ingress/egress constraints, network designers may specify constraints that
bound the amount of long distance traffic or limit the traffic between pairs of sites.
For example, we may add a pairwise traffic constraint to Figure 1.4 that restricts the
traffic from New York to Indianapolis to be less than or equal to 100 Mb/s. This
reduces the bandwidth needed from New York to Cleveland to 700 Mb/s in each
direction. The general form of a traffic constraint is a bound on the traffic between
any two subsets of sites. Given a set of constraints, the design problem is to find a
least-cost network configuration in which the link capacities ensure that any traffic
configuration allowed by the constraints can be handled.

We show how this original framework can be generalized to handle the config-
uration of processing resources and link bandwidth in extensible networks. To briefly
illustrate the design of extensible networks, let us take an example. In Figure 1.5,
we show an extensible network with the same topology as in Figure 1.4 and with two
processing nodes (highlighted). In this extensible network, we consider a video trans-
mission application requiring decompression processing in the network as introduced
in Figure 1.3. During the sessions configured for this application, the compressed
video stream is sent from a source and decompressed on the route to a receiver. Due
to the compression ratio, which is assumed to be 10:1 in this case, data bandwidth
changes during the transmission. The link capacity at each link must then be deter-

mined by consideration of this application characteristic. The processing resources

10

300Mb/s at Compressed video traffic must
Detroi be decompressed either at
Cleveland or Philadelphia

300Mb/s at
Cleveland

500Mb/s at
New York

Here, decompression expands
data bandwidth by 10 times.
10 times more bandwidth is

needed on link used after
decompression.

200Mb/s at 500Mb/s at
Indianapolis Philadelphia

Figure 1.5: Example of network design with processing

and their capacity must also comply with the decompression specification and traffic
expectation.

Because the resources needed by a network are highly dependent on the charac-
teristics of the applications, we introduce a general method for describing the resource
requirements of application classes and show how these can be used in the network
design process. We have incorporated the methods developed for extensible network
design into a software package called the Extensible Network Planner (XNP), which
is based on an earlier, unpublished tool for designing conventional networks [22]. To
demonstrate the utility of these methods, we include examples of how XNP can be

used to design real networks.

1.4 Dissertation overview

Chapter 2 describes resource configuration methods for applications that require in-
termediate processing. We present an efficient solution called the layered network,
and show its applicability and scalability by describing various situations where the
method can be applied. Chapter 3 extends the resource configuration problem to net-

works with explicit limits on resource capacity. We illustrate the intractability of the

11

problem for general cases and describe heuristic methods which perform effectively
in most practical situations.

Chapter 4 investigates the problem of designing extensible networks to satisfy
given applications and traffic patterns. After exemplifying the problem in simple, and
yet realistic, situations, we describe a systematic and pragmatic approach to designing
extensible networks, and illustrate the algorithmic methods used in the design process.
Chapter 5 introduces the FExtensible Network Planning tool, which helps network
designers plan extensible networks through an interactive process. The methods
described in Chapter 4 are implemented in XNP. In Chapter 6, we demonstrate the
process of network design for several medium size networks. Chapter 7 summarizes

the dissertation.

12

Chapter 2

Resource Configuration

This chapter details the problem of configuring resources for individual application
sessions, given candidate resources in an extensible network. Application sessions are
instances of network applications which initiate and maintain connections for specific
users. The goal of the resource configuration problem is to map each application
session onto the best set of resources, according to the criteria relevant to the session.
For example, consider an application that requires specific encryption and decryption
of its session data transmitted between two remote corporate networks. The pro-
cessing component on routers can be programmed to perform the encryption and the
decryption. The session must then be mapped to links for the data flow and to the
routers where the encryption and decryption are performed on the data. The require-
ments, which include processing cycles, memory, or the ability to execute a particular
program, are used to identify the set of routers capable of doing the processing.
Consider another example, a video transmission application, whose goal is to
transform the video data at an intermediate router so that an incompatible receiving
device can view it. The configuration of this session should identify the set of links
used to form the data path and the router which will do the video transformation. It
may also be preferred that the bandwidth and processing resource usage on the path

be minimized.

13
2.1 Specifying the Session Format and Network

In general, the task of configuring a session is composed of identifying the session
format, particularly the communication and the processing that occur in the session,
and then mapping the format onto the resources in the network that can fulfill the
goals of the session.

Depending on the purposes and the goals, network applications can take dif-
ferent forms. In this work, the session formats are used to describe the terminals
that are involved in individual application sessions, the data that flows among the
terminals, and the processing applied to the data flows. We adopt a graph model to
express each session format, where the nodes stand for the terminals or the processing
steps, and the edges stand for the data flows. Each edge in the graph is associated
with the link bandwidth consumed by the corresponding data flow. Similarly, each
non-terminal node is associated with the processing capacity consumed by the cor-

responding processing step. Figure 2.1(a) shows an example that describes a unicast

p2 b
@2/7 dl
link bandwidth processing capacity b,

consumption consumption P,
(b ('t Py
; : = >, t
b b, b, 3
S b,
S : sources
d| d : destinations

t. . processing types

a) Unicast session graph b) Complex session graph
g g

Figure 2.1: Session graphs

session with two steps of intermediate processing. In the figure, the terminal nodes
are s and d, and the processing steps are t1 and ¢2, while the edges specify the data
flows from one terminal to the other terminal. The bandwidths consumed by the

data flows are by, by, and b3, and the processing capacities are p; and p,. We refer to

14

the graph describing a session format as the session graph. Figure 2.1(b) is another
example of a session graph that involves more terminals, processing, and data flows.
In general, a session graph forms a directed graph that involves one or more terminal
nodes. While arbitrary topologies are possible, we focus our attention here on paths
and trees.

We also describe the network as a graph. While the session graph describes
only the properties of a session, the network graph describes the entire network, which
is composed of terminals, routers, and physical links that connect them. For exten-
sible networks, some routers are specially labeled as processing nodes representing
extensible routers. We may further categorize the processing nodes so that each of

them is labeled with the types of processing that it can handle. The categorization is

foreign
network region

processing type
for decryption

processing type
for encryption

sender's receiver's
network region network region

Figure 2.2: Processing types with location constraints

partially determined by the system specifications for the routers, in which properties
such as processing power, memory size, or software capabilities may be considered.
Processing can also be categorized by application constraints. For instance, recall the
example of the encryption and decryption application. In this case, the application
intends to perform the encryption before the data leaves the network region that
includes the sender and to perform the decryption after the data enters the network

region that includes the receiver. Figure 2.2 shows the two regions. To reflect this

15

location constraint, we label all processing nodes in the sender’s network region to
show the nodes where the encryption can be done. Similarly, we label all processing
nodes in the receiver’s network region for decryption. The processing nodes of the

two types are highlighted in Figure 2.2.

processing

types of processing
possible

Figure 2.3: Network graph

Figure 2.3 shows an example of a network graph, where terminals are drawn as
squares and router nodes are drawn as circles. Each processing node is also labeled
with the processing types (t1,to, t3) that it can handle.

Now that we have described the sessions and the network as graphs, the task of
configuring a session is a matter of mapping the session graph onto the network graph.
Here, the session terminals are mapped to the corresponding network terminals, the
processing steps are mapped to processing nodes of the appropriate types, and finally
the connections between two nodes that are adjacent in the session graph are mapped
to paths that connect the corresponding nodes in the network graph. Following
this principle, we can consider configuring the session graphs in Figure 2.1 onto the
network graph in Figure 2.3. Figure 2.4 shows the configuration using thick arrows for
the paths that connect the sources to the destinations and shaded nodes for processing

locations.

16

(a) Configuration of 2.1(a) on 2.3 (b) Configuration of 2.1(b) on 2.3

Figure 2.4: Session configurations

Meanwhile, in networks where resources such as processing nodes and links are
costly and limited commodities that are shared by multiple parties, sessions incur
expenses when they consume resources that are configured and assigned to them.
In this work, we refer to the expense of consuming a unit capacity of a resource
as its unit cost. While the actual measure for the cost may vary depending on the
network models, we limit it to a positive value as illustrated by the numbers labeling
processing nodes and links in Figure 2.3.

In the following section, we formally describe the problem of configuring ses-
sions for the optimal cost, and we present efficient solutions for the most important
specific case of the problem (sessions which define paths). Later, we also discuss

heuristics targeting other cases, as well as issues related to resource capacities.

2.2 Configuring Generic Sessions

In this section, we define the configuration cost of sessions and formally state the op-
timal session configuration problem. We have already introduced the cost associated
with each resource as it is configured for a session. Given a mapping that identifies
the resources to be configured for a session, we can compute the cost at each resource
as the product of its unit cost and the capacity of the resource consumed by the

session. The configuration cost of the session is then defined as the sum of the costs

17
of all resources designated by the mapping. We now attempt to find the mapping

that results in the least cost configuration, which is the goal of the optimal session
configuration problem.
In PROBLEM 2.2.1, we formally state the optimal session configuration prob-

lem, given a network graph G = (V, E) and a session graph G = (Vj, E).

PROBLEM 2.2.1 Session Configuration Problem

Given: A directed session graph G5 = (Vi, Es), with a type t(u) and a capacity
requirement p(u) for each vertex u € V, and a bandwidth requirement b(u, v) for each
edge (u,v) € Es. Also, a directed network graph G = (V, E) with a type set T'(u) for
each node u € V. In addition, the unit costs, c(u) and c(u,v), are given for each
vertex and edge as a positive value.

Find: A location function | : V, — V and a routing function r : E; — 2% that satisfy

VueV, tu) e T((u)) (2.1)

V(u,v) € E;;, r(u,v) is a simple path in G from l(u) to I(v) (2.2)
and that minimize the cost Cy, where

Crr = 2uev, cl(w)p(u) + -)em, c(r(u, v))b(u, v). (2.3)

This problem statement assumes that network resources have unlimited capac-
ities and focuses on optimizing the configuration cost. In Chapter 3, we will restate
the problem to consider resources with strictly limited capacities, and discuss the
session configuration problem in such cases.

The mapping that designates the resources for a session is defined by the
location function [and the routing function r, where the function [maps each node
in G5 to a node in GG, and the function r maps each edge in GG, to a path in G.

The functions should also satisfy conditions (2.1) and (2.2), where Condition (2.1)

18

ensures that selected nodes can perform the required processing and Condition (2.2)
ensures that adjacent nodes in the session graph are connected by a path in the
network graph. Condition (2.2) also constrains the path to be simple in order to
avoid unnecessary link usage. Here, a path is simple if it repeats no node. Because
link costs are positive values, by removing loops in the path, a non-simple path can
always be reduced to a simple path that connects the same end points and that has
a lower cost. Problem 2.2.1 only considers these simple paths.

Finally, we define the configuration cost Cj, to be the total sum of the costs
of all resources used by the session. The optimal mapping must minimize the config-
uration cost Cj,.

Among graph problems, the graph embedding problem [23] is most closely
related to the session configuration problem. In the graph embedding problem, an
embedding of a graph G onto another graph G’ is defined as a mapping from the
former to the latter, where each distinct node in G is mapped to a distinct node in
G', and each edge in G to an edge in G'. The graph embedding problem has been used
for designing parallel algorithms on interconnection networks, which are composed of
processors in distributed memory machines. Here, the algorithms are represented
by graphs where each node stands for a processing step, and each edge stands for
the sequence and/or the data flow between steps. The embeddings are then used to
implement and operate the algorithms in the network.

In more realistic situations, the edge mapping in the graph embedding problem
is often relaxed so that an edge in G is allowed to be mapped to a path in G'.
This formulation is called weak graph embedding and closely resembles our session
configuration problem. In fact, the weak graph embedding problem is a special case
of the session configuration problem, where the session graph and the network graph
have a single processing type. In addition, the optimal weak embedding problem is
defined as the problem of finding the least-cost embedding, given values assigned to

the edges and the nodes as for the optimal session configuration problem.

19

There has been research effort for the weak embedding problem particularly
where the underlying graph G’ onto which another graph G is to be mapped bears
certain regular properties as in grid networks [24, 25]. However, the general weak
embedding problem is known to be N P-hard [23] and thus so is the session configu-
ration problem, because it contains the weak embedding problem. For those general
cases, little is known about approximation issues.

Nevertheless, most application sessions belong to categories of session patterns,
in which the optimal session configuration can be solved or closely approximated

efficiently. We will discuss these cases next.

2.3 Configuring unicast sessions

Unicast is the most common session form. A unicast session takes the form of a path
with a single source and destination plus zero or more intermediate processing steps.
The session graph of a unicast session is shown in Figure 2.1(a) with two steps of
intermediate processing.

When no processing is involved, the optimal configuration is identical to the
least cost path between the terminals. For this particular case of unicast sessions,
standard shortest path algorithms can be used to find the best session configuration.

When intermediate processing is required, the configuration must also select
processing nodes. As described in Problem 2.2.1, the function [maps the processing
steps in the session graph to nodes with the corresponding processing types. Here, the
configuration still forms a path from the source to the destination, and the processing
nodes designated by the function [are included as intermediate nodes. Figure 2.4(a)
shows a configuration for the unicast session graph given in Figure 2.1(a), where
the configured path from source s to destination d passes through two designated
processing nodes with matching types.

The optimal configuration in this case should also have the least configuration

cost, which now includes the cost of each of the configured processing nodes, in

20

addition to the path cost. Because of the node selection, standard shortest path
algorithms are not directly applicable to the problem. Nevertheless, the shortest
path information is still crucial to solving the problem. Next, we illustrate a method
that computes the least cost configuration for unicast sessions and discuss related
issues. Initially, we focus on unicast sessions with single step processing, and then we
expand the discussion to multiple steps.

Let us assume a unicast session in the network graph G = (V, E), with the
source s, the destination d, and one processing step of type ¢; to be done on the data
flow from s to d, where R is the set of nodes which can handle the processing. The
session’s graph is shown in Figure 2.5 with its bandwidth requirements (b) and pro-
cessing capacity requirement (p). The following describes how the method computes

the least cost configuration for this session.

p(t,)
b(st, ()b 1,d2
s (st,) (t q

Figure 2.5: Unicast with single step processing

First, for each processing node r in R, compute the shortest paths from s
to r and from r to d, and construct the configuration using the shortest paths as
the data paths and the node r as the processing node. Also, compute the cost of
this configuration by summing the cost of the shortest paths and the cost of the
processing node r. Here, the cost of each link in the path from s to r is scaled up by
the bandwidth consumption b(s,¢;) from its unit cost, and similarly each link in the
path from r to d is scaled up by b(¢1, d). The cost of r is scaled up by p(¢;). Note that
this configuration gives the least cost, given r as the processing node. Then, among
all nodes in R, select the node that results in the smallest configuration cost when
used as the processing node, and choose the associated configuration as constructed
above.

In this method, the shortest paths can be found by computing the shortest path

tree from the source s and another shortest path tree converging to the destination

21
d. Using Dijkstra’s algorithm, the time complexity of the method is O(|V|log(|V|) +

|E| 4+ |R|). While this implies that the described method is viable in the specific
case which involves only one processing step, there are issues with generalizing the
method to handle more processing steps. Consider another unicast session, which
now requires two processing steps. Let us denote the sets of nodes for the processing
steps as R; and R,. By applying the same method, we need to account for each pair
of processing nodes in R; X Ry to configure the session. This accounting requires
|R;| + 2 shortest path trees to be computed to obtain all the shortest paths required
for the configurations. In addition, |R;| X |Rs| comparisons are needed to find the
least cost configuration. If there are k steps, we need to compute and compare
the cost associated with each choice for the processing nodes, where the number of
choices is O(|R;| x |Ry| x ... x |Rg|). In the worse case, the comparison takes Q(n*)

time.

2.3.1 Layered networks for single step processing

In this section, we introduce a better alternative for solving the unicast session con-
figuration problem. This method takes the problem given in the network graph into a
different space, where the problem is solved as a conventional shortest path problem.
Then, the result is brought back into the original network graph to obtain the final
solution.

We illustrate the method by focusing on the transformation that converts the
network graph into a new graph space called a “layered network”. Let us reconsider
the unicast session with a single processing step, where R is the set of processing nodes
that are capable of the processing, given the network graph G = (V, E). For this
session, the new method, which we will call the layered network method, transforms
the original network graph into a “two layer” graph.

The layered network G’ includes two copies of the network graph G. We refer
to one copy as layer 0 and the other copy as layer 1. Also, for each node v in G, we

denote the copy of the node in layer 0 as vy and the copy in layer 1 as v;. The cost

22
of each edge in layer 0, say (ug,vg), is set to be the product of the unit cost of the

original edge (u, v) in the network graph and the bandwidth requirement b(s, ¢;), i.e.,
c(u,v) X b(s, ;). Similarly, the cost of each edge (u1,v;) is set to be c(u,v) x b(t1, d).

Then, we complete the layered network G’ by adding an inter-layer edge (rg, 1)
for each processing node r in R. Here, the cost of (rg,71) is set to the product of
the unit cost of the node r and the processing requirement p(t1), i.e., ¢(r) X p(t1)-

Figure 2.6 shows an example of session graphs with processing type ¢, b(s,t1) =

Figure 2.6: Session graph with a single processing step

1,b(t1,d) = 2, and p(t;) = 1. For this session graph, we transform the original graph
in Figure 2.3 into a layered graph shown in Figure 2.7(a).

Given the new graph G’, the layered network method computes the least cost
path from the node sg, the copy of the source in layer 0, to the node d;, the copy
of the destination in layer 1. Note that G’ only carries edge costs, so shortest path
algorithms can be applied directly. Figure 2.7(a) also shows the least cost path in the

layered network.

(a) Layered network (b) Session configuration

Figure 2.7: Session configuration using a layered network

For the final solution to the unicast session configuration problem, the least

cost path in G’ is mapped back to the network graph G as follows. For each regular

23

edge involved in the path, we “project” it to the original edge in (. Similarly for
each inter-layer edge in the path, we “project” it to the original processing node in G
and mark it as the designated node for the processing requested in the session graph.
The projection yields a legitimate configuration connecting the two terminals and
containing the processing node on the path. The projected configuration of the least
cost path in Figure 2.7(a) is highlighted in Figure 2.7(b) using thick lines. We claim
that this configuration gives the least cost and therefore is the optimal solution.

To prove our claim, let us assume that there is another configuration in the
network graph with a smaller cost. We can map this configuration back to a path in
the layered network by simply reversing the “projection” procedure. Now, this path
has the same end points as the least cost path while having the same cost as the
configuration from which it is mapped. However, it has a smaller cost than the least
cost path, which is a logical contradiction. Hence, our claim holds.

The layered network method has three steps: construct the layered network,
compute the least cost path in the layered network, and project the path back to
the original network. The first step can be implemented with O(|V| + |E| + |R|)
by iterating on the set of nodes and edges. The second step can be implemented to
run in O(|V|log|V|+ |E| + |R|) using Dijkstra’s shortest path algorithm. Finally,
the projection can be done in time that is linear to the number of edges in the
path, which is O(|V'|). Here, the dominant part is the shortest path computation.
The comparison method introduced earlier has the same asymptotic time complexity,
and may slightly outperform the layered network method in a real implementation.
However, the layered network method scales better for multiple steps, as we discuss

in the next section.

2.3.2 Using layered networks for multiple processing steps

In this section, we generalize the layered network method for an arbitrary number
of processing steps. Consider a unicast session that involves two terminals s and

d and processing with k consecutive steps of types t1, %o, ..., tx, where the bandwidth

24

requirements are b(s, t1), b(t1,t2), ..., b(tg, d), and the processing capacity requirements
are p(t1),p(t2),...,p(tx). For each step i, let us denote the set of processing nodes
capable of the step as R;.

We build the layered network in a similar way as single step processing. For &
steps, we make £+ 1 copies of the original network, where the copies are denoted layer
0 through layer k. For each link (u,v), we apply the scaled cost c(u,v) X b(t;, t;11) to
its copy in layer ¢, where) = s and ¢, = d. We also add inter-layer edges between
every two consecutive layers as follows. Between layer 7 — 1 and layer 7, we add the
edge (7;—1,7;) for each processing node r € R;, and apply the scaled cost ¢(r) x p(t;).

The intuition in this formulation is that any path from layer 0 to layer k is
forced to include k inter-layer edges, where the i** inter-layer edge corresponds to one
of the processing nodes capable of the i*® step. Then, the projection of such a path
to the original graph forms a path that passes through the k£ processing nodes in the

given order.

(a) Layered network (b) Session configuration

Figure 2.8: Session configuration using a layered network for multiple processing steps

Therefore, for the given unicast session, we compute the least cost path from sg
to dj, where s and d are the source and the destination. The projection of the path on

the network graph now forms a legitimate configuration for the session, connecting

25

the two terminals and containing the k& processing nodes. Figure 2.8(a) shows an
example of the layered network for a session with two processing steps t; and t5. The
bandwidth requirements are b(s,t;) = 1,b(t1,t2) = 2, and b(t2,d) = 1, and processing
capacity requirements are p(¢;) = 1 and p(te) = 3. The least cost path is drawn with
thick lines. The projected configuration of the path is given in Figure 2.8(b).

In fact, the projection of the least cost path is the least cost configuration,
which can be proved using a argument similar to the one given for single step pro-
cessing in Section 2.3.1. Therefore, the layered network method solves the optimal
session configuration problem for unicast sessions with an arbitrary number of pro-
cessing steps.

Again, the time complexity is dominated by the shortest path computation.
The layered network contains (k + 1)|V| nodes and (k + 1)|E| 4+ >, | R;| edges. The
least cost path in the graph can be found in O((k+1)(|V|log|V|+|E|)+ ", |Ri|). In
order to find the least cost configuration, particularly as k grows larger, the layered
network method outperforms the comparison method. Unlike the layered method,
the comparison method must account for all possible ways to select processing nodes
and to configure the given session using them.

Furthermore, for any given value of k, the layered network method takes no
more than about k£ times the time it takes to compute the regular least cost path in
the network graph. Thus, it certainly is feasible for dynamic session configurations.
In the next three sections, we consider a series of realistic application examples and

demonstrate how the layered network method can be applied to them.

2.4 Applications with optional processing

Some network applications provide services that are not necessary for correct data

transmission, but which can improve the performance or quality of the connection.

26

These optional processing steps might decrease the transmission cost to some desti-
nation nodes, but not necessarily to all. We now extend our method to handle such
cases.

For concreteness, we use a simple example of a compression/decompression
application. The processing for compression and decompression incurs a cost, but
the intermediate data stream has a lower bandwidth (b(t.,tq) < b(s,t.)), where ¢,
and t4 represent the processing types for compression and decompression. This lower
bandwidth yields lower transmission costs. Thus, for long-distance transmissions the
processing overhead is worthwhile, while for short distances, the cost of the added
processing may exceed the benefit. The cost/benefit decision may be made by using
the method of the previous section. To make the compression and decompression
processing optional, we make the destination d shown in the last layer accessible
directly from the first layer: we add an edge from the access node of d in layer 0 to d
in the last layer. This edge is assigned a cost of zero. Figure 2.9(a) shows the layered

network. Note that when the bandwidth of the decompressed data stream matches

(a) Layered network for optional processing (b) Simplified layered network

Figure 2.9: Layered networks for optional compression/decompression

that of the original, uncompressed data stream, we can actually use a slightly simpler

layered network with just two layers, and with edges (ug,u;) for all vertices u € R;

27

and edges (v, vg) for all vertices v € Ry. The edges within layer 1 are scaled down by
the compression factor, as are the edges from layer 1 to layer 0. Figure 2.9(b) shows
the simplified layered network.

The method can be extended to configuring sessions where different processing
stages are optional. However, when the effects on the bandwidth of the data stream
are more complex than in the simple compression/decompression example, a more
complex layered graph may be required. These more general cases can be solved
using layered graphs that have the first layer connected to multiple columns of layers.
Each column contains some subset of the layers for the complete processing, and
eventually connects to the destination d below the last layer of each column. The
general form of such a graph is illustrated in Figure 2.10. The columns of layers
connected from the source s and to the destination d represent possible choices of

processing sequences.

2.5 Congestion Control Processing

Application-specific congestion control [26] is often cited as a good example appli-
cation for active networking. The idea is that an application-specific module could
modify the application data stream dynamically in response to network congestion, in
a way that minimizes the impact on the application (for example, a video congestion
control module might preferentially discard high frequency information, to reduce the
subjective impact of the lost information).

For this type of application, the modules should be installed at nodes preceding
those links that are most likely to be subject to congestion, but can be omitted from
links where congestion is unlikely to occur. If the application is configured to use
several congested links, the congestion control module will need to be installed at each
of these links. If it is configured to use only uncongested links, then no congestion
control modules need to be installed. If a path using several congested links is much

shorter than a path that uses no congested links, it may be preferred. We want

28

Configuration
D00 OO0 with nF
/' /' | processing
Wl i ’
O O

wﬁ(g N

Figure 2.10: Transformed Network for Optional Processing

to formulate the problem so that we can make the best overall choice of a path,
considering both the cost of the links and the cost associated with the congestion
control (this may include both a processing cost component and a “cost” for the
impact of congestion on the application). We can accomplish this simply by modifying
the costs of all congested links to reflect the added cost of coping with congestion at
those links, and then search for a shortest path, using the modified costs.

The problem is defined formally as follows. The network is represented by a
graph G = (V, E) and we let L C E denote the set of congested links. Each edge
(u,v) in the graph has an associated cost c¢(u,v), and each congested edge has an

additional cost ¢’(u,v). Given a source s and a destination d, our objective is to find

29

a least-cost path from s to d. The cost of a path includes the cost of its links, and

for congested links we include both ¢ and ¢ in the sum.

2.6 Configuring single source multicast sessions

In this section, we discuss the configuration of multicast sessions, which involve a
single source and multiple receivers. The configuration for such a session should
provide a set of link resources that connect the source with each receiver in the session.
In the particular form of a multicast, the link resources may be shared among data
flows terminating at different receivers, and the configuration often forms a tree shape
rooted at the source.

We begin by considering the intermediate processing applied to the data flows
of such multicast sessions. As an example, consider a video transfer application that
provides a single-source multicast session where the video data coming from the source
is compressed to reduce transmission cost and then decompressed before it gets to

each of the receivers. Figure 2.11 shows a session graph for this example.
P. p
b S b
et W ¥ vy

Figure 2.11: Multicast session graph for a video transfer application

The graph resembles the session graph of the unicast session with two process-
ing steps introduced earlier, with the destination node now representing all receivers
in the multicast. The edges in the session graph are of a special type to reflect the fact
that link resources can be shared among multiple data flows terminating at different
receivers. The session graph also shows the changes in the bandwidth requirements
when the compression ratio is 50%. Possible configurations of the session are shown
in Figure 2.12 with thick lines, each of which forms a tree with different branching
points and different choices of processing nodes. The optimal configuration of the

session is the one that has the least cost among all possible configurations.

30

decompression node

decompression node
for receiver cand d

compression node
for all receivers

decompression

foraandb

(a) Branching only after decompression (b) With more branching

Figure 2.12: Multicast session configurations

One way to configure the session is to configure a separate unicast session for
each receiver. However, in doing so, we lose the opportunity to share resources raising
the overall cost. Instead, we can directly find a multicast configuration in the layered
network, which is constructed in the same way as for unicast sessions. Figure 2.13
shows the layered network. To configure the session, we find a multicast tree rooted
at sp and terminating at as, be, co and dy in the layered network. Then, we project it
to the original network graph in the same way as for unicast sessions. The projection
corresponds to a proper configuration for the multicast session with the processing
applied to all data flows. The multicast tree shown in Figure 2.13 corresponds to
Figure 2.12(b).

Therefore, by finding a configuration in the layered network, we configure an
equivalent multicast session with processing in the network graph. The layered net-
work method again lets us hide the processing requirement with the graph transfor-
mation and lets us solve the problem as a conventional multicast configuration.

Finding the least cost configuration is more complex for multicast sessions. In
fact, the multicast routing problem is equivalent to the A'P-hard Steiner tree problem
in graphs. The Steiner tree problem has been studied extensively for undirected
graphs, and there are several approximation methods for it, with the best method

known having a worst-case performance ratio of 1.55 [27]. However, those methods

31

Figure 2.13: Layered network for multicast

cannot be generalized for directed graphs. Only in recent years has the directed
Steiner tree problem been studied, and few approximation methods exist. The method
presented in [28] gives the ratio of 2¥ in time O(k?b + |E|), where k is the number of
receivers, U is a measure of the asymmetry of the optimal Steiner tree, and b < |V| is
a tunable variable in the algorithm. Another set of methods, described in [29], gives
the ratio of (i — 1)k*/* in time O(|V[*k%), given any i > 1.

Unfortunately, the results for directed graphs are not appropriate for dynamic
session configurations, since their time complexity is excessive. We suggest two simple
heuristic methods which attempt to find a good configuration. Given a multicast
group which is composed of a source and multiple receivers, the methods work as

described below.

The shortest path tree method first finds the shortest path tree in the layered
network rooted at the source. It then extracts a subtree from the shortest path tree

so that the subtree contains only the paths that lead to the receivers.

The multi-step tree augmentation method incrementally constructs a multicast
tree T', starting with T = ({s}, {}) and a set M, where s is the source and M contains
the receivers. It repeats the following step until the set M is empty. Find the receiver

d € M that is nearest to T. The distance from T to d is measured as the shortest

32
path between any node in 7" to d. Then, augment the tree T' to include the shortest

path from T to the selected receiver d, and remove d from M.

We can view these two heuristics as extreme cases of a more general algo-
rithm. The general algorithm is a modification of Dijkstra’s algorithm. After steps
k,2k,3k, ... of Dijkstra’s algorithm, we reset the distance variable d(v) to zero, for
every vertex that is on any of the paths that connect the source to the receivers in
the partial tree constructed so far. For each of the “boundary vertices” v that is
connected to any vertex in the constructed path tree, we also let d(v) be the length
of the shortest edge connecting v to some vertex with distance value 0. The two
heuristics correspond to setting £ = n and k£ = 1, respectively. Intermediate values
of k yield algorithms of varying time complexity and varying solution quality.

As an upper bound on the costs of multicast trees, we use the sum of the costs
of the shortest paths that connect the source to the receivers. This sum represents the
cost of configuring multicast sessions simply by independent unicast configurations.
By comparing multicast tree costs to the upper bound, we measure the benefit of

resource sharing among multiple receivers.

treecost = 5 treecost = 4
2
3
2
(a) Network (b) Shortest path tree (c) Multi-step tree aug-
method mentation method

Figure 2.14: Comparison of the tree costs resulting from the heuristic methods, where
the result of the shortest path tree method costs less than the multi-step tree aug-
mentation

While the two heuristic methods take advantage of resources shared among

different receivers in reducing the total cost of multicast trees, it is unclear which of

33

source

receivers —>

(a) Network (b) Shortest path tree (c) Multi-step tree aug-
method mentation method

Figure 2.15: Comparison of the tree costs resulting from the heuristic methods, where
the result of the multi-step tree augmentation costs less than the shortest path tree
method

the two method reduces cost more. In fact, neither of them is always better than
the other, as shown by the examples in Figure 2.14 and Figure 2.15. Figure 2.14(a)
shows a network and a single-source multicast group to be connected. Figure 2.14(b)
and Figure 2.14(c) show the multicast trees obtained by the two heuristics. Here,
the tree obtained by the shortest path tree method has a smaller cost. On the other
hand, Figure 2.15 shows the other case, where the tree obtained by the multi-step
tree augmentation method has a smaller cost.

To evaluate the heuristic methods, we performed a simulation study on a net-
work spanning the 50 largest metropolitan areas in the United States. Figure 2.16
shows the network with processing nodes highlighted by triangles. In this network,
we consider a multicast application whose sessions are composed of a source and mul-
tiple receivers. Here, the source always sends a video stream compressed by 10:1, and
the video must be decompressed at a processing node so that receivers can directly
display the video. Sessions of this type must be configured on a tree that is rooted
at the source and reaches all receivers, and also contains at least one processing node
for decompression on each of the source-to-receiver paths in the tree. Our simulation

results include approximately 2 million such multicast session configuration attempts.

34

Minneapolis

Miami

Figure 2.16: Metro 50 Network

In each attempt, we randomly selected a source node and receiver nodes in the net-
work, and applied the heuristic methods to the layered graph constructed from the
network given in Figure 2.16. For simplicity, we focused on finding a multicast tree
that only minimizes the cost associated with bandwidth usage by not considering the
cost associated with processing. This was done by assigning zero costs to inter-layer
edges in the layered graph. The decompression processing, however, still affects the
multicast tree construction because of its bandwidth expansion. It is preferred to
place the processing nodes closer to the receivers to minimize the bandwidth usage
while maximizing the bandwidth sharing among the different paths that reach the
receivers.

Figure 2.17(a) shows the costs for bandwidth usage in the multicast trees
constructed by the shortest path tree method and three variants of the multi-step
tree augmentation method, each of which includes 1, 2, and 4 receivers at each step.
These costs are shown in relation to the upper bound when the number of receivers

is varied from 2 to 50. Remember that given a source and multiple receivers we refer

35

Comparison of Bandwidth Cost of Multicast Trees Comparison of Processing Costs in Multicast Trees

1 1

\jho/na path tree
Multi-step tree augmentation methot
Each step includes 1, 2, 4 receivers.

Negligible differences anong different step \
: b

o
©

o
®

o
©

AICZENES Shortest path tree method

2 receivers

o
o
o
=

o
3

Tree Cost Relative to Toal Cost of
Aggregated Unicast Paths
o
~

Processing Cost of Multicast Trees

Relative to Shortest Path Tree Processing
ost
o
>

Multi-step tree augmentation method \
Each step includes 1 receiver

o

~
o
N

20 30 40 50

=)
e
o

T T T T
10 20 30 40 50

0
Number of Multicast Receivers Number of Multicast Receivers
(a) Cost associated with bandwidth usage (b) Cost associated with processing

Figure 2.17: Comparison of costs for resources in multicast trees

to the sum of the costs of individual shortest paths that lead to the receivers as the
upper bound.

Overall, all heuristic methods show significant cost reductions, by 30% when
the number of receivers is 18, and by 50% at maximum. The result implies that
more resources are shared among source-to-receiver paths as the number of receivers
grows. Among the heuristic methods, when the number of receivers is between 6
and 50, the multi-step tree augmentation method shows approximately 5% more cost
saving than the shortest path tree method. Note that source-to-receivers paths are
required to include at least one of the processing resources, which are limited to one
third of the entire nodes in the given network. Because of this restriction, there is
a smaller chance for a receiver to have multiple options to be connected to the tree.
Consequently, the multi-step tree augmentation method is less likely to find paths
that are different from the shortest paths. This notion explains the relatively small
difference of 5% observed in this simulation. For the similar reason, there are only
negligible differences among the variants of the multi-step tree augmentation method,

While processing costs are not directly considered in optimizing multicast trees,
we still measured the costs associated with processing in the same simulation simply

by counting the number of times that processing nodes are used in each multicast tree.

36

These processing costs are shown in Figure 2.17(b) in relation to the total processing
costs of individual unicast paths. Note that because each unicast configuration uses
one processing node (for decompression), r processing nodes are needed in total when
r is the number of receivers. All methods present significant savings in processing
usage compared to the unicast configuration option showing approximately 42% cost
reduction with 22 receivers. The cost reduction increases as the number of receivers
grows for more processing nodes can be shared among different source-to-receiver
paths.

Some applications might have restrictions on path lengths, for example, to
avoid extreme transmission delays. We considered the diameters of multicast trees
for such applications. In our simulation, the diameter of a tree was the length of
the longest source-to-receiver path assuming the geometric distance for the length of
each link. Because the multi-step tree augmentation method might choose a path
that takes less cost to reach the currently constructed tree than the source, source-
to-receiver paths provided in such multicast trees can be longer than the shortest
paths. Figure 2.18 compares the diameters of trees computed by the multi-step tree

Comparison of Multicast Tree Diameters

Multi-step tree augmentation method
Each step includes 1 receiver 2 receivers
\ "

/i

0 10 20 30 40 50
Number of Multicast Receivers

=
w
a

[
w

.
N
o

I
N

I
N
o

N
[N

Multicast Tree Diameters Relative to
Diameters of Shortest Path Trees

e
=3
a

[N

Figure 2.18: Comparison of diameters of multicast trees

augmentation method to the diameters of the shortest path trees. The original multi-
step tree augmentation which includes 1 receiver at each step shows up to 33% increase
in diameters. Naturally, as more receivers are considered at each step, the difference

is reduced, with 18% increase at maximum when 4 receivers are included at each

37

step. To restrict the diameters of multicast trees while minimizing their resource
(bandwidth and processing) usage, the multi-step tree augmentation method can be
used by tuning the parameter that sets the number of receivers considered at each

step.

2.7 Related Work

Extensible networks expand the scope of network resources by allowing applications
to use processing resources at routers in addition to the bandwidth resources in links.
The Darwin project [30] focused on the management of this broader set of network
resources. One of the core mechanisms in the Darwin system is a resource or service
broker called Xena, which discovers and selects the resources that are necessary and
(near) optimal for service requests from applications. Once the resources are iden-
tified, a signaling mechanism called Beagle conveys signaling messages for resource
reservation. Darwin also contains a mechanism that manages and adapts the resource
usage at each resource, which is based on a Java code module called a delegate.
Among the mechanisms in Darwin, Xena implements the algorithm to deter-
mine the resources to be configured for each service request of an application or an
application session. While Xena expresses the algorithm as a 0-1 integer programming
problem to solve more general forms of application sessions, our session configuration
described earlier in this chapter provides a more efficient algorithm for the most pop-
ular subsets of session forms and may be combined with Xena for better performance.
Other relevant work includes routing frameworks and protocols. While we have
emphasized fundamental algorithmic issues in configuring resources, implementation
strategies need be discussed in order to apply our approach. Current routing frame-
works that deliver resource configuration services to application sessions follow the
link state routing principle. Link state routing [11] requires each node to maintain
at least a partial view of the network state, which is composed of the states of all

links in the network. When there is a change in the status of a link, a link state

38

advertisement (LSA) is flooded throughout the network so that every node can up-
date its view of the current network status and compute its routes to other nodes.
In other words, such routing frameworks provide a distributed resource configuration
service that allows configuration decisions to be made by multiple nodes in a cooper-
ative fashion. While the same can be done in a centralized fashion by assigning the
task to a single server, the distributed system is more suitable for larger networks
and is more reliable and robust in general. Such distributed systems must include
a component that distributes information about network resource availability and a
component that uses that information to make configuration decisions with respect
to specific sessions.

The ATM Private Network-Network Interface protocol (PNNI) [14] is an exam-
ple of a distributed resource allocation system that solves a similar problem. PNNI
can be viewed as two protocols, a link-state protocol that distributes information
about network resource availability and a signalling protocol that uses this informa-
tion to make virtual circuit routing decisions. In the case of PNNI, the route from a
source to a destination is selected by the switch connected to the source, using stored
information about the network topology and resource availability. The protocol then
passes the selected route to other switches along the path. They, in turn, make local
resource reservations and propagate signalling messages along the path. During this
process, if an attempt to make a local resource reservation fails, a new path may be
computed by the switch at the point where the reservation failed, allowing the path
setup process to continue. To make the approach scalable to very large networks,
the PNNI protocol aggregates information about sections of the network, allowing
switches to have complete knowledge of the portion of the network that is close to
them and more summary knowledge of distant portions of the network.

The general approach taken by the PNNI protocol can be extended to handle
configuration of sessions requiring intermediate processing. The state information

distributed by the routing protocol must be expanded to include information about

39

processing resources available at various locations in the network. Using this infor-
mation, a path can be computed by the router connected to the source of a unicast
session, and then forwarded in a signalling message to successive routers on the path
to the destination, allowing local resource reservations to be made as the signalling
message proceeds to the destination. Of course, as with the basic PNNI protocols, the
selected paths may not be globally optimal, since initial path selections may be based
on summary information about distant portions of the network. This is nothing new
in network routing, where optimality of path selection must generally be sacrificed
for the sake of scalability.

Other approaches are possible as well. In particular, other link state proto-
cols, such as Open Shortest Path First (OSPF) [13], can be used to distribute state
information, and other signalling protocols can be used to select paths and make the

required resource reservations.

40

Chapter 3

Resource Configuration in

Capacity Constrained Networks

In this chapter, we study the configuration of sessions when the network has hard
limits on the resource capacities to be consumed by application sessions. For instance,
a video transfer application may require a fixed bandwidth available on the links
in order to achieve desirable video quality for its interactive sessions, while some
link resources may not have enough capacity to provide the required bandwidth.
Figure 3.1 shows an example session of a video transfer application in which the sender
sends 5 Mb/s of video stream compressed by 10:1 to a receiver, that is incapable of
decompressing the video. For such a receiver, the network provides processing nodes
that can handle the decompression, as shown in the figure. Given a uniform cost
for using any link in the network, Figure 3.1 shows in dotted lines the least-cost
path configuration computed by the layered graph method. A valid configuration
must contain at least 5 Mb/s on the links that are used to connect the source to
the processing node; it must contain 50 Mb/s on the links that are used to connect
the processing node to the receiver because the decompression expands the data
bandwidth by 10 times. In the figure, we show the bandwidth available at each
link in units of Mb/s. Note, however, that the least-cost path does not provide

enough capacity. Meanwhile, the other configuration, shown by solid lines, satisfies

41

numbers represent
available capacity

decompressed video
requires 50Mb/s

compressed video
requires 5Mb/s

de\ processing nodes for the shc_theet path lacks —=
comp) decompression capacity on resources destination

Figure 3.1: Video transfer application with bandwidth requirements

the bandwidth requirement and therefore is a valid configuration. Likewise, processing
nodes may also be required to have a certain amount of processing capacity in order
to handle the target processing, while some nodes lack the required capacity.

In order to guarantee resource availability, the available capacity must be con-
sidered, as well as the cost of each resource. In the session configuration problem
given in Problem 2.2.1, however, we did not include capacity limits in the network
graph, and considered every resource in configuring sessions regardless of the avail-
able capacity. To provide resources with adequate capacity, we generalize the resource
configuration problem, and discuss methods for the generalized problem in this chap-

ter.

3.1 Generalized Resource Configuration Problem

Redefined

In order to explicitly consider the capacity issue, we redefine the session configuration
problem with the available capacity at each resource specified in the network graph.

The problem statement is given in Problem 3.1.1.

42
PROBLEM 3.1.1 Session Configuration Problem for Capacity Constrained Networks

Given: A directed session graph G5 = (Vy, Ey), with a type t(u) and a capacity re-
quirement p(u) for each verter u € Vi, and a bandwidth requirement b(u,v) for each
edge (u,v) € E.

Also, a directed network graph G = (V, E) with a type set T(u) and processing ca-
pacity P(u) for each vertex u € V, and available bandwidth B(u,v) for each edge
(u,v) € E.

In addition, the unit costs, c(u) and c(u,v), are given for each vertex and edge as a
positive integer value.

Find: A location function | : V, = V and a routing function r : E, — 2F that satisfy

Vue Vs, t(u) € T(I(u)) (3.1)
V(u,v) € Es, r(u,v) is a simple path in G from l(u) to l(v) (3.2)
VeeV,) pu)<P(z) (3.3)
a<iu)
V(z,y) € E, Z b(u,v) < B(z,y) (3.4)
(u,v)EE,:

(z.y)er(uv)

and that minimize the cost Cy, where

Cir = 2 uev, cU(w)p(u) + 22w e, €7 (4, v))b(u, v) (3.5)

This problem extends Problem 2.2.1 further by adding the capacity constraint of each
resource in the network graph, while keeping the objective of finding the optimal
location and routing functions. Conditions (3.3) and (3.4) state that the available

capacity should be sufficient to accommodate the total capacity consumption at each

43

resource. More specifically, Condition (3.3) states that the available capacity at each
processing node must be greater than or equal to the total capacity required at
the node by the given session. Similarly, Condition (3.4) states that the available
bandwidth at each link must be greater than or equal to the total bandwidth required
at the link by the session.

Recall that a new variable has been added to the network graph for each
resource to express the available capacity, P for a processing node and B for a link. We
refer to this network model as a capacity-constrained network. Given the new network
model and the capacity requirement, we now reconsider the optimal configuration
problem, focusing on unicast sessions.

First, configuring sessions that do not require intermediate processing can be
done simply by eliminating the links that lack the required bandwidth from the
network graph and finding the least cost path in the “reduced” network. Because
the “reduced” network contains only links with enough capacity for the bandwidth
requirement, and no link is used more than once (in the least cost path), we can
guarantee that the optimal configuration computed in this network will always satisfy
the capacity requirement.

On the other hand, because a single resource may be used multiple times in a
selected configuration, the same strategy may not always work for sessions that do

require intermediate processing. An example is given in Figure 3.2, where a session

cost, available capacity
(processing)

cost, available bandwidth

3,10

Figure 3.2: Network graph with a cost and capacity specified for each resource

from s to d is to be configured with one processing step. Here, the shaded node is

44

the only processing node capable of the processing, and each resource is associated
with two values, the first being its cost and the second being the available capacity.
When the required capacity is 1 unit, we can modify the network by eliminating the
links with less than 1 unit of available capacity. Figure 3.3(a) shows both the layered

graph composed from this reduced network and the least-cost path. However, this

(a) Layered graph and the least-cost path

Cost, Capacity
3,10

the least-cost path for
asessionfromstod
requiring 1 unit
capacity (projected
fromthe layered thislink is used twice, and therefore
graph) must accomodate both uses

(b) Projected configuration

Figure 3.3: Session configuration in capacity constrained networks

least-cost path is projected to a configuration in the original network, which overuses
a resource. Figure 3.3(b) shows that the projected configuration uses the link (u,v)
twice, consuming 2 units of bandwidth, while the available bandwidth at the link is

only 1 unit. While the session can be configured on this path if it requires < 0.5

45

units of bandwidth, there is no possible path otherwise, because the total bandwidth
requirement exceeds the available bandwidth of any path from s to d. To find a
valid configuration, for each resource a decision has to be made whether to exclude
the resource from consideration according to its available capacity and the capacity
requirement. However, it is unclear how to foresee the non-uniform resource usage as
described earlier without examining all possible paths.

These difficulties arises because the general problem of configuring sessions
with capacity constraints and processing requirements is intractable. Consider a
complete network, G = (V, E), where every node except s and d is capable of any
type of processing, and each has 1 unit of available capacity. Now, consider a session
from s to d which requires |V| — 2 processing steps. Any feasible configuration to
this problem must pass through all the intermediate nodes, and thus it provides a
solution to the well-known Hamiltonian path problem [31], which is known to be
N P-complete.

Given the intrinsic intractability of the problem, we turn next to a study of
heuristic algorithms. In the next two sections, we introduce two heuristic methods
for the optimal session configuration problem in a capacity-constrained network. We
focus on unicast sessions that specify a processing requirement for each step and a
bandwidth requirement for each path segment between two consecutive steps. Note
that the bandwidth requirement can differ on different path segments, since processing
steps may expand or reduce the amount of data. As discussed in Chapter 2, the costs
in the different layers are scaled to account for such effects. Our heuristics extend
the layered graph method to prevent resources from being used beyond their current

capacity.

3.2 Heuristics: Selective resource consideration

The first heuristic is really a collection of similar algorithms that we refer to as the

selective inclusion algorithms. Each modifies the layered graph to prevent links from

46
being over-used and then finds a shortest path in the modified graph. The algorithms

differ in the way they modify the layered graph.

The Strict inclusion method includes an edge in the layered graph only if it has
enough capacity so that it cannot be over-used, even if it is selected for use in all
layers. This policy applies to both intra-layer and inter-layer edges. Since different
processing steps may require different amounts of processing capacity, we include a
given edge as an inter-layer edge only if the sum of the capacities required for all
the processing steps is no larger than the available capacity of the processing node
represented by the inter-layer edges. Similarly, we include a given intra-layer edge only
if its capacity is no smaller than the sum of the bandwidth requirements for all path
segments. Once the modified layered network is constructed, a shortest path from
the source to the destination is computed. If none exists, the session configuration

attempt is rejected.

The Loose inclusion method includes an edge in all layers if it has sufficient ca-
pacity to be used in any one of the layers. If, after a path is determined, the path is
found to over-use an edge, the path is discarded and the session configuration attempt

is rejected.

The Permissive loose inclusion method is not intended as a practical algorithm,
but is used in our simulation study to provide a nominal bound on the performance
of the other algorithms. It works like the loose inclusion method, except that it never
rejects the path that is found, even if the path over-uses an edge. In this way, the
permissive loose inclusion method provides a lower bound on the blocking probability
of session configuration attempts given any method. Here, the blocking probability
is the rate of unsuccessful session configuration attempts to the total number of

attempts.

The Random inclusion method includes edges in a set of selected layers, for which
the total capacity requirement is no larger than the edge capacity. For each edge, the

layers are selected randomly and independently. Once the modified layered network

47

is constructed, the shortest path search is performed. If successful, the session is

configured using that path.

The Consecutive inclusion method first selects a layer at random and then goes
through the remaining layers in consecutive order, adding the edge to each layer in

which the addition cannot violate the capacity constraint.

The selective inclusion methods are very simple to implement and, according to our
simulation results given later in this chapter, can perform reasonably well when the
session resource requirements are much smaller than the capacities of the links and
processing nodes Note that resource over-uses are most likely to occur when resource
requirements take a significant portion of the remaining capacity, for example 60%.
This finding implies that the selective inclusion methods do not handle resource over-

use well.

3.3 Heuristics: capacity tracking

Our second heuristic is somewhat more complex but can perform well, even when
session resource requirements are relatively large. The algorithm is an extension to
Dijkstra’s shortest path algorithm, and is called the capacity tracking algorithm.
We start with a brief review of Dijkstra’s shortest path algorithm.

Given a graph, and a source node s, Dijkstra’s algorithm computes a shortest
path tree rooted at s. Initially, the tree contains just s. The algorithm maintains a set
of boundary vertices, S, which includes all nodes v that are connected to some vertex
u in the partial tree constructed so far, by a directed edge (u,v). At the start of the
algorithm, S contains the nodes v, for which there is an edge of the form (s,v). The
algorithm also maintains, for each vertex v, a tentative distance d(v), which is the
length of the shortest path from s to v that has been found so far. It also maintains
a tentative parent p(v), which is the predecessor of v in a path from s of length d(v).
The quantities d(v) and p(v) are not defined for nodes that are neither in the tree

nor in S.

48
At each step, Dijkstra’s algorithm selects a node v in S for which d(v) is

minimum, and adds it to the tree. It then examines each of the outgoing edges of
v, i.e., each edge of the form (v,w). For each node w that is neither in the tree
nor in S, it adds w to S, setting the tentative parent of w to v, i.e., p(w) = v, and
setting the tentative distance of w to d(v) plus the length of (v, w), i.e., d(w) =
d(v) + length(v,w). For each node w that is in S, it compares d(w) to d(v,w) plus
the length of the edge (v, w), and if it finds that d(w) is larger, it updates d(w) and
p(w). If the set of boundary vertices is implemented using a Fibonacci heap [32],
Dijkstra’s algorithm runs in O(m + nlogn) time, where n is the number of nodes in
the graph, and m is the number of edges.

When Dijkstra’s algorithm is applied to a layered graph, some of the paths
in the shortest path tree may contain edges on different layers that correspond to
the same link or node in the original network from which the layered network was
constructed, leading to over-use of resources. To prevent this, we modify the basic
processing step to include a check for over-used resources. In particular, when a node
v; is added to the tree (i denotes the layer in which the vertex appears), we consider
edges of the form (v;, w;) and (v;, v;11). Before processing an edge of the form (v;, w;)
which belongs to layer ¢, we examine the path in the tree from s to v; and add up the
capacities required by all edges on the path that correspond to the original link (v, w).
If this total capacity, plus the capacity that would be used by the edge (v;, w;), exceeds
the available capacity of the link, then no action is taken with respect to that edge.
Figure 3.4 shows an example of this case, where two intra-layer edges corresponding
to the link (v, w) are considered in the shortest path tree rooted at the node s. The
intra-layer edge considered in the second layer cannot be used because the available
capacity (1 unit) has already been used in the first layer. The dotted lines show the
part of the shortest path computed by the original Dijkstra’s algorithm, which is not
used by this heuristic method due to the insufficient capacity. Edges of the form

(vi, vi41), which are inter-layer edges, are handled similarly according to the available

49

The shortest path tree
/\ rooted at the source sis
shown in thick lines.

available capacity

Both (v,,w,) and (v,,w,) are
used on the path fromsto d
within the shortest path tree,

requiring 2 unitsin total.

Figure 3.4: Shortest path tree in a layered graph

capacity of the processing nodes associated with these edges. We refer to this capacity
checking procedure as capacity tracking.

In the worst case, the extra time required by capacity tracking is O((km)(kn)),
where m and n are the number of edges and nodes in the original network and £ is the
number of processing steps. This can be seen by noting that the checking procedure
is invoked no more than k(m+n) times, and each execution requires that we traverse
a path with no more than kn — 1 edges.

The running time can be improved by maintaining an additional variable (v;)
for each vertex in the partial tree constructed so far. If u; is the tentative parent of v;,
i.e., u; = p(v;), then k(v;) denotes the sum of the capacities required from all edges
on the tree path from s to v; that are copies of the link (u, v) in the original network
graph. Similarly, if v;_1 = p(v;), then k(v;) is the sum of the capacities required from
all edges on the tree path from s to v; that correspond to the processing node v in
the original network graph. Using these additional variables, we can terminate the
capacity tracking search from a node v; back to s early, reducing the time taken for
capacity tracking to O(kmn).

In practice, the extra time required by capacity tracking is much smaller than
the worst-case analysis suggests, because networks are designed to have small diam-
eters, which means that the paths in the shortest path tree generally have far fewer

than kn edges. If we let D denote the maximum number of edges in a path from the

20

root to a vertex in the shortest path tree, then the extra time required by capacity
tracking is O(kmD). Even this result over-states the time required by capacity track-
ing in practice. As will be seen later, running time measurements in more realistic
situations show that capacity tracking takes less than twice the time required by the
simpler heuristics.

Capacity tracking ensures that paths found by the algorithm do not over-
use any resources. However, since the problem is N P-hard, we cannot expect it to
always find a valid path, even when a path exists. Consider the example shown in

Figure 3.5(a). If each link in the original network graph has one unit of capacity, and

Each link and processing node has Avalid path not chosen by the
(1 unit of available capacity capacity tracking

Tu > 1
u »(W

Cannot proceed to w, because the capacity
of (u,w) has already been used up

(a) Blocked path by capacity tracking (b) A valid configuration

Figure 3.5: Blocked path in capacity tracking

the session requires one unit of capacity on each edge of the selected path, it can fail
to find a path, as shown in part (a) of the figure. The bold edges are the edges that
form the shortest path tree at the time the path search terminates. Note that there
is no way to extend the tree further, since the only edge leaving vertex uy has already
been used in the top layer, and hence cannot be used again. On the other hand, there

is a path that could be used for this session, as shown in part (b).

51
3.4 Simulation Results

We performed a set of simulations for the session configuration problem to evaluate
the heuristic methods discussed so far. In the simulations, we considered the following

four different network topologies.

Torus: This network is based on a grid of 64 nodes in which every node has an
outgoing edge to each of its four neighbors — north, south, east and west — along
the grid lines. The nodes at edges of the square grid also have links that “wrap
around” to the corresponding node at the opposite edge, resulting in a torus topology.
Figure 3.6 shows the network topology. Nodes that can perform processing are shown

as triangles.

Tol ol aola e ol e
O A AT & ¢

Figure 3.6: Torus network

Random: This network is a random regular network with 64 nodes, each having 4
incident edges. We build the network starting with a random degree-bounded tree
that spans all 64 nodes, then we expand the network by adding edges randomly until

every node has exactly four incident edges.

In both networks, every link has the same capacity and the same cost, and one third
of the nodes are randomly designated as processing nodes, with the ability to perform

processing. All processing nodes have the same capacity.

Metro 20: This network is a more realistic network configuration, spanning the 20

largest metropolitan areas in the United States. The network topology is shown in

52

Figure 3.7. Nodes that are capable of performing processing are shown as triangles.
Link costs are set equal to the physical distance between the nodes they connect,

Seattle

Boston

Minneapolis

an Francisco

Miami

Figure 3.7: Metro 20 Network

reflecting the higher cost associated with links spanning greater distances. The link
capacities are selected to be large enough to handle the anticipated traffic. The link
dimensioning procedure used for this purpose is taken from [17], which describes a
constraint-based network design methodology and an interactive network design tool

that implements it.

We constrain the traffic in two ways. First, the total traffic entering and leaving a node
is chosen to be proportional to the population of the metropolitan area represented
by that node. Next, for each node u, we constrain its traffic to every other node
in proportion to the populations of the metropolitan areas represented by the other
nodes. Specifically, if ¢, is the fraction of the population outside node u that is
associated with node v, then we limit the traffic between u and v to be no more
than 1.36, times the total traffic entering and leaving node u. The factor of 1.3 was
chosen to allow for some flexibility in the distribution of traffic, reflecting the natural

variations that occur in network traffic.

93

Given these traffic assumptions and a default path joining each pair of vertices, link
dimensions can be computed using linear programming. The resulting link capacities
guarantee that any traffic pattern satisfying the traffic constraints can be carried if the
traffic is routed along the default paths. The default path between a pair of vertices
is a shortest path containing at least one processing node, and can be found using a
two layer network. The processing nodes along each default path are dimensioned to
handle the worst-case traffic load allowed by the traffic constraints. When performing
the simulations, we do not constrain the traffic to use just the default paths, but the

link dimensions are chosen under the assumption that the default paths are used.

Metro 50: This network, a larger version of the Metro 20 network, has a node for each
of the fifty largest metropolitan areas in US. The topology is shown in Figure 3.8.

The links and processing nodes are dimensioned in the same way as in the Metro 20.

Minneapolis

Miami

Figure 3.8: Metro 50 Network

While the Torus and Random are not particularly realistic network configura-

tions, they provide a more “neutral” context for evaluating the session configuration

o4

algorithms than the somewhat idiosyncratic network topologies that arise from real
world considerations. By considering a variety of different networks, we hope to
avoid drawing conclusions that may be attributable purely to special properties of a
particular network.

There are several configuration parameters that affect the simulation results.

Density of processing nodes (P): The density of processing nodes is just the ratio of
the number of nodes that can perform processing to the total number. In the results
reported here, P = % The processing nodes were randomly selected for the Torus
and Random topologies, and were configured for the Metro 20 and Metro 50 as shown

in Figure 3.7 and Figure 3.8, where processing nodes are drawn as triangles.

Session capacity requirement (BW5): The capacity that an individual session uses at

each link and processing node, BW, is set to 3% of the average link capacity.
Number of steps (Nsieps): The number of processing steps that a session requires.

Offered load at links (Oy): The average offered background traffic level on each link.
The simulation was done by generating background traffic levels independently at each
link and node, then attempting to connect random pairs of nodes. This procedure was
repeated multiple times to produce the reported results. Each simulation run included
over 2.5 million session setup attempts. The background traffic was generated using
an M/M/k/0 queueing model (k servers and zero length queues, where k is the ratio

of link capacity to session bandwidth).

Offered load at processing nodes (O,): The average offered background traffic level at
each processing node. For the results reported here, the offered load at the processing

nodes is the same as the offered load on the links.

The selection of the end nodes of the sessions was done completely randomly
for the Random topology. For the Torus, the selected node pairs were restricted to

be exactly four hops apart. For the Metro 20 and Metro 50, the selection of the

55
end nodes was weighted by the populations of the cities, reflecting the higher traffic

volumes expected in larger cities.
Our primary performance metric is the blocking probability, which is the per-

centage of session configuration attempts that were unsuccessful. Figures 3.9 and

1.0E+00 1.0E+00
Loose Inclusion
Loose Inclusion
> 10E-01 1 2 LOE-01
§ E Strict Inclus'on\ //
[=]
£ 10E-02 1 T 10E-02 s —
o 2
Z Random Inclusion _\é
8 : .
o acity Trackin =
@ 10E-03 4 : . capadty 9 @ 1.0E-03 Random Loose
Consecutive Inclusion Inclusion
Permissive Loose Consecutive Capacity Tracking
Inclusion
1.0E-04 T T T - - - - - - 1.0E-04 T T T T T T T T T
05 055 06 065 07 075 08 08 09 095 1 05 055 06 065 07 075 08 08 09 09 1
Offered Load Offered Load
(a) Torus (b) Random
Figure 3.9: Performance of heuristics for session configuration
1.0E+00
q q Loose Inclusion 1.0E+00
Strict Inclusion . .
Strict Inclusion
>1.0E-01
= 2 1.0E-01 4
g = Loose Inclusion
-g o 8 G Consecutive
o andom . Inclusion
L 10E-02 Inclusion)) & 10E-02{ Inclusion
£ Capacity Tracking =
5 Consecutive =z q 5
° Inclusion A S Capacity Tracking
0 1 0E-03 + Permissive Loose B 10503 | R
' Loose
1.0E-04 T T T T T T T T T 1.0E-04 T T T T T T T T T
05 05 06 065 07 075 08 08 09 095 1 05 055 06 065 07 075 08 08 09 095 1
Offered Load Offered Load
(a) Metro 20 (b) Metro 50

Figure 3.10: Performance of heuristics for session configuration, the metropolitan
area networks

3.10 show the blocking probabilities for the various heuristics as a function of the of-
fered load. The plots also show the blocking probability when paths are constrained
to use the default path. Recall that the default paths were used in the dimensioning

process, so this restriction is worth considering as a point of comparison. In general,

56
however, the lack of routing flexibility implied by this policy results in higher blocking

probabilities than with the other algorithms.

For all four networks, capacity tracking outperformed the heuristics that use
selective inclusion. Also, note that capacity tracking generally performs almost as well
as the permissive loose inclusion method, which is included as an idealized bound on
algorithm performance.

For the Torus topology simulation, every heuristic method except loose in-
clusion results in blocking probability less than 1% for load up to 80%. (See Fig-
ure 3.9(a).) Note that Torus has many paths between selected end nodes, and there-
fore, the heuristics that avoid overusing resources by ignoring some edges in the
layered graph still have a good chance of finding valid paths in the reduced graph.
On the other hand, loose inclusion does relatively poorly, apparently because it often
selects paths that over-use resources (primarily processing nodes).

For the Random topology simulation, all the better algorithms experience a
higher blocking probability than for the Torus. The explanation appears to be the va-
riety of paths available between endpoint pairs in the Torus and the limited separation
between endpoints in the Torus simulation. With the Random topology, endpoints
were simply selected at random, so many pairs are likely to be further apart than
the four hops that constrained the choice of endpoint pairs in the Torus simulation.
In Random simulation, there also tend to be fewer good “second-choice” paths when
the preferred path is not available.

For the more realistic Metro 20 and Metro 50 networks, blocking probabili-
ties are generally higher. For the Metro 20, we note that many sessions must take
“detours” to pass through processing nodes. For example, consider sessions between
Pittsburgh and DC or Seattle and Minneapolis. When the default path is too busy
to accommodate sessions, the “second-choice” paths typically require even longer de-
tours. With the Torus, on the other hand, the second and third choices are often no
worse than the default. For the Metro 50, the detours required to reach processing

nodes are generally smaller, but the number of hops required between endpoints tends

57
to be larger; for example, there are 11 hops in the shortest path from New York to

Los Angeles. Note that with capacity tracking blocking probabilities of less than 1%

are obtained for offered loads of more than 75%.

1.400 1.400
Strict Inclusion
/ Srict Inclusion /
’ Consecutive \4
Random Inclusion Inclusion
Random Inclusi on_

Consecutive

Capacity Tracki HSA

g
g

Inclusion

Capacity Tracking

Normailzed Path Cost
=
N
8
Normalized Path Cost
0
8

11001 1100 Permissive Loose
Permissive Loose Loose Inclusion
Loose Inclusion
05 055 06 065 07 075 08 08 09 09 1 05 055 06 065 07 075 08 08 09 09 1
Offered Load Offered Load
(a) Torus (b) Random

Figure 3.11: Configuration Cost

1.50 1.50
. i Srict Inclusio
Strict Inclusion
.40 1.40
7 1.40 _ - 7
8 Consecutive Inclusion / 8 Random Indlusion
< . e
§ 130 Randernet E 1304 Consecutive Inclusion
E Capacity Tracki E Capacity Tracking
3 1.20 T 120 — -
£ Permissive Loose % Permissive Loose Inclusion
S
z 1.10 + = 1.10 1 Loose Inclusio
1.00 - T T T T T T T T 1.00 T T T T T
05 05 06 065 07 075 08 08 09 095 1 05 05 06 065 07 075 08 08 09 095 1
Offered Load Offered Load
(a) Metro 20 (b) Metro 50

Figure 3.12: Configuration Costs of the metroarea networks

We also measured the cost of the successful configurations. In Figures 3.11
and 3.12, we show the configuration cost from all heuristics relative to the cost of the
default shortest path, which is a lower bound. All heuristics provide nearly optimal
costs at low loads, but deviate significantly at higher loads. The paths produced

using capacity tracking generally stay within 5 to 10% of the lower bound up to loads

o8

of 95%. For the Metro 20 network, the cost rises to about 20% more than the lower

bound at a load of 95%.

1.0E+00

Strict Inclusion

> 10E-01
3 Loose Inclusion
g Consecutive ~ Rendom
g Inclusion Inclusion
& 10802 1
o
[=
£
8 \
= i i Permissive Loose
@ 1003 Capacity Tracking

1.0E-04 . . ‘ ‘

1 2 3 4 5 6

Number of Processing Steps

(a) Metro 20

1.0E+00

Blocking Probability

1.0E-04

1.0E-01 4

Strict Tnclusion

Consecutive ~ Random

Loose Inclusion 3 1
Inclusion Inclusio

1.0E-02

1.0E-03

Capacity Tracking Permissive Loose

2 3 4 5 6 7 8
Number of Processing Steps

(b) Metro 50

Figure 3.13: Blocking rates at 75% traffic load

In another set of simulations, we varied the number of processing steps while

fixing the offered load at 75%. Figure 3.13 shows the effect of this on blocking proba-

bility for the Metro 20 and Metro 50. As we increase the number of processing steps,

the heuristics based on selective inclusion have more sessions blocked due to incorrect

heuristic choices in selecting layers, while capacity tracking experiences no increase

125

Strict Inclusion

% 1.20
3 X Random Inclusion
O Consecutive
< Inclusion

1154
£ \
T :)
N Capacity Tracking
% 1104
£
(=] .
=z 105 Permissive Loose

' Loose Inclusion
1.00

1 2 3 4 5 6 7
Number of Processing Steps

(a) Metro 20

125

1.20 4

IN
N
3

Srrict Inclusion

Random Inclusion

I
N
o

Consecutive Inclusion

Normalized Path Cost

1.05 4

Capacity Tracking
) Sa
Loose Inclusion

Permissive Loose

1.00

3 4 5 6 7 8
Number of Processing Steps

(b) Metro 50

Figure 3.14: Configuration cost at 75% traffic load

in blocking. Figure 3.14 shows the effect of increasing the number of processing steps

on the path quality.

0.004

0.003

0.002

Seconds per configurations

Capacity Tracking

_~

Consecutive

Random

Inclusi on\/

Inclusion

Loose Inclusion

Strict Inclusion

4

5 6
Number of steps

(a) Torus

7

8

9

10

0.0025

s £ o
g £ 8

Seconds per configurations

o

99

Capacity Tracking

N\

Random
Inclusion

Consecutive
Inclusion

%

Loose Inclusion

Strict Inclusion

3 4 5 6 7 8 9 10
Number of steps

(b) Metro 50

Figure 3.15: Time requirements for session configurations

Lastly, we measured the average time required for session configuration by

the different algorithms. Figure 3.15 shows the results for the Torus and Metro 50.

For all algorithms, we varied the number of steps from 1 to 10. As can be seen,

the algorithms based on selective link inclusions are the fastest. On the other hand,

capacity tracking remains reasonably competitive, with a computational cost less

than twice that of the best selective inclusion algorithm when ten processing steps

are performed. Considering that sessions are likely to have far fewer than 10 steps

in the vast majority of applications, the superior blocking probability achieved with

capacity tracking more than compensates for the extra computational time.

60

Chapter 4

Designing Extensible Networks

A well designed network is crucial to delivering performance guarantees. This chap-
ter discusses the problem of designing extensible networks, with the goal of finding
a least-cost network in which resources can always accommodate anticipated traffic
load. Designing networks is a well-known complex problem that has been studied
extensively for conventional networks, where application-specific processing is limited
only to end systems. Extensible networks, as discussed in Chapters 2 and 3, add
more dynamics to operating networks by allowing processing customized for individ-
ual applications, not only at end systems but also at intermediate network nodes.
Supporting customized processing at intermediate network nodes opens up a new,
flexible way to provide advanced services to individual applications. Traffic streams
from each application can be handled uniquely at the network nodes, as specified
by the application. Designing such extensible networks is, however, complicated by
this customized processing. First, adequate processing resources must be provided at
network nodes to support applications that require customized processing. Second,
link resources must be provided in consideration of customized processing, because
such processing, when applied to traffic streams at intermediate nodes, can alter the
link bandwidth initially configured by applications. Our work extends and generalizes
constraint-based network design methods developed for conventional networks [20] to

address these issues in designing extensible networks.

61
4.1 Constraint-based Network Design

A good deal of research effort has been put into designing networks in order to ac-
commodate anticipated traffic efficiently and effectively. Designing a network starts
with describing the traffic anticipated in the network. In an earlier form of telecom-
munication network design, traffic was described exclusively by a traffic matrix [33],
which tightly specified traffic between every pair of nodes in the network. Traf-
fic matrices were used in designing connection-oriented networks, such as telephone
networks, in which application sessions were predictable and uniform enough to be
described by probability models. The goal of designing such networks was to achieve
cost effectiveness while obtaining a low probability for session call blocking. Traffic
matrices continued to be used in designing packet-switched networks, which focused
on bounding the delay for packet transmissions or achieving efficient resource usage
while maintaining cost-effectiveness.

In another form, the traffic description is given by the traffic load expected
at each terminal node, such as the total traffic load that can terminate at a node
(ingress constraint), or the total traffic load that can be initiated at a node (egress
constraint). This traffic description has been used in access network design [34, 35],
where terminals must subscribe to a core network to connect to any other terminals.
The goal here is to find an efficient access network which connects all terminals to the
core network while satisfying the worse-case traffic expectation. Similar constraints
were also adopted later in the hose model [18] by Duffield, et al. in designing efficient
virtual private networks that satisfy given traffic constraints. By using ingress/egress
constraints rather than a traffic matrix, the hose model expressed correlation and
aggregation among traffic flows that are associated with different sources or desti-
nations. The hose model allows network designers to give only a loose specification
of the traffic, when there is not enough certainty to allow specification of a traffic

matrix.

62

Fingerhut [20] introduced a more general concept of traffic constraints in
constraint-based network design. This concept includes not only the existing cases
such as ingress/egress constraints or pairwise constraints as expressed in traffic ma-
trices, but also more general cases where traffic can be constrained between any two
sets of nodes. In our extensible network design, we adopt and generalize Fingerhut’s
methods for constraint-based network design.

The constraint-based design of networks starts with a set of network locations
and a set of traffic constraints. A traffic constraint is given as an upper bound
for the traffic that flows from one set of locations to another set of locations. The
objective of the design problem is to find a least-cost network configuration in which
the link capacities ensure that any traffic configuration allowed by the constraints
can be handled. Here, the cost of a network configuration is defined as the sum of
the costs associated with each resource, where the cost of each resource is linearly
proportional to its capacity. This linear dependency of cost to capacity is appropriate
for large backbone networks, where the bandwidth required between adjacent routers
may be a multiple of the largest physical link bandwidth. It is less appropriate in
smaller networks, which use a variety of physical link bandwidths, and where the
cost per unit bandwidth can vary significantly. Other network design approaches do
consider non-linear cost functions [34, 35, 36]. The constraint-based design method
can be generalized to include non-linear cost models, at the cost of more complex
algorithms. In this work, we limit ourselves to linear cost functions for both link and
processing resources.

Link capacities, which directly affect the cost of a network, are highly de-
pendent on the routing policy, the principle that determines how to route traffic.
Routing policies control the usage of link resources by specifying how to compute
end-to-end paths to be assigned to application traffic. Fingerhut [20] showed how to
find the required link capacities, given a set of traffic constraints, a network topology,
and a deterministic routing policy. Note that in a deterministic routing policy, a

pre-determined path is used for routing traffic between two end points, regardless of

63

traffic load in the network. In practice, more flexible routing policies can be used
in an attempt to adapt to changing situations and to achieve better performance.
For example, when the default path lacks the bandwidth required by a given flow,
the routing policy might provide an alternate path to route the flow without block-
ing. The deterministic routes considered in designing networks can be viewed as the
preferred routes used by the network in the absence of competing traffic.

In the constraint-based design of conventional networks, given a set of traffic
constraints and a routing policy, we must first determine the network topology. Then
we determine which links of the topology to use for each traffic flow and how much
capacity to assign to each link. While there are no efficient algorithms for determining
the best topology for an arbitrary set of traffic constraints, for certain classes of traffic
constraints, a good deal is known. For example, in networks where the traffic between
pairs of end points is tightly constrained in a traffic matrix, the complete graph is
the optimal topology. For networks where the only constraints are on the traffic
originating from or terminating at a network node, as in egress or ingress constraints,
the best star topology is provably no more than twice as expensive as the optimal
topology [20] and is usually very close to a computed lower bound. In some situations,
network designers prefer more restricted topologies over the optimal topology. For
example, to make the routing process at network nodes simpler and more scalable, tree
topologies are often required in designing virtual private networks [37]. Gupta et al.
studied the network design problem with such topological restrictions, given egress
and ingress constraints. They proposed an efficient polynomial-time algorithm for
finding the best tree topology [21] when the constraints at each node are symmetric;
in other words, the worst-case traffic coming in or going out of each node is the same.
They also showed that determining the optimal topology is a hard problem for other
cases. For those hard cases, Gupta et al. presented approximation algorithms [21]
that utilize linear programming and a rounding technique proposed in [38].

The general problem of finding the optimal (least-cost) topology is, as implied

earlier, a hard problem, given an arbitrary set of traffic constraints [20] which can

64

consist of worst-case traffic limits between any two sets of network nodes. Fortunately,
Fingerhut proposed a method to compute a lower bound on the cost of any topology,
given a set of constraints and a routing policy [20]. In the absence of an efficient
algorithm that solves the general problem, this method makes it possible to evaluate
any topology, by computing link capacities, and quickly comparing the cost of the
design to the lower bound to determine how good it is. In this chapter, we show how
to extend Fingerhut’s methods to extensible networks. Before stating the network
design problem formally, in the next section we give an informal introduction to the

constraint-based design of extensible networks.

4.2 Introduction to Designing Extensible Networks

Suppose you have just been assigned the task of designing a new network for the
Acme Corporation. Acme has offices in New York, Philadelphia, Cleveland, Detroit,
and Indianapolis and wants a network that will link these locations and support the
expected traffic among the different sites. There is one catch, however. No one in the
company has any definite idea how much traffic there will be. After consulting with
various “experts” at Acme, all you can conclude is that there will be at most 500 Mb/s
of traffic entering and leaving the New York and Philadelphia locations, 300 Mb/s at
Cleveland and Detroit, and 200 Mb/s at Indianapolis. Using this information, you
want to find a network configuration that will provide enough capacity to handle any
traffic pattern that does not violate these constraints on the total traffic entering and
leaving each location, while providing the lowest overall cost.

Fortunately for you, the company has purchased the new Extensible Network
Planner(XNP) software package that can assist you in finding the best configuration,
so you start up the software and specify the locations of your five sites and the
constraints on the total traffic at each site. You then specify the trial topology shown
in the screen shot in Figure 4.1 and ask XNP to determine how much capacity is

required on each of the links to satisfy the given traffic demands. The screen shot

65

Eﬂe:ﬁtensihle Hetwork Planner File De=sign(Wol)

| & ||| 5F 8] 2] | | B | @

File Edit Design Ewvaluate View Algorithms Window Help

Inefanapolis

mletwork cost= 18109 64E8, 145.57% of Lowerbound = 124401 2E8

Figure 4.1: XNP snapshot for Acme corporation network

also shows, in dotted lines, all the links which you wish to consider as candidates
for inclusion in the trial topology. (In this example, all links are candidates, but in
more complex situations, a designer may want to limit the ”design space” to a more
restricted subset.)

XNP then executes one of its link dimensioning algorithms and assigns the re-
sulting capacities to each of the given links. To determine the required link capacities,
XNP must know how the network will route the traffic. By default, XNP assumes
that traffic between any two locations always uses the least-cost path in the given
network topology, where the cost of a path is the sum of the geographic distances
spanned by the links in the path.

Table 4.1 shows the link capacities that are needed to accommodate any traffic
pattern allowed by the constraints. For example, the link (Cleveland, New York) is
assigned 800 Mb/s to accommodate the worst-case traffic, which includes 300 Mb/s

66
traffic from Detroit to New York, 300 Mb/s from Cleveland to Philadelphia, and 200

Mb/s from Indianapolis to Philadelphia.

Table 4.1: Resulting Capacities after Dimensioning

Link Capacity
(Cleveland, New York) 800 Mb/s
(New York, Cleveland) 800 Mb/s

(Philadelphia, New York) | 500 Mb/s
(New York, Philadelphia) | 500 Mb/s
(Detroit, Cleveland) 300 Mb/s
(Cleveland, Detroit) 300 Mb/s
(Indianapolis, Cleveland) | 200 Mb/s
(Cleveland, Indianapolis) | 200 Mb/s
(Indianapolis, Philadelphia) | 200 Mb/s
(Philadelphia, Indianapolis) | 200 Mb/s

In Figure 4.1, the thickness of each link indicates its capacity as computed
by XNP relative to others. XNP also calculates the total cost of the configuration.
The default cost of a link is the product of its bandwidth in Mb/s and its length
in miles. (The designer may specify a different cost per unit bandwidth for a link,
in situations where the distance-proportional costs are inappropriate.) XNP also
provides a lower bound on the cost of the best possible network for the given set of
traffic constraints, so that you can estimate how close your network configuration is
to an optimal configuration. (The lower bound is computed relative to the set of
candidate links, so when all links are allowed, it is a lower bound on the cost of any
network topology.) The network cost and the lower bound are shown at the bottom
of the frame in Figure 4.1. The given network has a cost that is about 1.45 times the
lower bound. You can refine the current network design by adding or removing links
from the topology to seek a lower cost. Figure 4.2 shows a snapshot of a topology
whose cost is about 1.03 times the lower bound.

Now, suppose that the company has decided to deploy extensible routers at
its Philadelphia and Cleveland locations. Fortunately for you, the latest release of

XNP also includes features to support extensible network design, so you designate

67

Ejextensihle Hetwork Planner (Design - paper_us5.npt)
File Edit Design Ewvaluate Wiew Algorithms Window Help

— Indianapalis

Metwork cost=12896 22E8 103.67% of Lowerbound = 124401 2E8

Figure 4.2: XNP snapshot with a lower cost design

the nodes at Philadelphia and Cleveland as extensible, causing XNP to highlight
them as shown in Figure 4.3. The extensible routers at Philadelphia and Cleveland
are to be used to support a video-on-demand application for employee education
and corporate announcements. The video data is kept in compressed form on a
server in the New York location and is to be decompressed by plugins running in
the extensible routers. The network will automatically determine the best site to do
the decompression, generally seeking to perform the decompression as close to the
destination as possible. The compression algorithm reduces the bandwidth needed
for the video data by a factor of 10, and the decompression plugin executes an average
of 200 instructions for every byte of compressed video that it receives. For any traffic
pattern that satisfies the same traffic constraints as in the previous situation, only
10% of the outgoing traffic from the New York site is expected to be compressed
video traffic, and at most 50% of the traffic reaching any of the receiving sites is
expected to be decompressed video traffic. Given this new information, you are asked

to determine how much processing capacity is needed at each of the two sites and

68

Eﬂe:ﬁtensihle Hetwork Planner File Design(Wol with servers)

@ | & ||| 58] o) | | % | @

File Edit Design Ewvaluate View Algorithms Window Help

Metwork cost= 78311 72ET, 131 68% of Lowerbound = 58472 Z4ET

Figure 4.3: XNP snapshot for video-on-demand application

how much bandwidth is needed at each link, in order to carry the traffic for both the
video-on-demand application and other applications that do not require intermediate
processing.

To apply XNP to this new design problem, you must first describe the appli-
cation characteristics to XNP. You define an application format, which specifies the
amount of processing required by the intermediate processing step and the effect of
the processing on the bandwidth of the data stream. In addition, you introduce new
traffic constraints that bound the amount of video traffic that will be sent from the
New York location and received at all locations. Given this new information, XNP
determines the best way to route the video information for each destination. In par-
ticular, it determines that Philadelphia is the best place to perform decompression for
users in Philadelphia and New York, and that Cleveland is the best place to perform
decompression for users at the other sites. Based on this, it determines that to handle

the peak video decompression traffic the extensible router at Cleveland must be able

69

to process 1 billion instructions per second and that the router at Philadelphia must
be able to process 1.25 billion instructions per second. XNP also computes the new
link capacities shown in Table Figure 4.2. Note that because the video application
is asymmetric, the computed link capacities may also be asymmetric, even though
in most practical situations, links are constrained to have the same capacity in both

directions.

Table 4.2: Resource Capacities for Multiple Applications

Resource (Link or Processing node) | Capacity
(Cleveland, New_York) 800 Mb/s
(New_York, Cleveland) 800 Mb/s

(New_York, Philadelphia) 525 Mb/s
(Philadelphia, New_York) 750 Mb/s
(Cleveland, Detroit) 300 Mb/s
(Detroit, Cleveland) 300 Mb/s
(Cleveland, Indianapolis) 200 Mb/s
(Indianapolis, Cleveland) 200 Mb/s
(Philadelphia, Indianapolis) 200 Mb/s
(Indianapolis, Philadelphia) 200 Mb/s
Philadelphia 1.25 Gi/s
Cleveland 1 Gi/s

Using XNP, you have now designed networks for two varying situations and
determined the capacity required at each individual resource. XNP was also helpful
in choosing a desirable design, as it computed the lower bound on the network cost in
each situation and provided a measure to compare the cost of each network design to
the lower bound. In the next section, we introduce the formal basis for the constraint-
based design methods developed in XNP. (We actually implemented XNP. The details

are given in 5.)

70
4.3 Designing Extensible Networks

This section shows how to generalize constraint-based design methods, which were
originally developed for conventional networks, for extensible networks. Several issues
must be addressed in this generalization. First, and most fundamentally, we need
a method for describing the resource usage of different applications or application
classes, because extensible networks, unlike conventional networks, allow applications
to involve customized processing at intermediate nodes in their sessions, and so require
varying resource capacities along the session routes. We do this by defining application
formats that express bandwidth and processing requirements associated with different
components of an application session. Second, in addition to selecting a topology, we
need to select network sites which will handle the intermediate processing. Third, we
need to dimension not only the network links, but also the processing capacity, to
ensure that all traffic demands can be met.

To incorporate these new issues, we redefine the constraint-based network de-
sign problem, using a set of application formats to be supported in the resulting
network and a set of traffic constraints associated with the application formats. The
objective is to find a least-cost network configuration where resources, including links
and processing sites, have enough capacity to accommodate any application traffic
pattern that satisfies the given traffic constraints. In the absence of efficient algo-
rithms for finding the optimal topology, we take a pragmatic approach to the problem
by providing tools that allow a network planner to quickly generate and evaluate dif-
ferent network topologies and processing sites. These tools automatically determine
the link capacities and processing resources needed, as well as the overall cost. To
assist a network planner in evaluating a candidate design, they also compute a lower
bound on the cost of the best network for the given application formats and traffic
constraints. To describe the design process for extensible networks, we start with

some definitions.

71
4.3.1 Application Format

An application format describes characteristics of an application or class of appli-
cations that can involve an arbitrary number of processing tasks, or steps, to be

performed sequentially on individual session routes. It consists of a pair of lists

[B = (bO’bla abk)’P = (pl:p2a "'apk)]a

where b; is the bandwidth needed on the path segment following processing step i
(step O is the source) and p; is the processing capacity (in instructions per second)
for processing step ¢. For example, an application format for the video-on-demand
application discussed in the previous section might be [(1 Mb/s,10 Mb/s),(25 Mi/s)].
For a slightly more complicated version of the video-on-demand application, which
requires compression to be done at an intermediate node instead of at the source,
the application format is [(10 Mb/s, 1 Mb/s,10 Mb/s),(20 Mi/s, 25 Mi/s)], provided
that the compression requires 160 machine instructions per byte. For such a format
f, let | f| be the number of processing steps, let f.b; be element 7 of the first list, and
let f.p; be element 7 of the second list. The above format is appropriate for one-way
applications. We can extend the format for applications that involve symmetric com-
munication in both directions, but to simplify the exposition, we omit this extension.
We note that application formats can represent whole classes of applications that
have similar characteristics. In particular, the relative magnitudes of the bandwidths
and processing capacities are all that really matter for planning purposes. For ex-
ample, the format [(1 b/s),()] can represent any application that does not require

intermediate processing.

4.3.2 Traffic Constraints

The form of a traffic constraint should accommodate common cases, such as the
ingress and egress constraints or the pairwise constraints introduced earlier in this

chapter, as well as more complex constraints. The most general form for a traffic

72

constraint is a bound on the traffic passing between any two sets of nodes, using a
specified subset of the application formats. To allow for formats that alter the band-
width of a session, we define traffic constraints to be tuples of the form (5,7 F, o, w),
where S and T are sets of nodes, and « and w are non-negative numbers that limit
the simultaneous traffic using application formats in a set of formats F', originating

at nodes in S and terminating at nodes in 7.

4.3.3 Traffic Configuration

A traffic configuration is a matrix C = [csy¢]. The matrix entry ¢, specifies
the number of sessions from a node s going to a node ¢ using application format
f. A traffic configuration C' is allowed by a set M of traffic constraints if for all
(Si, Ti, Fy, i, wi) € M,

Z fbocsrr < oy

SESLET;, fEF;

and

Y Fbpcans <wi

SES; teT;, fEF;
In the above conditions, for each constraint (S;, T;, F;, a;, w;), we limit the total traffic
originating at nodes in S;, summed over all application formats f in F;, all sources
in S;, and all destinations in 7;. Similarly, we limit the total traffic terminating at
nodes in 7;, summed over all application formats f in F;, all sources in S;, and all

destinations in T;.

4.3.4 Routing Policy

A routing policy is a function R(s,t, f) that specifies the path used for traffic origi-

nating at s, terminating at ¢, and using application format f. Specifically,

R(5,t, £) = [(1, 1z, oy 1), (U s oyl)

73

where (uy,...,u;) is a path from s to t and (uy,, ..., uy) is a sublist of (uy, ..., u;),
possibly with some nodes repeated, where v; < v;,; and 1 < v; < r, and where every
node in the second list is a processing node. For example, in the video-on-demand

application of the previous section,
R(New York, Detroit) = [(New York, Cleveland, Detroit), (Cleveland)].

This is interpreted as a path from New York to Detroit via Cleveland which is des-
ignated for processing. Note that the routing policy used in an actual network will
typically be more flexible than the fixed routing policy assumed for network planning
purposes. However, the routes used in network planning should correspond to the
preferred routes in the real network. In a properly dimensioned network, the traffic
will use these routes so long as no traffic constraints are violated. However, devi-
ations from the planned routes may well happen if the network traffic exceeds the

constraints; this occurs in real networks, despite the best efforts of network planners.

4.3.5 Load Factor

The load factor wy s ¢ is the amount of bandwidth used on link ¢ by a session joining
source s and destination ¢ using application format f. The definition is complicated
by the fact that a given link may be used more than once by a single application data
stream that involves intermediate processing steps. Given a routing policy R that

assigns a route

R(57 ta f) = [(u17 Uy ey U’r), (uvlau’uw ey uum)]

to the pair of nodes s, t and the application format f, we define

West,f = > f-bi,

0<i<|f|
S(uj,u41)=L A v;<j<viy1

74

where vy = 1 and vjf 11 = r. This can be interpreted as the sum of the bandwidth
required at link / by the path segments of the route from s to ¢ for application format

f- Similarly, we define the load factor for a processing node ¢ as

Wq,s,t,f = Z fpu

1<i<I S|
Jvi=q

which is the sum of the capacities required by the processing nodes used by the route
from s to t for application format f. We note that while the load factors are clearly

dependent on the routing policy, we do not show this explicitly in our notation.

4.3.6 The Resource Dimensioning Problem

We can now define the resource dimensioning problem for a link /. Given a set of
application formats F', traffic constraints M, and a routing policy R, find a traffic

configuration C' = [c,+ f| that maximizes

Ae(C) = Z Zwe,s,t,fcs,t,f

s,teV feF

while respecting the following inequalities:

> fbocsys < o (4.1)
SES; teT;, fEF;
Z f'b‘.ﬂcs)t:f S wi (42)

SES;teT;, fEF;

for all (S;,T;, Fi, o, w;) € M.

We can state it more succinctly as: find a C allowed by M that maximizes
M(C). A(C) is the bandwidth needed at link [, given a traffic configuration C.
Therefore, by finding the maximum possible value of A\,(C), we find the neces-
sary and sufficient bandwidth for link /. Similarly, we can define the dimension-

ing problem for a processing site ¢ as: find a C allowed by M that maximizes

75
M(C) = D, ev Do jer Wast,fCsi,p- Stated in this way, it is clear that the resource

dimensioning problem is a linear programming problem and can be solved effectively

using an efficient LP solver.

4.3.7 Least-cost Routing Policy

This section elaborates further on routing policies. For a given network topology
and set of processing sites, there is a basic routing policy that seeks to minimize the
cost of the resources used by each session. This routing policy assigns a least-cost
path to each tuple (s,t, f) comprising a source s, sink ¢, and application format f.
Before we can determine a least cost path, we must first define what we mean by
the cost of each resource. We assign a cost per unit bandwidth to each link and a
cost per unit processing capacity to each processing node. These must be expressed
in directly comparable units (e.g., dollars). The cost of using a given path for a
given application session is the sum of the costs incurred at each link and processing
node, taking into account the amount of bandwidth required on each link and the
processing capacity used at each processing node. To find the best route from s to ¢
for application format f, we must find a path from s to ¢t with an appropriate set of
processing nodes that minimizes the combined costs of the links and the nodes. To
illustrate the issues that arise in this problem, consider a video application that, for
efficient transmission, compresses the video data sent from a source at an extensible
router and decompresses the compressed data before it reaches the destination. The
preferred route would minimize the uncompressed data transmission in the network
by selecting a router near the source to host the compression plugin and a router near
the sink to host the decompression plugin.

We discussed this problem in Chapter 2 and 3, and presented an efficient
method called the layered network method to address it. The layered network method
solves the routing problem in extensible networks by reformulating the problem in
another space, where it can be solved as a conventional shortest path problem. The

resulting shortest path can then be mapped back to a route configured with links

76

and processing nodes in the original network. We briefly revisit the layered network
method by showing how it computes the route from Detroit (Det) to New York
(NY) for our example f =[(1 Mb/s,10 Mb/s),(25 Mi/sec)] in Figure 4.3, where two
processing nodes are given at Cleveland (Cle) and Philadelphia (Phili) locations.
Specifically, we focus on the transformation that converts the network to a new graph

called the “layered network”, which is shown in Figure 4.4. This layered network G’

Det,
Cle, NY
1Mb x 648
Mb x 139
G
Ind . 1Mb x 940 Phili
0 25Mi x 100 0
X_| processing cost
at node Cleveland .
Det 25Mi x 100
Cle, NY
10Mb x648
10Mb x139
10Mb x940 -
Ind, X Phili

Figure 4.4: Layered network with least-cost path

includes two copies of the original network G = (V, E). We refer to one copy as layer
0 and the other copy as layer 1. Also, for each node v in GG, we denote the copy of
the node in layer 0 as vy and the copy in layer 1 as v;. We complete the layered
network G’ by adding an inter-layer link (rq,r;) for each processing node r € (Cle,
Phili). For the purpose of routing, inter-layer links are assigned a cost equal to the
cost of performing the decompression operation at that node. In other words, the
cost of a inter-layer link is the product of the processing capacity required for the
decompression algorithm and cost per unit processing capacity of the corresponding
processing node. The links in the top layer are assigned a cost equal to the cost of
carrying a compressed video stream (that is, the bandwidth of the compressed video
stream times the cost per unit bandwidth of the link). The links in the bottom layer
are assigned a cost equal to the cost of carrying a decompressed stream. Hence, the
routing algorithm treats each link in the lower layer as being ten times more expensive

than the corresponding link in the upper layer.

7

Given the layered network G', we compute the least cost path from the node
Detyg, (the copy of Det in layer 0), to the node NYy, (the copy of the destination node
NY in layer 1). Note that G’ only has link costs, so shortest path algorithms can be
applied directly. Figure 4.4 shows the least cost path in the layered network. For the
final solution to the problem, the least cost path in G’ is mapped back to the original
network G'. For each regular link involved in the path, we “project” it to the original
copy in G. Similarly for the inter-layer link in the path, we “project” it to the original
processing node in G' and mark it as the designated node for the requested processing.

Figure 4.5 shows the projection. This projection yields the least-cost path from Det

increased by
10 times after

decompression:
Ind decompression 10Mblsec

Figure 4.5: Least-cost route from Det to NY

to NY that includes an end-to-end path and a processing node. This configuration
has the least cost among all such configurations, and therefore is the final solution.
The layered network method can be generalized for an arbitrary number of processing
steps, as detailed in Chapter 2.

Although other routing policies are certainly possible, we generally assume this

Least Cost Routing Policy, for the purpose of network planning.

4.4 Resource Dimensioning using Flow Graphs

In the previous section, we showed that the problem of dimensioning resources in
extensible networks could be formulated as a linear programming problem, making

it amenable to solution using standard linear programming solvers. While this is a

78

viable approach, solving large linear programs can be very time-consuming, limiting
its appeal in the context of an interactive network design tool. In this section, we
introduce a different method for resource dimensioning, based on finding maximum
flows, which can be significantly faster. While these flow based methods are not
universally applicable, they do apply in some important common cases. Specifically,
the flow based methods can be applied whenever every traffic constraint (S, T, F, o, w)

satisfies these conditions:

S is a singleton and T'=V, or (4.3)
T is a singleton and S =V, or (4.4)
S,T are both singletons, (4.5)

and there is a constant v such that every application format f satisfies the condition

fbyg _
f-bo

7. (4.6)

Conditions (4.3) and (4.4) describe ingress/egress constraints, and Condition (4.5)
describes pairwise traffic constraints. Condition (4.6) gives a restriction on the band-
width requirements such that the ratio of the terminating bandwidth requirement
to the starting bandwidth requirement must be constant for all application formats
considered.

Fingerhut [19] showed that the resource dimensioning problem for conventional
networks can be solved under similar conditions, using the max weight, max flow
method (equivalent to the maz cost, maz flow method), which is an extension of
the well-known maz flow problem. We extend the maz weight, maz flow method to
extensible networks in this section.

The general max flow problem [32] consists of a directed graph with edges

labeled with flow capacities, and two distinct vertices: the source and the sink. In

79

this graph, a flow is an assignment of a value to each edge, such that the value does
not exceed the capacity of each edge, and the sum of the incoming flows equals the
sum of the outgoing flows at each vertex, except at the source and the sink. The goal
of the max flow problem is to find a flow in this graph which maximizes the incoming
flow at the sink. The problem can be extended to include edge weights, leading to
the min weight, max flow problem. Here, the weight of a flow on an edge is defined
as the product of the flow and the edge weight, and the weight of a flow in the entire
graph is defined as the sum of these products. In this work, we use a dual version of
this problem called the maz weight, maz flow problem, in which the goal is to find a
flow of maximum weight, where the weights are all non-negative.

To illustrate how the max weight, max flow method can be used for our di-
mensioning problem, consider the situation where a new video-on-demand application
needs be introduced into the network given in Figure 4.5. In order to deploy the ap-
plication properly, the network designer must find the extra capacity needed at each
resource. As with the application discussed in Section 4.2, all video traffic is sent in a
compressed format from New York, with a compression ratio of 10:1, and so has to be
decompressed by extensible routers at the Philadelphia and Cleveland locations. The
additional traffic expected for the new application is specified relative to the existing
ingress/egress traffic, where the amount of ingress/egress traffic is restricted to 500
Mb/s at New York and Philadelphia, 300 Mb/s at Detroit and Cleveland, and 200
Mb/s at Indianapolis. The new video traffic is bounded so that at most 10% of the
current outgoing traffic from New York is expected to be compressed video traffic,
and at most an additional 50% of the current traffic to each site is expected to be
decompressed video traffic. To make the problem more interesting, we also assume
that at most 5% of the total traffic exchanged within the New York location is ex-
pected to be compressed video traffic. Note that compressed video from the video
source in New York has to be routed through one of the extensible routers, the one in
Philadelphia in this case, even when the receiver belongs to the same location, New

York. Table 4.3 shows the traffic constraints corresponding to the traffic description,

80

Table 4.3: Traffic constraints associated with Figure 4.5 for resource dimensioning

| S T o w |
(NY) V 50 Mb/s oo Mb/s
(Det) Vv 0 Mb/s 0 Mb/s
(Cle) Vv 0 Mb/s 0 Mb/s
(Ind) V 0 Mb/s 0 Mb/s
(Phil) vV 0Mb/s 0 Mb/s
V. (NY) oo 250 Mb/s
V (Det) 00 150 Mb/s
V (Cle) 00 150 Mb/s
Vv (Ind) 00 100 Mb/s
vV (Phil) oo 250 Mb/s
(NY) (NY) 25 Mb/s 00

NY : New York Det : Detroit
Cle : Cleveland Ind : Indianapolis
Phili : Philadelphia

where each row is a traffic constraint.

As described in the previous section, a route for each potential pair of end
points, a source and a destination, can be computed by the layered network method.
We can iteratively dimension the links and processing nodes using the route informa-

tion. Let us select the link [=(Phili,NY) for example. First, we identify the pairs of

Table 4.4: Load factor of the pairs whose path is routed through (Phili, NY), relative
to the initially configured session bandwidth

NY | Det | Cle | Ind | Phili
NY |10 |O 0 0 0
Det |10 |0 0 0 0
Cle |10 |O 0 0 0
Ind |10 |O 0 0 0
Phili | 10 |1 1 0 0

terminal nodes whose route uses the link ¢ and compute the load factor of each pair
relative to the initial session bandwidth as shown in Table 4.4. Recall that the load

factor w4, ¢ is the total bandwidth needed at ¢ to support a session configured from

81

s to t of the application f. The bandwidth increases by ten times after the interme-
diate processing, and therefore the load imposed by each session varies with respect

to where it is used relative to the processing site. In the table, the cell [Ind][NY]

1 __ 10 Mb/s
fbo — IMbJs

contains the relative load factor wppii, Nv),mma,NY,f X = 10, because
the link (Phili, NY) is used after the decompression processing at the Philadelphia
site in the route from Indianapolis to New York. Meanwhile, the the relative load
factor wpnii, Nv),Phili,Det,f X f—lbo = 1, because the link (Phili, NY) is used before the
processing occurs at the Cleveland site on the route from Philadelphia to Detroit.

We now proceed to find the capacity needed at the link (Phili, NY) to satisfy
any traffic pattern that uses the load factors in Table 4.4 and is allowed by the
constraints given in Table 4.3. We do this by configuring a flow graph so that any
flow in the graph from the source vertex to the sink vertex corresponds to a valid
traffic configuration that satisfies the traffic constraints. Figure 4.6 shows a flow
graph, a source and a sink, and two columns of vertices. Each column contains a
vertex for each node of the network in Figure 4.5. The figure includes an edge from
the source to each vertex in the first column, and from each vertex in the second
column to the sink. Between the columns, an edge is included from a vertex in the
first column to a vertex in the second column only if the route between the terminal
nodes corresponding to the vertices uses the link (Phili, NY), i.e., if the corresponding
load factor in Table 4.4 has a non-zero entry. For example, the flow graph contains
the edge (Dets, NY;) because the route between Detroit and New York uses the link
(Phili, NY) with the relative load factor of 10.

We then apply the constraints in Table 4.3 to the flow bound of the edges of
this graph. Let us first consider the edges from the source to the vertices in the first
column, for instance, (source, NY;). We assume that the edge should accommodate
all sessions configured from NY to any of the nodes in Figure 4.5, and assign the

corresponding traffic limit to the flow bound of this edge. According to conditions

flow weight copies of nodes
copies of nodes bound (relativeload in the network
in the network factor) / (second column)

(first column) ﬁv

25 Mb/s,10

maxflow (25),

unbounded, 1 maxweight (250 Mbls)

Figure 4.6: Flow graph used for dimensioning (Phili,NY)

(4.1) and (4.2) in Section 4.3, the value is given as follows:

_ w
Z fboeny,g,p < min {04; —} ;

teV v

~

big|
f-bo

50 Mb/s to (source, NYs) as shown in Figure 4.6.

given ((NY), V, a, w), where v = . Using the constraints in Table 4.3, we assign

Similarly, the edges from the vertices in the second column to the sink are
assumed to accommodate the sessions configured to terminate at each node in the
network. For instance, (Cley, sink) should accommodate the sessions configured to

terminate at Cle. The traffic limit in this case is computed as follows:

Z f-boCs,cle,; < min

sEV

{ 150 Mb/s
00, ————

10 } = 15Mb/s,

given (V, (Cle), co, 150 Mb/s) in Table 4.3. We apply this value to the flow bound
of (Cley, sink).

Finally, the edges between the two columns are assigned the traffic limits be-
tween the corresponding pairs of end points. So, to (NY;, NY;), we assign the follow-

ing traffic bound:

cNy,NY,f < min {25 Mb/s, ?—6} =25 Mb/s,

83
given ((NY), (NY), 25, oo) in Table 4.3. Note that the traffic patterns not specified

in Table 4.3 are assumed to have an unlimited bound.

Now, any flow in this graph corresponds to a valid set of sessions which pass
through the link (Phili, NY). Note that the resulting traffic is guaranteed to be allowed
by the traffic constraints due to the bounds applied to the flow graph. Therefore, the
maximum flow in this graph corresponds to a valid maximum traffic configuration that
can be routed through the link. Considering that the sessions change their bandwidth
along the routes, the actual traffic load on the link can be obtained by applying the
relative load factors of the configured sessions, i.e., the bandwidth required at the
link relative to the initially configured bandwidth. We apply the relative load factor
of each pair of end nodes given in Table 4.4 to the weight of the corresponding edge
between the two columns. For example, the load factor wpnii Ny),ma,Ny,f X beO = 10;
i.e., the cell [Ind][NY] in Table 4.4 is assigned to the weight of the edge (Inds, NY;).
Now, the product of the flow and the weight of this edge yields the actual load at
the link (Phili, NY) imposed by the sessions configured from Ind to NY. The second
value associated with each edge in Figure 4.6 is the weight. The edges adjacent to the
source and the sink are assigned zero weight. Therefore, given a traffic configuration
as a flow, the total weight of the flow corresponds to the total traffic load at the link
(Phili, NY). By finding the maximum flow with the maximum weight, we obtain the
worst-case traffic load, which is the capacity required at the link (Phili, NY).

We have just demonstrated how the max weight, maz flow method solves a
subset of the resource dimensioning problem efficiently. One of the most efficient
algorithms for the maxz weight, maz flow method, called “enhanced capacity scaling,”
is given in [39]. The time complexity of this algorithm is O((klogn)(n + nlogn)),
where £ is the number of routes that use the link to be dimensioned and 7 is the num-
ber of nodes. If no route has more than A links, then the time needed to dimension
all the links is O (hn®(logn)?). The most efficient algorithms for linear program-
ming [40, 41, 42] have substantially higher worst-case complexities. Furthermore, the

observed running time of existing LP solvers is substantially higher than the running

84

time of maz weight, max flow algorithms, making these methods attractive in those

situations where they can be applied.

4.5 Computing Lower Bounds on Network Cost

The methods discussed in the previous sections allow us to dimension resources in a
network, given the network topology and a set of processing nodes. These methods,
however, do not directly enable us to determine the best topology or set of processing
nodes for a given set of traffic constraints and application formats. In this section,
we show how to compute a lower bound on the cost of the best possible network for
a given set of traffic constraints and application formats. This computation provides
a useful benchmark for evaluating candidate designs.

The basic idea behind the lower bound method is simple and intuitive. It’s
based on the observation that some traffic configurations are inherently more ex-
pensive than others. In particular, traffic configurations in which most application
sessions pass between sites that are geographically distant from one another are in-
herently more expensive than configurations in which most traffic is “local”’. Any
network that can accommodate all configurations allowed by the given set of traffic
constraints must, in particular, accommodate these more expensive traffic configu-
rations. The idea then is to determine the intrinsic cost of a most expensive traffic
configuration and use this as a lower bound on the cost of any network.

To define the intrinsic cost of a traffic configuration C' = [c, ¢ f], we must first
define the intrinsic cost 7(s,t, f) of an application session from s to ¢ using format f.
We define 7(s,t, f) to be the cost of a least-cost route from s to ¢, assuming that the
route can include links between any pair of nodes and that every node along the route
can be a processing node. The cost of a route is the sum of the costs incurred at each
link and node along the route, taking into account the bandwidth used on each link
and the processing capacity used at each node. The intrinsic cost can be computed by

constructing a layered graph for the given application format and finding the shortest

85
path from the copy of s in the first layer to the copy of ¢ in the last layer. In this

layered graph, there is a link between every pair of nodes within each level, and there
are inter-layer links for every node.

Given 7, the intrinsic cost of a traffic configuration C is simply

Z Z Cs,t,fT(Sa t: f)

s,teV feF

We say that a traffic configuration C' is the most expensive traffic configuration for a

given set of traffic constraints M and application formats F' if C maximizes

Z Z st fT(s,t, f)

s,teV feF

while respecting the following inequalities:

Z Jbocstp < (4.7)
SES;teT;, fEF;
Z f-b\f|cs,t,f S W; (4.8)

SES;teT;, fEF;

for all (S;,T;, F;, a;,w;) € M. We can find the most expensive traffic configuration
by solving the linear programming problem. Such a traffic configuration provides a
lower bound on the cost of any network design that can handle all traffic configurations
allowed by the given constraints.

In practice, a network designer may often choose to constrain the design space
by excluding the possibility of direct links between some pairs of nodes and by limiting
the set of nodes that are potential candidates for processing. For example, the direct
link between two locations that are geometrically remote from each other might be
omitted from consideration. The lower bound method can be easily extended to
provide lower bounds relative to such restricted design spaces. The only thing that
must be changed is the definition of 7(s, ¢, f). In the restricted design space, 7(s,, f)

is the cost of a least-cost route from s to ¢, assuming that the route can include only

86

those links in the design space and that processing can be done only at nodes that
are designated as candidate processing nodes in the design space. 7(s,t, f) can be
computed in the restricted design space by constructing a layered graph in which each
layer includes only the links in the design space, and inter-layer links are provided

only at the candidate processing nodes.

4.6 Computing Lower Bounds using Flow Graphs

This section presents a different way to compute the most expensive traffic configura-
tion to obtain a lower bound, using the maz weight, maz flow method. As was shown
for dimensioning resources in Section 4.4, this flow based method is applicable only
when Conditions (4.9) (4.10) (4.11) and (4.12) are met.

The traffic constraint (S, T, F, ,w) satisfies these conditions

S is a singleton and T'=V, or (4.9)
T is a singleton and S =V, or (4.10)
S, T are both singletons, (4.11)

and there is a constant v such that every application format f satisfies the condition

fhig _
f-bo

7. (4.12)

Finding a lower bound starts with creating a flow graph whose flow is equal
to a valid traffic configuration in the complete network, which includes a direct link
between every pair of nodes. The traffic configuration is considered in the design
space, if that space is given, instead of the complete network. The goal is to compute
the cost of the most expensive traffic configuration by finding the maximum flow that
also has the maximum cost in this graph.

To illustrate this method, we take the same example as given in Section 4.4,

a network composed of five locations in the northeastern United States, where a

87

video-on-demand application sends video traffic compressed by 10:1 from New York.
The same traffic constraints are applied, where the total outgoing video traffic at
New York is at most 50 Mb/s, the total incoming video traffic is at most 250 Mb/s,
150 Mb/s, 150 Mb/s, 100 Mb/s, 250 Mb/s each at New York, Detroit, Cleveland,
Indianapolis, and Philadelphia. In addition, the total video traffic from New York
that terminates at New York (at any terminal in the New York location) must be at

most 25 Mb/s. The constraints are given in Table 4.5. Given the network and the

Table 4.5: Traffic constraints associated with Figure 4.5 for computing a lower bound

B T o w |
(NY) V50 Mb/s oo Mb/s
(Det) Vv 0 Mb/s 0 Mb/s
(Cle) V 0 Mb/s 0 Mb/s
(Ind) V 0 Mb/s 0 Mb/s
(Phil) vV 0Mb/s 0 Mb/s

V. (NY) oo 250 Mb/s
V (Det) 00 150 Mb/s
V (Cle) 00 150 Mb/s
V (Ind) 00 100 Mb/s
vV (Phil) oo 250 Mb/s
(NY) (NY) 25 Mb/s 00

NY : New York Det : Detroit
Cle : Cleveland Ind : Indianapolis
Phili : Philadelphia

traffic constraints, we create a flow graph using a source and a sink and two columns
of vertices. As shown Figure 4.7, each column contains a vertex for each node in the
given network. This graph also includes an edge between every pair of nodes, one
from the first column and the other from the second column.

In this flow graph, we assign a bound on the flow of each edge according to
the traffic constraints in Table 4.5. The flow bounds are assigned so that any flow in
the graph is a valid traffic configuration in the network. In Figure 4.7, the first five
constraints in Table 4.5 are applied to the edges from the source to the vertices in the

first column h. The next five constraints are applied to the edges from the vertices

88

cost of the least-cost path from
NY to NY when decompression
isrequired.
flow
\ cost of the least-cost path from

bound\ NY to Detroit
25 Mb/s, 1551 /

i copies of nodes
e/ i
(first column) (second column)

Figure 4.7: Flow graph used for computing a lower bound

in the second column to the sink, after considering 7, the ratio of the terminating
bandwidth to the configured bandwidth. The pairwise constraint given in the last
line of Table 4.5 is applied to the edge (NY;, NY;). Edges whose flow bounds are not
specified by the constraints are assumed to have no bound on the flow. Consequently,
given this specification of flow bounds, any flow in this graph is equivalent to a valid
traffic configuration.

Now we apply 7(u,v, f) to the weight of each edge (us,v:) between the two
columns of the flow graph, where f is the application format of the video-on-demand
application. Recall that 7(u, v, f) was defined in the previous section as the cost of
the least-cost route from u to v using the application format f, assuming that the
route can include links between any pair of nodes and that every node along the
route can be a processing node. When a design space is given, the least-cost route is
restricted to use only the links and the processing nodes given in the design space.
The graph edges adjacent to the source and the sink are assigned 0 weight. Because
of these weight assignments, the cost of any flow in the graph is now equal to the cost
of configuring a valid traffic configuration. Consequently, by finding the maximum

flow that also has the maximum cost, we can compute the most expensive traffic

89

configuration. The maximum flow with the maximum cost can be computed by the

mazx weight, maz flow method.

4.7 Discussion

This section briefly raises the issue of finding the optimal processing locations, which
was not addressed in our earlier discussion. Finding a least-cost network configura-
tion for conventional networks requires first determining an optimal topology that
will result in the least cost and then determining the capacity required for each link
included in the topology to compute the actual cost of the configuration. For ex-
tensible networks, we also need to select a set of network nodes that will handle the
intermediate processing of the prospective applications, and to determine the capac-
ity required for each of these processing nodes. Note that the required capacity of
link resources and the cost associated with the resources are highly dependent on the
locations of the processing nodes. Consider an application that requires intermediate
processing between a source and a destination. An individual session of this applica-
tion might take the shortest path between the two nodes if the path contains adequate
processing site(s). Otherwise, the session must take an alternate path that provides
the processing resources. The processing sites affect not only the link selection but
also the bandwidth required on the selected links, because intermediate processing
can alter the bandwidth of application sessions in-band by changing the data content.
For both of these reasons, processing resources must be placed carefully to achieve the
optimal (least-cost) network configuration. Finding the best locations for processing
resources is, however, a hard problem. This processing location problem includes the
K-median problem, which is known to be NP-hard [43]. Similar location problems
and approximation algorithms have been studied in locating web caches [44, 45, 46],
in placing servers for overlay multicast [47], and in other more general facility location
problems [48, 49, 50, 38]. In spite of the hardness, it would still be worth investigat-

ing the problem of locating processing resources in extensible networks. Applications

90

requiring intermediate processing bear characteristics that have not been considered
in the previous studies of location problems, and that can lead to effective heuristic

algorithms. We leave this investigation to future work.

91

Chapter 5

Extensible Network Planner

This chapter describes the use of the Extensible Network Planner (XNP), a soft-
ware tool for the constraint-based design of extensible networks. The conventional
constraint-based network design [20] starts with a set of network nodes (for switches
or routers) and a set of traffic constraints among the nodes. Its objective is to config-
ure a least-cost network that accommodates any traffic pattern satisfying the given
traffic constraints. We have generalized the constraint-based network design, origi-
nally developed for conventional networks, to handle the design extensible networks,
where applications can execute processing customized for their individual goals, at
intermediate network nodes. In Chapter 4, we addressed several issues regarding
this generalization and presented methods that are appropriate for designing exten-
sible networks. To provide a comprehensive network design tool for both extensible
and conventional networks, we implemented the methods presented in Chapter 4 and
incorporated them into a previously unpublished java-based software tool, cappuc-
cino [22], developed for conventional networks.

XNP allows network designers to quickly create, configure and evaluate net-
work designs by providing a convenient graphic-based interface and automated func-
tions. Using XNP, network designers can generate a topology, describe prospective

applications and their traffic patterns, compute the capacities of the resources in the

92

trial topology to accommodate the demands of those applications, and evaluate the
resulting network configuration.

Section 5.1 describes how to obtain and start XNP. Section 5.2 shows by ex-
ample how to use XNP to design extensible networks. Section 5.3 and 5.4 show how
to file and maintain network configurations. Lastly, Section 5.5 briefly describes the
algorithms implemented in XNP, that automate the design tasks that are described

in Section 5.2.

5.1 Obtaining and Starting XNP

This section describes how to obtain and start XNP.

5.1.1 Installing XNP

The installation takes the following three steps:

Install a Java virtual machine with version 1.4.x, which is required to run XNP as
a java application. The Java virtual machine can be obtained by downloading JRE

from http://java.sun.com/j2se/1.4.1 /download.html.

Download and unzip the file (xnpt.tar.gz) into the directory that you want to install
the tool, from http://www.arl.wustl.edu/~sycl/xnpt.tar.gz.

Edit the script file for XNP. For Windows, edit npt.bat so that the JAVA_HOME
variable contains the directory where the Java VM is installed. By default, the
variable is set to c:\Program Files\java\j2rel.4.1_01. The file, npt.bat, can be

found under the tool’s root directory, $Your_Dir$\npt\npt.bat.

5.1.2 Running XNP

Windows: run npt.bat from the tool’s root directory ($Your_Dir$\npt\npt.bat)

Unix: run the shell script, $Your_Dir$/npt/npt.sh, from the tool’s root directory.

93

Note that the current package contains a preliminary version of XNP. Some functions
of the tool might not work properly. Installation and update information is available

at http://www.arl.wustl.edu/~sycl/npt.html.

5.2 Basics of Extensible Network Planning

This section introduces how to use XNP to plan a network from scratch. There are
five essential building blocks in planning a network in XNP. The tasks associated
with the building blocks are as follows. 1) constructing a network topology in XNP
by adding nodes, connecting nodes using links, or adding processing capability to
nodes, 2) describing the resource usage of prospective applications, 3) specifying the
anticipated traffic demands of those applications, 4) dimensioning the network topol-
ogy by determining adequate capacities for individual network resources to satisfy
the traffic demands of the applications, 5) and evaluating the resulting network con-

figuration. This section will guide you through the step-by-step process of each task.

5.2.1 Constructing a network

To construct a network, first start XNP as described in Section 5.1. You can then
create a trial topology in the blank drawing area of the XNP main window as shown
in Figure 5.1(a). There are five modes in creating topologies in the drawing area:
a mode for selecting objects, a mode for adding nodes, two modes for adding links,
and a mode for enabling processing at nodes. You must be in a proper mode to add,
remove, or edit a network object. The buttons shown on the left side of the XNP
main window can be used to change the current mode. The buttons are also shown

in Figure 5.1(b).

Adding Network Nodes
To add a node, you first click the node button to go to the mode for adding nodes.

As you do so, the node button should be highlighted. To actually add a node in

94

[Xextensible Hetwork Planner-Main File Design(blank design) B\

File Topology Evaluate Design Option View Algorithms Window Help

= — - : Select Button
- = | = | 2 .

Deldn xm @ &z L@ ~

Hode Button
RN
Uni-Link
/Button
This is the XNP drawing area. Bi=Link B"tt""@

You can construct your trial
topology here.

"

Processing
Button

pp

~

(a) XNP blank snapshot (b) Buttons

o SN ER 1N PRI

Figure 5.1: XNP main menu and buttons

the drawing area, click on the position where you want to add the node. A pop-up

window will then appear as shown in Figure 5.2(a). In the pop-up window, specify the

Hode Name: Cleveland Hode Name: Mewy York
Maximum ingress traffic: 000 Maximum ingress traffic: 19M
Maximum egress traffic: 1000 Maximum egress traffic: 10.5m0

: ok Keanzel @ : ok Keanzel @

(a) Traffic expressed in b/s (b) Traffic expressed using abbrevia-
tions

Figure 5.2: Example popup windows for adding a node

following information: the name of the node, the maximum traffic that can originate
from the node, and the maximum traffic that can terminate at the node. The units
of the traffic are assumed bits per second. The conventional abbreviations, i.e., K,

M, and G for thousand, million, and billion, can also be used as in Figure 5.2(b).

95

Figure 5.3(a) shows the drawing area after nodes are added to five locations in the

northeastern United States.

[Xextensible Hetwork Planner (Design - my_network_design.npt) [Xextensible Hetwork Planner (Design - my_network_design.npt)
VFiIe TDF,DID,Q,Y Evaluate Dasigrn Option View Algrnrithms YWindow Help VFiIe TDF,DID,Q,Y Evaluate Dasigrn Option View Algrnrithms YWindow Help
Dlelan «nw alatle| Belanxne alalile
g3 &2 D@H - D\t
Clexaland

) >

. . New_@ IZI "

App App

2]]

|

Phil Inhia
@anapulls A
(a) Drawing area after five nodes are added (b) Drawing area after links are added

Figure 5.3: XNP snap shots while generating a topology

e Adding Links
XNP allows two types of links: bi-directional and uni-directional links. While uni-
directional links can accommodate traffic in only one fixed direction, bi-directional

links can do it in both directions.

To change to the mode for adding a bi-directional link, you click the bi-link button
shown in Figure 5.1(b). Then, to actually add a bi-directional link between the node
u and the node v, you must click the position of the node u and then the position of
the node v in the drawing area. After clicking the second node v, you provide the cost
associated with this link in the pop-up window as shown in Figure 5.4. By default,
XNP assumes that the cost associated with each link is linearly proportional to the
geometric length of the link, and asks you to enter the cost for transmitting a bit of
data on the link for one mile. You can change this setting to have a uniform cost for

all links, or to assign each link a customized (user-defined) value. Once the link cost

96

Cost for transmitting a bit on the link for 1 mile: 3

e 7]

Figure 5.4: Popup window for entering a link cost

is provided, a link with arrows on both ends will appear between the two nodes. The
uni-directional link from u to v can be added in the same way, and the actual link

will appear with an arrow directed toward the node v.

Figure 5.3(b) shows the drawing area after bi-directional links are added among the

five nodes.

Adding Processing Capability

First to go to the mode for enabling processing at nodes, click the processing but-
ton. As you do so, the processing button should be highlighted. To actually enable
intermediate processing at a node, first click the node and then specify the cost as-
sociated with processing, i.e., the cost for executing one machine instruction at the
node. Figure 5.5(a) shows an example of the pop-up menu. As you confirm the infor-
mation, the node will be highlighted by a triangle. Figure 5.5(b) shows the drawing

area after processing capability is added to two nodes, Cleveland and Philadelphia.

To view or to edit more detailed information of an individual link or node, you can
click on its position using the right mouse button. XNP also provides standard
functions for editing the current topology such as delete, copy and paste. Figure 5.6
shows the corresponding buttons. In order to edit the topology, you must be in the
mode for selecting objects. Click the select button to change to this mode.

Now, to delete an object, a node or a link, from the drawing area, click on the
location of the object and then click the delete button. To copy an object, click on
the location of the object and then click the copy button. To paste an object that
has been copied, click on the location where you want to place the object.

Once a topology is created by adding network objects such as nodes or links,

and by providing processing capability, you can now proceed to compute the capacity

i e - osig - =
File Topology Evaluate Design Option View Algorithms Window Help

= = i e 5 5
D EEn]|xn@ 22 L@
DaBiIE

™]

Cost per Instruction: 300

~

iﬁ"'

A

input parameters required to enable processing ..

~—

(a) Popup window for placing processing ca-
pability

[Ed eXtensible Hetwork Planner (Design - my_network_design.npt)

File Topology Evaluate Design Option View Algorithms Window Help

97

=

oy
R

W |2 4

O

=] A E 7]

Taffi

o
Dp

Bl
\t

(b) Topology with processing nodes

Figure 5.5: XNP snap shots for placing processing capability

Dalata Buttan Pazts Button

O @~

|]|

f?f
L1

L@ |5 8820 e8| o8

P

Cope Button

Figure 5.6: Buttons for editing network configurations

required at each of those network objects. As discussed in Chapter 4, the required

resource capacity is highly dependent on the resource usage of applications and the

actual traffic expected by the applications. In order to correctly determine the capac-

ities, you must first provide XNP with this application and traffic information. The

buttons shown in Figure 5.7 are used in adding and deleting such information.

98

Add-Application
Button

)
/ﬂ

Renove-Application
Button

Add-Constraint
Button

Renove-Constraint
Button

Figure 5.7: Buttons for applications and traffic constraints

5.2.2 Application formats

You can specify the resource usage of an application by adding an application format.
An application format specifies the number of processing steps required by an appli-
cation, the number of machine instructions required for each processing step, and
the bandwidth requirement of each path segment between two consecutive processing

steps.

Adding Application Formats
To add an application format, click the add-application button shown in Figure 5.7.

Then, a pop-up window will appear as shown in Figure 5.8.

Number of Processing Steps: 2
‘ fuk ﬁa’u:el ‘ @ ‘

Figure 5.8: Popup window for adding an application format

If zero is entered for the number of processing steps, the application format is assumed
to describe a conventional application, which does not involve any intermediate pro-
cessing. For such an application, another pop-up window will appear as shown in
Figure 5.9(a), where you must then provide the name of the application and the
bandwidth requirement. If a non-zero value, say n, is entered for the number of pro-
cessing steps in Figure 5.8, the second pop-up window will ask you to provide the
name of the application, the bandwidth requirement for each of n + 1 path segments,

and the number of machine instructions required for each of the n processing steps.

99

Figure 5.9(b) shows an example of the pop-up window for an application with two

processing steps.

£ application Format Parameters

Application Mame : Wideo on Demand
Bandwidth for path segment 0: 10M
Application Name : Sample App Bandwidth for path segment 2: 10m
Bandwidth for path 0: 1M # of instructions per bit & per second for processing 1: 20
of instructions per bit & per second for pr ing 2: 35
‘ ok ‘ ‘ Yol ‘ @ ‘ | ok Y | ‘ o) ‘
(a) No processing required (b) Processing required

Figure 5.9: Popup window for describing an application format

Removing Application Formats

To remove an application format that has been added, click the remove-application
button. You will get a pop-up menu that lists all application formats. You can
choose the application formats you want to remove from this list. Figure 5.10 shows

the pop-up window that displays two applications.

& Select Applications to Remove
Corwventional Application: false ¥
Yoice on Demand: true |

fcuk Ktm:el @

Figure 5.10: Popup window for removing application formats

5.2.3 Describing traffic expectations

Given a list of application formats to support in the network, you now specify the
traffic expected from those applications. XNP provides three ways to specify traffic

expectations:

by an upper bound on the traffic that can flow between two selected sets of nodes,

by an upper bound on the traffic that can flow from a selected set of nodes (sources)

to any nodes in the network,

100

e by an upper bound on the traffic that can flow from any nodes in the network to a

selected set of nodes (destinations).

All three descriptions, which are called “traffic constraints”, provide worst-case esti-
mates of traffic that can flow among network nodes. You also specify the applications

associated with each traffic constraint.

e Adding a traffic constraint

To add a traffic constraint, click the add-constraint button. Then, you can select

=

Constrain traffic: between two selected sets ot |

bhetween two selected sets

ﬁmswmunm%mﬂmsﬂmﬂm

rom all sources to selected nodes

Figure 5.11: Popup window for selecting a traffic constraint type

one of the three options in a pop-up menu as shown in Figure 5.11. When an option
is chosen, another pop-up window will appear requesting more information about the

new traffic constraint.

If you choose the first option, you must first select a list of source nodes and a list
of destination nodes, and then specify the maximum (worst-case) traffic that can
originate from the sources and the maximum (worst-case) traffic that can terminate
at the destinations. The maximum traffic originating from the source nodes can be
given in proportion to the total outgoing traffic at the source nodes, and similarly
the maximum traffic terminating at the destination nodes can be given in proportion
to the total incoming traffic at the destination nodes. Note that you have already
specified the worst-case outgoing and incoming traffic at the nodes when you create
them earlier. The values for the maximum traffic can also be given simply in bits per

seconds.

In the same menu, you can select or un-select applications to specify the applications
to which this new traffic constraint will be applied. Additionally, you can add this

traffic constraint into a constraint group. The default option for the constraint group

101

& Traffic Constraints
<<TRAFFIC BETWEEN SOURCES AND DESTINATIONS=>
0% | of traffic leaving from
MNew _York
Philadelphia
Detroit
Indianapolis
Cleveland
50% of traffic arriving at

Mew York
Philadelphia
Detroit
Indianapolis
Cleveland

constrained for application ¥ideo on Demand: | true

added to group: default group b,

e @

Figure 5.12: Popup window for adding traffic constraint between two sets of nodes

is the “default group”. Such grouping makes it easier for you to later display or
remove traffic constraints. Figure 5.12 shows an example of the pop-up menu for the

first constraint type.

If you choose the second option, you only need to select a list of nodes for the source
set. The destination set will be fixed to include all nodes in the network. The
remaining information can be filled in the similar way as for the first constraint type.

Figure 5.13 shows an example of the pop-up menu for the second constraint type.

<<TRAFFIC BETWEEN SOURCES AND DESTINATIONS>>
20% | of traffic leaving from
MNew_York
Philadelphia
Detroit
Indianapolis
Cleveland
40% oftraffic arrning at all switches
constrained for application Video on Demand: true >
added to group: default group b

‘ vl H = | & |

Figure 5.13: Popup window for adding traffic constraint when the destinations include
all nodes

Finally, if you choose the third option, you only need to select a list of nodes for
the destination set. The source set will be fixed to include all nodes in the network.

Figure 5.14 shows an example of the pop-up menu for the third constraint type.

102

<<TRAFFIC BETWEEN SOURCES AND DESTINATIONS>>
B0% of traffic leaving from all switches
30% | of traffic arriving at
New_York
Philadelphia
Detroit
Indianapalis
ICleveland
constrained for application Video on Demand: ‘lrue e
added to group: default group hd
¥k Yeanzel @

Figure 5.14: Popup window for adding traffic constraint when the sources include all
nodes

e Removing traffic constraints
There are two options for removing traffic constraints. You can remove traffic con-
straints either individually or by group. Click the remove-constraint button shown
in Figure 5.7 to choose one of the two options for removing traffic constraints in a

pop-up menu shown in Figure 5.15.

& View Option for Removing Const... E

Display: | individual constraints ~ |

ndividual constraints
#ok groups

Figure 5.15: Popup window for removing traffic constraints

Using this interface, you can conveniently remove a group of traffic constraints or

individual constraints.

5.2.4 Resource dimensioning

Mear-Ninrnzinn Buttnn Uesign-%pace Button

"
Dje|aln]||xn @22 L6 |m]wx)
:nnplll'_e-llinn‘ri:im | nuAr=Hnind Hottnn

Bullun

Figure 5.16: Buttons for evaluating network configurations

103
XNP is now ready to compute capacities required for links and processing

resources. Click the compute-dimension button shown in Figure 5.16 to initiate the
computation. XNP will iterate through all links and processing nodes to compute the
capacities for them. Depending on the size of the network, the number of prospective

applications, and the number of traffic constraints, the computation time might vary.

[extensible Hetwork Planner Design(My Design for Video on Demand) [_ O] Eﬂﬂimensiﬂ"i“.u Info
File Topology Evaluste Design Option WYiew Algorithms YWindow Help i Link Dimensianing Information e
:: ou | L, = k) . i Format: =Tail, Head, Capacity= 4 Link unit cost
Dean|xmE &z lle
- Detroit =Indianapolis, Philadelphia, 0= 794013
L =Philadelnhia, Mew_vark, 0> 1/ 137.89
! =Mew_York, Philadelphia, 500000000= F137.89
=Cleveland, Detroit, 300000000 n153.05
=Philadelphia, Indianapalis, 0= 754013
=Mew_Yark, Cleveland, 500000000= M E46.05
=Cleveland, Indianapolis, 200000000= 42877
0\\ =Detroit, Cleveland, 0= 1158305
=lndianapalis, Cleveland, 0= 142877
=Cleveland, Mew_York, 500000000= i B46.05
>
i Format: =Mame, Capacity= i/ Node unit cost

=Philadelphia, 22500= 1300
=Cleveland, 22500= Ir200
f I
Ipp
%]
Taffi
£
Network cost= 24667.73E7 ‘ = | &ch ‘ ‘ @ ‘
(a) Topology with dimensioning information (b) Popup window displaying dimensioning
information

Figure 5.17: XNP snap shots for dimensioning information

Once the dimensioning computation is finished, XNP redraws the topology to
show the differences in resource capacities. Figure 5.17(a) shows the redrawn topology
where the thickness of each link shows its capacity relative to other links’ capacities.
The dimensioning result can also be displayed on a separate pop-up window in more
detail as shown in Figure 5.17(b). The figure lists every link and processing node
with the computed capacity. XNP also computes the total cost associated with this

network configuration, and shows the cost below the drawing area.

104

(kA extensible Hetwork Planner Design(My Design for Video on Demand) M= E (kA extensible Hetwork Planner Design(My Design for Video on Demand) M= E
File Topology Evaluate Design Option View Algorithms Window Help File Topology Evaluate Design Option View Algorithms Window Help

i AT N e o . i ~ | g 3 ay 7 .
oD wlan @ &z L|ie| |0«Eo | xn@ 2z l|e
App App

A

LoweerBound = 45469 42E7 Metwork cost= 84667 T8ET, 186.21 % of Lowerbound = 45469 42ET

(a) Lower bound (b) Cost relative to the lower bound

Figure 5.18: XNP snap shots for lower bound information

5.2.5 Evaluating network configurations

Once you obtain the dimensioning information for a network configuration, you can
evaluate the network configuration by computing a lower bound on the cost of the best
network configuration. The lower bound can vary depending on the “design space”,
the candidate links and processing nodes that are allowed to be used in the network
configuration. Note that we previously assumed that the “design space” included all
nodes and all directed links. How to modify the “design space” will be detailed in
the next section.

Meanwhile, to obtain a lower bound, click the lower-bound button shown in
Figure 5.16. XNP will then compute a lower bound based on the given design space,
and the result will be written below the drawing area as shown in Figure 5.18(a). You
can click the compute-dimensioning button again to obtain the cost of the network
relative to this lower bound, as shown in Figure 5.18(b). This relationship gives
a convenient measure for estimating the quality of your network configuration. By

adjusting options for computing a lower bound and therefore by considering your

105
design restrictions for using resources, you can obtain a more accurate and useful

measure.

5.2.6 Design Space

[& extensible Network Planner (Design - my_network_design.npt) [& extensible Network Planner (Design - my_network_design.npt)
File TU[_J_UIU_g_y Evaluate Deswg_n Optlun View A_gumhms Windows He_p File TU[_J_UIU_g_y Evaluate Deswg_n Optlun View A_gumhms Windows He__p |
[olel@o [%|w@|z/z/L @ oleao <[n6azle
T D&?n s Dgiegit
[»]
Clegaland

o ™)
Mo
fop fop)
2] i
Phil Iphia

e @anapnhs %5 3

click to select. hold =ctrl= to select multiple items. double click and drag to move switches
(a) Design Space Only (b) Design and Design Space

Figure 5.19: Two other views in XNP

The design space defines the set of resources that can potentially be used in
your network configuration. In our earlier illustrations, we assumed that all direct
links can be used in constructing a network topology. We also assumed that all nodes
can be assigned processing capability. In reality, you might want to restrict this po-
tential resource usage. For example, you might want to avoid placing a link between
two very remote locations, or might want to avoid assigning processing capability
to certain nodes for maintenance reasons. XNP allows you to express these restric-
tions by the “design space” and to limit the choices of resources within this space.
Naturally, you would create your design space prior to constructing a trial topology.

To better assist you in creating a design space and a trial topology, XNP

provides three different ways to view the drawing area. You can view the trial topology

106
only, the trial topology and the design space together, or the design space only. By

clicking the design-space button shown in Figure 5.16, you can change to a different
view. This allows you to have the view appropriate for the current task at any point
of the design process. In the previous figures, you have seen the views with the trial
topology only. Figure 5.19 shows the examples of the two other views. Note that
candidate links included in the design space are drawn by lines with a lighter color.
Similarly, candidate processing locations are highlighted by a triangle also with a
lighter color.

Now, in order to modify the default design space, you use the design-space
button to view the design space only. To include or exclude a link in the design
space, use the cut, copy, and paste buttons. To enable or disable potential processing

capability at a node, use the processing button.

5.3 Design Operations

XNP allows you to manage multiple designs at a time, so that you can try different
trial topologies and compare them with each other conveniently. Figure 5.20 shows

the buttons used for creating, deleting and browsing multiple designs.

Heu-Uesign Delete—Design Hext—lr=ign

Dutton 4 H rttnn\‘ Dutton
O|e|a]o]|xn @|a]a L[] e
E“'Sﬂ;'ﬁff?‘*“ aihan

Figure 5.20: Buttons for managing designs

e Creating a design
To create a blank design, click the new-design button. XNP will add a new design

to the list of current designs, and display the blank drawing area for the new design.

e Browsing designs

XNP keeps the current designs as a list, and allows you to browse the list. You

107

can use the two buttons, the prev-design button and the next-design button to do
so. By clicking the prev-design button, you can go to the previous design in the
list. The drawing area will then display the prev-design. Similarly, by clicking the
next-design button, you can go to the next design in the list. The drawing area

will then display the next-design.

e Deleting a design
To delete an existing design, first go to the design you want to delete, and click the

delete-design button.

5.4 File Operations

XNP allows you to store the current designs in a file. Figure 5.21 shows the buttons

used for the file operations.

Hew=File Save-File

Button ?.l/bton

O |w@|n] x5 (@] 22| L| @[] e
s y

Opoan-Fila Pevert

Button Button

Figure 5.21: Buttons for file operations

e Create a new file
To create a new file, click the new-file button. It will create a file with a new design.

The drawing area will display the blank drawing area for the design.

e Open a file
To open an existing file, click the open-file button. It will prompt you with a pop-
up menu where you can select a file from the current directory. The file has to be
in the XNP file format. By default, the pop-up menu will display only the files of
the XNP file format.

108

e Save a file
To save the current list of designs as a file, click the save-file button. If no file name
has been given, it will prompt you with a pop-up menu in which you can enter or

select the name of the file that the designs will be saved to.

e Revert to a previously saved file
In case you want to ignore the change you have made to the current designs, you
can revert to the previously saved file. XNP will discard the changes that have

been made since you saved last time, and re-display the unmodified version.

5.5 Algorithms implemented in XNP

This section describes the algorithms that have been implemented in XNP. These
algorithms help network designers by automating various tasks related to generating
topologies, modifying topologies, or describing traffic constraints, that are otherwise

time consuming.

5.5.1 Generating and modifying network topologies

XNP provides the following nine algorithms to generate and modify network topolo-
gies. All of these algorithms are applied to the current view. In other words, if the
current view displays the trial topology or both the trial topology and the design
space, the algorithms will modify the trial topology. If the current view displays the
design space only, the algorithms will modify the design space. Any modification,
particularly addition, to the trial topology is restricted by the design space. Only
the links that exist in the design space can be added to the trial topology, and only
the nodes that are specified as candidate processing nodes in the design space can be

activated as processing nodes in the trial topology.

e Complete network

This algorithm simply creates a complete topology that connects every pair of

109
nodes. When it modifies the trial topology, it simply adds every link defined in the

design space to the trial topology.

Delaunay triangulation
This algorithm creates the Delaunay triangulation [51] defined by the locations of

the nodes in the current view.

Delaunay triangulation with trimmed links

This algorithm is a variation of the Delaunay triangulation. It first creates the De-
launay triangulation, and then eliminates relatively “long” links whose end points
are connected by alternative paths that are not excessively “longer” than the direct
links. You can control this link elimination process by specifying a threshold on
the ratio of the length of the direct link to the length of the shortest alternative
path.

Link complement
This algorithm simply adds direct links that are not currently drawn, and deletes
the existing links. Again, if the current view displays the trial topology, a link can

be added to the trial topology only if it is in the design space.

Minimum spanning tree
This algorithm creates a minimum spanning tree for the current set of nodes. If the
current view displays the trial topology, the minimum spanning tree is restricted

to use only the links that are in the design space.

Random link adder
This algorithm randomly adds links to the current view. You must specify the

number of links to be added.

Random node adder
This algorithm randomly adds nodes to the current view. You must specify the

number of nodes to be added.

110

e Star network
This algorithm creates a star-shaped topology where every node but a “center”
node has a unique link to the center. You must click a node you want to set as the
center before running this algorithm. Again, if the current view displays the trial
topology, the star topology is restricted to use only the links that are in the design

space.

e Symmetric link adder
This algorithm makes the current topology bidirectional by adding a link with the

opposite direction for each of the existing links.

5.5.2 Placing network nodes

e Geographic planar projection
This algorithm performs the planar projection [52]. Given a list of coordinates for
locations on the globe, the planar projection projects these coordinates onto a flat
surface touching the globe. Our implementation assumes that the surface contacts
the globe at the South Pole and that each coordinate is composed of a latitude and

a longitude.

You must supply the coordinates by either entering them directly to XNP or reading
them from a file. You can also supply the traffic estimate of each location in addition
to its coordinate. This algorithm will automatically apply this traffic estimate to

the maximum incoming and outgoing traffic of the location.

e Grid network
This algorithm creates a N x M grid network. You can set /N and M to any positive

numbers.

e Torus network

This algorithm creates a N x M torus network, a grid network augmented with

111

links that wrap around the network to connect each node on an edge of the grid to

the node on the opposite side.

5.5.3 Generating traffic constraints

These algorithms generate a set of traffic constraints according to the policies specified
below. Both policies were studied in the experimental study of constraint-based

network design [17].

e Localized traffic constraints
In these constraints, amount of traffic a node sends to another node is a (decreasing)
function of the distance between the two nodes. Similarly, the amount of traffic
a node receives from another node is also a (decreasing) function of the distance

between the two nodes.

e Proportioned Pairwise traffic constraints

For any two nodes u and v, let f(u,v) = Z‘"Z}ﬁ, g(u,v) = f;ﬁ, where ay is the

maximum outgoing traffic at node z, and w, is the maximum incoming traffic at
node x. These constraints restrict the simultaneous traffic from the node u to the
node v by limiting it to us = ¢ X f(u,v)a, when it leaves u, and also by limiting
it to puy = ¢ X g(u,v)w, when it terminates at v. Here, ¢ is a constant called the
relaxation factor. When c is large enough that ps(u,v) > a, and p(u,v) > wy,
these constraints are neglected. You must provide the relaxation factor before

running the algorithm.

112

Chapter 6

Extensible Network Design Using
XNP

6.1 Experimenting with Various Design Choices

Now please recall the Acme company introduced in Section 4.2 of Chapter 4, which
had a plan to build a network connecting its five locations in the northeastern United
States. The network was to support a video on-demand application for employee
education and corporate announcements. Using the video on-demand application,
Acme wanted to allow a source node to send compressed video data, an intermediate
router node to decompress the video, and a destination node to receive the resulting
uncompressed video data. In Chapter 4, we briefly introduced how to handle the
network design for Acme using our tool, the Extensible Network Planner (XNP),
and elaborated on the methodologies behind XNP. In this chapter, we demonstrate
our network design approach in more practical situations that involve larger sets
of geographical locations. Assume that Acme has expanded its business to include
twenty branch locations, each of which is located at one of the twenty most populous
metropolitan areas in the United States. Now, the task is to design and dimension
the network so that it supports the on-demand video application for a new set of

video sources while providing decompression for all receivers. To investigate the

113

impact of the new application format and processing locations on our network design
more closely, we assume that resources have already been provisioned for conventional
applications and focus our design problem on providing resources for the on-demand
video application.

This time, the compressed video data is kept on four servers in the New York,
Chicago, Los Angeles, and Atlanta locations. The compression factor is 10, and
the decompression algorithm executes approximately 200 instructions per byte of the
compressed video. Every video server maintains copies of all videos, and therefore,
viewers are naturally assumed to receive video transmissions from the geographically
nearest source. For example, video receivers in San Diego or Los Angeles will re-
ceive video transmitted from the source in Los Angeles only. Table 6.1 shows how
video sources and receivers are associated. Each row contains a video source and all

locations that will receive video transmissions from the source.

Table 6.1: Sources and their receiver locations for the US network

‘ Source location ‘ Receiver locations

New York Pittsburgh, Washington D.C., Philadelphia, Boston, New York
Chicago Minneapolis, St. Louis, Detroit, Cleveland, Chicago

Los Angeles Seattle, Denver, San Francisco, San Diego, Phoenix, Los Angeles
Atlanta Dallas, Houston, Miami, Atlanta

Given the association between video servers and receiver locations, it is antic-
ipated that ingress/egress traffic is proportional to the population at each location.
Figure 6.1 shows an example of the popup window for restricting the total ingress and
egress traffic at Minneapolis. It is further anticipated that only 10% of the outgoing
traffic from the video sources will be on-demand compressed video traffic and at most
50% of the traffic reaching any of the other sites is expected to be decompressed
video traffic. Figure 6.2(a) shows the popup window for restricting the outgoing com-

pressed video traffic from the video source at New York. This constraint includes in

HNode Mame: hinneapolis
Maximum ingress traffic: 2.80
Maximum egress traffic: 2.8

:p‘ok

ﬁm:el

Y

114

Figure 6.1: Traffic constraints for maximum incoming/outgoing traffic at Minneapolis,
proportional to the population

the destination set only the locations that will receive video from the New York loca-
tion, as specified in Table 6.1. Figure 6.2(b) shows the popup window for restricting
the incoming (decompressed) video traffic at the St. Louis location. Because the
St. Louis location receives video transmission always from Chicago, this constraint

includes only the Chicago location in the source set.

& Traffic Constraints & Traffic Constraints
<<TRAFFIC BETWEEN SOURCES AND DESTINATIONS=> <<TRAFFIC BETWEEN SOURCES AND DESTINATIONS=>
10% | of traffic leaving from 100%: of traffic leaving from
New_York New_York
Los_Angeles Los_Angeles
[Chicago IChicago
Washington Washington
San_Francisco San_Francisco
Philadelphia Philadelphia
Boston Boston
Detroit ~| Detroit =]
100% of traffic arriving at a0% of traffic arriving at
New_York Seattle [z
Los_Angeles Cleveland
[Chicago Minneapolis
WWashington San_Diego
San_Francisco St_Louis
Philadelphia Phoenix
Boston Pittshurgh
Detroit -] Demver
constrained for application Comes: false . constrained for application Comes: false .
constrained for application VoD_Compression: true > constrained for application VoD_Compression: true >
added to group: default group i added to group: default group i
‘ fuk ‘ ‘ &m:el ‘ ‘ @ ‘ ‘ fuk ‘ ‘ &m:el ‘ ‘ @ ‘

(a) For outgoing video traffic at New York (b) For incoming video traffic at Chicago

Figure 6.2: Traffic constraints for the video on-demand application

We also consider that videos can be also at any of the twenty locations, and
distributed to the four sources to be stored, but far less frequently than the compressed
on-demand video transmissions. We assume that there is no intermediate processing

involved in these transmissions, which therefore are routed as for a conventional

115
application. Such traffic is anticipated to be at most 3% of the total egress traffic at

each node, and at most 3% of the total ingress traffic at each of the video sources.
These traffic constraints can be added in a similar way as shown in Figures 6.2(a)
and 6.2(b).

We restricted the design space by defining a set of potential decompression
nodes and a set of potential links. First, the nodes were selected based on geographic
location and population. This selection was guided by the observation that the design
cost could be reduced by performing decompression at the destinations that are more
populous and therefore contain more video viewers. It was also considered that the
design cost could be reduced by designating decompression processing to locations
where otherwise no potential processing locations are available in their vicinities.
The selected locations are Los Angeles, New York, Chicago, Miami, Atlanta, Dallas,
Pittsburgh, Denver, Seattle, and San Francisco. We also avoided extremely long links
in our design by considering only those links whose lengths are at most half of the
network’s diameter (the maximum distance between any two locations). Figure 6.3(a)
shows the design space in XNP, where potential links and processing locations are
drawn in light gray.

We have implemented in XNP a number of algorithms that automate the
topology generation so that users can quickly configure and compare different net-
work designs. This feature was used to generate a range of solutions for our example

design, which are compared below.

e Hand-crafted: The handcrafted topology is shown in Figure 6.3(b).

e MST: This topology forms the minimum spanning tree on the twenty locations,

using the links in the design space shown in Figure 6.4(a).

e Delaunay: This topology is created from performing the Delaunay Triangula-
tion [51] over the coordinates of the twenty locations. Figure 6.4(b) shows the

resulting topology.

mextensihle Hetwork Planner Design(US metro 20, Design Space)
File Topology Evaluate Design Option View Algofitims Window Help

.2.“ 2

1| @] 5¢) 56 2|) 28|

| %

SIEICIES
ile

Minn@nolis Easjan
ch@go c?j?@rghpml%;frk

g Francisco Was, ton
[- ’

St@uws

]

Los_@?eles
San@egn Ph@jﬂx A@ta
Dall-%s

HU@UI’]

 ZAEQET

M@n

clickto select hold =ctrl= to select multiple iterns. double click and drag to move nodes.

(a) Design space

mextensihle Hetwork Planner Design(US metro 20, Original A)

File Tupulugy Evaluate Design Option View Algurlthms Window Help

@80 [x|n|@) o)L 6] =

Video : i .__, i |a‘—

Source

[]

St

=]
°

AR SEGH

e,
Metwark cost= 3529?.73E6(2£?.06?93f Lowetbound = 13216.93E6

(b) Hand-crafted topology

Figure 6.3: Networks for the 20 largest metropolitan areas for US

116

[Edextensible Hetwork Planner Design(US metro 20, MST A)

ik

€

Network cost= 35659.?4EE€69.89E)?’ Lowerbound = 13216.93E6

(a) MST topology

E-_jextensihle Hetwork Planner Design(US metro 20, Delaunay &)

File Topology Evaluate Design Option Yiew Algorithms Window Help

| @]] 2| L [@] 5] 8]t e o

s
e

AL EN -]

® R

Metwark cost= 35591 4E 269.2@f Lowerbound = 13216.93E6

(b) Delaunay topology

Figure 6.4: Networks for the 20 largest metropolitan areas for US

117

Eextensihle Hetwork Planner Design(US metro 20, DesignSpace A)

File Topology Ewvaluate Desigh Option View Algotithms Window Help
Djejals [xne|a]all] 6|58

G g ?‘i

Metwork cost= 38964.8E5@4.81 % of Lowerbound = 13216.93E6

(a) All-links topology

E-_jextensihle Hetwork Planner Design(US metro 20, Best Shortest Path Tree A)

_File Tupulu_g_y Evaluate DESig_n Opt\un Wiew Al_g_urithms Window He_l_p
=LA TESREE NI bl

ealile

Metwark cost= 51 405.02E6@8.93@3f Lowetbound = 13216.93E6

(b) Best-SPT topology

Figure 6.5: Networks for the 20 largest metropolitan areas for US

118

119
e All-links: This topology uses all links provided by the design space, as shown in

Figure 6.5(a).

e Best-SPT: This topology, as shown in Figure 6.5(b), induces the least network
cost among all shortest path tree topologies. Here, a shortest path tree topology is
a subset of the design space and forms a shortest path tree rooted at a fixed node.

In Figure 6.5(b), the root is located at Pittsburgh.

Topology generation algorithms, including the ones in this list, were described in
Section 5.5 of Chapter 5.

Because of the decompression required for the video traffic, processing locations
have to be designated. In our experiments, we consider the following two sets of five

sites that are dispersed over the network.

e Placement A: Pittsburgh, Dallas, Chicago, Los Angeles, Seattle

e Placement B: New York, Atlanta, Miami, Denver, San Francisco

Placement A was applied to all the topologies in Figures 6.3, 6.4, and 6.5 where the
processing locations are highlighted by a triangle.

As one may want to consider different, or better, topologies and processing
placements, our goal here is to demonstrate how users can design and evaluate ex-
tensible networks using our method. Using XNP, we repeated the following steps:
build a topology, designate processing nodes, and dimension the resources. The trial
designs in Figure 6.3, 6.4, and 6.5 are displayed with links dimensioned according
to the given traffic constraints. On the bottom of each figure, XNP shows the cost
of each design and the lower bound cost, given the potential links and processing
locations of the design space. For simplicity, we considered only the cost of links in
this experiment by setting the costs at processing nodes to zero. The cost at each

link was computed as the product of the capacity and the length of the link.

120

o

Root Root

B at Pittsburgh RIS B f at Pmsburgh\L
3g° 35
o & @ £ 175 —
T & T8
2541 ga
] Jd o
28 25 15
() = [
= 5 37 = g
B ® O
° § DI 15
7S 2 83
o =%
1
14 Hand-Crafted MST Delaunay All-Links Best-SPT
Hand-Crafted MsT Delaunay All-Links Best-SPT
Topology
Topology

(a) Design costs relative to the lower bound (b) Design costs relative to the lower bound

with fixed processing placement A

Figure 6.6: Cost comparison for US topologies

Figure 6.6(a) compares the costs resulting from all the choices of topology and
processing placement, relative to the lower bound computed for the design space.
Given a topology, one placement policy provides a lower cost than the other, possibly
by providing better (smaller-cost) accesses to processing nodes. This result indicates
that the combination of placement A and the hand-crafted topology is preferred as
the least cost design, while the costs of all three designs-the hand-crafted, MST, and
Delaunay topologies-lie within a close range. Such choices are, however, specific to
the given traffic constraints, which allow more resource sharing among traffic bound
to and from various terminals. Details of this issue have been studied by Ma et
al. [17] In search of a better design, one may take one of the designs, and modify
it by adding links, removing links, adding more processing locations, or removing
current processing locations. Consider Figure 6.6(b), which shows the comparison
of the costs to the lower bound, which was computed assuming that the processing
locations are fixed according to placement A and only the link selection can be varied
in search of the best design. Here, all three topologies provide relatively low costs
that are approximately 1.3 times the lower bound given placement A. This result
indicates that further enhancement of the topology alone is limited and that different

placement policies must be combined in search of better designs.

121

The lower bound and the cost comparison of the existing topologies can be
useful guides for modifying the design. Ideally, the goal should be to modify the
design so that its cost becomes closer to the lower bound and eventually reaches the
minimum. As discussed in Chapter 4, finding the design with the minimum cost is
a hard problem. However, many heuristic techniques can be applied to this process,
which we leave to future work.

In another situation, the results are also affected by the geographical distribu-
tion of traffic, which depends heavily on the populations at the locations. We consid-
ered a different population distribution in Figure 6.7(a), which shows a design space
comprising the twenty largest metropolitan areas in Western Europe. We applied
the same application format and similar traffic constraints that limit the compressed
video traffic to 10% of the outgoing traffic from the video sources and decompressed
traffic to 50% of the traffic reaching any location, assuming video sources at London,
Berlin, Madrid, and Rome. As in the previous case, each video source is designated

to transmit compressed videos for a set of receivers, as shown in Table 6.2.

Table 6.2: Sources and their receiver locations for the Western Europe network

‘ Source location ‘ Receiver locations ‘

London Leeds, Manchester, Birmingham, Paris, Brussels,
Amsterdam, London

Berlin Hamburg, Ruhr, Frankfurt am Main, Stuttgart,
Munich, Berlin

Madrid Lisbon, Barcelona, Madrid

Rome Milano, Napoli, Athens, Rome

We applied the five types of topologies described earlier and the following two

processing placements.
e Placement A: London, Stuttgart, Milano, Barcelona, Athens

e Placement B: Paris, Lisbon, Ruhr, Rome, Manchester

122

E-.jextensihle Hetwork Planner Design(Western Europe metro 20, Design Space)

File Topology Evaluate Design Option View Algotithms Window Help
D @A|o x| m|@ &l a] L @) o] 2

Man@gr Ha@urg
Ei h
" & Ams; danzujr E@n
Lo{nﬁon
Brﬁs\jel

Frankfu@m_mam
s Stutigart
? ol

[]

M@U

o1 [%] 2]

Bar@ona Racﬂe
Mzelricl N@H

éﬁl At@ 5

clickto select hold =ctrl= to select multiple iterns. double click and drag to move nodes.

(a) Design space

E-_jextensihle Hetwork Planner Design(Western Europe metro 20, Original A)

File Topology Evaluate Design Option Yiew Algorithms Window Help

SIEAC TR L | @] |50] 0] e8|

.2.“ 20
=3 =

[]

R[]

Metwark cost= 15575 43E6, 268.31% of Lowerbound = 602958.15E5

(b) Hand-crafted topology

Figure 6.7: Networks for the 20 largest metropolitan areas in Western Europe

123

Eextensihle Hetwork Planner Design(Western Europe metro 20, MST A)

File Topology Ewvaluate Desigh Option View Algotithms Window Help

SEEERIEBOIRERCIEE EEE]

[]

ZEHE

Metwork cost= 15644 GEBEG, 2559.46% of Lowerbound = 602981 5E5

(a) MST topology

E-_jextensihle Hetwork Planner Design(Western Europe metro 20, Delaunay &)

File Topology Evaluate Design Option Yiew Algorithms Window Help

SECIEIEBOIRERNCIEE i
Manr

[]

SIEGHE

te

Metwark cost= 15602.17E6, 268.75% of Lowerbound = 602958.15E5

(b) Delaunay topology

Figure 6.8: Networks for the 20 largest metropolitan areas in Western Europe

124

Eextensihle Hetwork Planner Design(Western Europe metro 20, DesignSpace A)

File Topology Ewvaluate Desigh Option View Algotithms Window Help

(=]«

o [][] [] o | @] 8] o e e

Metwork cost=17783.95E6, 294.93% of Lowerbound = 60298.1 5E5

(a) All-links topology

E-_jextensihle Hetwork Planner Design(Western Europe metro 20, Best Shortest Path Tree A)

File Topology Evaluate Design Option Yiew Algorithms Window Help

[oelafn]w]o @]z z]L] 6][]

5
=

[*]
)
7y

Metwark cost= 21317 45E6, 353.53% of Lowerbound = 602958.15E5

(b) Best-SPT topology

Figure 6.9: Networks for the 20 largest metropolitan areas in Western Europe

125
Figures 6.7, 6.8, and 6.9 show the resulting screen shots for the five topologies with

placement A.

N

Root at Paris

Jlll!

14 Hand-Crafted MST Delaunay All-Links
Hand-Crafted MsT Delaunay All-Links Best-SPT
Topology

Topology

Root at London Paris

ol

IN
I
3
a

=
o

=
N
a

N
given Processing Placement A

Cost relative to Lower Bound
based on Design Space
w
Cost relative to Lower Bound

[

(a) Comparison of the design costs relative (b) Design costs relative to the lower bound
to the lower bound with fixed processing placement B

Figure 6.10: Cost comparison for Western European topologies

Figure 6.10(a) shows cost comparisons that are different from those of the US
topologies, reflecting the influence of geographic and demographic distributions. Here,
the combination of the MST topology and placement B is preferred as the least-cost
design.

Overall, the topologies created by the automated algorithms can be convenient
points to start designing networks, and the search for a better design can be guided
by comparing the resulting cost of the current design to the lower bound, or to the
costs of the existing designs. In the next section, we extend our experiment to finding
a better design for the US network and the Western European network by modifying

the hand-crafted topology.

126
6.2 Enhancing the Trial Designs

We now turn to enhancing the designs introduced in the previous section. To make
the network more representative of practical situations, we require that the resulting
topology must be 2-connected. (A graph G is k-connected if there does not exist a
set of k — 1 vertices whose removal disconnects the graph). Our requirement ensures
that no single node can disconnect the entire network when it fails.

Note that while the MST topology incurs a lesser or equivalent cost compared
to the other trial topologies, as shown Figure 6.6(a) and 6.10(a), tree topologies in
general do not satisfy our requirement for 2-connectedness. As the starting point in
search of a better design, we instead select the hand-crafted topology.

In addition to the 2-connectedness requirement, we also restrict the number of
processing locations to be five at most . While processing resources have no cost, as
assumed in the previous section, their locations can affect the cost associated with
link usage. To understand this effect better, let us take the hand-crafted design of the
US network, place processing resources at all the potential locations specified by the
design space, and compute the cost. Figure 6.11 shows the design and its cost with
ten processing locations, which shows a significant improvement from the previous
designs. While this particular design assigns more locations than are allowed, the
result clearly shows that the design space provides a good set of candidate locations
that can potentially lower the cost to 1.45 times the lower bound in the best case.
While a better set of candidate locations may well exist, we will keep the design space
as it is in this experiment and attempt to enhance the design within the space.

First, we select another two sets of processing locations, in addition to the

previous placements A and B. The new placements C and D are given as follows.
e Placement C: New York, Los Angeles, Atlanta, Chicago, Dallas
e Placement D: New York, Los Angeles, Atlanta, Chicago, Seattle

Recall that the on-demand video application requires less bandwidth when the com-

pression processing is placed closer to the receiver, because the processing expands

127

Eextensihle Hetwork Planner Design(US metro 20, Original, All Processing Hodes)

File Topology Ewvaluate Desigh Option View Algotithms Window Help

[ofelan][«[n]@) &)L |o][]wmx =

)

+7
o

Metwork cost=19179.75E6, 145.12% of Lowerbound = 13216 93E6

Figure 6.11: Networks for the 20 largest metropolitan areas in US, processing at all
possible locations

the bandwidth needed on the rest of the route. Therefore, by placing the processing
closer to the locations that have more viewers, we can reduce the overall bandwidth re-
quirement, and thus reduce the design cost. For this reason, we include in placements
C and D the three most populous locations, New York, Los Angeles, and Chicago,
which are also coincidentally video sources. Then, we select two more locations that
are geographically closest to more receivers which have no nearby processing location.
We choose Atlanta and Dallas for placement C, and Atlanta and Seattle for placement
D.

Figures 6.12(a) and 6.12(b) show the designs and their costs when placements
A and B are selected. Placement A gives a better cost, which is 2.67 times the lower
bound, than that of placement B, which is 3.1 times the lower bound. The new
placements C and D decrease the cost even more, down to 2.05 and 2.2 times the
lower bound, as shown in Figures 6.13(a) and 6.13(b).

Now that we have identified better processing placements, we turn to modifying

the topology. To provide better sharing of links among traffic flows while maintaining

mextensihle Hetwork Planner Design(US metro 20, Original A)

File Topology Evaluate Desigh Option View Algotithms Window Help

[olelan[x]n[w] a]a]1]e] 5w

'y

[]

h-]

&1 [%] 2]

Metwork cost= 35287 73E6, 267.06% of Lowerbound = 13216.93E6

(a) Hand-crafted topology, Placement A

mextensihle Hetwork Planner Design(US metro 20, Original By

File Tupulugy Evaluate Design Option View Algurlthms Window Help

<|n|@ a2

L@ 5080)

D!!EEH

h=]
o

Rzl %] 2]

e

Metwark cost= 40927 3E6, 309.66% of Lowerbound = 13216.93E6

(b) Hand-crafted topology, Placement B

Figure 6.12: Networks for the 20 largest metropolitan areas

128

129

mextensihle Hetwork Planner Design(US metro 20, Original C)
File Topology Evaluate Design Option View Algofitims Window Help

[o]e(alo [x|n|@] 2] a]L]e][m]8]x
S'\que

[]

2
k-]

-SEH

Metwork cost= 27134 9E6, 205.3% of Lowerbound = 1321 6.93E6

(a) Hand-crafted topology, Placement C

mextensihle Hetwork Planner Design(US metro 20, Original D)y
File Tupulugy Evaluate Design Option View Algurlthms Window Help

“|a|o | @]] 2] L [@] 5] 8] e

t:

E!HEET

Metwark cost= 29144 19E6, 220.51% of Lowerbound = 13216.03E6

(b) Hand-crafted topology, Placement D

Figure 6.13: Networks for the 20 largest metropolitan areas

130

good connectivity, we simplify the hand-crafted topology by pruning some links and

replacing others with alternative links. Table 6.3 lists the links that are removed from

and added to the hand-crafted topology.

Table 6.3: Links added and removed for the US network

Removed Links

Added Links

(Phoenix, Denver)
(Atlanta, Houston)
(Denver, St. Louis)
(Boston, Cleveland)
(Minneapolis, Denver)
(Miami, New York)

(San Francisco, Phoenix)

(Los Angeles, Denver)
(Atlanta, Dallas)
(Denver, Chicago)

Eextensihle Hetwork Planner Design(US metro 20, Original C Modified)

File Topology Ewvaluate Desigh Option View Algotithms Window Help

)

DA &

®

B

L

DIEIE FEIE]

S’\qJIE

o1 EN]

3 JiEAEH

Metwork cost=25250.8E6, 191.05% of Lowerbound = 13216.93E6

Figure 6.14: Modified hand-crafted topology, Placement C

Figure 6.14 shows the combination of the modified hand-crafted topology and

placement C. Note that placement C, among other placements, provided the lowest

cost when applied to the original hand-crafted topology. Now, the new combination

reduces the cost to 1.91 times the lower bound. For a complete comparison of all

131

enhancements discussed in this section, Figure 6.15 compares the costs of the designs
when each of placements A, B, C, and D was applied to the original and modified
hand-crafted topologies. that we started from the hand-crafted topology and place-

O Hand-crafted M Modified hand-crafted

35

254

151

Cost relative to Lower Bound

Placement A PlacementB Placement C ~ Placement D All Potential
Nodes

Processing Nodes Placement

Figure 6.15: Comparison of different placements on hand-crafted and modified hand-
crafted topologies for the US network

ment A, which incurred a cost that was 2.67 times the lower bound, we have effectively
brought the cost of our design down by 28%.

We apply a similar process to the Western European network by first select-
ing the hand-crafted topology as the starting point. In this case, however, because
the topology does not satisfy the 2-connectedness criterion, we add two more links,
(Lisbon, Barcelona) and (Rome, Athens), prior to any enhancement attempt. Next,
in order to measure the impact of the processing locations on the design cost, we
activate every potential processing location given in the design space. Recall that
Figure 6.10(a) showed that the hand-crafted topology approximately costs 2.61 times
the lower bound. As shown in Figure 6.16, the cost decreases to 1.45 times the lower
bound when all possible locations are selected for processing, indicating that the
current, processing placements A and B, can be modified to produce a lower cost.

As in the US network, we apply two additional placements:
e Placement C: London, Paris, Rome, Barcelona, Berlin

e Placement D: London, Ruhr, Rome, Barcelona, Berlin

132

l_jextenslhle Hetwork Planner Design(Western Europe metro 20, Original, All processing)

File Topology Evaluate Desigh Option View Algotitms Window Help

[ofelals «/nw[a]=]L]e @]

Metwork cost= 87859.87E5, 145.71% of Lowerbound = 602981 5E5

Figure 6.16: hand-crafted topology, processing at all possible locations

As shown in Figure 6.17(a) and 6.17(b), the new placements reduce the cost of the
network only by 5.7% (placement D), much less than in the US network. A natural
processing placement policy would be to select locations so that more video receivers
can reduce their bandwidth usage. The problem, however, is more complicated in
the Western Europe network, where demographic distribution is rather evenly spread
out, in contrast to the US network, where the population is heavily concentrated on
the coasts. All placements A, B, C, and D that attempt to distribute the processing
locations throughout the network result in similar costs.

Given placement policies, we now modify the topology. This time, we only
remove links, as listed in Table 6.4. Despite our effort to simplify the topology by
removing seven links, the removal reduces the design cost by only a negligible amount
of 2.4% when placement D is applied. Figure 6.18(a) shows the result.

Because the different processing placements and the topology simplification

resulted in a rather small scale impact on the design cost, we relax our restriction

133

mextensihle Hetwork Planner Design(Western Europe metro 20, Original C)
File Topology Evaluate Design Option View Algofitims Window Help

N %

Eﬂ!ﬂﬂﬁ

Metwork cost= 15222 68EG, 252.46% of Lowerbound = 60298.1 5E5

(a) Hand-crafted topology, Placement C

mextensihle Hetwork Planner Design(Western Europe metro 20, Original D)

File Tupulugy Evaluate Design Option View Algurlthms Window Help

@@ [x/n® ala/L(e w6 =

E!!EEﬁ

QR E

Metwark cost= 14823 25E6, 245.83% of Lowerbound = 602958.15E5

(b) Hand-crafted topology, Placement D

Figure 6.17: Networks for the 20 largest metropolitan areas in Western Europe

134

E-.jextensihle Hetwork Planner Design(Western Europe metro 20, Original D, Modified}
File Topology Ewaluate Design Option View Algotithms Window Help

D Ao [xs@|alall

+7
L2

PP

Metwork cost= 14466 99E6, 239.92% of Lowerbound = 602981 5E5

(a) Modified Hand-crafted topology, Placement D

E-_jextensihle Hetwork Planner Design(Western Europe metro 20, Original E, Modified)

File Topology Evaluate Design Option Yiew Algorithms Window Help

olelalo [«n(@ (&) a]L e [w5]E5 =

s
(2]

[]
(A

QR E

Metwark cost= 12085 06E6, 215.51% of Lowerbound = 602958.15E5

(b) Modified Hand-crafted topology, Placement E

Figure 6.18: Networks for the 20 largest metropolitan areas in Western Europe

135

Table 6.4: Links added and removed for the Western Europe Network

Removed Links Added Links
(Leeds, London) No link added
(Leeds, Hamburg)

(Birmingham, Madrid)
(Paris, Milano)
(
(
(

Brussels, Frankfurt am Main)
Frankfurt am Main, Berlin)
Munich, Napoli)

on the number of processing locations. Figure 6.18(b) shows a design with six pro-
cessing locations, placement D with an additional location at Paris. We call this
new placement E. Figure 6.19 compares the costs of all combinations of placements

and the hand-crafted topologies. By relaxing the restriction, we have reduced the

[@ Hand-crafted M Modified hand-crafted

Cost relative to Lower Bound
N
[

14
Placement A Placement B Placement C Placement D Placement E Al Potential
Nodes

Processing Nodes Placement

Figure 6.19: Comparison of different placements on hand-crafted and modified hand-
crafted topologies for the Western Europe network

cost to 2.16 times the lower bound, which provides approximately 17% cost reduction
compared to the cost of the original hand-crafted topology with placement A. This
is a significant improvement from the hand-crafted design, which initially gave a cost
that is 2.61 times the lower bound. However, the decision to accept the design as a
valid solution must be made by evaluating the trade-offs between the actual benefit

from the cost reduction and the penalty of using more processing locations.

136

In this chapter, we have considered two realistic situations to demonstrate
how to use XNP to design, evaluate, and refine network configurations. We first
generated trial topologies using the automated functions and the graphic interface of
XNP, and placed processing resources according to application specifics and traffic
distributions. We then evaluated and compared the designs to identify the least cost
design. We also discussed how to refine the trial designs further, by adding practical
restrictions and also by applying heuristic methods to select topologies and place

processing resources.

137

Chapter 7

Summary and Future Work

The programmability of extensible networks opens up a broad range of ways to de-
velop and operate applications by allowing customized processing or services at net-
work routers. The provision of such services, either by routers or by network-attached
processing sites, is potentially a significant benefit for network users, as it can relieve
individuals from the need to acquire, install, and maintain software in end systems
to perform required services. As such network services become more widely used,
it will become increasingly important for service providers to have effective methods
for configuring applications sessions so that they use resources efficiently. On the
other hand, it is equally important to design such extensible networks properly in or-
der to ensure desirable performance of applications. This dissertation has addressed
these two key problems that arise in operating and provisioning extensible networks:

configuring application sessions and designing extensible networks.

7.1 Session Configuration in Extensible Networks

First, we investigated the problem of configuring application sessions in extensible
networks, which is complicated by the processing to be applied to the data flows of
the sessions at intermediate nodes on the route. The processing not only requires

additional (processing) resources to be configured on behalf of the sessions, but also

138

restricts the session routes to include such processing resources. Therefore, the config-
urations for those applications must be composed of a set of resources, including links
and processing nodes, that can successfully carry data from the source end node(s)
through the required processing components in the network, and deliver it to the
destination(s).

As shortest path algorithms are not directly applicable to our session configu-
ration problem, we have developed a generic method called the layered graph. This
method introduces a new graph space derived from the original network graph and
processing locations, and transforms the original configuration problem to a conven-
tional shortest path problem in the new space. We proved the efficiency and scalability
of the method by the simplicity of transforming the problem and the complexity of
the shortest path algorithm in the new space. We have shown, through a series of ex-
amples, that the layered graph can be applied to a wide variety of different situations,
including applications with multiple processing steps, applications whose processing
can alter data bandwidth as a result, and single-source multicast applications. We
have also considered applications that require reserved capacity, and studied several
heuristic algorithms based on the layered graph method, including link capacity track-
ing, a novel extension of Dijkstra’s shortest path algorithm. To account for capacity
constraints, link capacity tracking attempts to resolve the resource contention that oc-
curs when resources with limited capacity are used multiple times on a single route.
Our simulation results demonstrate that the link capacity tracking algorithm matches
the best performance that one can expect to achieve.

To make our ideas for configuring application sessions directly applicable, it
will be necessary to automate the methodology, so that resource configuration soft-
ware can automatically determine the best way to configure a session to satisfy its
requirements. The requirements for reaching this objective include developing a gen-
eral way of specifying application requirements for intermediate processing, one that is
expressive enough to describe typical application scenarios, while being simple enough

for application programmers to use effectively. This issue of application specification

139
was studied by Keller et al. in their active pipe model [53], and is worthy of further

investigation. The other essential requirement for automating session configurations
is a resource allocation system that provides the up-to-date status of the network
topology and the resource availability of links and processing components of routers.
This status information is necessary for the resource configuration software to iden-
tify available resources and to determine the best set of resources among them to
configure application sessions. The resource allocation system must also control the
resource allocation and deallocation for individual sessions. The general approaches
taken by the PNNI protocol or the OSPF protocol can be extended to handle the

demands of resource management and allocation.

7.2 Constraint-based Design of Extensible Network

The second problem examined by this dissertation is designing extensible networks,
with the focus on supporting candidate applications that require processing at inter-
mediate nodes. Such applications require an additional type of resources at network
nodes to perform the customized processing. They must also use the existing link
resources in more dynamic ways, because the processing can vary bandwidth in the
midst of the session routes. To design extensible networks, network designers must
first specify how resources are used by each of the potential applications, and then
configure networks with resources that accommodate the anticipated traffic demands
and the resource usage of the applications associated with the traffic.

We have introduced a methodology that generalizes the constraint-based net-
work design methods originally developed for conventional networks. We have shown
how to incorporate arbitrary application requirements in a flexible and general way,
and also have shown how to extend the original framework to dimension both process-
ing resources and link bandwidth. Particularly, the resource dimensioning problem
has been formulated as a linear program computing the resource capacity that is

necessary and sufficient, given traffic demands for the candidate applications. For a

140

specific subset of traffic demand patterns, we have introduced a method based on the
maximum flow problem in graph theory. We have also shown how to compute lower
bounds on the best possible network designs using the linear programming. These re-
sults have been incorporated into a software package, the Extensible Network Planner
(XNP). XNP supports interactive experimentation with alternative designs by allow-
ing designers to conveniently specify their traffic constraints and application formats,
by automating the dimensioning of candidate network designs, and by providing lower
bounds that help the designers evaluate the quality of their designs.

The most important direction for future research in this area is to automate
the determination of the best topology and set of processing nodes. While simple
topology generators can be used to quickly create candidate topologies for evaluation,
they do not directly take into account the characteristics of the traffic constraints.
In conventional network design, the traffic constraints largely determine the best
topology, with star networks being best for some types of traffic constraints, and
complete networks being best for other types of constraints. Extensible network
design introduces the flexibility to support various application formats, which further
complicates topology generation and additionally requires the set of processing nodes
to be determined. The generality of traffic constraints and application formats makes
it difficult to see how to automatically generate the best topology and to identify the
best set of processing nodes for a given set of constraints and application formats.
Nevertheless, it seems clear that the design of constraint-driven topology generators
and processing node locators is the key research challenge for extensible network
planning.

A useful direction for the topology generation and processing nodes placement
would be iterative improvement methods that make local changes to a given topology
in an effort to get a better one. Simulated annealing could be applied here to make
more systematic and effective changes. In another method discussed in Chapter 6,
the design process can start with a number of topologies generated by well-known

algorithms to focus the design process on a smaller set of preferred topologies for

141

further improvement. Omne can enhance this method to see if differences between
lower bounds and trial networks can be analyzed to lead more directly to better

designs.

142

References

1]

2]

3]

[4]

[5]

[6]

[7]

Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki,
John B. Vicente, and Daniel Villela. A survey of programmable networks. Com-

puter Communication Review, 29(2):7-23, April 1999.

David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. A survey of active network research. IEFE
Communications Magazine, 35(1):80-86, January 1997.

David L. Tennenhouse and David J. Wetherall. Towards an active network ar-

chitecture. Computer Communication Review, 26(2), 1996.

Jacobus E. van der Merwe, Sean Rooney, Ian Leslie, and Simon Crosby. The
Tempest—A practical framework for network programmability. IEEE Network
Magazine, 12(3):20-28, 1998.

Michael W. Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and
Scott Nettles. PLAN: A packet language for active networks. In International

Conference on Functional Programming, pages 86-93, 1998.

Michael W. Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter,
and Scott Nettles. PLANet: An active internetwork. In Proceedings of IEEE
Infocom, 1999.

B. Schwartz, W. Zhou, A. Jackson, W. Strayer, D. Rockwell, and C. Partridge.
Smart packets for active networks. In Proceedings of IEEE OPENARCH, 1998.

143
[8] D. Scott Alexander, Marianne Shaw, Scott Nettles, and Jonathan M. Smith.

Active bridging. In Proceedings of ACM SIGCOMM, pages 101-111, 1997.

[9] Elan Amir, Steven McCanne, and Randy H. Katz. An active service framework
and its application to real-time multimedia transcoding. In Proceedings of ACM

SIGCOMM, pages 178-189, 1998.

[10] Daniel Decasper, Guru Parulkar, Sumi Choi, John DeHart, Tilman Wolf, and
Bernard Plattner. A scalable, high performance active network node. IFEFE
Network, January/February 1999.

[11] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach,
2nd Edition. Morgan Kaufmann Publishers, 2000.

[12] Gary Malkin. RIP Version 2, November 1998. RFC 2453.

[13] John Moy. OSPF Version 2. IETF Network Working Group, April 1998. RFC
2328.

[14] ATM Forum Technical Committee. Private Network-Network Interface Specifi-
cation Version 1.0, March 1996.

[15] Roche A. Gurin and Ariel Orda. Qos routing in networks with inaccurate in-
formation: theory and algorithms. IEEE/ACM Transactions on Networking
(TON), 7(3):350-364, 19909.

[16] Q. Ma and P. Steenkiste. Quality-of-service routing for traffic with performance
guarantees, 1997.

[17] Hongzhou Ma, Inderjeet Singh, and Jonathan Turner. Constraint based design of
atm networks, an experimental study. Washington University Computer Science

Department Technical Report WUCS-97-15, 1997.

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

144
N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakr-

ishnan, and Jacobus E. van der Merive. A flexible model for resource management

in virtual private networks. In Proceedings of ACM SIGCOMM, 1998.

Andrew J. Fingerhut. Approximation algorithms for configuring nonblocking
communication networks. In Washington University Computer Science Depart-

ment doctoral dissertation, May 1994.

J. Andrew Fingerhut, Subhash Suri, and Jonathan Turner. Designing least-cost
nonblocking broadband networks. Journal of Algorithms, pages 287-309, 1997.

Anupam Gupta, Jon M. Kleinberg, Amit Kumar, Rajeev Rastogi, and Bulent
Yener. Provisioning a virtual private network: a network design problem for
multicommodity flow. In ACM Symposium on Theory of Computing, pages 389—
398, 2001.

Inderjeet Singh. Cappuccino: An extensible planning tool for constraint-based
atm network design. In Washington University Computer Science Department

masters dissertation, May 1997.

Russ Miller and Quentin F. Stout. Algorithmic techniques for networks of pro-
cessors. In Mikhail J. Atallah, editor, Algorithms and Theory of Computation
Handbook, chapter 46. CRC Press, 1999.

Tom Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

Ivan Hal Sudborough and Burkhard Monien. Embedding one interconnection

network in another. Computing Supplement, 7:257-282, 1990.

Ralph Keller, Sumi Choi, Dan Decasper, Marcel Dasen, George Fankhauser, and
Bernhard Plattner. Active router architecture for multicast video distribution.

Proceedings of IEEE Infocom 2000, March 2000.

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

145

Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approximation

in graphs. In Symposium on Discrete Algorithms, pages 770-779, 2000.

S. Ramanathan. Multicast tree generation in networks with asymmetric links.

IEEE/ACM Transactions on Networking, 4(4):558-568, 1996.

Moses Charikar, Chandra Chekuri, Toyat Cheung, Zuo Dai, Ashish Goel, Sudipto
Guha, , and Ming Li. Approximation algorithms for directed steiner problems. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 192—-200, January 1998.

Prashant Chandra, Allan Fisher, Corey Kosak, T. S. Eugene Ng, Peter
Steenkiste, Eduardo Takahashi, and Hui Zhang. Darwin: Resource customiz-

able management for value-added customizable network service. IEEE Network,

15(1), January 2001.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NPCompleteness, [SP5]. W.H. Freeman and Company, 1979.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. McGraw-Hill Book Company, 1990.

Aaron Kershenbaum. Telecommunications network Design Algorithms. McGraw-

Hill Book Company, 1993.

Andrews and Zhang. The access network design problem. In FOCS: IEEFE
Symposium on Foundations of Computer Science (FOCS), 1998.

Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In IEEE Sym-
posium on Foundations of Computer Science, pages 542-547, 1997.

Sudipto Guha, Adam Meyerson, and Kamesh Munagala. A constant factor ap-
proximation for the single sink edge installation problems. In ACM Symposium

on Theory of Computing, pages 383-388, 2001.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

146
Charlie Scott, Paul Wolfe, Mike Erwin, Andy Oram (Editor), and Scott Wolfe

Erwin. Virtual Private Networks. O’Reilly & Associates, 1998.

David B. Shmoys, va Tardos, and Karen Aardal. Approximation algorithms for
facility location problems (extended abstract). In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 265—274. ACM Press,
1997.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the sizteenth annual ACM symposium on Theory of computing,

pages 302-311, 1984.

Raimund Seidel. Linear programming and convex hulls made easy. In Proceedings
of the sizth annual symposium on Computational geometry, pages 211-215. ACM
Press, 1990.

Bernard Chazelle and Jifi Matousek. On linear-time deterministic algorithms for
optimization problems in fixed dimension. In SODA: ACM-SIAM Symposium
on Discrete Algorithms (A Conference on Theoretical and Ezperimental Analysis

of Discrete Algorithms), 1993.

Dorit S. Hochbaum. Approzimation Algorithms for NP-hard Problems. PWS
Publishing, 1996.

Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny Raz, and Yuval Shavitt.
Constrained mirror placement on the internet. In INFOCOM, pages 31-40, 2001.

P. Krishnan, Dan Raz, and Yuval Shavitt. The cache location problem. IEEE/
ACM Transactions on Networking, 8(5):568-582, October 2000.

Bo Li, M. Golin, Giuseppe F. Italiano, Xin Deng, and Kazem Sohraby. On the
optimal placement of web proxies in the internet. In INFOCOM, 1999.

147

[47] Sherlia Shi and Jonathan Turner. Placing servers in overlay networks. In Inter-

national Symposium on Perform ance FEvaluation of Computer and Telecommu-

nication Systems (SPETS), 2002.

[48] Moses Charikar, Sudipto Guha, Eva Tardos, and David B. Shmoys. A constant-
factor approximation algorithm for the k -median problem (extended abstract).

In ACM Symposium on Theory of Computing, pages 1-10, 1999.

[49] Fabidn A. Chudak. Improved approximation algorithms for uncapacitated facility
location. Lecture Notes in Computer Science, 1412, 1998.

[50] Guha and Khuller. Greedy strikes back: Improved facility location algorithms.
In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on
Theoretical and Ezperimental Analysis of Discrete Algorithms), 1998.

[51] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York, NY, 1985.

[52] Arthur H. Robinson, Joel L. Morrison, Phillip C. Muehrcke, A. Jon Kimerling,
and Stephen C. Guptill. Elements of Cartography. John Wiley & Sons, 1995.

[53] Ralph Keller, Jeyashankher Ramamirtham, Tilman Wolf, and Bernhard Plat-
tner. Active pipes: Service composition for programmable networks. In Proceed-

ings of IEEE Milcom 2001, October 2001.

Date of Birth

Place of Birth

Degrees

Professional
Societies

Publications

148
Vita

Sumi Y. Choi

December 30, 1971

Chapel Hill, North Carolina

B.S. Mathematics, February 1994
M.S. Computer Science, May 1999
D.Sc. Computer Science, December 2003

Institute of Electrical and Electronics Engineers

. Choi S. and Turner J. Configuring Sessions in Programmable

Networks with Capacity Constraints, Proceedings of IEEE
ICC, May 2003

. Choi S. and Shavitt Y. Proxy Location Problems and their

Generalizations, International Workshop on New Advances
of Web Server and Proxy Technologies (in conjunction with
IEEE ICDCS), May 2003

Choi S., Turner J. and Wolf T. Configuring Sessions in
Programmable Networks, Computer Networks, 41(2): 269—
284, February 2003

. Wolf T. and Choi S. Aggregated Hierarchical Multicast for

Active Networks, Proceedings of IEEE MILCOM, October
2001

Choi S., Turner J. and Wolf T. Configuring Sessions in
Programmable Networks, Proceedings of IEEE INFOCOM,
April 2001

. Keller R.., Choi S., Decasper D., Dasen M., Fankhauser G.

and Plattner B. An Active Router Architecture for Multi-
cast Video Distribution, Proceedings of IEEE INFOCOM,
March 2000

149
7. Choi S., Decasper D, DeHart J., Keller R., Lockwood J.,
Turner J. and Wolf T. Design of a Flexible Open Platform

for High Performance Active Networks. Proceedings of the
Allerton Conference, October 1999

8. Decasper D., Parulkar G., Choi S., DeHart J., Wolf T. and
Plattner B. A Scalable High-Performance Active Network
Node, IEEE Network, 13(1), January/February 1999

December 2003

	Resource Configuration and Network Design in Extensible Networks
	Recommended Citation
	Resource Configuration and Network Design in Extensible Networks

	tmp.1471023011.pdf.QboXF

	Abstract: Abstract: The goal of packet-switched networks has conventionally been delivering data to users. This concept is changing rapidly as current technologies make it possible to build network processing engines that apply intermediary services to data traffic. This trend introduces an extensive range of ways to develop and operate applications by allowing processing services customized for applications' needs at intermediate network nodes. The provision of such services is potentially a significant benefit for network users, as it can relieve individuals from the need to acquire, install, and maintain software in end systems to perform required functions. As such network services become more widely used, it will become increasingly important for service providers to have effective methods to configure applications sessions so that they use resources efficiently. On the other hand, it is equally important to design such extensible networks properly in order to ensure desirable performance of applications. This dissertation addresses these two key problems that arise in operating and provisioning extensible networks: configuring application sessions and designing extensible networks.

First, we present a general method, called layered network, for the problem of configuring application sessions that require intermediate processing. The layered network method finds optimal configurations by transforming the session configuration problem into a conventional shortest path problem. We show, through a series of examples, that the method can be applied to a wide variety of situations. We also discuss how to configure applications that require reserved capacity and propose effective heuristic algorithms that are based on the layered network method.

Second, for designing extensible networks, we generalize the constraint-based network design methods originally developed for conventional networks. We show how to incorporate arbitrary application requirements that are allowed by extensible networks in a flexible and general way. We also show how to extend the original framework to dimension

both processing resources and link bandwidth. These results have been incorporated into a software package, the Extensible Network Planner (XNP).

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: December 4, 2003
	Author: Authors: Choi, Sumi Y.
	Title: Resource Configuration and Network Design in Extensible Networks - Doctoral Dissertation, December 2003
	ReportNumber: 2003-75
	DepartmentName: Department of Computer Science & Engineering

