
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

5-14-2024

Improved Models of Elastic Scheduling Improved Models of Elastic Scheduling

Marion Baumli Sudvarg
Washington University – McKelvey School of Engineering

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sudvarg, Marion Baumli, "Improved Models of Elastic Scheduling" (2024). McKelvey School of Engineering
Theses & Dissertations. 1047.
https://openscholarship.wustl.edu/eng_etds/1047

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/1047?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1047&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Computer Science & Engineering

Dissertation Examination Committee:
Jeremy Buhler, Chair

Sanjoy Baruah
James Buckley

Roger Chamberlain
Christopher Gill

Improved Models of Elastic Scheduling
by

Marion Baumli Sudvarg

A dissertation presented to
the McKelvey School of Engineering

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2024
St. Louis, Missouri

© 2024, Marion Baumli Sudvarg

Table of Contents

List of Figures . vii

List of Algorithms . xii

List of Tables . xiii

Acknowledgments . xv

Abstract . xviii

Chapter 1: Introduction . 1
1.1 Overview . 1
1.2 Background and Context . 2

1.2.1 Real-Time Systems Scheduling . 2
1.2.2 Elastic Scheduling . 5

1.3 Contributions . 5
1.3.1 Extensions to New Scheduling Models 6
1.3.2 Elasticity to Optimize System Outcomes 8
1.3.3 Improved Execution Time Complexity 10

1.4 Organization . 12

Chapter 2: An Efficient Algorithm for Uniprocessor Implicit-Deadline Tasks 14
2.1 Introduction . 14
2.2 Background and System Model . 15

2.2.1 Uniprocessor Scheduling of Implicit-Deadline Tasks 16
2.2.2 Elastic Scheduling . 19
2.2.3 Overview of the Prior Algorithm . 21

2.3 An Improved Algorithm . 24
2.4 Evaluation . 26

2.4.1 Implementation . 27
2.4.2 Generating Task Sets . 28
2.4.3 Execution Time of Compression for Schedulability 29
2.4.4 Execution Time of Task Admission 34

2.5 Conclusions . 35

ii

Chapter 3: Efficient Algorithms for Multiprocessors 37
3.1 Introduction . 37
3.2 The Multiprocessor Elastic Scheduling System Model 39

3.2.1 Fluid Scheduling . 40
3.2.2 Partitioned EDF . 40

3.3 Fluid Scheduling . 42
3.3.1 Extension of the Efficient Algorithm 42
3.3.2 Applicability of Uniprocessor Results 43

3.4 Partitioned EDF . 43
3.4.1 Heuristic Selection and Order . 44
3.4.2 Binary Search . 44
3.4.3 Application of Algorithm 2 . 48

3.5 Evaluation . 48
3.5.1 Implementation . 48
3.5.2 Generating Task Sets . 49
3.5.3 Determining a Heuristic Order . 50
3.5.4 Comparison of Improvements . 51

3.6 Conclusion . 66

Chapter 4: Constrained-Deadline Tasks . 67
4.1 Introduction . 67
4.2 Background and System Model . 69

4.2.1 Elastic Scheduling for Constrained-Deadline Tasks 69
4.2.2 Improved Elastic Scheduling for Constrained-Deadline EDF 71

4.3 Extension to Fixed-Priority Scheduling . 73
4.3.1 Running Time . 74

4.4 An Efficient Iterative Approach . 74
4.4.1 Response-Time Analysis . 74
4.4.2 The Algorithm . 75
4.4.3 Running Time . 76

4.5 A Binary Search Implementation . 76
4.5.1 Running Time . 78

4.6 An MIQP Representation . 79
4.6.1 Formulating the MIQP . 79
4.6.2 The Resulting Algorithm . 82
4.6.3 Problem Size and Running Time . 82

4.7 Simplifying the Problem: An MIQP Per Task 83
4.7.1 Formulating the MIQP . 83
4.7.2 The Resulting Algorithm . 84
4.7.3 Problem Size . 85

4.8 Evaluation . 86
4.8.1 Generating Task Sets . 86
4.8.2 Implementation . 88

iii

4.8.3 Offline Execution Efficiency . 88
4.8.4 Online Execution Efficiency . 95
4.8.5 Effectiveness of the Approximate Algorithms 98

4.9 Conclusion . 101

Chapter 5: Harmonic Task Systems . 102
5.1 Introduction . 102

5.1.1 Complexity Results . 103
5.1.2 A Restriction for Real Systems . 103
5.1.3 Real-World Applications . 104

5.2 Background and System Model . 105
5.2.1 Elastic Scheduling . 105
5.2.2 Harmonic Periods . 106
5.2.3 Other Adaptive Frameworks . 108

5.3 Problem Statements . 109
5.3.1 The Harmonic Period Problem . 109
5.3.2 The Harmonic Elastic Problem . 110
5.3.3 The Ordered Harmonic Elastic Problem 110

5.4 Complexity Results . 110
5.4.1 Complexity of the Harmonic Period Problem 111
5.4.2 An Algorithm for the Harmonic Period Problem 112
5.4.3 Complexity of the Harmonic Elastic Problem 119

5.5 The Ordered Harmonic Elastic Problem . 122
5.5.1 Preliminaries . 122
5.5.2 Enumeration-Based Solution Approach 122
5.5.3 Bounding Enumeration . 124
5.5.4 Polynomial Online Adjustment . 125

5.6 Implementation Considerations . 130
5.6.1 Characterizing Elasticity . 130
5.6.2 Online Adjustment . 131

5.7 Evaluation . 133
5.7.1 FIMS . 133
5.7.2 ORB-SLAM3 . 137
5.7.3 Evaluation with Larger Synthetic Task Sets 142

5.8 Conclusions . 145
5.9 Acknowledgements . 146

Chapter 6: Subtask-Level Workload Compression for Parallel DAG Tasks 147
6.1 Introduction . 147

6.1.1 Limitations of the Prior Work . 148
6.1.2 Contributions of This Chapter . 148
6.1.3 Organization . 149

6.2 Background . 150

iv

6.2.1 Uniprocessor, Implicit-Deadline Elastic Scheduling 150
6.2.2 Elastic Frameworks for Federated Scheduling 151

6.3 Motivation and Limitations of Prior Work 154
6.3.1 Motivating a New Model of Subtask-Level Elasticity 154
6.3.2 The Subtask-Level Elastic Workload Model 156
6.3.3 Joint Compression of Low-Utilization Tasks 157

6.4 An MIQP for Subtask-Level Elastic Scheduling 158
6.4.1 Constructing the MIQP . 158
6.4.2 Task Span: A Constraint for Each Path 162
6.4.3 Task Span: A Polynomial Number of Constraints 163

6.5 Joint Compression with Dynamic Programming 166
6.5.1 Motivation . 166
6.5.2 Method . 167
6.5.3 Joint Scheduling of Low-Utilization Tasks 170

6.6 Evaluation . 173
6.6.1 Analysis of Span Constraints . 174
6.6.2 MIQP Solver Performance . 176
6.6.3 DP-Based Solution Performance . 181
6.6.4 Comparison to Workload Compression in [119] 188

6.7 Conclusion . 191

Chapter 7: Parameterized Workload Adaptation for Fork-Join Tasks with
Dynamic Workloads and Deadlines . 192
7.1 Introduction . 192

7.1.1 Contributions of This Chapter . 193
7.1.2 Organization . 195

7.2 Background and Related Work . 196
7.3 System Model and Problem Statement . 198
7.4 Solution Overview . 201

7.4.1 Offline Steps . 201
7.4.2 Online Steps . 204

7.5 Target Application: GRB Localization . 205
7.6 Parameters and Loss Function . 209

7.6.1 Stage 1: Event Reconstruction . 209
7.6.2 Stage 2: Initial Source Approximation 210
7.6.3 Stage 3: Iterative Source Refinement 212

7.7 Response Times . 213
7.7.1 Stage 1: Reconstruction . 214
7.7.2 Stage 2: Approximation . 215
7.7.3 Stage 3: Refinement . 216

7.8 Implementation . 217
7.8.1 Offline Characterization of a Pareto-Optimal Surface 217
7.8.2 Online Adaptation . 218

v

7.8.3 Reclaiming Slack . 218
7.9 Evaluation . 219

7.9.1 Overheads . 220
7.9.2 Evaluation on Synthetic GRBs . 221
7.9.3 Evaluation on Short GRBs Observed by Fermi GBM 222

7.10 Conclusions . 226

Chapter 8: Related Work, Conclusions, and Future Directions 228
8.1 Scheduling Models . 228

8.1.1 Implicit-Deadline Tasks on a Uniprocessor 230
8.1.2 Sequential Tasks on Multiple Processors 233
8.1.3 Elastic Scheduling as a Quadratic Optimization Problem 235
8.1.4 Harmonic Periods . 238
8.1.5 Federated Scheduling of Parallel Tasks 239
8.1.6 Mixed Criticality Systems . 243
8.1.7 Compositional Scheduling . 245
8.1.8 Other Scheduling Models to Consider 246

8.2 Applications of Elastic Scheduling . 248
8.2.1 In the Prior Work . 249
8.2.2 Applications Considered in This Dissertation 251
8.2.3 Future Directions for Control Applications 253
8.2.4 Future Directions for Localization of Astrophysical Transients 254

8.3 Open Questions and Broader Vision . 255

References . 257

Appendix A: Pathological Task Set for Heuristic Partitioned EDF Com-
pression . 272

vi

List of Figures

Figure 2.1: An illustration of a task under the Liu and Layland [97] model. This
is a constrained-deadline — but not an implicit-deadline — task, since
Di < Ti. 16

Figure 2.2: An illustration of preemptive uniprocessor scheduling. We consider a set
Γ of two tasks. Task τ1 has a WCET C1 = 7 and a period T1 = 15. Task
τ2 has a WCET C2 = 4 and a period T2 = 10. These are implicit-deadline
tasks; their relative deadlines are equal to their periods. 18

Figure 2.3: The physical spring analogy of Buttazzo’s elastic model, reproduced from
[37, Figure 9.27] with modifications to the labels. (a) shows the uncom-
pressed task set, while (b) illustrates the application of elastic compres-
sion to achieve schedulability. 20

Figure 2.4: Execution times by utilization metrics for 50 tasks. 31

Figure 2.5: Performance scaling with number of tasks. 33

Figure 2.6: Execution time for admitting the nth task. 35

Figure 3.1: Median execution times for Iter and Iter-Order in CPU Cycles. . . . 52

Figure 3.2: Maximum execution times for Iter and Iter-Order in CPU Cycles. . 53

Figure 3.3: Median execution times for BS and BS-Order in CPU Cycles. 54

Figure 3.4: Maximum execution times for BS and BS-Order in CPU Cycles. . . . 55

Figure 3.5: Difference between λbs and λit, normalized by ϵ. 59

Figure 3.6: Speedups achieved by BS-Order over Iter-Order. 61

Figure 3.7: Speed and Schedulability Tradeoffs Between BS-Order and Util. . . . 65

vii

Figure 4.1: Distributions of total minimum utilizations from 1100 randomly-generated
task sets each of size 10, 30, 100 with Umin

i values assigned according to
method 6(a). 88

Figure 4.2: Mean algorithm execution times on Intel Xeon Gold 6130. 90

Figure 4.3: Median algorithm execution times on Intel Xeon Gold 6130. 91

Figure 4.4: Comparison of execution time distributions forElastic-FP-MIQP-Joint
and Elastic-FP-MIQP for 2200 sets of 10 tasks. 92

Figure 4.5: Execution time distributions for Elastic-FP-MIQP for sets of 10–50
tasks with minimum utilizations assigned per Scale. 94

Figure 4.6: Execution time distributions for Elastic-FP-MIQP for sets of 10–50
tasks with minimum utilizations assigned per DRS. 94

Figure 4.7: Maximum observed execution times on ARM Cortex-A53 (Raspbery Pi
3B+). 97

Figure 4.8: Relative distance from optimal of λ returned by approximate algorithms. 99

Figure 5.1: Forward search for harmonic periods via projected harmonic zones. Tasks
τ1, τ2, and τ3 must take periods in the intervals I1=[20, 25], I2=[43, 74],
and I3=[45, 100]. Projected harmonic zones from I1 to I2 are re-projected.
Since these projections overlap I3, harmonic periods can be assigned. . . 107

Figure 5.2: Tasks τ1–τ3 have intervals I1=[6, 10], I2=[11, 22], I3=[19, 40]. Projected
harmonic zones χ2

I1→I2
: [12, 20] and χ3

I1→I2
: [18, 22] both overlap I3.

The overlapping portions are re-projected using only the multiplier a =
1, forming χ1

I2→I3
: [19, 20] and χ1

I2→I3
: [19, 22]. The non-overlapping

portions [12, 19] and [18, 19] are merged and re-projected into I3 starting
from multiplier a = 2, forming χ2

I2→I3
: [24, 38] and χ3

I2→I3
: [36, 40]. . . . 113

Figure 5.3: Task τ1 has period interval I1=[10, 30] and τ2 has I2=[15, 25]. As I1
encloses I2, we remove τ1 from the search space. Its period T1 can take
the value assigned to T2. Task τ3 has I3=[20, 40], which overlaps but is
not enclosed by I2. 114

Figure 5.4: Enumeration of projected harmonic intervals. 125

Figure 5.5: The set of possible elastic objective intersections. 128

Figure 5.6: The FIMS Computational Pipeline . 134

viii

Figure 5.7: FIMS task execution time distributions. 135

Figure 5.8: FIMS errors resulting from reduced task rates. 136

Figure 5.9: The ORB-SLAM3 Computational Pipeline 137

Figure 5.10: ORB-SLAM3 task execution time distributions. 139

Figure 5.11: ORB-SLAM3 errors resulting from reduced task rates. 140

Figure 5.12: Comparison of RTE for different adaptive variants of ORB-SLAM3. . . . 141

Figure 5.13: Harmonic assignments found. 143

Figure 5.14: Harmonic assignments found. 143

Figure 5.15: Comparison of the maximum number of PHIs with the maximum time to
iterate over them to find the optimal PHI for a given utilization bound
and to construct the LUT. 144

Figure 5.16: Maximum LUT sizes and times to perform binary search for each number
of tasks. 145

Figure 6.1: The DAG representation of the parallel task τ1 in Example 3. 152

Figure 6.2: Critical path may change depending on which subtask workloads are com-
pressed. 155

Figure 6.3: A running example using a system of two tasks with elastic subtasks. . . 159

Figure 6.4: Left: a DAG with two source vertices and three sink vertices. Right:
a unique source and unique sink vertex are added; if these both have
workloads of 0, the corresponding task’s execution remains unchanged. . 162

Figure 6.5: A DAG with 3(n−2)/3 maximal paths, each of which might be the critical
path. 163

Figure 6.6: Removing shortcut edges. 175

Figure 6.7: Maximal Path Counts . 175

Figure 6.8: Edge Counts . 176

Figure 6.9: MIQP times for individual tasks. 178

ix

Figure 6.10: MIQP times when solved jointly for multiple tasks. Series in each plot,
from bottom to top, are for sets of 2, 4, 6, 8, and 10 tasks. 180

Figure 6.11: Total execution times to solve a joint MIQP with a span constraint per
edge versus using the DP-based approach. 183

Figure 6.12: Contributors to execution time of the DP-based approach. 185

Figure 6.13: Execution Time Statistics for DP-Based Approach. 187

Figure 6.14: Ratio
mmin

i

mmin ∗
i

of minimum allowed cores. 189

Figure 6.15: Ratio Ci

C∗
i
of compressed workloads. 190

Figure 7.1: A rendering of the APT instrument [30]. 195

Figure 7.2: A highly-parallel fork-join task with a sequential subtask followed by a
parallel subtask. 199

Figure 7.3: A 2-hit event in APT, with a single Compton scatter then photoabsorption. 206

Figure 7.4: APT’s highly-parallel fork-join GRB localization task. 208

Figure 7.5: Impact of nr on localization error. Note that axes are logarithmic. . . . 211

Figure 7.6: Comparison of approximation techniques. 212

Figure 7.7: Impact of approximation on iterative refinement. 213

Figure 7.8: Reconstruction stage worst-case response times. 214

Figure 7.9: Approximation stage worst-case response times for ApproxCircles . . . 215

Figure 7.10: Approximation stage worst-case response times for FibSpiral 216

Figure 7.11: Refinement stage worst-case response times. 217

Figure 7.12: Localization pipeline with compression and slack reclamation. 219

Figure 7.13: Measured overhead times. 220

Figure 7.14: Pairwise comparison of approach versions for synthetic GRBs. 222

Figure 7.15: Pairwise comparison of approach versions for cataloged GRBs. 224

x

Figure 7.16: 68% containment of error in source direction using Reclaim. Horizontal
lines indicate 68% containment for uncompressed execution. 225

xi

List of Algorithms

1 Elastic Compression(Γ, UD) (adopted from [37, Figure 9.29]) 22

2 Elastic Implicit Uniprocessor(Γ, UD) . 25

3 Elastic Partitioned EDF(Γ,m) . 45

4 Elastic-FP(Γ) . 74

5 Elastic-FP-Efficient(Γ) . 76

6 Elastic-FP-BS(Γ) . 77

7 Elastic-FP-MIQP-Joint(Γ) . 82

8 Elastic-FP-MIQP(Γ) . 85

9 Find-Harmonic-Periods(Γ) . 113

10 Project(S, Sources, i) . 115

11 Generate-Lookup-Table(Γ,P) . 127

12 Compress-QP(Γ,m) . 168

xii

List of Tables

Table 2.1: Elastic Tasks Compressed to Negative Utilizations 23

Table 2.2: Greatest mean, median, and maximum compression times (cycles) ob-
served for up to 50 tasks. Values in parentheses indicate speedup com-
pared to Buttazzo’s algorithm. 34

Table 2.3: Greatest mean, median, and maximum task admission times (cycles)
observed for up to 50 tasks. Values in parentheses indicate speedup com-
pared to Buttazzo’s algorithm. 35

Table 3.1: Number of task sets determined feasible by each heuristic. 50

Table 4.1: Number of variables and constraints for the MIQP. 82

Table 4.2: A comparison of compressing with an MIQP per task versus a single
MIQP for the entire set of tasks. 86

Table 4.3: Algorithm performance comparison on Xeon-based server. 89

Table 4.4: Comparison of Elastic-FP-MIQP-Joint and Elastic-FP-MIQP for
2200 sets of 10 tasks. 93

Table 4.5: Algorithm performance comparison on a Raspberry Pi 3B+. 96

Table 4.6: Relative overcompression of Scale tasks by approximate algorithms. . . 100

Table 4.7: Relative overcompression of DRS tasks by approximate algorithms. . . . 100

Table 5.1: Elastic Tasks with Harmonic Period Constraints 132

Table 5.2: FIMS Task Parameters . 136

xiii

Table 5.3: FIMS elastic task period assignments and latencies when running concur-
rently with interference task. 137

Table 5.4: ORB-SLAM3 Task Parameters . 140

Table 7.1: Compressible parameters for APT’s GRB localization task. 209

Table 7.2: Hardware platforms evaluated. ∗While the Raspberry Pi models tested
support higher CPU clock speeds, we use the lower frequencies recom-
mended in [26] and our prior work in [148, 152] to prevent throttling and
instability. 214

Table 7.3: Simulated short GRBs with parameters matching corresponding catalog
entries in [113]. ∆t denotes the duration in seconds. Epeak is the peak of
the energy spectrum in units of keV. Fluence is in MeV/cm2. 223

Table 7.4: Worst-case response times (ms) for uncompressed localization. 223

Table 8.1: Overview of elastic scheduling models. indicates an optimal algorithm
(to within a tunable parameter ϵ), whereas # indicates a heuristic with
opportunity for improvement. Column Har. indicates harmonic peri-
ods. Column Cmp. indicates compositional scheduling. Column Dis.
indicates discretely-elastic tasks. Column MC indicates a mixed criti-
cality system. Column ∥ indicates the parallel task model under con-
sideration — either general DAG tasks or highly-parallel fork-join (FJ)
execution. Column v. indicates whether proportional compression (P)
or the quadratic program (QP) of Chantem et al. [44, 45] is used, or if a
more general (G) notion of loss is considered. 229

Table A.1: Pathological task set parameters . 273

xiv

Acknowledgments

The work in this dissertation would not have been possible without the many mentors,

colleagues, friends, and family who supported me along the way. Though it would be almost

impossible to acknowledge everybody who has contributed, in one way or another, to my

success, I nonetheless wish to extend my thanks to many people to whom I must attribute

some piece of this work.

First, to Professor Chris Gill, who has been the best advisor I could ask for. You have

taught me how to think and write like a researcher, and you have given me so much of your

time, making yourself constantly available for advice and guidance these last five years. Our

meetings fly by, and always end with new ideas to ponder and research directions to pursue.

Thanks for remaining ever enthusiastic. Moreover, I am grateful for your flexibility and

willingness to let me explore other projects and collaborate with other mentors.

Among those mentors is Professor Jeremy Buhler, who took me in for a second research

rotation during my first semester, and let me stubbornly stick around to keep working on

real-time GRB localization for the APT and ADAPT collaboration. This has turned into

an exciting project, and that willingness was a defining factor in where I am today, and has

inspired the next steps of my career. It seems like Jeremy can solve anything, and his sharp

ability to communicate results makes him a valuable resource when stuck on thinking about

a problem or writing about the solution. Thank you for chairing my dissertation committee

and for giving me so much of your time.

Thanks also to Professor Roger Chamberlain, who has gotten me more involved in the digital

hardware design for ADAPT. I started with no experience in this area, and through his help

(and help from his PhD student Chenfeng Zhao, to whom I also extend my gratitude) I have

had the opportunity to learn about high-level synthesis of digital accelerator logic. I also

want to thank Roger for funding my work, and for paying (from his grants) for my travels to

several conferences. Roger’s door is always open, and he never fails to give encouragement

and advice when needed.

xv

To Professor Jim Buckley, I should start by thanking you for taking me on as a part-time

summer research assistant when I was an undergraduate student. I had some lingering regrets

about not spending more time in your lab in those days, and so I am overjoyed that you have

let me be involved in the development of ADAPT. I am looking forward to the next year, as

we continue that development, and branch out to broader problems of coordinated real-time

localization and follow-up observations in time-domain and multi-messenger astrophysics. I

am fascinated and inspired by your work, and I hope to someday gain a fraction of your

knowledge about the mysteries of our universe. Thank you also for joining my dissertation

committee as the outside member.

And to my final committee member, Professor Sanjoy Baruah, I am always in awe of your

vast knowledge and keen insights into scheduling theory. You always manage to bring clarity

to complicated problems, distilling them into straightforward models and solutions. For

somebody with as many projects and collaborations as you have, I always appreciate that

you are willing to give me so much of your time. I also aspire to learn from your humility,

tact, and grace in communicating with other people.

I also want to thank Professor Ning Zhang, who is an incredible systems researcher, and

always asks the difficult questions to make sure we motivate and position our work correctly.

I have learned a lot from you, and I am grateful that you have been willing to collaborate

with me.

I extend my thanks to Rick Gray, an earlier mentor of mine. Rick took me under his wing

when I started as a network administrator at Seiler Instrument, and later trusted me enough

to promote me to information systems manager. He taught me a great deal about solving

systems problems, and a great deal more about professionalism in the workplace. I think

that the sliver of his work ethic that made its way to me has helped me stay focused along

the way.

To my fellow students, Ye Htet, Ao Li, and Daisy Wang: thank you for being great collab-

orators. You have all helped immensely with my work, and without your implementation

and experimental efforts, this dissertation would not be where it is today. Ye, you have

always had clever ideas for analyzing and improving the GRB localization pipeline, and I

look forward to seeing where machine learning can take us. Ao, you are one of the most

hardworking and dedicated people I know, and you push me to new heights. Your insights

into building and framing new systems never fail to impress me. And Daisy, your work has

xvi

progressed so much in such a short time. I am in awe of what you have accomplished with

FIMS, and I look forward to working together more in the future.

I would also like to thank my parents, who taught me the value of education from an early

age. When I was a child, they took a lot of time from their busy lives to read to me, to give

me math problems to do, and to encourage me to write. Writing and problem solving are

now joys of mine, rather than chores.

Finally, to my wife Joyce, I extend all of my love and thanks. Thank you for being there

for me since I started the PhD, through all of the disappointments, stressful times, and late

nights. But also for all of the achievements and opportunities to journey to conferences; you

have been my best friend and traveling companion, and I look forward to a lifetime of many

more trips together.

My work in this dissertation has been supported directly by NSF grants CSR-1814739, CNS-

1763503, CNS-2141256, CPS-2229290; NASA grant 80NSSC21K1741; and a gift from BECS

Technology, Inc. Other support for work in this dissertation has been provided by NSF

grants CNS-2038995, CNS-2238635; a Washington University CSE/EECE seed grant; and

Swedish Research Council grant 2018-04446.

Marion Baumli Sudvarg

Washington University in St. Louis

May 2024

xvii

ABSTRACT OF THE DISSERTATION

Improved Models of Elastic Scheduling

by

Marion Baumli Sudvarg

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2024

Professor Jeremy Buhler, Chair

In real-time computing systems, timely execution is a requirement of correct execution. Such

systems are widely found in robotics and autonomous vehicle applications, mobile spectrom-

etry of atmospheric aerosols, real-time hybrid simulation for natural hazards engineering,

and in prompt localization of transients such as gamma-ray bursts for time-domain and

multi-messenger astrophysics. Elastic scheduling provides a framework to adjust computa-

tional rates and workloads in systems for which timeliness cannot otherwise be guaranteed.

While originally proposed for periodic tasks executing on a single processor, elastic schedul-

ing has since been extended to sequential and parallel execution on multiple processors and

to earliest deadline first scheduling of constrained-deadline tasks.

This dissertation expands the state of the art in elastic scheduling in three key directions.

First, it proposes and analyzes new algorithms for elastic scheduling with provably better

execution time complexity compared to the prior work, enabling better guarantees of timeli-

ness associated with adapting to new execution states. Second, it presents new extensions of

the elastic model to other common scheduling paradigms, including fixed-priority schedul-

ing of constrained-deadline tasks and task systems for which execution semantics demand

that periods take harmonic values. Third, it considers the impact of adaptation on system

performance as a whole, and demonstrates how changes in task periods and workloads can

be realized to optimize expected system outcomes within the constraints of schedulability.

xviii

In doing so, this dissertation paves the way toward a richer set of adaptive scheduling and

execution models in simulation, localization, and control applications.

xix

Chapter 1

Introduction

1.1 Overview

An increasingly connected world has driven rising demand for applications that respond

to events (e.g., user requests, a changing environment, or transient astrophysical phenom-

ena) in real time. Such applications are deployed on diverse system platforms, from those

highly constrained in size, weight, and power (SWaP) such as microrobots [139, 1, 103] and

satellites [30, 144]; to distributed systems such as those found in autonomous vehicles [82]

and avionics [65, 67, 57]; and even to large computing clusters and edge cloud infrastruc-

ture [164, 165].

Real-time systems must remain adaptable to the diversity of environments and platforms in

which they operate. For some applications, exogenous conditions drive dynamic workloads

and deadlines [68]. For example, real-time aerosol sampling, which may allow adaptive flight

patterns for atmospheric survey missions, has workloads that vary with the density of the

sampled particles, the vibrations of the enclosing chamber, and the changing reflectivity of

the chamber walls [169]. Gamma-ray burst (GRB) localization for prompt alerts to follow-up

instruments has a workload and deadline informed by the GRB’s brightness, time profile, and

spectral-energy distribution, none of which are known a priori [145]. Other applications are

built to be resilient in the face of component failure. For example, on a space-based compu-

tational platform, radiation damage might render a processor core inoperable. Nonetheless,

the system as a whole must remain operational, even in a degraded state.

Elastic real-time scheduling models provide a framework for dynamic task adaptation to

guarantee timely computation even on a system that becomes overloaded due to changes in

computational demand, temporal requirements, or resource availability. While prior work

1

has extended elastic adaptation to several scheduling models, key questions remain to be

answered. This dissertation expands the state of the art in elastic scheduling in

three primary directions:

1. It proposes and analyzes new algorithms for elastic scheduling with provably better

execution time complexity compared to those in prior work.

2. It presents new extensions of the elastic model to common scheduling paradigms.

3. It considers the impact of adaptation on system performance as a whole, and demon-

strates how elastic scheduling models can be constructed to optimize expected system

outcomes within the constraints of schedulability.

1.2 Background and Context

1.2.1 Real-Time Systems Scheduling

Real-time systems are computing systems for which temporal and functional correctness are

equally important. In these systems, timely execution is a requirement of correct execution;

therefore, scheduling computations to guarantee timeliness is a first-class concern. For over

half a century, many such systems have been modeled using Liu and Layland’s recurrent

task model [97]. Under this model, a task is defined as a unit of repeated execution, e.g., the

reading of a sensor; the execution of a single time step in an earthquake simulation [63, 64];

or as we have discussed in prior work, the reconstruction of a single Compton-scattered

gamma ray from a GRB [30, 48, 144, 153, 171, 145, 147, 75, 47, 146, 76, 154]. Tasks are

characterized by:

• A worst-case execution time (WCET) value representing an upper-bound on the time

to complete the computation of a single instance of the task, if uninterrupted on a single

processor core. We note that this is platform-dependent: a task’s WCET depends on

the processor on which it executes.

• A period, representing the time between releases of repeated instances of the task. Un-

der “sporadic” task models, the period represents the minimum time between releases.

2

• A relative deadline, representing the time, from its release, by which a single instance

of a task must complete. If an instance of a task must complete only before release of

the next instance, then the relative deadline is set equal to the period duration, and

the task is referred to as “implicit-deadline”. However, if the deadline takes an earlier

value, we call it a “constrained-deadline” task (the relative deadline is constrained to

not exceed the period duration).

Uniprocessor Scheduling

A task’s utilization is defined as its worst-case execution time divided by its period; intu-

itively, this is the largest fraction of a single processor’s time that it must use. For implicit-

deadline tasks, Liu and Layland [97] demonstrated that with preemptive fixed-priority rate-

monotonic (RM) and earliest-deadline first (EDF) scheduling, a set of tasks are schedulable

on a single processor if their total utilization does not exceed a given bound.

Preemptive RM and EDF scheduling have thus become common paradigms when imple-

menting schedulers and analyzing schedulability. Under RM, each task is assigned a priority

according to its period; all jobs of a task with a larger period have a lower priority. Under

EDF, each instance, or job, of a task is assigned a priority according to its absolute deadline;

a job that must complete earlier is given a higher priority. When a job is invoked, if it has a

higher priority than the currently executing job, then it will begin to execute immediately;

the lower-priority job is said to be preempted. For sets of constrained-deadline tasks, more

computationally-complex analysis is needed to verify schedulability.

Federated Scheduling

The increasing computational demand of many real-time applications motivates scheduling

strategies for task sets with intra-task parallelism. Systems hosting multiple tasks, where

individual tasks may need to execute on more than one processor to meet their deadlines,

are becoming more common. Such systems can be increasingly found in autonomous vehi-

cles [82], computer vision systems [60], real-time hybrid testing environments [63, 64], and,

as we have shown, in satellite telescopes [144, 153, 171, 75, 146]. Deciding how to schedule

3

such tasks, i.e., how and when to allocate computational resources such that all execution

completes before its corresponding deadline, is a fundamental challenge for these systems.

Federated scheduling [94] — which has been used in real-world applications such as real-time

hybrid simulation (RTHS) [121] — proposes one approach to this problem: high-utilization

tasks (i.e., those with utilization exceeding 1) are each assigned a dedicated set of cores on

which they alone execute; low-utilization tasks are then scheduled on the remaining cores

using a multiprocessor scheduling algorithm for sequential tasks, e.g., partitioned EDF [12],

global EDF [52, 93, 5], or partitioned RM [46].

In this model, parallel tasks are represented as a set of subtasks, each of which must exe-

cute sequentially, i.e., an individual subtask cannot execute on more than one processor at

once. However, multiple subtasks may execute in parallel with one another, provided that

precedence constraints are satisfied: a subtask is said to precede another if it must complete

its execution before the other begins. If subtask A precedes subtask B, we also say that B

succeeds A. The partial ordering induced by the precedence relation over the set of subtasks

naturally gives rise to a directed acyclic graph (DAG) with vertices corresponding to sub-

tasks. A directed edge connects vertex A to B if and only if the corresponding subtask A

directly precedes subtask B, i.e., there is no other subtask that precedes B and succeeds A.

Each subtask is characterized by its individual worst-case execution time. The workload of

the parallel task is defined as the sum of its subtasks’ WCETs, i.e., the upper bound of its

execution time on a single processor core. A parallel task is also characterized by its span,

or the total workload of the subtasks along the critical path of its DAG, where each vertex

is weighted by the corresponding subtask’s WCET. In other words, the span represents the

upper bound on time to complete the task if given an infinite number of processors on

which to execute. For a parallel task characterized in this way, it is known to be NP-hard

to determine the minimum number of processor cores necessary for it to complete by its

deadline [159]. However, in [94], the authors demonstrate that a sufficient number of cores

can be computed in constant time given a parallel task’s workload, span, and deadline.

4

1.2.2 Elastic Scheduling

The scheduling strategies and their corresponding analysis discussed above simply state

whether a set of tasks is schedulable (i.e., whether the scheduling strategy guarantees that

every instance of every task will meet its deadline) or unschedulable. A system for which

resources are insufficient to guarantee schedulability is said to be in an overloaded state.

Traditionally, sets of recurrent workloads operate under a rigid model where their parameters

are assumed to be fixed. If they are deemed schedulable, then the system may execute as

normal, but overload is to be avoided.

However, in many systems, the paradigm of defining timing constraints as static task prop-

erties may be relaxed. To this end, elastic real-time scheduling models provide a framework

for dynamic adaptation of task utilizations in response to system overload (e.g., during on-

line mode changes or for admission of new tasks). The original model proposed by Buttazzo

et al. [39, 40] considers uniprocessor scheduling of implicit-deadline tasks. Using a physical

analogy, it represents each task’s utilization as a spring. The task’s “elasticity” reflects its

flexibility to adapt its utilization to a lower quality of service; for example, a more impor-

tant task might be considered less elastic. The total length of the springs, placed end-to-end,

represents system utilization. If this exceeds the schedulable bound, a compressive force is

applied to the system. Each spring (and corresponding utilization) is compressed propor-

tionally to its elasticity until the total utilization no longer exceeds the bound or until the

task reaches its minimum serviceable utilization; task periods are adjusted accordingly.

Elastic scheduling has since been extended to multiprocessors [118], to EDF scheduling of

constrained-deadline tasks [44, 45, 13], and to federated scheduling of parallel real-time tasks

for which periods [120] and workloads [119] are compressed over continuous ranges1, as well

as tasks for which only a discrete set of candidate utilizations may be accommodated [121].

1.3 Contributions

This dissertation makes the following contributions to elastic scheduling of real-time systems.

1We refer to tasks for which utilization compression is realized by extending periods as rate-elastic
or period-elastic. If task workloads are reduced such that WCET decreases, we instead call them
computationally-elastic or workload-elastic.

5

1.3.1 Extensions to New Scheduling Models

Fixed-Priority Scheduling of Constrained-Deadline Tasks

Buttazzo’s elastic scheduling model in [39, 40] was originally formulated for implicit-deadline

tasks for which schedulability may be analyzed using the simple utilization-bound conditions

of Liu and Layland [97]. Under this model, task utilizations are simply decreased propor-

tionally to their “elasticity” until the total utilization no longer exceeds the bound.

For constrained-deadline tasks, the analysis is more complex — indeed, for RM scheduling

of constrained-deadline tasks, determining schedulability is NP-complete [58], and for EDF

scheduling, it is coNP-complete [59]. Nonetheless, the semantics of implicit deadlines do not

capture the temporal requirements of many systems. Consider a control application where

plant state is sensed at the instant a job is released, and a control signal is then computed

to be applied to the plant at some set time in the future. In [13], the authors consider

the control loop as an elastic task where increasing the period allows the control loop to

be executed less frequently, while nevertheless applying the control signal at the intended

instant relative to the sampled state. In this case, the task’s deadline remains constant while

the period increases, making it a constrained-deadline elastic task.

While elastic models have been applied to EDF scheduling of constrained-deadline tasks

in [44, 45, 13], it has not yet been extended to constrained-deadline fixed-priority scheduling.

While EDF is an optimal scheduling algorithm under many models, including for preemptive

uniprocessors [77], it is not implemented in many operating systems; for example, the seL4

microkernel provides only task-level fixed-priority scheduling [102], and until version 3.14,

EDF was not available in the Linux kernel [51]. Furthermore, many priority-based shared

resource access protocols, such as the priority ceiling [135] and immediate priority ceiling [9,

38] protocols, assume task-level fixed priorities. To this end, this dissertation extends

elastic scheduling to fixed-priority constrained-deadline tasks.

Harmonic Periods

Many control systems, such as those found in robotics applications [92] and RTHS for struc-

tural integrity [121], demand harmonic rates among their constituent tasks. In applications

6

that capture and process frames from multiple sensing devices to be aggregated in backend

processing tasks, such as simultaneous localization and mapping (SLAM) [88] and real-time

mobile spectrometry [167], harmonic task periods guarantee consistent temporal alignment.

Furthermore, task sets with harmonic periods have hyperperiods equal to the largest pe-

riod [29, 130], which reduces the size of scheduling tables in time-triggered systems [83] and

constrains the test set in processor demand analysis [20].

Selecting harmonic periods from within acceptable intervals is nontrivial. Nasri et al. [112]

formalized the problem, and proposed an approach to solve it in time linear in the number of

tasks for restricted cases. In general, though, the algorithm’s running time “can exponentially

grow.” In [111], Nasri and Fohler identify another restriction of the problem that can be

solved in polynomial time, but they provide “no guarantee for reasonable computational

complexity” in general.

This dissertation extends elastic scheduling to sets of tasks with harmonic pe-

riod constraints. It is the first to reason about the problem of assigning task periods from

continuous intervals such that (i) periods remain harmonic, while (ii) respecting the relative

flexibility of each task to adapt its utilization, but still (iii) guaranteeing the schedulability

of every task.

Federated Scheduling with Low-Utilization Tasks

Prior extensions of elastic models to federated scheduling of parallel tasks in [120, 119, 121]

consider high-utilization parallel tasks that must execute on dedicated cores. Under the

original federated scheduling model in [94], low-utilization tasks (those that individually

require only a single core) are scheduled concurrently on any remaining cores not allocated

to the high-utilization tasks. Therefore, to fully extend elastic scheduling to the federated

paradigm, a model must consider the allocation of computational resources to both low- and

high-utilization tasks.

However, the approaches in the prior work assume a fixed allocation of cores for high-

utilization parallel tasks. These approaches do not consider that compression of utilization

over all tasks in the system may change the number of cores required by low-utilization

7

tasks. This dissertation extends the elastic frameworks for federated schedul-

ing to dynamically allocate cores during joint compression of both low- and

high-utilization tasks.

1.3.2 Elasticity to Optimize System Outcomes

One advantage of Buttazzo’s elastic scheduling model is that the policy for assigning task

utilizations “is implicitly encoded in the elastic coefficients provided by the user (for exam-

ple, based on task importance)” [40]. In some applications, importance may be qualitative;

nonetheless, elastic coefficients are quantitative values, and the choice of values may deter-

mine system outcomes. In this work, we address questions about what the elastic constant

represents, and explore what it means to apply elastic compression to individual tasks or

even subtasks. Furthermore, we explore scenarios where elastic coefficients are insufficient

to capture the joint impact of task compression on system performance as a whole.

Selecting Elastic Constants

In [44, 45], it was shown that utilizations satisfying the elastic scheduling semantics of pro-

portional compression could be obtained by solving a quadratic optimization problem. By

mapping this problem onto the original elastic model, this dissertation demonstrates

how to assign elastic constants to reflect the first-order impact on system per-

formance loss associated with reducing the rate of each task. We demonstrate

this in the context of two applications: real-time aerosol monitoring in the fast integrated

mobility spectrometer (FIMS) [166] and simultaneous localization and mapping (SLAM) for

mobile robots and drones [42].

Subtask-Level Elastic Scheduling

Prior work on computationally-elastic parallel tasks [119] only considers the aggregate re-

duction of a parallel task’s overall workload, and not the individual implications of reducing

the workloads of each subtask. Changing the computational workload of each subtask may

fundamentally affect quality of outcome (e.g., control performance, prediction accuracy, etc.)

8

in different ways; this has been discussed in the context of autonomous vehicles [7] and we

have shown this to be true for GRB localization [146].

Furthermore, individual changes in subtask workloads may affect the task’s span, or critical

path length. The elastic model in [119] determines schedulability according to the approach

in [94] for federated scheduling, in which cores are allocated according to the workload, span,

and deadline parameters of each task. As it decreases task workloads, the model in [119]

holds the span constant. However, as a task’s workload decreases, its critical path length

may also decrease as the workloads of the subtasks (or even the set of subtasks) along the

path changes, which further reduces the necessary allocation of processor cores to the task.

For this effect to be captured, an elastic model must be cognizant of the DAG structure

induced by the precedence constraints among the subtasks composing each parallel task.

To this end, this dissertation proposes a new model of subtask-level elasticity

for federated scheduling of parallel tasks. Under this model, each subtask is assigned

a range of acceptable workloads and its own elastic constant. Elastic compression is thus

applied to the complete collection of both parallel task subtasks and sequential tasks in the

system to guarantee schedulability according to the resulting execution times and spans.

Utility-Driven Parameterized Compression

The existing semantics of elastic scheduling models may face important limitations when

applied to real-world task systems. Elastic compression scales the utilizations of tasks pro-

portionally to their elastic coefficients. This coefficient is meant to represent a task’s im-

portance or relative adaptability. As we will show via problem transformation, this implies

mathematically that the coefficient captures a first-order quadratic relationship between each

task’s utility (or subtask’s workload, in the case of subtask-level elastic scheduling) and the

quality or utility of system outcome.

However, these semantics might not capture second-order effects and nonlinearities present

in the relationships between computational adaptation of tasks and subtasks and the results

they produce. For example, we have developed a real-time GRB localization pipeline to

enable prompt multi-messenger follow-up observations of transient bursts [144, 145]. The

pipeline consists of several stages, including event reconstruction, approximation of an ini-

tial source direction, and subsequent iterative refinement of the estimate. Compressing the

9

workload of the event reconstruction stage by reconstructing fewer events also decreases the

workload of each refinement iteration; the two subtasks cannot be considered independently

of each other [145, 146]. We therefore argue that elastic scheduling should instead be re-

framed in the context of a richer family of optimization problems over multiple parameterized

degrees of freedom for which a task’s workload or period can be adjusted within the con-

straints of schedulability. Toward this vision, this dissertation proposes an approach

for utility-driven parameterized workload adaptation of parallel tasks.

1.3.3 Improved Execution Time Complexity

Elastic scheduling algorithms realize compression of task utilizations by selecting, for each

task, a period or workload assignment. While elastic scheduling models are useful for adjust-

ing a predefined set of tasks to be scheduled on a resource-constrained system, Buttazzo’s

original model was primarily intended for use in dynamic and open systems where the set

of active tasks may change [39, 40]. Therefore, while it is always desirable to obtain effi-

cient algorithms, it is especially important for elastic scheduling algorithms that adapt in

response to online changes to have provable execution time bounds. In this dissertation, we

present several approaches that use more computationally-expensive offline characterization

and setup steps to construct data structures that enable polynomial or pseudo-polynomial

time online adaptation.

Implicit-Deadline Tasks

The original algorithms in [39, 40] for elastic scheduling of implicit-deadline tasks on a unipro-

cessor execute in time quadratic on the number of tasks. This dissertation presents an

algorithm that executes in quasilinear time on the number of tasks, and in

linear time when a new task arrives or system parameters change.

Furthermore algorithms for elastic scheduling of implicit-deadline sequential tasks (i.e., tasks

that individually require no more than a single core to execute) on multiple processors have

been proposed in [118]. We extend our improved algorithm to two of the multiprocessor

scheduling paradigms discussed in that work: fluid scheduling and partitioned EDF. Fluid

scheduling is an abstraction under which each individual tasks are assigned a fraction of

10

a processor at each instance in time [19]. Partitioned EDF, which is more practical for

implementation [41, 121] assigns each task to a single processor, then schedules each processor

independently according to EDF [12].

The prior extension of elasticity to fluid scheduling in [121] executes in time quadratic on

the number of tasks, while its algorithm for partitioned EDF is pseudo-polynomial in the

number of tasks, number of processors, and a selected parameter to tune the precision of the

result. On the other hand, this dissertation extends its quasilinear and linear-time

algorithms to both fluid and partitioned EDF scheduling while also making other

improvements to the original algorithm for partitioned EDF elastic scheduling.

Harmonic Periods

As previously mentioned, selecting harmonic periods from within acceptable intervals is

nontrivial; indeed, Nasri and Fohler argue that the complexity of the problem grows expo-

nentially with the number of tasks [112]. However, this dissertation demonstrates a

pseudo-polynomial algorithm for assigning harmonic periods to tasks, though it

proves that the problem likely cannot be solved in polynomial time.

Furthermore, while we show that the problem of elastic scheduling with harmonic periods

is NP-hard, we consider a natural restriction in many systems that enables efficient online

adjustment. In many multi-time stepping (MTS) applications such as decomposition of

RTHS [31] for natural hazards engineering, and in applications such as ORB-SLAM [110]

where front-end data collection tasks capture and process frames from sensing devices which

must be aggregated downstream, task periods must respect an a priori total ordering. Under

this restriction, this dissertation shows that a lookup table, generated offline,

enables polynomial-time adjustment of task periods in response to changes in

available utilization.

Parameterized Adaptation for Dynamic Workloads and Deadlines

Many real-time systems run in dynamic environments where exogenous factors inform task

workloads and deadlines, which may not be known prior to job release. A job of a task

that would otherwise miss its deadline may adapt to remain schedulable by executing in a

11

degraded state that reduces its workload. Under richer models of adaptation over multi-

ple parameterized degrees of freedom, immediately finding the optimal execution mode to

guarantee timely completion may be difficult.

To this end, we demonstrate an offline approach for identifying the parameterized degrees

of freedom over which a task’s workload can be adjusted, then characterize the impact of

workload reduction on response time and utility. This enables construction of a Pareto-

optimal surface over which efficient search, interpolation, and extrapolation enable online

selection of task parameters at time of job release. In doing so, this dissertation provides

an approach to bounded-time online utility-driven workload adaptation.

1.4 Organization

The remainder of this dissertation is structured as follows.

Chapter 2 proposes an algorithm for uniprocessor elastic scheduling of implicit-deadline

task systems that runs in time quasilinear on the number of tasks. It adapts the algorithm

for linear-time compression in response to admission of a new task or a change in available

utilization. It demonstrates, both through analysis of the algorithms and evaluations of

synthetic task sets, the execution time improvements that may be realized. Portions of the

chapter were published as “Linear Time Admission Control for Elastic Scheduling” in the

Springer Real-Time Systems journal [150].

Chapter 3 shows how to extend the algorithm in Chapter 2 to multiprocessor scheduling of

sequential tasks in the context of both fluid scheduling and partitioned EDF. It also proposes

more efficient alternative implementations of the prior elastic algorithm for partitioned EDF

scheduling. It compares these implementations to the new algorithm, and evaluates the

tradeoffs between task schedulability and execution time efficiency.

Chapter 4 extends the elastic model to fixed-priority scheduling of constrained-deadline

tasks on a uniprocessor. It proposes and analyzes four algorithms toward solving the problem,

compares their performance through empirical evaluation, and suggests different scenarios

where each one may be applicable. Portions of the chapter were published as “Elastic

12

Scheduling for Fixed-Priority Constrained Deadline Tasks” at ISORC 2023, winning the

best paper award [143].

Chapter 5 extends elastic scheduling to tasks with periods constrained to harmonic values.

It demonstrates that the problem of harmonic period selection from specified intervals can

be solved in pseudo-polynomial time, but likely not in polynomial time. It also demonstrates

that an application of elastic scheduling under these constraints is NP-hard. However, un-

der the restriction that an a priori total order is applied to task periods, it presents a

polynomial-time algorithm to adapt in response to changes in available utilization. This

chapter evaluates its algorithms in the context of synthetic tasks and two real-world applica-

tions: ORB-SLAM3 [42] and FIMS [166]. It discusses remaining limitations of these models

and suggests directions for future work. Portions of the chapter were published as “Elastic

Scheduling for Harmonic Task Systems” at RTAS 2024 [151].

Chapter 6 presents our model for subtask-level elasticity under federated scheduling. It

formulates a quadratic optimization problem to assign subtask workloads under the model,

and demonstrates two approaches to constructing it as a mixed-integer quadratic program

(MIQP) that can be solved by off-the-shelf tools. It also proposes a more efficient dynamic-

programming (DP) technique that can realize compression online with pseudo-polynomial

time complexity. It also shows how the DP-based approach can be applied to joint compres-

sion of low-utilization tasks. Finally, it evaluates the proposed techniques on large numbers

of synthetic task sets.

Chapter 7 presents our approach for workload adaptation over multiple parameterized

degrees of freedom to optimize utility within the bounds of schedulability. It discusses tech-

niques for online adaptation of highly-parallel fork-join tasks when workloads and deadlines

are not known prior to job release. It demonstrates and evaluates this approach in the con-

text of our GRB localization pipeline [144, 145], and presents additional optimizations such

as slack reclamation. Finally, it considers possible directions toward considering this ap-

proach as a more general collection of frameworks in which elasticity plays a part. Portions

of the chapter were published as “Parameterized Workload Adaptation for Fork-Join Tasks

with Dynamic Workloads and Deadlines” at RTCSA 2023 [146].

Chapter 8 concludes this dissertation. It discusses related work, placing our elastic models

in a broader context, and proposes many directions that this research may take in the future.

13

Chapter 2

An Efficient Algorithm for

Uniprocessor Implicit-Deadline Tasks

Portions of this chapter were published as “Linear Time Admission Control for Elastic

Scheduling” in the Springer Real-Time Systems journal [150].

2.1 Introduction

Existing work on elastic scheduling considers algorithms that compress (i.e., reduce) the

utilizations of tasks to guarantee schedulability on an otherwise overloaded system. While

such models are therefore useful for adjusting a predefined set of tasks for execution on

a resource-constrained system, Buttazzo’s original elastic scheduling model was primarily

intended to enable online adaptation in dynamic and open systems [39, 40]. Thus, it is

important for elastic scheduling algorithms to be both efficient and provide bounded-time

complexity guarantees.

Under Buttazzo’s model, each task is assigned a continuous range of utilizations at which

it may execute and a constant elasticity parameter that “specifies the flexibility of the task

to vary its utilization” [39]. For implicit-deadline tasks on a uniprocessor, utilization-based

schedulability analysis deems a set of tasks schedulable if their total utilization does not ex-

ceed some bound. If a system is overloaded (i.e., if the total maximum utilization demanded

by all tasks exceeds the schedulable bound) then each task’s utilization is compressed pro-

portionally to its elasticity until total utilization reaches the bound. Simple arithmetic over

each task’s parameters determines the amount of compression necessary. However, if this

would reduce some task’s utilization below its minimum, then 1 that task’s utilization is

14

fixed to its minimum value, 2 the task is removed from the set of elastic tasks, and 3 the

compression algorithm is run again over the remaining tasks. Because this procedure may

repeat as each task reaches its minimum utilization, the total execution time is quadratic in

the number of tasks.2

In this chapter, we present a modified algorithm for elastic scheduling of implicit-deadline

tasks on a uniprocessor that provides better execution time complexity. The key observation

is as follows. Given a task’s range of allowed utilizations and elasticity parameter, we can

characterize the maximum “amount” of compression that can be applied before it reaches its

minimum utilization constraint. By sorting tasks (which takes quasilinear time) in order of

how quickly they will reach this constraint, any compression (e.g., when a new task arrives,

or when available utilization changes) can be achieved in linear time over the set of tasks. We

demonstrate that this allows for faster online adaptation compared to Buttazzo’s

algorithm.

The remainder of this chapter is organized as follows:

• Section 2.2 develops the system model used in this chapter and provides necessary

background on uniprocessor elastic scheduling of implicit-deadline tasks.

• Section 2.3 presents our improved algorithm and proves its correctness.

• Section 2.4 empirically compares our proposed algorithm to Buttazzo’s.

• Section 2.5 concludes the chapter.

2.2 Background and System Model

This section provides necessary background on real-time scheduling before introducing But-

tazzo’s elastic scheduling model from [39, 40].

2When presenting the algorithm in [39], Buttazzo et al. suggest that it runs in quadratic time only when
tasks have minimum utilization constraints, and that it is otherwise linear. We note, on the contrary, that
tasks must be assigned a minimum utilization of at least 0; otherwise, the algorithm might assign negative
utilizations. We illustrate this in Example 1. Therefore, the algorithm cannot be guaranteed to have better
than quadratic time complexity.

15

2.2.1 Uniprocessor Scheduling of Implicit-Deadline Tasks

Liu and Layland’s recurrent task model has been a dominant scheduling paradigm in real-

time systems for over half a century [97]. Under their model, a system executes a set

Γ = {τ1, τ2, ..., τn} of n tasks. Each task τi is a unit of repeated execution, e.g., the reading

of a sensor; the execution of a single time step in an earthquake simulation [63, 64]; or as we

have discussed in prior work, the reconstruction of a single Compton-scattered gamma ray

from a GRB [30, 48, 144, 153, 171, 145, 147, 75, 47, 146, 76, 154]. Each repeated instance

of a task is referred to as a job; Ji,j denotes the jth job of task τi. A job is called active if

it has been released, but has not yet completed execution. Each task τi is characterized by

the following parameters, which are illustrated in Figure 2.1.

Time

Task 𝜏1

Release 𝑟1,1 𝑟1,2 𝑟1,3

Job J1,1 J1,2

Period 𝑇1 𝑇1

Absolute deadline 𝑑1,1 𝑑1,2

WCET 𝐶1 𝐶1

Relative deadline 𝐷1

Figure 2.1: An illustration of a task under the Liu and Layland [97] model. This is a
constrained-deadline — but not an implicit-deadline — task, since Di < Ti.

• Ci: the worst-case execution time (WCET), which represents an upper-bound on the

time to complete a single uninterrupted job on one processor core. (This is platform-

dependent, since a task’s WCET depends on the processor on which it executes.) We

may also refer to the WCET as the task’s workload.

• Ti: the period, representing the time between jobs. If a job Ji,j becomes available

for execution at time ri,j, we call this the release time of the job. For periodic

tasks, the release times of subsequent jobs are separated by exactly Ti time units,

i.e., ri,j − ri,j−1 = Ti. For sporadic tasks, the period represents the minimum inter-

arrival time of jobs, i.e., ri,j − ri,j−1≥Ti. Sporadic tasks are commonly event-driven,

in which case the period represents the minimum time between event arrivals. For

Poissonian events without a minimum interarrival time, a period may nonetheless be

enforced explicitly (e.g., via interrupt masking [129]) or implicitly (e.g., due to dead

times in sensor readout electronics [154]).

16

• Di: the relative deadline, representing the elapsed time from its release by which any

single job of the task must complete. If job Ji,j is released at time ri,j, then we say its

absolute deadline di,j is ri,j +Di. For implicit-deadline tasks, Di = Ti, i.e., every job

of a task must complete before the next job of the same task is released. Constrained-

deadline tasks are those for which the deadline may be shorter than the period, i.e.,

Di ≤ Ti. We may refer to the relative deadline Di more simply as the “deadline,” i.e.,

if we do not specify whether we are referring to the relative or absolute deadline of the

task, the reader may assume the relative deadline by default.

From these parameters, we can also derive the utilization Ui = Ci/Ti of a task τi. Intuitively,

this is the largest fraction of a single processor’s time that the task must use.

For a collection of active jobs, a scheduling algorithm determines, at every instant in time,

which job should execute and on which processor. In this chapter, we consider two scheduling

approaches for execution on a single processor: preemptive fixed-priority (FP) and preemp-

tive earliest-deadline first (EDF).

Under task-level fixed priority scheduling, each task is assigned a priority according to its

period. For implicit-deadline tasks, rate-monotonic (RM) scheduling — where all jobs of

a task with a shorter period are assigned a higher priority than those of a task with a

longer period — is an optimal fixed-priority algorithm. Under EDF, on the other hand, each

individual job is assigned a priority according to its absolute deadline; an earlier absolute

deadline corresponds to a higher priority. EDF is optimal for implicit-deadline tasks. Under

both algorithms, if a job is released with a higher priority than the currently-executing

job, then it will preempt the execution and be serviced immediately. These concepts are

illustrated in Figure 2.2.

For uniprocessor scheduling of implicit-deadline tasks, Liu and Layland [97] demonstrated

that a set Γ of n tasks τi are schedulable under RM or EDF if their total utilization

Usum =
∑

i Ui does not exceed a given bound. For EDF, that bound is 1. For RM, it is

n(21/n − 1), or 1 if periods are harmonic [84].

17

𝜏1

𝑑1,1

J1,1 J1,2

𝜏2

𝑑1,2

J2,1 J2,2
𝑑2,1 𝑑2,2 𝑑2,3

J2,3

𝜏1

𝑑1,1

J1,1 J1,2

𝜏2

𝑑1,2

J2,1 J2,2
𝑑2,1 𝑑2,2 𝑑2,3

J2,3

(a) An example of RM scheduling. Because τ1 has a longer period than τ2, its jobs are always
scheduled at a lower priority. Jobs J1,1 and J2,1 are both released at time 0, so J2,1 executes until
it completes at time 4. J1,1 is then able to execute for 6 time units until the release of J2,2 at time
10. J2,2 executes until it completes at time 14, whereupon J1,1 can execute for its remaining 1 time
unit. At time 15, job J1,2 is released, and it executes until time 20 when it is preempted by the
release of job J2,3. Job J2,3 executes until completion at time 24, whereupon job J1,2 may execute
for its final 2 time units, completing at time 26.

𝜏1

𝑑1,1

J1,1 J1,2

𝜏2

𝑑1,2

J2,1 J2,2
𝑑2,1 𝑑2,2 𝑑2,3

J2,3

𝜏1

𝑑1,1

J1,1 J1,2

𝜏2

𝑑1,2

J2,1 J2,2
𝑑2,1 𝑑2,2 𝑑2,3

J2,3

(b) An example of EDF scheduling. Unlike RM, or other task-level fixed priority scheduling algo-
rithms, individual jobs are prioritized according to their absolute deadlines. When jobs J1,1 and
J2,1 are released simultaneously at time 0, J2,1 is prioritized because its absolute deadline at time
10 is earlier than that of J1,2 at time 15. J2,1 executes for its complete 4 time units, whereupon
J1,1 begins to execute. At time 10 when J2,2 is released with an absolute deadline of 20, it does not
preempt J1,1, which is able to run until it completes at time 11. At this point, J2,2 begins execution
and runs, uninterrupted, until time 15. J1,2 is released at time 15 and begins to execute. It is still
executing at time 20 when J2,3 is released. Because both jobs have absolute deadlines at time 30,
J1,2 continues to execute until it completes at time 2, whereupon J2,3 executes uninterrupted until
time 26.

Figure 2.2: An illustration of preemptive uniprocessor scheduling. We consider a set Γ of
two tasks. Task τ1 has a WCET C1 = 7 and a period T1 = 15. Task τ2 has a WCET C2 = 4
and a period T2 = 10. These are implicit-deadline tasks; their relative deadlines are equal to
their periods.

18

2.2.2 Elastic Scheduling

The elastic model for implicit-deadline tasks on a uniprocessor [39, 40] characterizes each

task τi=(Ci, U
min
i , Umax

i , Ui, Ei) by five non-negative parameters:

• Ci: The task’s worst-case execution time.

• Umax
i : The task’s maximum utilization, i.e., its nominal value when executing at the

desired service level in an uncompressed state.

• Umin
i : Its minimum utilization, i.e., a bound on the amount its service can degrade.

• Ui: The task’s assigned utilization, constrained to Umin
i ≤ Ui ≤ Umax

i (the value of this

parameter needs to be assigned prior to run-time).

• Ei: An elastic constant, representing “the flexibility of the task to vary its utiliza-

tion” [39].

A task system Γ = {τ1, . . . , τn} has a total uncompressed utilization Umax
sum expressed as

Umax
sum =

n∑
i=1

Umax
i (2.1)

and a desired utilization UD representing the utilization bound allowed by the scheduling

algorithm in use. In the event of system overload, i.e., if Umax
sum > UD, the elastic model

assigns a utilization Ui to each task τi according to these three conditions:

1.
∑

i Ui = UD, i.e., total utilization is set to the schedulable bound.

2. Any task for which Ei = 0 is considered inelastic; this is equivalent to the case that

Umin
i = Umax

i .

3. For all other tasks τi and τj, if Ui > Umin
i and Uj > Umin

j , then Ui and Uj must satisfy

the relationship3 (
Umax
i − Ui

Ei

)
=

(
Umax
j − Uj

Ej

)
(2.2)

3For tasks τi having Ei = 0, Ui = Umin
i , and therefore the relationship needs not be satisfied.

19

A task system Γ for which such Ui exist for all tasks is said to be feasible.

Intuitively, this model represents each task as a spring, with a length corresponding to the

utilization Ui and an elasticity corresponding to Ei. The total length of the springs, placed

end-to-end, represents Usum. If this exceeds UD, the schedulable bound, a force is applied to

the system that compresses each task’s utilization Ui proportionally to its elasticity, subject

to the constraint that the utilization remains no less than the specified minimum Umin
i .4 This

physical analogy is illustrated in Figure 2.3.

𝑈1
max 𝑈2

max 𝑈3
max 𝑈4

max

𝑈1 𝑈2 𝑈3 𝑈4

𝑈𝐷 𝑈max
𝑈

𝑈

𝐸1 𝐸2 𝐸3 𝐸4

𝐸1 𝐸2 𝐸3 𝐸4

𝑈max

Figure 2.3: The physical spring analogy of Buttazzo’s elastic model, reproduced from [37,
Figure 9.27] with modifications to the labels. (a) shows the uncompressed task set, while
(b) illustrates the application of elastic compression to achieve schedulability.

Compression is then realized by adjusting each task’s period Ti according to its new utiliza-

tion, i.e., Ti = Ci/Ui.

4This statement holds true for inelastic tasks, as Ei = 0 implies Umin
i = Umax

i , and therefore the utilization
is not reduced.

20

2.2.3 Overview of the Prior Algorithm

Let Γ denote a feasible task system with Ei > 0 for all tasks5 τi ∈ Γ, and consider the

Ui values that bear witness to this feasibility (i.e., each Ui either equals Umin
i , or satisfies

Equation 2.2). The tasks in Γ may be partitioned into two classes — Γvariable (those tasks

for which Ui > Umin
i , and which can therefore have their utilizations compressed further if

necessary) and Γfixed (those for which Ui = Umin
i ; i.e., their utilizations are now fixed).

It has been shown [39, Equation 8] that for each τi ∈ Γvariable, the utilization Ui takes the

value

Ui = Umax
i −

(
Usum − (UD −∆)

Esum

)
× Ei (2.3)

where

Usum =
∑

τi∈Γvariable

Umax
i (2.4)

and

Esum =
∑

τi∈Γvariable

Ei (2.5)

respectively denote the sum of the Umax
i parameters and the Ei parameters of all the tasks

in Γvariable, and

∆ =
∑

τi∈Γfixed

Umin
i (2.6)

denotes the sum of the Umin
i parameters of all the tasks in Γfixed.

6 Given a set of elastic tasks

Γ, the algorithm of [39, Figure 3] starts out computing Ui values for the tasks assuming that

they are all in Γvariable — i.e., their Ui values are computed according to Equation 2.3. If

any Ui so computed is observed to be smaller than the corresponding Umin
i then 1 that task

is moved from Γvariable to Γfixed; 2 the values of Usum, Esum, and ∆ are updated to reflect

this transfer; and 3 Ui values are recomputed for all the tasks. The process terminates if no

computed Ui value is observed to be smaller than the corresponding Umin
i . It is easily seen

that one such iteration (i.e., computing Ui values for all the tasks) takes O(n) time. Since

5Tasks τi with Ei = 0 must have Ui ← Umax
i ; we assume this is done in a pre-processing step, with the

value of UD updated to reflect the remaining available utilization.
6Observe that ∆ equals the amount of utilization that is allocated to the tasks in Γfixed; therefore (UD−∆)

represents the amount available for the tasks in Γvariable, and
(
Usum − (UD −∆)

)
the amount by which the

cumulative utilizations of these tasks must be reduced from their desired maximums. As shown in the RHS
of Equation 2.3, under elastic scheduling this reduction is shared amongst the tasks in proportion to their
elasticity parameters: τi’s share is (Ei/Esum).

21

an iteration is followed by another only if some task is moved from Γvariable to Γfixed and

there are n tasks, the number of iterations is bounded from above by n. The overall running

time for the algorithm of [39, Figure 3] is therefore O(n2).

In his hard real-time computing systems textbook, Buttazzo presents a corrected and im-

proved version of the algorithm that avoids explicitly maintaining separate lists to track

Γvariable and Γfixed [37, Figure 9.29]. Nonetheless, the overall running time for the algorithm

remains quadratic in the number of tasks. For reference, we present a modified version of

this procedure in Algorithm 1. Notation has been modified to match our own.

Algorithm 1: Elastic Compression(Γ, UD) (adopted from [37, Figure 9.29])

1 Umin
sum ←

∑
τi
Ci/T

max
i

2 if UD < Umin
sum then return Infeasible

3 forall τi ∈ Γ do Ui ← Ci/T
max
i

4 do
5 Ufixed ← 0, Uvariable ← 0, Esum ← 0
6 forall τi ∈ Γ do
7 if (Ei = 0) or (Ti = Tmax

i) then
8 Ufixed ← Ufixed + Ui

9 else
10 Esum ← Esum + Ei

11 Uvariable ← Uvariable + Ui

12 end

13 end

14 Ok ← True

15 forall τi ∈ Γ do
16 if Ei > 0 or Ti < Tmax

i then
17 Ui ← Umax

i − (Uvariable − UD + Ufixed)Ei/Esum

18 Ti ← Ci/Ui

19 if Ti > Tmax
i then

20 Ti ← Tmax
i

21 Ok ← False

22 end

23 end

24 end

25 while Ok = False

26 return Feasible

22

The same algorithm was also repurposed in [39] for admission control — i.e., for determining

whether a new task seeking to join an already-executing system could be admitted without

compromising feasibility, and if so, recomputing the utilization values for the new task as

well as for all preëxisting ones.

Extensions to elastic scheduling that were proposed by Chantem et al. [44, 45] reformulate

the problem of determining the utilizations as a quadratic programming problem. This allows

the iterative technique in [39] to be applied to a more general class of problems. However,

this reformulation continues to have quadratic time-complexity.

In [39], Buttazzo et al. note that the quadratic time complexity is due to the enforcement

of constraints on minimum utilization. If tasks are not thus constrained, the algorithm can

run in linear time. Intuitively, we may consider that some tasks, representing non-critical

best-effort computation, need not be characterized with minimum utilizations. However,

without these constraints, the algorithm in [39, Figure 3] can assign negative utilizations,

which we illustrate in the following example.

Example 1. Consider a set Γ of implicit-deadline elastic tasks parameterized as in Table 2.1

that needs to be scheduled by EDF on a single processor.

Task τi Umax
i Ei

τ1 0.9 1
τ2 0.9 1
τ3 0.2 8

Table 2.1: Elastic Tasks Compressed to Negative Utilizations

The total uncompressed utilization Umax
sum is 2.0 per Equation 2.1, but the desired utilization

is UD = 1.0 due to the utilization bound of preemptive EDF scheduling. Then, in the absence

of a constraint Umin
i on the minimum utilization of each task, the utilization Ui of each task

τi will be assigned according to Equation 2.3:

Ui = Umax
i −

(
2.0− 1.0

Esum

)
× Ei = Umax

i −
(
1.0

10

)
× Ei

where Esum is calculated per Equation 2.5. Computing Ui for each task τi, we obtain the

following utilization assignments:

• U1 = 0.9− 0.1× 1 = 0.8

23

• U2 = 0.9− 0.1× 1 = 0.8

• U3 = 0.2− 0.1× 8 = −0.6

While this set of assignments does achieve a total utilization
∑

i Ui = 1.0 equal to the desired

value UD, these assignments are not valid: a negative utilization does not have semantic

meaning.

Thus, the elastic problem with minimum utilization constraints Umin
i is the only meaningful

expression of the problem in the context of task scheduling, even if the constraints are

set to 0 just for the purpose of enforcing non-negative utilization assignments. Therefore,

the algorithm in [39, Figure 3] cannot be guaranteed to have better than quadratic time

complexity in the number of tasks.

2.3 An Improved Algorithm

We now present our improved algorithm, which runs in time quasilinear on the number of

tasks. Let us first define an attribute ϕi for elastic task τi as follows:

ϕi
def
=

(
Umax
i − Umin

i

Ei

)
(2.7)

We will prove a result (Theorem 1 below) that allows us to conclude that in the algorithm

of [39, Figure 3], tasks may be “moved” from Γvariable to Γfixed in order of their ϕi parameters.

Assuming that the tasks are indexed such that ϕi ≤ ϕi+1 for all i, 1 ≤ i < n, we can then

simply make a single pass through all the tasks from τ1 to τn, identifying, and computing Ui

values for, all the ones in Γfixed before any of the ones in Γvariable. With appropriate book-

keeping (see the pseudo-code in Algorithm 2) this can all be done in a single pass in O(n)
time. The cost of sorting the tasks in order to arrange them according to non-increasing ϕi

parameters is O(n log n), and hence dominates the overall run-time complexity. Determining

feasibility and computing the Ui parameters can therefore be done in O(n log n) + O(n) =
O(n logn) time.

24

Admission control — determining whether it is safe to add a new task and recomputing

all the Ui parameters if so — requires that the new task be inserted at the appropriate

location in the already sorted list of preëxisting tasks — this can be achieved in O(log n)
time by implementing the list as a sorted iteratable data structure such as a balanced binary

tree. Once this is done, the Ui values can be recomputed in O(n) time by the pseudo-

code in Algorithm 2. Similarly, removing a task from the system and recomputing the Ui

values also takes O(n) time. Furthermore, if UD changes — e.g., in response to changes in

available utilization due to dynamic resource reallocation — the sorted list of tasks and their

parameters do not change, and so the Ui values can be updated in linear time.

Algorithm 2: Elastic Implicit Uniprocessor(Γ, UD)

Input: A list Γ of elastic tasks sorted in non-decreasing order of their ϕi parameters
(see Equation 2.7) and a desired utilization UD

Output: Feasibility and the list Γ with computed Ui values

1 Usum ← 0; Esum ← 0; ∆← 0
2 forall τi ∈ Γ do
3 Usum = Usum + Umax

i

4 Esum = Esum + Ei

5 end

6 forall τi ∈ Γ do

7 if
(
Umax
i − Usum−(UD−∆)

Esum
× Ei ≤ Umin

i

)
then

8 ▷ Task τi is no longer compressible — it’s in Γfixed

9 Ui ← Umin
i ▷ Since τi ∈ Γfixed

10 ∆← ∆+ Umin
i ▷ This additional amount of utilization is allocated

to tasks in Γfixed

11 if (∆ > UD) then return Infeasible ▷ Cannot accommodate the minimum

requirements

12 Usum ← Usum − Umax
i ▷ Since τi is removed from Γvariable

13 Esum = Esum − Ei ▷ As above — since τi is removed from Γvariable

14 else
15 ▷ Remaining tasks are all compressible (i.e., in Γvariable)

16 Ui ← Umax
i − Usum−(UD−∆)

Esum
× Ei ▷ As per Equation 2.3

17 end

18 end
19 return Feasible

25

Proof of Correctness

Theorem 1. If τi ∈ Γfixed and ϕi ≥ ϕj then τj ∈ Γfixed.

Proof. Consider some iteration of the algorithm of [39, Figure 3] such that τi and τj both

start out in Γvariable, but τi is determined to belong in Γfixed in this iteration. This implies

that Umin
i is at least as large as the value of Ui that is computed according to Equation 2.3:

Umin
i ≥ Umax

i −
(
Usum − (UD −∆)

Esum

)
× Ei

By algebraic simplification of the above, we have(
Usum − (UD −∆)

Esum

)
≥

(
Umax
i − Umin

i

Ei

)
(2.8)

Note that the LHS of Expression 2.8 does not contain any term specific to τi and so is the

same for all the tasks in Γvariable for this iteration, and that the RHS is simply ϕi. Since

ϕi ≥ ϕj (as per the statement of the theorem), we may conclude by the transitivity of

the ≥ operator on the real numbers that the LHS of Expression 2.8 would also be ≥ ϕj;

equivalently, the value of Umin
j is no smaller than the value of Uj that is computed according

to Equation 2.3, and as a consequence τj, too, should be moved to Γfixed .

2.4 Evaluation

In this section, we compare the performance of our improved algorithm for elastic scheduling

of implicit-deadline tasks on a uniprocessor outlined in Algorithm 2 to the algorithm from

Buttazzo et al. [37, Figure 9.29] listed in Algorithm 1.

26

2.4.1 Implementation

Evaluations are performed on a Raspberry Pi 3 Model B+, which has a Broadcom BCM2837B0

System on Chip (SoC) with a 4-core ARMv8 Cortex-A53 running at 700 MHz7 and 1GB

of RAM. We used version 6.1.21 of the Linux kernel, compiled for the ARMv7l 32-bit

ISA. We implement both algorithms in C++ and quantify execution time performance

by measuring elapsed processor cycles. We read directly from the cycle counter using a

custom driver and kernel module that enables access to the ARM performance monitor-

ing unit (PMU) from userspace. Algorithms are compiled statically using version 10.2.1

of the Gnu Compiler Collection (GCC) at optimization level O0; this allows us to avoid

undesirable instruction reordering, especially around reads to the cycle counter. To avoid

interference from other processes, we disable real-time throttling by writing −1 to the file

/proc/sys/kernel/sched rt runtime us, isolate CPU core 3 from the scheduler, and run

our algorithms on that core at the highest real-time priority under Linux’s SCHED FIFO

scheduling class.

Each task τi is represented as a data structure (struct) containing single-precision floating-

point representations of Umax
i , Umin

i , Ui, and Ei. The derived parameter ϕi from Equation 2.7

is also an attribute of the structure. For these experiments, we are only concerned with the

assignment of Ui values; we therefore do not represent the WCET Ci or period Ti of any

task.

For Buttazzo’s algorithm (Algorithm 1), since we are considering only utilization assign-

ments, and not period updates, we do not implement Line 18. Line 3 is also not imple-

mented, as we assign Ui ← Umax
i when task parameters are generated. Line 20 is imple-

mented as Ui ← Umin
i instead. Furthermore, all period-related checks (Lines 7, 16, and 19)

are converted to the equivalent comparison of Ui to Umin
i or Umax

i .

For our improved algorithm (Algorithm 2), we compare three implementations:

1. The set of tasks Γ is implemented as an array (std::vector), which is sorted prior to

executing the algorithm. Inserting or removing tasks takes linear time to move array

7The processor supports a CPU clock speed of 1.4 GHz. However, as noted in [26], this frequency cannot
be sustained continuously, and may lead to throttling and instability. To maintain predictability, we boot the
Raspberry Pi with a constant 700 MHz CPU clock speed, set the GPU to 250 MHz, and disable throttling.
Details can be found at https://www.raspberrypi.com/documentation/computers/config_txt.html

27

https://www.raspberrypi.com/documentation/computers/config_txt.html

elements (and, in the case of insertion, to find the location to insert to maintain sorted

order).

2. The set of tasks Γ is implemented as a balanced binary tree (std::set), sorted by

ϕi. Constructing the set takes quasilinear time, but subsequent insertion and removal

requires only logarithmic time, while enabling sequential iteration over tasks in sorted

order.

3. The set of tasks Γ is implemented as a linked list (std::list), sorted by ϕi. Removing

a task takes constant time, but adding a task takes linear time to find the location to

insert in sorted order.

2.4.2 Generating Task Sets

We generate sets Γ of tasks τi using the following methodology:

1. We consider sets of n tasks, generating 10 000 sets for each value of n in 2–50.

2. Each set of tasks has a total maximum utilization Umax
sum selected at random uniformly

from (1.0, 2.0] and a total minimum utilization Umin
sum selected at random uniformly from

(0.0, 1.0].

3. We apply the Dirichlet Rescale (DRS) algorithm [70] to distribute the total maximum

utilization Umax
sum in an unbiased random fashion across the Umax

i values for each in-

dividual task. We note that, in this context, the result should be equivalent to an

application of the earlier UUniFast and UUniSort techniques [24].

4. We then apply the DRS algorithm to distribute the total minimum utilization Umin
sum

across the individual Umin
i values. DRS allows us to select these values uniformly from

the space of selections satisfying the conditions that (i) the total
∑

i U
min
i equals the

specified Umin
sum and (ii) each value Umin

i does not exceed the corresponding Umax
i .

5. Each task τi is assigned an elasticity Ei at random, selected uniformly from the range

(0, 1].

28

2.4.3 Execution Time of Compression for Schedulability

We execute our implementations of Algorithms 1 and 2 for each set of tasks thus generated

to compress the set of tasks to a total utilization of 1.0 (to be EDF-schedulable on a single

processor). We measure execution time by reading directly from the cycle counter, reporting

elapsed CPU cycles. We separately measure the initialization and compression times for each

algorithm. For Buttazzo’s procedure in Algorithm 1 , initialization involves computing the

Umin
sum value and checking whether it exceeds UD, while compression is the do . . . while loop

in the algorithm. For our improved algorithm in Algorithm 2, compression is the forall loop

that iterates over tasks in order of their ϕi parameters. The dominant contribution to the

algorithm’s execution time complexity is the sorting of tasks by their ϕi values; we therefore

include in initialization time both the computation of Usum and Esum as well as the total

time to calculate each task’s ϕi value and establish the sorted order. For the array and list,

the sort is performed over the complete data structure; for the binary tree, we insert tasks

individually as their ϕi values are calculated. The results allow us to answer the following

questions.

Do the values selected for Umax
sum or Umin

sum affect execution time?

For the 10 000 sets of 50 tasks generated, we produce 3 scatter plots for the initialization

(“Init”) and compression (“Compress”) times of each implementation: these plot cycles

against the values Umin
sum , Umax

sum , and the absolute distance between them,
(
Umax
sum − Umin

sum

)
.

These are shown in Figure 2.4. We do not observe a significant dependence of

execution time on the minimum and maximum utilization of the task set. As

such, in our subsequent evaluations, we consider data in aggregate, rather than grouping by

utilization values.

29

(a) Buttazzo Init. (b) Buttazzo Init. (c) Buttazzo Init.

(d) Buttazzo Compress. (e) Buttazzo Compress. (f) Buttazzo Compress.

(g) Improved Init: Array. (h) Improved Init: Array. (i) Improved Init: Array.

(j) Improved Compress: Array. (k) Improved Compress: Array. (l) Improved Compress: Array.

30

(m) Improved Init: Tree. (n) Improved Init: Tree. (o) Improved Init: Tree.

(p) Improved Compress: Tree. (q) Improved Compress: Tree. (r) Improved Compress: Tree.

(s) Improved Init: List. (t) Improved Init: List. (u) Improved Init: List.

(v) Improved Compress: List. (w) Improved Compress: List. (x) Improved Compress: List.

Figure 2.4: Execution times by utilization metrics for 50 tasks.

31

How well does our improved algorithm perform in reality?

We separately measure the mean, median, and maximum execution times to initialize (“Init”)

and compress (“Compress”) the 10 000 sets of tasks generated for each size n from 2–50.

These times, as well as the total, are reported in Figure 2.5.

As expected, the time to initialize Buttazzo’s algorithm (Algorithm 1) is much faster than

our improved algorithm (Algorithm 2), which has to sort tasks by their ϕi values. Of our

three implementations of our algorithm, the linked list was the slowest to initialize, while

the array was the fastest; we assume that this was due to the data locality and simplicity of

managing the data structure.

Also, as expected, the compression time for Buttazzo’s algorithm was much longer

than for our algorithm. On average, the array tended to be the fastest, followed by the

linked list, followed by the binary tree.8 This makes sense; while all three data structures

enable linear time traversal, the array is the simplest to iterate (in fixed-size strides) and has

the best data locality; the linked list is still simple, but requires following pointers between

nodes, and does not have as good of locality; and the binary tree requires even more complex

pointer chasing.

Most interesting, we observe that our algorithm does not strictly dominate Buttazzo’s algo-

rithm in total running time. In fact, in the average case, Buttazzo’s algorithm performs better

because of the low initialization overhead. In the worst case, both Buttazzo’s algorithm and

the array-based implementation of our algorithm dominate the other two implementations,

but neither clearly dominates the other. This is partially explained by the fact that the

compression times for Buttazzo’s algorithm grow roughly linearly with the number of tasks,

rather than quadratically, for sets of up to 50 tasks. Under non-pathological cases, the outer

loop (Line 6 of Algorithm 2) of Buttazzo’s algorithm only runs a handful of times.

8We do not observe a significant difference in the trends of worst-case compression times versus number
of tasks between each of the three implementations.

32

(a) Mean Init Times. (b) Mean Compress Times. (c) Mean Total Times.

(d) Median Init Times. (e) Median Compress Times. (f) Median Total Times.

(g) Max Init Times. (h) Max Compress Times. (i) Max Total Times.

Figure 2.5: Performance scaling with number of tasks.

33

Nonetheless, we argue that our algorithm is better in practice. While there is not a clear

advantage to using our algorithm to perform compression over a complete set of tasks,

there is no clear disadvantage either. Furthermore, our algorithm performs better in

situations where initialization has already happened, e.g. for online adjustment in

response to changes in available utilization. In this case, when only compression needs to

occur, associated overheads are summarized in Table 2.2. The worst execution times that we

observed for the array-based implementation of our algorithm were 3.45× faster than those

of Buttazzo’s algorithm when just compressing tasks.

Buttazzo Binary Tree Linked List Array
mean 51 380 11 157 (4.61×) 9 617 (5.34×) 8 616 (5.96×)
median 54 315 11 175 (4.86×) 9 629 (5.64×) 8 626 (6.30×)
maximum 97 342 36 231 (2.69×) 31 984 (3.04×) 28 202 (3.45×)

Table 2.2: Greatest mean, median, and maximum compression times (cycles) observed for
up to 50 tasks. Values in parentheses indicate speedup compared to Buttazzo’s algorithm.

Furthermore, as we will demonstrate, there is a clear advantage to using our algorithm during

online admission of a new task.

2.4.4 Execution Time of Task Admission

We modify our implementations of Algorithms 1 and 2 to measure admission of a single task.

For the sets of n tasks of size 2–50 that we already generated, we apply each algorithm to

the first n− 1 tasks. We then measure the time to compress them after adding the final task

from the set. For Buttazzo’s algorithm, this requires rerunning the complete do . . . while

loop. For our algorithm, this requires 1 computing the value ϕi of the new task τi according

to Equation 2.7, then 2 adding its utilization and elasticity to Usum (Equation 2.4) and Esum

(Equation 2.5) or ∆ (Equation 2.6), as appropriate. The task is then 3 inserted into the

sorted container, before finally 4 executing the forall loop in Algorithm 2.

34

(a) Mean Admission Times. (b) Median Admission Times. (c) Max Admission Times.

Figure 2.6: Execution time for admitting the nth task.

Results are illustrated in Figure 2.6. We observe that, when admitting a new task, all

implementations of our improved algorithm dominate Buttazzo’s algorithm for more than

3 tasks in the average case, and more than 10 tasks in the worst case. The array (which

enables logarithmic time search for the location to insert the new task, then requires linear

time to perform the insertion) performs the best on average, followed by the balanced binary

tree (which allows logarithmic-time insertion, but requires pointer chasing), then the linked

list (which allows constant-time insertion after linear time search for the insert location).

Overheads and speedups are summarized in Table 2.3. The array-based implementation of

our algorithm admits tasks 2.53× faster than Buttazzo’s algorithm in the worst case.

Buttazzo Binary Tree Linked List Array
mean 28 165 13 246 (2.13×) 16 704 (1.69×) 11 043 (2.55×)
median 27 931 13 274 (2.10×) 16 698 (1.67×) 11 053 (2.53×)
maximum 79 967 39 213 (2.04×) 41 044 (1.95×) 31 566 (2.53×)

Table 2.3: Greatest mean, median, and maximum task admission times (cycles) observed
for up to 50 tasks. Values in parentheses indicate speedup compared to Buttazzo’s algorithm.

2.5 Conclusions

In this chapter, we have presented a new approach to elastic scheduling of implicit-deadline

tasks. Our proposed algorithm, listed in Algorithm 2, achieves compression in time quasi-

linear in the number of tasks. Furthermore, it runs in linear time when adjusting online to

dynamic changes in system state, e.g., during admission of a new task, or when available

35

utilization decreases. Compared to Buttazzo’s algorithm in [39, 40], which runs in time

quadratic in the number of tasks, our approach has better time complexity.

In practice, we have demonstrated that Buttazzo’s original algorithm [37, Figure 9.29] for

elastic scheduling [39, 40] is significantly slower to compress tasks compared to our proposed

approach in Algorithm 2. However, initializing a sorted data structure dominates the exe-

cution time of Algorithm 2. As a result, for smaller numbers of tasks (up to 50), there is

no clear advantage to using our algorithm over that of Buttazzo (or vice versa) to compress

complete task sets for schedulability.

However, we observed that our algorithm achieves significant speedup during ad-

mission of new tasks. Because admission control involves online scheduling decisions, it

is especially important that its overhead remains bounded. Therefore, in situations where

initialization has already occurred — e.g., during admission of a new task or in response

to changes in available utilization — Algorithm 2 is significantly faster than Buttazzo’s

approach. As these are more likely to be the scenarios encountered during dynamic online

scenarios where the adaptation must have predictably low overheads, our proposed approach

has clear advantages.

36

Chapter 3

Efficient Algorithms for

Multiprocessors

3.1 Introduction

Buttazzo’s elastic scheduling model [39, 40] only considered uniprocessor scheduling of

implicit-deadline tasks. The growing prevalence of multicore CPUs, even in embedded plat-

forms, have enabled the deployment of applications that utilize the increase in available

processor resources. This has prompted a growing body of work in the analysis of algo-

rithms that schedule sets of sequential tasks on multiple processors.

Though recent advances in multicore embedded platforms have made lightweight, low-cost,

yet very capable systems highly accessible, constraints on size, weight, and power (SWaP)

nonetheless often limit the number of tasks that can be safely scheduled on such systems. Orr

and Baruah therefore extended elastic scheduling theory to multiprocessors [118], enabling

task systems to adapt to overload on multicore platforms. They considered both the global

and partitioned scheduling paradigms, proposing algorithms for elastic scheduling of tasks

under the fluid [19], global EDF [93], PriD [69], and partitioned EDF schedulers [99]. Their

model retains Buttazzo’s semantics of proportional compression, with constraints on each

task’s minimum utilization. However, instead of compressing to a utilization bound, they

extend the model to apply compression until the system is schedulable; this provides more

generality for multiprocessor scheduling models for which feasibility is not simply verified

according to total utilization.

Orr and Baruah evaluate the ability of elastic scheduling to find feasible utilization assign-

ments for each considered scheduling paradigm; however, they do not assess the execution

37

time of their proposed algorithms. In this chapter, we consider two of the multiprocessor

elastic algorithms they extended — fluid and partitioned EDF scheduling — with the goal

of improving their execution time performance. The intention of this chapter is to use em-

pirical evidence to provide guidance toward the selection of an appropriate elastic scheduling

approach in the context of given scenarios.

Under the fluid abstraction, a set of tasks is deemed schedulable if (i) their total utilization

does not exceed the number of processor cores, and (ii) no individual task’s utilization

exceeds 1. We therefore demonstrate that it is straightforward to extend our improved

algorithm for implicit-deadline elastic scheduling — Algorithm 2 in Chapter 2 — to fluid

scheduling by using the number of processor cores as the utilization bound.

Partitioned EDF scheduling is equivalent to the bin-packing problem, and is therefore NP-

hard [99]. Orr and Baruah extend elastic scheduling to partitioned EDF by introducing

a term representing the “amount” of compression to be applied to the task system [118].

They iteratively increase this term at a specified granularity, at each step checking feasibility

using three bin-packing heuristics; if any one succeeds, the algorithm terminates. We consider

three alternative approaches. First, the order in which heuristics are attempted is modified

according to their ability to find a suitable partition. Second, we employ a binary, rather

than iterative, search over the space of possible compression constrained by the minimum

utilizations of each task. Third, using the insight that under partitioned EDF scheduling, a

set of tasks is guaranteed to be schedulable if its utilization does not exceed a function of

the number of cores, we apply Algorithm 2 for compressing to this utilization bound.

For each proposed approach to elastic scheduling for partitioned EDF, we compare the trade-

offs imposed by faster, yet more pessimistic, compression. Through extensive evaluation, we

demonstrate that using a binary search over the amount of compression, while changing the

application of partitioning heuristics, improves execution time without significant overcom-

pression. Furthermore, applying Algorithm 2 may be beneficial when rapid adaptation is

necessary.

The remainder of this chapter is organized as follows:

• Section 3.2 develops the system model used in this chapter and provides necessary

background on existing elastic models for fluid and partitioned EDF scheduling.

38

• Section 3.3 discusses the straightforward application of our improved algorithm for

elastic scheduling of implicit-deadline tasks on a uniprocessor (Algorithm 2) to fluid

scheduling.

• Section 3.4 proposes three alternative approaches to elastic scheduling of partitioned

EDF tasks.

• Section 3.5 evaluates these in the context of Orr and Baruah’s original partitioned EDF

algorithm [118].

• Section 3.6 concludes the chapter.

3.2 The Multiprocessor Elastic Scheduling SystemModel

In [118], Orr and Baruah extended elastic models to scheduling of sequential, implicit-

deadline tasks under the global and partitioned multiprocessor scheduling paradigms. In

these models, tasks are parameterized as in Section 2.2.2. But unlike Buttazzo’s original

elastic scheduling model [39, 40], tasks are provided multiple processor cores on which to

execute.

We state the problem as follows: Given a set Γ of n implicit-deadline tasks to execute

preemptively on m cores, assign the maximum utilization Ui to each task τi that satisfies

these conditions:

1. The task system is schedulable on m cores according to the selected algorithm.

2. Any task for which Ei = 0 is considered inelastic; we consider this equivalent to the

case that Umin
i = Umax

i .

3. For all other tasks τi and τj, if Ui > Umin
i and Uj > Umin

j , then Ui and Uj must satisfy

the relationship of Equation 2.2.

Conditions (2) and (3) match those of Buttazzo’s model (listed in Section 2.2.2). Notice,

however, that condition (1) has become more general to capture the semantics of multipro-

cessor schedulability, while remaining applicable to a single processor if m=1.

39

In [118], Orr and Baruah extended elastic scheduling to the fluid, global EDF, and PriD

global scheduling paradigms, as well as to partitioned EDF. Under global multiprocessor

scheduling of recurrent tasks, individual tasks are not restricted to executing upon specific

processors. Instead, any active job may execute upon any available processor, and a pre-

empted job may later resume execution on a different processor. This differs from partitioned

multiprocessor scheduling, under which each task is assigned to a specific core in many-to-

one fashion. In other words, jobs from a single task can only execute on the single core to

which they are assigned, but multiple tasks may be assigned to the same processor.

3.2.1 Fluid Scheduling

Under the fluid scheduling paradigm [19], individual tasks are assigned a fraction f of a

processor at each instant in time. Implementations exist to approximate it, e.g., under the

RT-FAIR scheduling framework in LITMUSˆRT [41]. It is a convenient abstraction that

considers a set Γ of tasks τi to be schedulable on m cores so long as the following conditions

hold:

1. The total utilization
∑

i Ui of Γ does not exceed m.

2. The individual utilizations Ui of each task τi do not exceed 1.

Orr and Baruah [118] demonstrated a straightforward extension of Buttazzo’s model [39, 40]

to fluid scheduling. So long as the maximum utilization Umax
i for every task τi does not

exceed 1, a simple application of [39, Figure 3] (reproduced as Algorithm 1) with UD=m will

assign the correct utilization to each task.

3.2.2 Partitioned EDF

While fluid scheduling is a convenient abstraction, it often remains impractical in real sys-

tems [118]. Partitioned scheduling provides a more practical paradigm. Under partitioned

EDF scheduling, each task is assigned to a single processor core, though each core may be as-

signed multiple tasks. On an individual core, jobs are prioritized according to their absolute

deadlines — in other words, each core schedules its tasks in an EDF manner independently

40

of the other cores. The problem of deciding whether a set of tasks are schedulable on m

cores under partitioned EDF can be stated as follows:

Given a set Γ of n tasks τi, each having utilization Ui, is there a partition of tasks

into m sets such that the sum of utilizations in any set does not exceed 1?

This is equivalent to the bin-packing problem, and is therefore NP-hard in the strong sense.

Nonetheless, there exist heuristic algorithms to solve bin-packing problems, and Lopez et al.

have compared several in the context of partitioned EDF scheduling [99].

The elastic version of the problem, proposed by Orr and Baruah [118], applies this statement

of partitioned EDF schedulability to condition (1) listed above for multiprocessor elastic

scheduling. They observe that the degree by which compression is applied to a task system

can be quantified by the relationship in Equation 2.2. In doing so, they introduce a term λ

that is representative of this relationship, and express the utilization Ui of each task τi as:

Ui(λ)
def
= max

(
Umax
i − λEi, U

min
i

)
(3.1)

The value of λ beyond which the utilization Ui of task τi takes its minimum value Umax
i can

therefore be derived as follows:

Umin
i = Umax

i − λEi → λ =

(
Umax
i − Umin

i

Ei

)
which is equal to the value ϕi in Equation 2.7. As such, we may hereafter refer to ϕi

interchangeably as λmax
i . For a complete set of tasks Γ we also define the term λmax as the

maximum compression that may be applied to the task system:

λmax def
= max

τi

(
Umax
i − Umin

i

Ei

)
= max

τi
(λmax

i) (3.2)

The problem of elastic scheduling under Buttazzo’s model [39, 40] can therefore be reduced

to the problem of finding the minimum value of λ for which a set of tasks are schedulable.

When applied to partitioned EDF scheduling, Orr and Baruah [118] observe that finding

the optimal value of λ to guarantee schedulability is NP-hard. Instead, they propose an

41

approximate search technique that iterates over values of λ in the interval [0, λmax] with

some “granularity” ϵ. For each value of λ, they assess schedulability by attempting three

of the heuristics for partitioned EDF from [99]; if any one deems feasibility, the algorithm

terminates. They employ the “first fit,” “worst fit,” and “best fit” heuristics, with tasks τi

considered in order of decreasing utilization Ui(λ).

• First fit: Each task considered in order is assigned to the first processor on which it

fits.

• Worst fit: Each task considered in order is assigned to the processor with the maxi-

mum remaining capacity.

• Best fit: Each task considered in order is assigned to the processor with the minimum

remaining capacity on which it fits.

For n tasks on m cores, sorting tasks and partitioning them with each heuristic takes at

most Θ (n log n+ n ·m) time. As this must be performed for each tested value of λ — of

which there are up to
(⌊

λmax

ϵ

⌋
+ 1

)
— the overall complexity is:

Θ

(
λmax

ϵ
· (n log n+ n ·m)

)

3.3 Fluid Scheduling

3.3.1 Extension of the Efficient Algorithm

As discussed in Section 3.2.1, Orr and Baruah [118] demonstrated a straightforward ex-

tension of Buttazzo’s model [39, 40] to fluid scheduling by proportionally compressing task

utilizations from their total maximum utilization Umax
sum to the schedulable bound UD = m,

where m is the number of processor cores. This is achieved by running procedure Elas-

tic Compression [39, Figure 3] (reproduced in this dissertation as Algorithm 1).

As we showed in Chapter 2, our efficient procedure Elastic Partitioned EDF in Algo-

rithm 2 assigns the same utilizations as Buttazzo’s algorithm. It can therefore be applied to

42

fluid scheduling to achieve compression in O(n logn) time, or to update utilization assign-

ments in linear time during admission of a new task, removal of a task, or a change in the

number of available processor cores.

3.3.2 Applicability of Uniprocessor Results

Elastic compression for task sets under fluid scheduling needs only to be applied when the

maximum total task utilization exceeds the number of available processor cores; i.e., when

Umax
sum > m. And it can find a feasible assignment of utilizations only when the minimum

total task utilization does not exceed the number of cores; i.e., when Umin
sum < m. This differs

semantically from elastic scheduling of uniprocessor EDF tasks only in the value chosen for

m; in the uniprocessor case, m is 1.

In Section 2.4.3, we demonstrated no significant relationship between execution time and

the values Umax
sum and Umin

sum , nor the distance between them. Therefore, similar conclusions

may be drawn for fluid scheduling as for uniprocessor scheduling of implicit deadline tasks.

In Sections 2.4.3 and 2.4.4, we demonstrated that our improved algorithm (Algorithm 2)

is significantly faster to compress tasks compared to Buttazzo’s original algorithm in [39,

Figure 3] for the uniprocessor case after initializing the sorted data structure. This suggests

that our improved algorithm should be applied to fluid scheduling when compressing to

adapt during online execution, such as when the number of available processor cores change,

or when admitting a new task.

3.4 Partitioned EDF

In this section, we propose three alternative approaches to elastic scheduling of partitioned

EDF tasks. First, the order in which heuristics are applied is modified according to their

ability to find a suitable partition. Second, we consider a binary, rather than iterative,

search over the space of compression allowed due to the minimum utilization constraint on

each task. Third, using the insight that under partitioned EDF scheduling, a set of tasks is

guaranteed to be schedulable if its utilization does not exceed a function of the number of

cores, we apply Algorithm 2 for compressing to this utilization bound.

43

3.4.1 Heuristic Selection and Order

In [118], Orr and Baruah determine whether a feasible partition exists for each tested value

of λ using the first fit, worst fit, and best fit heuristics. Their reasoning is that using three

heuristics instead of just one increases the chances of identifying a feasible partition, while

the additional operations imply a constant multiplier to execution time, and therefore do

not affect the execution time complexity.

Pragmatically, however, achieving even a constant-time speedup may be important for de-

ployment to a real system. To this end, we consider whether all three heuristics are needed.

Indeed, the worst fit achieves a lower theoretical bound on utilization for a given number of

processor cores [12]. Eliminating worst fit achieves faster execution, and may be appropriate

if any task sets it deems feasible are also feasible using the first fit or best fit heuristics. In

Section 3.5.3, we empirically demonstrate this to be true for a large number of synthetic task

sets.

Furthermore, we propose to change the order in which heuristics are considered. We demon-

strate in Section 3.5.3 that the best fit heuristic is slightly more likely to identify a feasible

partition than the first fit for the synthetic task sets considered, and applying it first may

enable slightly earlier termination of the algorithm.

3.4.2 Binary Search

We observe that a straightforward optimization may be applied to the approach of Orr and

Baruah [118] summarized above. Rather than iterating over all values of λ ∈ [0, λmax] with

granularity ϵ in sequential order, we can instead perform a binary search in time Θ
(
log λmax

ϵ

)
,

as outlined in Algorithm 3. Thus, total time complexity is reduced to

Θ

(
(n logn+ n ·m) · log

(
λmax

ϵ

))
(3.3)

Algorithm 3 uses the notation Γ(λ) from Baruah [13], denoting the task system obtained

from Γ by applying compression λ, i.e., with each task τi having a utilization Ui(λ) according

to Equation 3.1. The algorithm first checks if Γ(0) — the uncompressed task set — is

44

Algorithm 3: Elastic Partitioned EDF(Γ,m)

Input: A list Γ of elastic tasks to schedule on m processor cores
Output: The value λ to obtain feasibility

1 λmax ← 0
2 forall τi ∈ Γ do

3 λmax
i ← Umax

i −Umin
i

Ei

4 λmax ← max (λmax, λmax
i)

5 end

6 if Γ(0) is schedulable on m cores then return 0
7 if Γ(λmax) is not schedulable on m cores then return Infeasible

8 λhi ← λmax

9 λlo ← 0

10 do
11 λ← (λhi − λlo) /2
12 if Γ(λ) is schedulable on m cores then λhi ← λ
13 else λlo ← λ

14 while λhi − λlo > ϵ
15 return λhi

schedulable by partitioned EDF on m cores; schedulability may be determined according to

the heuristics employed by Orr and Baruah [118]. If so, it returns the value λ = 0. It then

checks if Γ(λmax) is schedulable; if not, the algorithm fails. Otherwise, it performs binary

search over values of λ in the range [0, λmax]: λhi (initialized to λmax) tracks the smallest value

of λ tested for which Γ(λ) is schedulable, while λlo (initialized to 0) tracks the largest tested

value for which Γ(λ) is not schedulable. At each step, the algorithm checks schedulability

of Γ(λ); if feasibility is determined, λhi is decreased to the tested value of λ; otherwise, λlo

is increased to the tested value of λ. The algorithm terminates when the difference between

λhi and λlo does not exceed ϵ.

Optimality of Search for λ

We now discuss and prove results about the optimality of iterative and binary searches for

partitioned EDF scheduling. We begin by introducing the term λ∗
Γ,m, defined as the smallest

value of λ for which Γ(λ) is schedulable by partitioned EDF on m cores.

45

The first result is intuitive: it says that, once you compress a task system such that it is

schedulable, it will remain schedulable when compressed more.

Theorem 2. Given a value of λ, if Γ(λ) is partitioned EDF schedulable on m cores, then

Γ(λ′) is also partitioned EDF schedulable for every value of λ′ ≥ λ.

Proof. Consider a set Γ of n tasks τi. If Γ(λ) is partitioned EDF schedulable on m cores,

then there exists a partition {Γ1, . . . ,Γm} of Γ such that the following condition holds:

∀j ∈ 1..m,
∑
τi∈Γj

Ui(λ) ≤ 1

Consider a value λ′ ≥ λ. For each task τi,

Ui(λ
′) = max

(
Umax
i − λ′Ei, U

min
i

)
≤ max

(
Umax
i − λEi, U

min
i

)
= Ui(λ)

Since Ui(λ
′) < Ui(λ), it follows that:

∀j ∈ 1..m,
∑
τi∈Γj

Ui(λ
′) ≤

∑
τi∈Γj

Ui(λ) ≤ 1

So there remains a partition of Γ(λ′) for which the condition holds.

It follows that Γ(λ) is partitioned EDF schedulable for every value of λ that exceeds λ∗
Γ,m.

This allows us to say something about the optimality of the elastic algorithms for partitioned

EDF scheduling.

Theorem 3. The values of λ obtained by using the iterative approach of Orr and Baruah [118]

or the binary search in Algorithm 3 will be within ϵ of λ∗ if an exact test of partitioned EDF

schedulability is performed for Γ(λ) at each considered value of λ. In other words, λ− λ∗ < ϵ.

Proof.

• Iterative Approach: The algorithm tests λ = 0 first; if λ∗ = 0, then the algorithm

returns this value. Otherwise, consider the value λ returned by the algorithm: Γ(λ) is

feasible, but Γ(λ− ϵ) is not feasible. It follows from Theorem 2 that λ∗ > λ− ϵ, which

implies λ− λ∗ < ϵ.

46

• Binary Search Approach: The algorithm again tests λ = 0 first; if λ∗ = 0, then

the algorithm returns this value. Otherwise, consider the value λhi returned by the

algorithm: Γ(λhi) is feasible, but Γ(λlo) is not; thus, by Theorem 2, λ∗ > λlo. Due to

the algorithm’s termination condition, we know that λhi − λlo ≤ ϵ, and so λ− λ∗ < ϵ.

Corollary 1. The values λit obtained by the iterative approach of Orr and Baruah [118]

and λbs obtained by Algorithm 3 will be within ϵ of each other if an exact test of partitioned

EDF schedulability is performed for Γ(λ) at each considered value of λ. In other words,

|λit − λbs| < ϵ.

Proof. From Theorem 3, λit − λ∗ < ϵ and λbs − λ∗ < ϵ, so |λit − λbs| < ϵ.

This tells us that, given an exact schedulability test for partitioned EDF, both algorithms

will find values for λ that are within ϵ of the optimal value λ∗ and are within ϵ of each other.

However, no such guarantee can be made if schedulability is determined by heuristic.

We prove this by example. Consider the set of 32 tasks with parameters listed in Appendix A

to be scheduled on 8 cores. When checking schedulability by determining if any of the first

fit, worst fit, and best fit heuristics find a feasible partition, the iterative approach of Orr and

Baruah [118] returns a value λit = 0.290912449 for ϵ = 0.000538727676. However, the binary

search in Algorithm 3 returns a value λbs = 0.300403804. In this case, λbs − λit ≈ 0.009 > ϵ.

It follows that:

Theorem 4. The difference between the values λit obtained by the iterative approach of Orr

and Baruah [118] and λbs obtained by Algorithm 3 might exceed ϵ if heuristic tests of EDF

schedulability are used.

This has a surprising implication, which follows from the above results.

Corollary 2. Given a value of λ, if Γ(λ) is identified by heuristic to be partitioned EDF

schedulable on m cores, then Γ(λ′) might not be identifiable as such for some value of λ′ > λ.

The implication, then, is that while binary search is faster, it might overcompress a set of

tasks by more than ϵ when applying heuristic partitioning (of course, the iterative search

47

might overcompress instead). However, as we show in Section 3.5.4, binary search com-

presses, on average, only 0.262×ϵ more than iterative search for the sets of tasks we evalu-

ated.

3.4.3 Application of Algorithm 2

In [12], it is observed that under the first-fit and best-fit heuristics, a set Γ of tasks τi are

schedulable on m processor cores if their total utilization
∑

i Ui does not exceed (m+ 1)/2

and if no single task’s utilization exceeds 1. Thus, the efficient procedure outlined in Algo-

rithm 2 can be adopted by compressing to a desired utilization UD=(m + 1)/2, achieving

compression in O(n logn) time.

We note that (m+ 1)/2 is an upper-bound on the utilization required by the first-fit and

best-fit heuristics. Thus, the amount of compression resulting from an application of this

approach might be more than necessary to achieve partitioned EDF schedulability, even

under the above-listed heuristics. It follows that the approach of Orr and Baruah [118],

while slower, might achieve better results — both in terms of compressing utilizations less

aggressively, and by identifying more schedulable task sets. We evaluate these tradeoffs in

Section 3.5.4.

3.5 Evaluation

We now compare our proposed approaches in Section 3.4 to elastic partitioned EDF schedul-

ing of implicit-deadline tasks to the original approach proposed by Baruah and Orr [118].

3.5.1 Implementation

Evaluations are performed in the same fashion on the same Raspberry Pi 3 Model B+ as

described in Section 2.4.1. Tasks τi are also represented using the same data structure.

We compare the following five implementations:

48

1. Iter: The iterative approach from [118]. For each value of λ tested, heuristics to

check schedulability are applied in the order specified in [118]: (1) first fit, (2) worst

fit, then (3) best fit. The algorithm terminates once any of these deems the task system

schedulable.

2. Iter-Order: The same iterative approach, but heuristics are applied according to

their ability to find a feasible partition; this means that the algorithm is likely to

terminate earlier. We determine this order empirically.

3. BS: Our proposed binary search approach in Algorithm 3. Heuristics are applied in

the same order specified in [118].

4. BS-Order: The same binary search approach, but heuristics applied in the empirically-

determined best order.

5. Util: The utilization-based approach of Algorithm 2, with UD = (m+ 1)/2. We use

the array-based implementation, as this was observed to perform best in our evaluations

in Section 2.4.3.

3.5.2 Generating Task Sets

We generate sets Γ of tasks τi according to Orr and Baruah’s methodology in [118]:

• We consider multiprocessor platforms with m = 4, 8, and 16 identical processor cores.

• For each number of cores m, we consider sets of n tasks, with n = 2m, 4m, and 8m.

• The maximum utilization Umax
i assigned to each task τi is selected at random, but

we constrain these values to be no more than a parameter α. We separately consider

values of α ∈ {0.6, 0.8, 1.0}.

• Each set of tasks has a total maximum utilization Umax
sum of u·m·α. We separately

consider values of u ∈ {1.1, 1.5, 1.9}.

• For each combination of values m, n, α, and u, we generate 1000 sets of tasks.

49

• We use the DRS algorithm [70] to distribute the total maximum utilization Umax
sum across

individual Umax
i values. DRS allows us to select these values uniformly from the space

of selections satisfying the conditions that (i) the total
∑

i U
max
i equals the specified

Umax
sum and (ii) each value Umax

i does not exceed the constraint imposed by the chosen

value of α.

• Individual minimum utilizations Umin
i are assigned at random, selected uniformly from

the range (0, Umax
i].

• Elastic coefficients Ei are assigned at random, selected uniformly from the range (1, 5].

For each set of tasks, we compute λmax per Equation 3.2. For all implementations of the

algorithm in [118], we use the same “granularity” ϵ = λmax

1000
as Orr and Baruah.

3.5.3 Determining a Heuristic Order

For each task set, we run implementation Iter to find the minimum value of λ for which

at least one of the three considered partitioning heuristics determines feasibility. Then for

each heuristic, we count how many of the task sets Γ it determines to be feasible at Γ(λ).

Results are summarized in Table 3.1.

Heuristic Count Percentage of Total
First Fit 77 041 95.1%
Worst Fit 14 543 18.0%
Best Fit 78 645 97.1%
Total 81 000 100%

Table 3.1: Number of task sets determined feasible by each heuristic.

We observe that, of the 135 000 compressed task sets Γ(λ) considered, the best fit heuristic

identifies a feasible partition at the highest rate, while first fit does almost as well;

therefore, we implement the Iter-Order and BS-Order approaches to first attempt the

best fit, followed by the first fit. The worst fit heuristic does the worst by far; furthermore,

there are no task sets for which the worst fit heuristic identifies a feasible task set that is

not also identified by both the best and first fit. As such, we eliminate the worst fit

heuristic from both implementations.

50

3.5.4 Comparison of Improvements

For each set Γ of tasks τi, we note for each implementation (i) its execution time in CPU

cycles, (ii) whether it deems Γ to be schedulable, and if so, (iii) the amount of compression

λ it requires. This allows us to answer the following questions.

How much is gained by changing heuristics?

We begin by comparing the execution times of the Iter and BS implementations to those of

the Iter-Order and BS-Order implementations. Results are illustrated in Figures 3.1–

3.4, which show — for each combination of m, α, n, and u — the median and maximum

execution times in processor cycles. Figure 3.1 compares the median execution times of Iter

and Iter-Order, while Figure 3.2 compares the maximum execution times. Figures 3.3

and 3.4 compare the median and maximum execution times for BS and BS-Order.

We observe that by applying best fit bin packing, then first fit, and by not applying worst

fit bin packing, the time to heuristically assess partitioned EDF schedulability is

reduced dramatically. The median execution time of Iter-Order is up to 2.40× faster

than Iter, and the maximum execution time is up to 2.41× faster. The median execution

time of BS-Order is up to 1.76× faster than BS, and the maximum execution time is up

to 2.23× faster.

51

Figure 3.1: Median execution times for Iter and Iter-Order in CPU Cycles.

52

Figure 3.2: Maximum execution times for Iter and Iter-Order in CPU Cycles.

53

Figure 3.3: Median execution times for BS and BS-Order in CPU Cycles.

54

Figure 3.4: Maximum execution times for BS and BS-Order in CPU Cycles.

55

Does performing binary search affect the amount of compression applied?

Per Theorem 4, the difference between the λ values returned by implementations Iter and

BS might exceed ϵ. We quantify this, and consider whether one implementation consistently

compresses more than the other.9

Results are illustrated in Figure 3.5, which shows — for each combination of m, n, α, and u

for which any task sets required compression — the distribution of differences (λbs − λit)/ϵ

between the value λbs returned by BS and λit returned by Iter, normalized by ϵ. Task

sets not requiring compression (λ = 0) are not included, nor are those not determined to be

schedulable under any amount of compression. Where outliers extend beyond the plotted

boundaries, the y-axis labels denote the maximum value.

We observe that, although the values λbs and λit typically do not differ by more than ϵ,

there are cases where they differ by much more. For 16 tasks on 4 cores, with α = 1.0 and

u = 1.9, λbs exceeds λit by more than 200×ϵ. Generally, we see that outliers occur where λbs

is larger than λit. This makes sense due to the behavior of binary search: search proceeds

downward in factors of 2 from larger values, and if Γ(λ) is deemed unschedulable for some

tested value of λ greater than the optimal λ∗, the binary search will continue to test larger

values.

9The Iter-Order implementation will always return the same value for λ as Iter; similarly for BS-
Order and BS, so we do not separately consider these here.

56

(a) m = 4 Cores.

57

(b) m = 8 Cores.

58

(c) m = 16 Cores.

Figure 3.5: Difference between λbs and λit, normalized by ϵ.

59

What are the tradeoffs between execution time and amount of compression re-

quired?

To further evaluate the implications of the observed outliers in (λbs − λit)/ϵ on the average-

case compression of each algorithm, and to consider what is otherwise gained in speedup,

we perform a side-by-side comparison of the execution time and achieved λ values for our

Iter-Order and BS-Order implementations. Because we have already shown that these

implementations are significantly faster than their respective Iter and BS counterparts, we

remove the latter from further comparison.

As before, we only consider those task sets that are schedulable with compression (λ > 0).

For each combination of m, α, n, and u, Figure 3.6 illustrates the median and maximum

speedup achieved by BS-Order over Iter-Order. We do not plot mean values of λ

produced by each implementation, as their average compression values agree closely,

differing by less than 0.262×ϵ for every considered combination.

We also observe that BS-Order achieves significant speedups, especially for larger

values of α and u. These task sets have larger total maximum utilizations Umax
sum , and therefore

tend to need more compression to achieve schedulability. In such cases, the iterative approach

takes longer to reach the higher λ value, so the binary search is significantly faster. The

median speedups for each combination were as high as 51×, while the maximum speedup

observed was 86×.

60

Figure 3.6: Speedups achieved by BS-Order over Iter-Order.
61

How well does our application of Algorithm 2 perform?

To this point, we have determined that BS-Order performs significantly faster than the

other implementations that search for a value of λ with granularity ϵ, while having minimal

impact on the quality of the solution. We therefore select it for comparison with our Util

implementation. Recall thatUtil applies our quasilinear procedure, outlined in Algorithm 2,

using the utilization bound of UD = (m+ 1)/2 achievable by the best fit and first fit heuristics

onm cores [12]. While we expect it to perform faster, we also expect it to be more pessimistic.

We evaluate this hypothesis by comparing the rates at whichBS-Order andUtil determine

schedulability, the resulting values of λ necessary to achieve schedulability, and the time to

find those values of λ. As in [118], to ensure a consistent comparison, we only compare

λ values (and, in our case, execution times — measuring execution times was outside the

scope of the work in [118]) for those tasks deemed schedulable. Also as in [118], we separately

consider each value of m, α, n, and u.

Figure 3.7 contains plots that alternate between two types. The first type shows the percent-

age of schedulable task sets identified by BS-Order and Util for every combination of m,

α, n, and u. The second type compares the median and maximum execution time speedup

gained by Util over BS-Order to the mean λ values achieved by each implementation. As

in [118], λ values are normalized by λmax to give a value in the interval [0,1]; this is necessary

for comparing λ values across task sets.

We observe that, while significant speedups are achieved by Util over BS-Order,

Util identifies fewer schedulable task sets, and for those it does identify as schedulable,

it typically imposes more compression. This is especially true for larger values of α and u

for which the total maximum utilization Umax
sum is larger. Nonetheless, at the cost of more

pessimism, Util achieves speedups observed to reach over 20×.

62

63

64

Figure 3.7: Speed and Schedulability Tradeoffs Between BS-Order and Util.

65

3.6 Conclusion

In this chapter, we have considered alternative approaches toward extending elastic schedul-

ing to the fluid and partitioned EDF multiprocessor implicit-deadline models, comparing

them to the original approaches proposed by Orr and Baruah in [118]. We have evaluated

their execution time, and compared to their ability to avoid pessimistic overcompression.

In Section 2.4, we demonstrated that Buttazzo’s original algorithm [37, Figure 9.29] for

elastic scheduling [39, 40] is significantly slower to compress tasks compared to our proposed

approach in Algorithm 2. In this chapter, we discussed how the same results apply to

fluid scheduling. This suggests that our improved algorithm should be used with

fluid scheduling to handle admission control or to respond to changes in the

number of available processor cores.

While fluid scheduling is a convenient abstraction, it is difficult to implement in practice.

We therefore also considered partitioned EDF scheduling. We demonstrated that simple

modifications to the approach in [118] — changing which partitioning heuristics are

applied, and performing a binary search instead of iterating over the space of com-

pression to apply — yield substantial improvements in execution time without significantly

overcompressing.

We also demonstrated an application of our Algorithm 2 to partitioned EDF elastic schedul-

ing. While it runs even faster, it is often pessimistic, at times overcompressing or deeming a

schedulable task set to be infeasible. Nonetheless, we can imagine scenarios where this may

be desirable. For example, in mixed-criticality systems [161, 32], if a job of a safety-critical

task overruns its expected execution time, jobs of less critical tasks are traditionally dropped.

Elastic frameworks have been proposed instead where the periods of low-criticality tasks are

extended to maintain the service-level guarantees required by critical jobs [142]. In such a

situation, the decision must be made as quickly as possible. If our faster approach overcom-

presses, this is no worse than the inelastic case where all low-criticality jobs are dropped

anyway.

66

Chapter 4

Constrained-Deadline Tasks

Portions of this chapter were published as “Elastic Scheduling for Fixed-Priority Constrained

Deadline Tasks” at ISORC 2023, winning the best paper award [143].

4.1 Introduction

In the previous chapter, we considered elastic scheduling of implicit-deadline tasks. This

chapter extends the elastic model to fixed-priority constrained-deadline task systems on a

uniprocessor. In particular, we consider tasks with adaptable rates — their utilizations can

be compressed by extending their periods — but with deadlines that are held constant.

Prior work has considered such tasks when scheduled in EDF fashion. In [44, 45], Chantem

et al. demonstrated the equivalence of elastic scheduling to the problem of minimizing the

weighted sum of squared deviations of each task’s compressed utilization from its nominal

value, constrained by the tasks’ minimum utilizations and the utilization bound of the sys-

tem. They used this result to extend elastic scheduling to constrained-deadline tasks by

replacing the constraint on total utilization with a tractable approximation of the processor-

demand analysis (PDA) [20] test for earliest-deadline first (EDF) schedulability.

More recently, Baruah [13] demonstrated that these approximations result in a high degree

of pessimism for certain task sets. Instead, Baruah presented an alternative that uses an

iterative approach — similar in spirit to that of Orr and Baruah [118] for partitioned EDF

scheduling discussed in Section 3.2.2 — that increases total compression in constant-size

steps until the system is schedulable according to PDA. The algorithm is tuned by selecting

the iteration granularity; a smaller step increases the running time of the algorithm but

allows for a more precise result.

67

In this chapter, we extend Baruah’s approach in [13] to fixed-priority uniprocessor schedul-

ing of systems of constrained-deadline elastic tasks. We first present an iterative algorithm

that similarly increases compression until schedulability is achieved according to the response

time analysis (RTA) test [6]. We then present two refinements to this algorithm, both lever-

aging the observation that once a task has been compressed to schedulability according to

RTA, it remains schedulable when more compression is applied to the system. The first re-

finement iterates over tasks in order of decreasing priority, increasing total compression until

that task is schedulable under RTA before considering the next task. The second performs

binary search over the range of allowed compression, skipping RTA for tasks that are already

known to be schedulable at lower levels of compression.

Next, we formulate the problem of finding the optimal amount of compression to guarantee

schedulability as a mixed integer quadratic program (MIQP). Due to the large number of

quadratic constraints, the problem may be difficult to solve efficiently. However, we can

instead reformulate the problem for a single task. This enables an alternative algorithm

that considers each task in turn; if RTA deems a task unschedulable for the current level of

system compression, the MIQP is solved to find the exact amount of compression necessary

to schedule that task. By iterating over each task, we can determine the minimum sufficient

compression that must be applied to the task system.

We implement the latter four approaches, using the free and open-source SCIP [2] constraint

integer programming tool to solve the MIQP. By evaluating each algorithm for randomly-

generated synthetic task sets, we demonstrate that the approximate procedures are both

highly efficient and typically give a result close enough to optimal to be useful for online

scheduling decisions in low-powered embedded devices. We also show that, when an optimal

solution is desired, the MIQP-based algorithm may be feasibly solved offline to compress

task periods.

The remainder of this chapter is organized as follows:

• Section 4.2 provides the necessary background on system models used in this chapter.

• Section 4.3 presents a basic iterative algorithm to compress tasks until RTA guarantees

schedulability.

• Sections 4.4 and 4.5 refine the algorithm to a more efficient iterative approach and a

binary search, respectively.

68

• Section 4.6 formulates an MIQP representation of the problem of finding the minimum

amount of compression necessary to schedule the task system.

• Section 4.7 reformulates the problem for a single task, then demonstrates an algorithm

to apply this to the complete task system.

• In Section 4.8, we show the results of our evaluation of those approaches.

• Finally, Section 4.9 concludes the chapter and discusses the contexts under which each

approach may be relevant.

4.2 Background and System Model

Coverage of the elastic model for recurrent, implicit-deadline tasks on a uniprocessor [39, 40]

can be found in Section 2.2.2. In this section, we introduce necessary background on elastic

scheduling for constrained-deadline tasks.

4.2.1 Elastic Scheduling for Constrained-Deadline Tasks

In [44, 45], Chantem et al. showed that utilizations selected by the elastic model also solve

the following quadratic programming problem:

min
Ui

n∑
i=1

1

Ei

(Umax
i − Ui)

2 (4.1a)

s.t.
n∑

i=1

Ui ≤ UD (4.1b)

∀i, Umin
i ≤ Ui ≤ Umax

i (4.1c)

This allowed for an extension of the model to constrained-deadline tasks. A task τi =

(Ci, Di, U
min
i , Umax

i , Ui, Ei) is now characterized with an additional parameter, Di, represent-

ing a relative deadline that remains fixed even if the task’s period is extended in response

to reduced utilization. Under the constrained deadline model, only tasks for which Di ≤ Ti

(i.e., Di ≤ Ci/U
max
i) are considered.

69

The schedulability constraint (Expression 4.1b) is replaced by a representation of the PDA [20]

schedulability test. PDA is an optimal technique for schedulability analysis of constrained-

deadline sporadic task systems under preemptive EDF scheduling on a uniprocessor. It

considers the demand bound function dbfi(t) for each task τi, which denotes the maxi-

mum possible cumulative execution required by jobs of the task that arrive and have their

deadlines within any contiguous interval of duration t ≥ 0. This can be computed as:

dbfi(t) = max

(⌊
t−Di

Ti

⌋
+ 1, 0

)
× Ci (4.2)

For t ≥ 0 and Di ≤ Ti, it can be expressed more simply as:

dbfi(t) =

(⌊
t−Di

Ti

⌋
+ 1

)
× Ci (4.3)

A constrained-deadline task system Γ = {τ1, . . . , τn} is schedulable under preemptive EDF

on a uniprocessor if and only if for all t > 0,

n∑
i=1

dbfi(t) ≤ t (4.4)

In [20], it was shown that it is sufficient to check this condition for values of t within the

first hyperperiod that take the form (k·Ti+Di) for non-negative integers k. This set of

values constitute the PDA testing set. For elastic scheduling, Chantem et al. [44, 45] add a

constraint in the form of Expression 4.4 for each element of the testing set to the optimization

problem represented by Expression 4.1.

However, the resulting problem might not be tractable. The size of the testing set may be

exponential in general, and pseudo-polynomial for bounded-utilization tasks, resulting in an

optimization problem with too many constraints to be efficiently solvable. Also, due to its

use of the floor function, dbfi(t) is not a linear expression, and so the optimization problem

does not remain a quadratic program. Chantem et al. [44, 45] over-approximate the demand-

bound function by removing the floor. Nonetheless, because the test set itself depends on

the task periods, the times defining the RHS of the constraints formed by Expression 4.4 are

variables in the optimization problem, and the problem remains non-linear. They therefore

introduce an approximate form of the problem, and a heuristic approach to solving it, and

70

proved both correct in the sense that the resulting compressed system would be guaranteed

schedulable.

4.2.2 Improved Elastic Scheduling for Constrained-Deadline EDF

In recent work [13], Baruah showed that these approximations are highly conservative and

may result in significant overcompression for certain task sets. Two alternative approaches

were presented; in this paper, we extend these to fixed-priority DM scheduling. Baruah

again used the term λ to represent the degree by which compression is applied to the task

system. Recall from Equation 3.1 that the utilization Ui of each task τi can be expressed as:

Ui = max(Umax
i − λEi, U

min
i) (4.5)

Then since Ti = Ci/Ui, we define

Tmin
i = Ci/U

max
i (4.6)

and

Tmax
i = Ci/U

min
i (4.7)

It follows that for λ < Ci/(EiT
min
i):

Ti = min

(
CiT

min
i

Ci − λEiTmin
i

, Tmax
i

)
(4.8)

Alternatively, given λmax as defined in Equation 3.2, we can express Ti as follows:

Ti =

CiT

min
i

Ci−λEiTmin
i

if 0 ≤ λ < λmax
i

Tmin
i if λ ≥ λmax

i

(4.9)

In an uncompressed state, λ = 0 and for each task, Ui = Umax
i (equivalently, Ti = Tmin

i).

Baruah [13] also introduces the notation Γ(λ), representing the task system obtained from

Γ by applying compression λ, i.e., with each task τi having a period Ti according to Equa-

tion 4.8. An optimal algorithm, then, for elastic scheduling of constrained-deadline task

71

systems under EDF finds the value λ∗ representing the minimum value λ for which Γ(λ) is

schedulable. In [13], Baruah presents two algorithms that, while not optimal, are nonethe-

less tunable by a parameter ϵ; both algorithms are guaranteed to find a value λ < λ∗ + ϵ for

which Γ(λ) is schedulable. We summarize both:

Elastic

This algorithm iterates over values of λ ∈ [0, λmax] with granularity ϵ. For each value of

λ tested, it performs PDA over the task set Γ(λ). Once PDA indicates schedulability, the

search stops, and compression is applied. For efficiency, binary search is proposed as an

alternative. For a considered value of λ, if PDA indicates schedulability, a smaller value

of λ is subsequently tested; if not, a larger value is checked. The binary search limits the

number of times PDA is performed to
⌈
log2

(
λmax

ϵ

)⌉
; PDA is itself pseudo-polynomial for

bounded-utilization task systems.

Elastic-Efficient

A more efficient algorithm is supported by two observations in [13], repeated here:

Observation 1. If a given sporadic task system Γ satisfies Expression 4.4 for a given value

of t (say, to), then any task system Γ′ obtained from Γ by increasing the period parameters

of one or more tasks also satisfies Expression 4.4 for to.

Observation 2. Let Γ denote some constrained-deadline elastic sporadic task system, and

λ, ϵ, and ts denote positive numbers. If all elements in the testing set of Γ(λ) that are ≤ ts

satisfy Condition 4.4, then all elements in the testing set of Γ(λ+ϵ) that are ≤ ts also satisfy

Condition 4.4.

The algorithm proceeds by iterating over values of λ, beginning with λ = 0. It considers

elements of the PDA testing set in increasing order. Baruah observes that the testing set

need not be enumerated in its entirety a priori [13]; instead, the current element being tested,

to, can be updated to the smallest value from amongst the next deadlines of each task:

to ← min
i

(⌊
to −Di

Ti

⌋
+ 1

)
× Ti +Di (4.10)

72

When an element is reached for which PDA fails at the current test set element to, λ is

incremented by ϵ. Observation 2 implies that once PDA succeeds at to, only larger values

— the next one obtained by Equation 4.10 for the periods Ti of task set Γ(λ) — need to

be tested. Once the test set is exhausted, the current value λ is returned. However, if λ

reaches λmax, the algorithm terminates, as the task system remains unschedulable even under

compression.

Because the algorithm essentially performs a single PDA (the testing set is only traversed

once), while additionally recomputing the periods of each task τi in Γ(λ) for each value of

λ, the worst-case running time of the algorithm is:

O

(
n×

⌈
λmax

ϵ

⌉)
+ the running time of PDA.

where n denotes the number of tasks in Γ. For constant ϵ, this is dominated by the running

time of PDA.

4.3 Extension to Fixed-Priority Scheduling

In this section, we present a simple extension of Baruah’s algorithm Elastic [13, Algorithm

1] (summarized in Section 4.2.2) to fixed-priority deadline-monotonic (DM) scheduling, which

maintains the priority order of tasks as their periods are extended. The procedure is outlined

in Algorithm 4. Given a system Γ of elastic constrained-deadline tasks (characterized as

described in Section 4.2), it seeks to determine the smallest value of λ for which Γ(λ) is

schedulable. Like the Elastic algorithm, its precision is tunable by a parameter ϵ; the

value λ found is guaranteed to be less than λ∗+ϵ.

The algorithm initializes λ, the amount of compression to be applied, to 0. It then increases

λ in steps of size ϵ, performing RTA for the complete task set Γ(λ) for each value of λ. Once

λ is found for which schedulability is achieved, the algorithm terminates and the value is

returned. However, if λ exceeds λmax, the utilization constraints on each task prevent the

system from being scheduled under the elastic model.

73

Algorithm 4: Elastic-FP(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ(λ) is DM-schedulable
3 λ← 0
4 λmax computed according to Equation 3.2
5 repeat
6 Perform RTA for Γ(λ)
7 if Γ(λ) is schedulable then
8 return λ

9 else
10 λ← λ+ ϵ

11 until λ > λmax;
12 return Failure

4.3.1 Running Time

Since at most ⌈λmax/ϵ⌉ calls are made to RTA by the algorithm Elastic-FP, its worst-case

running time is ⌈λmax

ϵ
⌉× the worst-case running time of RTA (which is pseudo-polynomial

in the representation of the task system for bounded utilizations).

4.4 An Efficient Iterative Approach

In this section, we present the first of two refinements to Algorithm 4 (Elastic-FP). We

begin with a brief summary of Audsley et al.’s response time analysis (RTA) [6], which will

provide a key observation leveraged by both refinements.

4.4.1 Response-Time Analysis

A task set Γ is schedulable if and only if the response time of each task does not exceed its

deadline. Under fixed-priority preemptive scheduling, the response time Ri of a task τi is

characterized as the sum of its execution time Ci and the interference Ii of the higher priority

tasks; the interference is, itself, a function of the response time. Assuming without loss of

generality that tasks are indexed by decreasing priority, the following expression describes

74

the response time:

Ri = Ci +
i−1∑
j=1

⌈
Ri

Tj

⌉
Cj (4.11)

Audsley et al. [6] describe a recursive process by which to determine the response time; the

system is schedulable if and only if Ri does not exceed the deadline Di for each task τi. If

used in the context of RTA, our algorithm requires up to ⌈λmax/ϵ⌉ calls to RTA in the worst

case. However, the following observation provides a slight improvement to execution time:

Observation 3. If the condition Ri ≤ Di holds for a task τi in Γ(λ), then the condition also

holds for the same task τi in Γ(λ+ δ) for any δ > 0.

Proof. Since the period Ti only appears in the denominator in the expression for computing

response time (Equation 4.11), and the period does not decrease as λ increases (from Equa-

tion 4.9), it follows that Ri does not increase when increasing λ. Therefore, if Ri ≤ Di for

some λ, the inequality still holds as λ increases.

4.4.2 The Algorithm

This observation implies that Algorithm 4 can be improved by considering only a single task

at a time. RTA requires checking every task in a task system, but once a task is shown to be

schedulable for a given value of λ, it need not be rechecked for larger values. The resulting

improvement is outlined in Algorithm 5.

As in Algorithm 4 (Elastic-FP), Elastic-FP-Efficient begins by initializing λ to 0. It

considers tasks in turn, beginning with τ1, the highest-priority task. The algorithm intro-

duces the notation τi(λ) to refer to task τi ∈ Γ(λ), i.e., task τi having a period Ti according

to Equation 4.9 for the given value of λ. When RTA determines that the current task under

consideration, τi, is unschedulable for the current value of λ, the algorithm increases λ in

steps of ϵ until the task is schedulable. At this point, it considers the next task in the system.

If there are no tasks remaining to be checked (line 9), the algorithm terminates and returns

the current value of λ. However, if the value of λ exceeds λmax, the algorithm fails.

75

Algorithm 5: Elastic-FP-Efficient(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ(λ) is DM-schedulable
3 λ← 0
4 λmax computed according to Equation 3.2
5 i← 1
6 repeat
7 Perform RTA for task τi(λ)
8 if τi(λ) is schedulable then
9 if i == n then

10 return λ

11 i← i+ 1

12 else
13 λ← λ+ ϵ

14 until λ > λmax;
15 return Failure

4.4.3 Running Time

As before, at most ⌈λmax/ϵ⌉ values of λ are checked by the algorithmElastic-FP-Efficient.

However, RTA is only performed for a single task at a time. For a single value of λ, no more

than a single failing check can be made. Additionally, each task need only have a single

successful check. Therefore, for a task system Γ of size n, the total running time of the

algorithm can be expressed as:(⌈
λmax

ϵ

⌉
+ n− 1

)
× the running time of RTA for a single task (4.12)

4.5 A Binary Search Implementation

Our second refinement to Algorithm 4 (Elastic-FP) instead performs binary search over

values of λ in [0, λmax]. Observation 3 implies that, when testing using RTA to test Γ(λ) for

schedulability, any tasks already known to be schedulable for smaller values of λ do not need

to be rechecked. The complete procedure is outlined in Algorithm 6.

76

Algorithm 6: Elastic-FP-BS(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ(λ) is DM-schedulable
3 λlo ← 0
4 λmax computed according to Equation 3.2
5 S ▷ Set of schedulable task indices

6 Determine Γ(λmax) ▷ Using Equation 4.9

7 Perform RTA for Γ(λmax)
8 if Γ(λmax) is schedulable then
9 λhi ← λmax

10 else
11 return Failure

12 repeat
13 λ← (λhi + λlo)/2
14 Schedulable ← True
15 S ′ ← S
16 forall τi ∈ Γ, i /∈ S do
17 Perform RTA for τi(λ)
18 if τi(λ) is schedulable then
19 Add i to S ′

20 else
21 Schedulable ← False

22 if Schedulable then
23 λhi ← λ

24 else
25 λlo ← λ
26 S ← S ′

27 until λhi − λlo ≤ ϵ;
28 return λhi

77

The algorithm first performs RTA for Γ(λmax); if it is not schedulable, the algorithm fails.

Otherwise, it performs binary search over values of λ in the range [0, λmax]: λhi (initialized to

λmax) tracks the smallest value of λ tested for which Γ(λ) is schedulable, while λlo (initialized

to 0) tracks the largest tested value for which Γ(λ) is not schedulable. A variable S tracks

the indices of tasks in Γ(λlo) that are schedulable.10 At each step, the algorithm performs

RTA for those tasks τi ∈ Γ(λ) that are not in S. If all tasks are schedulable, λhi is decreased

to the tested value of λ; otherwise, λlo is increased to the tested value of λ and S is updated

to include those tasks for which RTA nonetheless succeeded. The algorithm terminates when

the difference between λhi and λlo does not exceed ϵ, at which point it is guaranteed that

λhi < λ∗ + ϵ for optimal λ∗, since λ∗ > λlo.

4.5.1 Running Time

Since algorithm Elastic-FP-BS requires RTA to be performed for all tasks in Γ(λmax) prior

to the binary search, in the worst case ⌈log2(λmax/ϵ)⌉+ 1 total calls are made to RTA. The

use of the variable S to track tasks already known to be schedulable for smaller values of

λ may improve the execution time for some task sets; indeed, if λ∗ > λmax − ϵ, and if RTA

determines schedulability for all but one task at λ = λmax/2, then binary search will only

proceed upward, and RTA will only need to be performed for a single task at each checked

value of λ thereafter. In this case, RTA for a single task is performed only⌈
log2

(
λmax

ϵ

)⌉
+ 2n− 1

times. This is more efficient than Algorithm 5 (Elastic-FP-Efficient) if:⌈
log2

(
λmax

ϵ

)⌉
+ n <

⌈
λmax

ϵ

⌉
(4.13)

For ϵ chosen such that λmax/ϵ = 1000, this is more efficient for systems of fewer than 990

tasks.

On the other hand, if λ∗ < ϵ, binary search will only proceed downward, so S remains empty,

and so RTA must be performed for all tasks in Γ for each tested value of λ. In this case,

10S can be implemented as a bitmask or an array, allowing O(1) checking and insertion for a given task
index.

78

RTA for a single task is performed(⌈
log2

(
λmax

ϵ

)⌉
+ 1

)
× n

times. This is more efficient than Algorithm 5 (Elastic-FP-Efficient) only if:⌈
log2

(
λmax

ϵ

)⌉
× n+ 1 <

⌈
λmax

ϵ

⌉
(4.14)

For ϵ chosen such that λmax/ϵ = 1000, this is guaranteed to be more efficient only if the

system has fewer than 100 tasks. In Section 4.8, we evaluate both algorithms to compare

their performance in the context of randomly-generated synthetic task sets.

4.6 An MIQP Representation

In this section we describe how to formulate the problem of finding the value λ∗ representing

the minimum necessary compression to achieve schedulability for a fixed-priority, preemptive

task system Γ as a mixed integer quadratic program (MIQP).

4.6.1 Formulating the MIQP

We build upon the mixed integer linear programming representation of RTA given in [17].

In [80], it is shown that for a fixed-priority, preemptive task system Γ to be schedulable, it

is necessary and sufficient that for each τi ∈ Γ, there exists some value of t ≤ Di for which:
11

t ≥ Ci +
i−1∑
j=1

⌈
t

Tj

⌉
× Cj (4.15)

The minimum value of t satisfying this condition for τi is the response time of the task.

However, unlike in [17], we do not seek to find the minimum value of t for each task. Instead,

we intend to find the minimum value of λ for which there exists a ti < Di for each task τi

11Without loss of generality, we again assume tasks are indexed in decreasing order of priority.

79

satisfying Expression 4.15. In other words, it must satisfy:

ti ≥ Ci +
i−1∑
j=1

⌈
ti

Tj(λ)

⌉
× Cj (4.16)

for Tj(λ) as defined in Equation 4.9. The MIQP problem is formulated as follows:

1. We define a real-valued variable λ representing the compression applied to all tasks τi

in the task system Γ.

2. To enforce this intended interpretation, we specify the constraint:

0 ≤ λ ≤ λmax (4.17)

where λmax is as defined in Equation 3.2. We note that, because we are minimizing

λ, the constraint on its upper bound is not strictly necessary: a value λ′ > λmax will

not achieve greater compression than λmax, and so the smaller λmax would be selected

instead of λ′ anyway. However, we observe that this constraint tightens the search

space, slightly improving the solver’s execution time.

3. For each task τi, we define a real-valued variable ti representing some value of t for which

Expression 4.15 holds. Unlike in [17], where the corresponding Ri is non-negative, we

restrict ti to be positive: if ti = 0 satisfies Expression 4.15, then Ci = 0, in which case

the task can be ignored. This becomes an important distinction in a later step.

4. We therefore specify the constraint:

0 ≤ ti ≤ Di (4.18)

5. As in [17], for each task τi and every j ∈ {1, . . . , i− i}, we define a non-negative integer
variable Zij that represents the term ⌈ti/Tj(λ)⌉.

6. As in [17], to enforce this intended interpretation on the Zij variables, for every task

τi we must add constraints of the form Zij ≥ ti/Tj(λ) for each j ∈ {1, . . . , i− i}. Since
Zij is specified to be an integer variable, this will respect the ceiling operator that

appears in Expression 4.15.

80

From the formulation of Tj(λ) in Equation 4.9, we can express the term ⌈ti/Tj(λ)⌉
as:

max

(⌈
ti

Tmax
j

⌉
,

⌈
ti(Cj − λEjT

min
j)

CjTmin
j

⌉)
This requires two constraints for each Zij:

∀j ∈ {1, . . . , i− 1}, Zij ≥
(

ti
Tmax
j

)
(4.19)

∀j ∈ {1, . . . , i− 1}, Zij ≥
(
ti(Cj − λEjT

min
j)

CjTmin
j

)
Because ti is itself a variable, and λ is the value we ultimately want to minimize, we

rewrite the second expression as:

0 ≤ Zij −
(

1

Tmin
j

)
ti +

(
Ej

Cj

)
ti×λ (4.20)

This is a quadratic constraint, as it contains the term ti×λ.

7. As in [17], for each task τi we add a final constraint representing Expression 4.16:

Ci +
i−1∑
j=1

Zij×Cj ≤ ti (4.21)

8. To find the minimum value of λ for which the problem can be satisfied, we add the

following objective function:

minimize λ (4.22)

Recall that in Step 1 of the MIQP, ti is restricted to the positive reals; this implies that if a

solution exists, λ is well-defined for any value of ti.

81

4.6.2 The Resulting Algorithm

For completeness, we present an algorithm to apply this MIQP to find the optimal value,

λ∗, representing the minimum amount of compression to guarantee schedulability of a set of

tasks Γ. The procedure is outlined in Algorithm 7.

Algorithm 7: Elastic-FP-MIQP-Joint(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ(λ) is DM-schedulable

3 forall τi ∈ Γ(0) do
4 Perform RTA for τi
5 if τi is not schedulable then
6 Construct MIQP
7 Solve for λ∗

8 if MIQP infeasible then return Failure
9 else return λ∗

4.6.3 Problem Size and Running Time

The MIQP described in this section to find λ∗ for the complete set Γ of tasks τi has a single

real variable λ and real variables ti for each task τi. λ has a linear constraint, and each

ti has two linear constraints. The problem also has an integer variable Zij for every task

τi and every value of j < i; each such variable has a single linear constraint and a single

quadratic constraint. The problem therefore has n + 1 real variables and
(
n
2

)
= (n2 − n)/2

integer variables overall, with 2n+
(
n
2

)
= (n2 +3n)/2 total linear constraints and (n2−n)/2

total quadratic constraints. Table 4.1 summarizes the problem size.

Real Variables n+ 1

Integer Variables n2−n
2

Linear Constraints n2+3n
2

Quadratic Constraints n2−n
2

Times to Run 1

Table 4.1: Number of variables and constraints for the MIQP.

82

Notice that the number of quadratic constraints itself grows quadratically with the number

of tasks. As we demonstrate in Section 4.8.3, this makes the problem difficult to solve using

our choice of off-the-shelf solver, SCIP [2]. We note that even the decision version of this

problem (showing the existence of a λ that satisfies schedulability) is NP-complete, since

verifying a given value of λ requires performing RTA for the resulting task system Γ(λ). In

the next section, we present a more efficient (though still NP-hard) MIQP-based approach.

4.7 Simplifying the Problem: An MIQP Per Task

This section modifies the MIQP of the previous section to find just the value λ∗
i representing

the minimum compression necessary to guarantee schedulability of a single task τi. We then

use this result to present an algorithm that finds the optimal compression value λ∗ for the

complete task system.

4.7.1 Formulating the MIQP

The MIQP to find the value λ∗
i to guarantee schedulability of just the task τi in a set Γ is

formulated as follows:

1. We introduce a variable λi representing the compression applied to the task system Γ.

2. To enforce this intended interpretation, we again specify the constraint:

0 ≤ λ ≤ λmax (4.23)

where λmax is as defined in Equation 3.2. We do not constrain λi to remain less than

λmax
i (notice the index i). For higher priority tasks τj, j < i, compression λ > λmax

i

might be necessary to reduce their interference on τi sufficiently for τi to become

schedulable.

3. For the single task τi, we define a positive real-valued variable ti representing some

value for t for which Expression 4.15 holds.

83

4. Again, ti is constrained as:

0 ≤ ti ≤ Di (4.24)

As before, unless Ci = 0, this effectively constrains ti as 0 < ti ≤ Di.

5. As in [17], for each j ∈ {1, . . . , i− i}, we define a non-negative integer variable Zij that

represents the term ⌈ti/Tj(λi)⌉.

6. As before, to enforce this intended interpretation on the Zij variables, we must add

the following constraints for each Zij:

∀j ∈ {1, . . . , i− 1}, Zij ≥
(

ti
Tmax
j

)
(4.25)

0 ≤ Zij −
(

1

Tmin
j

)
ti +

(
Ej

Cj

)
ti×λi (4.26)

The latter is a quadratic constraint, as it contains the term ti×λi.

7. As before, we add a final constraint to enforce the relationship in Expression 4.16:

Ci +
i−1∑
j=1

Zij×Cj ≤ ti (4.27)

8. To find the minimum value of λi for which the problem can be satisfied, we add the

following objective function:

minimize λi (4.28)

4.7.2 The Resulting Algorithm

By solving an MIQP, we can find the exact value of λi by which to compress a task system

Γ to guarantee schedulability for an individual task according to RTA. We now present

an algorithm that extends this approach to finding the optimal value, λ∗, representing the

minimum amount of compression to guarantee schedulability of all tasks. The procedure is

outlined in Algorithm 8.

84

Algorithm 8: Elastic-FP-MIQP(Γ)

1 Input: Elastic constrained-deadline task system Γ
2 Output: Smallest λ such that Γ(λ) is DM-schedulable

3 λ← 0
4 forall τi ∈ Γ do
5 Perform RTA for τi(λ)
6 if τi(λ) is not schedulable then
7 Construct MIQP
8 Solve for λ∗

i

9 if MIQP infeasible then
10 return Failure

11 λ← λ∗
i

12 return λ

The algorithm initializes λ to 0. Each task in the system is checked for schedulability under

the current compression level using RTA. Once a task τi is found that cannot be scheduled,

the MIQP is constructed (which requires calculating λmax
i) and solved for that task. If no

solution is found, the minimum utilization constraints of its constituent tasks prevent the

system from compressing to schedulability. Otherwise, λ is updated to λ∗
i , and the remaining

tasks are checked in the same manner.

4.7.3 Problem Size

The MIQP described this section for a single task τi has real variables λi and ti, as well as

an integer variable Zij for every j < i. The variable ti has two linear constraints to enforce

it remains less than the deadline Di and to enforce the recurrence in Expression 4.15. To

enforce the ceiling function in Expression 4.15, and to represent the relationship between the

task period Ti and compression λi, each variable Zij has a single linear constraint and a single

quadratic constraint. Thus, for a set Γ of n tasks, this MIQP has up to 2 real variables, up to

n− 1 integer variables, up to n+1 linear constraints, and up to n− 1 quadratic constraints.

This is linear in the number of tasks; in comparison, the MIQP described in Section 4.6.1

has constraints quadratic in the number of tasks. However, compared to the single MIQP,

the problem presented in this section has to be solved up to n times. Table 4.2 summarizes

this comparison.

85

MIQP per Task Single MIQP
Real Variables 2 n+ 1

Integer Variables ≤ n− 1 n2−n
2

Linear Constraints ≤ n+ 1 n2+3n
2

Quadratic Constraints ≤ n− 1 n2−n
2

Times to Run ≤ n 1

Table 4.2: A comparison of compressing with an MIQP per task versus a single MIQP for
the entire set of tasks.

Nonetheless, this version of the problem should be easier to solve than the single MIQP,

as the execution time to solve a quadratic program typically scales superlinearly with the

number of constraints. This is backed by the results of our evaluations in Section 4.8.3.

4.8 Evaluation

To evaluate the effectiveness and efficiency of the Elastic-FP-Efficient (Algorithm 5),

Elastic-FP-BS (Algorithm 6), Elastic-FP-MIQP-Joint (Algorithm 7), and Elastic-

FP-MIQP (Algorithm 8) procedures, we run them over a large collection of randomly-

generated constrained-deadline task sets. We track their execution, both in time and calls to

RTA. We also analyze the overhead incurred by using these algorithms for online admission

control in an embedded system — the same Raspberry Pi 3 Model B+ used in Section 2.4.1.

Finally, we compare the compression values λ produced by each algorithm.

4.8.1 Generating Task Sets

To evaluate elastic scheduling for constrained-deadline tasks, we consider tasks that begin

with a relative deadline Di equal to their period Ti. Tasks individually have a utilization

not exceeding 1, but the task systems as a whole are not schedulable due to their joint

utilizations exceeding the utilization bound of the system. To accommodate such a task

system, each task has its period extended while its deadline remains the same. We generate

task sets of size [10−100] in steps of 10. For each size, we consider total utilizations in the

range [1.0−2.0] in steps of 0.1. For each combination of size/utilization we generate 100 sets

of tasks according to the following methodology:

86

1. Uncompressed task periods Tmin
i are generated using a log-uniform distribution (per [61])

in [1−1000].

2. Task deadlines Di are set equal to Tmin
i .

3. Tasks are sorted according to increasing deadline (decreasing priority under DM schedul-

ing).

4. The total utilization of the task system is distributed in an unbiased random fashion

among tasks using the Dirichlet Rescale (DRS) algorithm [70], such that each task is

assigned a utilization Umax
i .

5. Execution time is assigned according to Ci=Umax
i ·Tmin

i .

6. Elasticity Ei is uniformly selected in [0−1].

For each task set thus generated, a minimum utilization Umin
i is assigned to each task so that

the total minimum utilization cannot exceed 0.69, the Liu and Layland schedulability bound

of a rate-monotonic implicit-deadline task system [97]. We do so in two different ways:

1. Scale: For half of the tasks, we define a constant s = 0.69/Umax
sum , where Umax

sum is the

maximum total utilization of the task set. We then obtain Umin
i by multiplying each

task’s Umax
i by a random value uniformly selected from the range [0−s]. On average,

the total minimum utilization is expected to be 0.345, with a narrower distribution for

larger task sets. This is illustrated in Figure 4.1.

2. DRS: For the other half, we apply DRS to distribute the total minimum utilization

Umin
sum = 0.69 across the individual Umin

i values uniformly from the space of selections

satisfying the conditions that (i) the total
∑

i U
min
i = 0.69 and (ii) each value Umin

i

does not exceed the corresponding Umax
i .

Each task’s maximum period is then derived as Tmax
i = Umin

i /Ci.

The result is that, for every combination of size/utilization, we now have 200 sets of tasks,

for a total of 22 000 overall.

87

0.2 0.3 0.4 0.5 0.6
Total Umin

0

20

40

60

80

100

120

140

Nu
m
be

r o
f T
as
k
Se

ts

10 Tasks
30 Tasks
100 Tasks

Figure 4.1: Distributions of total minimum utilizations from 1100 randomly-generated task
sets each of size 10, 30, 100 with Umin

i values assigned according to method 6(a).

4.8.2 Implementation

We implement our algorithms as written using C++, linking version 8 [22] of the SCIP con-

straint integer program solver [2] to execute the MIQP. Task parameters Ci, T
min
i , Tmax

i , Ti,

Di, and Ei are stored in global arrays using single-precision floating-point representations.

We program the approach of Audsley et al. [6] to perform RTA in an iterative, rather than re-

cursive, style to avoid the time and stack overheads associated with large numbers of nested

function calls. We quantify execution time performance by reading from the standard li-

brary’s high resolution clock (std::chrono::high resolution clock). Compilation is per-

formed using the Gnu Compiler Collection (GCC) at optimization level O3. We enclose calls

to the algorithm between calls to std::atomic signal fence using sequentially-consistent

ordering; this avoids instruction reordering around clock reads.

4.8.3 Offline Execution Efficiency

Elastic scheduling can be leveraged in situations where a task set is compressed offline for

scheduling on an overutilized target system. To consider this case, we evaluate the execution

of our algorithms on a server running Linux kernel version 5.4.0 and having two Intel Xeon

88

Gold 6130 (Skylake) processors running at 2.1 GHz, and with 32GB of memory. For these

experiments, HyperThreading remains enabled to leverage all available parallelism provided

by the system — 64 logical cores.

Approximate Algorithms

We begin by executing both Elastic-FP-Efficient and Elastic-FP-BS sequentially

in a single-threaded environment over all 22 000 task sets. For each task set, we consider

values of ϵ that divide the compression limit λmax respectively 100, 1000, and 10 000 times.

Mean execution times are illustrated in Figure 4.2, and median times are illustrated in

Figure 4.3. Both algorithms are quite efficient, with mean execution times remaining

under 4 milliseconds for tasks with minimum utilizations assigned per Scale and under 15

milliseconds for DRS. For larger values of ϵ, iteration is more efficient on average than binary

search; but as ϵ gets smaller, Elastic-FP-BS becomes faster. Worst observed execution

times (WOET) and maximum total calls to RTA12 are listed in Table 4.3.

Scale DRS
Algorithm λmax/ϵ WOET (ms) Max RTA Calls WOET (ms) Max RTA Calls

Elastic-FP-Efficient 100 0.90 122 1.53 200
Elastic-FP-Efficient 1000 2.14 1021 8.15 1099
Elastic-FP-Efficient 10 000 14.0 10 023 74.1 10 101

Elastic-FP-BS 100 2.38 700 3.50 700
Elastic-FP-BS 1000 3.47 1000 3.95 1000
Elastic-FP-BS 10 000 3.87 1400 5.28 1400

Table 4.3: Algorithm performance comparison on Xeon-based server.

As expected, algorithm running times are closely related to the number of calls to RTA. We

also observe that when minimum utilizations are assigned to tasks using the DRS algorithm

instead of our Scale method, the worst-observed algorithm execution times are higher,

despite the number of calls to RTA remaining approximately the same. This can be explained

as follows. While both methods impose the same upper bound (0.69) on the total minimum

utilization Umin
sum , on average for Scale, Umin

sum is half that of DRS. This allows more elastic

tasks to compress farther on average, which results in less interference on lower priority

tasks, allowing individual calls to RTA to execute more quickly.

12Performing response time analysis for a single task counts 1 call to RTA.

89

(a) Elastic-FP-Efficient, 100, Scale (b) Elastic-FP-Efficient, 1000, Scale (c) Elastic-FP-Efficient, 10 000, Scale

(d) Elastic-FP-BS, 100, Scale (e) Elastic-FP-BS, 1000, Scale (f) Elastic-FP-BS, 10 000, Scale

(g) Elastic-FP-Efficient, 100, DRS (h) Elastic-FP-Efficient, 1000, DRS (i) Elastic-FP-Efficient, 10 000, DRS

(j) Elastic-FP-BS, 100, DRS (k) Elastic-FP-BS, 1000, DRS (l) Elastic-FP-BS, 10 000, DRS

Figure 4.2: Mean algorithm execution times on Intel Xeon Gold 6130.

90

(a) Elastic-FP-Efficient, 100, Scale (b) Elastic-FP-Efficient, 1000, Scale (c) Elastic-FP-Efficient, 10 000, Scale

(d) Elastic-FP-BS, 100, Scale (e) Elastic-FP-BS, 1000, Scale (f) Elastic-FP-BS, 10 000, Scale

(g) Elastic-FP-Efficient, 100, DRS (h) Elastic-FP-Efficient, 1000, DRS (i) Elastic-FP-Efficient, 10 000, DRS

(j) Elastic-FP-BS, 100, DRS (k) Elastic-FP-BS, 1000, DRS (l) Elastic-FP-BS, 10 000, DRS

Figure 4.3: Median algorithm execution times on Intel Xeon Gold 6130.

91

We also observe from Figures 4.2 and 4.3 that for larger task sets, execution times associated

with Elastic-FP-BS increase for sets of tasks with lower total maximum utilizations. This

is due to the fact that λ∗ remains closer to 0, and so the search primarily proceeds downward,

meaning that fewer tasks are added to the set S for which RTA can be skipped due to being

schedulable at λlo.

Comparison of MIQP Algorithms

We next compare the performance of Elastic-FP-MIQP-Joint and Elastic-FP-MIQP.

We execute both algorithms over just our generated task systems with 10 tasks. The solver

is configured to execute in a single thread, which allows us to run separate instances of the

algorithm sequentially on 50 of the unused logical cores on our server, splitting up the work

of compressing all 2200 considered task systems. The solver is configured to terminate if it

has not converged after one hour of execution. Execution time distributions are illustrated

in Figure 4.4. Table 4.4 summarizes execution time statistics, including listing the number

of times Elastic-FP-MIQP-Joint timed out after an hour.

Figure 4.4: Comparison of execution time distributions for Elastic-FP-MIQP-Joint and
Elastic-FP-MIQP for 2200 sets of 10 tasks.

92

Elastic-FP-MIQP-Joint Elastic-FP-MIQP
Scale DRS Scale DRS

Mean Execution Time 117 s 93 s 254 ms 183 ms
Median Execution Time 403 ms 161 ms 220 ms 147 ms

Maximum Execution Time > 1 hr > 1 hr 1.69 s 1.73 s
Number of Timeouts 30 25 0 0

Table 4.4: Comparison of Elastic-FP-MIQP-Joint and Elastic-FP-MIQP for 2200
sets of 10 tasks.

We observe that both algorithms complete somewhat faster on average for tasks with mini-

mum utilizations generated according to DRS than for Scale, but that in the worst case,

Elastic-FP-MIQP completes slightly faster for Scale, though these differences are not

highly pronounced. More importantly, the joint MIQP is extremely inefficient com-

pared to solving an MIQP for each individual task. For those task sets we con-

sidered, the mean execution time for Elastic-FP-MIQP was 459× faster for Scale and

510× faster for DRS compared to Elastic-FP-MIQP-Joint. In the worst case, Elastic-

FP-MIQP was at least 2080× faster; since Elastic-FP-MIQP-Joint timed out for 2.5%

of problems, we cannot report the actual speedup.

MIQP Performance for Larger Task Sets

We have observed that the number of constraints used in the quadratic program of Elastic-

FP-MIQP-Joint makes it infeasible to use even for offline compression. However, the itera-

tive Elastic-FP-MIQP, which might invoke the quadratic solver for each task, nonetheless

uses a simpler expression of the quadratic program that makes it feasible for sets of 10 tasks.

To evaluate its scalability to larger task systems, we apply it to our generated task systems

of up to 50 tasks. Again, the solver is configured to execute in a single thread, and we

split the 11 000 considered task systems over 50 logical cores. Execution time distributions

when applied to tasks with minimum utilizations assigned according to Scale are plotted

in Figure 4.5, and in Figure 4.6 for DRS.

93

Figure 4.5: Execution time distributions for Elastic-FP-MIQP for sets of 10–50 tasks
with minimum utilizations assigned per Scale.

Figure 4.6: Execution time distributions for Elastic-FP-MIQP for sets of 10–50 tasks
with minimum utilizations assigned per DRS.

94

For task sets with 20 or fewer tasks, the algorithm consistently completes in

under 5.9 seconds. Even with up to 40 tasks, the algorithm finds an optimal value of λ

in under 6.1 minutes for Scale and under 3.3 minutes for DRS, while remaining under

26 seconds 95% of the time for sets of 40 tasks.

However, for systems of 50 tasks, the solver may be slow to produce the optimal solution.

For 95% of task sets with 50 tasks, an optimal solution is returned in under 91 seconds for

Scale and under 66 seconds for DRS. However, one of the task sets for Scale took 14.5

hours to complete, and one for DRS took 5.4 hours. The algorithm took under an hour for

the remaining task sets.

4.8.4 Online Execution Efficiency

Elastic scheduling can also be used for online adaption of task rates, e.g., when admitting

new tasks on a fully-utilized system, or when task execution times change in response to dy-

namic exogenous factors. Despite its precision, the uncertain execution times associated with

solving the MIQP make the Elastic-FP-MIQP algorithm unsuitable for online scheduling

decisions in real-time systems. We consider instead the worst observed execution times of the

Elastic-FP-Efficient and Elastic-FP-BS algorithms when running on an embedded

system. We apply both algorithms to each of the 22 000 randomly-generated task sets, again

using values of λmax/ϵ in {100, 1000, 10 000}.

We measure their execution times on a single core of a Raspberry Pi 3 Model B+, using

the same system configuration as the evaluations in Section 2.4.1. Algorithms are compiled

statically using version 10.2.1 of the Gnu Compiler Collection (GCC) at optimization level

O3. To avoid interference from other processes, we disable real-time throttling by writing −1
to the file /proc/sys/kernel/sched rt runtime us, isolate CPU core 3 from the sched-

uler, and run our algorithms on that core at the highest real-time priority under Linux’s

SCHED FIFO scheduling class.

For each combination of size, maximum utilization, and method of assigning minimum uti-

lizations, we take the worst observed execution time (WOET) among the 100 task sets tested;

these are plotted in Figure 4.7, with a summary provided in Table 4.5.

95

Algorithm λmax/ϵ WOET (ms) Scale WOET (ms) DRS

Elastic-FP-Efficient 100 4.28 7.10
Elastic-FP-Efficient 1000 9.98 42.9
Elastic-FP-Efficient 10 000 69.6 399

Elastic-FP-BS 100 9.69 12.0
Elastic-FP-BS 1000 13.9 15.3
Elastic-FP-BS 10 000 15.5 20.2

Table 4.5: Algorithm performance comparison on a Raspberry Pi 3B+.

Similar patterns emerge to those we saw in Section 4.8.3. As before, the iterative algorithm

outperforms the binary search for larger values of ϵ, but as ϵ decreases, Elastic-FP-BS

begins to outperform Elastic-FP-Efficient. For λmax/ϵ = 100, Elastic-FP-Efficient

remains under 5 ms even for task sets of size 100 for Scale and under 8 ms for DRS; and

for λmax/ϵ = 10 000, Elastic-FP-BS takes less than 16 ms for Scale and 21 ms for DRS.

We again observe that the execution times associated with DRS are significantly higher than

for Scale. This is especially true for the iterative Elastic-FP-Efficient algorithm with

smaller values of ϵ; for λmax/ϵ = 10 000, the algorithm takes 5.7× longer for task sets with

minimum utilizations assigned using DRS compared to the Scale method.

Nonetheless, the low overhead suggests that either algorithm may be effective

even for online compression of large fixed-priority constrained-deadline task sets on low-

power embedded hardware. Appropriate selection — using Elastic-FP-Efficient if low

granularity is acceptable or Elastic-FP-BS if higher granularity is desired — guarantees

a solution is found within about 1/50 of a second in the worst case that we observed.

96

(a) Elastic-FP-Efficient, 100, Scale (b) Elastic-FP-Efficient, 1000, Scale (c) Elastic-FP-Efficient, 10 000, Scale

(d) Elastic-FP-BS, 100, Scale (e) Elastic-FP-BS, 1000, Scale (f) Elastic-FP-BS, 10 000, Scale

(g) Elastic-FP-Efficient, 100, DRS (h) Elastic-FP-Efficient, 1000, DRS (i) Elastic-FP-Efficient, 10 000, DRS

(j) Elastic-FP-BS, 100, DRS (k) Elastic-FP-BS, 1000, DRS (l) Elastic-FP-BS, 10 000, DRS

Figure 4.7: Maximum observed execution times on ARM Cortex-A53 (Raspbery Pi 3B+).

97

4.8.5 Effectiveness of the Approximate Algorithms

When choosing between the four presented algorithms (Elastic-FP-Efficient, Elastic-

FP-BS, Elastic-FP-MIQP-Joint, and Elastic-FP-MIQP), one must consider the

tradeoffs between execution time and accuracy. We have already demonstrated that solving

Elastic-FP-MIQP-Joint rapidly becomes infeasible as the number of tasks grows; we

therefore exclude it from further comparison.

Relative Compression Achieved

We begin by comparing the relative compression achieved by each remaining algorithm to

illustrate when approximation may be sufficient. We define the metric

δ =
λ− λ∗

λmax

representing the difference between the compression value λ returned by an approximate

algorithm and the optimal λ∗ returned by Elastic-FP-MIQP, normalized by λmax.

We consider just those sets of 50 or fewer tasks for which elastic compression achieves a

feasible configuration — i.e., those schedulable when periods are extended to their maximum

values. There are 5 415 such task sets (98.5%) with minimum utilizations assigned according

to Scale, and 4 882 (88.8%) for DRS; this makes sense, since the average total minimum

utilization Umin
sum is twice as high with DRS.

The relative distributions are plotted in Figure 4.8. To achieve the same range of values in

the horizontal axes of each plot, we multiply by ϵ/λmax, with values closer to 0 representing

better agreement with λ∗. We observe that, while similar, Elastic-FP-BS tends to do

better than Elastic-FP-Efficient. Since it is also more efficient for finer granularity of

ϵ, this likely makes it the preferred choice between the two approximate algorithms.

98

(a) ϵ/λmax = 100, Scale (b) ϵ/λmax = 100, DRS

(c) ϵ/λmax = 1000, Scale (d) ϵ/λmax = 1000, DRS

(e) ϵ/λmax = 10 000, Scale (f) ϵ/λmax = 10 000, DRS

Figure 4.8: Relative distance from optimal of λ returned by approximate algorithms.

99

Comparison of Period Assignments

To quantify the effect of using an approximate algorithm to enact period compression over

an elastic task set, we next compare the relative periods achieved by each algorithm. We

define the metric

θi =
Ti(λ)

Ti(λ∗)

representing the ratio of a task’s period when compressed by an approximate algorithm to

the period under optimal compression. We compare values of θi between Elastic-FP-

Efficient and Elastic-FP-BS for each of the three values of ϵ/λmax considered. Results

for the 164 070 total tasks for which compression was achieved and with minimum utilizations

assigned according to Scale are summarized in Table 4.6.

Elastic-FP-Efficient Elastic-FP-BS
θ 100 1000 10 000 100 1000 10 000
1 (λ = λ∗) 79696 79776 80668 79695 79754 81204
(1,1.1] 49396 76976 82566 53826 77175 82371
(1.1,2] 26806 6311 745 23993 6128 445
(2,10] 7085 876 81 5670 884 45
(10,100] 990 122 10 803 120 5
≥ 100 97 9 0 83 9 0

Table 4.6: Relative overcompression of Scale tasks by approximate algorithms.

Table 4.7 shows the same results, but for the 154 020 tasks for which compression was

achieved when assigning minimum utilizations with DRS.

Elastic-FP-Efficient Elastic-FP-BS
θ 100 1000 10 000 100 1000 10 000
1 (λ = λ∗) 112125 112206 113190 112115 112223 113957
(1,1.1] 33273 40492 40682 34573 40479 39974
(1.1,2] 7389 1187 134 6348 1181 80
(2,10] 1097 120 12 870 123 9
(10,100] 122 13 2 100 12 0
≥ 100 14 2 0 14 2 0

Table 4.7: Relative overcompression of DRS tasks by approximate algorithms.

100

For many tasks, θ = 1, i.e., λ = λ∗. In almost all cases, this is due to the task being fully com-

pressed, i.e., Ti = Tmin
i . We observe that the relative overcompression of the Elastic-

FP-Efficient and Elastic-FP-BS algorithms tends to be small (under 10%), espe-

cially for large values of λmax/ϵ, and especially for DRS tasks. Nevertheless, occasionally

tasks are significantly overcompressed. Even for λmax/ϵ=10 000, Elastic-FP-Efficient

and Elastic-FP-BS overcompress 15 Scale task periods by over 10×; though this is only

observed for 2 DRS tasks.

4.9 Conclusion

In this chapter, we have extended uniprocessor elastic scheduling to fixed-priority, constrained-

deadline tasks. We have presented four algorithms. Elastic-FP-Efficient applies com-

pression iteratively using step sizes of a tunable value ϵ. Elastic-FP-BS instead performs

a binary search over the range of possible compression values, also using a precision of ϵ. The

Elastic-FP-MIQP-Joint algorithm formulates the problem of finding the exact amount

of compression to apply as a mixed integer quadratic program.

We implemented Elastic-FP-MIQP-Joint using SCIP, an open-source, off-the-shelf con-

straint solver. However, even when evaluating on sets of only 10 tasks, we discovered that

SCIP was often unable to efficiently converge on an optimal solution. To reduce the size

of the MIQP, we proposed Elastic-FP-MIQP, which solves a simplified version of the

problem for a single task at a time, achieving speedups of 2–3 orders of magnitude.

We have demonstrated that both approximate algorithms are highly efficient. Even

for systems of 100 tasks and small values of ϵ, Elastic-FP-BS enables compression in under

20 milliseconds on a Raspberry Pi 3 Model B+. We also observed that, when compared to

the optimal compression achieved by the MIQP approach, neither approximate algorithm

overcompresses periods by more than 10% for 99.5% of tasks tested. However, in very rare

corner cases (< 0.006% of tested tasks), the iterative algorithms overcompress periods by

more than 10× the optimal compression. Therefore, for offline scheduling decisions,

solving MIQPs may still remain a better choice. Even for task sets of size 50, the

algorithm completed in under 1.5 minutes 95% of the time, though we did observe 2 task

sets for which the MIQP took over an hour to finish.

101

Chapter 5

Harmonic Task Systems

Portions of this chapter were published as “Elastic Scheduling for Harmonic Task Systems”

at RTAS 2024 [151].

5.1 Introduction

We now return to the problem of elastic scheduling for implicit-deadline tasks. This chapter

presents the first work to extend the elastic scheduling model to task systems for which

periods are additionally constrained to be harmonic. Many control systems, such as those

found in robotics applications [92] and real-time hybrid simulation (RTHS) of structural

integrity [121], demand harmonic rates among their constituent tasks. In applications that

capture and process frames from multiple sensing devices to be aggregated in backend pro-

cessing tasks, such as simultaneous localization and mapping (SLAM) [88] and real-time mo-

bile spectrometry [167], harmonic task periods guarantee consistent temporal alignment [91].

Furthermore, task sets with harmonic periods have hyperperiods equal to the largest pe-

riod [29, 130], which reduces the size of scheduling tables in time triggered systems [83] and

constrains the test set in processor demand analysis [20].

The problem of selecting harmonic periods from within acceptable intervals is nontrivial.

Nasri et al. [112] formalized the problem, and proposed an approach that solves the problem

in time linear in the number of tasks for restricted cases but in general “can exponentially

grow.” In [111], Nasri and Fohler identified another restriction of the problem that can be

solved in polynomial time, but they provide “no guarantee for reasonable computational

complexity” in general.

102

In this work, we reason about the problem of assigning task periods from continuous intervals

such that (i) the objective function defined for elastic scheduling by Chantem et al. in [44, 45]

is minimized, (ii) periods remain harmonic, and (iii) schedulability is guaranteed. We call

this the harmonic elastic problem. Toward solving the harmonic elastic problem, this

chapter proves complexity results, demonstrates a tractable restriction of the problem for

online adaptation to changes in available utilization, and demonstrates applicability to real-

world applications.

5.1.1 Complexity Results

In Section 5.4, we prove three results about the complexity of the problem. First, we demon-

strate via a reduction from integer factorization that for n tasks and a parameter k bounding

the ratio of the task periods, finding a harmonic period assignment (if one exists within the

allowed intervals) is unlikely to be solvable in time polynomial in n and log k. Second, we

nonetheless outline a pseudo-polynomial O(n logn+ nk2) algorithm to do so. Third, we

prove that the harmonic elastic problem on a uniprocessor is at least weakly NP-hard in

general, even for fixed k.

5.1.2 A Restriction for Real Systems

In Section 5.5, we propose a two-part algorithm to find an optimal solution to the harmonic

elastic problem with an a priori order imposed over task periods. This is a natural restriction

in many systems, such as multi-time stepping decomposition of a real-time hybrid simula-

tion (RTHS) [31] for natural hazards engineering, and applications such as ORB-SLAM [110]

where front-end data collection tasks capture and process frames from sensing devices which

must be aggregated downstream. Our algorithm searches offline for all projected harmonic

intervals (PHIs) that can be constructed within the allowed period ranges, constructing a

lookup table that identifies the optimal PHI for each possible utilization bound.13 Despite

being exponential in log k, we demonstrate that in practice this algorithm is feasible for

13Intuitively, for a given sequence of harmonic multipliers, the corresponding PHI describes the largest
continuous range such that if the first task in period order is assigned a period from that range, all periods
assigned as corresponding integer multiples remain within the allowed intervals for each task. We define PHI
more formally in Definition 4 of Section 5.5.

103

reasonable values of n and k and the lookup table remains small. During online execution, if

available utilization changes (e.g., due to processor cores going offline, interference from back-

ground processes, or the arrival of aperiodic workloads), binary search allows reassignment

of task periods in time polynomial in log n and log k.

5.1.3 Real-World Applications

We apply this approach to two real-world applications: the Fast Integrated Mobility Spec-

trometer (FIMS) [167] and the ORB-SLAM3 [42] simultaneous localization and mapping

system.

FIMS, described in Section 5.7.1, performs real-time atmospheric aerosol monitoring, ag-

gregating and synchronizing harmonic inputs with a backend matrix inversion task that

translates detected particle coordinates into a particle size distribution. Towards future de-

ployment onboard a small UAV, we run FIMS on a single core of the Raspberry Pi 4, using

our harmonic elastic scheduling model to prevent overload. We find that, by adjusting task

periods, we can guarantee temporal alignment and avoid deadline misses, even when FIMS

is limited to consuming only a fraction of that core’s bandwidth.

In ORB-SLAM3, dataflow and synchronization requirements impose a harmonic total or-

dering over the task periods. When computational resources are insufficient to guarantee

completion of all tasks, frames may be dropped or desynchronized, giving increasingly erro-

neous results [90]. Our harmonic elastic scheduling model allows it to adjust task periods

in response to changes in available CPU bandwidth when executing concurrently with other

tasks on a single core, achieving a 10.4× reduction in relative translational error (RTE) using

this approach compared to its baseline execution.

104

5.2 Background and System Model

5.2.1 Elastic Scheduling

The system model for Buttazzo’s elastic scheduling of recurrent, implicit-deadline tasks [39,

40] can be found in Section 2.2.2. In this section, we re-introduce key background concepts

necessary for the development of elastic scheduling models for harmonic task systems.

The elastic recurrent real-time workload model [39, 40] provides a framework for managing

overload without suspending tasks or dropping jobs by reducing (“compressing”) individual

tasks’ utilizations until the total utilization no longer exceeds the schedulable bound. Each

task’s utilization is likened to a spring whose elasticity reflects the task’s ability to adapt

its utilization to a lower quality of service. If the total length of the springs, placed end to

end, exceeds some desired length (the utilization bound), a compressive force is applied to

the system. Each spring (and corresponding utilization) is compressed proportionally to its

elasticity until the total utilization no longer exceeds the bound, or until the individual task

reaches its minimum serviceable utilization, by extending individual task periods.

This dissertation has already mentioned and explored extensions of this model to multipro-

cessor scheduling of sequential, implicit-deadline tasks (Chapter 3), and to EDF ([13]) and

fixed priority (Chapter 4) scheduling of constrained-deadline tasks. However, some schedul-

ing models impose constraints where the semantics of proportional compression are no longer

readily applicable — e.g., under federated scheduling [94] where every parallel task executes

on dedicated cores, or (as in this chapter) when periods must remain harmonic. To allow fur-

ther generalization, Chantem et al. demonstrated in [44, 45] that utilizations satisfying the

elastic scheduling model could be found by solving a constrained optimization problem. We

have already presented the problem formulation in Chapter 4.2.1, but we restate it here:14

min
Ui

n∑
i=1

1

Ei

(Umax
i − Ui)

2 (5.1a)

s.t.
∑
i

Ui ≤ UD and (5.1b)

∀i, Umin
i ≤ Ui ≤ Umax

i (5.1c)

14In this chapter, we refer to Expression 5.1a as the “elastic objective.”

105

By modifying the schedulability constraint (Expression 5.1b), Orr et al. developed elastic

frameworks for federated scheduling of parallel tasks having periods [120] and workloads [119]

that may be adjusted continuously, or selected from discrete sets of candidate values [121]. In

particular, Orr et al. claim that the sets of discrete utilizations may be constructed so as to

guarantee harmonic period assignments [121]. This approach, however, does not allow task

utilizations to be compressed over continuous ranges within the constraints of harmonicity;

nor does it address the question of how to select candidate harmonic period values within a

range that is acceptable for each task.

5.2.2 Harmonic Periods

The problem of assigning harmonic periods to task systems has been the subject of prior

work. Previous studies have considered using harmonic periods to improve schedulability. It

is a well-known result (see, e.g., [84]) that rate monotonic (RM) preemptive scheduling on a

uniprocessor permits a utilization bound of 1 if tasks are assigned harmonic periods. Han and

Tyan presented a schedulability test that takes advantage of this by mapping task periods to

smaller artificial harmonic values [74], borrowing from an earlier algorithm presented by Han

and Lin [73] — if the system’s utilization does not exceed 1 under these artificial periods,

then all tasks are schedulable at their original periods. Shih et al. used this same algorithm

to schedule radar dwells in [136]. Fan and Quan demonstrated a strategy to partition fixed-

priority tasks on a multiprocessor according to their harmonic relationships [62]. Min-Allah

et al. proposed a utilization bound test for task sets with deadlines larger than periods that

constructs artificial harmonic deadlines [107]. In these studies, tasks still execute at their

originally-assigned periods, and therefore acceptable period intervals need not be considered.

Period assignment from sets of acceptable values has also been studied in prior work. Kuo

and Mok studied systems where each task is assigned a discrete set of periods at which it

may execute, and for which execution times scale with periods (so that utilization remains

constant) [84]. They considered assigning periods to tasks so that the number of subsets of

tasks with harmonic periods — they refer to such a subset as a “harmonic chain” — does

not exceed some value h selected to guarantee RM schedulability. For h = 1, this guarantees

that all periods are harmonic.

106

Assigning periods to tasks from continuous ranges so as to minimize the hyperperiod has

also been studied [29, 130]. While this approach will find an assignment (if one exists) of

periods to each task such that the largest period is an integer multiple of the others, this

does not guarantee that all periods are harmonic.

However, many applications demand harmonic task rates for functional correctness, not just

to increase the schedulable utilization bound. These include robotic control systems [92, 91],

real-time hybrid simulation [31, 63, 64, 121], SLAM systems [88, 110, 42] and mobile spec-

trometry [167, 169]. To satisfy such requirements, we consider the problem of assigning

harmonic periods to tasks from continuous intervals. We build off work by Nasri et al. [112],

who previously studied this problem and first proposed a solution. In their model a con-

tinuous interval Ii = [Tmin
i , Tmax

i] is specified for each task τi from which its period must

be selected. Their approach orders intervals according to Tmin
i , then searches in depth-first

fashion for a sequence of “projected harmonic zones” from the first interval to the last.

20

50

60

25

43

50

74

×3

100

τ1

τ2

τ3

45

74

86

60

×2 ×1

×1

×2

Figure 5.1: Forward search for harmonic periods via projected harmonic zones. Tasks τ1, τ2,
and τ3 must take periods in the intervals I1=[20, 25], I2=[43, 74], and I3=[45, 100]. Projected
harmonic zones from I1 to I2 are re-projected. Since these projections overlap I3, harmonic
periods can be assigned.

Definition 1 (Projected Harmonic Zone). (This is a restatement of [112, Definition 1].) The

projected harmonic zone χa
I1→I2

: [Tmin
χ , Tmax

χ] from interval I1 to I2, T
min
1 ≤ Tmin

2 , with multi-

plier a ∈ N+ is a continuous range of numbers in I1 that starts from Tmin
χ = max{Tmin

2 , a · Tmin
1 }

and ends at Tmax
χ = min{Tmax

2 , a · Tmax
1 }.

Figure 5.1 illustrates the forward search technique proposed in [112]. Projected harmonic

zones from the first interval to the second are further projected where possible to the third,

107

and so on to the end. If any sequence reaches the last interval, then periods are selected

from the corresponding zones.

Also in [112], Nasri et al. show how to identify if all harmonic zones projected onto a given

interval fully overlap; in the case where this is true for all intervals, the problem is solved

in linear time in the number of tasks. However, they state that in general “the number of

[projected harmonic zones] can exponentially grow.” In [111], Nasri and Fohler propose a

backward search starting from the last interval. If all backward projections are disjoint, the

problem can be solved in time O(n2 log n) for n tasks, but they provide “no guarantee for

reasonable computational complexity” in general. However, in Section 5.4.2, we present a

general pseudo-polynomial algorithm to assign harmonic periods from within the specified

intervals.

In [108], Mohaqeqi, Nasri, et al. extend harmonic period assignment to various optimization

problems. For example, they demonstrate that assigning harmonic periods from continuous

intervals to minimize a weighted sum over the periods while respecting schedulability is NP-

hard. We show a similar result in Section 5.4.3 for the elastic objective. In [123], Pavić and

Džapo also present algorithms and complexity results for the objectives from [108], but with

periods constrained to sets of discrete candidate values.

5.2.3 Other Adaptive Frameworks

Though this chapter specifically considers elastic scheduling, we also evaluate our approach

in the context of another adaptive framework. An autonomous system traversing new en-

vironments must simultaneously localize and map its surroundings in real-time to maintain

course and prevent collision. In such systems, sensing devices such as cameras, LiDAR, and

inertial measurement units (IMUs) produce data frames which are synchronized by back-

end processing tasks (e.g., feature tracking and bundle adjustment). When computational

resources are insufficient to guarantee completion of all tasks, frames may be dropped or

desynchronized, which can cause increasingly erroneous results.

Previous work has attempted to predict temporal budgets on systems migrated to SWaP-

constrained hardware or when timing abnormalities inflate execution times past what are

108

typical. In [90], Li et al. propose an approach to selectively drop frames to minimize rel-

ative pose error (RPE). Without selective dropping, overruns will cause frames to be lost;

intentionally picking which frames to drop can improve system performance compared to

“random” losses. In comparison, our model adjusts task periods in the face of insufficient

computational resources to avoid dropped frames while still respecting deadlines. In Sec-

tion 5.7.2, we demonstrate that this allows ORB-SLAM to adjust to background interference

more effectively than the approach in [90].

5.3 Problem Statements

In this work, we consider the following three problems:

5.3.1 The Harmonic Period Problem

Given a set Γ of n tasks, where each task τi is characterized by a continuous interval

Ii = [Tmin
i , Tmax

i], assign each task a period Ti such that for all i, 1 ≤ i ≤ n, these condi-

tions are satisfied: (i) Ti ∈ Ii, and (ii) for any i, j, either Ti/Tj ∈ N+ or Tj/Ti ∈ N+. This is

the problem considered in [112, 111], and does not consider schedulability under the resulting

set of assignments.

To reason about this, we introduce a parameter k that bounds the ratio of task periods:

k
def
=

maxτi T
max
i

minτi T
min
i

(5.2)

In Section 5.4.1 we argue that the problem is unlikely to have a polynomial time solution

in the number of tasks n or the size of the representation of k (even for fixed n), but in

Section 5.4.2, we present a pseudo-polynomial algorithm to solve the problem.

We note that this generalizes to the problem of finding a harmonic chain of values, where

each value is constrained to a continuous interval. It does not consider schedulability under

the resulting set of assignments.

109

5.3.2 The Harmonic Elastic Problem

Given a set Γ of n implicit-deadline elastic tasks on a uniprocessor, where each task τi is

characterized by five non-negative parameters (Ci, T
min
i , Tmax

i , Ti, Ei),
15 find an assignment of

periods Ti to each task τi satisfying the constrained optimization problem in Expression 5.1,

with the additional constraint:

∀i,j, Ti/Tj ∈ N+ or Tj/Ti ∈ N+ (5.3)

In Section 5.4.3, we prove that this is NP-hard in general.

5.3.3 The Ordered Harmonic Elastic Problem

This problem is equivalent to the harmonic elastic problem, but with the additional restric-

tion that task periods must be selected to respect some total ordering assigned a priori. In

other words, ∀i, j such that 1≤i<j≤n, it is required that Ti≤Tj. If tasks are assigned fixed

priorities and indexed accordingly, any periods thus assigned will satisfy rate monotonic

scheduling. This is a natural restriction in many applications, and in Section 5.5 we show

that it allows for polynomial-time online period adjustment.

5.4 Complexity Results

In this section, we prove three results about the complexity of finding harmonic periods.

First, we demonstrate that in general, for a set Γ of n periodic tasks characterized as in

Section 5.3.1, there is likely no algorithm polynomial in n or even in log k that can assign

a set of harmonic periods Ti within the allowed intervals. Furthermore, assigning a set of

harmonic periods that minimize the elastic objective function (5.1a) within the system’s

utilization bound is NP-hard.

15These parameters are described in Section 2.2 and Equations 4.6 and 4.7 of Section 4.2.2.

110

5.4.1 Complexity of the Harmonic Period Problem

The decision version of the harmonic period problem asks: Given a set Γ of n tasks, where

each task τi is characterized by a continuous interval Ii = [Tmin
i , Tmax

i] — from which the

parameter k as defined in Equation 5.2 can be derived — is it possible to assign each task τi

a period Ti such that the following conditions are satisfied: (i) Ti ∈ Ii, and (ii) for any i, j,

either Ti/Tj ∈ N+ or Tj/Ti ∈ N+?

We point out that this decision problem is no harder than the problem of actually finding the

periods; hence, any lower bounds on the computational complexity of this decision problem

also holds for the problem of finding the periods.

We now show, by reduction from integer factorization (defined below), that it is unlikely

that this decision problem can be solved in time polynomial in n and log k.

Definition 2 (Integer Factorization).

Instance: Positive integers N and ℓ, 1 < ℓ < N .

Question: Does N have an integer factor in [2, ℓ]?

Integer factorization is widely believed to not be solvable by polynomial-time algorithms

(assuming P ̸=NP) [109]. The following theorem builds upon this belief to show that we are

unlikely to be able to solve the decision version of the harmonic period problem in polynomial

time:

Theorem 5. If the decision version of the harmonic period problem can be solved in time

polynomial in n and log k — where n denotes the number of tasks and k bounds the ratio of

the task periods as in Equation 5.2 — then integer factorization can be solved by a polynomial-

time algorithm as well.

Proof. We can reduce integer factorization to the decision version of the harmonic period

problem as follows. For any instance (N, ℓ) of integer factorization, we construct a set of

three tasks Γ = {τ1, τ2, τ3} with period intervals as follows:

I1 = [1, 1] I2 = [2, ℓ] I3 = [N,N]

Note that τ1’s period T1 must equal 1 and τ3’s period T3 must equal N . The harmonicity

constraint mandates that (i) τ2’s period T2 be divisible by T1 ≡ 1, and hence an integer

111

within the interval [2, ℓ]; and (ii) this period T2 must be a divisor of τ3’s period T3 ≡ N .

Taken together, these facts imply that the task system Γ constructed above is a yes instance

for the decision version of the harmonic period problem if and only if N has an integer factor

in [2, ℓ]; i.e., if (N, ℓ) is a yes instance of integer factorization.

We have shown that integer factorization of N can be reduced to an instance of the harmonic

period problem with n = 3 and k = N as defined in Equation 5.2, and so the harmonic period

problem for n = 3 is at least has hard as integer factorization. This result implies that we

are unlikely to be able to obtain a polynomial-time algorithm in n or log k (even

for fixed n) that solves the Harmonic Period Problem.

This motivates our efforts to obtain a pseudo-polynomial algorithm that solves it. In the

next section, we present an O(n log n+ nk2) algorithm.

5.4.2 An Algorithm for the Harmonic Period Problem

We now derive a pseudo-polynomial algorithm that solves the harmonic period problem.

Intuitively, it is similar to Nasri et al.’s forward projection approach [112] (illustrated in

Section 5.2.2, Figure 5.1), but we observe that if adjacent intervals Ii, Ii+1 overlap (i.e., if

Tmin
i+1 < Tmax

i), then the search from projected harmonic zones into this overlapping region in

Ii only requires a re-projection into Ii+1 using the multiplier a=1, as illustrated in Figure 5.2.

Algorithm Description

The procedure is outlined in Algorithm 9. It first sorts tasks in ascending order of Tmin
i ;

in [112, Corollary 1], Nasri et al. showed that projecting harmonic zones in this order will find

a set of harmonic periods, if one exists. It then performs a breadth-first search for projected

harmonic zones over just those intervals that do not enclose any subsequent intervals, as

illustrated in Figure 5.3.

112

6

10

22

11

19

40

12

20 18

22

19

22
24

38

36

40

19
20

×2

×3
19

12

×3

×2τ2

τ3

τ1

Figure 5.2: Tasks τ1–τ3 have intervals I1=[6, 10], I2=[11, 22], I3=[19, 40]. Projected harmonic
zones χ2

I1→I2
: [12, 20] and χ3

I1→I2
: [18, 22] both overlap I3. The overlapping portions are re-

projected using only the multiplier a = 1, forming χ1
I2→I3

: [19, 20] and χ1
I2→I3

: [19, 22]. The
non-overlapping portions [12, 19] and [18, 19] are merged and re-projected into I3 starting
from multiplier a = 2, forming χ2

I2→I3
: [24, 38] and χ3

I2→I3
: [36, 40].

Algorithm 9: Find-Harmonic-Periods(Γ)

1 Input: A set Γ of n tasks with period intervals Ii = [Tmin
i , Tmax

i]
2 Output: A set of harmonic period assignments {Ti}
3 ▷ Initialize task set

4 Sort Γ in ascending order of Tmin
i

5 S ← {} ▷ Sequence of period intervals

6 forall 1 ≤ i < n do
7 if Tmax

i < Tmax
i+1 then Insert Ii into S

8 Insert In into S

9 ▷ Find projected harmonic zones

10 j ← first element in S
11 Sources ← {(Ij, {0})}
12 (Interval, {ai})← Project(S, Sources, 2)
13 if Failure then return Failure

14 ▷ Assign periods from harmonic zones

15 Assign to Tn any value in Interval
16 forall i : n−1→ 1 do
17 if Ii ∈ S then Ti = Ti+1/aj
18 else Ti = Ti+1

19 return {Ti}

113

10

30

25

15

20

40

τ2

τ3

τ1

Figure 5.3: Task τ1 has period interval I1=[10, 30] and τ2 has I2=[15, 25]. As I1 encloses I2,
we remove τ1 from the search space. Its period T1 can take the value assigned to T2. Task
τ3 has I3=[20, 40], which overlaps but is not enclosed by I2.

The following lemma proves that enclosing intervals can be removed from the search space.

Lemma 1. If adjacent tasks τi and τi+1 have intervals Ii and Ii+1 such that Tmin
i ≤ Tmin

i+1

and Tmax
i ≥ Tmax

i+1 , we say that the interval Ii encloses Ii+1. Then if any solution to the

harmonic period problem exists, there must exist a solution that satisfies Ti = Ti+1.

Proof. Assume that for a task system Γ there exists a harmonic assignment of periods Ti to

each task τi such that Ti ∈ Ii, i.e., for all i, j, either Ti/Tj ∈ N+ or Tj/Ti ∈ N+. Then it follows

from [112, Corollary 1] that for any two tasks τi, τj for which Tmin
i ≤ Tmin

j there is some such

assignment for which Tj/Ti ∈ N+, implying that Ti ≤ Tj. Now assume that Tmax
i ≥ Tmax

j . If

we reassign Ti to the value Tj, it still follows that for all k, either Ti/Tk ∈ N+ or Tk/Ti ∈ N+.

Additionally, since Tmin
i ≤ Tmin

j ≤ Tj ≤ Tmax
j ≤ Tmax

i , it still holds that Ti ∈ Ii. So the har-

monic period problem is still satisfied.

114

The algorithm proceeds via recursive calls to Project, outlined in Algorithm 10. This takes

a list (Sources) of projected harmonic zones in the current interval to be re-projected to

the next interval, each paired with the sequence of multipliers that produced it. It starts

Algorithm 10: Project(S, Sources, i)

1 Inputs: A set S of continuous period intervals Ii = [Tmin
i , Tmax

i]
2 A set Sources of projected harmonic zones [Tmin, Tmax] and corresponding sequence of multipliers M
3 An index i of the period interval in S into which to project
4 Outputs: A projected harmonic zone into the last interval in S
5 The sequence of integer multipliers that produces the corresponding set of projected harmonic zones

6 ▷ Reached the end

7 if i ≥ |S| then
8 if Sources is not empty then return any element in Sources
9 else return Failure

10 j ← ith interval in S
11 Targets ← {}
12 o← Tmin

j ; k ← −1; ▷ Track lower-bound and index of largest non-overlapping split region

13 forall ([Tmin
s , Tmax

s],M) ∈ Sources do

14 ▷ Source zone overlaps target

15 if Tmin
j < Tmax

s then
16 Insert 1 into M
17 Insert ([Tmin

j , Tmax
s],M) into Targets

18 if Tmin
s < o then o← Tmin

s ; k ← s

19 ▷ No overlap

20 else
21 amin ← ⌈Tmin

j /Tmax
s ⌉; amax ← ⌊Tmax

j /Tmin
s ⌋

22 forall amin ≤ a ≤ amax do
23 M′ ←M
24 Insert a into M′

25 Tmin ← max{Tmin
j , a · Tmin

s }
26 Tmax ← min{Tmax

j , a · Tmax
s }

27 Insert ([Tmin, Tmax],M′) into Targets

28 ▷ There was overlap

29 if k > −1 then
30 Tmin ← o; Tmax ← Tmin

j ; amax ← ⌊Tmax
j /Tmin⌋;

31 forall 2 ≤ a ≤ amax do
32 M′ ← kth multiplier sequence in S
33 Insert a into M′ Tmin ← max{Tmin

j , a · Tmin
s }

34 Tmax ← min{Tmax
j , a · Tmax

s }
35 Insert ([Tmin, Tmax],M′) into Targets

36 return Project(S, Sources, i+ 1)

115

with the complete first interval and terminates when the final interval is reached. To enable

breadth-first search, it keeps a list (Targets) of projected harmonic zones into the next

interval. For all projected harmonic zones in Sources, the algorithm first checks if the

zone overlaps the next interval. If it does not, all re-projected harmonic zones (and their

corresponding multiples) from the source zone into the next interval are added to Targets.

However, if it does, the zone is split (if necessary) into overlapping and non-overlapping

regions (see Figure 5.2). The overlapping region (with multiplier 1) is added to Targets.

The following lemma argues for the correctness ofProject’s handling of overlapping regions.

Lemma 2. If adjacent tasks τi and τi+1 have intervals such that Tmin
i ≤ Tmin

i+1 , T
max
i > Tmin

i+1 ,

and Tmax
i < Tmax

i+1 , and if a solution to the harmonic period problem exists where Ti is assigned

some value t such that Tmin
i+1 ≤ t, then a solution must exist where both Ti = t and Ti+1 = t.

Proof. Assume that for a task system Γ there exists a harmonic assignment of periods Ti

to each task τi such that Ti ∈ Ii, i.e., for all i, j, either Ti/Tj ∈ N+ or Tj/Ti ∈ N+. Then

it follows from [112, Corollary 1] that for any two tasks τi, τj for which Tmin
i ≤ Tmin

j there

is some such assignment for which Tj/Ti ∈ N+, implying that Ti ≤ Tj. Now assume that

Tmax
i > Tmin

j and Tmax
i < Tmax

j . If we reassign Tj to the value Ti, it still follows that for all

k, either Tj/Tk ∈ N+ or Tk/Tj ∈ N+. Additionally, since Tmin
j ≤ Tj ≤ Tmax

i ≤ Tmax
j , it still

holds that Ti+1 ∈ Ii+1. So the harmonic period problem is still satisfied.

This says that the portion of a projected harmonic zone χ in Ii containing periods that

would be contained within the next interval Ii+1 does not have to be projected into Ii+1

using multipliers greater than 1 if Tmax
i+1 > Tmax

χ . Because we have eliminated from the search

those intervals where Tmax
i+1 < Tmax

i , this condition holds.

After all Sources have been re-projected into the next interval as described above, it re-

mains to deal with the largest among the non-overlapping regions that have been split off

from overlapping regions, if there are any (all such split regions are subsets of the largest).

Projections from this region are added to Targets; these start from multiplier 2, since the

overlapping region has already been projected with a multiplier of 1. The procedure is then

called recursively for the next interval, with Targets passed as the new list of Sources.

If Project succeeds in finding harmonic zones projected into the last interval, it returns

one with its sequence of multiples to the calling procedure. Any value in the projected

116

harmonic zone may be assigned as the period Tn of the last task τn, then other task periods

are obtained by dividing by their corresponding multipliers. Any task τi with an interval

completely enclosing the next (and that was therefore not included in the search) is assigned

a period Ti=Ti+1 per Lemma 1.

Execution Time

For n tasks and k = Tmax
n /Tmin

1 , this algorithm executes in timeO(n logn+nk2), according

to the following steps.

1. Sort intervals and eliminate from the search those which fully enclose subsequent in-

tervals: O(n log n).

2. Recursively find projected harmonic zones: O(nk2).

3. Assign periods from harmonic zones: O(n).

Steps 1 and 3 are obvious, but the recursive procedure of step 2 requires further analysis.

We begin by showing that if intervals do not overlap, then the number of projected harmonic

zones into the last interval does not exceed k2.

Theorem 6. Assume that a set of n intervals {Ii} are ordered in such a way that ∀i, j, if
1≤i<j≤n, then Tmin

i ≤Tmin
j . Assume further that intervals do not overlap, i.e., Tmax

i ≤Tmin
j .

Then there can be at most k2 projected harmonic zones into the last interval In.

Proof. For any i, 2<i≤n, the number of projected harmonic zones into Ii from a harmonic

zone in Ii−1 cannot exceed ⌊Tmax
i /Tmin

i−1 ⌋. This follows from [112, Lemma 1].

Then the number of projected zones into In cannot exceed⌊
Tmax
2

Tmin
1

⌋⌊
Tmax
3

Tmin
2

⌋
. . .

⌊
Tmax
n

Tmin
n−1

⌋
≤ Tmax

2

Tmin
1

· T
max
3

Tmin
2

· . . . · T
max
n

Tmin
n−1

Then since for all 1 ≤ i < n, Tmax
i ≤ Tmin

i+1 , we have:

Tmax
2

Tmin
1

· T
max
3

Tmin
2

· . . . · T
max
n

Tmin
n−1

≤ Tmax
2

Tmin
1

· T
max
3

Tmax
1

· T
max
4

Tmax
2

· . . . · T
max
n

Tmax
n−2

=
Tmax
n−1 · Tmax

n

Tmin
1 · Tmax

1

≤
(
Tmax
n

Tmin
1

)2

= k2

117

We next show that if intervals do overlap, the number of projected zones searched by the

algorithm does not increase.

Theorem 7. Assume that a set of n intervals {Ii} are ordered in such a way that ∀i, j,
1≤i<j≤n, Tmin

i ≤Tmin
j and Tmax

i < Tmax
j , but that some intervals overlap, i.e., for some i,

Tmax
i > Tmin

i+1 . Nonetheless, there are still at most k2 harmonic zones projected into the last

interval In.

Proof. Consider adjacent intervals Ii, Ii+1. We define wi, the number of projected harmonic

zones into Ii. Then wi = xi + yi, where xi is the number of projected harmonic zones at least

partially overlapping Ii+1 and yi is the number not overlapping. If xi = 0 then the number

of projections from Ii to Ii+1 is the same as if the intervals themselves do not overlap.

Otherwise, if xi > 0, then the number of projected harmonic zones into Ii+1 is no more than:

xi + (yi + 1) ·
(⌊

Tmax
i+1

Tmin
i

⌋
− 1

)
(5.4)

The xi term is due to the overlapping regions which are projected only once with a multiplier

of 1. The largest non-overlapping region split off from the projected harmonic zones that

partially overlap Ii+1, as well as the yi projected harmonic zones that do not overlap, con-

tribute to the term (yi + 1). These must be re-projected into Ii+1 (see Figure 5.2). However,

because those projected harmonic zones χ that do not overlap Ii+1 have Tmax
χ < Imin

i+1 , the

projected harmonic zones from these regions into Ii+1 have multiples no less than 2. Simi-

larly (per line 31 of Algorithm 10) projections from the largest split region may begin from

2, because the value Imin
i+1 in the corresponding harmonic chain is already captured by the

projection of the overlapping region with a multiplier of 1. Thus, it follows that the number

of projected harmonic zones from these regions cannot exceed
(⌊
Tmax
i+1 /T

min
i

⌋
− 1

)
. Then we

define zi = ⌊Tmax
i+1 /T

min
i ⌋, so the number of projected harmonic zones does not exceed:

xi + (yi + 1) · (zi − 1) = xi + yizi + zi − yi − 1

≤ xi + zi − 1− xizi + xizi + yizi = −(xi − 1)(zi − 1) + xizi + yizi

Then since Tmin
i < Tmax

i+1 , it follows that zi ≥ 1. And since xi ≥ 1, it follows that (xi − 1)(zi − 1) ≥ 0,

so:

−(xi − 1)(zi − 1) + xizi + yizi ≤ xizi + yizi = (xi + yi)zi

118

This is precisely wi · ⌊Tmax
i+1 /T

min
i ⌋, which upper bounds the number of projected harmonic

zones into Ii+1 if it does not overlap Ii. Thus, overlapping regions do not increase the number

of projected harmonic zones.

Then, since there can be no more than k2 projected harmonic zones into any single interval, it

follows that there can be no more than (n− 1)k2 projected harmonic zones across n intervals.

So the described algorithm runs in time O(nk2).

5.4.3 Complexity of the Harmonic Elastic Problem

Even if a set of assignments is found that satisfies the harmonic period problem, finding the

assignment that satisfies the harmonic elastic problem is still at least weakly NP-hard, even

for a fixed value of k bounding the ratio of the task periods as in Equation 5.2. A similar

result is shown in [108, Section 3.3] for the “cost-minimizing harmonic period assignment”

(CHPA) problem. In CHPA, objective (5.1a) is replaced with minimization over a weighted

sum of periods; otherwise, it is equivalent to the harmonic elastic problem. We therefore

prove this similarly to the approach of [108, Theorem 3] by showing a polynomial time

transformation from any given instance of integer partitioning to an instance of the harmonic

elastic problem.

Definition 3 (The Partitioning Problem). Let A={s1, . . . , sn} be a set of positive integers.

The problem is to determine whether A can be partitioned into two sets A1 and A2 such that

the sum of integers in A1 equals that of A2. That is, if:

S1 =
∑
si∈A1

si and S2 =
∑
si∈A2

si (5.5)

then the problem is to decide whether there exist sets A1 and A2 such that A1 ∪ A2 = A,

A1 ∩ A2 = ∅, and S1 = S2.

Consider an arbitrary instance of the partitioning problem over n positive integers. We

construct a corresponding instance of the harmonic elastic problem consisting of a set Γ of

n+ 1 elastic tasks scheduled with a utilization bound UD = 1. For each task τi, i ≤ n, we

119

assign as its worst-case execution time

Ci =
4si
3S

(5.6)

We allow task periods to be assigned in the interval [1, 2], i.e., for each task τi, i ≤ n,

Ii = [1, 2]. Elasticity constants are assigned to each task τi, i ≤ n as Ei = Ci/4. The

remaining task, τn+1 is assigned Cn+1 = 0 and Ii = [1, 1], making it inelastic. Thus, the

parameter k that bounds the ratio of task periods is fixed to 2. Now, we let {T1, T2, . . . , Tn+1}
denote a possible period assignment, and define a value O corresponding to the value taken

by objective (5.1a) for this assignment:

O =
n+1∑
i=1

1

Ei

(Umax
i − Ui)

2 (5.7)

We also define a value O∗ denoting the minimum (i.e., optimal) value of O for which con-

straints (5.1b), (5.1c), and (5.3) are met.

Lemma 3. For the above problem instance, O∗ ≥ 2/3.

Proof. Let Ti denote the period of task τi assigned by a solution to the harmonic elastic

problem. According to the specified task parameters, the period Tn+1 is 1, so all other

tasks must take periods of either 1 or 2 to remain harmonic. We then define the sets

T1 = {τi|Ti = 1} and T2 = {τi|Ti = 2}. We similarly define the terms: C1 =
∑

τi∈T1
Ci,

C2 =
∑

τi∈T2
Ci, and C =

∑
i Ci, from which it follows that C = C1 + C2 and

C =
n∑

i=1

4si
3S

=
4

3S

n∑
i=1

si =
4

3S
· S =

4

3
(5.8)

Then total utilization is:

U =
n∑

i=1

Ci

Ti

= C1 +
C2

2
(5.9)

120

It also follows that, since for all τi ∈ T1, Ui = Umax
i , we can express O as:

O =
∑
τi∈T2

1

Ei

(Umax
i − Ui)

2 =
∑
τi∈T2

4

Ci

(Ci −
Ci

2
)2 =

∑
τi∈T2

Ci = C2 (5.10)

Then from (5.9) it follows that:

2C− 2U = 2C1 + 2C2 − 2C1 − C2 = C2 = O (5.11)

Equivalently, O = 2C− 2U . Then from (5.8) it follows that:

O = 2(4/3)− 2U = 8/3− 2U (5.12)

Since U is constrained as in (5.1b) to U ≤ UD, we have O ≥ 8/3− 2 = 2/3, and so it follows

that O∗ ≥ 2/3.

Lemma 4. A given instance of the partitioning problem is positive if and only if O∗ = 2/3

in the constructed instance of the harmonic elastic problem.

Proof. We first show that if the given partitioning problem is a positive instance, then the

optimal period assignment satisfies O∗ = 2/3. Let A1 and A2 denote the partitions of A for

which S1 = S2. We assign task periods such that Ti = 1 if si ∈ A1 and Ti = 2 if si ∈ A2. It

then follows from the assignments of task WCETs in (5.6) that C1 = C2 = C/2. Since from

(5.8) we have C = 4/3, it follows that C2 = 2/3 and so from (5.10), O = 2/3. Since from the

previous lemma, we have O∗ ≥ 2/3, it follows that O∗ = 2/3.

Next, we show that if O∗ = 2/3, then the given partitioning problem is a positive instance.

If O∗ = 2/3, then (5.10) implies that C2 = 2/3. Also, since from (5.8), C = 4/3, this implies

that C1 = 2/3. Since C1 = C2, this implies that:

∑
τi∈T1

4si
3S

=
∑
τi∈T2

4si
3S

(5.13)

or equivalently,
∑

τi∈T1
si =

∑
τi∈T2

s2, which implies that S1 = S2, so the problem is positive.

121

Together, the above lemmas prove that the harmonic elastic problem is at least

weakly NP-hard even for fixed k.

5.5 The Ordered Harmonic Elastic Problem

We restrict our attention now to the ordered harmonic elastic problem, as defined in Sec-

tion 5.3.3.

5.5.1 Preliminaries

Suppose we have a set Γ of n tasks, indexed so that for any τi, τj, if i < j then Ti ≤ Tj.

It follows, then, that an assignment of harmonic periods can be expressed according to T1

(the shortest period assignment) and a set of multiples {ai, 1≤i≤n} where Ti = ai · T1. Then

a1=1 and for all i, ai ∈ N+.

Definition 4 (Projected Harmonic Interval (PHI)). For a set Γ of n elastic tasks, a projected

harmonic interval is an ordered collection of values Pj = (Tmin
j , Tmax

j , a1,j, . . . , an,j) with

a1,j≡1. It represents the largest continuous interval [Tmin
j , Tmax

j] ⊆ [Tmin
1 , Tmax

1] from which

a period T1 can be selected so that a period Ti = ai,j · T1 assigned to task τi is within the

interval Ii that characterizes the task. Furthermore, for all b, c, 1 ≤ b ≤ c ≤ n it holds that

ac,j/ab,j ∈ N+.

Put simply, for a given chain of harmonic multipliers, the corresponding projected harmonic

interval describes the largest continuous range such that if τ1 is assigned a period from that

range, all periods assigned as corresponding integer multiples remain within the allowed

intervals for each task.

5.5.2 Enumeration-Based Solution Approach

The set of all PHIs P = {Pj} for a task set represents the complete space of joint harmonic

period assignments that can be selected from the continuous intervals characterizing each

task. Thus, a näıve approach to optimally solving the ordered harmonic elastic problem for a

122

given utilization bound is to enumerate the complete set of PHIs, then determine which PHI

minimizes the elastic objective (Expression 5.1a) for that utilization. To do so, we define

Umin
Pj

, the minimum utilization bound that can accommodate PHI Pj. This can be calculated

as:

Umin
Pj

=
∑
i

Ci

ai,j · Tmax
j

=
1

Tmax
j

∑
i

Ci

ai,j
(5.14)

For simplicity of notation, we define the terms yi,j = Ci/ai,j and Yj =
∑

i yi,j. Then

Umin
Pj

= Yj/T
max
j

Similarly, the maximum utilization that can be achieved by PHI Pj is

Umax
Pj

= Yj/T
min
j

Even if a greater utilization bound can be accommodated, the task set executes with a

utilization of Umin
Rj

if periods are set according to the PHI Pj. It follows from Expression 5.1a

that for UD ≥ Umin
Pj

, the elastic objective OPj
(UD) for PHI Pj is:

OPj
(UD) =

∑n

i=1
1
Ei

(
Umax
i − yi,jUD

Yj

)2

if UD ≤ Umax
Pj∑n

i=1
1
Ei

(
Umax
i −

yi,jU
max
Pj

Yj

)2

if UD > Umax
Pj

(5.15)

Our näıve approach computes OPj
(UD) for every PHI Pj. The PHI that minimizes the

objective is selected, and task τ1 is assigned the period TUD
1,j :

TUD
1,j = min

{
Tmin
j ,

Yj

UD

}
(5.16)

Other task periods are then assigned as Ti = ai,j · TUD
1,j .

123

5.5.3 Bounding Enumeration

This enumeration-based approach may be inefficient as the number of PHIs grows rapidly.

However, this growth is bounded, a result which we will use to provide a polynomial-time

algorithm for online adjustment.

Theorem 8. For n tasks and k=Tmax
n /Tmin

1 , the number of PHIs |P| is bounded by k(n− 1)⌊log k⌋.

Proof. We know that there is a sequence {a2, . . . , an}, ai ∈ N+ such that

Tmin
1 · a2 · . . . · an ≤ Tmax

n

which implies that

a2 · . . . · an ≤ Tmax
n /Tmin

1 = k

We define hn,k as the number of unique sequences {a2, . . . , an} satisfying:

a2 · . . . · an ≤ k

Similarly, we define h∗
n,k as the number of unique sequences {a2, . . . , an} satisfying:

a2 · . . . · an = k

Then it follows that

hn,k =
k∑

ℓ=1

h∗
n,ℓ

We say an integer ℓ has a unique factorization into pℓ primes. Then a sequence satisfying

a2 · . . . · an = ℓ must be formed in such a way that each value ai, 2<i≤n is the product of

1 and zero or more of the prime factors of ℓ, selected without replacement. The number of

unique assignments of pℓ primes to n−1 factors is exactly (n− 1)pℓ for non-repeated prime

factors, fewer otherwise. And the value pℓ is upper bounded by ⌊log ℓ⌋. So

h∗
n,ℓ ≤ (n− 1)⌊log ℓ⌋

124

and so

hn,k =
k∑

ℓ=1

h∗
n,ℓ ≤

k∑
ℓ=1

(n− 1)⌊log ℓ⌋ ≤ k(n− 1)⌊log k⌋

We note that this derived upper bound is not tight, because if ℓ ̸= 2a for a ∈ N, then

pℓ < ⌊log ℓ⌋. Furthermore, many integers have repeated prime factors. To better analyze

this bound, we compute hn,k for values of n from 2–30 and values of k from 1–100. Results

are plotted in Figure 5.4a, and compared in Figure 5.4b with the upper bound from Theo-

rem 8. For n=30 and k=100, the upper bound is ∼ 5.9e10, whereas the real count is under

1.5e7, almost 4000× fewer.

(a) Calculated number of PHIs. (b) Upper bound on PHIs.

Figure 5.4: Enumeration of projected harmonic intervals.

5.5.4 Polynomial Online Adjustment

We now describe a more efficient algorithm to reassign task periods according to the ordered

harmonic elastic problem in response to runtime changes to available utilization. It assigns

the same periods as the enumeration-based approach described above, finding an optimal

solution to the ordered harmonic elastic problem if one exists. Through offline enumeration of

P — the complete set of PHIs — it constructs a lookup table over the space of utilizations

that can accommodate the task system. It associates ranges of utilization with the PHI

125

achieving the lowest elastic objective. This enables polynomial-time online period selection

via binary search.

Algorithm Description

The procedure, outlined in Algorithm 11, takes a set Γ of n elastic tasks, as well as the set

P of all PHIs. It then creates a list R sorted over contiguous and continuous regions of

utilization, where each region Rk = (Rmin
k , Rmax

k , Pj) captures the PHI Pj that achieves the

lowest elastic objective for utilizations in [Rmin
k , Rmax

k]. To do so, it creates a region for the

first PHI, then iterates over all remaining PHIs Pj. Each one is compared to all existing

regions in order; those for which Rmax
k ≤ Umin

Pj
are skipped.

When comparing a PHI Pj to a region Rk, the procedure finds points within the region

where it may need to be split, i.e., those distinct sub-regions where the elastic objective

value achieved by Pj may be less than that of the region’s PHI Pk; these sub-regions will

become new regions associated with Pj. Split points are of two types. In the first considered

region for which Rmax
k >Umin

Pj
, if Rmin

k <Umin
Pj

, then it splits at Umin
Pj

. It may also split at those

points U where the elastic objectives intersect, i.e., where OPj
(U)=OPk

(U).

Because we are concerned only with minimizing the objective, we eliminate constant terms:

O∗
Pj
(UD) =

APj
U2
D −BPj

UD if UD ≤ Umax
Pj

APj
(Umax

Pj
)2 −BPj

Umax
Pj

if UD > Umax
Pj

(5.17)

where

APj
=

1

Y 2
j

∑
i

y2i,j
Ei

(5.18)

BPj
=

2

Yj

∑
i

yi,jU
max
i

Ei

(5.19)

126

Algorithm 11: Generate-Lookup-Table(Γ,P)

1 Inputs: A set Γ of n elastic tasks, the set P of all PHIs over Γ
2 Output: A sorted list R over continuous, contiguous regions Rk = (Rmin

k , Rmax
k , Pk) indicating that

the projected harmonic interval Pk achieves the minimum elastic objective in the utilization range
[Rmin

k , Rmax
k]

3 ▷ Compute PHI parameters

4 forall Pj ∈ P do
5 Compute Umin

Pj
, Umax

Pj
, YPj

, APj
, BPj

, O∗
Pj
(Umax

Pj
) according to Eqns. 5.14, 5.17, 5.18, 5.19

6 ▷ Construct regions

7 R ← {(Umin
1 ,∞, P1)}

8 forall Pj ∈ P, j > 1 do
9 forall Rk ∈ R do

10 (Rmin
k , Rmax

k , Pk)← Rk

11 if k is 1 and Umin
j < Rmin

k then
12 Insert (Umin

j , Rmin
k , Pj) into R before Rk

13 if Umax
j ≤ Rmin

k then continue

14 if Rmin
k < Umin

j then
15 Insert (Rmin

k , Umin
j , Pk) into R before Rk

16 Rmin
k ← Umin

j

17 ▷ Parabola/parabola intersection

18 if Aj ̸= Ak and Bj ̸= Bk then q ← (Bj −Bk)/(Aj −Ak)
19 else q ← 0
20 if q /∈ Rk or q > Umax

j or q > Umax
k then q ← 0

21 ▷ Line/parabola intersection

22 if Omin
j < Omin

k then

23 ℓ← Bj−
√

B2
j+4AjOmin

k

2Aj
▷ Per Equation 5.21

24 if ℓ /∈ Rk or ℓ < Umax
k or ℓ > Umax

j then ℓ← 0

25 else

26 ℓ← Bk−
√

B2
k+4AkOmin

j

2Ak
▷ Per Equation 5.21

27 if ℓ /∈ Rk or ℓ < Umax
j or ℓ > Umax

k then ℓ← 0

28 ▷ Split region

29 Regions ← Rk

30 if q > 0 then Split Rk at q
31 if ℓ > 0 then Split Rk at ℓ
32 Replace Rk with Regions

33 ▷ Associate region with better PHI

34 forall Rℓ ∈ Regions do
35 Uℓ ← (Rmin

ℓ +Rmax
ℓ)/2

36 Ok ← max
{
Omin

ℓ , Ak · U2
ℓ −Bk · Uℓ

}
37 Oj ← max

{
Omin

j , Aj · U2
ℓ −Bj · Uℓ

}
38 if Oj < Oi then Rℓ points to Pj

39 ▷ Merge redundant regions

40 if Pℓ matches Pℓ−1 then
41 Rmin

ℓ ← Rmin
ℓ−1

42 Delete Rℓ−1

43 return R
127

Then there are two points where the objectives may intersect, as illustrated in Figure 5.5.

Quadratic
Minimum

Constant/Quadratic
Intersection

Quadratic/Quadratic
Intersection

Figure 5.5: The set of possible elastic objective intersections.

The first is where the quadratic terms are equal:

APj
U2 −BPj

U = APk
U2 −BPk

U

If APj
̸= APk

and BPj
̸= BPk

, then this is:16

U =
BPj
−BPk

APj
− APk

(5.20)

This value is calculated, then checked to ensure it is within the considered region and does

not exceed Umax
Pj

and Umax
Pk

(in which case it lies outside the quadratic objective component).

The other intersection point is where the larger of the two PHI objectives’ constant com-

ponents intersects the quadratic component of the other. This can only happen at a single

point not exceeding the utilization for which the quadratic component is minimized, as

shown in Figure 5.5. Without loss of generality, assume O∗
Pj
(Umax

Pj
) < O∗

Pk
(Umax

Pk
). Then the

intersection occurs where:

APj
U2 −BPj

U = O∗
Pk
(Umax

Pk
)

Solving for the smaller value of U :

U =
BPj
−
√
B2

Pj
+ 4APj

O∗
Pk
(Umax

Pk
)

2APj

(5.21)

16They also trivially intersect at U = 0, but this point is not considered.

128

Again, this value is checked to ensure it is both within the considered region, and within

the range of utilizations for which O∗
Pj

is quadratic and O∗
Pk

is constant — or vice versa, if

O∗
Pk
(Umax

Pk
)<O∗

Pj
(Umax

Pj
).

Once intersections have been identified, the region is split at those points, and each sub-

region is associated with the PHI with the lower objective value according to Equation 5.17.

Adjacent sub-regions with the same PHI are merged before replacing the region Rk.

Execution Time of Online Adjustment

The produced set of regions R is a sorted lookup table over the entire utilization range that

can accommodate the task set. Each region Rk is associated with the PHI Pj that minimizes

the elastic objective for the corresponding utilization interval. Thus, for a given utilization

bound UD, binary search finds the optimal PHI in polynomial time, as we now prove. The

period TUD
1,j can then be assigned to task τ1 according to Equation 5.16, with other task

periods assigned according to Ti = ai,j · TUD
1,j .

Theorem 9. For a set of regions R constructed over |P| = h projected harmonic intervals,

|R| does not exceed h2.

Proof. We prove this by induction. Clearly if h = 1, the number of elements of R is 1, which

is h2.

The algorithm generates regions by iterating over the set of PHIs. Assume that it is con-

structing a set of regions for h+ 1 PHIs. Further assume that after iterating over the first h

PHIs, it holds that for the number x of elements in R, x ≤ h2.

The insertion of PHI Ph+1 can add a region to R for every point at which its objective

O∗
Ph+1

intersects the objective O∗
Pi

for each PHI i, 1 ≤ i ≤ h. As there are two such possible

intersections for each PHI, this can produce up to 2h additional regions. Furthermore, an

additional region might be added if Umin
h+1 is less than Rmin

1 , the current minimum utilization

covered by R. Alternatively, an additional region might be added if Umin
h+1 > Rmin

j for the

first region Rj where Umin
h+1 < Rmax

j . As both conditions cannot be true, it follows that only

up to 2h+ 1 additional regions may be added.

129

Then the total number of regions after insertion of Ph+1 does not exceed

x+ 2h+ 1 ≤ h2 + 2h+ 1 = (h+ 1)2

Corollary 3. For n tasks and k = Tmax
n /Tmin

1 , the number of regions in R does not exceed

k(n− 1)2⌊log k⌋.

Proof. From Theorem 8, we know that for the number of PHIs h does not exceed k(n− 1)⌊log k⌋.

Then from Theorem 9, for h PHIs the number of regions does not exceed h2.

Corollary 4. For n tasks and k = Tmax
n /Tmin

1 , binary search over the set of regions R takes

time O(log2 k+ log k· logn)

Proof. For a sorted list of x elements, binary search requires O(log x) time. Then from

Corollary 3, |R| ≤ k(n− 1)2⌊log k⌋. So binary search proceeds in time:

log
(
k(n− 1)2⌊log k⌋

)
= 2⌊log k⌋ (log k + log(n− 1))

This is O(log2 k + log k· log n), which is polynomial in the length of the input.

5.6 Implementation Considerations

In this section, we discuss several considerations for implementation in real systems, both

for elastic scheduling in general, and specifically with harmonic period constraints.

5.6.1 Characterizing Elasticity

The elasticity constant Ei assigned to task τi is intended to represent “the flexibility of the

task to vary its utilization” [39]. Under this interpretation, a natural assumption is that

elasticities should be assigned according to the functional semantics of a task or application,

independently of the platform it will run on. However, as we will show, an interpretation of

130

elasticity that considers the first-order impacts on result utility (e.g., control performance)

of adjusting task rates requires a dependence on execution times, which implies that elastic

values must be reassigned depending on the target platform.

The elastic objective (Expression 5.1a) formulated by Chantem et al. in [44, 45] suggests

that loss in result utility is impacted by compressing task utilizations. From this, the first-

order error induced by individually decreasing the rate Ri of task τi from its fastest desired

value Rmax
i can be described as:

L = wi(R
max
i −Ri)

2 (5.22)

where wi = C2
i /Ei and L is some measure of loss or error. Then for a given application, if

the set of weights {wi} are obtained, each task’s elasticity can be assigned as:

Ei =
C2

i

wi

(5.23)

This implies that if result error is a function of task invocation rates, then elastic constants

depend on the platform-specific execution times of each task. If elastic scheduling is used

as a technique to adjust a task system for portability across lower powered platforms on

which it might not otherwise be schedulable, the elastic constants must be reassigned for

each target.

We use this interpretation in the next section to assign elasticity constants to each task in

our evaluated applications.

5.6.2 Online Adjustment

As we have discussed in previous chapters, elastic scheduling is especially important in the

context of online adjustments to task periods during admission control of new tasks, or

when available computational resources change. In [39], Buttazzo et al. argue that period

increases in response to overload may happen at any time, as existing jobs will not miss

the new (extended) deadline. However, if resources become available, a task’s period must

wait to decrease until after its active job has completed; otherwise, the job might miss the

131

new (shorter) deadline. During these brief intervals, the task system may execute at a lower

utilization than can be accommodated, but this is not a problem for schedulability.

With the addition of harmonic period constraints, however, some task periods might decrease

in response to reduced available utilization. We illustrate this with the following example.

Example 2. Consider the set of tasks with the parameters in Table 5.1.

Tmin
i Tmax

i Ci Ei

τ1 5 6 0.3 3
τ2 12 17 0.7 4
τ3 23 36 0.1 1

Table 5.1: Elastic Tasks with Harmonic Period Constraints

If the available utilization UD is 0.12, the tasks will be assigned periods {6, 12, 24}. However,
if available utilization drops to 0.11, task periods will be reassigned as {5, 15, 30}. In this

case, the period of τ1 decreased.

This example illustrates that the policy suggested by Buttazzo et al. in [39, 40] to simply

extend periods when new tasks arrive or available utilization decreases might not extend to

elastic scheduling of harmonic task sets. If the new period is applied immediately, a running

job might miss its deadline; but if the period change is delayed, the task system may remain

overloaded. Moreover, delaying the period change would mean that for some time interval,

periods are not harmonic, which may have functional implications in systems that require

temporal alignment among tasks.

Evaluation of policies to address this challenge are outside the scope of this dissertation.

Nonetheless, we propose three possible approaches:

• Require that changes in available utilization only occur at hyperperiod boundaries.

For periodic task sets, the period adjustment is guaranteed to occur when there are

no active jobs, avoiding issues with alignment, overload, and missed deadlines. With

harmonic periods, the hyperperiod is equal to the maximum of the task periods, so

this is not a highly restrictive policy. If the scheduler has full control over resource

allocations, this may be feasible; however, in dynamic or mixed-criticality systems,

scenarios might arise where the system cannot control the instant at which reallocations

of processor utilization have to be made.

132

• In a mixed-criticality system, some degree of job dropping may be acceptable. In this

case, a policy might allow tasks to restart, dropping jobs if necessary, to maintain

alignment after a new set of periods are assigned.

• However, if job dropping remains unacceptable, an alternative approach would propor-

tionally extend task periods for a single hyperperiod to prevent any from decreasing.

In the case of Example 2, on reassignment to {5, 15, 30}, periods would instead be

extended to {6, 18, 36} for 36 time units — values are selected from the same projected

harmonic interval, but using a base that guarantees that no period decreases. How-

ever, this might cause some task periods to extend above their maximum constrained

value; indeed, in this case, T2 becomes 18, whereas Tmax
2 = 17. Nonetheless, this may

be preferred to job dropping in scenarios where the transition cannot wait until the

hyperperiod.

Further development and evaluation of these policies is left to future work.

5.7 Evaluation

In this section, we evaluate our model and algorithms in the context of two real-world

applications: FIMS and ORB-SLAM3. These applications are composed of relatively small

task sets, so we perform additional evaluations over larger sets of synthetically-generated

tasks.

5.7.1 FIMS

The Fast Integrated Mobility Spectrometer (FIMS) [167] is a flown instrument that char-

acterizes atmospheric aerosols. Recent efforts to enable real-time measurements of aerosol

particle sizes (e.g., to instruct the aircraft to follow an aerosol plume) achieved the desired

performance on a Raspberry Pi 4 [166]. The improved computational pipeline illustrated

in Figure 5.6 captures and processes images to detect particles, grouping them into fixed-

duration windows of particle inlet time. Using matrix inversion, it converts instrument

responses from particle spatial coordinates to determine the particle size distribution within

133

each window. “Housekeeping” (HK) data readouts from other sensors (e.g., temperature and

pressure) are synchronized with the inversion process, and are used to determine if a new

data inversion matrix must be computed. Harmonic execution guarantees a fixed, integral

number of time windows associated with each job. This stabilizes the fraction of particles

lost during the inversion process, ensuring a consistent representation of particle distribution

and maintaining measurement accuracy, while also bounding the latency between a particle’s

inlet time and its subsequent inclusion in the reported size distribution.

HK Data

Process
Image

Particle Time
Window Queue

HK Data Queue

Data
Inversion

Figure 5.6: The FIMS Computational Pipeline

In our evaluation, we consider a future deployment where FIMS runs concurrently with other

applications (e.g., flight control, SLAM, and telemetry) atop SWaP-constrained hardware,

e.g., on a UAV. To examine its portability across embedded platforms, we experiment with

constraining FIMS to just a fraction of the bandwidth of a single core of the Pi 4 and verify

that, by using harmonic elastic scheduling to adjust the FIMS task periods, we can avoid

missing deadlines.

Experimental Setup

We run FIMS on a Raspberry Pi 4 Model B, which has a 4-core, 64-bit Cortex-A72 (ARM

v8) CPU running at 1.50GHz and 4GB of RAM. We test with Linux 5.10.103 and disable

CPU throttling. As in Section 2.4.1, we also disable real-time throttling by writing “-1” to

the file /proc/sys/kernel/sched rt runtime us, isolate CPU core 3 from the scheduler,

and run FIMS on just that core. Image processing, HK data reading, and data inversion are

all run under the SCHED FIFO real-time scheduling class using rate-monotonic priorities —

98, 97, and 96 respectively — with priority 99 reserved for an interference task that we will

describe later.

134

Lacking direct access to the prototype FIMS instrument, we instead use an offline dataset

consisting of camera images from its particle chamber and readouts from its other sensors.

To avoid delays from disk I/O, we load these into program memory prior to execution. In a

complete implementation, separate threads will perform the memory transfer from attached

USB devices asynchronously.

A complete run with our experimental dataset handles 12 000 images, processed at a period

of 100 ms. HK data is read every 500 ms and data inversion runs every second.

Profiling Execution Times

To measure execution times associated with each task, we make calls to getrusage() when

each job completes, measuring the total CPU time (user and system) consumed by the

task since the end of the prior job. This accounts for execution of the task’s function plus

the overhead of context switching and timer handling. To capture worst-case conditional

behavior, we force recalculation of the inversion matrix with each iteration of data inversion.

Profiling results over 10 complete runs are plotted in Figure 5.7.

20 25 30 35 40
Execution Time (ms)

10−3

100

Fr
eq

ue
nc

y

(a) Image (max 43.0ms).

0.2 0.4 0.6
Execution Time (ms)

10−1

101

Fr
eq

ue
nc

y

(b) HK (max 0.747ms).

30 40 50
Execution Time (ms)

10−3

10−2

10−1
Fr
eq

ue
nc

y

(c) Inversion (max 55.3ms).

Figure 5.7: FIMS task execution time distributions.

Assigning Elasticity Values

We assign elasticity values to tasks per the methodology in Section 5.6.1. We define loss

as 1000 · (1− θ), where θ is the cosine similarity between the distribution of particle sizes

produced by a period-adjusted run of FIMS and the ground-truth values. We measure the

loss associated with adjusting task periods individually. To reflect the real instrument’s

behavior, when increasing the image processing period we stack successive image frames.

When increasing the HK data period by a factor of n×, we sample every nth data point,

135

interpolating over the most recent two. For data inversion, we change the time bin over

which particle size distributions are measured to remain equal to the period. Results are

plotted in Figure 5.8.

0 20 40 60 80
(Rmax−R)2

0

50

Er
ro
r

Best Fit

(a) Process Image.

0 1 2 3
(Rmax−R)2

0.00

0.25

0.50

Er
ro
r

Best Fit

(b) HK Data.

0.0 0.2 0.4 0.6 0.8
(Rmax−R)2

0

1

2

Er
ro
r

Best Fit

(c) Data Inversion.

Figure 5.8: FIMS errors resulting from reduced task rates.

Using linear regression over the measured error values for each task τi, with (Rmax
i −Ri)

2 as

the independent variable, we obtain values of wi according to Equation 5.22, then use these

to compute values of Ei per Equation 5.23. Table 5.2 summarizes the assigned parameters.

Tmin
i Tmax

i Ci Ei

Process Image 100 1000 43.0 2.11
HK Data 500 5000 0.747 0.012

Data Inversion 1000 10000 55.3 1.23

Table 5.2: FIMS Task Parameters

Evaluating Scalability

With these parameters, FIMS demands a maximum utilization of 0.487. To test under

tighter constraints, we run a highest priority interference task that limits the CPU utilization

available to FIMS: it registers an interval timer with a period of 50 ms and spins for a

programmable length of time. We run FIMS concurrently with the interference task using

different busy loop durations, adjusting the FIMS task periods according to our harmonic

elastic model. We then measure each FIMS job’s latency (elapsed wallclock time) from task

release to completion; results are shown in Table 5.3.

136

UD TImage THK TInv Lmax
Image Lmax

HK Lmax
Inv

0.5 100 500 1000 67 305 305
0.4 115 575 2298 94 489 1275
0.3 147 881 9682 137 709 822
0.2 222 3325 9973 222 1324 1327
0.1 458 3205 9615 348 2784 2785

Table 5.3: FIMS elastic task period assignments and latencies when running concurrently
with interference task.

Lmax indicates the longest measured latency over 3 complete runs; this value never exceeds

the corresponding task period, indicating that no deadlines were missed.

5.7.2 ORB-SLAM3

ORB-SLAM3 [42] is a visual-inertial simultaneous localization and mapping (SLAM) system

widely used in autonomous vehicle and robotics applications that supports stereo camera

inputs. Its data-driven computational pipeline is illustrated in Figure 5.9. Object tracking

fuses captured image frames with interstitial inertial measurements to detect feature points

and generate descriptions. The resulting metadata-rich keyframes are matched against a map

database of prior descriptions to determine the system’s position. If the current environment

differs sufficiently from the existing map, the map is updated within the backend mapping

task. A loop closing task is activated aperiodically to identify potential trajectory loops

as the vehicle moves, allowing for the calibration of the vehicle’s position against the map

database.

Camera
Images

IMU

Tracking Mapping
Loop
Closing

Figure 5.9: The ORB-SLAM3 Computational Pipeline

Our goal is to consider the portability of ORB-SLAM3 to SWaP-constrained hardware, where

it may execute concurrently on a single core with other applications; the utilization UD

available to it may change during runtime. When computational resources are insufficient

137

to guarantee completion of all tasks, frames may be dropped or desynchronized, giving

increasingly erroneous results [90]. While missed deadlines do not necessarily result in system

failure, we show that adjusting task periods in a principled way offers better localization than

ORB-SLAM3’s baseline implementation.

Experimental Setup

We run ORB-SLAM3 on a 6-core Intel i7-4960X running at 3.6GHz with 12GB of RAM using

Linux 4.9.30 built with LITMUSˆRT [41]. We disable HyperThreading and CPU throttling.

We evaluate in simulation using the EuRoC MAV dataset [33] from drones in real-world

environments. Realistic timing is achieved by using ROS [125] to deliver image frames and

inertial measurement unit (IMU) data as messages. IMU data arrives every 5 ms, and camera

frames every 50 ms; a single trace includes 187 seconds worth of data. Tracking executes

with as period of 50 ms, and by default, mapping executes only when tracking identifies a

keyframe (with a minimum period of 50 ms).

Profiling Execution Times

We measure the execution times of each task by successive calls to clock gettime() using

CLOCK THREAD CPUTIME ID. Results for each task, profiled over a complete trace, are shown

in Figure 5.10.

138

0 5 10 15
Execution Time (us)

10−3

10−1

Fr
eq

ue
nc

y

(a) IMU (max 15.2µs).

5 10
Execution Time (us)

10−2

100

Fr
eq

ue
nc

y

(b) Camera (max 13.1µs).

10 20 30
Execution Time (ms)

10−3

10−2

10−1

Fr
eq

ue
nc

y

(c) Tracking (max 31.3ms).

0 100 200
Execution Time (ms)

10−3

10−2

Fr
eq

ue
nc

y

(d) Mapping (max 270ms).

Figure 5.10: ORB-SLAM3 task execution time distributions.

Assigning Elasticity Values

For ORB-SLAM3, we define loss as 104X, whereX is the relative translational error (RTE) of

the completed map in units of meters from the ground truth. We again capture the first-order

effects of adjusting task periods individually. Here, we treat the two stereo image processing

threads and the tracking thread as a single task (the application’s dataflow pipeline requires

these to run at the same rate). We simulate increases in the IMU and image task periods

by dropping message frames (e.g., for an IMU period of 10 ms, we drop every other IMU

message).

To achieve more deterministic execution time behavior, we modify tracking to categorize

every image frame as a keyframe — in a non-degraded state, mapping will perform updates

for every frame. However, if utilizations are compressed due to overload, keyframes are

selected according to the harmonic relationship between the mapping and tracking periods.

To characterize the impact on loss, we hold other periods constant while decreasing the

number of frames selected as keyframes (thus increasing the mapping period). We slow the

replay of the EuRoC dataset to allow mapping to process every frame as a keyframe without

overrunning its deadline. Results are plotted in Figure 5.11.

139

0 5000 10000 15000 20000
(Rmax−R)2

40

50
Er
ro
r

Best Fit

(a) IMU.

0 100 200
(Rmax−R)2

0

2000

Er
ro
r

Best Fit

(b) Cam. + Track. + Map.

0 50 100 150 200
(Rmax−R)2

20

22

Er
ro
r

Best Fit

(c) Mapping only.

Figure 5.11: ORB-SLAM3 errors resulting from reduced task rates.

We again use linear regression to fit values of wi (Equation 5.22). Observe that in Fig-

ure 5.11b, the last point (corresponding to a period of 250 ms) diverges sharply from the

linear trend. This suggests unstable behavior, so we limit the fit (and Tmax
i) to 200 ms.

Note also that when increasing the image and tracking periods, the mapping period is also

increased (its period cannot be less than these tasks); we adjust the first-order weight that

characterizes the image and tracking task accordingly. After computing values of Ei (Equa-

tion 5.23), we obtain the task parameters listed in Table 5.4.

Tmin
i Tmax

i Ci Ei

IMU 5 20 0.015 0.263
Camera + Tracking 50 200 31.3 4006

Mapping 50 1200 270 1.14e5

Table 5.4: ORB-SLAM3 Task Parameters

Evaluation of Online Adjustment

We artificially limit the CPU utilization available to ORB-SLAM3 by pinning all of its

threads on a single core and restrict its total bandwidth with the Linux cpu control group

(cgroup). We modify the beginning of its main loop to:

1. Select a random amount of available utilization between 0.50–0.75.

2. Enforce this by updating the cgroup.

3. Run the online algorithm described in Section 5.5 to search the lookup table (generated

during program initialization) for the best PHI corresponding to that utilization.

4. Update task periods accordingly.

140

This is invoked every second to allow completion of at least one hyperperiod, and incurs an

overhead of <22 µs to select and update the period assignments.

We run ORB-SLAM3 in this manner over EuRoC trace MH 01, comparing its accuracy to

an unmodified (non-adaptive) baseline version of the program. Results are plotted in Fig-

ure 5.12.

0 25 50 75 100 125 150 175
Time [S]

10−3

10−1

RT
E
[m

] (
lo
g-
sc
al
e)

Baseline
Li et al.

Elastic model
Tuned elastic model

Figure 5.12: Comparison of RTE for different adaptive variants of ORB-SLAM3.

In our constrained execution environment, the mean RTE of the baseline implementation

(Baseline) is 89 mm, and only succeeds in mapping the final 139s of the flight. In contrast,

the adaptive implementation (Elastic model) achieves a mean RTE of 13 mm, a 6.6× reduc-

tion, and maps the final 164s. Using insights from past experience, we also try using the

mean observed execution times for the mapping, camera, and tracking workloads (Tuned

elastic model). This achieves even better accuracy: the mean RTE is only 8.6 mm, a 10.4×
reduction, and maps the entire flight.

Finally, we compare our results to the adaptive approach of Li et al. in [90] where ORB-

SLAM3 is integrated with an online machine learning model that predicts budget constraints

and adapts execution via selective frame dropping, achieving a mean RTE of 9.3 mm. Not

only does our elastic model achieve better localization, it is more suited for broad

use across real-time applications than the approach in [90]: on a hard real-time system, task

dropping may be unacceptable, so our elastic model extends task periods to avoid missed

deadlines. Furthermore, our approach enables straightforward adaptation of execution pa-

rameters using only a basic characterization of the impacts on control performance and does

not require highly-tailored ML-based integration with the existing application.

141

5.7.3 Evaluation with Larger Synthetic Task Sets

The ORB-SLAM3 and FIMS task sets are relatively small. In this subsection, we explore

how task set size impacts the performance of the algorithms discussed in Section 5.4.2 and

Section 5.5 using larger task sets with randomly-generated parameters.

Experimental Setup

We generate 1000 task sets each of sizes 5–50. The minimum period Tmin
i of each task τi

is sampled from the log-uniform distribution described in [61] over integers in the range

[1, 100]. A maximum period Tmax
i is obtained by multiplying each Tmin

i by a value selected

uniformly in [1, 10]; this bounds the ratio k of the largest to smallest periods to k ≤ 1000.

Each task set is assigned a total maximum utilization of 1;17 individual task utilizations Umax
i

are then assigned using the UUniSort algorithm [24]. Ci is derived as Umax
i · Tmin

i . Weights

wi are selected uniformly in [0, 1], from which elasticities Ei are computed according to

Equation 5.23. Tasks are then sorted by Tmin
i . We implement the algorithms in C++, and

compile them with GCC optimization level -O3. All experiments are run on a single core of

an AMD EPYC 9754 with 128GB of RAM running Linux 5.14.0.

The Harmonic Period Problem

We first evaluate the proposed approach to the harmonic period problem described in Sec-

tion 5.4.2. For each number of tasks, we count how many of the 1000 corresponding sets had

a feasible harmonic period assignment. Results are illustrated in Figure 5.13, which shows

that as the number of tasks increases, the proportion of task sets for which a solution exists

goes down.

For those same task sets, we also measure how long it took to find a feasible harmonic period

assignment — or to determine that such an assignment does not exist — and for those where

an assignment does exist, we count the number of harmonic zones projected onto the last

17Generality is not lost, as we are considering the space of parameters as it impacts algorithmic perfor-
mance, not to test schedulability ratios.

142

5 10 15 20 25 30 35 40 45 50
Number of Tasks

0

200

400

600

800

1000

Fe
as
ib
le
 H
ar
m
on

ic
As

sig
nm

en
ts
 F
ou

nd

Figure 5.13: Harmonic assignments found.

interval. Figure 5.14 plots the maximum value of each metric observed for each number of

tasks.

5 10 15 20 25 30 35 40 45 50
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

M
ax

im
um

 P
ro
je
ct
ed

 H
ar
m
on

ic
Zo

ne
s

5 10 15 20 25 30 35 40 45 50
Number of Tasks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ax

im
um

 T
im

e
(m

s)

Figure 5.14: Harmonic assignments found.

We observe that the maximum number of harmonic zones projected onto the last interval

also decreases as the number of tasks increases, even though the theoretical bound increases.

We conjecture that this is because adding more period intervals will typically impose tighter

constraints on the harmonic search. We also see that the algorithm is efficient, executing

in under 2.2 ms, and that its measured maximum execution times do not have a tight

relationship with the number of harmonic zones projected onto the last interval.

143

The Ordered Harmonic Elastic Problem

We next evaluate both the näıve and efficient approaches to the ordered harmonic elastic

problem described in Section 5.5. For those task sets where a harmonic assignment is possible,

we count how many projected harmonic intervals (PHIs) are found, how long it takes to

generate the lookup table (LUT), and measure the time it takes to iterate over all PHIs

to find the optimal period assignment. Results for each number of tasks are illustrated in

Figure 5.15.

5 10 15 20 25 30 35 40 45 50
Number of Tasks

104

105

106

107

108

M
ax
im
um

 N
um

be
r o

f P
HI
s

10−5

10−3

10−1

101

103

M
ax
im
um

 T
im
e
(s
)

Ge LUT
Naive Search

Figure 5.15: Comparison of the maximum number of PHIs with the maximum time to iterate
over them to find the optimal PHI for a given utilization bound and to construct the LUT.

As expected, we observe that the maximum number of PHIs grows rapidly with the number

of tasks (note the logarithmic scale of the y-axes). The time to generate the lookup table,

as well as for the näıve search, are roughly proportional to the number of PHIs. The näıve

search does not exceed 170 ms ; it is reasonably efficient, and provides greater flexibility

as it allows for online admission of new harmonic tasks, though it might be too slow for

online use with larger task systems. Times to generate the LUT remain under 10 ms for

up to 8 tasks, but reach as high as 12.6 minutes for up to 50 tasks. This suggests that for

smaller task systems, recomputing a set of harmonic assignments online if a new elastic task

is admitted to the system may be feasible.

144

We also measure the maximum time it takes perform a binary search over the LUT once it

has been generated. These results are plotted side-by-side with the maximum LUT size for

each number of tasks in Figure 5.16.

5 10 15 20 25 30 35 40 45 50
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ax

im
um

 T
im

e
(μ
s)

5 10 15 20 25 30 35 40 45 50
Number of Tasks

0

200

400

600

800

1000

M
ax
im

um
 LU

T
Si
ze

Figure 5.16: Maximum LUT sizes and times to perform binary search for each number of
tasks.

We observe that for larger task sets, slow offline computation of the lookup table nonetheless

allows for rapid online adaptation of existing task periods : searching the LUT and

assigning new periods does not exceed 3.2 µs. Furthermore, the LUT remains small —

it did not exceed 1083 entries for those task sets that we tested — making it feasible for

deployment even on memory-constrained embedded systems.

5.8 Conclusions

In this chapter, we have considered how to extend elastic scheduling to systems of tasks

with harmonic periods. We argue that, if every task’s period is constrained to a continuous

interval, then finding a set of harmonic periods is unlikely to have a polynomial time solution.

However, we outline a pseudo-polynomial algorithm to solve the problem, and show

it is efficient even for large task sets.

We then turn our attention to the problem of finding an optimal assignment of harmonic

periods under the elastic model. If a total order is imposed on task periods, the problem can

145

be solved efficiently for a small number of tasks. Alternatively, an offline lookup table

can be constructed that allows rapid reassignment of task periods if available

utilization changes.

We demonstrate that our approach allows applications such as FIMS to be deployed effec-

tively atop SWaP-constrained hardware platforms, and that it allows ORB-SLAM3 to adjust

its task periods in response to runtime interference.

In our evaluation, we identified the formal connection implied by the elastic objective between

elasticity constants and control performance. Quantifying the impact on result error of

increasing individual task periods lets us successfully assign values to each task, and for

ORB-SLAM3, this approach allowed for a 10.4× decrease in localization error compared to

a baseline implementation on a dynamic resource-constrained system.

5.9 Acknowledgements

I would like to thank Daisy Wang of Washington University in St. Louis. This chapter used

Daisy’s implementation of the real-time FIMS pipeline [166], and she collected all execution

times and errors illustrated in Figures 5.7 and 5.8, which were necessary to assign the task

parameters in Table 5.2. My model produced the period assignments in Table 5.3 for each

utilization bound, which Daisy then applied to the FIMS pipeline to produce the latency

results in that same table.

I would also like to thank Ao Li of Washington University in St. Louis, who was instrumental

in linking my implementation of the harmonic elastic algorithms into the ORB-SLAM3

application, and writing the test harness to change its available utilization with Linux control

groups and apply the periods produced by the model to the SLAM pipeline tasks. Ao also

showed me how to run each version of his pipeline, and produced several of the traces used

to produce the execution time and error plots in Figures 5.10 and 5.11.

146

Chapter 6

Subtask-Level Workload Compression

for Parallel DAG Tasks

6.1 Introduction

To this point, this dissertation has considered elastic scheduling of sequential tasks on a

uniprocessor, and — to a lesser extent — on multiple processors. However, the growing

prevalence of multicore CPUs, even in embedded platforms, has enabled increasingly complex

real-time applications to exploit intra-task parallelism. Systems of tasks that individually

require parallel execution on more than one processor to meet their deadlines are found in

autonomous vehicles [82], computer vision systems [60], mobile robotics [4], hybrid structural

and earthquake simulation [63, 64], and our own work on satellite telescopes [144, 171, 75].

This has inspired extensions of the elastic framework to federated scheduling [94] of parallel

real-time tasks, under which each high-utilization parallel task18 is allocated dedicated pro-

cessor cores in sufficient number to guarantee schedulability. This class of models will be the

focus of the remainder of this dissertation.

In the prior work of Orr et al. [119], if the total number of allocated cores exceeds the

number available in the system, parallel task utilizations are compressed by decreasing their

workloads over a continuous range until the demand for processors can be met. Utilizations

thus assigned satisfy a reformulation of the quadratic optimization problem presented by

Chantem et al. in [44, 45] that is solved by Buttazzo’s original elastic scheduling model [39,

40].

18Tasks with utilization U > 1 that must execute in parallel on more than one core are high-utilization.
Tasks with utilization U ≤ 1 are low-utilization, and individually require only a single core.

147

6.1.1 Limitations of the Prior Work

The approach of Orr et al. in [119] has three fundamental limitations.

• First, it decreases the total computational workload of the task as a whole, with-

out consideration of the impact on each individual subtask. The ability of

each subtask to vary its workload — and the resulting impact on quality of outcome

(e.g., control performance, prediction accuracy, etc.) — should be considered individ-

ually [100, 101, 140, 7, 146].

• Second, it allocates processor cores according to the methodology in [94], which con-

siders each parallel task’s total workload, deadline, and span. As it decreases task

workloads, the model in [119] holds the span constant. However, span may also

decrease as individual subtask workloads are compressed, allowing the system

to reach a schedulable configuration with less overall compression. For this effect to

be captured, an elastic model must be cognizant of the DAG structure induced by the

precedence constraints among the subtasks composing each parallel task.

• Third, it only considers core allocation to high-utilization parallel tasks. In fact, under

the federated scheduling model in [94], low-utilization tasks are scheduled con-

currently on any remaining cores not allocated to the high-utilization tasks.

The model of Orr et al. in [119] compresses parallel tasks given a number of available

cores, only suggesting as an aside that low-utilization tasks can be compressed if there

are cores remaining. However, jointly compressing all tasks in the system may change

the number of cores separately allocated to high- and low-utilization tasks, and this

effect should be captured by the elastic model.

6.1.2 Contributions of This Chapter

To address these limitations, we propose a new model of subtask-level elasticity for

federated scheduling of parallel tasks in which each subtask is assigned a continuous

range of acceptable workloads and its own elastic constant. This gives rise to an alternative

expression of the quadratic optimization problem in [119] where the objective is to minimize

the total compression applied to each subtask workload, while guaranteeing schedulability.

148

In this chapter, we propose to solve the problem by formulating it as a mixed integer

quadratic program (MIQP). Constructing the MIQP is, for the most part, straightforward.

The primary challenge arises from the representation of the task span. Because cores are

allocated according to the workload, span, and deadline parameters of each task in [94],

a span variable is introduced during the MIQP’s construction. This chapter proposes two

alternative methods to enforcing this intended representation of that variable as the sum of

the assigned workloads along the critical path of the task DAG, then evaluates the efficiency

with which the Gurobi Optimizer [72], a commercial off-the-shelf constraint solver, is able

to solve MIQPs of each form.

In Chapter 4 of this dissertation, we observed that solving a single MIQP for a complete set

of constrained-deadline sequential tasks may be inefficient; Section 4.7 proposed instead to

construct an MIQP for each task individually, then demonstrated how the solutions for each

MIQP may be used to solve the problem jointly for the complete task system. Applying this

same insight to subtask-level elastic scheduling for parallel DAG tasks, we demonstrate an

alternative approach whereby an MIQP is solved individually for each task for every feasible

assignment of cores to that task. From the resulting collection of discrete compressed states

and their objective function values corresponding to each core allocation for each task, a

dynamic-programming (DP) algorithm can select a state for each task such that the joint

assignment optimizes the quadratic objective.

We demonstrate that, despite the larger number of invocations of the solver, this dynamic-

programming based approach is often more efficient than solving a single MIQP jointly over

the collection of tasks. Moreover, it enables pseudo-polynomial task compression

during dynamic runtime changes, such as admission of new tasks, if those discrete

states are determined offline for each task during characterization of their other parameters

(e.g., control flow DAG, subtask execution times, etc.). Furthermore, it solves the problem

of jointly allocating cores to low-utilization tasks, as each feasible core assignment to the

overall collection of low-utilization tasks can itself be represented as a discrete state and

incorporated into the DP problem.

6.1.3 Organization

The remainder of this chapter is organized as follows:

149

• Section 6.2 provides background on federated scheduling of parallel tasks and the ex-

isting elastic scheduling models used in that context.

• Section 6.3 highlights the limitations of those elastic scheduling models and motivates

our new model of subtask-level elastic scheduling. It also provides the formal problem

statement considered in this chapter.

• Section 6.4 shows how to construct an MIQP that can be solved with Gurobi to assign

subtask workloads that satisfy the model. It proposes, analyzes, and compares two

alternative representations of the task’s span.

• Section 6.5 proposes a DP-based approach that allows MIQPs to be solved for each indi-

vidual task, then an optimal joint assignment of subtask workloads to be obtained over

all tasks. It also demonstrates that this approach also accommodates low-utilization

elastic tasks scheduled alongside the high-utilization parallel tasks.

• Section 6.6 evaluates the proposed algorithms with large sets of synthetic task systems

and compares them to the prior algorithm in [119] where workloads are compressed

while span is held constant.

• Section 6.7 concludes the chapter.

6.2 Background

6.2.1 Uniprocessor, Implicit-Deadline Elastic Scheduling

Necessary background on Buttazzo’s elastic scheduling model for recurrent, implicit-deadline

tasks [39, 40] can be found in Section 2.2.2. In this section, we review just those background

concepts necessary for the development of our subtask-level elastic scheduling model.

Buttazzo’s elastic recurrent real-time workload model [39, 40] provides a framework for

managing overload by reducing the utilizations of individual tasks until the total utilization

no longer exceeds the schedulable bound. Recall that Buttazzo’s approach is to compress

each task’s utilization such that it is reduced from its desired maximum proportionally to

the task’s elasticity parameter, subject to the constraint that it remains no less than the

specified minimum.

150

In Buttazzo’s original model [39, 40], compression is realized by adjusting each task’s period

Ti according to its new utilization, i.e., Ti = Ci/Ui. In [119], Orr et al. observed that a

task can either be rate-elastic or computationally-elastic; for the latter, the task’s period Ti

remains fixed, and its execution time is updated according to Ci = Ui/Ti.

Chantem et al. [44, 45] demonstrated that the utilizations assigned under Buttazzo’s model

satisfy the following quadratic optimization problem, restated from Chapter 4.2.1:

min
Ui

n∑
i=1

1

Ei

(Umax
i − Ui)

2 (6.1a)

s.t.
n∑

i=1

Ui ≤ UD (6.1b)

∀i, Umin
i ≤ Ui ≤ Umax

i (6.1c)

This has allowed extensions of the elastic framework to other task models with schedulability

tests that do not rely strictly on a utilization bound, including to federated scheduling of

parallel real-time tasks [94] for which periods [120] or workloads [119] are adjusted in response

to reduced utilization assignments.

6.2.2 Elastic Frameworks for Federated Scheduling

The federated scheduling model of Li et al. [94] deals with systems of independent, sporadic,

parallel, implicit-deadline real-time tasks. Each task τi is characterized as in Section 2.2.1

with parameters for its workload Ci, period Ti, and deadline Di. Since tasks are assumed to

have implicit deadlines, Di = Ti.

Each parallel task τi consists of a set of subtasks τi,j with a precedence relation ≺ over them.

Each individual subtask τi,j is characterized by a workload ci,j, representing its worst-case

execution time. An individual subtask must execute sequentially — i.e., it is characterized

by a sequence of instructions that must be completed in order, and take up to ci,j time

to complete. The task workload Ci is expressed as the total Ci =
∑

j ci,j over the subtask

workloads.

151

We assume that subtask execution is reëntrent; execution may be preempted by another

subtask, and it need not resume executing on the same core in the system. Subtasks may

run in parallel, except as constrained by the precedence relation ≺: if τi,a ≺ τi,b, then τi,a

must fully complete its execution before τi,b is scheduled. We say that subtask τi,k becomes

available when all tasks τi,j for which τi,j ≺ τi,j have completed execution.

The partial-ordering of precedence over subtask execution that describes task execution gives

rise to a standard directed acyclic graph (DAG) representation with a collection of vertices

vi,j corresponding to subtasks τi,j. A directed edge from vertex vi,a to vi,b exists if and only

if τi,a ≺ τi,b and there is no τi,c for which τi,a ≺ τi,c ≺ τi,b, i.e., τi,b directly succeeds τi,a.

Each vertex of the DAG is assigned a weight wi,j equal to the workload ci,j of its corresponding

subtask. The task workload Ci can therefore be thought of as the volume of the DAG. The

DAG representation also gives rise to a parameter Li representing the task’s span, which is

the weighted length of the DAG’s critical path. One may think of the span as the earliest

completion time of a job in the task, relative to its activation time, if given an infinite number

of cores on which to execute. It is clear that for a task to be schedulable, Li ≤ Di. These

concepts are illustrated in the following example.

v1,3

c1,3 = 7

v1,4

c1,4 = 9

v1,2

c1,2 = 5
v1,1

c1,1 = 8 v1,5

c1,5 = 4

Figure 6.1: The DAG representation of the parallel task τ1 in Example 3.

Example 3. Consider a task τ1 consisting of of five subtasks; τ1,1 with workload c1,1 = 8, τ1,2

with workload c1,2 = 5, τ1,3 with workload c1,3 = 7, τ1,4 with workload c1,4 = 9, and τ1,5 with

workload c1,5 = 4. The total workload of task τ1 is therefore C1 = 33. A precedence relation

over subtasks implies that τ1,1 must complete before τ1,2 and τ1,3 can begin execution, τ1,4

cannot begin until τ1,2 completes, and both τ1,2 and τ1,3 must complete before τ1,5 can begin.

152

These relationships give rise to the DAG representation in Figure 6.1. Because precedence

is a partial order relation, τ1,1 precedes τ1,5 by transitivity; however, since it does not directly

precede τ1,5, there is no edge from τ1,1 to τ1,5.

The task’s span L1 can be computed as the length of the DAG’s critical path. In this example,

the critical path follows v1,1, v1,2, and v1,4, as illustrated in Figure 6.1. The span is the total

workload of the subtasks corresponding to vertices along the critical path; we calculate this

as L1 = 22.

Under Li et al.’s federated scheduling [94], each high-utilization parallel task τi is allocated

mi dedicated processor cores satisfying:

mi =

⌈
Ci − Li

Di − Li

⌉
(6.2)

In [120], Orr et al. extended the elastic framework to the federated scheduling model. If

the total processor cores allocated exceed the number available, each high-utilization parallel

task has its utilization compressed until the demand is met. Rather than a simple utilization

bound, Expression 6.2 implies the following condition for schedulability:

n∑
i=1

⌈
Ci − Li

Di − Li

⌉
≤ m (6.3)

where m is the total number of processor cores available for high-utilization parallel tasks.

To find utilizations that satisfy Buttazzo’s conditions for elastic scheduling, Orr et al. in-

troduced the term λ representing the degree by which compression is applied to the task

system. Recall from Equation 3.1 that it follows from the relationship in Equation 2.2 that

for some value of λ, utilizations are assigned as:

Ui(λ) = max
(
Umax
i − λEi, U

min
i

)
(6.4)

The goal, then, is to find the minimum value of λ for which the task system becomes schedu-

lable (i.e., for which Expression 6.3 is satisfied). This can be found to an arbitrary degree of

precision via binary search over the range [0, λmax]. However, Orr et al. argue in [120] that

153

this may result in wasted capacity due to the ceiling operator (⌈·⌉) in Equation 6.2: if for

some task τi the expression (Ci − Li)/(Di − Li) due to an assigned utilization Ui(λ) is not an

integer, then the period Ti can be reduced to some extent without affecting schedulability.

To avoid under-utilization, in [120] Orr et al. instead propose to assign utilizations according

to the quadratic optimization problem in Expression 6.1, with the original schedulability

condition (Expression 6.1b) replaced by Expression 6.3. In [119], Orr et al. extended their

approach to computationally-elastic tasks, allowing parallel workloads to be adjusted over

a continuous range: a task with period Ti would have its workload assigned as Ci = Ti · Ui.

This may be realized, for example, by reducing the quantity of input data to process or by

forcing an iterative anytime algorithm to terminate early [146]. The span Li is held constant.

In this chapter, we address limitations of the model in [119] for federated scheduling of

computationally-elastic tasks. In particular, we consider the individual implications of re-

ducing the workloads of each subtask, both in terms of the relative flexibility or importance

of each subtask on quality of outcome, as well as the effect on the task’s span Li. We

also consider the implications of jointly compressing low-utilization tasks. The next section

details these limitations and motivates our work.

6.3 Motivation and Limitations of Prior Work

6.3.1 Motivating a New Model of Subtask-Level Elasticity

The model in [119] for federated scheduling of computationally-elastic tasks holds the span

Li of each task τi constant while compressing workloads Ci. Depending on how the new

workload assignment Ci is to be realized, i.e., which subtask workloads ci,j are to be reduced,

the value Li may also decrease, as Figure 6.2 illustrates. Without accounting for this, the

model may be pessimistic in resource allocation and may over-compress task workloads.

Example 4. Consider a task with parameters Cmax
i = 10, Li = 4, and Di = 6 to be scheduled

on only 2 processor cores. If Li is held constant, the task’s workload would have to be

decreased to Ci = 8 to satisfy Equation 6.2. But the workload needs only to be reduced by 1

unit along its critical path (Ci = 9 and Li = 3) to be schedulable.

154

c=5

c=3

c=8

c=2

C=18
L=13

(a) Uncompressed workload.

c=1

c=3

c=8

c=2

C=14
L=13

(b) No change to span.

c=5

c=3

c=4

c=2

C=14
L=10

(c) Span compressed.

Figure 6.2: Critical path may change depending on which subtask workloads are compressed.

Furthermore, the workload assigned to each individual subtask may uniquely impact result

quality. Examples may be found in several application domains.

• Distributed Systems. The common end-to-end task model represents each task as

a chain of subtasks distributed over multiple processors. To provide end-to-end QoS

guarantees in open and unpredictable environments, EUCON [100, 101] provides a

model predictive control approach to enforce CPU utilization bounds on distributed

processors using a feedback loop. Individual processors, on which separate subtasks

within a task’s chain execute, are assigned different weights according to the relative

importance of the corresponding subtask to the QoS demands or control performance

of the system.

• Autonomous Vehicles. AutoE2E [8, 7] adjusts end-to-end task execution in au-

tonomous vehicles to maintain schedulability in open and unpredictable environments.

It has an inner rate-based control loop and an outer loop that adjusts the precision

(execution time) of task workloads. It considers the relative importance of each sub-

task, both from the perspective of driver preference and control outcome. It also

accomodates a nonlinear relationship between computational precision and execution

time.

• LiDAR Object Detection. In [140], the authors explore fine-grained time and

accuracy tradeoffs in the PointPillars [87] LiDAR object detector to enable adaptive

execution in response to dynamic deadlines in an open environment. They represent the

encoder pipeline as a parallel DAG, then analyze the execution time and corresponding

accuracy associated with different levels of computational precision in various subtasks.

155

• Prompt GRB Localization. The Advanced Particle-astrophysics Telescope [30]

(APT) is a planned satellite telescope that will detect and localize gamma-ray bursts

(GRB) in real-time. In [146] and in Chapter 7, we model the localization pipeline

as a highly-parallel fork-join task, then characterize the execution time and accuracy

of the pipeline as functions of several computational input parameters corresponding

to its various subtasks. This enables the pipeline to adapt its execution in response

to dynamic workloads and deadlines due to GRB variability, selecting Pareto-optimal

parameter values at job release to maximize accuracy while guaranteeing deadlines are

met.

Each of these applications enables adaptive real-time execution based on the importance of

each subtask. However, there is as yet no model that extends elastic scheduling to consider

individual subtasks for parallel DAG tasks in general.

6.3.2 The Subtask-Level Elastic Workload Model

To fill this gap, we modify the model in [119] by assigning to each subtask τi,j a continuous

range of execution times [cmin
i,j , cmax

i,j] and an elasticity Ei,j. Under this new model, subtask

workloads ci,j are selected to minimize a modified version of the objective in Expression 6.1a

that considers the deviations of individual subtask utilizations from their desired values:

min
ci,j

∑
τi,j

1

Ei,jT 2
i

(
cmax
i,j − ci,j

)2
(6.5a)

s.t.
n∑

i=1

⌈
Ci − Li({ci,j})
Ti − Li({ci,j})

⌉
≤ m (6.5b)

∀i,j, cmin
i,j ≤ ci,j ≤ cmax

i,j (6.5c)

We note that in prior work, Orr et al. [121] argue for a discrete model of computational

elasticity, motivated by the fact that many applications have discrete modes or levels of

precision that may be selected for computation. Nonetheless, we argue that a continuously-

elastic workload model remains realistic in many systems. For example, at fine enough

156

granularity, many discrete modes can be approximated as a continuous state space (e.g.,

the proportion of input data selected from a large set for processing). As another example,

for workloads with anytime semantics — those that can terminate early and still provide

a result — the number of iterations might be considered discretely. However, if execution

times for each iteration follow some stochastic distribution, execution times may be selected

from a continuous range to increase the likelihood of obtaining a better result. We discuss

these scenarios in more detail in Chapter 7.

In the following sections, we demonstrate approaches to assigning workloads to subtasks

under this model by using constraint programming solvers.

6.3.3 Joint Compression of Low-Utilization Tasks

Neither model for elastic scheduling of parallel tasks in [120, 119] address compression of low-

utilization tasks. Both papers assume a fixed allocation of processor cores to high-utilization

parallel tasks, and that Buttazzo’s original techniques in [39, 40] can be applied to compress

low-utilization tasks to be schedulable on the remaining processors. However, the semantics

of elastic scheduling suggest that, as the allocation of cores to each task may change, so too

might the allocation of cores among high- and low-utilization tasks.

Example 5. Consider a system with m = 4 processor cores on which we must schedule the

following 4 implicit-deadline tasks:

1. τ1 = (C1 = 5, T1 = 10), a sequential task.

2. τ2 = (C2 = 3, T2 = 8), a sequential task.

3. τ3 = (C3 = 4, T3 = 7), a sequential task.

4. τ4 = (C4 = 30, L4 = 10, T4 = 15), a parallel task.

The total utilization of the sequential tasks is ∼ 1.45, and they therefore require 2 cores.

However, τ4 requires ⌈
30− 10

15− 10

⌉
= 4

157

cores according to Equation 6.2. If we can compress the workload of τ4 along its span by 5

units, it is schedulable on the remaining 2 cores:⌈
25− 5

15− 5

⌉
= 2

However, if we compress the utilizations of the sequential tasks so that they occupy a single

core, then the workload (and span) of τ4 is only reduced by 5/3.

In Section 6.5 of this chapter, we present methods for joint compression of both high- and

low-utilization tasks that allow dynamic allocation of processor cores to either set.

6.4 An MIQP for Subtask-Level Elastic Scheduling

The optimization problem in Expression 6.5 is naturally expressed as a mixed-integer quadratic

program (MIQP), allowing it to be solved using one of many available off-the-shelf solvers.

6.4.1 Constructing the MIQP

We demonstrate an approach to constructing the problem for Gurobi [72], a mathematical

optimization tool that solves MIQPs. Gurobi supports both integer and continuous variables,

and both linear and quadratic expressions may be used as constraints or objectives. While we

have chosen to focus on Gurobi, this approach should generalize to other quadratic solvers,

including SCIP [2], which was used in Chapter 4.

As a running example, we use the task system Γ illustrated in Figure 6.3. Γ consists of parallel

tasks τ1 and τ2. Task τ1 has a total uncompressed workload Cmax
1 = 18, corresponding

span Lmax
1 = 13, and a deadline equal to its period D1 = T1 = 15. Task τ2 has a total

uncompressed workload Cmax
2 = 23, corresponding span Lmax

2 = 16, and a deadline equal to

its period D2 = T2 = 19.

158

cmin=2
cmax=3
E=7

cmin=2
cmax=5
E=4

cmin=1
cmax=8
E=9

cmin=1
cmax=2
E=2

cmin=4
cmax=9
E=5

cmin=3
cmax=7
E=1

cmin=3
cmax=7
E=6

𝜏2
T=19

𝜏1
T=15

𝜏1,1

𝜏1,2

𝜏1,3

𝜏1,4 𝜏2,1

𝜏2,2

𝜏2,3

Figure 6.3: A running example using a system of two tasks with elastic subtasks.

Subtask Workloads

For each subtask τi,j, define continuous variables ci,j representing the workload assigned to

the subtask, and constrained as in Expression 6.5c:

cmin
i,j ≤ ci,j ≤ cmax

i,j (6.6)

Example 6. For the tasks in Figure 6.3, we define 7 variables, constrained as follows:

2 ≤ c1,1 ≤ 3 2 ≤ c1,2 ≤ 5 1 ≤ c1,3 ≤ 8 1 ≤ c1,4 ≤ 2

4 ≤ c2,1 ≤ 9 3 ≤ c2,2 ≤ 7 3 ≤ c2,3 ≤ 7

Objective

Our goal is to find an assignment of values to each variable ci,j that minimizes Expres-

sion 6.5a. The expression, when expanded, can be written as:

∑
τi,j

1

Ei,jT 2
i

((
cmax
i,j

)2 − 2cmax
i,j ci,j + c2i,j

)

Because our objective is to minimize this expression, and not to directly solve it, we can

simplify by removing constant terms. Thus, our MIQP can be constructed so as to:

159

minimize
∑
τi,j

(
1

Ei,jT 2
i

· c2i,j −
2cmax

i,j

Ei,jT 2
i

· ci,j
)

(6.7)

Example 7. For the tasks in Figure 6.3, we minimize the following objective:

c21,1
7·152

− 2·3·c1,1
7·152

+
c21,2
4·152

− 2·5·c1,2
4·152

+
c21,3
9·152

− 2·8·c1,3
9·152

+
c21,4
2·152

− 2·2·c1,4
2·152

+
c22,1
5·192

− 2·9·c2,1
5·192

+
c22,2
1·192

− 2·7·c2,2
1·192

+
c22,3
6·192

− 2·7·c2,3
6·192

Span

For each task τi, define a non-negative continuous variable Li representing its span. It is

required that Li does not exceed Ti for τi to be schedulable, as Di = Ti. Furthermore, a

value of Li exceeding Ti might result in the LHS of the expression in Equation 6.3 taking

a negative value, which would be an inconsistent interpretation of the condition, and would

result in an invalid solution. To enforce this, we add constraints of the form:

Li ≤ Ti (6.8)

Example 8. For the tasks in Figure 6.3, we add the following constraints for span:

L1 ≤ 15 L2 ≤ 19

Other variables and constraints to enforce the intended interpretation of each variable Li as

the span of τi are discussed further in Sections 6.4.2 and 6.4.3.

Processor Core Allocations

For each task τi, define a non-negative integer variable mi representing the number of

cores allocated to the task. This should be in sufficient number to guarantee schedulability

according to Equation 6.2. To enforce this intended interpretation, we add constraints of

160

the form:

mi ≥
∑

j ci,j − Li

Ti − Li

Since mi is specified to be an integer variable, it will respect the ceiling operator that appears

in Eqn. 6.2. Rearranging, this yields quadratic constraints of the form:

Li + Ti·mi ≥ mi·Li +
∑
j

ci,j (6.9)

This constraint, with the above constraint on span (Expression 6.8) will force Li to remain

strictly less than Ti, because

lim
Li→T−

i

mi =∞

Example 9. For the tasks in Figure 6.3, we add the following constraints for core allocations:

L1 + 15·m1 ≥ m1·L1 + c1,1 + c1,2 + c1,3 + c1,4

L2 + 19·m2 ≥ m2·L2 + c2,1 + c2,2 + c2,3

Total Processor Cores

The total allocation of cores must not exceed m, the number available. To enforce this, we

add the additional constraint: ∑
i

mi ≤ m (6.10)

where m is a constant integer value.

Number of Constraints

Our MIQP has variables ci,j for each subtask τi,j and variables mi and Li for each task τi.

Expression 6.10 represents a single constraint, though with numbers of terms linear in the

total number of tasks. Expressions 6.8 and 6.9 both represent a constraint per task, with

each constraint in Expression 6.9 having a number of terms linear in the number of subtasks

of the corresponding task. Expression 6.6 represents a constraint for each subtask. The

objective in Expression 6.7 has a number of terms linear in the total number of subtasks.

161

6.4.2 Task Span: A Constraint for Each Path

We now return to the problem of representing a DAG task’s span in our MIQP. For a task

τi, the variable Li represents its span, which can be expressed as:

Li = max
pi,k

 ∑
vi,j∈pi,k

ci,j

over the set of paths {pi,k} between pairs of vertices in the task’s representative DAG. To

simplify this, we consider tasks τi for which the DAG has a single source vertex s and sink

vertex t. Any task DAG τi, even those that are not weakly-connected, can be represented as

a weakly-connected DAG with a single source s and sink t with the following construction.

1 Add a vertex vi,s with execution time ci,s = 0 and connect it with edges to all vertices in

the DAG that do not already have incoming edges. Similarly, 2 add a 0-workload vertex

vi,t, connected with edges from all vertices that do not already have outgoing edges. An

example is illustrated in Figure 6.4.

S T

Figure 6.4: Left: a DAG with two source vertices and three sink vertices. Right: a unique
source and unique sink vertex are added; if these both have workloads of 0, the corresponding
task’s execution remains unchanged.

Because of the restriction that vi,a is connected by an edge to vi,b only if τi,b directly succeeds

τi,a, every path from s to t might form the critical path, depending on the assignment of

subtask execution times. Therefore, for each path pi,k from s to t, we add constraints of the

form:

Li ≥
∑

vi,j∈pi,k

ci,j (6.11)

162

Example 10. For the tasks in Figure 6.3, we add the following constraints for the span:

L1 ≥ c1,1 + c1,2 + c1,4 L1 ≥ c1,1 + c1,3 + c1,4

L2 ≥ c2,1 + c2,2 L2 ≥ c2,1 + c2,3

Number of Constraints

The inequality in Expression 6.11 represents a constraint for every path from each task DAG’s

source vertex to its sink. The number of these constraints can therefore be expressed as the

number of maximal paths through the DAG. It is shown in [115] that for a DAG without

shortcuts19 having n = 3k vertices for k ∈ N, the maximum number of maximal paths is 3k.

For our construction that adds a unique source and sink vertex, there can therefore be up

to 3(n−2)/3 constraints, as illustrated in Figure 6.5.

S T…

Figure 6.5: A DAG with 3(n−2)/3 maximal paths, each of which might be the critical path.

We refer the reader to [115] for a more detailed treatment of DAGs that do not have 3k

vertices; suffice to say, the number of constraints may be exponential in the number of

subtasks. We perform analysis for randomly-generated task DAGs in Section 6.6.

6.4.3 Task Span: A Polynomial Number of Constraints

To provide a smaller bound on the number of constraints in our MIQP, we propose an

alternative method for enforcing the intended interpretation of the span variables Li. From

our prior work in [149], we introduce a term li,j representing the span of the subtask τi,j.

19An edge is a shortcut if the vertices it connects are connected by an alternate path; the requirement in
Section 6.2.2 that two vertices are only connected by an edge if one directly succeeds the other eliminates
shortcuts. A DAG without shortcuts is its own transitive reduction.

163

Definition 5 (Subtask Span). The span li,j of subtask τi,j in task τi represents the length

of the longest path — weighted by the execution time of each subtask along the path —

originating at the corresponding vertex vi,j of the task’s DAG representation, including vi,j

itself. This can be expressed by the following recurrence:

li,j = ci,j + max
vi,k: vi,j≺vi,k

{li,k} (6.12)

For a task τi with a single source vertex s, this implies that Li = li,s. From the above

recurrence in Equation 6.12, we can enforce the intended interpretation of each span variable

Li by the following construction. For each subtask τi,j that does not correspond to a sink

vertex in the task DAG, add a variable li,j representing its span. The span of the source

vertex20 s is already represented by the variable Li. Then for each such variable li,j, add the

following constraint for every non-sink subtask τi,k that directly succeeds τi,j:

li,j ≥ ci,j + li,k (6.13)

For every subtask τi,k that directly succeeds τi,j and that does correspond to a sink vertex

in the task DAG, add the following constraint instead:

li,j ≥ ci,j + ci,k (6.14)

Example 11. For the tasks in Figure 6.3, we add variables L1, l1,2, l1,3, and L2 and con-

straints:

L1 ≥ c1,1 + l1,2 L1 ≥ c1,1 + l1,3

l1,2 ≥ c1,2 + c1,4 l1,3 ≥ c1,3 + c1,4

L2 ≥ c2,1 + c2,2 L2 ≥ c2,1 + c2,3
20We assume — as we did in Section 6.4.2 — that a unique 0-workload source vertex s may be added if

no unique source yet exists.

164

Number of Constraints

With this method, our MIQP has an additional variable for every subtask that does not

correspond to a sink vertex or the unique source vertex of the corresponding task DAG. We

add a constraint with 3 terms for every edge of the DAG; The maximum number of such

constraints for a task with k subtasks is
⌊
k2

4

⌋
, which follows from Turán’s theorem [157].

Lemma 5. Given a task τ with k subtasks and a directed acyclic graph G constructed from

their precedence constraints as described in Section 6.2.2, the number of edges in G is at

most ⌊
k2

4

⌋

Proof. Consider the corresponding undirected graph G∗ constructed from G by replacing all

directed edges with a corresponding undirected edge.

G∗ contains no cliques of size 3. If it did, then without loss of generality, we can say it contains

a clique consisting of vertices v1, v2, and v3 connected by edges. In the corresponding directed

graph G there are two possibilities:

1. Every vertex has one incoming and one outgoing edge. This forms a cycle, and G is

acyclic, so this is a contradiction.

2. Some vertex has two incoming edges. Assume, without loss of generality, that it is v3.

For G∗ to be a clique, then in G either v1 has an outgoing edge to v2 or vice versa;

assume without loss of generality that v1 → v2. But v2 → v3 so the edge v1 → v3 is a

shortcut in G. This also is a contradiction.

From Turán’s theorem [157], an undirected graph with k vertices that does not contain any

cliques of size r + 1 has (
1− 1

r

)
k2

2

as an upper bound on the number of edges. Because G∗ has no cliques of size 3, r = 2, so this

upper bound is k2/4. Since this must take an integer value, it can be expressed as
⌊
k2

4

⌋
.

165

6.5 Joint Compression with Dynamic Programming

We now present an alternative approach to the problem of workload compression using an

MIQP. Rather than constructing a joint problem over all tasks, the idea is to construct

an MIQP for each task individually, then solve to find the optimal assignment of subtask

workloads (and the corresponding objective value) for each possible core allocation. This

defines a set of discrete states for each task corresponding to different core allocations; the

optimal assignment overall can then be determined using a similar dynamic programming

(DP) technique to the approach of Orr et al. in [121].

6.5.1 Motivation

Compressing task workloads individually, then solving the joint problem with DP, has three

advantages over the joint MIQP presented in Section 6.4.

Faster Solution Search

We observed in Section 4.8 that solving an MIQP separately for each individual task, rather

than a single joint MIQP for the complete task system, is significantly faster for elastic

scheduling of constrained-deadline, fixed-priority sequential tasks.

This same idea also applies to subtask-level elastic scheduling. Though we cannot make the-

oretical guarantees about improved complexity, we empirically demonstrate in Section 6.6.3

that in many cases, solving multiple MIQPs for each individual task, then constructing a

dynamic program to optimally allocate cores to all tasks, is faster than just solving a single

joint MIQP.

Efficient Admission Control

Buttazzo’s elastic scheduling model in [39, 40] is not simply intended for adjusting a prede-

fined set of tasks to be schedulable on a resource-constrained system. Its primary use-case

is in dynamic and open systems where the set of active tasks may change, and therefore an

166

efficient approach to admission control is desirable. Indeed, Chapter 2 of this dissertation

demonstrates an algorithm that achieves elastic task compression for a uniprocessor in time

quasilinear in the number of tasks, but enables admission control in only linear time.

Given that task parameters (control-flow DAGs, execution times, deadlines, etc.) are as-

sumed to be characterized offline, it is also reasonable to think that discrete states corre-

sponding to optimal subtask-level workload compression for different core allocations could

also be computed offline. Then, when configuring the system for a set of tasks, or during

admission control of a new task, only the pseudo-polynomial DP problem needs to be solved.

Joint Compression of Low-Utilization Tasks

Finally, as we will show, a DP-based approach allows us to also address federated scheduling

of low-utilization tasks that must execute concurrently with high-utilization parallel tasks.

We can compute the amount of compression needed to schedule the complete set of low-

utilization tasks for each possible core allocation, then determine the corresponding objective

value for each state using Expression 6.5a. These states are then considered jointly by the

dynamic program with those for each high-utilization parallel task; the solution determines

the number of cores to allocate to each high-utilization task, and how many to allocate

jointly to the low-utilization tasks.

6.5.2 Method

The method described above is realised in two steps:

1. Construct and solve an MIQP for each task individually over every possible core allo-

cation.

2. Construct an instance of a multiple-choice knapsack problem to allocate cores to each

task such that (a) the objective in Expression 6.5a is minimized while (b) the total

allocation of cores does not exceed the number available. This approach is outlined in

Algorithm 12, which takes a set Γ of n tasks to be scheduled on m processor cores.

167

Algorithm 12: Compress-QP(Γ,m)

1 Input: A set Γ of n high-utilization parallel tasks, m available processor cores
2 Output: A set {ci,j} of subtask workload assignments

3 ▷ Find optimal state for each core allocation

4 forall τi ∈ Γ do
5 Cmin

i ←
∑

j c
min
i,j , Cmax

i ←
∑

j c
max
i,j

6 Lmin
i ← Compute span according to cmin

i,j values

7 Lmax
i ← Compute span according to cmax

i,j values

8 mmin
i ←

⌈
Cmin

i −Lmin
i

Ti−Lmin
i

⌉
, mmax

i ←
⌈
Cmax

i −Lmax
i

Ti−Lmax
i

⌉
9 forall mi,k ← mmin

i ..(mmax
i −1) do

10 Construct and solve an MIQP to obtain optimal subtask workloads and corresponding
objective value Oi,k to compress the single task τi to execute on mi,k cores.

11 ▷ Find optimal joint state for m cores

12 if
∑

i m
max
i ≤ m then return No compression needed

13 if
∑

i m
min
i > m then return Not schedulable

14 ▷ Adapted multiple-choice knapsack

15 DP [0..m][0..n]▷ Table to track optimal solution.

16 DP [0][∗].O ←∞, DP [∗][0].O ←∞
17 for m∗ ← 1..m do
18 for i← 1..n do
19 MIN ←∞, ALLOC ← −1
20 for mi,k ← mmin

i ..min(mmax
i ,m∗) do

21 if i = 1 then
22 MIN ← Oi,k

23 ALLOC ← mi,k

24 else if DP [m∗ −mi,k][i− 1].O +Oi,k < MIN then
25 MIN ← DP [m∗ −mi,k][i− 1].O +Oi,k

26 ALLOC ← mi,k

27 if ALLOC > −1 then
28 DP [m∗][i].M ← DP [m∗ −ALLOC][i− 1].M
29 DP [m∗][i].M.insert(ALLOC)
30 DP [m∗][i].O = MIN

31 else DP [m∗][i] = DP [m∗ − 1][i]

32 return DP [m][n]

1. Constructing and Solving MIQPs

For each individual task τi, we compute the minimum mmin
i and maximum mmax

i number of

cores that it can be allocated. For any allocation less than the minimum, τi is not guaranteed

to be schedulable; any allocation greater than the maximum is wasted capacity. These are

computed in lines 5–8 of Algorithm 12.

168

Then for each possible core allocation m∗ in the range [mmin
i ,mmax

i −1], we construct and

solve an MIQP according to the procedure in Section 6.4 for just the individual task.

The MIQP may be simplified by removing the variable mi that represents the number of

cores assigned to task τi and replacing it instead with a constant m = m∗. In doing so, the

constraint taking the form of Expression 6.9 becomes linear instead of quadratic, and the

constraint of Expression 6.10 is removed.

Solving for each value of m∗ in this way gives us a set of optimal subtask workload assign-

ments and objective function values for each allocation; for m∗ = mmax
i , every subtask is

assigned as its workload ci,j = cmax
i,j and the task’s contribution to the objective function in

Expression 6.5a is 0.

2. Joint Allocation as a Multiple-Choice Knapsack Problem

Lines 4–12 of Algorithm 12 give us, for each task τi, a group of pairs of weight (processor

core allocation, mi,k) and cost (the minimum value taken by Expression 6.5a, Oi,k) values

for each mi,k ∈ [mmin
i ,mmax

i]. (For mmax
i , the cost is 0.) The goal is to select a pair from

each group that minimizes the total cost, while preventing the total weight from exceeding

the number of available cores m. As shown in [121], this can be reduced to an instance of

the multiple-choice knapsack problem, for which a pseudo-polynomial DP-based algorithm

is presented in [81]. Our problem differs slightly from multiple-choice knapsack because the

goal is to minimize total cost, rather than maximize total profit. Lines 15–32 of Algorithm 12

in this paper are adapted from [121, Alg. 1], which solves the problem for elastic scheduling

with discrete execution states. In our case, rather than execution states, we consider discrete

core allocations. And unlike [121, Alg. 1], we demonstrate how to track the selected core

allocations to assign subtask workloads after the algorithm completes.

Our algorithm builds a two-dimensional tableDP whereDP [m∗][i] gives the optimal solution

after considering the first i≤n tasks on m∗≤m cores. Each entry in the table is a pair ⟨M,O⟩
where M is a set that tracks the number of cores allocated to those i tasks, and O is the

corresponding minimum objective function value. It first assigns a score of infinity to the

impossible case of scheduling on 0 cores and the trivial case of scheduling 0 tasks. The

algorithm then considers (line 17) scheduling tasks on m∗ CPUs, considering the first i tasks

(line 18).

169

For each value of mi,k ∈ [mmin
i ,mmax

i], the algorithm checks whether allocating mi,k cores to

task τi improves the result (i.e., decreases MIN). For τ1, as there are no cores allocated

yet to other tasks, the algorithm simply sets MIN to the best objective Oi,k for mi,k cores

(lines 21–23). For each remaining task τi, the algorithm considers the joint allocation of mi,k

cores to τi and m∗−mi,k cores to the previous tasks (lines 24–26). If an improved allocation

is found, then the entry of the DP table corresponding to m∗ cores and the first i tasks

is updated (lines 27–30) to track the current best core allocation for those tasks and the

corresponding objective. Otherwise, it is updated to match the best allocation over the

previously-considered m∗−1 cores.

The algorithm returns the pair stored in the entry of DP corresponding to scheduling the

complete set of n tasks on all m. For each task, subtask workloads can then be assigned

according to the corresponding MIQP solution for mi cores.

Runtime Complexity and Admission Control

While we cannot make guarantees about the time to solve each MIQP, the DP portion of

Algorithm 12 is pseudopolynomial in n and m. There are m CPUs to allocate (line 17) to

n tasks (line 18). For each task τi, we consider allocations from mmin
i to mmax

i , stopping

if the currently-considered allocation m∗ is reached (line 19); this bounds the number of

iterations of the inner for loop to m, since m∗≤m. The total worst-case running time is

therefore Θ(n·m2). As justified in Section 6.5.1, if the optimal set of task workloads for

each core allocation are obtained offline when a task’s other parameters are characterized,

then admission of a new task to an already-compressed system can be achieved by executing

lines 14–32 of the algorithm, enabling bounded-time admission control. We evaluate this in

the context of synthetically-generated parallel tasks in Section 6.6.

6.5.3 Joint Scheduling of Low-Utilization Tasks

Our DP-based approach to subtask-level elasticity also enables joint scheduling of low-

utilization tasks. The key idea is that we can consider mmin
low and mmax

low as the number of

cores necessary to schedule the complete set Γlow of low-utilization tasks when fully com-

pressed versus uncompressed. For every m∗ ∈ [mmin
low ,m

max
low − 1], we can quantify the amount

170

of compression necessary to achieve schedulability on m∗ cores. By then solving for the cor-

responding objective function value in Expression 6.5a for the compressed Γlow, we obtain a

set of discrete core assignments and costs. This allows the complete set Γlow to be integrated

into the DP-based algorithm as if it were a single high-utilization parallel task.

Obtaining values mmin
low and mmax

low , as well as the amount of compression necessary to achieve

schedulability on m∗ cores, depends on the multiprocessor scheduling algorithm used. While

complete coverage of multiprocessor scheduling is outside the scope of this dissertation, we

outline how the approaches in Chapter 3 for fluid and partitioned EDF scheduling can be

applied in this context.

Fluid Scheduling

Recall from Section 3.2.1 that under the fluid scheduling paradigm, individual tasks are

assigned a fraction f of a processor at each instant in time. This is a convenient abstraction

that considers a set Γ of tasks τi to be schedulable on m cores so long as (a) the total

utilization
∑

i Ui of Γ does not exceed m, and (b) the individual utilizations Ui of each task

τi do not exceed 1 [19].

For low-utilization tasks, condition (b) is automatically satisfied. We can therefore obtain

mmin
low and mmax

low as:

mmin
low =

⌈∑
i

Umin
i

⌉
mmax

low =

⌈∑
i

Umax
i

⌉
(6.15)

where Umin
i = Cmin

i /Ti or Ci/T
max
i (similarly for Umax

i), depending on whether τi is computationally-

elastic or rate-elastic.

Then form∗ ∈ [mmin
low ,m

max
low − 1], we assign values Ui to each task τi that satisfy the conditions

under Buttazzo’s elastic model [39, 40] — described in Section 2.2.2 — with the desired

utilization UD equal to m∗.

The total execution time (on top of the Θ((nhigh + 1)·m2) to solve the DP problem jointly

with nhigh high-utilization parallel tasks) can be kept to a minimum by using Algorithm 2

in Section 2.3. Computing mmin
low and mmax

low can be done in time linear in nlow, the number

171

of tasks in Γlow. Compressing to m∗ cores can be done in time O(nlow · log(nlow)). However,

we remind the reader that the quasilinear overhead is due to the initial step of sorting the

list of tasks according to their ϕi values. This ordering does not depend on the desired

utilization UD. Therefore, this can be done only once; it does not have to be repeated for

each additional value m∗. The remainder of Algorithm 2 takes time O(nlow).

Thus, the worst-case running time is Θ(nlow · log(nlow) + m·nlow) for the initial sort,

followed by at most m linear-time invocations of Algorithm 2, since we can stop when m∗

exceeds m, the total number of cores available. Computing Expression 6.5a for each m∗ is

also linear in nlow.

Partitioned Scheduling

While fluid scheduling is a convenient abstraction, and implementations exist to approxi-

mate it [41], it often remains impractical in real systems [118]. A more practical schedul-

ing paradigm is partitioned scheduling, where tasks are distributed to processors a priori,

then scheduled with other tasks on that processor according to a common approach (e.g.,

fixed-priority or EDF). An optimal distribution for partitioned EDF is equivalent to the

bin-packing problem, and is therefore NP-hard in the strong sense, but approximation algo-

rithms exist that provide guaranteed schedulability if a utilization bound is not exceeded [12].

For example, as discussed in Section 3.4, a set of low-utilization tasks are schedulable on

m∗ processor cores under partitioned EDF using a first-fit or best-fit packing if their total

utilization does not exceed (m∗ + 1)/2.

For joint compression of low-utilization tasks, the approach outlined above for fluid schedul-

ing can be adopted as follows. First, we obtain mmin
low and mmax

low . We observe that

Umin
sum ≤ (mmin

low + 1)/2 — and similarly for Umax
sum and mmax

low — so:

mmin
low =

⌈
2
∑
i

(Umin
i)− 1

⌉
mmax

low =

⌈
2
∑
i

(Umax
i)− 1

⌉
(6.16)

For m∗ ∈ [mmin
low ,m

max
low − 1], we can again use Algorithm 2 to compress to a desired utilization

UD = (m∗ + 1)/2.

172

The worst-case running time is still Θ(nlow · log(nlow) + m·nlow), as the procedure is

equivalent to that of fluid scheduling, but with different utilization bounds. Once a core

allocation has been obtained by solving the DP problem, partitioning the low-utilization

tasks using a first-fit bin packing requires at most Θ(nlow · log(nlow)) time.

An alternative method — one that schedules more optimistically and applies less compres-

sion, but which has a higher execution time complexity — arises from our BS-Order

implementation of elastic scheduling for partitioned EDF in Chapter 3. For a given number

of cores m∗, we can perform binary search for the minimum amount of compression λ (see

Equation 6.4) needed to schedule the set of low-utilization tasks on those cores according to

the best-fit or first-fit bin packing heuristics.

We would again quantify the amount of compression, and corresponding objective value, for

each number of cores m∗ ∈ [mmin
low ,m

max
low − 1]. However, by using heuristic bin packing, we do

not know mmin
low and mmax

low a priori. We do know that mmin
low is bounded below by ⌈

∑
i U

min
i ⌉

and mmax
low is bounded above per Equation 6.16.

For m total processors, partitioned EDF elastic scheduling has to be invoked up to m times.

Given the desired granularity ϵ of the search for the amount of compression λ, the worst-case

running time of this approach is therefore

Θ

(
m · (n logn+ n ·m) · log

(
λmax

ϵ

))
per Expression 3.3.

6.6 Evaluation

In this section, we empirically evaluate the performance of the algorithms detailed in Sec-

tions 6.4 and 6.5 for synthetically-generated task sets, and compare them to the prior state

of the art in [119, Algorithm 1].

173

6.6.1 Analysis of Span Constraints

We begin by analyzing the number of constraints necessary to enforce the intended interpre-

tation of the span variables in the MIQP discussed in Sections 6.4.2 and 6.4.3. Though we

have already provided theoretical upper bounds, we would like to now empirically quantify

a range of realistic problem sizes associated with sets of synthetically-generated DAG tasks.

Experimental Setup

We generate DAGs according to a modified version of the Erdős-Rényi method [43]:

1. Select a number of vertices k for the DAG G (we iterate over values of k from 5–50).

2. For each pair of vertices in {v2, ..., vk−1}, a connecting edge is added with probability p

(we iterate over values of p from 0.05–0.95 in steps of 0.05). The edge is always directed

from the smaller to larger vertex index to guarantee the graph remains acyclic.

3. Vertex v1 is the source vertex: direct an edge from it to all remaining vertices (except

vk) with no incoming vertices. Similarly, vertex vk is the sink: direct an edge to it

from all vertices with no outgoing vertices. This guarantees that the DAG is weakly

connected.

4. For every edge E connecting vertex va to vb, if there exists a path from va to vb in

G\E, then E is a shortcut and is removed as illustrated in Figure 6.6. This guarantees

that no path from source to sink is a subset of another path, so every path might

form the critical path, depending on its vertex weights (i.e., the corresponding subtask

execution times).

For each value of k and p, we randomly generate 10 000 graphs.

174

A

B

C
Figure 6.6: Removing shortcut edges.

Counting Maximal Paths

For each DAG, we count the number of paths from the source to the sink vertex; these are

exactly the set of maximal paths and correspond to constraints in the form of Expression 6.11

in Section 6.4.2. We then calculate the mean and maximum count for each pair (k, p). Results

are plotted in Figure 6.7.

(a) Mean path counts. (b) Max path counts.

Figure 6.7: Maximal Path Counts

We observe that an edge probability of 0.5 is expected to produce the largest number of

maximal paths. For tasks with 50 subtasks and p = 0.5, 8465 constraints of the form of

Expression 6.11 will be added on average with a maximum observed of 106 560. However,

an edge probability of 0.55 gives the maximum observed overall at 133 632 such paths. In

comparison, the maximum possible for the pathological case illustrated in Figure 6.5 is

3(50−2)/3 = 316, which is over 43 million.

175

Counting Edges

For each DAG, we also count the number of edges remaining after removal of shortcut edges.

Each such edge corresponds to a constraint in the form of Expression 6.13 or Expression 6.14

in Section 6.4.3. Results are plotted in Figure 6.8.

(a) Mean edge counts. (b) Max edge counts.

Figure 6.8: Edge Counts

We observe that for smaller numbers of subtasks, an edge probability of 0.2 is expected

to produce the largest number of edges, as edge shortcuts are removed after the initial set

of edges are generated. As the number of subtasks k approaches 50, p = 0.15 is expected

to result in the most edges: 106 on average. The maximum observed overall was 136.

For tasks with fewer subtasks, adding a constraint per path typically yields

fewer constraints, but as the number of subtasks increases, the number of

paths rapidly overtakes the number of edges.

6.6.2 MIQP Solver Performance

We now evaluate the feasibility of using an off-the-shelf MIQP solver to assign execution

times to subtasks according to the optimization problem listed in Expression 6.5.

176

Implementation

We formulate an MIQP for each task according to the procedure in Section 6.4. We use a

custom C++ wrapper into which we link version 10.0.3 [105] of the Gurobi Optimizer [72]

to execute the MIQP. Each task is represented as a data structure (struct) with subtask

workloads ci,j and constraints cmin
i,j , cmax

i,j on those workloads, stored as arrays (std::vector)

of single-precision floating-point representations. Task deadlinesDi, which are assumed equal

to the period Ti, are stored as integers. DAG edges representing the precedence constraints

among subtasks are encoded in an adjacency matrix.

We quantify execution time performance by reading from the standard library’s high reso-

lution clock (std::chrono::high resolution clock). Compilation is performed using the

Gnu Compiler Collection (GCC) at optimization level O3. We enclose calls to the solver be-

tween calls to std::atomic signal fence using sequentially-consistent ordering; this avoids

instruction reordering around clock reads. We evaluate execution times in a single thread on

a server with an AMD EPYC 9754 and 128GB of RAM running Linux 5.14.0. Simultaneous

Multithreading and CPU throttling are disabled.

Compressing Individual Tasks

We begin by randomly generating tasks according to the modified Erdős-Rényi method

outlined above, using an edge probability of p = 0.5 since we have observed that this typically

induces the greatest number of maximal paths. For each value k (number of subtasks) in

5–50, we generate 1000 such tasks, for a total of 46 000.

Each subtask τi,j has its elasticity Ei,j randomly selected as an integer from the range 1–

100. To assign a range of acceptable execution times to each subtask, we randomly select two

integer values in the range 1–100. The smaller value is assigned to cmin
i,j and the larger to cmax

i,j .

So that the task remains high-utilization even if all subtasks are assigned their minimum

execution times, we randomly select Di as an integer from the range [Lmax
i + 1, Cmin

i − 1]

(if D ≤ Li, the core assignment in Equation 6.2 becomes invalid). If for some task τi,

Lmax
i + 1 > Cmin

i − 1, values of ci,j are regenerated.

177

Generated parameters are used with Equation 6.2 to determine the minimum mmin
i and

maximum mmax
i number of cores to guarantee schedulability for each task; the integer value

m of total cores available is selected uniformly from the range [mmin
i ,mmax

i − 1].

We formulate two MIQPs for each task according to the procedure in Section 6.4, using

both proposed methods to enforce the intended interpretation of the span variables (with a

constraint for each maximal path per Section 6.4.2 or with a constraint for each edge per

Section 6.4.3). We then solve using Gurobi according to the above implementation details.

The solver is configured to execute in a single thread, which allows us to run separate

instances of the algorithm sequentially on 100 of the unused physical cores on our server,

splitting up the work of compressing all 46 000 considered task systems. Results are plotted

in Figure 6.9.

Figure 6.9: MIQP times for individual tasks.

We observe that for smaller numbers of subtasks (i.e., up to around 20), the selection of

the method for enforcing the intended interpretation of the span variables does not have a

significant impact on execution time. However, as the number of subtasks increases

further, a constraint per edge becomes significantly faster. With a constraint per

edge, a solution was reached in under 41 ms in the worst case, with a median under 6.0 ms

for 50 subtasks. But with a constraint per path, solution search took up to 462 s in the worst

case (1127× slower), and for tasks with 50 subtasks, the median time was 505 ms (72.6×
slower).

178

Joint Task Compression

We next consider the joint compression of multiple parallel tasks. We randomly generate

task sets of size n from 2–10 in steps of 2. Every task in a task set is assigned the same

number k of subtasks; for each value n, we consider values of k from 5–20. For each pair

(n, k), we generate 100 task sets using the above methodology, for a total of 8000. Each

task DAG again has an edge probability of p = 0.5. Generated parameters are again used

with Equation 6.2 to determine the minimum mmin and maximum mmax number of cores to

guarantee schedulability for each task system; the integer value m of total cores available is

selected uniformly from the range [mmin,mmax − 1].

We again formulate two MIQPs for each task according to the procedures in Section 6.4,

then solve with Gurobi using a single thread, splitting the work among 100 physical cores

on our server. This time, we force the solver to terminate if no solution is found after one

hour. Results are plotted in Figure 6.10.

179

(a) Span Constraint per Path: Max Times (b) Span Constraint per Edge: Max Times

(c) Span Constraint per Path: Median Times (d) Span Constraint per Edge: Median Times

Figure 6.10: MIQP times when solved jointly for multiple tasks. Series in each plot, from
bottom to top, are for sets of 2, 4, 6, 8, and 10 tasks.

From these plots, we make the following observations:

• From comparing the plots on the left and right sides of the figure, no substantial differ-

ence in maximum execution times is observed between the two methods for enforcing

the intended interpretation of the span variables.21 This is unsurprising, as Figure 6.9

did not illustrate a significant difference for single tasks of up to 20 subtasks. However,

it is noteworthy that this similarity is preserved when compressing jointly for up to 10

21There is some difference — with a span constraint per path, the maximum observed execution time for
2 tasks was 98.9 ms, 3.15× slower than the maximum 31.5 ms observed with a span constraint per edge —
but this is not visually obvious due to the logarithmic scale in the y-axis.

180

tasks. Moreover, we do see that for more than 2 tasks, the median execution times

associated with maximal path constraints are higher than those associated with edge

constraints.

• Maximum execution times occasionally reach one hour when jointly compressing 10

tasks. In fact, of the 16 000 tested MIQPs, 6 timed out at the one hour limit we

imposed. Of those, 4 enforce span with a constraint for each maximal path, and have

10, 12, 12, and 18 subtasks per task. The other 2 enforce span with a constraint for

each edge, and have 12 and 18 subtasks per task.

• Most importantly, it comes as no surprise that execution times increase rapidly

as tasks are added. For every two additional tasks beyond the first 4, both the

median and maximum execution times increase by about an order of magnitude. With

a span constraint per path, the maximum observed execution time for 2 tasks was only

98.9 ms, at least 36000× faster than the one hour timeout for 10 tasks. And with a

span constraint per edge, the maximum observed execution time for 2 tasks was only

31.5 ms, over 114 000× faster than for 10 tasks.

This suggests that our dynamic-programming approach proposed in Section 6.5

may be more efficient with larger numbers of tasks. Recall that its worst-case

running time for n tasks on m cores is Θ(n·m2). Given our methodology for generating

sets of parallel tasks, the number of cores in expectation should scale proportionally to the

number of tasks, and so the running time of the DP should scale approximately with n3.

From 2 to 10 tasks, we therefore expect the execution time associated with the DP to increase

by about 125×, not the ∼ 105× observed for the joint MIQP. We test this hypothesis in the

next subsection.

6.6.3 DP-Based Solution Performance

We have shown that solving the MIQP jointly for larger sets of tasks rapidly becomes in-

feasible in a short amount of time. However, we’ve also shown that solving the MIQP for

an individual task is relatively efficient, typically on the order of a few milliseconds even

for large numbers of subtasks (up to 50). We therefore expect our DP-based approach of

Section 6.5 to outperform the single MIQP for larger sets of tasks.

181

Side-By-Side Comparison

We begin by evaluating our DP-based approach using the same sets of tasks that we generated

to test the performance when solving a single joint MIQP over every task, with 100 sets of

tasks for each number n of tasks from 2–10 in steps of 2 and each number k of subtasks from

5–20. The MIQP for individual tasks represents span variables according to the methodology

in Section 6.4.3, using a constraint for each DAG edge, since this was already shown to be

more efficient than using a constraint for each maximal path.

As before, we split the work among 100 threads on our system. We separately measure the

execution time associated with solving MIQPs to obtain discrete compression states for each

task associated with each core assignment, and the execution time to subsequently solve the

dynamic program. Figure 6.11 compares the total execution time with that of solving a

single MIQP jointly for all tasks with a span constraint per edge; Figures 6.11b and 6.11d

are repeated from Figure 6.10 to provide a side-by-side comparison.

182

(a) DP: Max Times (b) Joint MIQP: Max Times

(c) DP: Median Times (d) Joint MIQP: Median Times

Figure 6.11: Total execution times to solve a joint MIQP with a span constraint per edge
versus using the DP-based approach.

This allows us to draw the following conclusions about the DP-based approach.

• For a small number of tasks, solving a single joint MIQP is more effi-

cient. For sets of 2–4 tasks, the maximum observed execution time for each number of

subtasks remains under 1 second when solving a joint MIQP, but is consistently over 1

second (reaching as high as 10 seconds) for the DP-based approach. This makes sense,

because the DP-based approach has to solve several individual MIQPs for each task —

one for each possible core assignment. As we will show, this dominates its execution

time.

183

• However, as the number of tasks increases, the execution time associated

with the DP-based approach grows more slowly than that of the single

joint MIQP. For the DP, the maximum observed execution time for 2 tasks is 7.39 s,

compared to 17.6 s for 10 tasks; this is only a 2.39× increase. Compared to the ∼ 105×
increase in execution time from 2 to 10 tasks observed for the joint MIQP, the DP-based

approach scales much more slowly.

• As a result, for larger numbers of tasks, the maximum execution time asso-

ciated with the DP-based approach is much faster than that of the single

MIQP. While we cannot report an exact speedup, since the joint MIQP timed out

after 1 hour, the execution time of the DP-based approach is at least 205× faster in

the worst case.

To more closely investigate the contributors to the execution time of the DP-based approach,

we also decompose the execution time measurements, separately plotting the time to solve

the multiple MIQPs for each task, and the subsequent time to solve the dynamic program.

Results are plotted in Figure 6.12.

184

(a) Max Times to Solve MIQPs for Each Task (b) Max Times to Solve DP

(c) Median Times to Solve MIQPs for Each Task (d) Median Times to Solve DP

Figure 6.12: Contributors to execution time of the DP-based approach.

We observe that the time to solve the individual MIQPs for each task dominates,

while solving the DP itself is very efficient, taking only 6.8 ms in the worst case. Moreover,

the median time to solve the DP increases by about 2 orders of magnitude from 2 to 10

tasks, which is what we expect from the theoretical upper bound of 125×. However, the

maximum time to solve the DP for 2 tasks is 418 µs, only 16.4× faster than for 10 tasks,

suggesting that for the tested tasks, the DP times scale slowly as tasks are added.

185

Evaluation of a Larger Parameter Space

We have shown that for even a large number of subtasks, solving an MIQP that represents

span using a constraint for each edge for an individual task remains very efficient. We

therefore expect our DP-based approach to remain feasible even for larger numbers of tasks

with more complex control flows. Moreover, we expect that if the MIQPs are solved offline

when task parameters are characterized, it will be possible to quickly solve the DP online

to achieve real-time task adaptation.

To test these hypotheses, we generate new task sets over a broader space of numbers of tasks

and subtasks. This time, we use sets of size n from 2–20 in steps of 2, each assigned the

same number k of subtasks from 5–50 in steps of 5. For each pair (n, k), we generate 100

task sets using the same methodology as before, again with an edge probability of p = 0.05.

We split the work of applying the DP-based approach to these 10 000 task sets across 100

threads. Measured execution times are plotted in Figure 6.13.

186

(a) Median Time to Solve MIQPs (b) Maximum Time to Solve MIQPs

(c) Median Time to Solve Dynamic Program (d) Maximum Time to Solve Dynamic Program

(e) Median Total Time (f) Maximum Total Time

Figure 6.13: Execution Time Statistics for DP-Based Approach.

187

The results indicate that our DP-based approach remains efficient even for larger

numbers of tasks — even for 20 tasks with 50 subtasks each, the total execution time

remains less than one minute. Compared to solving a single joint MIQP, which can take

over an hour for 10 tasks with 20 subtasks, this a substantial improvement. Moreover, just

solving the DP is even faster, taking under 60 ms for up to 20 tasks with 50 subtasks.

Where the MIQPs can be solved offline, this can enable real-time online adaptation and

re-allocation of cores, e.g., during admission control of new tasks, or when the number of

available processors changes.

6.6.4 Comparison to Workload Compression in [119]

To complete our evaluation, we compare our model of subtask-level workload compression

to the original approach to workload compression of parallel DAG tasks proposed by Orr et

al. in [119]. We intend to characterize the extent to which, by considering that the span

term Li in Equation 6.2 decreases with the workload Ci, our model can reduce the amount

of compression necessary to achieve schedulability, and in doing so reduce the minimum

number of processor cores on which a task is still schedulable when compressed.

A direct comparison is difficult, because the original model also does not assign a unique

elasticity to each subtask. We therefore construct our test as follows.

1. We use the randomly-generated DAG tasks from Section 6.6.2 that were used to eval-

uate the efficiency of each MIQP formulation to compress individual tasks. These

consist of 1000 task sets for each number k of subtasks in 5–50.

2. For each task τi thus generated, we use the assigned values to compute the minimum

and maximum total execution times Cmin
i , Cmax

i and spans Lmin
i , Lmax

i .

3. We then use these values with Equation 6.2 to compute the maximum number of cores

mmax
i needed to schedule task τi. We also calculate the minimum mmin

i to achieve

schedulability under our model (using Lmin
i) and the minimum mmin ∗

i that arises from

the model of Orr et al. due to keeping the span constant (using Lmax
i).

4. For each number of cores in [mmin ∗
i ,mmax

i −1], we determine the workload Ci to achieve

schedulability according to Equation 6.2 under the model of Orr et al., again keeping

188

the span fixed at Lmax
i . We compare this to the total workload

∑
j ci,j achieved by our

MIQP-based model for those same numbers of cores.

Comparison of Minimum Core Allocations

We begin by comparing the values mmin
i achieved by our model — which is cognizant of

the effect of minimum subtask workloads cmin
i,j on the minimum span Lmin

i — to the values

mmin ∗
i achieved by the model in [119] which holds span constant. Figure 6.14 shows the ratio

mmin
i /mmin ∗

i of the two values.

Figure 6.14: Ratio
mmin

i

mmin ∗
i

of minimum allowed cores.

We observe that the ratio does not appear to be highly dependent on the number of subtasks.

However, it does illustrate an important point: by also compressing task span, the

minimum number of cores on which a task can be scheduled is decreased. On

average, the value mmin
i achieved by our subtask-aware model is 0.73× the value mmin ∗

i

achieved by the earlier model of Orr et al. And at best, mmin
i = 0.0057×mmin ∗

i . This

implies that sets of tasks can be successfully compressed for schedulability on systems with

fewer available cores. To better quantify this, we also measure the value∑
im

min
i∑

i m
min ∗
i

= 0.41

aggregating the minimum demand for cores under both models across all 46 000 sets of tasks.

This suggests that, on average, our subtask-level elastic scheduling may be able to schedule

189

sets of tasks on systems with 41% the number of cores needed by the method of Orr et al.

in [119].

Comparison of Total Workloads

We next compare the amount of computational workload that remains available to tasks

when compressed under each model. For every number of cores on which each task can

be compressed by both models, we compare the values Ci achieved by our subtask-level

elastic scheduling model, to the values C∗
i achieved by the earlier model of Orr et al. [119].

Figure 6.15 shows the ratio Ci/C
∗
i of the two values.

Figure 6.15: Ratio Ci

C∗
i
of compressed workloads.

Once again, we do not see a significant relationship between the ratio and the number of

subtasks. Unsurprisingly, however, we do observe that by compressing task span, a

task’s total workload does not have to be compressed as much to be schedulable

on a given number of cores. The median of the ratio Ci/C
∗
i is 1.23, and at best, our subtask-

level model achieves a workload 2.08× that of the original model in [119] among the tasks

we tested.

190

6.7 Conclusion

In this chapter, we have presented a new model of subtask-level elasticity for federated

scheduling of parallel tasks. The model considers the joint impact of compressing the work-

loads of each subtask within the task system, including changes to each task’s span, which

also affects the assignment of processor cores to each task.

We have illustrated two approaches to formulating the problem as an MIQP. Using an off-

the-shelf solver, we have demonstrated that the problem can be efficiently solved to make

offline scheduling decisions, even for complex task DAGs. We have also shown that, with

proper offline characterization, a dynamic-programming (DP) algorithm enables pseudo-

polynomial compression during online admission control. We have discussed how the same

DP-based approach enables joint compression and dynamic core allocation to low-utilization

tasks scheduled concurrently in a federated manner with high-utilization parallel tasks. We

have outlined how to do this for both fluid and partitioned EDF scheduling of sequential

tasks.

The results indicate that by solving a set of MIQPs offline to characterize discrete compres-

sion states, our subtask-level elastic scheduling model achieves millisecond-scale

adaptation for online compression. Furthermore, by compressing task spans in ad-

dition to their workloads, our model achieves smaller constraints on the minimum

number of cores for each task, and does not have to compress a task’s total

workload as much to remain schedulable on a given number of cores, compared to the

original model of Orr et al. [119] for workload compression in parallel DAG tasks.

191

Chapter 7

Parameterized Workload Adaptation

for Fork-Join Tasks with Dynamic

Workloads and Deadlines

Portions of this chapter were published as “Parameterized Workload Adaptation for Fork-

Join Tasks with Dynamic Workloads and Deadlines” at RTCSA 2023 [146].

7.1 Introduction

In the previous chapters of this dissertation, we have explored the link between Buttazzo’s

elastic scheduling model [39, 40] and the optimization problem proposed by Chantem et

al. [44, 45]. In particular, we have shown in Section 5.6.1 that this captures a quadratic first-

order relationship between loss in system utility and the reduction of each elastic task’s rate

or workload. As we demonstrated for the real-time FIMS [166] and ORB-SLAM3 [42] ap-

plications, characterizing these relationships allows a system designer to assign quantitative

and semantically-meaningful values to task elastic parameters. Furthermore, in Chapter 6,

we proposed that for computationally-elastic parallel tasks, these parameters should be as-

signed to individual subtasks, rather than each task as a whole, to reflect the impact of each

subtask’s execution on system outcomes.

Nonetheless, these models remain limited in their ability to express richer semantics that

may arise in the relationship between computation and subsequent result utility. Looking

to the future, we propose that elastic scheduling should be reasoned about more broadly as

192

an optimization-based framework in which tasks can be adapted to maximize result qual-

ity within the constraints of schedulability and other application-imposed constraints (e.g.,

safety requirements). Toward this vision, this chapter presents a new approach to workload

compression for a single highly-parallel fork-join task executing on a fixed number of dedi-

cated processors. It frames elasticity as a problem of adjusting a task’s workload over multiple

parameterized degrees of freedom with continuous or discrete values. By characterizing the

impact of workload reduction on response time and utility, we generate a Pareto-optimal

surface over which efficient search, interpolation, and extrapolation enable online selection

of task parameters in response to dynamic factors, such as deadlines that are not known

prior to job release. This is the first step toward the future goal of formalizing a complete

optimization framework for execution of multiple tasks on a limited set of computational

resources.

7.1.1 Contributions of This Chapter

Many real-time systems execute in dynamic environments where exogenous factors inform

task workloads and latency requirements, which therefore might not be known prior to job

release. If a job’s workload cannot be completed in time, it nonetheless may be able to adjust

its computation to provide an imprecise result prior to the deadline: anytime workloads [86]

stop executing when their budget is exhausted, providing the current state of their results,

while others support discrete execution modes corresponding to varying degrees of precision

that can be selected prior to execution [121, 98, 140].

However, anytime or discrete semantics might not fully capture the dimensions over which

a task’s workload can adapt to meet its deadline. Some computations have multiple pa-

rameterized degrees of freedom that may be adjusted from their nominal values. These can

be categorical (e.g., selecting from among a collection of algorithms) or numeric. Numeric

parameters typically take discrete values (e.g., the number of iterations to refine a result),

though at fine granularity, they can be approximated as a continuous state space (e.g., the

proportion of input data selected from a large set for processing). If an instance of a task is

not schedulable when run using its desired computational mode, its utilization may be re-

duced or compressed by adjusting these parameters to guarantee completion while minimally

degrading result utility.

193

In this chapter, we consider the problem of parameterized workload adaptation for highly-

parallel fork-join tasks with dynamic workloads and deadlines executing on a fixed number of

dedicated cores. Given such a task, the challenge is to 1 identify the parameterized degrees

of freedom over which its workload can be adjusted to compress its utilization, then 2

characterize the effect of compression on result utility. By also 3 quantifying the worst-case

response time of the task as a function of those parameters on a given number of cores, we can

formulate an optimization problem to select parameter values that minimize utility loss while

constraining the response time according to the task’s deadline. For example, as we discussed

in Chapter 5, for simultaneous localization and mapping (SLAM) systems [88, 42], result

utility can be scored quantitatively according to the relative translational error (RTE) [90] of

a map; compression should therefore seek to maximize accuracy by minimizing RTE within

the constraints of schedulability.

Several challenges must be addressed in the face of dynamic workloads and deadlines. Char-

acterizing the objective as a closed-form function over multiple parameterized dimensions

may be difficult, and finding optimal values for each parameter that satisfy the problem’s

dynamic constraints might be inefficient for online compression. Furthermore, while pa-

rameters must be assigned to satisfy schedulability under worst-case assumptions, avoiding

unnecessary worst-case pessimism (i.e., overcompression) remains a goal of this chapter.

Our solution is to quantify loss empirically for a large set of states (i.e., joint parameter

settings), constructing a monotonically-decreasing hull of hyperplanes between these states.

The set of all states is reduced to a Pareto-optimal surface by sorting candidate states in order

of worst-case response times for a target platform and removing those for which a greater

response time yields a lower utility. At job release, this surface can be efficiently searched

— and interpolated or extrapolated — to find a state satisfying the dynamic constraints

imposed by the job-specific workload and deadline.

Selected parameter values are then applied according to application semantics, defining a

computational mode prior to execution. Despite conservative parameter selection to guaran-

tee schedulability under worst-case execution times, some applications enable less pessimism.

For example, an execution time budget may be assigned to anytime subtasks to allow ad-

ditional execution if assigned work is completed early, and alternative approaches of slack

reclamation (such as we describe in Section 7.8) are sometimes possible.

194

We apply our techniques to the Advanced Particle-astrophysics Telescope (APT) [30], a

planned orbital observatory (illustrated in Figure 7.1) that will detect and localize gamma-

ray bursts (GRBs) in real time using onboard embedded hardware that is highly constrained

in size, weight, and power (SWaP). By promptly communicating a GRB’s direction to sec-

ondary instruments, APT will enable follow-up observations across a wide spectral range.

We currently model GRB localization as a highly-parallel fork-join task with a workload

and deadline that depend on the unique characteristics of each GRB [145]. We demonstrate

that our approach enables efficient online compression and slack reclamation, allowing for

rapid and accurate localization of even bright transient GRBs that may provide only a short

window of opportunity for observation. On a quad-core ARM Cortex-A53 platform, we are

able to localize 4 bright short GRBs to within a degree while meeting a 33 ms deadline,

despite uncompressed localization requiring longer than a second.

Figure 7.1: A rendering of the APT instrument [30].

7.1.2 Organization

The rest of this chapter is organized as follows:

• Section 7.2 reviews the elastic scheduling background relevant to this chapter and

discusses some of the related work on other adaptive frameworks.

• Section 7.3 provides an explicit problem statement and describes the system model

considered in this chapter.

195

• Section 7.4 outlines the solution approach that we propose.

• Section 7.5 describes the proposed APT satellite and its real-time GRB localization

pipeline, which is the target application against which we apply and evaluate the

techniques proposed in this chapter.

• Section 7.6 identifies the parameterized degrees of freedom over which the GRB lo-

calization workload can be adjusted, and characterizes their impact on loss of result

utility — which in this case is defined as the error (in degrees) of the localized source

direction inferred for the burst.

• Section 7.7 quantifies the impact of each parameter on the localization task’s workload

and response time, deriving a closed-form function for each phase of the task.

• Section 7.8 presents our efficient implementation of our adaptive framework for APT

and discusses additional optimizations, such as a method to reclaim slack time if lo-

calization finishes earlier than predicted by its worst-case response time.

• Section 7.9 evaluates our adaptable GRB localization pipeline in the context of syn-

thetic GRB data using representative spectral characteristics, as well as simulations of

four catalogued real-world GRBs.

• Section 7.10 concludes the chapter and suggests how the work is situated within our

broader vision.

7.2 Background and Related Work

The elastic scheduling models discussed in this dissertation — including the prior models

of Buttazzo et al. [39, 40], Chantem et al. [44, 45], and Orr et al. [119, 120, 118, 121], as

well as those new to this dissertation — already offer a collection of frameworks for dynamic

adaptation of task utilizations to avoid system overload. Though several of these models

support computational elasticity — i.e., compressing task workloads — they do not describe

how to adapt computation under the applied constraints. The discrete elastic model of Orr

et al. [121] considers specific modes of execution, but this does not capture the multiple

degrees of freedom (which may be continuous, discrete, or categorical) over which a task’s

workload may be compressed. The AutoE2E adaptive framework for autonomous vehicles [8,

196

7] supports subtask-specific objective functions, but it is limited to end-to-end sequential

execution and does not consider how compressing a subtask may affect its successors.

In [128], the authors survey protocols for switching between execution modes without missing

deadlines. An adaptive framework in [27] degrades task execution according to “service

levels,” with each assigned an “importance value” reflecting a user-defined notion of quality

of outcome. While such protocols may help to inform the transition between uncompressed

and compressed execution, we propose a richer elastic model to support tasks having both

discrete and continuous modes of operation, as well as combinations of the two.

A similar approach was presented for parallel LiDAR object detection [140] and applied to

the PointPillars [87] encoder, aiming to maximize utility while maintaining schedulability

guarantees by profiling execution times and assigning accuracies to discrete states. Such

approaches may allow for a more objective measure of performance than traditional elastic

scheduling, which compresses task utilizations proportionally to their elasticity. However,

they are limited in practice to a small set of discrete states. We propose to allow adaptation

according to a user-defined objective function over multiple degrees of freedom involving

continuous or discrete numeric values and categorical variables.

A more general framework for allocating limited resources (e.g., CPU resources to guarantee

schedulability) while maximizing application utility was provided by Rajkumar et al. [126]

in their resource allocation model for quality-of-service (QoS) management. Similarly to the

work of this chapter, this allocation model treats utility as a function of multiple parameters,

and these functions are restricted to be monotonically increasing in each resource dimension.

Each parameter represents some system resource; the joint allocation of each resource to

each application must not exceed the total availability of that resource on the system. CPU

bandwidth/utilization may represent one resource, but this provides an abstraction model

over other types of computational resources. In their later work, Rajkumar et al. [127]

propose techniques to treat the problem as one of optimizing over a convex hull representing

the utility function; the solution approach in this chapter is similar. However, these models

are fundamentally different from the model of this chapter: while we also consider utility as

a function of multiple parameters, our parameters do not represent limited resources that

must be allocated. Instead, schedulability based on response time as a function of those

parameters, as opposed to a total bound on the sum of each parameter, is the first-class

concern that forms the constraint under which we seek to optimize utility.

197

Recent work on dynamic deadline-driven execution [68] presents a novel adaptation scheme

for tasks with environment-dependent deadlines and execution times. This data-driven exe-

cution framework provides handlers for deadline misses, allowing downstream components in

the computational pipeline to adapt in response. The authors argue that periodic execution

models, which use conservative WCET estimates, fail “to maximize the runtime-accuracy

trade-off due to the large skew between the mean and maximum runtime,” which typically

“leaves plenty of slack.” In Section 7.9, we demonstrate an approach that reclaims slack

to provide higher utility while still using conservative WCET estimates to prevent deadline

misses.

Our work in this chapter focuses on highly-parallel fork-join tasks, for which it is straightfor-

ward to characterize a closed-form worst-case response time under a nearly optimal schedule

as a function of its compressible parameters. Many real-world applications [141, 168], in-

cluding the GRB localization pipeline that we have developed for the proposed APT mission

[30, 48, 144, 153, 171, 145, 147, 75, 47, 146, 76, 154] considered in this chapter, can be

described as such.

7.3 System Model and Problem Statement

This chapter focuses on recurrent, constrained-deadline, highly-parallel fork-join tasks. Though

both chapters deal with parallel tasks, the task model in this chapter differs fundamentally

from the parallel DAG task model described in Section 6.2.

In this chapter, every job Ji,k of a task τi is characterized by a relative deadline Di,k. This

parameter encodes the same meaning as for the task models in prior chapters, representing

the interval after the job’s release by which it must complete execution. However, unlike in

prior chapters, the deadline Di,k may be unique to each job, and might not be known until

the release of the job. Deadlines are still constrained to not exceed the task period — i.e.,

each job must complete prior to the release of the next job. Using gamma-ray burst (GRB)

localization as an example, the release of an instance of the localization task, corresponding

to the detection of a GRB, has a deadline that may depend on several factors, including the

set of instruments available for follow-up observations and their associated communication

latencies and slewing speeds [145]. Because these are infrequent enough events, we may

assume that the deadline will have passed prior to the detection of another GRB.

198

Similarly, each job has a workload Ci that may not be known prior to its release. Again,

the parameter has an equivalent semantic meaning to the workload of previous chapters,

representing the worst-case execution time of the job if executed on a single processor core.

But, since workload depends on external factors (e.g., the amount of data, corresponding

to the number of gamma rays that interact with the detector for a given burst), we cannot

make response-time guarantees without adapting task execution for a given job.

Unlike under the DAG task model, this chapter treats highly-parallel fork-join tasks as

a sequence or chain of subtasks {τi,j} with workloads Ci,j, where each subtask is either

sequential (s) or parallel (p), as illustrated in Figure 7.2. Unlike the parallel DAG task model

in Chapter 6, this means that a single subtask is not restricted to executing sequentially.

Under the model considered in this chapter, a parallel subtask can divide its workload evenly

across processor cores, similarly to the gang and bundled task models described in [170].22

Sequential

Parallel

Figure 7.2: A highly-parallel fork-join task with a sequential subtask followed by a parallel
subtask.

Unlike the gang or bundled task models, this chapter restricts each task to execute on a fixed

number of dedicated cores mi, similarly to the federated scheduling model of [94] discussed

in Chapter 6. Since the model under consideration allows parallel subtasks to distribute

22While such a representation is limited to a more restricted class of parallel control flow compared to the
general DAG task model, it provides additional flexibility to parameterize workloads across parallel regions.
As we will see, our parameterized workload model applies to parallel subtasks, enabling execution times
to be shortened by, e.g., reducing the amount of data to be processed in parallel. To represent this under
parallel DAG task model, a parallel subtask would have to be decomposed into a large number of subtasks,
each representing a single unit of sequential execution (e.g., a single data item). Equivalent parameterization
would have to reduce the number of subtasks, not just the workload of individual subtasks; these semantics are
not captured by the elastic models for parallel DAG tasks that we have discussed so far in this dissertation.

199

their workloads evenly across processors, the worst-case response time Ri of task τi can be

expressed as

Ri =
∑
τi is s

Ci,j +
∑
τi is p

Ci,j

mi

(7.1)

This implies that the task is schedulable if and only if Ri ≤ Di,k for each job Ji,k; offline

schedulability analysis is therefore challenging, since deadlines are not known a priori. In

this chapter, we address the scenario where a job is released with a workload and deadline

for which it is not schedulable. We consider computationally elastic tasks having multiple

execution states associated with a set of application-specific parameters {aℓ} over which

workload can be adjusted according to one of the following semantics, allowing response

time to be expressed as a monotone non-decreasing function R({aℓ}):

1. The workload of one or more subtasks may be a function Ci({aℓ}) of discrete or contin-
uous numeric parameters; these must be monotone non-decreasing in each parameter.

Section 7.6 provides examples of subtasks having execution times linear or quadratic

in a continuous numeric parameter representing the amount of input data to process.

2. A discrete numeric parameter (e.g., a number of iterations) may change the sequence

of subtasks. In this work, we consider the case where such a parameter defines the

number of identical copies of a sequence of subtasks.

3. A categorical parameter may change the computational mode (e.g., the algorithm used)

of one or more subtasks. In this case, each mode may impose its own workload as a

function Ci({aℓ}) of the other parameters. To match the semantics of (1), we assign

numeric values to each category, with the requirement that a larger numeric value is

assigned to a mode with a greater workload.

Each parameter aℓ is constrained by some maximum value amax
ℓ . These values may be either

constants or monotone non-decreasing functions of another parameter. The uncompressed

workload is defined as that associated with each parameter taking its maximum value. For-

mally, a task with a dynamic workload is one for which some values amax
ℓ are unknown

prior to job release. If a job is not schedulable, its workload is compressed by selecting

values {aℓ} such that its response time does not exceed its deadline. Compression should

200

attempt to maximize the utility of the system by minimizing some application-specific loss

function L({aℓ}) of these parameters. We consider applications for which L is monotone non-

increasing with each parameter, i.e., doing more work yields a better result. We formulate

our problem as follows:

min
{aℓ}

L({aℓ}) (7.2a)

s.t. R({aℓ}) ≤ D (7.2b)

∀j, amin
ℓ ≤ aℓ ≤ amax

ℓ (7.2c)

Here, amin
ℓ constrains the parameter to some minimum value and is assumed to be known a

priori. The problem, then, is to identify the parameters over which a task’s workload may

be compressed; to characterize their impact on the task’s response time and the utility of its

result; and finally to use this information to solve optimization problem in Expression 7.2

efficiently online to adjust a released job’s computation to adapt to overload.

7.4 Solution Overview

This section provides our solution approach to the problem posed in the prior section for

highly-parallel fork-join tasks executing on a fixed number of dedicated cores. In particular,

we demonstrate how offline workload parameterization enables construction of a

Pareto-optimal surface that can be searched online to adapt task execution in

bounded time. In subsequent sections, we illustrate and evaluate our approach in the

context of a GRB localization for APT.

7.4.1 Offline Steps

Parameterizing a task’s workloads, then characterizing the joint dependence of response time

and result utility on those parameters, is performed offline. The resulting Pareto-optimal

surface can then be searched online in time polynomial in its representation, enabling real-

time task adaptation in the face of dynamic workloads and deadlines.

201

Step 1 : Identify Parameters

Parameters may be identified offline by inspection of the application and should match the

semantics listed in Section 7.3. The parameters for adapting APT’s GRB localization task

are described in Section 7.6.

Step 2 : Characterize an Objective Function

Utility loss for an application can be quantified empirically for a large set of input state

combinations. For each parameter aℓ, a number bℓ of values within the state space should

be considered. The complete Cartesian product of these values should be tested, except

where some parameter is constrained by another. Smaller values of bℓ reduce the number of

samples for efficiency of offline analysis, but denser sampling may allow for more accurate

characterization of the objective (and the input space may still be reduced in Step 4 for

use online). The selection is left up to the application designer, though for categorical

parameters, each possible value should be considered. In Section 7.6, we identify 4 parameters

and test 2657 input states for GRB localization.

For x numeric and y categorical parameters, the objective will be a function of x+ y di-

mensions, characterized as
∏

y bℓ x-dimensional manifolds. Fitting a closed-form function to

the losses observed at the sampled states may be difficult and error-prone. Instead, our ap-

proach allows the loss function to be represented as a monotonically decreasing hull formed

by hyperplanes connecting the space of observed states. Construction from a Pareto-optimal

subset of states is described in Step 4 .

Step 3 : Quantify Response Time

The task’s worst-case response time can be quantified by decomposing it into constituent sub-

tasks, then profiling subtask execution times individually or in groups that share dependence

on common parameters. Execution times Ci,j({aℓ}) as functions of the input parameters can

thus be characterized for those parameters satisfying semantic (1) from Section 7.3. For

those parameters aℓ satisfying semantic (2), some subset of subtasks is duplicated by the

parameter value, equivalent to scaling the workload of the individual subtasks by aℓ. This

202

can be incorporated into the expression Ci({aℓ}). From this, Equation 7.1 can be used

to compute response times as functions of execution times, allowing easy adjustments of

core assignments for the application on a given platform. For categorical parameters, the

response-time functions for the Cartesian product of their values must be identified, resulting

in up to
∏

y bℓ functions of the form

Ri({aℓ}) =
∑
τi is s

Ci({aℓ}) +
∑
τi is p

Ci({aℓ})
mi

. (7.3)

While the set of functions grows exponentially in the number of categorical parameters,

realistically this can be represented more compactly. Such parameters typically represent

the selection between a handful of available computational modes or algorithms to apply to

a phase of the application. These are selected by the application designer and so may be as

small in number as desired. For example, in Section 7.6, a single categorical parameter selects

one of two algorithms for an initial approximation of a gamma-ray burst’s direction; this

selection only affects the response time of the approximation stage subtasks. As the results

in Section 7.9 demonstrate, a single such parameter is sufficient for our GRB localization

task.

Step 4 : Generate Pareto-Optimal Surface

Candidate states are sorted by response time, after which any state with a higher loss than

the previous state (i.e., for which a higher response time results in a worse outcome) is

discarded, leaving a set S of states ξ. As noted in Section 7.8, for GRB localization aboard

APT, this procedure yields fewer than 100 candidate states for each platform we tested.

From these, we construct hyperplanes connecting adjacent states for interpolation along the

Pareto-optimal surface. For each candidate state ξ, we find the points from the original set of

states having the next larger value of each parameter respectively with lower error,23 holding

constant the other parameters in ξ. These hyperplanes can be extended for extrapolation to

parameter values beyond the ranges used to infer the surface.

23Due to the often stochastic nature of characterizing loss, some adjacent states may not have a lower
objective value for a larger parameter value.

203

7.4.2 Online Steps

To implement online task compression, we modify the task to include an initial sequential

subtask that calculates its response time according to the revealed constraints on workload

parameters at time of release. In an overload scenario, the subtask should then solve the

optimization problem in Expression 7.2 and apply the resulting parameters. Realizing com-

putational mode changes is application-specific, but we outline an OpenMP-based approach

for GRB localization in Section 7.8. As this subtask adds to task workload, it must remain

efficient and be accounted for in the response time.

Step 5 : Check for Overload

When a job of a dynamic task arrives, the initial subtask must determine if the job will

complete in time. To do so, it calculates response time based on the parameter constraints

revealed. We assume that each function Ci({aℓ}) can be computed in time linear in the

number of numeric parameters x, so for a given input state, response time can be calculated

in time O(xdm) for m subtasks and xd numeric parameters with dynamic constraints.

Step 6 : Online Solution Search

If a job’s response time exceeds its deadline, the Pareto-optimal surface can be searched

in time O(log |S| + x) for a set of parameters that satisfy schedulability. Binary search

(O(log |S|)) over the sorted set of candidates finds the state ξ with the greatest response

time not exceeding the deadline, from which a Pareto-optimal solution is then obtained by

interpolation or extrapolation. This can be performed efficiently by considering each param-

eter in ξ connected to an adjacent state in Step 4 , with the other parameters held constant,

solving in constant time for the value yielding a response time equal to the deadline. The

best such value obtained (i.e., the one corresponding to the state with the lowest objective

function value) is chosen. This takes total time linear in the number of numeric parameters

x.

In the case that the state ξ has values that exceed the dynamic parameter constraints

imposed on the job, iterative search down from ξ can be used to find the best state ξ′ for

204

which all parameters are within the constraints. However, parameter extrapolation from this

state is not guaranteed to find a Pareto-optimal set of parameters, though the values will

have a higher expected utility than ξ′. This is not a problem for our target application, as

its dynamic constraints (described in Section 7.6) are defined by the amount of input data

available, and our real-world test cases (described in Section 7.9) all provide sufficient input

data. As such, exploration of alternative approaches (such as storing multiple surfaces, or

falling back to iterative search over the complete set of candidate states generated in Step

3) are deferred to future work.

Step 7 : Adapt Task Execution

Once compressed parameters are found, a task may execute in its degraded state. For

subtasks with discrete modes, execution should proceed according to the state defined by

the input parameters, but this may result in overcompression as worst-case response times are

often pessimistic. For collections of subtasks with anytime workloads, workload compression

can instead be applied by calculating WCETs corresponding to the given input parameters.

This portion of the task may then be allowed to proceed until the compressed WCET or

response-time limit has been reached, whereupon it is stopped and the current result is used.

Some applications may provide other opportunities to reduce pessimistic overcompression

via slack reclamation; we describe one such approach for GRB localization in Section 7.8.3.

7.5 Target Application: GRB Localization

The National Academies released the Astro2020 decadal survey [117] to identify scientific

challenges for astronomy and astrophysics in the next decade. It highlighted the “space-

based time-domain and multi-messenger program” as the highest-priority sustaining activity

in space, which will require coordinated real-time follow-up observations of transient astro-

physical phenomena – e.g., gamma-ray bursts (GRBs) — using secondary observational

modalities, such as visible-light observations with optical telescopes.

205

Pursuant to this, the Advanced Particle-astrophysics Telescope (APT) [30] is a planned

space-based observatory24 that aims to further scientific understanding of the nature of

dark matter and the physics of neutron-star mergers by supporting multi-wavelength and

multi-messenger astrophysics [11, 114, 106] through rapid detection of gamma-ray bursts

(GRBs). It will subsequently direct secondary follow-up instruments to observe GRBs across

broad ranges of wavelengths and emission modalities. APT will be deployed in a Sun-Earth

Lagrange L2 orbit, where obscuration of the sky by the earth is minimized and the benefit

of its large (nearly full-sky, 4π-steradian) field of view can be exploited [30]. However, many

optical follow-up instruments have narrow apertures (often <1◦) and so must point almost

directly at the GRB source. Because GRBs are transient events, long delays from initial

detection of a GRB’s light to ground-based computation of its location in the sky (which

is nontrivial to infer from the incoming gamma rays but is necessary to physically aim the

follow-up instruments) cause lost opportunities for observation. APT will therefore perform

onboard detection and localization of GRBs in real-time, enabling prompt communication of

precise source directions to those secondary instruments.

APT’s primary detector instrument will have 20 layers of sodium-doped cesium iodide

(CsI:Na) scintillating crystal tiles. From a single burst, thousands to millions of gamma-

ray photons are expected to enter the detector. Each gamma ray may Compton scatter

(illustrated in Figure 7.3) one or more times before being photoabsorbed; each such inter-

action is referred to as a hit, and a single photon’s hits are collectively referred to as an

event.

Figure 7.3: A 2-hit event in APT, with a single Compton scatter then photoabsorption.

24A smaller Antarctic Demonstration instrument, ADAPT, is scheduled to make a high-altitude balloon
flight over Antarctica during the 2025–2026 season [147, 75, 47, 76, 154].

206

Optical photons produced by the energy deposits in the crystals due to these hits are captured

by perpendicular arrays of wavelength-shifting optical fibers running across the top and

bottom surfaces of each tile. Each fiber is read by a photodetector coupled with an analog-

pipeline waveform digitizer ASIC [21]. The output of each array is processed by a single

FPGA (e.g., a rad-hard Microchip RT PolarFire), which performs data pre-processing and

reduction steps including pedestal subtraction, time-integration of signal intensities over

a ∼2µs sampling window, then zero suppression [154]. The FPGA then demarcates the

boundaries of islands of contiguous positive signal values in the array; these regions are

centroided by a second FPGA to infer interaction positions and energies for each hit.

Centroids are sent over Gigabit Ethernet to a back-end analysis CPU that aggregates and

combines the received data packets to build the hit data corresponding to each event. This

event building stage is still under development; we assume that once 95% of a burst’s incident

events have been captured and built, associated hits are available all at once in main memory,

at which point an instance of the localization task is released.

The GRB localization task forms the highly-parallel fork-join computation illustrated in

Figure 7.4. The task can be decomposed into a sequence of subtasks that collectively form

the three stages detailed in Section 7.6: it reconstructs the gamma ray’s trajectory through

the detector, inferring the hit order and associated uncertainty according to the algorithms

in [144, 171]. It then combines data from multiple reconstructed photons to approximate

then refine an inferred source direction. Localization must be completed in time to guarantee

prompt communication with secondary instruments while executing on a fixed number of

cores in SWaP-constrained hardware flying aboard the orbital platform.

Each instance of this task, corresponding to the detection and localization of a unique GRB,

is highly variable in its workload and deadline. The workload depends on the number of

detected events, which itself is a function of the burst’s spectral-energy distribution, angle

with respect to the detector, and fluence.25 The deadline may depend on the burst duration,

which can range from around 10 ms to 20 minutes in the Compton regime [71, 162, 23, 163].

It also may be informed by the communication latency and slewing speeds of available

follow-up instruments. Speed-of-light delays to ground-based devices impose an extra ∼5 s

of latency, but APT may also be coupled with an onboard optical telescope (similarly to

25Fluence is a measure of total energy per unit area; for a given spectrum and source vector, fluence is
proportional to the number of incident gamma rays.

207

Reconstruction Approximation

…

Refinement

… …

1 iteration

…

Figure 7.4: APT’s highly-parallel fork-join GRB localization task.

Swift’s UVOT [131]) with minimal communication latency. The deadline will ultimately

depend on the window of time after the initial burst during which follow-up observations are

useful; for short bursts (<1 s), the window of opportunity for follow-up observations may be

very brief, though the timescale of prompt emissions in secondary modalities is still an open

question in astrophysics that APT aims to address. The localization task therefore must be

adaptable to guarantee completion before a deadline that may not be known a priori, even

for highly transient bursts generating large volumes of data.

To characterize system performance, we simulate the APT instrument’s response to several

GRBs with our own implementation of the APTSoft package [48], rewritten in C++ for

more efficient simulation. It uses the Geant4 simulator [3] to generate independent gamma

rays from a simulated source and track their physical interactions in the detector. APTSoft

subsequently models the resulting scintillations, light transmission through the optical fibers,

waveform digitizers, and time integration. With our own software, we then centroid the

simulated outputs and combine detected hits.

We generate sets of 106 gamma rays using two spectral-energy distributions characteristic of

short GRBs [113]. We use two Band [10] functions with parameters α=−0.5, Epeak=490 keV,

β∈{−3.2,−2.1} to capture a range of spectral profiles. Spectral energies are in [100 keV−30MeV]

to match the Compton regime of the Fermi Gamma-ray Burst Monitor (GBM) sensitiv-

ity [122], data from which the distributions presented in [113] were obtained. For each

spectrum, we first generate a normally-incident set, and then the sets described by the

208

Cartesian product of {30◦, 60◦} polar angles and {0◦, 45◦} azimuth angles. This gives a total

of 10 synthetic GRBs across 5 incident angles and 2 spectral energy distributions, which we

use to characterize the pipeline’s localization accuracy and worst-case execution times.

7.6 Parameters and Loss Function

Each of the three stages of APT’s GRB localization pipeline (illustrated in Figure 7.4) that

execute on the CPU are amenable to workload compression, adapting to a dynamic deadline

known only when each job is released — i.e., when a GRB is detected. Compression aims to

minimize an objective function informed by the angular error in the predicted GRB source

direction, while still guaranteeing that the deadline is met. The associated compressible

parameters are outlined in Table 7.1.

Param Stage Description Constraint

nr Reconstruction Events to reconstruct 30 ≤ nr ≤ ne

α Approximation Approximation technique α ∈ {FibSpiral, ApproxCircles}

ns Approximation
Number of rings to sample
for joint log-likelihood

max{10, na} ≤ ns ≤ min{1000, na}

x Refinement Refinement iterations x ∈ {0 . . . 20}
Table 7.1: Compressible parameters for APT’s GRB localization task.

7.6.1 Stage 1: Event Reconstruction

The timescales at which a single gamma-ray photon interacts within the detector are too

short to directly determine an ordering. Instead, for each event, we use our tree search

algorithm from [144] to infer the temporal order of the first two hits, constraining the gamma

ray’s source vector to the circle illustrated in Figure 7.3. For events with only two hits, we

reconstruct the circle for both orderings. In simulation, events with more than 6 hits are

extremely uncommon (<0.01%), so we exclude these from reconstruction to bound the size

of the tree.

Uncertainty in detector spatial and energy measurements “smears” each circle into an an-

nulus, often referred to as a “Compton ring” [28]. For events with at least 3 hits, we infer

the single most likely ordering. Likelihoods cannot be assigned to the two possible orderings

209

for events with only 2 hits, so we reconstruct and propagate a ring for both orderings. Each

annulus is characterized by its direction, opening angle θ, and thickness δ(cos θ). Physically

impossible reconstructions (those for which the Compton law would imply an impossible

opening angle (|cos θ|>1) are dropped, and the remaining na annuli are passed to localiza-

tion.

In the event of overload, reconstruction can degrade by dropping events. For ne recon-

structable events, we can reduce nr, the number of events to be reconstructed, to a value

nr < ne. As ne is typically on the order of several thousand or more, we approximate nr as

continuous. Reconstruction is an anytime workload: the stage can stop at any point (e.g.,

when nr events have been reconstructed) at which time any reconstructed annuli are passed

to the next stage. Reconstruction processes events in order of arrival; compressing nr defines

a stopping point for the stage. We defer a more complex model that separately considers

reconstruction of 2-hit and ≥ 3-hit events to future work.

To characterize the impact of compressing nr, we iterated over a geometric progression of

11 values from 30 to 30 000, using uncompressed values for all other input parameters. For

each value of nr, we generated 10 000 inputs to the pipeline by randomly sampling 1000

subsets of reconstructable events from each of the 10 simulated GRBs. Figure 7.5 plots the

discrepancy in degrees between the inferred and true source direction against the number of

events reconstructed, with the vertical bars enclosing the extent of the distribution. Because

of the high variance in localization error for a given value of nr, rather than using expected

error as the objective, we instead use 68% containment (representing the 68th percentile

error — roughly 1σ if errors are Gaussian — a commonly used metric for GRB localization

accuracy [48, 50]). These values are also shown in Figure 7.5, which illustrates a roughly

log-log linear dependence on nr.

7.6.2 Stage 2: Initial Source Approximation

We use multilateration over reconstructed annuli to infer the GRB’s source direction. This

involves an initial rough approximation that is then iteratively refined in Stage 3. We consider

two approximation techniques (α) both of which execute over a subset ns ≤ na of the input

annuli. Our prior work [144, 171] fixed ns = 1000 and used only the first approximation

technique (ApproxCircles). It uniformly distributes 720 points around each of 20 circles

210

Figure 7.5: Impact of nr on localization error. Note that axes are logarithmic.

selected at random from ns, finds the point from each with the greatest joint log-likelihood

over all ns annuli, then uses a weighted mean to approximate the source vector. The second

technique (FibSpiral) is new to the work in this chapter. It generates 100 points almost

uniformly over the surface of the unit sphere with a Fibonacci spiral. For each point, it finds

the joint log-likelihood over all ns annuli, then approximates the source vector as a weighted

mean over the top 10. Approximation requires both parameters α and ns to be specified

prior to computation.

While FibSpiral is much faster (requiring only 100·ns log-likelihood computations, versus

14 000·ns forApproxCircles), it has less fidelity in its estimate for equal values of ns. In this

work, we constrain ns to the range [10, 1000], which with the choice of α approximates two

continuous state spaces that are non-overlapping in execution time but may overlap in result

accuracy, as illustrated in Figure 7.6. Measured 68% containments for the approximated

source error (degrees) without refinement are plotted against the number of log-likelihood

computations required by values of ns for each technique. For this plot, no subsequent

refinement is performed, and nr is fixed at 30 000. 68% containments for each ns were

obtained from 1000 trials over each simulated GRB.

211

Figure 7.6: Comparison of approximation techniques.

7.6.3 Stage 3: Iterative Source Refinement

The approximation result is subsequently refined using a modified version of the iterative

linear least-squares approach in [144, 171] over all reconstructed data. Refinement executes

for x iterations (or until convergence). Whereas our prior work fixed x=20, now we allow the

task to adapt by compressing x to a discrete numeric value in the range {0. . .20}. Iterative
refinement can be terminated at any time, with the result of the last completed iteration (or

the initial approximation, if no iterations completed) used as the estimated source direction

of the GRB.

Iterative refinement is highly dependent on the quality of the initial source estimate provided

by approximation, as illustrated in Figure 7.7. Each value of (ns, x) is plotted against the 68%

containment of localization error (degrees) over 1000 trials from our 10 synthetic GRBs with

nr = 1893 (the smallest value in our geometric progression for which ns can reach 1000) and

using the ApproxCircles technique. With fewer annuli sampled for approximation, more

refinement iterations are necessary to converge on an accurate result. With more refinement

iterations, the impact of a poor initial estimate is reduced.

212

Figure 7.7: Impact of approximation on iterative refinement.

7.7 Response Times

As described in Section 7.6, generating a Pareto-optimal convex hull that can be efficiently

searched to achieve elastic workload compression requires response times to be characterized

as functions of the input parameters. Each of our GRB localization task’s three stages of

CPU computation (illustrated in Figure 6.1) has an initialization subtask preceding a par-

allel subtask, with the work evenly split across cores using OpenMP. We measure execution

times for each subtask on the three quad-core hardware platforms listed in Table 7.2. These

platforms span a range of performance in available SWaP-constrained hardware while re-

maining tolerant to harsh environmental conditions. Though not rad-hardened, they are

candidates to fly aboard the scheduled Antarctic high-altitude balloon demonstration mis-

sion (ADAPT), and the Atom-based platform has already been selected for use as ADAPT’s

flight controller.

We quantify execution time performance by reading from the standard library’s high reso-

lution clock (std::chrono::high resolution clock). Compilation is performed using the

Gnu Compiler Collection (GCC) at optimization level O3. To avoid interference from other

processes, we run the pipeline at the highest priority under Linux’s SCHED FIFO scheduling

class and disable CPU throttling.

213

Platform Abbr. CPU Freq. RAM Linux v.

Raspberry Pi 3 Model B+ RPi3 Cortex-A53 (ARMv8) 700MHz∗ 1GB 5.15.61

Raspberry Pi 4 Model B RPi4 Cortex-A72 (ARMv8) 600MHz∗ 4GB 5.15.61

WINSYSTEMS EBC-C413 Atom Intel Atom E3845 1.92GHz 8GB 5.15.0

Table 7.2: Hardware platforms evaluated. ∗While the Raspberry Pi models tested support
higher CPU clock speeds, we use the lower frequencies recommended in [26] and our prior
work in [148, 152] to prevent throttling and instability.

7.7.1 Stage 1: Reconstruction

Reconstruction processes events independently, with its workload linear in nr after a constant-

time initialization. To characterize response time, we fit a linear function for each of our

hardware platforms. We profile the reconstruction stage for values of nr from 3000 to 27 000

in steps of 3000. For each value, we collect 20 response times from each of our 10 simulated

GRBs. To better capture the worst case, we collect 200 times from each GRB for nr=30 000.

We fit a linear function over the maximum times for each nr, then offset by the greatest

positive residual to guarantee the function upper-bounds all 3200 observed response times.

Measured worst-case times and characteristic functions are illustrated in Figure 7.8. Note

that on the Atom, the extra samples for nr=30 000 produced a slight outlier in measured

WCET, indicating that the platform’s timing is slightly less stable than the RPi3 or RPi4.

Nonetheless, with our offsetting technique we were still able to meet all deadlines considered

in Section 7.9.

Figure 7.8: Reconstruction stage worst-case response times.

214

7.7.2 Stage 2: Approximation

Approximation initializes with results from reconstruction then samples annuli at random,

with which it computes joint log-likelihoods for each of its candidate source directions. Ag-

gregation and sampling are performed by a single subtask that precedes an independent

subtask for each candidate source direction (100 for FibSpiral and 14 400 for ApproxCir-

cles). A final subtask aggregates the results to find an average source vector, weighted by

the joint log-likelihoods. Execution times for each subtask scale linearly with the number

of sampled annuli ns. We characterize the worst-case response time separately for each

technique α.

We profile both approximation techniques for ns ∈ {200, 400, 600, 800, 1000}. For each value,

we collect 20 response times from each of 10 simulated GRBs. Similar to reconstruction

profiling, we fit a linear function over the maximum times for each ns, then shift vertically

to guarantee an upper bound over all observed response times. The measured worst-case

times and corresponding functions are illustrated in Figures 7.9 and 7.10. Notice that the

vertical axis scale for ApproxCircles is 2 orders of magnitude greater than for FibSpiral,

commensurate with the number of log-likelihood computations required by each technique.

Figure 7.9: Approximation stage worst-case response times for ApproxCircles

215

Figure 7.10: Approximation stage worst-case response times for FibSpiral

7.7.3 Stage 3: Refinement

Finally, Refinement is iterative; each iteration has a sequential initialization subtask fol-

lowed by a parallel subtask to process and filter each annulus. A final sequential subtask in

each iteration constructs and solves a constant-time quadratic eigenvalue problem, for which

forming the matrix has cost quadratic in the number of reconstructed annuli [30]. Each

iteration, then, has a worst-case response time quadratic in nr; this is multiplied by x to

produce the response time of the stage.

We fit this function on our three candidate devices, profiling each iteration of refinement from

the same set of runs measured for reconstruction. Results are illustrated in Figure 7.11.

216

Figure 7.11: Refinement stage worst-case response times.

7.8 Implementation

In this section, we discuss our implementation of workload adaptation for APT’s GRB

localization task.

7.8.1 Offline Characterization of a Pareto-Optimal Surface

We quantified response times for 2657 input parameter states per the functions identified for

each stage in Section 7.7. After generating a Pareto-optimal set of candidates according to

Step 4 in Section 7.4.1, only 81 states remained for the RPi3, 84 for the RPi4, and 83 for

the Atom.

As part of the characterization of Section 7.6, we quantified localization error for all values

of α and x for each tested value of nr and ns, removing the option of interpolation over

these discrete states. For each candidate state ξ, we reduced the hyperplanes connecting

adjacent values of nr and ns to log-linear functions of error in each of these parameters. As

the maximum value of nr is a dynamic constraint, we also constructed log-linear functions

217

from the points for which nr = 30 000 (the largest value tested) by extrapolation from the

state with the next smaller value of nr having a higher measured error. Each candidate state

is saved in a data structure with its log-linear function parameters, and these are stored in

a lookup table, implemented as a sorted array (std::array) to use online.

7.8.2 Online Adaptation

Determining Parameter Values

When a job arrives, corresponding to detection of a GRB, the localization task first computes

the worst-case response time for the number of reconstructable events. If this exceeds the

deadline, parameter values are selected by searching the lookup table according to Step 6

in Section 7.4.2.

Adapting to Overload

The number of events reconstructed affects the response time of the downstream refinement

stage, so we do not treat reconstruction as an anytime workload. Instead, once parameter

values are selected, global variables are set prior to computation to restrict the number of

events reconstructed, the number of annuli sampled for refinement, and the number of re-

finement iterations to perform. The software implements FibSpiral and ApproxCircles as

C++ subclasses of a common Approximation class, allowing dynamic object construction

according to the chosen value of α.

7.8.3 Reclaiming Slack

When parameter values for an execution mode guarantee completion before the deadline in

the worst case, pessimism in WCET estimates may result in overcompression. Nonetheless,

some tasks provide opportunities for slack reclamation after computation completes.

The iterative source refinement stage of APT’s GRB localization task is an anytime workload,

so slack could be reclaimed näıvely by allowing it to continue iterating until the deadline.

218

However, it might still complete early if refinement converges, and this does not consider that

earlier stages of the pipeline may also have been compressed. Instead, we implement a version

of slack reclamation that determines, given the remaining slack time (less its own overhead),

how many additional events can be reconstructed with another refinement iteration run over

the resulting larger set of annuli.

For efficiency, rather than allowing OpenMP to split events among threads prior to recon-

struction, an idle thread retrieves an event using an atomic fetch-and-increment of an index

that tracks the next available event. Once this index reaches nr, reconstruction halts, but

is resumed when slack reclamation increases the limit. Reclamation continues in a loop

until there is insufficient slack time remaining, as illustrated in Figure 7.12. At this point,

additional iterations of refinement can still be run until the deadline (or until convergence).

Reconstruct Iterative
Refinement

Approx
SourceCompress

Slack? Produce
Result

Reconstruct Refinement
Iteration

No
Yes

Figure 7.12: Localization pipeline with compression and slack reclamation.

7.9 Evaluation

In this section, we evaluate our proposed approach to parameterized workload compres-

sion for computationally-elastic, highly-parallel fork-join tasks. We begin by measuring

the overheads associated with online adaptation to appropriately account for them, includ-

ing searching the lookup table for a set of parameters, as well as the optional interpola-

tion/extrapolation between states and slack reclamation. We next compare the accuracy

of GRB localization when running with these optional enhancements against our synthetic

bursts to decide whether they are actually expected to improve results. Finally, we evaluate

our approach in the context of historical catalogued GRBs to demonstrate that our approach

should generalize from the data used for initial characterization to the real-world, enabling

localization of bright GRBs even under tightly-constrained deadlines.

219

7.9.1 Overheads

We begin with profiling the overhead of searching online for a Pareto-optimal set of com-

pressed input parameters (Step 6 of Section 7.4.2) and of computing the inputs to slack

reclamation (described in Section 7.8.3). We run the localization task against the synthetic

GRBs described in Section 7.5, enabling both workload compression and slack reclamation.

For each GRB, we test numbers of input gamma-ray photons over a geometric progression of

9 values from 30 to 106. Geometric progressions of 9 deadline values are selected separately

for each hardware platform to guarantee that the shortest deadline would be between the

response times of the first two candidate states, and that the longest deadline would be

greater than the response time of the last candidate state.

Figure 7.13 illustrates the overheads of the 810 profiled runs of online compression for each

tested hardware platform, with the horizontal bars enclosing the distribution. The overhead

remained under 220 µs on the RPi3, under 180 µs on the RPi4, and under 60 µs on the

Atom, demonstrating the efficiency of our online compression technique. We

adjust the response time functions for each of our platforms accordingly.

Figure 7.13: Measured overhead times.

Overheads associated with reclaiming slack are captured by profiling the elapsed time of the

first successful attempt to reclaim slack for each run. Those runs for which slack could not

be reclaimed are ignored, as the overhead may be lower in these cases. This produced 538

samples for the RPi3, 555 for the RPi4, and 573 for the Atom; these are also illustrated

220

in Figure 7.13. Despite the equivalent program logic, the RPi3 demonstrated significantly

higher overhead (notice the difference in vertical-axis units), reaching 97.5 µs. In contrast,

the slack reclamation overhead remained under 1.9 µs on both the RPi4 and Atom.

7.9.2 Evaluation on Synthetic GRBs

To characterize the expected performance of our approach to elastic workload compression

when applied to GRB localization on APT, we next evaluate three different implementations.

The first, Pareto, finds the best state from the Pareto-optimal set of candidates with a

response time that does not exceed the deadline and for which nr≤ne according to Step 6 in

Section 7.4.2. The second, IntExt, additionally interpolates or extrapolates from that state.

The third, Reclaim, performs compression equivalently to IntExt while also attempting to

reclaim available slack time after the task completes according to the procedure outlined in

Section 7.8.3.

We run each version to localize our 10 synthetic GRBs, using subsets of the generated gamma

rays with sizes 10N for N from 2 to 6. For each of the resulting 50 subsets, we evaluate the

pipeline with a sufficiently large deadline to guarantee an uncompressed state, then imposed

deadlines of 10, 33, 100, 330, and 1000 ms,26 for a total of 300 sets of inputs to the pipeline.

For each set of inputs, we run Pareto and IntExt once and ran Reclaim 5 times to account

for variations in remaining slack time. We observed that over 1750 deadline-constrained runs

on each of our three hardware platforms, no instance of the task missed its deadline.

To predict which approach is most likely to perform best on real-world datasets, we compare

each approach pairwise with the other two. In this case, we define better utility as reducing

localization error by at least 10%, because even a small change in input can result in signifi-

cantly different results.27 Results for all 1500 runs of Reclaim and 300 runs of IntExt and

Pareto are illustrated in Figure 7.14.

26The shortest-duration burst captured by GBM was around 10 ms [71, 162, 23, 163].
27As reflected by the wide distributions shown in Figure 7.5.

221

RPi3 RPi4 Atom
0

10

20

30

40

50

60

70

80

IntExt Outperforms Pareto

Pareto Outperforms IntExt

RPi3 RPi4 Atom
0

100

200

300

400

500

600

Reclaim Outperforms IntExt

IntExt Outperforms Reclaim

RPi3 RPi4 Atom
0

100

200

300

400

500

600

Reclaim Outperforms Pareto

Pareto Outperforms Reclaim

Figure 7.14: Pairwise comparison of approach versions for synthetic GRBs.

We note that a pairwise comparison provides more detail than enumerating the times each

approach is the best of the three, which would not capture situations where two methods

dominate the third, but not each other. We also observe that slack reclamation occasionally

degrades results, as the additional input events selected might be incorrectly reconstructed or

reflect noisy measurements, decreasing the fidelity of the final result. Nonetheless, the results

suggest that additional interpolation or extrapolation from an initial candidate

state, and reclaiming slack at the end of execution, are expected to improve

outcomes most of the time.

7.9.3 Evaluation on Short GRBs Observed by Fermi GBM

To evaluate how well our approach extends from synthetic data to real-world workloads,

we simulate four additional GRBs sourced from the Fermi GBM catalogs. We use the

222

data in [113], which fits spectral-energy distributions to GRBs observed by the GBM. We

searched for short GRBs (duration <1s) fit to a Band function; four matched these criteria.

The corresponding simulation parameters are listed in Table 7.3. We randomly generate

source directions by sampling the polar angle θ uniformly from 0–60◦ and the azimuth ϕ

from 0–360◦.

GRB ∆t α Epeak β Fluence # Gamma Rays θ ϕ

80905499 0.704 0.66 284.6 -2.15 0.918 299 288 33.244 120.90

81209981 0.320 -0.67 1057.0 -2.25 2.452 818 489 40.576 43.60

90227772 0.704 0.48 2013.0 -3.15 20.272 1 772 628 16.766 37.64

90429753 0.832 -0.28 178.3 -1.65 2.643 803 322 31.572 214.17

Table 7.3: Simulated short GRBs with parameters matching corresponding catalog entries
in [113]. ∆t denotes the duration in seconds. Epeak is the peak of the energy spectrum in
units of keV. Fluence is in MeV/cm2.

Worst-case response times on each platform to perform uncompressed localization of each

GRB are listed in Table 7.4.

Device 80905499 81209981 90227772 90429753

RPi3 1087 1379 5813 1177

RPi4 490 618 2808 529

Atom 265 346 1268 291

Table 7.4: Worst-case response times (ms) for uncompressed localization.

We run each implementation of our pipeline (Pareto, IntExt, and Reclaim) for each new

GRB. We use a sufficiently large deadline to guarantee an uncompressed state, then impose

a deadline equal to the burst’s duration, and finally iterate over the same deadlines evaluated

for our synthetic GRBs (10, 33, 100, 330, and 1000 ms). For each deadline, we run each

version of the pipeline 20 times over each GRB, characterizing the 68% containment of error

in source direction for each set of results. None of the 1440 deadline-constrained runs on

each of our three hardware platforms missed its deadline.

Similarly to the analysis for the synthetic GRBs, we compare Pareto, IntExt, andReclaim

pairwise with the other two, enumerating how often each outperformed the others. Results

are illustrated in Figure 7.15, with counts being out of 28 results. The results validate our

predictions from the initial analysis of synthetic GRBs: interpolation and extrapolation

from an initial Pareto-optimal state, then reclaiming slack time at the end of

the pipeline, both typically improve localization accuracy.

223

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

IntExt Outperforms Pareto

Pareto Outperforms IntExt

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

Reclaim Outperforms IntExt

IntExt Outperforms Reclaim

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

Reclaim Outperforms Pareto

Pareto Outperforms Reclaim

Figure 7.15: Pairwise comparison of approach versions for cataloged GRBs.

In Figure 7.16, we provide a plot for each simulated GRB, on each hardware platform, of

the 68% containment of source direction error in degrees over the 20 runs of Reclaim for

each imposed deadline.

224

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)
GRB80905499 RPi3

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB80905499 RPi4

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB80905499 Atom

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB81209981 RPi3

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB81209981 RPi4

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB81209981 Atom

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB90227772 RPi3

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB90227772 RPi4

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB90227772 Atom

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB90429753 RPi3

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB90429753 RPi4

101 102 103

Deadline (ms)

10-2

10-1

100

101

1
 L

o
c
a

liz
a

ti
o

n
 E

rr
o

r
(D

e
g

)

GRB90429753 Atom

Figure 7.16: 68% containment of error in source direction using Reclaim. Horizontal lines
indicate 68% containment for uncompressed execution.

We observe that, with compression, APT’s GRB localization task is often able to produce

results close in accuracy to those of its uncompressed state for deadlines of around 100 ms,

even with worst-case uncompressed response times approaching 6 seconds on the platforms

225

tested. While we allow for further compression to guarantee schedulability in response to

dynamic workloads and deadlines, our approach also allows us to characterize a minimum

acceptable deadline for each hardware platform. For deadlines as short as 33 ms, our

techniques are often successful in providing sub-degree localization accuracy,

sufficient for follow-up observations by many optical telescopes. However, as

the imposed deadline increases, localization error typically decreases, yielding greater utility.

Nonetheless, this is not always the case: because of the high variance in localization accuracy,

and because larger values of nr might cause noisy or incorrectly reconstructed events to be

selected, occasionally longer deadlines correspond to lower accuracy.

7.10 Conclusions

This dissertation has presented several new models under the framework of elastic schedul-

ing to both extend the framework to new scheduling models. It has also considered the

connection between how/where elastic constants are defined and the implications on system

performance and result utility. In particular, the previous chapter proposed to apply elastic

constants to each subtask of a parallel task to capture the individual impacts of reducing

each of their workloads.

In this penultimate chapter of the dissertation, we have argued that our subtask-level elastic

scheduling model in Chapter 6 is nonetheless insufficient. First, the quadratic cost function

that Chantem et al. [44, 45] proved to be implied by Buttazzo’s semantics of proportional

compression [39, 40] may not reflect the actual cost associated with compression — the

impact of degrading individual task or subtask workloads may be nonlinear or have higher-

order effects in combination with other tasks or subtasks. Second, it treats compression

of each system component independently. In Chapter 5, we demonstrated one example

of interdependence — task periods might be constrained to harmonic values. Nonetheless,

richer dependencies may arise; e.g., in a parallel task, decreasing the workload of one subtask

might also decrease the workload of subsequent subtasks.

This chapter makes progress toward a richer model of elastic scheduling as the problem

of parameterized workload compression to maximize utility within application-specific and

schedulability constraints. Its contribution focuses on a narrower space of such problems,

226

proposing a technique for compressing the workloads of highly-parallel fork-join tasks exe-

cuting on a fixed number of processors to remain schedulable in the face of dynamic work-

loads and deadlines. The proposed technique identifies multiple discrete numeric, continuous

numeric, and categorical parameters over which subtask workloads can be compressed, and

through offline characterization of their effects on result utility and response times, a Pareto-

optimal surface is generated to enable efficient online compression that guarantees schedu-

lability while minimizing the resulting loss. It also identified methods to reduce pessimism

by reclaiming available slack if execution completes early.

Inspired by the Astro2020 decadal survey [117], we applied this approach in the context

of real-time GRB localization aboard the planned APT satellite mission. To enable rapid

multi-messenger follow-up observations of transient astrophysical events, we demonstrated

that APT can provide sub-degree estimates of source direction even for ∼33 ms

deadlines imposed by bright, transient bursts.

As a proof-of-concept, the results of this chapter demonstrate the need for a richer model. By

using highly-parallel fork-join tasks on dedicated processor cores that are allocated a priori,

characterizing response times is straightforward. Applying these techniques to more general

DAG models, and considering the problem of processor allocation jointly among multiple

parameterized tasks that may also have elastic periods, is a future research direction that

naturally arises from the work of this chapter.

We expect this line of inquiry to continue to be shaped by the requirements of APT and other

space-based time-domain and multi-messenger astrophysics missions. For example, the real-

time properties of GRB localization might be better expressed with time utility functions,

rather than a hard deadline: narrow observation windows may impose a tradeoff favoring

earlier, but potentially less accurate, alerts [145]. Additionally, the GRB localization pipeline

may run on shared hardware with mission-critical instrument control tasks (e.g., that regulate

power or cool the instrument). Alternative analytical frameworks, such as semi-federated [78]

or reservation-based federated scheduling [158] might allow these techniques to be extended

to general parallel DAG tasks that share cores with low-utilization workloads. This work

serves as a prerequisite toward a utility-driven elastic scheduling model over

multiple tasks that share a limited set of resources.

227

Chapter 8

Related Work, Conclusions, and

Future Directions

In this chapter, we summarize the key conclusions of this dissertation, contextualize those

within the body of existing literature, and motivate a broader vision for future research.

8.1 Scheduling Models

Among the primary contributions of this dissertation are new extensions of the elastic

scheduling framework to existing scheduling models. To contextualize these contributions,

we use this section to summarize the scheduling models already addressed by prior work

on elastic scheduling and to show the scope of our extensions. Table 8.1 provides a visual

overview while illustrating remaining gaps that we intend to fill in future work.

228

D
e
a
d
li
n
e

M
u
lt
ip

r
o
c
e
ss
o
r

E
la
st
ic

In
W

o
rk

Im
p
.

C
o
n
.

F
P

E
D
F

L
o
c
k

H
a
r
.

C
m

p
.

D
is
.

M
C

F
lu

id
g
E
D
F

P
r
iD

P
a
r
t.

∥
T
i

C
i

c i
,j

D
i

v
.

[3
9
,
4
0
]

P

[3
9
,
4
0
]

#
#

#
P

C
h
.
2

P

[1
1
8
]

P
C
h
.
3

P

[4
4
,
4
5
]

#
#

#
#

Q
P

[1
3
]

P

C
h
.
4

P

C
h
.
5

#
#

#
#

#
Q
P

[1
2
0
]

D
A
G

Q
P

[1
1
9
]

D
A
G

Q
P

[1
2
1
]

D
A
G

Q
P

C
h
.
6

#
D
A
G

Q
P

C
h
.
7

F
-J

G
[1
4
2
]

#
#

#
–

[6
6
]

#
#

D
A
G

#
#

Q
P

[1
3
2
]

P

[1
3
3
]

P

T
ab

le
8.
1:

O
ve
rv
ie
w

of
el
as
ti
c
sc
h
ed
u
li
n
g
m
o
d
el
s.

in
d
ic
at
es

an
op

ti
m
al

al
go
ri
th
m

(t
o
w
it
h
in

a
tu
n
ab

le
p
ar
am

et
er

ϵ)
,

w
h
er
ea
s
#

in
d
ic
at
es

a
h
eu
ri
st
ic

w
it
h
op

p
or
tu
n
it
y
fo
r
im

p
ro
ve
m
en
t.

C
ol
u
m
n
H
a
r.

in
d
ic
at
es

h
ar
m
on

ic
p
er
io
d
s.

C
ol
u
m
n

C
m
p
.

in
d
ic
at
es

co
m
p
os
it
io
n
al

sc
h
ed
u
li
n
g.

C
ol
u
m
n
D
is
.

in
d
ic
at
es

d
is
cr
et
el
y
-e
la
st
ic

ta
sk
s.

C
ol
u
m
n
M

C
in
d
ic
at
es

a
m
ix
ed

cr
it
ic
al
it
y
sy
st
em

.
C
ol
u
m
n
∥
in
d
ic
at
es

th
e
p
ar
al
le
l
ta
sk

m
o
d
el

u
n
d
er

co
n
si
d
er
at
io
n
—

ei
th
er

ge
n
er
al

D
A
G

ta
sk
s

or
h
ig
h
ly
-p
ar
al
le
l
fo
rk
-j
oi
n
(F

J
)
ex
ec
u
ti
on

.
C
ol
u
m
n
v
.
in
d
ic
at
es

w
h
et
h
er

p
ro
p
or
ti
on

al
co
m
p
re
ss
io
n
(P

)
or

th
e
q
u
ad

ra
ti
c

p
ro
gr
am

(Q
P
)
of

C
h
an

te
m

et
al
.
[4
4,

45
]
is
u
se
d
,
or

if
a
m
or
e
ge
n
er
al

(G
)
n
ot
io
n
of

lo
ss

is
co
n
si
d
er
ed
.

229

8.1.1 Implicit-Deadline Tasks on a Uniprocessor

The Original Elastic Scheduling Model

The elastic scheduling model of Buttazzo et al. in [39, 40] was developed for implicit-deadline

tasks scheduled on a preemptive uniprocessor. Because it compresses task utilizations so that

the total utilization does not exceed a given bound, the original model was applied to schedul-

ing algorithms like EDF and RM for which utilization-based schedulability analysis provides

an exact (or close-to-exact) test — this is the model already discussed in Section 2.2.2 of

this dissertation. Buttazzo’s proportional compression algorithm in [37, Figure 9.29] has

execution time complexity O(n2), where n is the number of elastic tasks.

Blocking due to Shared Resource Access

In the same work, Buttazzo et al. extended elastic scheduling to also consider resource

constraints. When task execution includes critical sections of mutually-exclusive (i.e., locked)

shared resource access, unbounded priority inversion might occur under standard scheduling

algorithms. A famous example of this happened on the control computer for the Mars

Pathfinder rover, which began experiencing total system resets within a few days of its

1997 landing on the Martian surface [79]. Investigation into this issue revealed that it was

caused by a specific execution pattern related to access of the information bus. Access was

synchronized with mutual exclusion locks (mutexes). To read from or write to the bus, a task

would need to obtain a mutex first; another task requesting access would then be blocked

until it could obtain the mutex. A high-priority task was responsible for bus management,

and was invoked frequently to move certain types of data in and out of the information bus.

However, a low-priority task responsible for gathering meteorological data would also use

the information bus to publish its data, and would occasionally block the bus management

task. The priority inversion occurred when a medium-priority communication task was

scheduled during the brief interval that the high-priority management task was waiting for

the low-priority meteorological task. The communication task, having a higher priority than

the meteorological task, would preempt and prevent the meteorological task from making

progress. This, in turn, prevented the high-priority management task from running. In this

230

classic example of priority inversion, a task with high priority is prevented from making

progress by a task with lower priority due to the semantics of shared resource locking.

Several protocols exist to bound the duration by which priority inversion may occur, and

in our own prior work [148, 152], we have demonstrated how to implement such protocols

in the CAmkES component framework [85] for the seL4 microkernel [134, 25]. Though the

details differ, these protocols typically work by preventing a task that holds a lock from

being preempted, if that preemption might cause additional priority inversion.28 The stack

resource protocol (SRP) is one such protocol [9], and it bounds the amount of time Bi that

a task τi can be blocked by a task with a lower priority. A sufficient schedulability condition

for implicit-deadline tasks is stated as:

∑
τi

Ui +max
τi

(
Bi

Ti

)
≤ 1 (8.1)

Buttazzo et al. [39, 40] note that elastic scheduling in the presence of shared resources

becomes more complex, both because of the period in the denominator of the blocking term

of the above expression, and because as periods change, the order may not be preserved,

and therefore the maximum blocking time Bi for a task τi may also change. They therefore

propose an algorithm that overestimates the blocking term by using a value Bwc
i that denotes

the worst-case blocking time for any period order.

Our Contribution

In Chapter 2, this dissertation presented a new algorithm (Algorithm 2) for elastic schedul-

ing of implicit-deadline tasks that compresses in time quasilinear in the number of

elastic tasks. Moreover, it runs in linear time when adjusting online to dynamic

changes in system state. By evaluating a large number of randomly-generated syn-

thetic task sets, we observed that our algorithm achieves significant speedup during

admission of new tasks.

28Priority inversion naturally occurs already as the higher priority task waits for the lower priority task to
release the lock, and this is typically unavoidable to guarantee consistency in whatever the lock is already
protecting.

231

We constructed our algorithm to use task utilizations, rather than periods, as the parameter

being adjusted; compression can therefore be realized by either increasing task periods (Ti =

Ui/Ci) or decreasing task workloads (Ci = Ui·Ti). This provides a straightforward extension

to computationally-elastic tasks.

Future Work

Two obvious questions remain unanswered from our work on developing an improved algo-

rithm for elastic scheduling of implicit-deadline tasks on a uniprocessor.

First, can we use our approach to improve the algorithm that considers block-

ing times? A straightforward application of our algorithm arises from the overestima-

tion of blocking times: from the schedulability condition in Expression 8.1, we can set

UD = 1−maxτi

(
Bwc

i

Ti

)
, then apply our quasi-linear algorithm. However, there may be a

bounded-time iterative approach that allows the real blocking times Bi to be used, even

if they change in response to changes in priority order as periods are extended. We will

investigate this in future work.

Second, when and how can workloads be compressed? If a task’s period is increased

while a job of the task is active, it is straightforward to extend the deadline of that job. If,

however, the task’s workload is decreased, this poses a challenge if a job of that task is active.

We have discussed this question to some extent in Chapters 6 and 7 of this dissertation: a

task might represent an anytime workload, in which case, early termination is appropriate.

However, if the semantics of the task’s computation require that its workload be set prior to

execution, decreasing the workload might not be possible while a job is active. One simple

option is to keep executing active jobs in a non-degraded state, and only decrease workloads

for new job releases. This implies that the transition to the compressed state may take

as long as maxi{Ti}, which might be too long of a delay, depending on the circumstances

under which elastic scheduling is being invoked. Another option is to extend the period (and

deadline) while keeping the workload constant for active jobs, then adjust the workloads of

jobs released after the transition. Identifying and evaluating applications for which these

policies are appropriate is left to future work.

232

8.1.2 Sequential Tasks on Multiple Processors

Prior Work on Elastic Scheduling

In [118], Orr and Baruah extended elastic scheduling to sequential, implicit-deadline tasks

running on multiple processors. Under fluid scheduling, as we explain in Section 3.2.1, task

execution is abstracted to an assignment f of a fraction of a processor at each instant in

time. So long as each task’s utilization Ui individually does not exceed 1, the elastic model

is equivalent to Buttazzo’s original model, but with the utilization bound UD set equal to

the number of available cores.

Under partitioned EDF scheduling, as explained in Section 3.2.2, tasks are partitioned among

processor cores such that each task’s execution remains on one core. If the total utilization

among tasks sharing a single core does not exceed 1 for each core, then the system is schedu-

lable. Similarly to the approach in [13], Orr and Baruah propose in [118] to search for the

amount of compression λ that achieves schedulability. They use bin packing heuristics to

check schedulability for each value of λ tested.

Orr and Baruah also propose an elastic approach for global EDF (gEDF) scheduling [118].

Under global EDF, if there are m processors and the number of active jobs is greater than m,

those m jobs with the earliest absolute deadlines are selected for execution. Schedulability

is guaranteed if the following condition holds:∑
τi

Ui ≤ m− (m− 1)×max
τi
{Ui} (8.2)

They again search for a value of λ, finding the smallest value with tunable precision ϵ for

which the expression holds true.

Algorithm PriD proposes an alternative to gEDF to avoid the undesirable Dhall effect [53, 54]

in which tasks with larger utilizations (close to, but less than, 1) may cause pathological

configurations in which the utilization bound of gEDF becomes arbitrary close to 1, even

for a large number of processors. Under PriD, if a task system is not gEDF schedulable,

tasks are assigned dedicated processors in descending order of utilization until the remaining

tasks are schedulable on the remaining cores according to Expression 8.2. In [118], Orr and

233

Baruah also apply their method of searching for an amount of compression λ that satisfies

PriD schedulability.

Our Contribution

In Chapter 3 of this dissertation, we extended our improved quasilinear-time algorithm (Al-

gorithm 2) to fluid scheduling. We also discussed and evaluated improvements to elastic

scheduling for partitioned EDF. By changing the selection and order with which partition-

ing heuristics were applied, and by performing a binary, rather than linear, search for λ, we

substantially improved the execution time associated with elastic scheduling

for partitioned EDF tasks without significant overcompression. We also demon-

strated an application of our improved algorithm to partitioned EDF by using the utilization

bound guaranteed by the best-fit and first-fit heuristics. Though pessimistic, this approach

achieved even greater speedups, which may be necessary in mixed criticality systems

where fast decisions must be made during overruns of critical tasks.

Future Work

As future work, we intend to consider whether similar improvements can be achieved

for the global EDF and PriD algorithms. Changing from an iterative search over the

space of possible λ to a binary search is straightforward and provides an obvious improvement

in execution time complexity.

The iterative approach used by Algorithm 2 may be hard to adapt for gEDF because Ui

values appear in the schedulability bound (the RHS of Expression 8.2). However, we suspect

there is a straightforward approach. Consider the task τj for which Umax
j = maxi{Umax

i },
i.e., for which its utilization is the greatest when uncompressed. Then the schedulability

condition can be rewritten as: ∑
i ̸=j

Ui +m · Uj ≤ m (8.3)

Solving for values of Ui should be straightforward by modifying Algorithm 2 to treat Uj as

m · Uj and adjusting its minimum utilization and elasticity accordingly. Then, once utiliza-

tions are assigned in this way, if τj no longer has the maximum utilization, the algorithm

234

can be rerun according to the new maximum. Work to formalize this algorithm and to prove

a bound on execution time — i.e., how many times the algorithm has to rerun due to the

task with the maximum utilization changing — are ongoing.

Applying such an approach to PriD is even less straightforward, because for a given amount of

compression, the algorithm iterates over tasks to determine whether they should be assigned a

dedicated core or scheduled globally. As future work, we will consider alternative approaches

to obtain an exact solution for λ.

8.1.3 Elastic Scheduling as a Quadratic Optimization Problem

Chantem et al. [44, 45] extended elastic scheduling by showing that utilizations selected by

the elastic model also solve a quadratic optimization problem, constrained by the minimum

Umin
i and maximum Umax

i utilizations of each task τi, as well as by the utilization bound UD

afforded by the given scheduling algorithm. As we discussed in Section 4.2.1 of this disserta-

tion, by changing or adding constraints to represent different schedulability conditions, the

optimization problem serves as a template for elastic scheduling that allows it to be extended

to alternative scheduling models or to solve related problems.

Constrained-Deadline Tasks

For example, in the same work, Chantem et al. replaced the constraint on total utilization

with a set of constraints to represent the processor demand analysis (PDA) [20] schedulability

test for constrained-deadline sporadic task systems under preemptive EDF scheduling on a

uniprocessor. Due to the intractability of solving such a problem, for which the number of

constraints may be very large, they also present a heuristic approximation [44, 45].

In [13], Baruah showed that these approximations are highly conservative and may result in

significant overcompression for certain task sets. Two alternative approaches were presented

that search for the amount of compression λ (defined in Equation 3.1 in Section 3.2.2 of this

dissertation) to apply with some tunable degree of precision ϵ.

235

The Deadline Selection Problem

Chantem et al. [44, 45] use their quadratic program template to solve a related prob-

lem of deadline selection for constrained-deadline tasks. Under this model, a task τi =

(Ci, Di, D
min
i , Dmax

i , Ti, Ei) is characterized by a workload Ci and constant period Ti. It

has a desired deadline Dmin
i , but in the event that the constrained-deadline task set is not

EDF-schedulable, each task’s deadline may be increased up to its maximum value Dmax
i .

Chantem et al. present a similar heuristic to solve the deadline selection problem as the one

they proposed for their dual problem of selecting periods while holding deadlines constant.

Though they did not frame the problem as such, we will refer to tasks under this model as

deadline-elastic; this is represented by a column in Table 8.1.

Our Contributions

In Chapter 4 of this dissertation, we extended uniprocessor elastic scheduling to fixed-priority,

constrained-deadline tasks. We presented two algorithms that, similarly to Baruah’s ap-

proach in [13] search for the amount of compression λ (with precision ϵ) needed to achieve

schedulability, using both an iterative and a binary search over the space of possible val-

ues. Both approximate algorithms are highly efficient because they both track

which tasks have already passed response-time analysis (RTA) for smaller values of λ so

that repeated tests need not occur. Even for systems of 100 tasks and small values of ϵ,

Elastic-FP-BS enables compression in under 20 milliseconds on a Raspberry Pi 3 Model

B+.

We also presented a mixed-integer quadratic programming representation of the problem.

Though solving a single problem jointly over all tasks is inefficient when using SCIP, an

open-source solver [2], we presented an approach to solving the problem for individual tasks

that nonetheless finds the optimal value of λ for all tasks. This MIQP-based approach

is fast enough to feasibly perform compression offline.

236

Future Work

As future work, we look to Table 8.1 for gaps that can be filled. Extending elastic

scheduling to constrained-deadline, computationally-elastic tasks presents a unique

challenge. It should be straightforward to apply the existing technique of searching for a

value of λ. However, because the execution time terms Ci are not in denominators, and are

outside of the floor (⌊·⌋) for the demand bound function for EDF (Equation 4.2) and the

ceiling (⌈·⌉) for the recurrence relation in response time analysis for fixed-priority scheduling

(Expression 4.11), other optimizations might be possible.

We would also like to consider an extension to deadline-elastic tasks. Using similar

techniques, we may be able to improve upon the heuristic proposed by Chantem et al.

in [44, 45]. Furthermore, we would like to consider the case where deadlines must remain

some fixed multiple of the task period, so as periods are extended, so too are deadlines.

Consider the case of a robotic assembly line, where a conveyor belt runs at some speed to

deliver parts. Parts arrive according to the period Ti; because the belt is continuously

moving, a control action by a robot along the line might have to be taken within some fixed

time Di of a part passing its work area. If the system is overloaded, the conveyor belt might

be slowed down; in this case, due to the slower motion, both the period and deadline would

decrease by the same proportional amount.

Finally, we are investigating an extension of elastic scheduling to constrained-deadline

tasks on multiple processors. Extending the MIQP from Section 4.6 to include processor

assignments under partitioned scheduling should be straightforward, but may not be feasible

to solve efficiency in SCIP. We will consider alternative solvers, such as Gurobi [72], with

which we obtained good results in Chapter 6. Other techniques, such as Baruah and Fis-

cher’s polynomial-time algorithm for partitioning sporadic constrained-deadline task systems

in [18], will be considered.

237

8.1.4 Harmonic Periods

Our Contribution

Chapter 5 of this dissertation presents the first work to extend elastic scheduling to task

systems for which periods are constrained to be harmonic. To offer a tractable solution

for online adaptation when available utilization changes, it considers a restriction of the

problem where period assignments must maintain the same total ordering. This enables

a polynomial-time algorithm that runs on the order of a few microseconds for

online compression.

Future Work

We have shown that the harmonic period problem is at least as hard as integer factorization

and that the harmonic elastic problem is at least weakly NP-hard. However, open questions

remain about the complexity of these problems. We have demonstrated a pseudo-polynomial

algorithm for the harmonic period problem, but we do not yet know whether it is weakly

NP-hard. Furthermore, we do not know whether the harmonic elastic problem is NP-hard

in the strong sense, and we have yet to prove a result about the ordered harmonic elastic

problem.

Moreover, we still want to find an algorithm to solve the harmonic elastic problem

in general, without an a priori order imposed on task periods. We would also like

to consider a version of the problem where multiple harmonic chains may be formed, with

an a priori order imposed on each one. Consider, for example, dataflow applications where

multiple front-end sensing tasks must be aggregated by back-end analysis or perception tasks.

It might be a requirement that each sensor’s period is an integer multiple of some back-end

task, but that harmonic relationships do not need to be imposed among the sensor tasks

themselves. Being able to solve a richer set of problems where harmonic relationships are

expressed in graph form, with edges indicating harmonic relationships, and directed edges

indicating that one task’s period must be an integer multiple of the other (and not vice

versa) is a future goal.

238

We also intend to address the challenges discussed in Section 5.6.2 associated with adjusting

task periods in the middle of a hyperperiod. As we showed, even if total utilization

is compressed in response to a reduced schedulable bound, harmonic constraints mean that

some periods will decrease. We intend to evaluate our two proposed policies — dropping

jobs or extending task periods for a single hyperperiod — in the context of the real-time

FIMS [166] and ORB-SLAM3 [42] applications (or others) that we evaluated in that chapter.

This might be made more complicated by scenarios where task workloads depend on

the period relationships among tasks. For example, in a dataflow application, a back-

end analysis task’s workload might depend on how many sensor frames it processes at each

invocation. For a given PHI (see Definition 4 in Section 5.5), the relationships between

task periods remain constant, and so workloads should remain constant within that PHI.

We therefore suspect that modifying the lookup table over optimal PHIs for each utilization

bound interval will be straightforward for this scenario, but that a solution for dealing with

execution time changes during transitions between states will be difficult to obtain.

Furthermore, we intend to extend our algorithm for the ordered harmonic period problem

to multiprocessor scheduling. Fluid scheduling provides a straightforward abstraction,

removing the constraint that the total utilization bound remains less than 1. Global EDF

scheduling may also be easy to adapt to tasks with harmonic periods. Again, for a given PHI,

since relationships between task periods remain constant, the task for which the utilization

Ui is the maximum in the RHS of the gEDF schedulability condition in Expression 8.2 should

remain the same for any utilization bound. Efforts are ongoing to modify our algorithm that

constructs a lookup table over optimal PHIs for each utilization bound interval such that

the utilization bound reflects Expression 8.2 instead.

8.1.5 Federated Scheduling of Parallel Tasks

The federated scheduling model of Li et al. [94] deals with systems of parallel implicit-

deadline real-time tasks. As described in 6.2.2, tasks are composed of subtasks representing

individual sections of sequential execution, though multiple subtasks may execute in parallel.

Execution must respect a precedence relation defined over the set of subtasks, which gives

rise to the parallel DAG task model. Under federated scheduling, each parallel task executes

239

on dedicated cores assigned to guarantee schedulability according to its workload, span, and

deadline.

Prior Elastic Models for Federated Scheduling

In [120], Orr et al. extended the elastic framework to the federated scheduling model. If

the total processor cores allocated exceed the number available, each high-utilization parallel

task has its utilization compressed until the demand is met.

As a first attempt toward a solution, Orr et al. suggest finding the minimum amount of

compression λ for which the system becomes schedulable according to the new allocation

of cores to each task. However, Orr et al. argue in [120] that this may result in wasted

capacity due to the ceiling operator (⌈·⌉) used by the processor assignment taken from [94]

that we listed earlier in this dissertation as Equation 6.2. If for some task τi the expression

(Ci − Li)/(Di − Li) due to an assigned utilization Ui(λ) is not an integer, then the period

Ti could be reduced without affecting schedulability.

To avoid under-utilization, in [120] Orr et al. instead propose to assign utilizations according

Chantem et al.’s quadratic optimization problem [44, 45]. Constraints for schedulability are

updated to guarantee that the total number of cores that must be allocated to each task

does not exceed the number available. In [119], Orr et al. extended their approach to

computationally-elastic tasks, allowing parallel workloads to be adjusted over a continuous

range: a task with period Ti would have its workload assigned as Ci = Ti · Ui, but the span

Li is held constant, and the model does not address the question of how and from which

subtasks workloads are to be reduced.

Orr et al. also point out in [121] that many tasks have discrete modes of execution. Rather

than compressing task utilizations over continuous ranges of workload or periods, they pro-

pose a model of elastic scheduling under which a mode is selected for each task so that

schedulability is guaranteed, and so that the objective function from Chantem et al. [44, 45]

that assigns a cost associated with reducing each task’s utilization is still minimized. In [121],

Orr et al. apply an adaptation of a pseudo-polynomial dynamic-programming algorithm for

the multiple-choice knapsack problem to this model.

240

Our Contributions

In Chapter 6 of this dissertation, we presented a new model of subtask-level computational

elasticity for federated scheduling of parallel tasks. Each individual subtask has a workload

that may take a value from a continuous range. Our model assigns an elasticity to each

subtask to capture the individual impact of each subtask’s workload on result quality.

This also allows it to model the reduction in task span as subtask workloads are

decreased, which means it does not have to compress each task’s total workload as much

to remain schedulable on a given number of cores compared to the original model of Orr et

al. for workload compression in [119].

We propose to solve the workload assignment problem that arises under this model by

constructing an MIQP and solving it using Gurobi [72]. We demonstrate that this is feasible

for offline compression. Moreover, by solving a set of MIQPs offline, we can achieve

pseudo-polynomial online compression by finding an optimal way to allocate available

cores to each task with dynamic programming (DP). This DP-based approach also enables

the set of low-utilization tasks on the system to be considered jointly, which was

a limitation of the prior work.

Future Work

To solve the quadratic optimization problem that arises from our model of subtask-level

elastic scheduling, we proposed two techniques for constructing the problem as a mixed-

integer quadratic program (MIQP). While we demonstrated that by solving a collection of

MIQPs for each task offline enables pseudo-polynomial time online compression, we cannot

make any guarantees about the computational cost of obtaining a solution to the MIQP. Our

proposed model is therefore unsuitable for use in real-time systems where the MIQP cannot

be solved offline. This motivates us to explore alternatives to that model in the future.

As ongoing work, we are considering a return to the semantics of elastic schedul-

ing via proportional compression of task utilizations as originally intended by But-

tazzo’s model [39, 40]. Though Orr et al. note in [120] that proportional compression of

parallel tasks scheduled in a federated fashion results in wasted capacity, we argue that elastic

scheduling should balance both fairness (degrading all subtask workloads in equal weighted

241

measure, i.e., proportionally to their elasticity) and utility (we should seek to extract the

best results that we can obtain — no subtask workload should be degraded more than neces-

sary to ensure schedulability). To strike an appropriate balance, we can at once preserve the

original semantics of elastic scheduling as closely as possible while avoiding wasted capacity

by:

1. Compressing each subtask’s workload proportionally to its elasticity until the entire

task system is schedulable on the given number of cores.

2. Then every task τi now allocated mi cores has its subtask workloads decompressed (still

proportionally to their elasticities) as much as possible while still remaining schedulable

on those cores. This remains as fair as possible (every task is allocated a number of cores

based on proportional compression) without wasted resources (each task is compressed

exactly as much as needed to fit on its core allocation).

We have developed both a mixed-integer linear program (MILP) to represent

this problem, as well as an iterative algorithm to solve it. Efforts to evaluate both,

and to prove an execution time bound for the iterative algorithm, are ongoing.

When considering the joint compression of low-utilization tasks, we outlined extensions of our

approaches to fluid and partitioned EDF elastic scheduling from Chapter 3. For partitioned

EDF scheduling, we suggested using the best-fit and first-fit heuristics to solve the bin packing

problem to provide a pseudo-polynomial bound on execution time. Under the assumption

that a collection of MIQPs might need to be solved offline for parallel tasks anyway, it may

be worth the extra computation to instead use an exact schedulability test for partitioned

EDF. In the same spirit as the other approaches presented in Chapter 6, we plan to formulate

this problem as an MILP and evaluate its efficiency.

Though we considered the joint elastic scheduling of both high- and low-utilization tasks, we

did not not consider hybrid-utilization tasks. Hybrid-utilization tasks were identified by Orr

et al. in [120]; these are high-utilization parallel tasks that require more than one processor

core in an uncompressed state. However, under elastic scheduling, these tasks may have

their utilizations compressed until they become schedulable on a single core. The prior work

of Orr et al. deferred the problem of dealing with such transitions; we also intend to consider

such tasks in future work.

242

8.1.6 Mixed Criticality Systems

Tasks of multiple distinct criticality levels (e.g., mission- versus safety-critical) may execute

concurrently on a shared platform [161, 32]. Criticality often corresponds to a required

level of WCET certification: the standards for mission-critical components may be less

stringent than those for safety-critical components. The adaptive mixed criticality model [16]

characterizes each task according to a tuple (Ti, Di, {Cξ
i }, ξi), where Ti and Di are the usual

period and deadline parameters, ξi indicates the criticality level, and Cξ
i represents the

task’s WCET under the certification requirements of the corresponding criticality level ξ.

This allows critical tasks to be characterized according to the more common-case execution

times of lower certification levels, as well as the stricter worst-case times of higher levels. The

system itself operates at a criticality level ξ̂ (typically initialized to the lowest level). If an

instance of a critical task executes longer than C ξ̂
i , system criticality is raised, and all tasks

having ξi<ξ̂ are temporarily dropped to guarantee completion of the more critical processes.

Earliest Deadline First with Virtual Deadlines (EDF-VD) is an optimal non-clairvoyant

algorithm29 for scheduling mixed criticality systems on a uniprocessor [14, 15]. Tasks are

assigned dynamic priorities according to the EDF scheduling scheme, but high criticality

tasks are scheduled according to a “virtual deadline,” which scales each task’s period by the

ratio of the low-criticality utilization of all high-criticality tasks to the utilization available

for those tasks.

Prior Elastic Models for Mixed Criticality Systems

Several alternatives to job and task dropping have been proposed. For instance, Su and Zhu’s

elastic task model for uniprocessor mixed criticality [142] characterizes each low-criticality

task with a maximum period that reflects its minimum service requirement; if the system

switches to a high-criticality state, periods are expanded to these values (with opportunity

for early releases given sufficient slack). This model, however, is limited as an instantiation

of Buttazzo’s original elastic scheduling model. First, low-criticality tasks τi have their

periods Ti fully extended to their maximum values Tmax
i , rather than degrading utilizations

29Non-clairvoyant in this context implies that the scheduler does not know, a priori, whether any task of
a higher criticality will overrun one of its low-criticality execution times. The overrun is identified at the
instant it occurs.

243

proportionally to their elasticities Ei until schedulability is guaranteed. Second, slack is

reclaimed in a greedy fashion, rather than shared among low-criticality tasks in a manner

that takes into account notions of fairness implied by their elastic constants. In fact, elastic

constants are missing entirely from this model.

The adaptive mixed criticality model has also been extended to federated scheduling of

parallel tasks [95, 96]. Under this model, tasks are additionally characterized with set of spans

{Lξ
i}, each certified according to the criticality level ξ. If a task overruns its execution time

C ξ̂
i , the system level is raised and lower criticality tasks are dropped until sufficient processors

have been freed for the critical tasks. As an alternative to pessimistic task dropping, Gill

et al. [66] suggest that elastic compression may allow graceful degradation of less critical

tasks without dropping them entirely. At a system criticality level ξ̂, their model determines

the total number of processors required by those tasks for which (ξi≥ξ̂). It then proposes

compressing, rather than dropping, the less critical tasks to execute on the remaining cores.

Future Work

Though this dissertation does not make any contributions toward mixed criticality elas-

tic scheduling models, it does point toward improved frameworks that leverage elasticity

to provide graceful degradation in mixed criticality systems. For example, by assigning

elastic constants to low-criticality tasks, our quasilinear elastic scheduling procedure

(Algorithm 2) might be used to decide the extent to which each task’s period should be ex-

tended when the system criticality level increases. We are actively investigating these ideas

in collaboration with others.

For federated scheduling of parallel tasks, we propose to apply subtask-level elastic

scheduling to computationally-elastic, low-criticality tasks in the model of Gill

et al. [66]. It should be straightforward to use the techniques presented in Chapter 6 to

compress the workloads of low-criticality elastic tasks to execute on the number of available

cores remaining after allocation to the high-criticality tasks.

Moreover, if workloads ci,j and workload constraints cmin
i,j and cmax

i,j are already being assigned

at the subtask level, then a model naturally arises where worst-case execution times cξi,j for

each criticality level are also assigned at the subtask level. If subtask progress can be tracked,

then the system criticality level may be increased when an individual subtask overruns at

244

the current level. In this case, the core re-allocation to increase resources available to the

critical task might be less pessimistic if the scheduler is cognizant of which of its subtasks

have already completed execution.

As we mentioned earlier, it remains a challenge to decide how to realize workload compres-

sion, especially if it must occur immediately when the criticality level increases. If a job

of a low-criticality task is already executing, and it does not have anytime semantics, then

reducing its computational budget might not guarantee any result, even a degraded one.

Nonetheless, this scenario is no worse than otherwise dropping the job in the non-elastic

version of adaptive mixed criticality.

8.1.7 Compositional Scheduling

Compositional real-time systems are those for which multiple schedulers are composed, often

in hierarchical fashion, to provide different scheduling semantics for applications with unique

timing requirements that must nevertheless execute concurrently on the same system [137].

Though our dissertation does not consider compositional systems, we aim provide a complete

picture of the scheduling models to which elastic scheduling has been extended.

Prior Elastic Models for Compositional Systems

In [132], Salman et al. apply the elastic framework to uniprocessor compositional scheduling.

They consider a system composed of multiple applications Γi, each providing its own RM

or EDF scheduler. A system-level scheduler uses the periodic resource model of Shin and

Lee [138] under which each application-level scheduler is given a reservation Γi(Θi,Πi) of

Θi time units on the CPU every Πi time units. Schedulability is determined according to

two conditions: (i) the total resource supply must be sufficient for the reservations given

to all application-level schedulers, and (ii) application’s tasks must be schedulable given

the provided reservation, according to the condition of Shin and Lee [138]. In their work

in [132], Salman et al. use a modified version of Buttazzo’s algorithm in [39, 40] to determine,

for a fixed resource supply, how the elastic application can adapt its frequencies to remain

schedulable.

245

In [133], Salman et al. extend this idea to compositional scheduling on a multi-processor

system. Instead of the periodic resource model, they use the Minimum Parallelism Supply

model (MPS) from Leontyev and Anderson [89]. Under this model, an application-level

scheduler is assigned a set of dedicated cores, as well as a reservation Γi(Θi,Πi) on a shared

processor. The proposed approach uses the technique of Orr et al. in [118] for partitioned

EDF scheduling, iteratively increasing the amount of compression λ and heuristically par-

titioning tasks among processors. They modify the partitioning heuristic slightly to also

assign tasks to the shared processor, and check schedulability on that processor equivalently

to the uniprocessor case they considered in [132].

Future Work

Though we have not considered compositional scheduling directly in this dissertation, the

applications we have evaluated hint at a compositional scheme. In Section 5.7, we evaluate

applications of our harmonic elastic scheduling model to both the real-time FIMS [166] and

ORB-SLAM3 [42] pipelines. In these evaluations, we consider the situation where the target

application executes on a resource-constrained system concurrently with other applications

that may limit the amount of processor utilization available to the target. A more principled

representation of this idea would be to use compositional scheduling, with each application

subsystem given its own reservation over the processor resources. In such systems, the elastic

model could be applied at two levels: within the reservation granted to the application (as

we demonstrated in our evaluation), and to allocate resources among application subsystems

at the top level.

8.1.8 Other Scheduling Models to Consider

It would be infeasible to discuss all models that arise from combinations of columns in

Table 8.1; we could discuss at length the ways in which elastic scheduling might be extended,

e.g., to constrained-deadline tasks with harmonic periods, or to fixed-priority shared resource

access protocols. We instead focus here on a few more natural extensions of the work in this

dissertation, especially in the context of parallel task scheduling.

246

Chapter 7 of this dissertation presents a vision of elastic scheduling as a

richer model of parameterized workload adaptation. It presents an approach

for highly-parallel fork-join tasks, for which it is straightforward to express

the exact response time as a function of subtask workloads (see Equation 7.3 in

Section 7.4.1). However, for DAG tasks in general, finding the minimum possible response

time on a given number of cores (or, equivalently, determining the minimum number of

cores to meet a given deadline) is NP-complete [159]. As a result, the models of Orr et

al. [120, 119, 121], as well as our model in Chapter 6, use the generally sufficient, but not

optimal, core assignment of Equation 6.2.

However, there are pseudo-polynomial algorithms that build schedules based on

the structure of the DAG [55], including an algorithm we proposed in prior work [150]

that often achieves an optimal processor assignment. It would be straightforward to im-

plement in the context of period-elastic parallel tasks: using the algorithm to construct a

schedule for a given number of processors gives us a response time that defines the minimum

period that can be assigned. This gives rise to a DP-based approach where each task has a

period (and therefore, a utilization and corresponding objective function value) assigned for

each possible core allocation; the problem then is to find an optimal joint allocation of cores

to all tasks.

An alternative method is to embed the DAG scheduling problem into the MIQP

itself. In the absence of elasticity, several techniques exist to construct MILP representations

of DAG scheduling problems, with subtask precedence relations encoded as constraints. We

will not attempt to provide exhaustive coverage of such techniques here; instead, we refer

the reader to the introductory sections of [160].

Nevertheless, such models are still constructed according to the federated scheduling paradigm,

under which high-utilization parallel tasks are assigned dedicated processor cores.

On embedded systems, such as the quad-core computational platforms considered for use

onboard our proposed APT satellite, this may result in unnecessary resource waste, since

other tasks (such as networking, instrument control, telemetry, etc.) will need to execute

concurrently. Alternative analytical frameworks, such as semi-federated scheduling [78]

or reservation-based federated scheduling [158] could allow low-utilization sequential

tasks to share processors with parallel tasks. Moreover, an elastic model for reservation-based

247

federated scheduling would support constrained-deadline parallel tasks. We intend to

investigate extensions of the elastic scheduling framework to these models as future work.

As another alternative to the federated scheduling model for parallel DAG tasks that we want

to consider, Wasly and Pellizzoni’s bundled scheduling [170] provides an abstraction where

tasks are divided into sequences of segments called bundles, each requiring a different number

of threads. Threads forming a bundle are scheduled together, with each thread assigned its

own core. However, this abstraction allows the number of cores assigned to a parallel task

to change as it executes, reducing the length of idle intervals and providing an improved

resource allocation strategy. An elastic model for bundled scheduling may better reflect the

semantics of many common parallel operations, such as matrix multiplication. For example,

compressing a task’s workload by reducing the size of a matrix would actually reduce the

number of subtasks under a DAG model, but the existing traditional elastic models (besides

our parameterized model in Chapter 7) for federated scheduling assume that the task’s DAG

structure remains the same under compression, even if its individual subtask workloads may

change. Under a bundled scheduling model, this would simply reduce the execution length

of existing bundles.

Another challenge that arises in parallel task scheduling is modeling the overheads associated

with cache access, thread synchronization, and communication costs between cores. In [63,

64], Ferry et al. showed that even for the highly-parallel matrix-vector operations used

in numerical models for real-time hybrid simulation (RTHS), execution times do not scale

inversely with thread counts. Rather than needing a closed-form expression to capture these

effects, a bundled elastic scheduling model could be constructed as a problem of selecting

from multiple bundle configurations associated with each task phase. Bundle configurations

could reflect both compressed workload configurations, as well as their execution times when

scheduled using different numbers of threads. Constructing such a model, finding algorithms

to solve it, then applying it to GRB localization and a new benchmark problem for multi-

axial RTHS [49] are topics of future work.

8.2 Applications of Elastic Scheduling

As we have shown, elastic scheduling can be realized to provide a framework under which

applications can adapt their execution in a principled way. In this section, we describe prior

248

work in this direction, state conclusions drawn from our contributions, and discuss future

research directions.

8.2.1 In the Prior Work

Control Systems

Buttazzo et al. state that elastic scheduling is readily applied to multimedia systems, in

which “timing constraints can be more flexible and dynamic than control theory usually

permit” [40]. However, prior literature exists (including later works of Buttazzo’s) that

considers leveraging elasticity in task periods and workloads for adaptive control systems.

In their papers on adaptive rate control [34, 35], Buttazzo and Abeni apply elastic

scheduling to adapt periods in response to dynamic system load. They argue that in some

systems, task execution times might only be estimated, not characterized with worst-case

values. They propose a control loop to continuously update estimated workload values Ci

based on a runtime monitoring mechanism. Task budget reservations are adjusted in re-

sponse, and if these would cause the system to be overloaded, task periods can be adapted

according to the original elastic algorithm in [39]. They suggest that these techniques can

be applied to control applications for which periodic tasks may execute at different rates,

depending on the operating conditions; for example, in avionics, the minimum safe altimeter

sampling rate is a function of the aircraft’s altitude.

Buttazzo et al. also propose to use elastic scheduling to manage the quality of control

(QoC) in overloaded systems [36]. The major problem addressed by the paper arises

from the fact that digital controllers that run at a given frequency have control laws that

are tuned to that frequency. However, in systems where overload may occur — e.g., due

to execution times increasing beyond their estimated values (as in the adaptive rate control

papers) or when new tasks are activated due to changes in the environment — task rates

may have to adapt to maintain schedulability. The paper primarily addresses the problem

of selecting multiple controllers that can be switched out depending on the period assigned

to the corresponding task. The goal is to select, for each control task, a set of controllers

from which a selection minimizes control error over a range of acceptable periods. Too many

controllers increases the memory footprint of the application, whereas too few controllers

249

may deviate too much from the invocation frequencies to which they are tuned, increasing

the associated control error. The problem of period assignment is addressed according to

Buttazzo’s elastic scheduling model, with elastic coefficients “set to reflect tasks’ impor-

tance” [36]. This work does not explicitly consider codesign of the elastic scheduling

constants with the control error functions under consideration.

Tian and Gui attempt to bridge this gap in [155] by embedding both the QoC manage-

ment and elastic workload adaptation into a constrained optimization problem

à la Chantem et al. [44, 45]. They propose to assign elastic constants according to the inverse

of the instantaneous weighted QoC of an individual control loop. This decision is somewhat

heuristic, and aims to represent control cost as a function of task utilization so that the

objective functions match. Nonetheless, it provides a more principled assignment of elastic

constants than simply a qualitative notion of “importance.”

Dynamic Voltage Scaling

In embedded systems for which energy consumption is a concern, power draw can be reduced

by scaling down voltage, which decreases processor speed. In the model of Marinoni and

Buttazzo [104], the execution time Ci on a speed s processor (s ≤ 1) for a task τi is given by

Ci(s) =
ϕiC

max
i

s
+ (1− ϕi)C

max
i

where Cmax
i is its execution time on a unit-speed processor and ϕi is an application-dependent

constant indicating the proportion of CPU-bound code.

Marinoni and Buttazzo consider the situation where a power management policy has

set the processor speed to s. They demonstrate how to determine whether the system is

now overloaded, and if so, they apply Buttazzo’s elastic scheduling model [39, 40] to adjust

task periods. They demonstrate how to calculate the utilization constraints Umax
i (s) and

Umin
i (s) as functions of the processor speed, then they compress utilizations according to

task elastic constants using the usual algorithm.

250

QoS Management in Distributed Systems

Pedreiras and Almeda point out in [124] that CPU utilization is not the only limited resource

over which usage must be scheduled. In real-time distributed systems, which (even in 2003

when the paper was written) are becoming increasingly pervasive in avionics, automotive,

robotics, computer vision, and multimedia applications, available network data rates

must be shared among multiple message sources. The authors propose to apply the original

elastic scheduling model of Buttazzo et al. [39, 40] to compress network utilization in real-

time networking protocols. They apply this idea in a case study with a mobile robot.

8.2.2 Applications Considered in This Dissertation

Atmospheric Particle Characterization

In Section 5.7.1 of this dissertation, we applied our model of elastic scheduling for tasks with

harmonic periods to the Fast Integrated Mobility Spectrometer (FIMS) [167, 169], a flown in-

strument that characterizes atmospheric aerosol particle size distributions. Real-time aerosol

sampling may allow adaptive flight patterns for atmospheric survey missions. However, task

workloads may vary with the density of the sampled particles, the vibrations of the enclos-

ing chamber, and the changing reflectivity of the chamber walls [169]. Moreover, if deployed

on SWaP-constrained hardware atop a lightweight UAV, the FIMS computational pipeline

may need to share resources with other applications, such as path planning, localization,

and aircraft control. The amount of processor utilization available to the FIMS application

may therefore fluctuate as environmental conditions change. Toward providing an adaptive

framework atop which FIMS can execute, we demonstrated that our elastic model enables

FIMS to adjust its task periods to avoid missing deadlines when run concurrently with a

dynamic, high-priority interference task.

Simultaneous Localization and Mapping

In Section 5.7.2 of this dissertation, we applied our model of harmonic elastic scheduling to

a simultaneous localization and mapping (SLAM) system [88], where harmonic periods help

251

to enforce frame alignment from multiple sensor sources. In particular, we considered ORB-

SLAM3 [42], which is a visual-inertial SLAM system widely used in autonomous vehicle and

robotics applications that supports stereo camera inputs. Again, ORB-SLAM3 may run

concurrently with other application subsystems (e.g., in a future deployment, it might run

alongside FIMS), so providing an adaptive framework under which it may change task rates

if available utilization changes is an important goal. While prior studies (including one by

our collaborator Ao Li [90]) on adapting SLAM systems already exist, these typically execute

by selectively dropping data frames, and often require highly-tailored ML-based integration

with the existing application. We demonstrate that our elastic framework provides even

better results (i.e., less degradation in localization accuracy) than the approach in [90] by

simply adjusting task periods in response to overload.

GRB Localization

In Chapter 7, we considered elastic workload adaptation for the task of real-time gamma-ray

burst (GRB) localization onboard a future satellite telescope. We argued that a richer model

of elastic scheduling, framed as an optimization problem over multiple parameterized degrees

of freedom within the constraints of schedulability, is needed to fully capture the semantics

of adapting the application’s workloads. Our model captures the dimensions — continuously

numeric, discretely numeric, and categorical — over which workloads can be compressed,

which also captures the interdependencies among subtasks: changing the workload of one

subtask (e.g., by reducing the input data) may also change the workload of a downstream

subtask. Rather than attempting to characterize a closed-form expression for utility as

a function of workloads, through extensive experimental evaluation offline, the proposed

technique constructs a surface over which online search allows rapid adaptation in response

to changing environmental conditions.

The Astro2020 decadal survey [117] released by the National Academies identifies “space-

based time-domain and multi-messenger program” as the highest-priority sustaining activity

in space, which will require coordinated real-time follow-up observations of transient astro-

physical phenomena – e.g., gamma-ray bursts (GRBs) — using secondary observational

modalities, such as visible-light observations with optical telescopes. Pursuant to this, we

applied our adaptive framework to determine whether we could achieve accurate real-time lo-

calization aboard a simulated model of our proposed orbital Advanced Particle-astrophysics

252

Telescope (APT). Even with the dynamic workloads associated with the varying brightness

and spectral parameters of GRBs, and even under very short (33 ms) deadlines imposed by

the possible future requirements associated with prompt localization, we are able to achieve

subdegree estimates of GRB source directions.

8.2.3 Future Directions for Control Applications

As future work, we intend to investigate formal relationships between control performance

and elastic scheduling. The prior work in this regard remains limited. As we mentioned,

Buttazzo et al. [36] try to optimize the availability of controllers corresponding to different

invocation frequencies, which can be selected as task periods change under Buttazzo’s elastic

scheduling model. However, task utilizations are compressed per elastic constants assigned

according to the application designer’s notion of importance. Tian and Gui [155] argue

that the control cost associated with increasing task periods should be encoded into the

elastic constants, such that utilization compression optimizes control performance within the

constraints of schedulability. Nonetheless, there is still fertile ground for future investigation:

Tian and Gui pick a representation of control cost to match the quadratic optimization of

Chantem et al. [44, 45]. We propose that the opposite approach should be taken, with an

objective function chosen such that it represents, as closely as possible, classical expressions

of control cost.

In our own application of elastic scheduling to ORB-SLAM3 in Section 5.7.2 of this dis-

sertation, we assigned elastic constants according to the first-order impact on localization

accuracy associated with reducing each task’s sampling rate from its nominal frequency.

Though this is a principled way to couple the semantics of elastic scheduling identified by

Chantem et al. [44, 45] to one notion of control performance, it remains a strictly empirical

method: the values were obtained from experimental results. Again, we propose that in the

future, a deeper formal connection between control performance and sampling/processing

rates in SLAM systems should be quantified, which will make elastic models even more

robust to different environments and resource constraints.

253

8.2.4 Future Directions for Localization of Astrophysical Tran-

sients

Time-domain and multi-messenger astronomy requires the coordination of multiple geo-

graphically disperse instruments for both detection and direct follow-up observations. Work

to model this as a distributed real-time system, with components that must work together

to observe transient phenomena within short windows of opportunity, is ongoing.

Recent advances in fast-slewing robotic optical telescopes, such as the superfast TURBO

telescopes under development [116], offer significant opportunities for more rapid and ac-

curate follow-ups. To fully harness the potential of those new fast-slewing instruments,

important new research questions at the intersection of real-time control and scheduling

must be addressed. For example, orienting an instrument as accurately as necessary, but

as quickly as possible to best observe an emerging and potentially short-lived phenomenon,

requires rapid evolution and convergence of control objectives, even as newly sensed data

demands iterative refinement of control parameters. Furthermore, the instrument must be

protected from damage or misalignment that may result from, e.g., excessive accelerations

during higher-performance maneuvers to orient the instrument.

Defining the tradeoffs between accuracy and timeliness of localization as they affect the

objective to maximize the expected observations that can be performed while staying within

the safe regions defined by the necessary control actions will require the coupling of elas-

tic scheduling theory with control. It will also likely lead to models that integrate other

concepts such as time-utility curves [156] (to capture how the usefulness of follow-up ob-

servations evolves over time, instead of applying strict deadline constraints) and scheduling

with explorable uncertainty [56] (to capture the ability of follow-up instruments to search a

broader region to which the localization algorithms bound the direction of the phenomenon).

254

8.3 Open Questions and Broader Vision

Cyber-physical systems are becoming increasingly pervasive in dynamic environments where

they must be able to adapt to changes in resource availability or external conditions to main-

tain temporal correctness while still remaining functional. Elastic scheduling has emerged in

the last two decades as a framework under which such adaptation is realized.

This dissertation has made several contributions to the state of the art in elastic scheduling

models. It has presented new algorithms for parameter assignment with improved execution

time complexity, enabling fast adaptation in response to online changes, such as during

admission of new tasks or when computational resources change. It has extended elastic

scheduling to new task models, enabling it to be used in constrained-deadline fixed-priority

task systems and systems of tasks with harmonic rate constraints.

It has also considered what it means to be elastic, and how to assign elastic parameters in

a principled way. It used the quadratic optimization problem that arises from Buttazzo’s

model of elastic scheduling to define elastic constants according to the first order impact

on result error associated with decreasing task rates from their nominal values. Using this

technique, it implemented elastic versions of aerosol sampling and autonomous vehicle local-

ization and mapping applications. It also presented a new model of subtask-level computa-

tional elasticity, suggesting that workload compression should be considered for individual

subtasks within a parallel task. It discussed the implications of such a model with respect

to the DAG structure that arises from precedence constraints among the subtasks, and the

subsequent schedulability analysis.

These extensions have all stayed within the semantics of the original elastic scheduling model

that proposes to proportionally compress task utilizations, or the dual quadratic optimiza-

tion problem that minimizes their weighted squared deviations. However, this dissertation

also argues for a more general model of elastic scheduling as the reduction of task uti-

lization along multiple parameterized degrees of freedom so as to remain within

the constraints of schedulability while minimizing loss in result utility. Under

such a model, task utilizations are still compressed, but compression is no longer required

to be proportional to a single constant. This allows models to capture more complex inter-

dependencies and nonlinearities in the relationships between task utilizations and outcomes.

Furthermore, it allows a better relationship of the relationships between subtasks: reducing

255

the workload of one subtask may naturally change the workload of another. We applied this

approach to gamma-ray burst localization aboard a future orbital telescope, and demon-

strated that it enables localization to adapt in the face of unknown burst parameters and

short dynamic deadlines without significant loss in accuracy.

As future work, we intend to continue to apply the traditional elastic scheduling models to

new scheduling frameworks that are already commonly used in real-time systems. We also

intend to expand on our ideas of elastic scheduling as a broader framework, and consider

more formal ways to represent and characterize tasks within that framework. We will also

apply the framework to systems of multiple tasks — at present, our work is restricted to

parameterized workload compression for a single highly-parallel fork-join task.

We also intend to address open questions related to transitions between compressed states.

Under the original elastic model, task periods are extended in response to overload; ac-

tive jobs simply have their deadlines extended in response. However, transitions are not

so straightforward in other models. For example, when periods are restricted to harmonic

values, decreases in available utilization might result in one or more task periods also de-

creasing to maintain integer ratios among period values. Furthermore, the workloads of

computationally-elastic tasks may decrease in response to system overload; the execution

time budget allocated to currently executing jobs therefore may be insufficient if a compu-

tational mode has to be selected at the beginning of the program. While we have suggested

policies to deal with such scenarios for different system and program semantics, implementing

and evaluating those policies remain necessary for better adoption in real systems.

256

References

[1] J. J. Abbott, Z. Nagy, F. Beyeler, and B. J. Nelson. Robotics in the Small, Part I:
Microbotics. IEEE Robotics & Automation Magazine, 14(2):92–103, 2007.

[2] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, Jul 2009.

[3] S. Agostinelli, J. Allison, K. Amako, et al. Geant4 — a simulation toolkit. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 506(3):250–303, 2003.

[4] S. Aldegheri, N. Bombieri, D. D. Bloisi, and A. Farinelli. Data Flow ORB-SLAM for
Real-time Performance on Embedded GPU Boards. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5370–5375, 2019.

[5] B. Andersson and D. de Niz. Analyzing Global-EDF for Multiprocessor Scheduling
of Parallel Tasks. In R. Baldoni, P. Flocchini, and R. Binoy, editors, Principles of
Distributed Systems, pages 16–30, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[6] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-time scheduling:
The deadline-monotonic approach. IFAC Proceedings Volumes, 24(2):127–132, 1991.
IFAC/IFIP Workshop on Real Time Programming, Atlanta, GA, USA, 15-17 May
1991.

[7] Y. Bai, L. Li, Z. Wang, X. Wang, and J. Wang. Performance optimization of au-
tonomous driving control under end-to-end deadlines. Real-Time Systems, 58(4):509–
547, Dec 2022.

[8] Y. Bai, Z. Wang, X. Wang, and J. Wang. AutoE2E: End-to-End Real-time Middleware
for Autonomous Driving Control. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pages 1101–1111, 2020.

[9] T. P. Baker. Stack-based scheduling for realtime processes. Real-Time Syst.,
3(1):67–99, 4 1991.

[10] D. Band et al. BATSE Observations of Gamma-Ray Burst Spectra. I. Spectral Diver-
sity. Astrophys. J., 413:281, Aug. 1993.

[11] I. Bartos and M. Kowalski. Multimessenger Astronomy. 2399-2891. IOP Publishing,
2017.

[12] S. Baruah. Partitioned EDF scheduling: a closer look. Real-Time Systems, 49(6):715–
729, Nov 2013.

257

[13] S. Baruah. Improved uniprocessor scheduling of systems of sporadic constrained-
deadline elastic tasks. In Proceedings of the 31st International Conference on Real-
Time Networks and Systems (RTNS 2023), New York, NY, USA, 2023. Association
for Computing Machinery.

[14] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster,
and L. Stougie. The Preemptive Uniprocessor Scheduling of Mixed-Criticality Implicit-
Deadline Sporadic Task Systems. In 2012 24th Euromicro Conference on Real-Time
Systems, pages 145–154, 2012.

[15] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster,
and L. Stougie. Preemptive uniprocessor scheduling of mixed-criticality sporadic task
systems. J. ACM, 62(2), 5 2015.

[16] S. Baruah, A. Burns, and R. Davis. Response-Time Analysis for Mixed Criticality
Systems. In 2011 IEEE 32nd Real-Time Systems Symposium, pages 34–43, 2011.

[17] S. Baruah and P. Ekberg. An ILP representation of response time analysis.
Short note available from https://research.engineering.wustl.edu/~baruah/

Submitted/2021-ILP-RTA.pdf, 2021.

[18] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems. IEEE Transactions on Computers, 55(7):918–923,
2006.

[19] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. Algorithmica, 15(6):600–625, Jun 1996.

[20] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Syst., 2(4):301–324, oct 1990.

[21] K. Bechtol, S. Funk, A. Okumura, L. Ruckman, A. Simons, H. Tajima, J. Vanden-
broucke, and G. Varner. TARGET: A multi-channel digitizer chip for very-high-energy
gamma-ray telescopes. Astroparticle Physics, 36(1):156–165, 2012.

[22] K. Bestuzheva et al. The SCIP Optimization Suite 8.0. Technical report, Optimization
Online, December 2021.

[23] P. N. Bhat, C. A. Meegan, A. von Kienlin, et al. The third Fermi GBM gamma-
ray burst catalog: The first six years. The Astrophysical Journal Supplement Series,
223(2):28, Apr. 2016.

[24] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests. Real-
Time Syst., 30(1–2):129–154, May 2005.

258

https://research.engineering.wustl.edu/~baruah/Submitted/2021-ILP-RTA.pdf
https://research.engineering.wustl.edu/~baruah/Submitted/2021-ILP-RTA.pdf

[25] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G. Heiser. Timing
analysis of a protected operating system kernel. In 2011 IEEE 32nd Real-Time Systems
Symposium, pages 339–348, 2011.

[26] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg. Automatic
Latency Management for ROS 2: Benefits, Challenges, and Open Problems. In 2021
IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 264–277, 2021.

[27] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint. An Adaptive Framework
for Multiprocessor Real-Time Systems. In 2008 Euromicro Conference on Real-Time
Systems, pages 23–33, 2008.

[28] S. Boggs and P. Jean. Event reconstruction in high resolution Compton telescopes.
Astronomy and Astrophys. Supp. Series, 145(2):311–321, 2000.

[29] V. Brocal, P. Balbastre, R. Ballester, and I. Ripoll. Task period selection to minimize
hyperperiod. In ETFA2011, pages 1–4, 2011.

[30] J. Buckley, S. Alnussirat, C. Altomare, R. G. Bose, D. L. Braun, J. H. Buckley, J. Buh-
ler, E. Burns, R. D. Chamberlain, W. Chen, M. L. Cherry, L. Di Venere, J. Dumonthier,
M. Errando, S. Funk, F. Giordano, J. Hoffman, Z. Hughes, D. J. Huth, P. L. Kelly,
J. F. Krizmanic, M. Kuwahara, F. Licciulli, G. Liu, M. N. Mazziotta, J. G. Mitchell,
J. W. Mitchell, G. A. de Nolfo, R. Paoletti, R. Pillera, B. F. Rauch, D. Serini, G. E.
Simburger, M. Sudvarg, G. Suarez, T. Tatoli, G. S. Varner, E. A. Wulf, A. Zink, and
W. V. Zober. The Advanced Particle-astrophysics Telescope (APT) Project Status. In
Proc. of 37th International Cosmic Ray Conference — PoS(ICRC2021), volume 395,
pages 655:1–655:9, July 2021.

[31] G. Bunting, P. Lindsay, A. Maghareh, A. Prakash, and S. Dyke. Using multi-time
stepping in finite element models to meet real time constraints. In EMI/PMC 2012
Joint Conference of the Engineering Mechanics Institute and the 11th ASCE Joint
Specialty Conference on Probabilistic Mechanics and Structural Reliability, 2012.

[32] A. Burns and R. I. Davis. A survey of research into mixed criticality systems. ACM
Comput. Surv., 50(6), 11 2017.

[33] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and
R. Siegwart. The EuRoC micro aerial vehicle datasets. The International Journal of
Robotics Research, 35(10):1157–1163, 2016.

[34] G. Buttazzo and L. Abeni. Adaptive rate control through elastic scheduling. In Pro-
ceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187),
volume 5, pages 4883–4888 vol.5, 2000.

259

[35] G. Buttazzo and L. Abeni. Adaptive Workload Management through Elastic Schedul-
ing. Real-Time Systems, 23(1):7–24, Jul 2002.

[36] G. Buttazzo, M. Velasco, and P. Marti. Quality-of-Control Management in Overloaded
Real-Time Systems. IEEE Transactions on Computers, 56(2):253–266, 2007.

[37] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications, chapter Handling Overload Conditions, pages 287–347.
Springer US, New York, 3rd edition, 2011.

[38] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications, chapter Resource Access Protocols, pages 205–248. Springer
US, New York, 3rd edition, 2011.

[39] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic Task Model for Adaptive Rate
Control. In IEEE Real-Time Systems Symposium, 1998.

[40] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic Scheduling for Flexible
Workload Management. IEEE Transactions on Computers, 51(3):289–302, Mar. 2002.

[41] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson. LIT-
MUSˆRT: A Testbed for Empirically Comparing Real-Time Multiprocessor Sched-
ulers. In 2006 27th IEEE International Real-Time Systems Symposium (RTSS’06),
pages 111–126, 2006.

[42] C. Campos, R. Elvira, J. J. G. Rodŕıguez, J. M. M. Montiel, and J. D. Tardós. ORB-
SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap
SLAM. IEEE Transactions on Robotics, 37(6):1874–1890, 2021.

[43] L.-C. Canon, M. E. Sayah, and P.-C. Héam. A comparison of random task graph
generation methods for scheduling problems. In R. Yahyapour, editor, Euro-Par 2019:
Parallel Processing, pages 61–73, Cham, 2019. Springer International Publishing.

[44] T. Chantem, X. S. Hu, and M. D. Lemmon. Generalized Elastic Scheduling. In IEEE
International Real-Time Systems Symposium, 2006.

[45] T. Chantem, X. S. Hu, and M. D. Lemmon. Generalized Elastic Scheduling for Real-
Time Tasks. IEEE Transactions on Computers, 58(4):480–495, April 2009.

[46] J. Chen. Partitioned multiprocessor fixed-priority scheduling of sporadic real-time
tasks. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pages
251–261, Los Alamitos, CA, USA, jul 2016. IEEE Computer Society.

[47] W. Chen, J. Buckley, et al. Simulation of the instrument performance of the Antarctic
Demonstrator for the Advanced Particle-astrophysics Telescope in the presence of the
MeV background. In Proc. of 38th Int’l Cosmic Ray Conference, volume 444, pages
841:1–841:9. Sissa Medialab, July 2023.

260

[48] W. Chen, J. H. Buckley, S. Alnussirat, C. Altomare, R. G. Bose, D. L. Braun, J. Buhler,
E. Burns, R. D. Chamberlain, M. L. Cherry, L. Di Venere, J. Dumonthier, M. Errando,
S. Funk, F. Giordano, J. Hoffman, Z. Hughes, D. J. Huth, P. L. Kelly, J. F. Krizmanic,
M. Kuwahara, F. Licciulli, G. Liu, M. N. Mazziotta, J. G. Mitchell, J. W. Mitchell,
G. A. de Nolfo, R. Paoletti, R. Pillera, B. F. Rauch, D. Serini, G. E. Simburger,
M. Sudvarg, G. Suarez, T. Tatoli, G. S. Varner, E. A. Wulf, A. Zink, and W. V.
Zober. The Advanced Particle-astrophysics Telescope: Simulation of the Instrument
Performance for Gamma-Ray Detection. In Proc. of 37th International Cosmic Ray
Conference — PoS(ICRC2021), volume 395, pages 590:1–590:9, July 2021.

[49] J. W. Condori Uribe, M. Salmeron, E. Patino, H. Montoya, S. J. Dyke, C. E. Silva,
A. Maghareh, M. Najarian, and A. Montoya. Experimental benchmark control problem
for multi-axial real-time hybrid simulation. Frontiers in Built Environment, 9, 2023.

[50] V. Connaughton et al. Localization of gamma-ray bursts using the Fermi gamma-ray
burst monitor. The Astrophysical Journal Supplement Series, 216(2):32, Feb. 2015.

[51] J. Corbet. Deadline scheduling for linux. LWN.net, 2009.

[52] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a mul-
tiprocessor. In 26th IEEE International Real-Time Systems Symposium (RTSS’05),
pages 12 pp.–341, 2005.

[53] S. K. Dhall. Scheduling periodic-time-critical jobs on single processor and multiproces-
sor computing systems. University of Illinois at Urbana-Champaign, 1977.

[54] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations research,
26(1):127–140, 1978.

[55] S. Dinh, C. Gill, and K. Agrawal. Efficient Deterministic Federated Scheduling for Par-
allel Real-Time Tasks. In Proc. of IEEE 26th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2020.

[56] C. Dürr, T. Erlebach, N. Megow, and J. Meißner. Scheduling with explorable uncer-
tainty. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2018.

[57] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal. A Compositional Scheduling Frame-
work for Digital Avionics Systems. In 2009 15th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 371–380, 2009.

[58] F. Eisenbrand and T. Rothvoss. Static-priority real-time scheduling: Response time
computation is NP-hard. In Proceedings of the Real-Time Systems Symposium,
Barcelona, December 2008. IEEE Computer Society Press.

261

[59] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task sys-
tems is coNP-hard. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, January 2010.

[60] G. A. Elliott, K. Yang, and J. H. Anderson. Supporting Real-Time Computer Vision
Workloads Using OpenVX on Multicore+GPU Platforms. In 2015 IEEE Real-Time
Systems Symposium, pages 273–284, 2015.

[61] P. Emberson, R. Stafford, and R. Davis. Techniques for the synthesis of multipro-
cessor tasksets. In WATERS workshop at the Euromicro Conference on Real-Time
Systems, pages 6–11, July 2010. 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems ; Conference date: 06-07-2010.

[62] M. Fan and G. Quan. Harmonic semi-partitioned scheduling for fixed-priority real-
time tasks on multi-core platform. In 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 503–508, 2012.

[63] D. Ferry, G. Bunting, A. Maqhareh, A. Prakash, S. Dyke, K. Aqrawal, C. Gill, and
C. Lu. Real-time system support for hybrid structural simulation. In 2014 International
Conference on Embedded Software (EMSOFT), pages 1–10, Oct 2014.

[64] D. Ferry, A. Maghareh, G. Bunting, A. Prakash, K. Agrawal, C. Gill, C. Lu, and
S. Dyke. On the performance of a highly parallelizable concurrency platform for real-
time hybrid simulation. In The Sixth World Conference on Structural Control and
Monitoring, 2014.

[65] C. Gill, J. Loyall, R. Schantz, M. Atighetch, J. Gossett, D. Gorman, and D. Schmidt.
Integrated adaptive QoS management in middleware: a case study. In Proceedings.
RTAS 2004. 10th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, 2004., pages 276–285, 2004.

[66] C. Gill, J. Orr, and S. Harris. Supporting Graceful Degradation through Elasticity
in Mixed-Criticality Federated Scheduling. In 6th International Workshop on Mixed
Criticality Systems (WMC) at RTSS, 12 2018.

[67] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. Schantz, M. Atighetchi, and
D. C. Schmidt. Integrated Adaptive QoS Management in Middleware: A Case Study.
Real-Time Systems, 29(2):101–130, 3 2005.

[68] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica. D3: A dynamic deadline-
driven approach for building autonomous vehicles. In Proceedings of the Seventeenth
European Conference on Computer Systems, EuroSys ’22, page 453–471, New York,
NY, USA, 2022. Association for Computing Machinery.

[69] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task
systems on multiprocessors. Real-Time Systems, 25(2):187–205, Sep 2003.

262

[70] D. Griffin, I. Bate, and R. I. Davis. Generating Utilization Vectors for the Systematic
Evaluation of Schedulability Tests. In 2020 IEEE Real-Time Systems Symposium
(RTSS), pages 76–88, 2020.

[71] D. Gruber, A. Goldstein, V. W. von Ahlefeld, et al. The Fermi GBM gamma-ray burst
spectral catalog: Four years of data. The Astrophysical Journal Supplement Series,
211(1):12, Feb. 2014.

[72] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.

[73] C.-C. Han and K.-J. Lin. Scheduling distance-constrained real-time tasks. In [1992]
Proceedings Real-Time Systems Symposium, pages 300–308, 1992.

[74] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability test for real-time
fixed-priority scheduling algorithms. In Proceedings Real-Time Systems Symposium,
pages 36–45, 1997.

[75] Y. Htet, M. Sudvarg, J. Buhler, R. Chamberlain, W. Chen, J. H. Buckley, et al. Prompt
and Accurate GRB Source Localization Aboard the Advanced Particle Astrophysics
Telescope (APT) and its Antarctic Demonstrator (ADAPT). In Proc. of 38th Int’l
Cosmic Ray Conference, volume 444, pages 956:1–956:9. Sissa Medialab, July 2023.

[76] Y. Htet, M. Sudvarg, J. Buhler, R. D. Chamberlain, and J. H. Buckley. Localization of
gamma-ray bursts in a balloon-borne telescope. In Proc. of Workshops of the Interna-
tional Conference on High Performance Computing, Network, Storage, and Analysis
(SC-W), pages 395–398. ACM, Nov. 2023.

[77] J. R. Jackson. Scheduling a production line to minimize maximum tardiness. Man-
agement Science Research Project, 43, 1955.

[78] X. Jiang, N. Guan, X. Long, and W. Yi. Semi-Federated Scheduling of Parallel Real-
Time Tasks on Multiprocessors. In 2017 IEEE Real-Time Systems Symposium (RTSS),
pages 80–91. IEEE, 2017.

[79] M. Jones. What really happened on Mars Rover Pathfinder. The Risks Digest,
19(49):1–2, 1997.

[80] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The
Computer Journal, 29(5):390–395, 01 1986.

[81] H. Kellerer, U. Pferschy, and D. Pisinger. The Multiple-Choice Knapsack Problem,
pages 317–347. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[82] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel scheduling for cyber-
physical systems: Analysis and case study on a self-driving car. In 2013 ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), pages 31–40, 2013.

263

[83] H. Kopetz. On the design of distributed time-triggered embedded systems. Journal of
Computing Science and Engineering, 2(4):340–356, 2008.

[84] T.-W. Kuo and A. Mok. Load adjustment in adaptive real-time systems. In [1991]
Proceedings Twelfth Real-Time Systems Symposium, pages 160–170, 1991.

[85] I. Kuz, Y. Liu, I. Gorton, and G. Heiser. Camkes: A component model for secure
microkernel-based embedded systems. Journal of Systems and Software, 80(5):687–
–699, May 2007.

[86] W. Kywe, D. Fujiwara, and K. Murakami. Scheduling of Image Processing Using
Anytime Algorithm for Real-time System. In Proc. of 18th Int’l Conf. on Pattern
Recognition, volume 3, pages 1095–1098, 2006.

[87] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. PointPillars: Fast
Encoders for Object Detection From Point Clouds. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 12689–12697, 6 2019.

[88] J. Leonard and H. Durrant-Whyte. Simultaneous map building and localization for an
autonomous mobile robot. In Proceedings IROS ’91:IEEE/RSJ International Work-
shop on Intelligent Robots and Systems ’91, pages 1442–1447 vol.3, 1991.

[89] H. Leontyev and J. H. Anderson. A Hierarchical Multiprocessor Bandwidth Reserva-
tion Scheme with Timing Guarantees. In 2008 Euromicro Conference on Real-Time
Systems, pages 191–200, 2008.

[90] A. Li, H. Liu, J. Wang, and N. Zhang. From timing variations to performance degrada-
tion: Understanding and mitigating the impact of software execution timing in slam.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2022.

[91] A. Li, J. Wang, S. Baruah, B. Sinopoli, and N. Zhang. An Empirical Study of Perfor-
mance Interference: Timing Violation Patterns and Impacts. In 2024 Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE, 2024.

[92] H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and P. Shenoy. Real-time support
for mobile robotics. In The 9th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, 2003. Proceedings., pages 10–18, 2003.

[93] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of Global EDF for Parallel Tasks.
In 2013 25th Euromicro Conference on Real-Time Systems (ECRTS), pages 3–13, Los
Alamitos, CA, USA, jul 2013. IEEE Computer Society.

[94] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. Analysis of federated
and global scheduling for parallel real-time tasks. In 2014 26th Euromicro Conference
on Real-Time Systems, pages 85–96. IEEE, 2014.

264

[95] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-Criticality Federated
Scheduling for Parallel Real-Time Tasks. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–12, 2016.

[96] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-criticality federated
scheduling for parallel real-time tasks. Real-Time Systems, 53(5):760–811, 9 2017.

[97] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[98] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise computations.
Proceedings of the IEEE, 82(1):83–94, 1994.

[99] J. M. López, J. L. Dı́az, and D. F. Garćıa. Utilization Bounds for EDF Scheduling on
Real-Time Multiprocessor Systems. Real-Time Systems, 28(1):39–68, Oct 2004.

[100] C. Lu, X. Wang, and X. Koutsoukos. End-to-end utilization control in distributed real-
time systems. In 24th International Conference on Distributed Computing Systems,
2004. Proceedings., pages 456–466, 2004.

[101] C. Lu, X. Wang, and X. Koutsoukos. Feedback utilization control in distributed real-
time systems with end-to-end tasks. IEEE Transactions on Parallel and Distributed
Systems, 16(6):550–561, 2005.

[102] A. Lyons, K. McLeod, H. Almatary, and G. Heiser. Scheduling-context capabilities: A
principled, light-weight operating-system mechanism for managing time. In Proceed-
ings of the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[103] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood. Controlled Flight of a
Biologically Inspired, Insect-Scale Robot. Science, 340(6132):603–607, 2013.

[104] M. Marinoni and G. Buttazzo. Adaptive DVS management through elastic schedul-
ing. In 2005 IEEE Conference on Emerging Technologies and Factory Automation,
volume 2, pages 7 pp.–313, 2005.

[105] S. Mars. Gurobi 10.0.3 released. Technical report, Gurobi Optimization, September
2023.

[106] P. Mészáros, D. B. Fox, C. Hanna, and K. Murase. Multi-messenger astrophysics.
Nature Reviews Physics, 1(10):585–599, 2019.

[107] N. Min-Allah, I. Ali, J. Xing, and Y. Wang. Utilization bound for periodic task set
with composite deadline. Computers & Electrical Engineering, 36(6):1101–1109, 2010.

[108] M. Mohaqeqi, M. Nasri, Y. Xu, A. Cervin, and K.-E. Årzén. Optimal harmonic period
assignment: complexity results and approximation algorithms. Real-Time Systems,
54(4):830–860, Oct 2018.

265

[109] P. L. Montgomery. A survey of modern integer factorization algorithms. CWI quarterly,
7(4):337–366, 1994.

[110] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: A Versatile and
Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[111] M. Nasri and G. Fohler. An Efficient Method for Assigning Harmonic Periods to
Hard Real-Time Tasks with Period Ranges. In 2015 27th Euromicro Conference on
Real-Time Systems, pages 149–159, 2015.

[112] M. Nasri, G. Fohler, and M. Kargahi. A Framework to Construct Customized Harmonic
Periods for Real-Time Systems. In 2014 26th Euromicro Conference on Real-Time
Systems, pages 211–220, 2014.

[113] L. Nava, G. Ghirlanda, G. Ghisellini, and A. Celotti. Spectral properties of 438 GRBs
detected by Fermi GBM. Astronomy & Astrophysics, 530:A21, Apr. 2011.

[114] A. Neronov. Introduction to multi-messenger astronomy. In Journal of Physics: Con-
ference Series, volume 1263. IOP Publishing, 2019.

[115] S. Odagiri and H. Goto. On the greatest number of paths and maximal paths for a
class of directed acyclic graphs. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 97(6):1370–1374, 2014.

[116] U. of Minnesota. U of M leading $1 million grant to build superfast ‘TURBO’ tele-
scopes, March 2024.

[117] N. A. of Sciences Engineering and Medicine. Pathways to Discovery in Astronomy and
Astrophysics for the 2020s. The National Academies Press, Washington, DC, 2023.

[118] J. Orr and S. Baruah. Multiprocessor scheduling of elastic tasks. In Proc. of 27th
International Conference on Real-Time Networks and Systems, pages 133–142. ACM,
2019.

[119] J. Orr, C. Gill, K. Agrawal, S. Baruah, et al. Elasticity of workloads and periods
of parallel real-time tasks. In Proc. of 26th International Conference on Real-Time
Networks and Systems, pages 61–71. ACM, 2018.

[120] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah. Elastic Scheduling for Parallel
Real-Time Systems. Leibniz Transactions on Embedded Systems, 6(1):05:1–05:14, May
2019.

[121] J. Orr, J. C. Uribe, C. Gill, S. Baruah, et al. Elastic scheduling of parallel real-time
tasks with discrete utilizations. In Proc. of 28th International Conference on Real-Time
Networks and Systems, pages 117–127. ACM, 2020.

266

[122] Overview of the Fermi GBM. https://fermi.gsfc.nasa.gov/ssc/data/analysis/
documentation/Cicerone/Cicerone_Introduction/GBM_overview.html, Jan.
2020. Curated by J.D. Meyers. Accessed: 26 Oct, 2022.

[123] I. Pavić and H. Džapo. Optimal Harmonic Period Assignment With Constrained
Number of Distinct Period Values. IEEE Access, 8:175697–175712, 2020.

[124] P. Pedreiras and L. Almeida. The flexible time-triggered (FTT) paradigm: an approach
to QoS management in distributed real-time systems. In Proceedings International
Parallel and Distributed Processing Symposium, pages 9 pp.–, 2003.

[125] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y.
Ng, et al. ROS: an open-source Robot Operating System. In ICRA workshop on open
source software, volume 3, page 5. Kobe, Japan, 2009.

[126] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model
for QoS management. In Proceedings Real-Time Systems Symposium, pages 298–307,
1997.

[127] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Practical solutions for QoS-based
resource allocation problems. In Proceedings 19th IEEE Real-Time Systems Symposium
(Cat. No.98CB36279), pages 296–306, 1998.

[128] J. Real and A. Crespo. Mode Change Protocols for Real-Time Systems: A Survey and
a New Proposal. Real-Time Systems, 26(2):161–197, 3 2004.

[129] J. Regehr and U. Duongsaa. Preventing interrupt overload. ACM SIGPLAN Notices,
40(7):50–58, 2005.

[130] I. Ripoll and R. Ballester-Ripoll. Period Selection for Minimal Hyperperiod in Periodic
Task Systems. IEEE Transactions on Computers, 62(9):1813–1822, 2013.

[131] P. W. A. Roming, T. E. Kennedy, K. O. Mason, et al. The Swift Ultra-Violet/Optical
Telescope. Space Science Reviews, 120(3):95–142, Oct. 2005.

[132] S. M. Salman, S. Mubeen, F. Marković, A. V. Papadopoulos, and T. Nolte. Schedul-
ing Elastic Applications in Compositional Real-Time Systems. In 2021 26th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA
), pages 1–8, 2021.

[133] S. M. Salman, A. V. Papadopoulos, S. Mubeen, and T. Nolte. Multi-processor schedul-
ing of elastic applications in compositional real-time systems. Journal of Systems Ar-
chitecture, 122:102358, 2022.

[134] The seL4 Microkernel. https://docs.sel4.systems/projects/sel4/. Accessed: 23
Jan, 2022.

267

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/GBM_overview.html
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/GBM_overview.html
https://docs.sel4.systems/projects/sel4/

[135] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: an approach to
real-time synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990.

[136] C.-S. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and L. Sha. Scheduling real-
time dwells using tasks with synthetic periods. In RTSS 2003. 24th IEEE Real-Time
Systems Symposium, 2003, pages 210–219, 2003.

[137] I. Shin and I. Lee. Compositional real-time scheduling framework. In 25th IEEE
International Real-Time Systems Symposium, pages 57–67, 2004.

[138] I. Shin and I. Lee. Compositional real-time scheduling framework with periodic model.
ACM Trans. Embed. Comput. Syst., 7(3), may 2008.

[139] J. Solem. The application of microrobotics in warfare. Technical report, Los Alamos
National Lab, United States, 1996. Research Org.: Los Alamos National Lab. (LANL),
Los Alamos, NM (United States); Sponsor Org.: USDOE, Washington, DC (United
States); Report Number: LA-UR-96-3067; Contract Number: W-7405-ENG-36; Avail-
ability: OSTI as DE96014737.

[140] A. Soyyigit, S. Yao, and H. Yun. Anytime-Lidar: Deadline-aware 3D Object Detection.
In 2022 IEEE 28th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 31–40, Los Alamitos, CA, USA, aug 2022.
IEEE Computer Society.

[141] M. Stigge, P. Ekberg, and W. Yi. The fork-join real-time task model. SIGBED Rev.,
10(2):20, jul 2013.

[142] H. Su and D. Zhu. An Elastic Mixed-Criticality Task Model and Its Scheduling Al-
gorithm. In 2013 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 147–152, 2013.

[143] M. Sudvarg, S. Baruah, and C. Gill. Elastic Scheduling for Fixed-Priority Constrained-
Deadline Tasks. In 2023 IEEE 26th International Symposium on Real-Time Distributed
Computing (ISORC), pages 11–20, 2023.

[144] M. Sudvarg, J. Buhler, J. H. Buckley, W. Chen, et al. A Fast GRB Source Localization
Pipeline for the Advanced Particle-astrophysics Telescope. In Proc. of 37th Interna-
tional Cosmic Ray Conference — PoS(ICRC2021), volume 395, pages 588:1–588:9, 7
2021.

[145] M. Sudvarg, J. Buhler, R. Chamberlain, C. Gill, and J. Buckley. Work in Progress:
Real-Time GRB Localization for the Advanced Particle-astrophysics Telescope. In
Proc. of 15th Workshop on Operating Systems Platforms for Embedded Real-Time Ap-
plications (OSPERT), pages 57–61, 7 2022.

268

[146] M. Sudvarg, J. Buhler, R. D. Chamberlain, C. Gill, J. Buckley, and W. Chen. Parame-
terized workload adaptation for fork-join tasks with dynamic workloads and deadlines.
In Proc. of IEEE 29th International Conference on Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), pages 232–242. IEEE, Aug. 2023.

[147] M. Sudvarg et al. Front-End Computational Modeling and Design for the Antarctic
Demonstrator for the Advanced Particle-astrophysics Telescope. In Proc. of 38th In-
ternational Cosmic Ray Conference, volume 444, pages 764:1–764:9. Sissa Medialab,
July 2023.

[148] M. Sudvarg and C. Gill. A Concurrency Framework for Priority-Aware Intercompo-
nent Requests in CAmkES on seL4. In 2022 IEEE 28th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2022.

[149] M. Sudvarg and C. Gill. Analysis of federated scheduling for integer-valued workloads.
In Proceedings of the 30th International Conference on Real-Time Networks and Sys-
tems, RTNS 2022, page 12–23, New York, NY, USA, 2022. Association for Computing
Machinery.

[150] M. Sudvarg, C. Gill, and S. Baruah. Linear-time admission control for elastic schedul-
ing. Real-Time Systems, 57(4):485–490, 10 2021.

[151] M. Sudvarg, A. Li, D. Wang, S. Baruah, J. Buhler, C. Gill, N. Zhang, and P. Ekberg.
Elastic Scheduling for Harmonic Task Systems. In 2024 Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2024.

[152] M. Sudvarg, Z. Sun, A. Li, C. Gill, and N. Zhang. Priority-based concurrency and
shared resource access mechanisms for nested intercomponent requests in CAmkES.
Real-Time Systems, Apr 2024.

[153] M. Sudvarg, J. Wheelock, J. D. Buhler, J. H. Buckley, and W. Chen. Parallel GRB
Source Localization Pipelines for the Advanced Particle-Astrophysics Telescope. In
Proc. of IEEE/ACM International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC), Nov. 2021.

[154] M. Sudvarg, C. Zhao, Y. Htet, M. Konst, T. Lang, N. Song, R. D. Chamberlain,
J. Buhler, and J. H. Buckley. Hls taking flight: Toward using high-level synthesis
techniques in a space-borne instrument. In Proc. of 21st International Conference on
Computing Frontiers. ACM, 2024.

[155] Y.-C. Tian and L. Gui. QoC elastic scheduling for real-time control systems. Real-Time
Systems, 47(6):534–561, Dec 2011.

[156] T. Tidwell, R. Glaubius, C. D. Gill, and W. D. Smart. Optimizing Expected Time
Utility in Cyber-Physical Systems Schedulers. In 2010 31st IEEE Real-Time Systems
Symposium, pages 193–201, 2010.

269

[157] P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai Lapok,
48:436–452, 1941.

[158] N. Ueter, G. Von Der Brüggen, J.-J. Chen, J. Li, and K. Agrawal. Reservation-Based
Federated Scheduling for Parallel Real-Time Tasks. In 2018 IEEE Real-Time Systems
Symposium (RTSS), pages 482–494. IEEE, 2018.

[159] J. Ullman. NP-complete scheduling problems. Journal of Computer and System Sci-
ences, 10(3):384–393, 1975.

[160] S. Venugopalan and O. Sinnen. Ilp formulations for optimal task scheduling with com-
munication delays on parallel systems. IEEE Transactions on Parallel and Distributed
Systems, 26(1):142–151, 2015.

[161] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of
Execution Time Assurance. In 28th IEEE International Real-Time Systems Symposium
(RTSS 2007), pages 239–243, 2007.

[162] A. von Kienlin, C. A. Meegan, W. S. Paciesas, et al. The second Fermi GBM gamma-
ray burst catalog: The first four years. The Astrophysical Journal Supplement Series,
211(1):13, Feb. 2014.

[163] A. von Kienlin, C. A. Meegan, W. S. Paciesas, et al. The fourth Fermi-GBM gamma-
ray burst catalog: A decade of data. The Astrophysical Journal, 893(1):46, Apr. 2020.

[164] C. Wang, C. Gill, and C. Lu. FRAME: Fault Tolerant and Real-Time Messaging
for Edge Computing. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pages 976–985, 2019.

[165] C. Wang, C. Gill, and C. Lu. Adaptive Data Replication in Real-Time Reliable Edge
Computing for Internet of Things. In 2020 IEEE/ACM Fifth International Conference
on Internet-of-Things Design and Implementation (IoTDI), pages 128–134, 2020.

[166] D. Wang, J. Zhang, J. Buhler, and J. Wang. Real-time analysis of aerosol size distri-
butions with the fast integrated mobility spectrometer (FIMS). In 41st Conference of
American Association for Aerosol Research (AAAR), Oct. 2023.

[167] J. Wang, M. Pikridas, S. R. Spielman, and T. Pinterich. A fast integrated mobility
spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part
I: Design and model evaluation. Journal of Aerosol Science, 108:44–55, 2017.

[168] Q. Wang and G. Parmer. FJOS: Practical, predictable, and efficient system support
for fork/join parallelism. In Proc. of IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 25–36, 2014.

270

[169] Y. Wang, T. Pinterich, and J. Wang. Rapid measurement of sub-micrometer aerosol
size distribution using a fast integrated mobility spectrometer. Journal of Aerosol
Science, 121:12–20, 2018.

[170] S. Wasly and R. Pellizzoni. Bundled Scheduling of Parallel Real-Time Tasks. In
2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 130–142, 2019.

[171] J. Wheelock, W. Kanu, M. Sudvarg, et al. Supporting Multi-messenger Astrophysics
with Fast Gamma-ray Burst Localization. In Proc. of IEEE/ACM HPC for Urgent
Decision Making Workshop (UrgentHPC), 11 2021.

271

Appendix A

Pathological Task Set for Heuristic

Partitioned EDF Compression

In Section 3.4 of this dissertation, we consider approaches to find the minimum amount of

compression λ (see Equation 3.1) to apply to a task system Γ to achieve partitioned EDF

schedulability. Iterative and binary search approaches are presented that find a value for λ

within some tunable distance ϵ of the optimal value λ∗ if an optimal partitioning is used.

However, if heuristic partitioning schemes are employed, it is possible that the values of λ

found by each search technique differ by more than ϵ. Table A.1 provides the parameters

for a set of 32 tasks for which this occurs when compressed to be scheduled on 8 cores.

[272]

Task τi Index Umin
i Umax

i Ei

1 0.06985516371992277 0.1408770839901014 0.041285043560771464
2 0.18570636151919112 0.11070306726529903 0.03130254947936972
3 0.2525641196240303 0.01894732005762579 0.04707499614885927
4 0.1236106771543786 0.1760188035202266 0.19000422938137626
5 0.010518460459193196 0.3139399721904668 0.18719441977559542
6 0.41661454986809876 0.028056400667300172 0.7118021323197531
7 0.1867182811075279 0.02998940800806894 0.044995850922467204
8 0.10864739090063034 0.5031388395951516 0.22373309762411334
9 0.8692788741181185 0.5962645274261063 0.23319608415308588
10 0.2508822172348113 0.36455920461238295 0.20137734477560723
11 0.30400878907117523 0.22235523162679527 0.12305193425185863
12 0.5565126622579573 0.07284690757025704 0.3590808244804951
13 0.2540966927652533 0.4581309185354437 0.3740055387481975
14 0.4643518902030421 0.5692809752286381 0.6229276557843765
15 0.43523325679790087 0.22780548579221138 0.6708578861546909
16 0.3176264661081393 0.22327633447276524 0.9397691384052386
17 0.564158564887814 0.9393469077978592 0.39057363646359
18 0.045310166819438336 0.1644928032402111 0.3115399973977264
19 0.6921248380837226 0.5933718583868578 0.9608689023281628
20 0.8739504009401796 0.4190958795164858 0.3327270729680689
21 0.3786011925228112 0.8963885586264199 0.4087385109668603
22 0.5598561414973221 1.9313164879412992 4.195255260527544
23 4.934119546182837 2.019605371602338 2.466242737779707
24 2.907900281114892 1.554939308858022 3.8884137447724587
25 1.2399943581507458 4.229388837610564 2.0224813853201598
26 3.12756026209997 1.225738825784005 4.898388914956815
27 4.4907850395122075 4.738628641773596 1.8223601409856705
28 1.5199186047637916 4.393753845411336 2.101517563375857
29 4.642178098011004 2.44727587839706 4.557431038205934
30 1.9184983732709031 4.549337521973085 4.438795409642444
31 3.590610938087055 2.8385658033790597 1.7204632772820347
32 1.3648449128066598 3.9435528345317756 1.3618427581680894

Table A.1: Pathological task set parameters

[273]

	Improved Models of Elastic Scheduling
	Recommended Citation

	List of Figures
	List of Algorithms
	List of Tables
	Acknowledgments
	Abstract
	Chapter Introduction
	Overview
	Background and Context
	Real-Time Systems Scheduling
	Elastic Scheduling

	Contributions
	Extensions to New Scheduling Models
	Elasticity to Optimize System Outcomes
	Improved Execution Time Complexity

	Organization

	Chapter An Efficient Algorithm for Uniprocessor Implicit-Deadline Tasks
	Introduction
	Background and System Model
	Uniprocessor Scheduling of Implicit-Deadline Tasks
	Elastic Scheduling
	Overview of the Prior Algorithm

	An Improved Algorithm
	Evaluation
	Implementation
	Generating Task Sets
	Execution Time of Compression for Schedulability
	Execution Time of Task Admission

	Conclusions

	Chapter Efficient Algorithms for Multiprocessors
	Introduction
	The Multiprocessor Elastic Scheduling System Model
	Fluid Scheduling
	Partitioned EDF

	Fluid Scheduling
	Extension of the Efficient Algorithm
	Applicability of Uniprocessor Results

	Partitioned EDF
	Heuristic Selection and Order
	Binary Search
	Application of Algorithm 2

	Evaluation
	Implementation
	Generating Task Sets
	Determining a Heuristic Order
	Comparison of Improvements

	Conclusion

	Chapter Constrained-Deadline Tasks
	Introduction
	Background and System Model
	Elastic Scheduling for Constrained-Deadline Tasks
	Improved Elastic Scheduling for Constrained-Deadline EDF

	Extension to Fixed-Priority Scheduling
	Running Time

	An Efficient Iterative Approach
	Response-Time Analysis
	The Algorithm
	Running Time

	A Binary Search Implementation
	Running Time

	An MIQP Representation
	Formulating the MIQP
	The Resulting Algorithm
	Problem Size and Running Time

	Simplifying the Problem: An MIQP Per Task
	Formulating the MIQP
	The Resulting Algorithm
	Problem Size

	Evaluation
	Generating Task Sets
	Implementation
	Offline Execution Efficiency
	Online Execution Efficiency
	Effectiveness of the Approximate Algorithms

	Conclusion

	Chapter Harmonic Task Systems
	Introduction
	Complexity Results
	A Restriction for Real Systems
	Real-World Applications

	Background and System Model
	Elastic Scheduling
	Harmonic Periods
	Other Adaptive Frameworks

	Problem Statements
	The Harmonic Period Problem
	The Harmonic Elastic Problem
	The Ordered Harmonic Elastic Problem

	Complexity Results
	Complexity of the Harmonic Period Problem
	An Algorithm for the Harmonic Period Problem
	Complexity of the Harmonic Elastic Problem

	The Ordered Harmonic Elastic Problem
	Preliminaries
	Enumeration-Based Solution Approach
	Bounding Enumeration
	Polynomial Online Adjustment

	Implementation Considerations
	Characterizing Elasticity
	Online Adjustment

	Evaluation
	FIMS
	ORB-SLAM3
	Evaluation with Larger Synthetic Task Sets

	Conclusions
	Acknowledgements

	Chapter Subtask-Level Workload Compression for Parallel DAG Tasks
	Introduction
	Limitations of the Prior Work
	Contributions of This Chapter
	Organization

	Background
	Uniprocessor, Implicit-Deadline Elastic Scheduling
	Elastic Frameworks for Federated Scheduling

	Motivation and Limitations of Prior Work
	Motivating a New Model of Subtask-Level Elasticity
	The Subtask-Level Elastic Workload Model
	Joint Compression of Low-Utilization Tasks

	An MIQP for Subtask-Level Elastic Scheduling
	Constructing the MIQP
	Task Span: A Constraint for Each Path
	Task Span: A Polynomial Number of Constraints

	Joint Compression with Dynamic Programming
	Motivation
	Method
	Joint Scheduling of Low-Utilization Tasks

	Evaluation
	Analysis of Span Constraints
	MIQP Solver Performance
	DP-Based Solution Performance
	Comparison to Workload Compression in orr-federated-elastic-workloads-2018

	Conclusion

	Chapter Parameterized Workload Adaptation for Fork-Join Tasks with Dynamic Workloads and Deadlines
	Introduction
	Contributions of This Chapter
	Organization

	Background and Related Work
	System Model and Problem Statement
	Solution Overview
	Offline Steps
	Online Steps

	Target Application: GRB Localization
	Parameters and Loss Function
	Stage 1: Event Reconstruction
	Stage 2: Initial Source Approximation
	Stage 3: Iterative Source Refinement

	Response Times
	Stage 1: Reconstruction
	Stage 2: Approximation
	Stage 3: Refinement

	Implementation
	Offline Characterization of a Pareto-Optimal Surface
	Online Adaptation
	Reclaiming Slack

	Evaluation
	Overheads
	Evaluation on Synthetic GRBs
	Evaluation on Short GRBs Observed by Fermi GBM

	Conclusions

	Chapter Related Work, Conclusions, and Future Directions
	Scheduling Models
	Implicit-Deadline Tasks on a Uniprocessor
	Sequential Tasks on Multiple Processors
	Elastic Scheduling as a Quadratic Optimization Problem
	Harmonic Periods
	Federated Scheduling of Parallel Tasks
	Mixed Criticality Systems
	Compositional Scheduling
	Other Scheduling Models to Consider

	Applications of Elastic Scheduling
	In the Prior Work
	Applications Considered in This Dissertation
	Future Directions for Control Applications
	Future Directions for Localization of Astrophysical Transients

	Open Questions and Broader Vision

	References
	Appendix Pathological Task Set for Heuristic Partitioned EDF Compression

