
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-72

2003-11-07

Context-Sensitive Binding: Flexible Programming Using Context-Sensitive Binding: Flexible Programming Using

Transparent Context Maintenance Transparent Context Maintenance

Rohan Sen and Gruia-Catalin Roman

Context-aware computing is a new paradigm whose emergence has been fostered by a growing

reliance on light and mobile computing devices, which adapt their behavior to changing

environmental conditions. The dynamic nature of the environment is a direct result of the

mobility of people and devices. Because the development of applications that entail a

significant level of dynamic adaptation is a difficult and error-prone task, new design methods

and constructs are needed. Precise and flexible specification of the resources needed to

operate in specific contexts combined with transparent context management can simplify the

development process. In this paper we... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Sen, Rohan and Roman, Gruia-Catalin, "Context-Sensitive Binding: Flexible Programming Using
Transparent Context Maintenance" Report Number: WUCSE-2003-72 (2003). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1118

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1118?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1118

Context-Sensitive Binding: Flexible Programming Using Transparent Context Context-Sensitive Binding: Flexible Programming Using Transparent Context
Maintenance Maintenance

Rohan Sen and Gruia-Catalin Roman

Complete Abstract: Complete Abstract:

Context-aware computing is a new paradigm whose emergence has been fostered by a growing reliance
on light and mobile computing devices, which adapt their behavior to changing environmental conditions.
The dynamic nature of the environment is a direct result of the mobility of people and devices. Because
the development of applications that entail a significant level of dynamic adaptation is a difficult and
error-prone task, new design methods and constructs are needed. Precise and flexible specification of
the resources needed to operate in specific contexts combined with transparent context management
can simplify the development process. In this paper we propose a particular embodiment of this general
design strategy in the form of a novel programming construct called context-sensitive binding. The
approach allows programmers to define and use in their programs objects whose behavior is supported
by code discovered at runtime within the computing environment surrounding the de-vice. The binding
between the object in the program and the support object that delivers its realization is maintained
transparently and is altered as the environment changes, thus making the binding context sensitive. The
criteria for choosing among viable support objects are prescribed at the time the object is first
instantiated. The paper introduces the concept of context sensitive binding, describes a Java-based
implementation, and explores the programming implications of the proposed construct.

https://openscholarship.wustl.edu/cse_research/1118?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1118?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages

Context-Sensitive Binding: Flexible

Programming Using Transparent Context

Maintenance

Rohan Sen and Gruia-Catalin Roman

Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA
{rohan.sen, roman}@wustl.edu

Abstract. Context-aware computing is a new paradigm whose emergence has been

fostered by a growing reliance on light and mobile computing devices, which adapt their

behavior to changing environmental conditions. The dynamic nature of the environ-

ment is a direct result of the mobility of people and devices. Because the development

of applications that entail a significant level of dynamic adaptation is a difficult and

error-prone task, new design methods and constructs are needed. Precise and flexi-

ble specification of the resources needed to operate in specific contexts combined with

transparent context management can simplify the development process. In this paper

we propose a particular embodiment of this general design strategy in the form of

a novel programming construct called context-sensitive binding. The approach allows

programmers to define and use in their programs objects whose behavior is supported

by code discovered at runtime within the computing environment surrounding the de-

vice. The binding between the object in the program and the support object that

delivers its realization is maintained transparently and is altered as the environment

changes, thus making the binding context sensitive. The criteria for choosing among

viable support objects are prescribed at the time the object is first instantiated. The

paper introduces the concept of context sensitive binding, describes a Java-based im-

plementation, and explores the programming implications of the proposed construct.

1 Introduction

The growing dependence on light, portable computing devices and continuing
improvements in wireless communication technology have contributed to the in-
creasing popularity of mobile computing. Mobile computing is characterized by
the physical mobility of hosts which results in frequent disconnections, transient
interactions and decoupled computing. The physical mobility of hosts has fos-
tered new and interesting patterns of interactions, heretofore not seen in the
computing world. Nomadic computing, peer to peer communication, hoarding
of resources prior to disconnection and delegation of tasks are suggestive of the
new ways physically mobile devices interact with each other. The unique char-
acteristics of mobile devices have fuelled the need for a new class of applications

that can adapt dynamically to frequent and unpredictable changes in their op-
erational environment.

The idea of applications that adapt to their operational environment is not
new. The notion of dynamic binding in C++ [1] deferred the decision of binding
to an object till runtime. However, these decisions were one time events which
were based on the current state of the operational environment and were irre-
versible for the duration of execution of the program. This level of adaptation
is not sufficient for mobile computing, where devices encounter an eclectic set
of environments. Not only should an application be able to defer its decision
to bind to an object at runtime, it must also be able to frequently revisit this
decision and modify it based on changes in its operational environment. The de-
cision process in mobile computing is further complicated due to the fact that,
by virtue of its wireless communication capability, an application may be able
to bind to objects that reside on a set of remote hosts that are reachable, but
where the set of such reachable hosts changes over time. Designing applications
that achieve such a level of adaptability requires significant programming over-
head in the form of managing concurrency, designing customized protocols, and
bookkeeping. The effort is significant, even for experienced programmers.

Powerful programming constructs which abstract the low level details of
communication, concurrency, and adaptability can reduce the complexity of pro-
gramming adaptable applications to a level that is comprehensible by the average
programmer. Our goal is to leverage the power of such constructs to transform a
simple, static program into a adaptable, dynamic program without significantly
increasing the programming effort. Examples of such constructs are those which
allow access to remote objects as if they were local, transparent dynamic bind-
ing and re-binding to remote objects, and delegation of tasks between objects
by employing policy based decision making. Using such constructs in a correct
manner can facilitate rapid development of adaptable applications.

In this paper, we introduce context-sensitive binding, a novel concept that
decouples the interface of an object from its implementation to a degree and
in a manner never attempted before. The binding between the interface and
some implementation of the object is dynamic and maintained transparently in
the face of changes in operational environment. This allows a one time specifi-
cation of interface by the programmer and multiple realizations of the object,
each customized to its operational environment. Programmer specified policies
determine where the realization of the interface comes from. Context-sensitive
binding allows the application programmer to interact with the interface as if it
were a local object even though the realization of the interface may come from
one or more remote objects. The policies specified by the programmer are used
to build a window on its operational environment or context, which is a set of
reachable entities around the host device. The window is a subset of the con-
text and contains neighboring hosts which have properties that are of interest to
the application. The support object that delivers the realization of a program-
mer specified interface (hereinafter referred to as the provider) is chosen from
among the hosts that fall within the constructed window. This ensures that the

most relevant realizations of a given interface are considered among accessible
alternatives. Additional flexibility and strength is achieved by including support
for migration of partially computed tasks between different providers as well as
optimizations to minimize losses due to failure and migration of tasks between
providers.

In order to demonstrate the feasibility of context-sensitive binding, we present
a particular embodiment of the concept in the form of middleware implemented
in Java. We offer the programmer a set of constructs to create interfaces to
objects whose actual realizations come from remote providers that are within
the current context of the host device. We provide middleware that builds and
manages contexts in a manner that is transparent to the programmer and in-
corporates optimizations such as periodic caching of partial computations. The
application programmer is thus able to specify a set of requirements and/or a
certain class of devices the application needs in order to be able to carry out
its task. The middleware creates a window of interest within the host device’s
context and discovers eligible providers within the context. It binds to the best
candidate within the context, where best is defined by a set of predefined metrics.
It maintains this binding transparently, even if the provider of the realization of
the resource changes, and returns complete results of the computation as if it
were coming from the local interface.

The remainder of the paper is organized as follows: Section 2 highlights the
core concept of context-sensitive binding and illustrates them via the use of a
high level example. Section 3 describes the assumptions, design and a Java im-
plementation of middleware that demonstrates the feasibility of context-sensitive
binding. We discuss context-sensitive bindings from an application programmer
perspective in Section 4. In Section 5, we reflect on outstanding research issues
and discuss the applicability of such middleware in a variety of settings. We draw
conclusions in Section 6.

2 The Context-Sensitive Binding Concept

Developing dependable and adaptable applications for mobile devices is expen-
sive because applications that reside on mobile devices have to be engineered
to be robust enough so as to not fail under a wide range of circumstances that
could occur during operation, yet be flexible enough to allow interaction with
the heterogenous set of hosts that it may encounter. Facilitating rapid develop-
ment of adaptable applications in settings characterized by mobility, transient
interactions, and disconnection is a complex task. This is where context-sensitive
binding can help.

2.1 The Core Concept

Context-sensitive binding is a design strategy that enables rapid development
of adaptable context-aware applications by decoupling the object interface from
its implementation code or realization. Based on requirements, the programmer

specifies an interface which contains a list of methods for which he needs an
implementation. Along with this list of methods, he specifies a set of external
constraints which determine the sources from where the implementation may be
obtained. The list of methods and constraints together form a policy. The policy
is passed to the system which applies the policy on a registry or set of reachable
providers (entities which provide realizations of methods or entire classes). The
set of reachable providers is filtered to give a set of providers that implement
all the required methods, i.e., the list of methods in the programmer specified
interface must be a subset of the list of methods of the provider. The filtered
set, consisting of only those providers that implement the required methods is
filtered again based on the external constraints provided by the programmer.
The result is an eligibility set, a window on the context of the device consisting
of providers that meet the requirements set forth in the policy. The system
uses predetermined metrics to choose the best provider and forms a binding
between the programmer specified interface and the chosen provider. In the case
of disconnection, the system automatically rebinds to the next best provider.
Context-sensitive binding boasts several novel features that distinguish it from
prior work:

– Transparent Maintenance of Binding - The binding between the interface
specified by the programmer and the object that supports the realization
of the interface (provider) is maintained in a transparent manner. The pro-
grammer interacts only with the local interface and calls methods on that
interface. The interface delegates the call to the provider. Choosing providers
and switching between providers are hidden from the programmer.

– Policy Based Choosing - The set of qualifying providers that represent real-
ization of an interface is chosen based on programmer specified policies.

– Metric Based Evaluation - The best provider from the set of all qualifying
providers is chosen based on predetermined metrics.

– Continuous Binding for Ad hoc Mobile Environments - Context-sensitive
binding provides for continuous binding between the programmer specified
interface and the provider in the face of disconnection or in search of a better
quality of service. The provider for a given interface is replaced transparently
by another provider if the former provider gets disconnected or does not meet
quality of service criteria.

Context-sensitive binding is targeted towards ad hoc networks where frequent
disconnections and transient interactions are not conducive to static bindings.
While dynamic and transparent nature of context-sensitive binding facilitates de-
velopment of applications for ad hoc networks, its applicability is not restricted
to ad hoc networks alone. Context sensitive binding can be used in any set-
ting where it is useful to decouple the object interface from the implementation
and different realizations of the interface are selected in accordance with some
programmer supplied selection policy.

2.2 Expanding the Concept - An Operational Perspective

The notion of dynamic binding is tied into the decision process by which a spe-
cific piece of code is selected from a set of candidates at runtime to fulfil a given
task. While context-sensitive binding shares some commonality with other ap-
proaches to dynamic binding (The idea of making binding decisions at runtime),
the novelty it brings lies in the fact that it does not make this binding decision
once but on a continuous basis in direct response to changes in the operational
environment. The key to making correct binding decisions rests on the ability to
ensure effective building, maintenance and management of eligibility sets within
the context of the host device. The remainder of this subsection is devoted to
descriptions of how eligibility sets are defined, built and evaluated on a constant
basis to facilitate correct binding decisions.

Defining Eligibility Sets

In context-sensitive binding, an eligibility set is defined for each interface-
implementation pair. The first step towards building eligibility sets is to define
what is of interest. This specification is done using policies. A policy has two com-
ponents - an endogenous component and an exogenous component. The endoge-
nous component is a series of constraints that are determined by the programmer
specified interface for which the eligibility set is being defined. These endoge-
nous constraints consist of the fields and method signatures of the interface and
constrain the eligibility set to only those objects that provide implementations
for the required methods. The exogenous component contains a further set of
external constraints that shrink the set further. These external constraints can
be constraints on any variable that is not internal to the specified interface. Ex-
amples of external constraints can be location of the provider, relative velocity of
the provider, quality of service parameters and security clearances among others.
The eligibility set for a given interface is defined as the subset of the context of
the host device that obeys all the endogenous and exogenous constraints speci-
fied in the policy associated with the interface.

Building Eligibility Sets

Given a policy that defines an eligibility set for a given interface, the aim is to
build up a set of objects that satisfy the constraints specified in the policy. The
set of reachable hosts that make up the context can be established by sending
out beacons and collecting responses. Once a set of such hosts is established,
they are filtered according to their capabilities, i.e., the endogenous constraints
are applied. After the set has been filtered to include only those providers who
satisfy the endogenous constraints, the exogenous constraints are applied to filter
the set farther. The result is the eligibility set.

It should be noted here that our rationale for applying endogenous con-
straints first is that we did not want to eliminate any provider that had the
required capabilities but fell short due to exogenous constraints which are dy-
namic and constantly changing. In other words, we did not want to penalize a
provider with non-inclusion in our eligibility set simply because it did not satisfy

some external constraint like location, velocity etc at a given point in time. By
deferring filtering based on exogenous constraints to the second round, we give
every provider a fair chance to be selected on that basis of its capabilities alone.

Evaluation and Eligibility Set Management

Once an eligibility set has been built, there are two remaining tasks: (1)
evaluating all the providers in the eligibility set to choose the most suitable
candidate and (2) keeping the contents of the eligibility set up to date as the
context of the host device changes.

Evaluation of the providers in the eligibility set is done using a metric. The
metric of choice that is used to evaluate providers in the eligibility set is volatility.
The volatility of an provider is defined as the probability that it will become
unreachable within a set interval of time. The current location and velocity of
an provider is used to determine the relative direction of travel of the entity,
and the safe distance [2] is used to calculate the volatility figure. It is assumed
that all providers publicly broadcast their location and velocity. The provider
with the lowest volatility is considered best and is the primary candidate for
binding. Should this candidate become unavailable at some point in the future,
the interface is automatically rebound to the best candidate available at that
time. It should be observed that volatility is suggested as the metric of choice for
evaluating providers in the eligibility set because we consider spatial orientation
and physical mobility to be the chief causes of changes in context. However,
if other factors drive changes in context, an alternate metric can be used to
determine the suitability of a candidate provider. An example of this is differing
levels of security clearances as a metric when browsing classified data.

The remaining task is that of keeping the eligibility set up to date as the
context of the host device changes. Once again, the volatility metric is used for
this task. Queries are issued at certain time intervals to ensure that a provider is
still reachable. The time interval is determined by the volatility of the provider
so more volatile providers are queried more often than less volatile providers. If
no response is received, the provider is removed from the eligibility set. In addi-
tion to maintaining providers already on the eligibility set, periodic rebroadcasts
of the endogenous and exogenous constraints capture newly reachable providers
and add them to the eligibility set by the procedure detailed above.

Ancillaries Supporting Optimizations

In addition to the basic functions that build an eligibility set and choose
a suitable provider from within, we offer ancillaries that further optimize the
core concept. We describe two mechanisms: (1) periodic capturing of partial
computations and (2) commissioning of providers to finish incomplete tasks.

As the context of the host device changes, the chosen provider may become
unreachable or unable to satisfy the exogenous requirements. At such a point,
a new provider must be chosen and the interface rebound to the new provider.
When this happens, the computation occurring on the former provider is sus-
pended and restarted on the latter provider. Frequent restarts of the computation

can result in losses of results and may increase the time taken for the computa-
tion by a significant amount. To mitigate this problem, the state of the partial
computation is cached periodically and when there is a switch between providers,
the cached state is pushed to the new provider to enable resumption rather than
restarting of the computation. The periodicity of the state saving is determined,
once again, by the volatility of the provider with more stable providers sending
back partial results less frequently.

Another mechanism for optimization of the computation is commissioning.
This mechanism assumes a significant amount of knowledge exchange between
providers. The concept is essentially this: if a provider knows it is going to
become unreachable in the near future and also knows of an alternate provider
that has the same characteristics as itself, it can commission the other provider
to finish its task. This results in an increased efficiency because the time to look
for another suitable provider is saved and the handover between providers can
happen in a more orderly fashion so as to minimize the losses due to the switch.

2.3 Illustrative Example

Before concluding this section, we present a simple example designed to explore
a setting in which these concepts may be used. Consider a miner who must carry
out frequent inspections of an underground mine shaft. As he moves through the
mine, he would like the lights around him to turn on and stay on until he leaves
the area. To do this manually, he would have to turn on and off many switches
as he moved through the mine. However, this particular mine is equipped with
switches at 100 meter intervals than can respond to commands issued on a PDA
and transmitted over a wireless ad hoc connection to the switches. The miner uses
a simple program and specifies his interest in light switches and the requirement
that he would like any such switch within 100 meters of his position to be set to
the “on” position. As he enters the mine, he starts his program which discovers
a set of switches in its context. According to his policy, only light switches are
considered. The program binds to the light switch and turns it on. As the miner
walks forward, the first switch moves out of the context of the miner’s PDA, i.e.,
it becomes unreachable from the PDA. Since the switch is not unreachable, it
reverts back to its default state, which is the “off” position. However, the second
switch, which was initially unreachable now falls within the context and turns
on in response to directives from the PDA. This process repeats as the miner
walks through the mine. The miner can thus use a single conceptual switch on
his PDA to control a changing set of light switches as he moves through the
mine.

In the next section, we demonstrate the feasibility of context-sensitive binding
by describing a design and implementation of a middleware that captures our
strategy for realization of the context-sensitive binding concept.

3 Middleware Design

In this section, we describe a middleware implemented in Java that demon-
strates the feasibility of the context-sensitive binding concept. It represents one
of many possible designs that realize the general concept. This design is targeted
towards wireless ad hoc networks which exhibit transient interactions and de-
coupled computing due to physical mobility of hosts and the logical mobility of
agents. We begin by identifying a set of assumptions that we made in the design
of the middleware. The presentation continues with an outline of the middleware
design. The runtime behavior is illustrated by examining a trace through a sam-
ple execution. Finally, we provide selected implementation details for a more in
depth understanding of the system.

3.1 Assumptions

The middleware we describe in this section is intended to demonstrate the fea-
sibility of the concept. As such, we make a set of assumptions that make the
middleware development simpler but do not detract from illustrating the rich-
ness of the concept. Designing a system where we can relax these assumptions
is part of our planned future work which is described in a later section.

General Assumptions

– The system is intended for use in wireless ad hoc networks.
– All participants in the system are assumed to carry code written in Java.
– There is an external coordination mechanism that handles the discovery of

and communication with providers.
– The primary cause for a change in a device’s context is physical mobility,

i.e., a change in physical location may cause a change in context.
– All participants in the system provide their location and velocity in a stan-

dard format that is interpretable by all.
– The volatility of an entity is the metric used by default to determine the

most suitable of qualifying providers. Alternate metrics may be plugged into
the system as required.
In addition to the general assumptions listed above, we assume that a pol-

icy consisting of endogenous and exogenous constraints is unique enough that
searching for providers who obey that policy will not generate any false positives.
We also assume that providers do not advertise spurious capabilities and that
the semantics of a capability are the same across all potential participants in
the community. Finally, we assume that a programmer never advertises a policy
with constraints that are in conflict.

3.2 System Design

In this subsection, we outline the design of a middleware that supports context-
sensitive binding. We begin by describing the general architecture of the system
using a layered approach. We follow that by a discussion of the main components

of the system. We conclude with a trace through the middleware to show how
the various components interact with each other.

General System Architecture

The discussion of the general system architecture is split into two parts - (1)
the architecture for the programmer specified interface (hereinafter referred to
as the program) and (2) the architecture of the provider. We use the layered
approach to show how these components interact with the middleware as well
as with each other.

The topmost layer on the program side is the user application that makes use
of context-sensitive binding. It consists of static classes, which are standard Java
classes and dynamic classes, which use context-sensitive binding. The application
issues method calls to the dynamic classes in the same manner that it does to
static classes. However, the dynamic classes are simply skeletons, i.e., lists of
methods and their parameters. They do not contain any implementation. When
a dynamic class is created, the application programmer specifies a policy that
determines where the implementation or realization comes from. To obtain the
implementation, the dynamic class delegates the task to the next layer, which
is the generic interface to the context-sensitive binding middleware. The generic
interface packages the method call and its accompanying policy as a standard
object and passes it down to the next layer, which is the context management
layer.

Communication Framework

Communication HandlerCommunication Handler

Application

Application

Context Manager

Generic Interface

Key: Components provided by the system

Components provided by the system
but implementation dependent on
external components

Required External Components

Required External Components
not part of the system

Program Provider

Dynamic Classes

 Merged Provider Registry

Local Provider Registry

Merges

Fig. 1. Layer Diagram of the System

The context management layer uses the policy to build an eligibility set that is
applicable to the dynamic class in question. It does this by broadcasting a query
consisting of the constraints in the policy to a registry of reachable providers.

The communication occurs through an external coordination framework which
we do not provide as part of the system. Communication between the context
manager and the communication layer is handled by a communication handler
that can be written to interface with the communication layer of choice. Once
the context manager receives replies to its query, it picks the provider that is best
suited to service the request by using the volatility metric. It then delegates the
request to that particular provider by sending a message via the communication
layer. Further interactions between the program and provider are also handled by
the context manager. Replies from the provider are propagated up to the generic
interface which forwards them to the dynamic class within the application. An
illustration of this can be seen in Fig. 1.

On the provider side, the hierarchy is less complex. There are just two layers.
The application layer represents the functionality of the provider, i.e., it is the
program that processes the jobs that are delegated to it. The other layer is the
communication handler which sits below the application layer and simply han-
dles all communication details, similar to its counterpart on the program side.
The illustration of this can be seen in Fig. 1.

Characterizing the Components

Having described the system architecture on a high level, we now describe
the main components of the system. The system is designed in a modular fashion
with each component performing a highly specialized task. There are few hooks
from one component into another to allow future versions of the components to
be integrated into the system with minimal effort.

Generic
Dynamic

Class

Customized
Dynamic

Class

Communication
Handler

Process
Manager

Context Manager Provider

Communication
Handler

Communication
Framework

<<calls>>

<<calls>>

<<calls>>

Key:

1..* 1 1

Components provided by the system

Components provided by the system
but implementation dependent on
external components

Required External Components

Required External Components
not part of the system

Provider
Registry

1

Fig. 2. Key Components of the System

Programmer Interface – The programmer interface to the middleware is
designed to be easily integrated into any application that requires the use of
context-sensitive binding. It is provided to the application developer in the form
of a generic dynamic class that contains code required to build a customized dy-
namic class. The application programmer can extend this generic class and add
methods of his own to create a customized dynamic class. The code inherited

from the generic class handles all calls to the context manager. On instantia-
tion, the class automatically connects to the context manager to inform it of
its presence. It then uses reflection to discover a list of its methods and their
signature. It combines this list with user specified policies to create a request to
the context manager to build an eligibility set for this dynamic class based on
the method list and the attached policy. Once the list is built, the customized
dynamic class can handle calls to any of its (dynamic class’) methods that are
made by the application. All calls made to the dynamic class are delegated to
the context manager which transparently handles the processing of those calls
and returns the result. The results that are returned by the context manager are
propagated up to the application in the form of a simple method return.

Context Manager – The context manager is the main component of the
system. There is a single instance of the context manager that runs on every
host. It manages eligibility sets for every dynamic class on its host and mediates
all communication between the program and the provider. When a dynamic class
registers with the context manager, it generates and returns a globally unique
DynamicClassID. Subsequently, when the context manager receives a method
list and the associated policy from a dynamic class, it packages the method
list and policy into a query and sends it to the provider registry. All providers
receive this query and a subset send a responses back to the context manager.
The context manager then builds an eligibility set of suitable providers. The
volatility metric is used to choose the best provider. An entry is made in its
mapping table. The entry contains a DynamicClassID - ProviderID pair. By
looking up this table, the context manager can establish the relevant provider for
any dynamic class that it is responsible for. At this point, the context manager
creates a process manager for the dynamic class in question and passes to it
the eligibility set. The process manager handles all subsequent communication
between the dynamic class and its provider.

Process Manager – A process manager is created by the context manager
for every dynamic class that it is responsible for. Once the context manager has
defined an eligibility set for the dynamic class, it delegates the job of handling
further communications to the process manager. The process manager receives
the eligibility set in its constructor. It is also made aware of the best provider
available. It instructs the communication handler to create a communication
channel to that provider and waits till it receives an instruction. When a method
call is made on a dynamic class, the call along with the relevant parameters are
delegated to the context manager which then delegates them to the appropri-
ate process manager. The process manager then communicates the call and its
parameters to the provider using the channel created by the communication han-
dler. It waits to receive the result from the provider and then propagates it up to
the dynamic class by way of the context manager. In addition to this basic func-
tionality, the process manager also caches partial results that are transmitted
back periodically from the provider. In case the provider becomes unreachable,
the process manager determines the next best provider and pushes the cached
partial result to that provider with instructions to resume the computation from

when it was last cached. The process manager also keeps the eligibility set up
to date by periodically asking the context manager to rebroadcast the initial
request that was used to build the first version of the set.

Communication Handler – The Communication Handler is a component
of the system whose implementation is dependent on the external communi-
cation framework used. An appropriate communication handler can be plugged
into the system depending on what communication framework is used. The com-
munication handler provides a layer of abstraction between the context-sensitive
binding middleware and the communication middleware. It takes requests from
either the context manager or any of the process managers and packages it in a
manner that is legal for the communication framework and sends it to its des-
tination. It performs a similar function on the provider side by abstracting all
details of communication away from the provider.

Communication Framework – The communication framework handles all
the communication between the interface and providers. This framework is not
supplied as a part of the system. Instead, any existing system can be used to fulfil
this functionality, if an appropriate communication handler is written. Given the
environments that the context-sensitive middleware is designed for, coordination
middleware for wireless ad hoc networks is preferred over other mechanisms to
perform this task.

Provider Registry – The provider registry is a distributed data structure
containing a set of profiles belonging to providers that can supply implementa-
tions for some set of methods. The profile of a provider consists of the list of
methods and their signatures for which it has an implementation. The profile
also contains external variables such as location of the provider, velocity of the
provider, security clearances, etc. Each provider contains a local provider reg-
istry in which it places its own profile. The local registry merges with nearby
provider registries to form a federated registry. By its structure, the provider
registry contains profiles from reachable hosts only (because hosts that are un-
reachable cannot merge their registries) and hence any host that has a profile in
the merged registry is guaranteed to be reachable.

Provider – The provider is an autonomous application that advertises its
capabilities to hosts around itself. The provider advertises its profile in its local
provider registry. As it encounters other providers, the registries merge. When
the profile of a provider matches the requirements of some interface, it becomes
part of the eligibility set. If a provider is chosen, method calls are delegated to it
by sending messages across the communication framework. The provider locally
executes the code for the appropriate method, packages the result and sends
them back to the caller, again via the communication framework.

3.3 Anatomy of an Execution

Having examined the components of the system, we now illustrate how these
components interact with each other. Fig. 3 shows a sample execution with the
failure of one provider.

The execution starts at the application level when the application instantiates
a customized dynamic class. When the constructor of this class is invoked, it first
calls the constructor of its superclass, the generic dynamic class. The constructor
of the generic dynamic class registers itself with the local context manager by
calling a register() method on it. The register() method returns a unique
DynamicClassID which is subsequently used to identify this particular dynamic
class to the context manager. Once the DynamicClassID is obtained, the generic
dynamic class uses reflection to discover the list of its methods. It then passes
this list, along with the policy for the class to the context manager. The context
manager packages the method list and policy in a message and sends the query
to the provider registry. It should be noted that the registry shown in Fig. 3
represents a registry consisting of several merged registries.

Application
Customized

Dynamic Class
Generic

Dynamic Class
Context
Manager

Process
Manager

Provider
Registry

Provider A Provider B

constructs

constructs

registration

Dynamic Class ID

Method List
+ Policy

Method List + Policy

Eligible Providers

Eligible
Providers

constructs

Eligibility
Set Ready

Register

Register

Provider ID

Provider ID

Method Call

Method Call
Method Call
+ Dynamic

Class ID Method Call
+ Dynamic

Class ID

Method Name + Params

Method Name + Params + Partial Result

Partial Result

Completed Job (Result)
Result

Result

Result

Result

Provider A
Fails.

Eligibility
Set Ready

Eligibility
Set ReadyEligibility

Set Ready

Fig. 3. Sample Execution of a context-aware application

All providers who are registered with the registry (i.e., their local registries
are a part of the merged registry) and conform to the requirements set forth
in the query reply to the query. The context manager uses these responses to
build an eligibility set. It then creates a process manager and passes to it the

eligibility set. The process manager creates a link to the best provider in the
set and returns an acknowledgement. This acknowledgement is propagated up
to the application level via the context manager, generic dynamic class and
the customized dynamic class. At this point, the application can start issuing
method calls on the customized dynamic class. The figure shows how this request
is delegated to a provider, the interactions that take place if a provider fails, and
finally the returning of the result to the application.

4 Implementation

The implementation of the context-sensitive binding middleware is in Java. Due
to constraints of space, we mention only selected details here.

The programmer interface, context manager, process manager, policy objects
and constraints are all implemented as Java classes. For the purposes of a com-
munication framework and a distributed provider registry, we use LIME [3], a
middleware for physical and logical mobility. Our rationale for choosing LIME is
that it is designed to be a communication framework for use in mobile ad hoc net-
works, which is the type of environment where we anticipate context-sensitive
binding to be used to the greatest degree. The second reason was because of
LIME’s use of transiently shared tuplespaces. Tuplespaces are structures that
can hold data. LIME uses the notion of a local tuplespace, which stores data
local to a host. These local tuplespaces can be merged with tuplespaces belong-
ing to reachable hosts to form a federated tuplespace. Such a data structure
is exactly what is required to model a distributed provider registry and hence,
we leverage off the power of LIME to implement them. The remainder of this
subsection describes the programmer interface component in greater detail as
this is the component that all programmers see. The knowledge of details of the
other classes do not aid the programmer in writing applications hence we omit
them here.

public abstract class Dynamic {

public Dynamic(String subclassName, Constraints c)
cm = ContextManager.getManager();
myID = cm.registerClass()

cm.buildWindow(myMethodList, c);
}

public Object invokeMethod(String methodName, Vector params) {
cm.invokeMethod(myID, methodName, params);

}

public void dispose() {
cm.destroyWindow(myID);

}
}

Fig. 4. Code for Programmer Interface - The Dynamic class

The programmer interface is represented as a Java class called Dynamic. The
Dynamic class has three basic methods. The constructor contains the code to
register the class with the context manager, obtain a DynamicClassID and send
the policy associated with this class to the context manager for the purposes
of building the context. The invokeMethod method takes parameters from pro-
grammer defined methods and delegates them to the context manager. Finally,
the dispose() method sends a message to the context manager when the class
is no longer required. The methods of the dynamic class along with some sample
pseudocode is shown in Fig. 4.

The Programmer Perspective

In this section, we illustrate how our middleware can be utilized to build a
context-aware program. To do this, we revisit our example from Section 2 of the
miner who has to walk through a mine to inspect it.

public class DynamicLightSwitch extends Dynamic{

public DynamicLightSwitch(Constraints c) {
super(“DynamicLightSwitch”, c);

}

public void on() {
cm.invokeMethod(myID, “on”, null);

}

public void off() {
cm.invokeMethod(myID, “off”, null);

}
}

Fig. 5. The DynamicLightSwitch class

Recall the miner wished to have all the lights turn on as he approached them
and turn off as he walked away from them. To incorporate such functionality, he
would have to define a customized dynamic class that is tailored to his needs.
We call this class DynamicLightSwitch and the code for this class is shown in
Fig. 5.

Once the miner defines his custom dynamic class, all he has to do is write a
simple java application that uses this class and invokes methods on it as neces-
sary. The sample code for such an application is shown in Fig. 6. The first line
of code defines the exogenous constraints, which is everything in the range 100
meters ahead and behind of the miner’s position. The endogenous constraints
require the provider to have an “on” and an “off” method. The program then in-
stantiates a new instance of the DynamicLightSwitch and calls the on() method
to turn the light on. After the inspection is complete, it calls the off() method
to indicate that the miner is no longer interested in turning on lights and fi-
nally the dispose() method to indicate that the dynamic class will not be used
anymore in the program. The potential for rapid development is made evident

public class ContextSensitiveSwitch{

public static void main(String[] args) {
Constraint locConstraint = new Constraint(“Location”,

“Range”, myLoc - 100, myLoc + 100);
DynamicLightSwitch dls = new DynamicLightSwitch(locConstraint);
dls.on();

//Wait for duration of inspection

dls.off();
dls.dispose();

}
}

Fig. 6. Sample Application for Mine Inspection

by the fact that it takes just 4 lines of code to design a complex context-aware
application.

5 Discussion

There has been a significant effort directed towards designing tools to make
applications context-sensitive. EgoSpaces [4] introduces the concept of a view,
which is a subset of the context of a host. The Active Badge framework [5] allows
queries to the host’s current context and can generate notifications based on
context changes. FieldNotes [6] introduces the ideas of multiple types of contexts
with which it can tag data. The goal of all these tools is to give the programmer
the power to develop context-aware applications. Examples of such applications
include CyberGuide [7] and GUIDE [8] which are tour guide applications that use
location information to update screens and the Stick-e Document [9] framework
which triggers notes based on an associated context.

Context-sensitive binding is a novel perspective on exploiting context in-
formation to ease development of context-aware applications. It does this by
decoupling the object interface from its realization and providing the framework
to choose realizations for a given interface in a dynamic and adaptive manner.
The middleware we developed implements the basic features that demonstrate
the feasibility of the concept and illustrate the potential of the model. Context-
sensitive binding abstracts details of dynamic context-aware binding and as such
can be used in environments that are highly dynamic such as ad hoc wireless
networks where disconnection is a common occurrence. Our middleware relies
on a set of simplifying assumptions and initial design decisions. Relaxing these
assumptions and design decisions exposes a wide range of research issues. In this
section, we examine some of them and also highlight the applicability of this
research in other interesting areas.

One of the key design decisions we took was in regard to matching the policy
provided by a programmer to a profile advertised by a provider. Our current
system uses an exact matching policy over the set of methods and constraints.
This can be extremely restrictive. There is a need for a more flexible match-
ing algorithm that can match sufficiently similar policies and profiles. Matching

based on semantics is one solution to this problem. However, that in turn raises
issues of accurately describing semantics in a manner that is understandable by
the system. For example, “on” and “off” may have the same semantics as “play”
and “pause” in the context of a VCR.

Another important feature of this work is its ability to support composition.
By changing the design of the system slightly, we can capture method imple-
mentations for a single class from multiple providers, in effect composing the
capabilities of those providers under a single umbrella. The challenge is to en-
sure that these providers behave correctly as composed entities, i.e., they offer
the correct functionality, do not deadlock, and maintain fairness. Issues regard-
ing atomicity of such interactions in this model of programming also require
further investigation. The development of a rich set of metrics that can be used
to evaluate providers where the cause of context changes may differ is also an
open area of research.

Context-sensitive binding can be applied to a variety of settings. Service
oriented computing is a paradigm that is fast gaining popularity in wired settings
in the form of web services [10]. Migrating such a framework to ad hoc networks
requires a new perspective on the core concept. Context-sensitive bindings may
hold the key to offering service oriented computing in ad hoc networks. Certain
constructs offered by context-sensitive bindings are analogous, on a low level
to those offered by a service oriented computing framework. For example, the
process of finding an eligible provider is analogous to service discovery. Hence,
context-sensitive binding can be used as low level middleware that abstracts
details of disconnection and transient connectivity on top of which a middleware
for service oriented computing for ad hoc networks can be built.

In addition to supporting service oriented computing [11] in ad hoc setting,
context-sensitive binding can be used to foster novel patterns of interactions
in ad hoc networks. Features such as periodic caching of state and support for
pause-and-resume computing can support novel patterns of interactions which
exhibit predictable, periodic connectivity between hosts. It can also be used as a
possible means of composition of different applications by obtaining realizations
from multiple remote objects and combining them under a common interface to
yield a single object which is a conglomerate of selected capabilities from a set
of remote objects.

Our future work in this area will focus on new concepts that give more power
to the middleware. Examples of such concepts are finding providers based on se-
mantics of an interface, obtaining realizations of a single interface from multiple
providers, using the idea of network abstractions [12] to optimize the time re-
quired to find a service within a subset of the surrounding network, adaptable
context management based on a changing set of metrics, among others. We also
plan to focus on the mobility aspect of the concept and introduce mechanisms
that allow intelligent decision making and forward looking predictions regarding
which providers to use.

6 Conclusion

In this paper, we introduced the concept of context-sensitive binding. Context-
sensitive binding separates the object interface from its implementation and
transparently maintains the binding between the two based on context. The
significance of this work rests with the introduction of constructs that transpar-
ently maintain and use context information to allow programmers to write simple
code which leverages off a new form of dynamic binding designed for building
complex, adaptive applications. We illustrated the feasibility of this concept by
implementing a middleware supporting context-sensitive binding. We anticipate
improving the model to give it more power, with the aim of further simplifying
the programming task.

Acknowledgements

This research was supported by the Office of Naval Research under MURI
research contract N00014-02-1-0715. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not
necessarily represent the views of the research sponsors.

References

1. Lippman, R., Lajoie, J.: C++ Primer. Addison Wesley (1998)
2. Huang, Q., Julien, C., Roman, G.C.: Relying on safe distance to achieve parti-

tionable group membership in ad hoc networks. Technical Report WUCS-02-35,
Washington University, Department of Computer Science (2002)

3. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A middleware for physical and log-
ical mobility. In: Proceedings of the 21st International Conference on Distributed
Computing Systems. (2001) 524–533

4. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mo-
bile environments. In: Proceedings of the 10th International Symposium on the
Foundations of Software Engineering. (2002)

5. Harter, A., Hopper, A.: A distributed location system for the active office. IEEE
Networks 8 (1994) 62–70

6. Ryan, N., Pascoe, J., Morse, D.: Fieldnote: A handheld information system for the
field. In: 1st Int’l. Workshop on TeloGeoProcessing. (1999)

7. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyber-
guide: A mobile context-aware tour guide. ACM Wireless Networks 3 (1997)

8. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proc. of MobiCom, ACM Press (2000) 20–31

9. Brown, P.J.: The stick-e document: A framework for creating context-aware ap-
plications. In: Proc. of EP’96. (1996) 259–272

10. : W3c page for the web services activity. http://www.w3.org/2002/ws/ (2003)
11. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer

(2003) 38–44
12. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-

bile computing. In: Proceedings of 24th International Conference on Software
Engineering. (2002) 363–373

	Context-Sensitive Binding: Flexible Programming Using Transparent Context Maintenance
	Recommended Citation
	Context-Sensitive Binding: Flexible Programming Using Transparent Context Maintenance

	tmp.1471023011.pdf.MBv5Z

	Abstract: Abstract: Context-aware computing is a new paradigm whose
emergence has been fostered by a growing reliance on light and
mobile computing devices, which adapt their behavior to changing
environmental conditions. The dynamic nature of the environment
is a direct result of the mobility of people and devices. Because
the development of applications that entail a significant level of
dynamic adaptation is a difficult and error-prone task, new
design methods and constructs are needed. Precise and flexible
specification of the resources needed to operate in specific
contexts combined with transparent context management can simplify
the development process. In this paper we propose a particular
embodiment of this general design strategy in the form of a novel
programming construct called context-sensitive binding. The
approach allows programmers to define and use in their programs
objects whose behavior is supported by code discovered at runtime
within the computing environment surrounding the device. The
binding between the object in the program and the support object
that delivers its realization is maintained transparently and is
altered as the environment changes, thus making the binding
context sensitive. The criteria for choosing among viable support
objects are prescribed at the time the object is first
instantiated. The paper introduces the concept of context
sensitive binding, describes a Java-based implementation, and
explores the programming implications of the proposed construct.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: November 7, 2003
	Author: Authors: Sen, Rohan; Roman, Gruia-Catalin
	Title: Context-Sensitive Binding: Flexible Programming Using Transparent Context Maintenance
	ReportNumber: 2003-72
	DepartmentName: Department of Computer Science & Engineering

