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Background and Significance 

 

Metastasis accounts for greater than 90% of cancer related mortality in solid tissue cancers. 

Though cancer related mortality has decreased steadily over the past decade, much of the 

reduction in cancer incidence and mortality has been accounted to come from increased 

prevalence of preventive care (such as mammography screening) and reduced exposure to risk 

factors (such as tobacco consumption) [1]. It is widely accepted that the most effective 

improvements in therapy outcome will come from management of metastasis, or reduction in 

metastasis related mortality.  

 

Cancer metastasis is widely viewed as an evolutionary process [2], and is believed to have a 

strong genetic component. Several studies (14-18) have appeared in the past decade which 

strongly suggest that genetic adaptations play a role in enhancing the metastatic potential of 

tumor cells. Gene sets have been identified in xenografts of cancer cell line sub-populations 

selected specifically for elevated metastatic ability (14, 15). Analyses of DNA sequence data 

from human pancreatic primary cancer and metastatic tissues have indicated that differential 

potency for initiating metastasis can be partly attributed to the genetic heterogeneity among 

subpopulations of cells within primary tumors (16). 

 

Multiple studies to date have shown that targeting the effect of a mutation leads to recession of 

metastasis. For example, recurrent inactivating somatic mutations were identified in BAP1 in 

highly metastatic uveal melanomas of the eye [17]. RNA interference mediated knock down of 
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BAP1 in uveal melanoma cells lead to transformation into a de-differentiated class 2 UM 

phenotype. Also, it has been shown that targeting metastasis-related genes dramatically improves 

survival and therapy outcome [18, 25]. 

 

Another recent study [3] showed that genetically identical tumor cells can display functional 

variability especially in proliferation persistence and chemotherapy tolerance, suggesting that 

non-genetic components may also contribute significantly towards cancer evolution and 

persistence.  

 

Multiple studies have tried to identify genetic determinants of Non Small Cell Lung Cancer 

[4,5], leading to discovery of recurrently mutated genes and significantly altered pathways. 

However, these studies have been limited to analysis of primary tumors only, and hardly any 

effort has been made towards identifying the genetic determinants of metastasis in NSCLC. In 

this work, we have tried to identify genetic determinants of metastasis in NSCLC based on 

recurrence of mutations identified in NSCLC primary tumor and matched CNS metastases.  

 

Currently, there are two models to explain appearance and systemic progression of primary 

tumors towards metastasis, viz, the linear progression model and the parallel progression model 

[9]. According to linear progression model, cells of primary tumor go through multiple rounds of 

mutation and selection in order to achieve capability of seeding metastasis. As the primary tumor 

clones expand, primary tumor cells disseminate from the site of primary tumor to seed metastasis 

at distant sites.  
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In other words, the cells of primary tumor accumulate genetic mutations and eventually acquire 

full metastatic potential after which they disseminate from the site of primary tumor and travel to 

an ectopic site. These disseminated tumor cells then seed metastasis. For example, mutations in 

TP53 gene are found at a significantly higher frequency in late stage primary tumors than in 

early stage (T1). Also, increase in tumor size is well known to correlate with higher frequency of 

metastasis (TNM staging system), further supporting the linear progression model. An extension 

of linear progression model is tumor self seeding [6], a phenomenon where circulating tumor 

cells can re-colonize the site of their origin and can seed more tumor clones thereby accelerating 

tumor growth and progression towards metastasis. Also, tumor cells disseminating from the site 

of metastasis are expected to have the capability of survival and clonal expansion at distant site, 

and can be a prominent source of further metastases, leading to a metastatic cascade [11].  

 

Whereas, in the parallel progression model, tumor cells disseminate early from the site of 

primary tumor, and these early disseminated tumor cells colonize multiple distant sites and 

accumulate genetic changes independently of primary tumor, eventually acquiring capability to 

seed metastasis.  

 

Some early studies [7,8] aimed at quantifying growth rare in human cancers concluded that 

metastatic tumors are too large to be seeded by primary tumor cells that have disseminated from 

late stage primary tumors. So, under the parallel progression model, greater genetic disparity is 

expected between primary tumors and matched metastases, than under the linear model.  

Unfortunately, neither of the two models is supported by direct or incontrovertible evidence and 

multiple indirect evidences exist in support for both models.  
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In another study that compared primary tumors with matched metastases [10], growth rate of 

metastatic tumors have been found to correlate with the growth rates of the matched primary 

tumors, and not with the site of metastasis, indicating that metastases may inherit many of their 

features from the source tissue. Thus, in the light of this evidence and to look for evidence in 

favor of either growth model, we chose to analyze pairs of matched primary tumors and ensuing 

metastases, than analyzing metastases matched by their distant sites. 

 

Significant progress, however, has been made towards discerning the source of metastatic relapse 

clones in hematological tumors. Studies aimed at identifying clonal relationships between 

primary tumor and relapse clones in AML [1,2] revealed mutational selection of primary tumor 

and consequent evolution into relapse clones. These studies showed that the cells of founding 

clone, or a subclone of the founding clone survived initial therapy, accumulated additional 

mutations and went through clonal expansion to form a relapse. However, the same questions 

remain unanswered still for solid tumors.  

 

In this work, we have used whole exome DNA sequence data derived from biopsies of primary 

tumor (Non Small-Cell Lung Cancer) and matched metastases detected in the central nervous 

system (CNS) (9 pairs of matched primary NSCLC tumor and CNS metastases) to analyse clonal 

relationships between primary tumor and matched metastasis. We also measured genetic 

divergence between primary tumors and matched metastasis and weighed the results in favor of 

either linear or parallel progression model. We analyzed mutation profiles of primary tumors and 

matched metastases to determine if metastatic clone was clonally derived from the dominant 

clone of primary tumor (thus supporting linear progression model), or if metastases are clonally 
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unrelated or genetically divergent with respect to primary tumor (supporting parallel progression 

model).  

 

Any evidence in support of either of the two models would demand reconsideration of research 

strategies in prognosis and management of late stage cancer. Particularly, if the parallel 

progression model is found to be correct, then it would force researchers to reconsider current 

research approaches and clinical decision making paradigms that use primary tumors for 

providing markers for tailoring therapy.  
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Results and Discussion 

 

I. Genetic determinants of metastasis 

We used whole exome sequencing data of primary tumors and matched CNS metastases (9 

patients). We detected single nucleotide polymorphisms using standard sequence alignment 

(Novoalign) and variant calling methods (VarScan/Samtools), details of which are in Methods 

section. In the absence of matched normal tissue, we used stringent filters for variant detection 

and applied additional filters to remove likely non-somatic variants. To filter out the non-somatic 

variants, we used common polymorphism databases like dbSNP, NHLBI's Exome Sequencing 

Project and 1000 Genomes project. Additionally, we also filtered out variants which are specific 

to the exome capture technology (viz, Agilent SureSelectV4, Agilent SureSelectV3 and Illumina 

TruSeq) or sequencing platform (Illumina HiSeq).  

We identified the genetic mutations which were found to be recurrent in the primary tumor 

exomes. Recurrence in multiple primary tumor samples indicates a higher likelihood of being a 

driver mutation for either cancer or metastatic phenotype. We hypothesize that these mutations 

may be involved in a) promoting progression to, or maintenance of the cancer phenotype; or b) 

promoting the persistence of primary tumor cells as they escape in the vasculature, or their 

progression towards metastatic phenotype. Otherwise, these mutations may be just getting 

propagated as passenger mutations, which however would be less likely given that they are 

recurrent in multiple samples.  

 
Validation of recurrent genetic mutations in a set of metastatic and non-metastatic biopsies 
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We obtained a set of 51 NSCLC primary tumor biopsies to perform validation of the recurrent 

genetic mutations identified in the set of whole exome data of primary tumor biopsies. 17 out of 

51 of these validation set biopsies are from those patients which showed no evidence of clinical 

metastasis at the time of initial diagnosis and surgical resection of the primary tumor, but 

developed clinically evident relapse/metastatic lesions within 5 years of initial diagnosis, 15 

were obtained from patients which showed metastasis in other patients, which the rest 19 were 

from patients which showed no clinical evidence of metastasis for 5 years or more after the 

initial diagnosis and surgical resection of the primary tumor.  

We identified a set of 48 single nucleotide variants using a detailed selection process, which is 

highlighted in figure 1.  

We performed validation for 48 single nucleotide variants selected previously in this set of 

primary tumor biopsies. Briefly, we designed primers approx. 70 bp upstream and downstream 

of the base of interest and PCR amplified the region. Amplicons were finally sequenced by 

Illumina MiSeq platform at 150X2 configuration. Reads were aligned back to hg19 whole 

genome reference, and variants were detected using VarScan using the same parameters are for 

initial variant detection for exome sequence data. The results of the validation pipeline are in 

figure 2.  
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Fig 1. Schematic of steps involved in 
selecting recurrent variants for 
validation. Very rigorous selection 
criteria was used for picking variants 
to minimize chances of selecting a 
non-somatic variant. 
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II. Clonal Relationships among Primary And Metastatic Biopsies 

Clonal Divergence between Primary and Metastatic Biopsies 

The variant allele frequencies of mutations found in primary were plotted against allele 

frequencies of variants found in metastatic tissues. We were able to broadly classify the patients 

Figure 2. Recurrent mutations were validated in a set of 51 primary tumor biopsies. The genes bearing those 
mutations are listed in the descending order of recurrence in validation set. Several genes, such MLL3, FKbP9, 
FES, PDLIM2, are known to have functions related to metastasis, appeared to have recurrent mutations in 
validation set.  
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into two groups. The first group comprised of PT1, PT2, PT9 and PT13, which showed similar 

VAF plots, in the sense that there is a clear cluster of variants which are enriched in metastasis.  

The other group comprised of PT3, PT 6, PT10, and PT11, which showed no enrichment of any 

subclone in metastasis, and the primary tumor and metastatic variant allele frequencies correlate 

well. The scatter plots are shown in figure 3. We also performed K-means clustering on each of 

the 2-D scatter plots using k=6. We obtained distinct clusters comprising of variants enriched in 

metastasis in PT_13 data.  

 Figure 3-a.  Variant allele frequencies of primary tumor were plotted against the allele frequencies seen 
in metastasis. K-means clustering with k=6 was applied, which resulted in distinct clusters (pink and 
green) representing variants enriched in metastasis. 
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 Figure 3-b.  Variant allele frequencies of primary tumor were plotted against the allele frequencies seen 
in metastasis. Red ovals are used to highlight mutations enriched in metastasis. 
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We also calculated correlation (Pearson’s) between primary and metastatic variant allele 

frequencies and straight line fit to the allele frequencies. 

Correlation Coefficient (Pearson’s R): A high correlation coefficient (CC) indicates that the 

primary tumor and metastasis are more closely related to each other, clonally. Conversely, a low 

correlation coefficient would indicate high clonal divergence between primary and metastasis 

tumors, which might be the result of more time spent between appearance of primary and 

metastatic tumors. However, a low correlation coefficient might also result from noise (false 

positive variants). Among pairs of primary tumors and metastases, the pairs having higher CC 

would mean that they are clonally more similar (metastatic tumor hasn't evolved much from the 

primary tumor) than the pairs having lower CC.  

From the data, it appears that metastatic tumor is clonally quite similar to the primary tumor. A 

plausible explanation could be that primary tumor cells escaped into the vasculature and got 

deposited (and propagated) at the site of metastasis, particularly due to the highly similar the 

clonal composition of primary and metastatic clones in some patients. From the distribution of 

allele frequencies of metastasis, it also seems like metastatic clone has not resulted from clonal 

expansion of a primary tumor cell. 

We also performed a straight line fit to the distribution of allele frequencies in primary v/s 

metastatic biopsies. A high slope (>0.45) would indicate that variants are enriched in metastasis 

compared to primary, overall. Conversely, a low slope (<0.45) would indicate that variants are 

under-represented (or lost from metastasis) in metastasis compared to primary. The results of 

correlation analysis and straight line fit are tabulated in figure 4.  



13 
 

 

 

 

PT_1: The scatter plots shows that variants are loosely scattered.  

PT_2: There appears to be a cluster of variants which are enriched in metastasis, and another 

cluster which is under-represented in metastasis. PT_2 also has the highest correlation coefficient 

and the second highest slope (of straight line fit). From the high slope, we can saw that variants 

are enriched in metastasis compared to primary, inspite of a tight correlation between primary 

and metastasis.  

PT_3, PT_6 and PT_11:  Similar to PT2, we see a good correlation between the variant allele 

frequencies of primary and metastasis, and a high slope, indicating that allele frequencies are 

higher for metastasis, compared to primary (thus proving that, in general, variants have got 

enriched in metastasis compared to primary).  

PT_13: Here, we see a low correlation between allele frequencies of primary and metastasis. It is 

also evident from the scatter plots that there are several clusters of mutations, one particular 

cluster comprising of mutations that are enriched in metastasis, while another cluster comprising 

of mutations which are under-represented in metastasis.  So, the metastasis tumor is clonally 

distant from the primary tumor.  

Figure 4: Correlation coefficients (Pearson’s R) between allele frequencies of Expected Somatic 
variants in primary and metastatic biopsies along with the slope of the straight line fit are tabulated. 
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Clonal architecture of primary and metastatic tumors 

To disseminate the clonal architecture of primary and metastatic tumors, we performed kernel 

density analysis on the variant allele frequencies of primary and metastatic tumor biopsies. The 

kernel density plots (shown in figure 5) were generated using ‘density’ function in R; more 

details are in the methods section.  

The density plots reveal two major density peaks per biopsy, one around the allele frequency of 

10% and the other one around the allele frequency of 45%. Considering the amount of noise and 

non-somatic mutations present in the dataset, we believe that the peak near AF of 45% is mostly 

composed of non-somatic (germline mutations), though it might also have somatic mutations.  

The other peak, which is around 10% AF is expected to be mostly composed of somatic 

mutations. Considering mutations are in heterozygous state, this also gives us an estimate of the 

tumor purity (~20%).  

An alternative explanation could be that the peak at 10% allele frequency is the secondary clone, 

while the peak at 45% allele frequency is the primary (or dominant) clone. As per this estimate, 

the tumor purity would be around 90%. 
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III. Sensitivity / Specificity Analysis 

We tried to determine if we could get an estimate of the amount of noise (non-somatic 

mutations) in the dataset. For this analysis, we used whole exome data from primary tumor and 

matched normal tissues (solid tumor, gastric cancer) processed on Agilent SureSelect V4 

platform. We derived the set of True Somatic deleterious variants by subtracting the variants 

Figure 5: Kernel density plots of variant allele frequencies in respective patients biopsies were 
generated using density function in R. Blue curve indicates primary tumor variants, while the red 
curve represents metastatic variants.  
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found in normal from the variants found in tumor tissue. We also derived a set of Expected 

Somatic deleterious variants by taking the deleterious variant set of tumor sample and 

subtracting the set of mutations which also happened to be in the Common polymorphism 

databases (consisting of variants from dbSNP, EVS, Internal Controls; more details are in 

Methods section).  

Briefly,  

Expected Somatic deleterious = Tumor sample deleterious mutations – Common variants 

True Somatic deleterious = Tumor sample deleterious mutations – (Matched) Normal sample 

mutations 

We overlapped the sets of variants obtained as above to determine true positive variants, false 

positive and false negative variants.  

True Positive: Deleterious variants which are present in both Expected Somatic Deleterious set 

and True Somatic Deleterious Set 

False Negatives: False Negatives are variants which were true somatic (present in cancer, absent 

in normal), but absent from Expected Somatic list. To determine why these variants weren't 

present in "Expected Somatic" group, we overlapped the False negative variants with the 

common polymorphisms set and found that all False Negative variants overlap 100% with 

common polymorphisms set. However, we did not determine whether these False Negative 

variants were undetected in normal tissue due to lack of coverage, or they were actually absent 

from normal tissue (hence truly somatic). If they were actually absent from normal, and hence 

are true somatic variants, then it would be interesting to determine why these variants appear in 

large frequencies in polymorphism databases.  
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False Positives: These variants are expected to be germline polymorphisms, meaning that they 

are present in both tumor as well as normal. So, they were excluded from True Somatic, but still 

were present in likely somatic since these variants are still not present in any polymorphism 

databases. 

The venn diagrams below (figure 6) describe the overlap of mutations between true somatic and 

expected somatic.  

 

 

Moreover, we calculated the recurrence among true positives and false positive variants. While 

picking the variants for validation (from 9 pairs of primary-metastatic pairs), we assumed that a 

false positive variant is unlikely to be recurrent in multiple patients, unless it is a result of 

Figure 6: Set overlap of Expected somatic deleterious variants with True Somatic variants is 
depicted using Venn Diagrams.    
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systematic or platform specific error.  So, we searched for recurrent variants among the set of 

True Positive variants (variants which are present in True Somatic, and also present in Expected 

Somatic), and False Positive variants (variants which were present in Expected Somatic, but 

absent in True Somatic). We found a set of 31 recurrent true positive variants (present in True  

positive set of  2 or more samples (sample size = 4 tumor normal pairs)) and 53 False Positive 

variants (present in False Positive Set of 2 or more samples in a sample size of 4 tumor normal 

pairs). Evidently, we got almost twice the number of False Positives recurrent variants as True 

Positives recurrent variants, further highlighting that the variants we picked for validation might 

have a high content of noise. Also, among the variants we picked for validation, only 1/3 are 

expected to be True somatic recurrent variants.  

 

Pitfalls:  

1. Variants which are recurrent in multiple patients might have a wide range of allele frequencies 

(0.05<AF<0.5). Eg, assuming all acquired mutations are heterozygous, an allele frequency of 0.5 

would indicate that the variant is present in almost all the cells of the biopsy, whereas an allele 

frequency of 0.05 would indicate that the variant is present in utmost 10% of the cells of the 

biopsy. Primary tumors display a significant degree of mutational heterogeneity among 

themselves [21], and single tumor-biopsy samples have been shown to under-represent the 

mutational and genomic heterogeneity within primary tumors [22]. So, even though a variant 

shows high variability in its allele frequency between samples, it may be representing the 

dominant clone of the primary tumor. 
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2. Also, since single biopsies of solid tumors have been known to under-represent the actual 

amount of genomic heterogeneity [22], we expect to have a lower recall rate (low sensitivity) for 

recurrent mutations. 

 

3. Also, these biopsies have been derived from patients who have undergone different non-

specific anti-cancer therapeutic regimes for different time-periods. Though the effect of different 

anti-cancer therapies on overall mutation profile or overall genomic landscape is unknown, we 

expect that the effect of such differences to be non-systemic and small and insignificant. 
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Methods 

I. Sequence Alignment and Variant Detection 

1. Alignments were done using hg19 reference genome and Novoalign (version -2.08.02).  

Novoalign Parameters Used: 
 -o SAM -r none -l 30 -e 100 -i 230 140 -a AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA -H -c 12 
Parameters guide: 
-o Format 
-r Strategy for reporting repeats (None, Random, All, Exhaustive) 
-l minimum length for good quality sequence  
-e Number of alignments for a single read (def = 999) 
-i Approximate fragment length (for paired end reads) 
-a trimming of adapter sequences 
-H hardclipping of the low quality seqments 
-c number of cores to use  
 
2. Next, we used samtools to sort and merge all the bam files for a particular sample. Samtools version 
0.1.14 was used.  
3. Then, we used Picard-MarkDuplicates.jar to remove duplicate reads (Picard version 1.67). 
4. Then, we used intersectBed to create a bam file having reads which overlap with the exon capture 
coordinates (IntersectBed version 2.16.2). 
5. Then, we used samtools –flagstat method to calculate read alignment statistics.  
 

Variant Detection 

Single nucleotide variant detection was performed using VarScan (mpileup2snp) using the following 
params.  
(--min-reads2  5  --min-var-freq  0.05  --p-value  0.05 ) 
Filters:   
#Minimum base quality at position to count a read =15 
#P-value threshold =  0.05 
#Minimum supporting reads at a position to call variants = 5 
#Minimum variant allele freq = 0.05 
 
Variants were annotated for synonymous and non-synonymous status and mutation effect using snpEff 
and further annotations regarding status in 1000G, dbSNP and other databases using dbNSFP (27) and 
SnpSIFT (28, 29).  
 

II. Validation pipeline 
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1. Alignments were done using hg19 reference genome and Novoalign (V2.08.03).  

Novoalign Parameters Used: 
-o SAM -r None -l 30 -e 100 -i PE 95-300  -a 
TGTAGAACCATGTCGTCAGTGTGTGCTCATGTATCTCGTATGCCGTCTTCG  
AGACCAAGTCTCTGCTACCGTGTAGATCTCGGTGGTCGCCGTATCATT -H -c 8 
Parameters guide: 
-o Format 
-r Strategy for reporting repeats (None, Random, All, Exhaustive) 
-l minimum length for good quality sequence  
-e Number of alignments for a single read (def = 999) 
-i Approximate fragment length (for paired end reads) 
-a trimming of adapter sequences 
-H hardclipping of the low quality seqments 
-c number of cores to use  
 
I had also created a custom reference, which contained the amplicon sequences (+100 bases upstream and 
downstream), to align the reads. While using the custom reference, 0.5-2% more reads aligned to the 
reference. The alignment success rate with hg19 reference index was 89-94%. However, since the 
validation assay is based on whole genome (the primers can anneal anywhere their complimentary 
sequence exists), I chose to use the whole genome reference (hg19) rather than the custom reference.   

2. Next, I used samtools to sort and index all the bam. Samtools version 0.1.18 was used.  
3. Next, I used samtools’ mpileup feature to create pileup files for each bam alignment. 
4. Next, I used VarScan’s mpileup2snp to get variant calls from respective mpileup files. VarScan 

parameters used : 
VarScan mpileup2snp --min-reads2  5  --min-var-freq  0.05  --p-value  0.05 
Other parameters were applied by default [in square parenthesis] 

 --min-coverage =8  Minimum read depth at a position to make a call [8] 
 --min-avg-qual =15  Minimum base quality at a position to count a read [15] 
 --strand-filter =1  Ignore variants with >90% support on one strand [1] 
 --output-vcf =1  If set to 1, outputs in VCF format 
 --variants =0  Report only variant (SNP/indel) positions (mpileup2cns only)[0] 
 
 

III. Variant Allele Frequency Plots (2D scatter plots) 

1. Sequence alignment was done using Novoalign and VarScan was used for variant detection. 
2. snpEFF and SnpSift were used to annotate the output of VarScan.   
3. I developed a set of common polymorphisms by picking variants from polymorphism databases 

like dbSNP, EVS, and also from internal database of variants which were found to be common to 
the platform used for exon capture (Agilent V3/V4 / Illumina TruSeq etc.). The selection criteria 
for including variants in the set of common polymorphisms is as follows:  

{{dbSNP  } OR {EVS}  OR  {Internal Control}} 



23 
 

 

dbSNP: Global Minor Alllele Frequency >= 0.01 OR G5A tag is present. dbSNP derives its Global 
Minor Allele Frequency stats from 1000Genomes Project phase 1 (genotype data from 629 individuals, 
released in the 11-23-2010 dataset). A variant is tagged with G5A tag when the minor allele frequency 
>5% in each and all populations. 
OR 

 

EVS: A variant is considered as a common variant when:  
Total Samples Covered >=100 (meaning that the variant should be present in atleast 100 
samples).  
AND 
Average sample read depth >= 10 (meaning that the variant location is covered by an average of 
10 bases in all samples combined). 
AND  
Minor allele Frequency >= 3% (If a variant is present in more than 5 individuals out of 100 in 
heterozygous, then the allele frequency would be 0.03 (or 3%). So I used a minor allele frequency 
threshold of 3%). 

OR 
Internal Controls: 

I took pooled the variant calls from 100 samples processed on Illumina TruSeq platform and 
Agilent V3 platform, respectively (kindly provided by GTAC/Paul Cliften). If a variant occurs 5 
times or more in the pool of variant calls belonging to a particular platform, then I consider that 
variant as a platform specific common variant.  
 

Finally, I pooled all the common polymorphisms from dbSNP, EVS and internal controls into one 
‘common polymorphism’ dataset. I used this dataset to filter out any potentially common (non-somatic) 
mutation found in our samples.  
So, after filtering out common polymorphisms, I made a list of (expected somatic) rare polymorphisms 
for each patient (pair of primary and metastasis). The allele frequencies of variants in primary tumor were 
plotted against the respective variants’ allele frequencies in metastatic tumor in a scatter plot using 
SpotFire.  Correlation coefficient and fitting of linear model (straight line fit) were done in R.  
 

IV. Clonality Analysis 
Variants were obtained as before, using Novoalign and VarScan. However, for this analysis, all 
Expected rare mutations were considered (synonymous and non-synonymous). Specifically, the 
Expected rare mutation set was derived in the following way. 
Expected Rare  = Tumor (Primary or Metastatic) variants – Common Variants 
Kernel density Analysis was done using density function in R. 
 

V. Sensitivity Analysis 
We picked whole exome data from solid tissue tumor samples (gastric cancer). The samples 
were processed on Agilent V4 platform by Genome Technology Access Center, who also 
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processed the 9 pairs of primary and matched metastatic tumor biopsies. Sequence alignment and 
variant detection were done using exactly the same tools and parameters as for the primary-
metastatic pairs.  
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