
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-68

2003-08-11

Secure Remote Control and Configuration of FPX Platform in Secure Remote Control and Configuration of FPX Platform in

Gigabit Ethernet Environment Gigabit Ethernet Environment

Haoyu Song

Because of its flexibility and high performance, reconfigurable logic functions implemented on

the Field-programmable Port Extender (FPX) are well suited for implementing network

processing such as packet classification, filtering and intrusion detection functions. This project

focuses on two key aspects of the FPX system. One is providing a Gigabit Ethernet interface by

designing logic for a FPGA which is located on a line card. Address Resolution Protocol (ARP)

packets are handled in hardware and Ethernet frames are processed and transformed into cells

suitable for standard FPX application. The other effort is to provide a secure channel to enable...

Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Song, Haoyu, "Secure Remote Control and Configuration of FPX Platform in Gigabit Ethernet Environment"
Report Number: WUCSE-2003-68 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1114

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1114?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1114

Secure Remote Control and Configuration of FPX Platform in Gigabit Ethernet Secure Remote Control and Configuration of FPX Platform in Gigabit Ethernet
Environment Environment

Haoyu Song

Complete Abstract: Complete Abstract:

Because of its flexibility and high performance, reconfigurable logic functions implemented on the Field-
programmable Port Extender (FPX) are well suited for implementing network processing such as packet
classification, filtering and intrusion detection functions. This project focuses on two key aspects of the
FPX system. One is providing a Gigabit Ethernet interface by designing logic for a FPGA which is located
on a line card. Address Resolution Protocol (ARP) packets are handled in hardware and Ethernet frames
are processed and transformed into cells suitable for standard FPX application. The other effort is to
provide a secure channel to enable remote control and configuration of the FPX system through public
internet. A suite of security hardware cores were implemented that include the Advanced Encryption
Standard (AES), Triple Data Encryption Standard (3DES), Hashed Message Authentication Code (HMAC),
Message Digest Version 5 (MD5) and Secure Hash Algorithm (SHA-1). An architecture and an associated
protocol have been developed which provide a secure communication channel between a control console
and a hardware-based reconfigurable network node. This solution is unique in that it does not require a
software process to run on the network stack, so that it has both higher performance and prevents the
node from being hacked using traditional vulnerabilities found in common operating systems. The
mechanism can be applied to the design and implementation of re-motely managed FPX systems. A
hardware module called the Secure Control Packet Processor (SCPP) has been designed for a FPX based
firewall. It utilizes AES or 3DES in Error Propagation Block Chaining (EPBC) mode to ensure data
confidentiality and data integrity. There is also an authenticated engine that uses HMAC. to generate the
acknowledgments. The system can protect the FPX system against attacks that may be sent over the
control and configuration channel. Based on this infrastructure, an enhanced protocol is addressed that
provides higher efficiency and can defend against replay attack. To support that, a control cell encryption
module was designed and tested in the FPX system.

https://openscholarship.wustl.edu/cse_research/1114?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1114?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SECURE REMOTE CONTROL AND CONFIGURATION OF THE FPX

PLATFORM IN GIGABIT ETHERNET ENVIRONMENT

by

Haoyu Song

Prepared under the direction of Professor John W. Lockwood

A project report presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

August, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

SECURE REMOTE CONTROL AND CONFIGURATION OF THE FPX

PLATFORM IN GIGABIT ETHERNET ENVIRONMENT

by Haoyu Song

ADVISOR: Professor John W. Lockwood

August, 2003

Saint Louis, Missouri

Because of its flexibility and high performance, reconfigurable logic functions

implemented on the Field-programable Port Extender (FPX) are well suited for im-

plementing network processing such as packet classification, filtering and intrusion

detection functions. This project focuses on two key aspects of the FPX system.

One is providing a Gigabit Ethernet interface by designing logic for a FPGA which

is located on a line card. Address Resolution Protocol (ARP) packets are handled in

hardware and Ethernet frames are processed and transformed into cells suitable for

standard FPX application.

The other effort is to provide a secure channel to enable remote control and

configuration of the FPX system through public internet. A suite of security hard-

ware cores were implemented that include the Advanced Encryption Standard (AES),

Triple Data Encryption Standard (3DES), Hashed Message Authentication Code (HMAC),

Message Digest Version 5 (MD5) and Secure Hash Algorithm (SHA-1). An archi-

tecture and an associated protocol have been developed which provide a secure com-

munication channel between a control console and a hardware-based reconfigurable

network node. This solution is unique in that it does not require a software process

to run on the network stack, so that it has both higher performance and prevents the

node from being hacked using traditional vulnerabilities found in common operating

systems. The mechanism can be applied to the design and implementation of re-

motely managed FPX systems. A hardware module called the Secure Control Packet

Processor (SCPP) has been designed for a FPX based firewall. It utilizes AES or

3DES in Error Propagation Block Chaining (EPBC) mode to ensure data confiden-

tiality and data integrity. There is also an authenticated engine that uses HMAC

to generate the acknowledgments. The system can protect the FPX system against

attacks that may be sent over the control and configuration channel. Based on this

infrastructure, an enhanced protocol is addressed that provides higher efficiency and

can defend against replay attack. To support that, a control cell encryption module

was designed and tested in the FPX system.

Contents

List of Tables . vi

List of Figures . vii

Acknowledgments . ix

1 Motivation . 1

1.1 Background . 2

1.1.1 FPX Platform . 2

1.1.2 Gigabit Ethernet Processing 4

1.1.3 Network Security and Cryptography 6

1.2 Contributions of This Work . 10

1.3 Related Work . 10

1.4 Outline . 12

2 Gigabit Ethernet Line Card FPGA 13

2.1 Protocol Stack . 13

2.2 Architecture . 14

2.2.1 Cell and Frame Wrapper . 14

2.2.2 Control Cell Processor and Line Card Self-Configuration . . . 17

2.2.3 ARP Lookup Table and Processing 17

iii

2.2.4 Ingress MAC Processing . 18

2.2.5 Egress MAC Processing . 20

2.2.6 VLAN Support and Route Direction 24

2.2.7 Interface . 24

2.3 Test and Performance Evaluation . 25

3 Secure Control Packet Processor . 29

3.1 Hardware implementation of Security Standard Cores 29

3.1.1 AES . 30

3.1.2 Triple DES . 33

3.1.3 MD5 and SHA-1 . 33

3.1.4 HMAC . 34

3.1.5 EPBC mode . 35

3.2 Secure Configuration and Acknowledgement 37

3.2.1 Configuration Console . 37

3.2.2 Encrypted Control Packet Format 37

3.2.3 Authentication Packet Format 38

3.3 Infrastructure . 38

3.4 Results and Analysis . 42

3.4.1 Software Implementation . 43

3.4.2 Testing . 44

4 Secure Remote Control Protocol . 46

4.1 Architecture . 46

4.2 Protocol . 47

4.3 Application in FPX system . 52

iv

5 Conclusion . 55

5.1 Remarks . 55

5.2 Future Work . 56

References . 58

v

List of Tables

2.1 Device Utilization and Timing Summary 25

3.1 Synthesis Results: Encryption Cores 42

3.2 Synthesis Results: HMAC Modes . 42

3.3 Placed and Routed Firewall Design 43

vi

List of Figures

1.1 FPX in a box . 3

1.2 Ethernet Frame Format . 5

1.3 Address Resolution Protocol Frame Format 7

2.1 FPX in a box Protocol Stack . 14

2.2 AAL5 to ATM mapping . 15

2.3 GigE FPGA Block Diagram . 15

2.4 Ingress MAC Processing Block Diagram 19

2.5 Ingress MAC Processing Main FSM 20

2.6 Egress MAC Processing Block Diagram 21

2.7 Egress MAC Processing Main FSM 23

2.8 FPX System Configuration for Debugging 26

2.9 FPX System Configuration for Test 26

2.10 A Case of GigE Throughput Test . 27

3.1 AES Algorithm Block Diagram . 30

3.2 AES Hardware Implementation Block Diagram 31

3.3 DES Implementation Block Diagram 32

3.4 3DES Hardware Implementation Block Diagram 33

3.5 MD5 and SHA-1 Algorithm Architecture 34

vii

3.6 HMAC Hardware Implementation Block Diagram 35

3.7 EPBC Mode Block Diagram . 36

3.8 Control Packet Formats . 38

3.9 Control Packet Processor Architecture 39

3.10 Hardware/Software Performance Comparison 44

3.11 FPX Test Platform . 45

4.1 Secure Configuration Architecture . 47

4.2 Secure Control Packet Format . 50

4.3 NID-PT FPX overview . 53

4.4 RAD AES Module Block Diagram . 53

viii

Acknowledgments

First and foremost, I would like to thanks my project advisor Dr. John W. Lockwood.

This research would not have been possible without him. It is he who kept me

motivated and encouraged me to work on this project.

I also thank Dr. William D. Richard, John DeHart and Fred Kuhns who have

been involved with the Gigabit Ethernet Line Card project. Their initial work and

diligent help during testing make it possible to complete this project smoothly and

quickly.

I’d like to thank Todd Sproull for his help in the lab. Thanks are due to James

Moscola for his work on the frame wrapper which is a part of the Gigabit Ether-

net project and his software implementation of the secure control packet processor.

Thanks are due to Jing Lu for her work in hardware design of the security cores.

Thanks are due to Dave Lim for his cooperation in the testing and development of

the Gigabit Ethernet Card.

This research is supported in part by grants from the National Science Foun-

dation and Global Velocity.

Haoyu Song

Washington University in Saint Louis

August 2003

ix

1

Chapter 1

Motivation

As the Internet grows, more and more networking applications will use reconfig-

urable hardware devices to provide both high performance and flexibility. The Field-

programable Port Extender (FPX) is an open, reconfigurable, high performance and

extensible IP packet processing platform [24][23]. It processes packets in hardware to

perform content filtering, intrusion detection and other customizable functions. All

logic on the FPX is implemented in FPGAs. FPGAs accelerate processing while

preserving flexibility. Several packet processing engines can be deployed in parallel

or in pipelines, and it is possible to achieve multiple gigabit per second throughput.

The FPX platform is highly reconfigurable. New bitfiles can be downloaded on

demand within seconds and start being tested at once. Moreover, the hardware can be

reprogrammed via the Internet without physical access to the device. Consequently,

remote control and configuration of the FPX are feasible and convenient for a network

administrator.

The FPX platform can be deployed throughout a backbone network or at an

access point to an enterprise network. Gigabit rate network links are common to-

day. To meet this bandwidth requirement, the FPX has a broadband line interface.

2

To allow the FPX to be easily connected to standard networks, a Gigabit Ethernet

interface was implemented. Ethernet is an evolving technology that will play an im-

portant role not only in Local Area Networks (LANs) but also in Wide Area Networks

(WANs).

Secure control and configuration of the FPX system are needed to enable de-

ployment of FPX systems throughout the public Internet. Run time reconfiguration

allows dynamic hardware plugins to be sent over networks and to update the func-

tions on the FPX. It is envisioned that the FPX system will be distributed over large

geographic areas and operate over public networks, making on-site configuration and

management infeasible. The security of the remote control and configuration is a se-

rious concern. Robust security mechanisms are needed to protect the reconfigurable

network nodes from unauthorized access and to ensure the integrity of reconfiguration

when being reprogrammed over the network.

1.1 Background

1.1.1 FPX Platform

The logic of the FPX is implemented within two FPGAs : the Reconfigurable Ap-

plication Device (RAD) which is used to prototype new networking functions and

protocols, and the Network Interface Device (NID) which is used to interface be-

tween the line card and RAD.

The FPX platform can act as a network monitor to screen and analyze the

traffic passing through the Internet. It can also actively process the traffic using

predefined policies. Global Velocity has found one such application for copyright-

protection that detects and blocks peer-to-peer transfer of copyright-protected content

3

Internet Side Intranet Side

NCHARGE

GigE#2

FPX

GigE#1

NID PT

Figure 1.1: FPX in a box

on a network. The FPX can also be used to scan and block viruses and Internet

worms.

Two FPX cards and two line cards are used in a FPX standalone platform as

is shown in Figure 1.1. The side on which the control console is attached is defined as

the Intranet side. Notice that it is unnecessary for the control console to be directly

connected to the box. Since the box is Internet addressable, control packets can

be issued remotely. On the Intranet side, the NID on the FPX card is configured

to pass through traffic (NID-PT). It is responsible for extracting and encapsulating

packets that pass through the network. The other side of the FPX platform is called

the Internet side. On this side, there sits a regular FPX card which monitors or

processes the packets. For historical reasons, the basic unit processed in FPX is an

ATM cell. Internet packets are encapsulated into AAL5 frames. A suite of protocol

wrappers were designed to process data at different protocol layers.

The FPX platform works at gigabit-per-second link speed. The Gigabit Eth-

ernet line card interface allows the FPX to sit in an Ethernet LAN and work in both

4

passive and active modes. The line card has a Gigabit Ethernet Controller Applica-

tion Specific Integrated Circuit, the PM3386 S/UNI-2xGE [44]. The PM3386 is a

monolithic ASIC that implements full-duplex 1000 Mbps Ethernet MAC transport

function. The PM3386 provides connectivity to an on-chip SERialize/DESerialize

(SERDES) and Gigabit Media Independent Interface GMII functions. It also pro-

vides a data transport interface to the up stream device via an industry standard

POS-PHY Level 3 interface. The system’s backplane connector sends and receives

data formatted in ATM cells. In order to translate between ATM cells and Ethernet

MAC frames, an extra circuit is needed. A Xilinx FPGA XC2V1000 [45] is arranged

on the line card to implement those functionalities. The XC2V1000 belongs to the

Xilinx VIRTEX-II family. It has what is called the equivalent of 1M system gates and

also has 160 Kbits of block RAM. These resources are enough to implement packet

processing functions needed for the circuit.

The initial version of the FPX platform did not use any encrypted mechanism

to control and configure the hardware. There is an urgent requirement to add this

functionality in order to make the FPX reliable and secure in a public network.

1.1.2 Gigabit Ethernet Processing

Ethernet has been the dominant LAN technology since the early 1970s. Gigabit

Ethernet is built on top of the Ethernet protocol, but increases speed tenfold over Fast

Ethernet to 1 Gbps. This protocol, which was standardized in June 1998, promises

to be a dominant technology for high-speed local area network backbones and server

connectivity. Reference [39] gives a detailed technology review of Gigabit Ethernet.

Ethernet uses a 48-bit physical address to identify each node. Each frame has

a 14-byte MAC header which includes a 6-byte destination address, a 6-byte source

5

dst address (6) FCS (4)pad (0−46)

DSAP SSAP ctl

dst address (6) FCS (4)pad (0−46)src address (6) type (2) payload (46−1500)

(a)

dst address (6) FCS (4)pad (0−46)

Priority
3bits

CFI
1 bit VLAN ID (12 bits)

src address (6) payload (46−1500)type (2)TAG(2)TPI(2)
8100

(c)

src address (6) len (2) LLC(3) payload(38−1492)SNAP(5)

Org Code type

(b)

Normal Ethernet Frame

IEEE 802.1q VLAN Tagged Frame

IEEE 802.2/802.3 Encapsulation Frame

Figure 1.2: Ethernet Frame Format

address and 2 bytes payload type field (In Ethernet V2, this field is also defined as

payload length field if the value is greater than 1500). Figure 1.2(a) shows a typical

Ethernet frame as defined in RFC894. IEEE 802.2 also defines a LLC/SNAP field for

the Ethernet header, as shown in Figure 1.2(b). Figure 1.2(c) shows another type of an

Ethernet frame which is defined in IEEE 802.1q known as Virtual LAN (VLAN) field.

A VLAN can be viewed as a group of devices on different physical LAN segments

which can communicate with each other as if they were all on the same physical LAN

segment. Networks can have differential classes of service (COS) functions based on

the value of the VLAN ID and the service priority. VLAN technology enables flexible

network segmentation by assigning different VLAN IDs to the different subnetworks.

It improves network management by managing the logical LAN instead of the physical

LAN and increases the performance by isolating the broadcast domains and enforcing

the COS. It also enhances the network security by limiting the extent to which packets

are broadcast.

6

In our application, we use Ethernet to carry IP packets. One key protocol

is the Address Resolution Protocol (ARP)[35]. Whenever an IP packet is ready to

be forwarded in an Ethernet frame over the network, the directly connected host or

gateway router’s physical address must be resolved using the destination IP address.

To resolve a forwarding IP address to its MAC address, ARP sends out a broadcast

frame called an ARP Request on the shared media. Any host or router which has the

requested IP address or is responsible for that address will send back to the sender an

ARP Reply which contains the MAC address corresponding to the desired forwarding

IP address.

An ARP cache is maintained in order to keep the number of broadcast ARP

Request frames to a minimum. Recently resolved IP addresses and their correspond-

ing MAC addresses are stored in a table. The ARP cache is checked first before

sending an ARP Request frame. Only when there is not a matched entry will an

ARP Request packet be sent. ARP cache entries can either be dynamic (based on

ARP Replies) or static (if configured manually). Static ARP cache entries are used to

prevent ARP Requests from being broadcast for commonly-used local IP addresses,

such as routers and servers. The problem with static ARP entries is that they have

to be manually updated when network interface equipment changes. Dynamic ARP

cache entries have a time-out value associated with them so that entries are removed

form the cache after a specified period of time. The ARP packet format is shown in

Figure 1.3.

1.1.3 Network Security and Cryptography

Although we enjoy the abundant information available on open networks, when we

use the Internet, we also face the threat of being infected with a virus, or having

7

Destination MAC Address

0 15 16 31

Source MAC Address

Hardware Address SpaceEthernet Type

Protocol Address Length

Operation Code

Ether Addr Len IP Addr Len

Ethernet Address of Sender

IP Address of Sender

Ethernet Address of Destination

IP Address of Destination

IP Address of Destination

FCS

Padding

Figure 1.3: Address Resolution Protocol Frame Format

our machine hacked. The growth of the Internet requires us to protect both our

infrastructure and information from malicious attacks.

In general, attacks can be classified into two major categories: Denial-of-

Service (DOS) and Unauthorized Access. For a DoS attack, the attacking host(s)

sends more requests to a target machine than it can handle. Usually the source of the

attack is hard to trace. Unauthorized Access includes eavesdropping, transmission of

fake data, replay of previously sent messages and data destruction. Cryptography

can provide protection against many types of attacks at a reasonable cost. Many

encryption and authentication algorithms have been developed and are widely used

in network security as well as in other fields.

There are two common types of encryption algorithms. The first type uses

private-keys (also called symmetric-keys) which only have one unique key for both

8

encryption and decryption; the other type uses public and private key-pairs (also

called asymmetric-keys). Basic attributes of encryption technologies are confusion

and diffusion [41]. Confusion intends to make the relationship between the statistics

of the ciphertext and the value of the encryption key as complex as possible. Diffusion

seeks to make the statistical relationship between the plaintext and ciphertext as

complex as possible. For an ideal algorithm, the security depends only on the secret

key.

The Data Encryption Standard (DES) [30] was developed by an IBM team

and adopted as a national standard in 1977. Despite the growing concerns about

its vulnerability, DES is still widely used to protect sensitive online applications.

3DES is a variation of this standard that can be billions of times more secure if used

properly. The procedure of 3DES encryption is exactly the same as regular DES,

except that DES is repeated three times. In 2000, National Institute of Standards

and Technology (NIST) selected the Rijndael algorithm as the proposed Advanced

Encryption Standard (AES) [31] for protecting data through encryption. In addition

to the increased security that comes with larger key sizes, AES can encrypt data

much faster than 3DES.

Most of the private-key algorithms are perfectly suited for hardware implemen-

tation due to their regular structure and bit-wise operations used to encrypt data.

Many cipher modes can be applied to provide extra security for some kinds of at-

tacks or to protect data integrity. Some classic modes are Electronic Codebook Mode

(ECB), Cipher Block Chain Mode (CBC), Output Feedback Mode (OFB), Cipher

Feedback Mode (CFB) and Counter Mode (CTR). All of these modes have their own

advantages and disadvantages for different applications. Some novel modes provide

interesting and more secure features [1][32].

9

Public-key or asymmetric-key encryption algorithms use two different keys for

encryption and decryption. A key pair is generated and a public key is used to encrypt

messages and the ciphertext can only be decrypted with a private key. For a good

encryption algorithm, it is very difficult to determine the private key given the public

key. This type of algorithms can also be used for digital signatures, authentication

and key distribution. One popular algorithm in this category is the Rivest-Shamir-

Adleman (RSA), named after the researchers who developed it [41]. Since asymmetric

algorithms are relatively slow, they are seldom used for encryption of large amounts

of data.

Though encryption itself can provide authentication to some extent, a keyed

hash function is preferred for that function. Algorithms such as Message Digest

Version 5 (MD5) or Secure Hash Algorithm (SHA-1) can generate the digest of a

message. Hashed Message Authentication Code (HMAC) embeds these hash functions

into what is called a “black box” to have the last digest code only depend on a secret

key [22]. Since it was published in RFC2104, HMAC has become the most popular

method of data authentication.

Firewall technologies and network intrusion detection devices are now widely

deployed in organizations and corporations. They audit and classify packets to de-

tect and prevent harmful attacks. In order to keep up with the explosive growth

of the network bandwidth, encryption and decryption tasks must be performed in

hardware. Reconfiguable hardware is especially well-suited for the implementation of

such network processing functions.

10

1.2 Contributions of This Work

The logic that controls a Gigabit Ethernet line card has been implemented on an

FPGA and verified to work with the FPX platform. Another version was designed

for the Multi-Service Router (MSR) project, where the line card is mainly used in

the Washington University Gigabit Switch (WUGS).

A Secure Control Packet Processor (SCPP) for dynamic configuration of the

FPX has been designed and verified. The module implements several IPSec standards

including AES, 3DES and HMAC using either MD5 or SHA-1. A secure acknowl-

edgement protocol was designed so that the FPX platform can be securely configured

remotely via the Internet.

Based on this infrastructure, the security of the FPX platform was enhanced

by introducing a secure protocol with a secure communication channel between a

control console and an FPX platform. This solution is unique in that it runs in

hardware on the end system, so that it has both higher performance and safety as

compared to protocol stacks implemented in software atop an operating system . This

secure control scheme can also prevent replay attacks.

1.3 Related Work

An Internet Protocol (IP) stack implemented in reconfigurable hardware is used to

process packets [6]. It includes a set of layered wrappers which process ATM cells,

AAL5 frames, and IP and UDP packets. An ARP engine was implemented so that

the system can work in LAN environment. Other projects implemented ARP as

part of IP stack. The protocol stack described in [33] is limited to 10Mb/s Ethernet

11

operation. It implements the lower layers of a protocol stack and only supports IP

and ARP functions.

Symmetric-key encryption algorithms and message digest hash functions are

widely used for network security. Many of them are well-suited for hardware im-

plementation. There are many papers that discuss FPGA implementations of AES,

DES, HMAC and other security algorithms [16][9][14][17]. These kinds of hardware

designs are all tradeoff between the throughput and the circuit area. Usually, iter-

ation unrolling and pipeline technologies are used to improve the throughput. To

optimize the area, iteration rolling is used at the expense of throughput degradation.

For secure remote control, S. Gultchev et. al. presented a secured Reconfig-

urable Management Architecture (RMA) to enforce robust security mechanisms on

mobile Software Radio Terminals [37]. Due to the heavy computation cost, this

scheme is inefficient to implement in a pure hardware environment. The low data

throughput makes it unsuitable for high-speed data communication. R. Chakravorty

et. al. presented a Smart Box Management (SBM) - an end-to-end remote man-

agement framework for Internet enabled devices [7]. Though this work is focused

on a software framework, it provides a good framework for remote device manage-

ment. While many of the network management technologies today only monitor

nodes, the MIDAS project by S.N.Bhatti et. al. offers management capability for a

large distributed system [4]. Other work done by J. Forne, et. al. presents a solution

providing secure communications over an extended Ethernet LAN [27]. Most of the

works listed above focus on development of a software-based security framework and

involve a huge computational effort, which can cause unbearable overhead and bot-

tleneck performance for applications such as programmable network routers, sensors,

and firewalls.

12

1.4 Outline

The thesis is organized as follows. Chapter 2 presents the design, verification and

performance evaluation of the logic for a Gigabit Ethernet line card implemented

in an FPGA. ARP processing and packet transformation are discussed in detail.

Chapter 3 discusses the design of some cryptographic modules and their application

in the SCPP structure for secure remote control of a FPX -based firewall, including

a review of the implementation of the AES, 3DES, HMAC and a specific mode,

Error Propagation Block Chaining (EPBC). In chapter 4, a more secure configuration

protocol is proposed which enables the FPX platform to provide a secure control and

configuration interface for general application. Finally, Chapter 5 concludes with a

summary and a discussion of future work.

13

Chapter 2

Gigabit Ethernet Line Card FPGA

2.1 Protocol Stack

The protocol stack used in the FPX platform is shown in Figure 2.1. On the line side,

IP packets are transmitted over Gigabit Ethernet ; On the system side, IP packets

are formatted into AAL5 frames and split into ATM cells.

The ATM cell has a fixed and short length that makes it suitable for fast

switching and processing functions. One ATM cell has a 5-byte header and a 48-

byte payload. The routing information is indicated by Virtual Path Identifier (VPI)

and Virtual Circuit Identifier (VCI) fields in ATM header. Header Error Control

(HEC), the last byte of the header, is used to control the header’s correctness. AAL5

is designed for packet transmission and is widely used to transport Internet Protocol

data. In AAL5, a frame with an arbitrary length is put into a Protocol Data Unit

(PDU). In this design, we implemented classical IP over ATM. A PDU ’s length is

a multiple of 48 octets. One bit in the Payload Type Identifier (PTI) field of the

ATM header is used to indicate whether a cell is the last one of a PDU. The last

8 octets of the PDU are used as a trailer, which contain the information about the

14

AAL5

IP

Ethernet

ATM
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

FCS

TrailerPadding

Cell PayloadHeader

IP Payload

MAC Header MAC Payload

IP Header

AAL5 Payload

Figure 2.1: FPX in a box Protocol Stack

actual length of the payload data and a 32-bit CRC to ensure data integrity. Any gap

between the frame and the trailer is filled with padding. Since PDU s are multiples of

48 octets, the trailer always ends at a cell’s boundary and can therefore be located.

The segmentation of frames with AAL5 and ATM cell’s format are illustrated in

Figure 2.2.

2.2 Architecture

The two major tasks of the Gigabit Ethernet (GigE) FPGA are to translate proto-

cols and to perform ARP. The hardware logic must act as a bridge between ATM

and Ethernet networks, handle both ARP request and reply, and maintain an ARP

table. Further, IEEE802.1q VLANs are also supported to make it flexible in different

application environments. Figure 2.3 shows the overall structure of the FPGA circuit.

2.2.1 Cell and Frame Wrapper

The cell and frame wrapper module is part of “Layered Protocol Wrappers”[6][5], that

are a collection of VHDL components processing high-level Internet protocols directly

15

Payload

Payload

Payload

Padding

ATM Header

ATM Header

ATM Header

VPI

VPI VCI

VCI

VCI PTI CLP

HEC

GFC/VPI

31 0

7 0

PTI = 0Payload
AAL5

(IP Packet)

Option Length

CRC32Trailer

PTI = 1

Figure 2.2: AAL5 to ATM mapping

ARP Table

IP Packet
AAL5 Frame Parser

Frame

Wrapper

Control

Cell

Processor

ARP Request

Local

ARP Reply

Local

MAC Frame Parser

IP Packet

AAL5
Adaptor

PT MAC

PT MAC

S/UNI Line Side

NID Side

D
ir

ec
tio

n

80
2.

1q

Configuration Jumpers

Figure 2.3: GigE FPGA Block Diagram

16

in hardware. The hardware library has four components that are used together to

transmit and receive: fixed-length cells (ATM), variable-length AAL5 frames, IP

packets and User Datagram Protocol (UDP) frames. They are primarily designed for

the FPX, but could be also used in any hardware design. The ATM cell wrapper and

the AAL5 frame wrappers are used in the implementation of the Gigabit Ethernet

circuit design.

Incoming ATM cells from the FPX system side uses a signal Start Of Cell

(SOC) to delimit the cells. The HEC is calculated and compared for every cell to

check the cell’s validity. If the check fails, the cell is dropped. Only valid cells are

passed to the AAL5 Frame Wrapper. The Frame Wrapper extracts the AAL5 frames

from the incoming cell stream, strips off any padding data, calculates AAL5 Frame

Checksum (FCS) to verify the frame integrity and marks error frames. The Frame

Wrapper replaces the SOC signal with three signals, namely Start of Frame (SOF),

End Of Frame (EOF) and Data Enable (DataEN). The AAL5 frame data is sent to

the Egress MAC module for processing.

An incoming AAL5 frame from the Ingress MAC module is segmented to a

series of 48-byte data chunks in order to fit them into ATM cells. The remainder is

padded with some zeros to make the size fit into one cell obeying the frame length

information provided by Ingress MAC module. The Frame Wrapper calculates the

frame FCS and then appends it as the AAL5 frame trailer. The ATM cells are passed

to Cell Wrapper from Frame Wrapper. The Cell Wrapper calculates HEC, fills it in

Header for each cell and then forwards the cells to system side.

17

2.2.2 Control Cell Processor and Line Card Self-Configuration

A Control Cell Processor (CCP) block is used to receive control cells from the system

side and extract the control commands to configure both FPGA and GigE controller

ASIC. The configurations include the GigE line card’s MAC address, IP address and

mask, ARP table and initialization of the GigE ASIC. Through CCP a control host

can also read back all the statistics counters and any ARP table entry.

To enable the system to bootstrap itself, a set of initialization control cells are

stored in an on-chip Read Only Memory (ROM). When the system boots up, the

cells are automatically injected into the CCP. Thus, the whole line card is configured

and the system can immediately operate without any outside control.

2.2.3 ARP Lookup Table and Processing

An on-chip synchronous dual port Random Access Memory (RAM) was used to

implement the ARP lookup table. The Egress MAC module performs read operations

and Ingress MAC module performs write operations. The CCP can also access the

table for debugging purposes or manual configuration.

In order to not interrupt the system’s normal operation, the CCP has lower

priority to access the table. When the CCP issues a write or read operation, if it

happens that MAC modules are doing a similar operation, the operation from the

CCP is paused and will not be processed until the operation from MAC modules is

finished. Because two similar operation requests from the MAC modules have such

long intervals from the point of view of the system, it is safe to perform the operation

request from CCP after current operation from MAC modules. So at most 3 cycles

after issuing the read request, the CCP can get the table output. Likewise, at most

18

3 cycles after issuing the write request, the data must have already been written into

the table.

Ideally, an ARP lookup table should be able to handle any number of valid

IP addresses and MAC addresses pair. But, in order to do this, an ARP lookup

engine may need to scan a very long table to find the match. That is not practical for

hardware implementation. In the implementation of the Gigabit Ethernet circuit, in

order to limit the table to a size that could fit into the available space on the FPGA, a

10-bit index is used which restricts the table size to be 1024 entries. A 2-bit network

identifier and Least Significant Byte (LSB) of the 32-bit IP address are combined to

generate the lookup index. The device supports 3 different networks with network

masks of at least 24 bits long. The network identifier is coded as 00, 01 and 10. That

allows the host identifier to be at most 8 bits long and thus allows 256 hosts to be in

one subnetwork.

The width of the data bus in the RAM is 49 bits. The lower 48-bit word is a

MAC address and the 49th bit indicates validation of the the entry. “1” indicates a

valid entry and “0” indicates an empty entry. The use of the extra bit simplifies the

logic to check the entry validation and enables the software to control the ARP table

aging.

2.2.4 Ingress MAC Processing

Figure 2.4 shows the block diagram of the Ingress MAC module. The Ingress MAC

module receives and parses the MAC frame from the GigE ASIC through a POS-

PHY Level 3 interface. The destination MAC address is checked first. If it does not

match this card’s MAC address, the whole MAC frame will be passed through the

FPX without any change. The frame is stored in a FIFO temporarily. If the frame

19

Scheduler
FIFO

&

Adaptor
AAL5

PT MAC FIFO
Delay

Transform

Realign

FIFO_Write_Enb

ENB

Source_IP_Addr[31;0]

Source_MAC_Addr[47:0]

Update_ARP_Table_Req

Gen_ARP_Reply_Req

DATA_IN[31:0]

SOP_IN

EOP_IN

ERR_IN

MOD_IN[1:0]

VAL_IN

DATA[31:0]
SOP
EOP
ERR
MOD[1:0](RAM)

4K * 37 bits

(RAM)

4K * 37 bits

FIFO_Ctrl

FIFO_Ctrl

Local IP FIFO
DATA[31:0]

Ingress Main FSM

MOD[1:0]
ERR
EOP
SOP
DATA[31:0]

WEN

DATA[31:0]
SOP
EOP
ERR
MOD[1:0]

SOP
EOP
ERR
MOD[1:0]

REN

REN

Empty

Empty

DATA[31:0]

SOF

EOF

ENB

CA

Figure 2.4: Ingress MAC Processing Block Diagram

type is either an ARP request or an ARP reply, the source IP address and the MAC

address are fetched and the information is used to update the ARP lookup table. For

a matched ARP request, an ARP reply is triggered on the egress side. If the frame

has the matched destination MAC address and encapsulates an IP packet (usually

this is a control packet), the MAC header is stripped off and the pure IP packet is

stored in a FIFO temporarily. All other types of packets will be treated as unknown

types and simply discarded.

A scheduler dispatches the pass-through traffic and local traffic to the FPX

side in round-robin manner. The output IP packet or MAC frame is adapted into an

AAL5 frame in order to be fed to the Frame Wrapper module. All local IP packets

are assigned VCI 50 and all pass-through frames are assigned VCI 51. The Ingress

MAC module leaves the FCS field of the AAL5 frame blank if the packet or frame

is error free; on the contrary, if the packet or frame is marked as an errored one, a

nonzero value is filled in the AAL5 FCS field. The Frame Wrapper is responsible for

20

 IP

PAS?

Update

Target

Gen
ARP
Reply

Ethernet

!Ethernet

Yes

Update
ARP TB

ARP TB

OP?

Type
 IP?

No

Request

Reply

IP

!IP
Other

Other

ARPIP

SOP

EOP

HAS?

Forward

Idle

Figure 2.5: Ingress MAC Processing Main FSM

calculating the FCS based on the packet’s correctness information. The main Finite

State Machine (FSM) of the Ingress MAC module is shown in Figure 2.5.

2.2.5 Egress MAC Processing

As shown in Figure 2.6, the Egress MAC module receives an AAL5 frame from the

Frame Wrapper module. At first all data is buffered in a FIFO. This is because the

back pressure signal from the Egress MAC module can not stop the traffic from the

Frame Wrapper module immediately and that may cause data to be lost without

a buffer. The FIFO ’s full threshold serves as a back pressure signal to the Frame

Wrapper module. The threshold must be set to a proper value so that enough room

is left for incoming data before the Frame Wrapper module responds to this back

pressure signal.

21

VIN Table

(Registers
Ctrl Logic)

ARP Table

(RAM)

3*256*48
POS−PHY

Full

Egress Main FSM

Delay & Realign

FIFO

(RAM)

IP M
A

C
 Fram

e

Local IP Address

Source MAC

& Frame Type

Full

Full

(RAM)

ARP Request
Generator

Multiplex _Ctrl[2:0]

RD

EMPTY

SOP

M
A

C
_D

A
T

A
[31:0]

V
IN

_Index[1:0]

A
R

P_Index_Sel
NHIP[31:0]

ARP_RA[9;0]

ARP_Index[1:0]

VIN_Success

A
R

P_R
d

SOF

EOF

ENB

Multi_MAC[47:0]

Uni_MAC[47:0]

MAC_Type[1:0]

Broad_MAC[47:0]

In_Frame

FIFO_Ctrl

EOP

ERR

MODE[1:0]

SOP
EOP

FIFO_Ctrl

RD

IP[31:0]

ARP_Success

M
A

C
_A

ddr

IP_A
ddr

A
R

P_W
R

A
R

P_R
eq

Output Schedule

Frame_Av

Frame_Av

Frame_Av

E
O

P

TPA

Souce_Sel[1:0]

RD_1

RD_2

RD_3

SOP
EOP

DATA[31:0]

FIFO

(RAM)

In_Frame

DATA[31:0]

Generator

ERR

DATA[31:0]

SOP
EOP

DATA[31:0]

FIFO

(RAM)

In_Frame
FIFO_Ctrl

SOP
EOP

DATA[31:0]

ARP Reply

MODE[1:0]’10’
D

IP[31:0]

AAL5

FIFO

FULL

SOF

EOF

ENB

DATA[31:0]

FIFO
CTRL

Figure 2.6: Egress MAC Processing Block Diagram

22

Once the AAL5 frame FIFO is filled with a whole frame or reaches the prede-

fined low threshold, the Egress MAC module begins reading data out of the FIFO.

In the main FSM, the AAL5 frame is classified based on the VCI value. VCI 51

means that a whole MAC frame (i.e. pass-through traffic) is encapsulated in a AAL5

frame, so the MAC frame is extracted out and scheduled to be forwarded to the

line side. VCI 50 means that the packet is a local IP packet which is generated in

the FPX. Under this condition, the FSM must obtain the destination IP address

from the AAL5 frame. The IP address might be a broadcast address with format:

{Network-Number, -1}. In this case, no ARP lookup is needed. Instead, the Egress

MAC module maps the destination MAC address to the broadcasting MAC address

FF:FF:FF:FF:FF:FF and forwards the IP packet. If the IP address belongs to a

multicast type (i.e. class D address: 0xE0000000 + 28 bit group ID), there is no

need to do the ARP table lookup either. The IP address is mapped to the multicast

MAC address [19] and forward the packet. In case the IP address is a unicast one,

the FSM uses the IP address to generate the index to search the ARP table. If a

valid entry is retrieved, the retrieved MAC address is used as the destination MAC

address, thus a whole MAC frame could be assembled to encapsulate the IP packet;

if the queried entry is empty or invalid, the IP packet is simply discarded and an

ARP request frame is generated and scheduled to be sent to the line side network.

With any other VCI value, the AAL5 frame is discarded and an unknown

type of frame event is reported to the CCP module. The main FSM is shown in

Figure 2.7.

After this processing, any local IP packet with a valid MAC destination address

is encapsulated into a MAC frame and then is written into a FIFO. All pass-through

MAC frames are written into this FIFO too. Those triggered ARP request frames

are written into an ARP Request FIFO. The Egress MAC module also accepts the

23

Broadcast IP

Multicast IP

Unicast IP

Get myIP index
Lookup VIN Table

Mapping IP

to MAC

all ’1’

Get it!

"xx" + LSB of IP
Lookup APR Table

No Entry

Discard this packet.

Get IP Addr.

Check VCI

EOF

Discard this packet

others

VCI51

VCI50

No Entry

Gen ERR

Set MAC addr.

Gen EOP

Gen MOD

Forward Frame

T1

T2

Gen ARP request

Get it!

SOF

Idle

Figure 2.7: Egress MAC Processing Main FSM

24

requests from the Ingress MAC module to generate ARP reply frames and stores

them into an ARP Reply FIFO. In a normal working environment, the ARP request

and reply happen with low frequency, so the FIFO depth is set to 4 frames each.

At last, an output scheduler FSM works in round-robin manner to detect and

dispatch data from three FIFOs alternately. If there is a whole frame in the FIFO,

the frame is read out and transmitted through a POS-PHY level 3 interface to the

GigE Controller ASIC. At this point, all the MAC frames are not padded and the

frame CRC is not calculated yet, so actually they are not complete MAC frames.

The GigE Controller ASIC is responsible for handling them by correctly configuring

the internal registers.

2.2.6 VLAN Support and Route Direction

In order to make the FPX system compatible in different application environments,

IEEE 802.1q VLANs are supported in the FPX platform. A jumper on the card

must be set before the system operation. For security reason, all local IP traffic must

use VLAN ID 1. The pass-through traffic’s VLAN ID remains unchanged.

To direct the FPX ’s routing decision upon receiving cells from the GigE line

card or system motherboard, a direction pin should be set through another jumper

on the GigE line card. The setting actually controls one bit in the VPI field of the

ATM cells which is used to decide where the cell should be forwarded: the Internet

side or the Intranet side.

2.2.7 Interface

The FPX system side interface is simple and is described in [6]. The signal SOC

indicates the first word of a cell. This word and the following 13 words belong to one

25

cell. A back-pressure signal is used to control the flow rate when needed. The line

side uses a POS-PHY Level 3 standard interface to connect the ASIC PM3386 [44].

The POS-PHY Level 3 interface is a 32-bit wide interface with a clock rate of up to

104 MHz (Though we only use 62.5 MHz clock in our system). POS-PHY Level 3

was developed with the cooperation of the SATURN Development Group to cover all

applications which bit rates are up to 3.2 Gbit/s. The POS-PHY Level 3 specification

[18] defines the requirements for interoperation between devices such as the multi-

PHY PM3386 and a single Link Layer device. Each direction within the FPGA logic

contains a 4096-byte latency FIFO.

2.3 Test and Performance Evaluation

The GigE logic was synthesized using Synplify Pro and was placed and routed in

a Xilinx XC2V1000 FPGA. Table 2.1 summarizes the GigE FPGA place and route

results.

Table 2.1: Device Utilization and Timing Summary
IOBs Block RAMs SLICEs Freqency
205 31 4202
61% 77% 82% 82.2 MHz

Figure 1.1 shows an envisioned FPX system configuration. In order to debug

the system, all the four cards (2 GigE Line Cards, 1 NID-PT FPX card and 1

regular FPX card) are put into a WUGS as shown in Figure 2.8. Two hosts with

GigE interface connect two GigE cards respectively. 4 GLink cards are used for other

line connections. A TCP flow is set up between the two hosts. By this means, we

can monitor all internal interfaces by dumping the cells running through them.

26

GigE#1

NID-PT

FPX

Glink#4

GigE#2

WUGS
Glink#1

Glink#2

Glink#3

Host #1

Host #2

NCHARGE

Figure 2.8: FPX System Configuration for Debugging

GigE #2 GigE #1

FPX NID-PT

Mother Board
HP Switch #1HP Switch #2

NCHARGE

FPX Platform

Traffic Generators
Host #1

Host #2

Figure 2.9: FPX System Configuration for Test

27

�
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

�	� � � � �
� � � � �
� � � � ��� � � � ��� � � � � �� � � � � �
� � ��� � � � � ��� � � ��� � � � � �

!" # $
% &
" '
%(
) *
+ ,
(- ./
01

Figure 2.10: A Case of GigE Throughput Test

Once the system passed the test, we set up a standalone FPX system without

the WUGS as shown in Figure 2.9. In this configuration, two HP Procurve Switch

2524 [43] are used. Each switch has two GigE ports and 24 10/100M Ethernet ports.

On the Intranet side, an NCHARGE sever is running to control and configure the

FPX platform. A bunch of hosts can generate and send pass-through traffic to the

Internet side.

The host 1 ’s GigE NIC uses a 64-bit/33-MHz PCI bus and host 2 ’s GigE NIC

uses a 64-bit/66-MHz PCI bus. To test the system’s throughput, WSTTCP [34] is

used to transfer data through a TCP flow between the two hosts. Though in theory

the PCI bus can inject data at a rate of at least 2 Gigabit/second, due to the software

and operating system’s limitations, actual throughput is far below that. Figure 2.10

shows the result of one of the experiments we have done. Note that the system only

supports 1500-byte MTU.

The experiment shows that with one pair of hosts and one TCP flow, we can

get at most 800 Mbit/second throughput. In order to make the system work under a

28

full gigabit rate, a bunch of hosts with 10/100M Ethernet interfaces should be used to

connect with the system through the switch. Each of them sets up a TCP connection

with the host 2 so we can easily get an aggregate gigabit throughput.

29

Chapter 3

Secure Control Packet Processor

To enable secure remote control of a FPX -based firewall, a Secure Control Packet

Processor (SCPP) was designed and integrated into the FPX system. Some popular

encryption and authentication algorithms were implemented in hardware and could

be chosen from as the core components in SCPP.

3.1 Hardware implementation of Security Standard

Cores

Confidentiality is achieved by encrypting the control packets before they are sent and

decrypting them in the FPX platform. Among many block encryption algorithms,

3DES [41] and AES (Rijndael)[31] were implemented because of their efficiency and

straightforward hardware implementation.

We also need some form of acknowledgements from the platform to determine

the control packet’s status. At this point, the authentication of the message is more

critical than confidentiality. HMAC-MD5 and HMAC-SHA1 were implemented for

acknowledgement packet generating.

30

Add roundkey

Substitute bytes
Shift rows

Mix Columns
Add roundkey

Substitute bytes
Shift rows

Add roundkey

128

128

128

ciphertext

128

plaintext ciphertext

plaintext

Inverse shift rows
Inverse substitute bytes

Inverse mix columns
Add roundkey

Inverse shift rows
Inverse substitute bytes

K
ey schedule

k

key

128

128

128

128

Nr − 1 roundsAdd roundkeyNr − 1 rounds

Add roundkey

128 128

Figure 3.1: AES Algorithm Block Diagram

3.1.1 AES

The AES algorithm works by using cryptographic keys of 128, 192 or 256 bits to

encrypt 128-bit data blocks. Figure 3.1 describes the AES algorithm. In the figure, k

is the number of bits in the key, Nr is the number of iterations (or rounds) performed

to complete the encryption or decryption of a single data block. Nr is a function of

k and is 10, 12 or 14 for k of 128, 192 or 256 bits, respectively. The key schedule

expands the original key to Nr + 1 roundkeys. The operations performed in each

round are shown in the figure. Note that the last round for encryption does not

include the mix columns step, while decryption is missing the inverse mix columns in

its last round.

Although we only require AES decryption for the control packet processor,

both encryption and decryption algorithms were implemented. This will make the

module more useful in future applications. Figure 3.2 shows the block diagram of

the AES implementation. Since the key and the number of rounds are decided at

31

Encrypt/Decrypt
roundgenerator

memory
Roundkey

128roundkey

key
4

256
Roundkey

Nr

128

4address

Control FSMdata_in
mode
cipher

128

cipher
mode round

last 128
d_out

128
d_in

128
data_out

roundkey

Figure 3.2: AES Hardware Implementation Block Diagram

compile time, a roundkey generator was implemented that computes the roundkeys

upon system reset. These keys are stored in the roundkey memory (block RAM) and

read as needed. Cipher mode controls the encryption and decryption selection.

AES uses 16 256-byte substitution boxes (Sboxes) for each encryption round

and another 16 256-byte inverse Sboxes for each decryption round. If these Sboxes

were implemented using registers, each round could be completed in one clock cycle.

However, this would consume a great deal of our resources. Instead, we chose to

implement these Sboxes as block RAMs. This increased each AES round time to two

clock cycles but saved much of the chip resources for other modules. This sacrifice

can be made without much concern as it is expected that control packets will arrive

sparsely. The EPBC mode is used for data integrity purpose which requires feedback

of the previous plaintext block for decryption or ciphertext block for encryption. This

eliminates the possibility of using a loop-unrolling implementation of the encryption

algorithm. Also, due to our limited FPGA resources, a loop-unrolling implementation

makes the design impractical as it would take up most of the FPGA leaving no room

for other modules.

32

+ f

+ f

L0 R0

+ f

L1 R1

Initial Permutation

R15

Inverse Initial
Permutation

L16 R16

L15

KeyInput

Output

Permuted
Choice1

C0 D0

Left Shift Left Shift

Left Shifts Left Shifts

Left Shifts Left Shifts

C16 D16

C15 D15

C1 D1

C2 D2

Permuted

Permuted

Permuted

Choice2

Choice2

Choice2
K1

K2

K16

Figure 3.3: DES Implementation Block Diagram

33

Key1 Key2 Key3

DES DES DES

64 64 64 64

E/D E/D E/D

56 56 56

DataOutDataIn

Mode

Figure 3.4: 3DES Hardware Implementation Block Diagram

3.1.2 Triple DES

DES is another widely used block encryption algorithm that uses 56-bit keys to

encrypt data in 64-bit blocks. Given the vulnerability of DES to a brute-force attack,

an alternative approach to get higher security is 3DES. 3DES uses three encryption

stages of DES chained together and a unique key for each. The basic DES algorithm

is described in Figure 3.3. Figure 3.4 shows the 3DES encryption and decryption

structures. A free DES core written in VHDL was found on the web and used to

implement our 3DES [15]. It contains both iterative and loop-unrolling versions of

the algorithm. Again we chose to use the iterative version for the same reasons

discussed in the AES section.

3.1.3 MD5 and SHA-1

MD5 and SHA-1 are message digest algorithms specified for use in Internet Protocol

Security (IPSec). Both algorithms take as input a message of arbitrary length and

produce as output a message digest of 128 bits for MD5 and of 160 bits for SHA-

1. The input message is first padded and appended with message length to be a

multiple of 512 bits. Then the message is processed in 512-bit blocks with an n-bit

initial value, where n is 128 for MD5 and 160 for SHA-1. Further details regarding

MD5 and SHA-1 can be found in reference [36] and [13], respectively. The MD5 and

SHA-1 cores were implemented using iterative architecture and have a latency of 197

34

Y0 Y1 YqYp

512 bit 512 bit 512 bit 512 bit

n−bit digest

CV1
IV

CVqCVp
MD5/SHA−1 MD5/SHA−1 MD5/SHA−1 MD5/SHA−1

n n n n

512 512 512 512

message lengthpaddingmessage

Figure 3.5: MD5 and SHA-1 Algorithm Architecture

and 245 clock cycles respectively to hash a 512-bit data block. These numbers are

higher than other implementations of the same algorithms [12]. This is because the

four 32-bit additions required by each step of the hashing algorithms were spread out

over three clock cycles to increase clock speed. As mentioned earlier, control packets

arrive sparsely so latency is not a high concern. The hardware architecture of MD5

and SHA-1 is shown in Figure 3.5.

3.1.4 HMAC

HMAC is used in conjunction with either MD5 or SHA-1. It uses a secret key to

validate the information being sent from the SCPP back to the administrating host.

HMAC can be further described by the following equation:

HMACtext = H(K ⊕ opad,H(K ⊕ ipad, text))

where K is a secret key (we use a 512-bit key), ipad is the byte 0x36 repeated 64

35

Digest

Ctrl

Data

IPAD

Hash Key

OPAD

CV2CV1

Data Length

Padding

Shift Register
(MD5 or SHA−1)

Hash Function

HMAC Control Logic

IV

Figure 3.6: HMAC Hardware Implementation Block Diagram

times, opad is the byte 0x5C repeated 64 times, H is hashing function (MD5 or SHA-

1). The result is a 128-bit digest for MD5 and a 160-bit digest for SHA-1. Figure 3.6

shows the hardware implementation of HMAC.

We implemented HMAC more efficiently by precomputing H(K ⊕ opad) and

H(K ⊕ ipad) [41]. Because the padded message can fit into one block, this technique

doubles the throughput of the circuit by eliminating two of the four hashes that need

to be computed for each packet.

3.1.5 EPBC mode

To validate the integrity of control packets after they have been decrypted, AES and

3DES were implemented in Error-Propagating Block Chaining (EPBC) mode. We

use this mode instead of HMAC here because it is nearly free in regard to circuit

overhead compared to the hash function. EPBC mode allows us to validate the

integrity of the decrypted data by comparing the decrypted value of the last block to

the predefined integrity value. If they are the same, it is reasonable to believe that

36

Encrypt() Encrypt()

g() g()

Fi−1

Pi

Gi−1

Gi

Fi

Ci Ci+1

Fi+1

Gi+1

Pi+1 Ci

Pi Pi+1

Ci+1

Decrypt() Decrypt()

g() g()

Fi−1

Gi−1

Gi

Fi Fi+1

Gi+1

(a) EPBC Encryption (b) EPBC Decryption

Figure 3.7: EPBC Mode Block Diagram

the control packet has not been tampered with. Otherwise the control packet should

be discarded.

As shown in Figure 3.7, EPBC mode can be further described by the following

equations where the initial values of F and G are two distinct initial vectors (IVs).

The size of the IVs is the same as the block size for each algorithm (128 bits for AES

and 64 bits for 3DES). P and C represent the plaintext and ciphertext, respectively.

The block number is denoted by i. And finally, E and D represent the encrypt and

decrypt functions, respectively.

Encryption: Decryption:
Gi = Pi ⊕ Fi−1 Fi = Ci ⊕ g(Gi−1)
Fi = Ekey(Gi) Gi = Dkey(Fi)
Ci = Fi ⊕ g(Gi−1) Pi = Gi ⊕ Fi−1

In the above equations, function g() operates as follows:

g(G) = 〈GH + GL, GH ·GL〉
Where G ≡ 〈GH , GL〉, GH and GL are the high and low order halves of G

respectively.

37

3.2 Secure Configuration and Acknowledgement

3.2.1 Configuration Console

A simple protocol was designed to ensure the reliable FPX control and configuration.

The control packet is encrypted in the administrating host. For each received control

packet, the FPX platform sends back a keyed authenticated acknowledgement packet

to report the control packet’s status (accepted or dropped). In the following cases,

administrating host needs to resend the control packet:

• Timeout;

• Unrecognized acknowledgement packet;

• Acknowledgement packet reports the control packet is dropped.

If administrating host can’t correctly configure the FPX platform for several itera-

tions, it might indicate network failure or imply some attack is happening.

3.2.2 Encrypted Control Packet Format

The same control packet format is applied for both 3DES and AES encryptions for

uniform processing. The control packet uses 128-bit IVs since AES requires this. In

the 3DES application, only the first 64 bits of each IV are used for decryption and

the remaining 64 bits are ignored. We need to pad the control packet body to make it

a multiple of the block size. The padding for the control packet is dependent on the

encryption algorithm chosen. The last data block in the control packet is an integrity

check. This block uses a predefined value that is checked in the hardware when the

packet has been completely decrypted. The layout of the control packet is shown in

Figure 3.8a.

38

IP Header

UDP Header

(32, 64 or 96 bits)
Padding

Integrity Check

Plain D
ata

E
ncrypted D

ata

IV (256 bits)

Payload
Packet Control

Encrypted

(128 bits)

IP Header

UDP Header

IV (256 bits)

Port No. Status

H
ash

a) b)Control Packet Acknowledgment
Format Packet Format

Figure 3.8: Control Packet Formats

3.2.3 Authentication Packet Format

In order to determine if a control packet that was sent to the FPX platform was

actually accepted, the FPX platform should return an acknowledgement packet. This

packet contains a hash of the IVs concatenated with the 16-bit destination port and

a 16-bit status value. Since all IVs are randomly generated, each acknowledgement

packet can be identified through its IVs without providing extra information. The

layout of the authentication packet is shown in Figure 3.8b.

3.3 Infrastructure

Simply implementing the encryption and hashing algorithms is not nearly enough

to provide security features for the FPX platform. Logic was required to identify

control packets and pass these packets through SCPP while all other packets pass

39

Control
Packet
Body
Buffer

Control
Packet
Recover

Normal
Packet
Buffer

Control
Packet
Info
Buffer

Authenti−
cation Core
HMAC
MD5/SHA1

Ack
Packet
Gene−

O
utput Scheduler

Decryption
Core
EPBC
AES/3DES

Control
Packet
Filter

Control
Packet
Splitter Checker

Integrity

rator

Figure 3.9: Control Packet Processor Architecture

through unmodified. Figure 3.9 illustrates the logic components in the secure control

processor. A description of the major components’ functionality follows.

Control Packet Filter

This block receives the data from the protocol wrappers and filters out the control

packets based on the FPX platform’s IP address and the UDP port number. These

control packets are sent to the control packet splitter. Non-control packets are buffered

in the normal packet buffer and scheduled to be forwarded to the downstream modules

of the FPX platform.

Control Packet Splitter

This block further processes the control packets. It extracts the IP addresses, UDP

ports and two IVs from the packet and buffers them to be used in the following

blocks. Finally, it assembles the encrypted 32-bit words of the packet body into the

larger data block necessary for each algorithm (64 bits for 3DES and 128 bits for

AES). These data blocks are buffered up to be sent to the decryption core.

40

Control Packet Body and Information Buffer

Due to the decryption latency, FIFOs are needed to buffer the data and all necessary

information for decrypting, reassembling the control packet and creating authenti-

cated acknowledgement packets.

Decryption Core

The decryption core instantiates either the AES or 3DES core in EPBC mode. When

the core is not busy, it dequeues a data block from the control packet body buffer for

decryption. Once a block has been decrypted it is forward to the integrity checker.

Integrity Checker

The integrity checker is basically a 128-bit comparator. It compares the decrypted

value of the last 128-bits of control packets against a predefined integrity check. If

any of the cipher blocks was modified prior to decryption, this “error” will propagate

to the last decrypted block and it will fail the integrity check. Exact matching means

that the packet is the same as the original control packet so it is considered valid.

Only valid control packets are forwarded to the downstream modules in the FPX

platform. Invalid control packets are dropped.

Control Packet Recovery

When a decrypted control packet has successfully passed the integrity check, the

recovery component rebuilds the control packet from the decrypted payload using the

information previously stored in the control packet info buffer.

41

Authentication Core

The authentication core instantiates either HMAC-MD5 or HMAC-SHA1. For each

incoming control packet an authentication digest is computed. The message to be

hashed consists of the two IVs for the control packet, the destination port, and a

16-bit field indicating the packet status. Once computed, the digest is forwarded to

the acknowledgement packet generator.

Acknowledgement Packet Generator

For each incoming control packet, an acknowledgement packet is generated. The

destination of this packet is simply the source of the corresponding control packet.

This information is retrieved from the control packet info buffer. A UDP packet

is then generated using the hash digest as the payload. Once an acknowledgement

packet has been generated, the packet generator requests the output bus from the

output scheduler.

Normal Packet Buffer

As decrypting control packets is a time consuming process, all other traffic is for-

warded around the decryption engine. This buffer receives all normal traffic from

the control packet filter. Whenever there is an outstanding packet in this buffer it

requests the output bus from the output scheduler.

Output Scheduler

This block schedules the output packets in a basic round robin scheme. It services

the control packet recovery, the acknowledgement packet generator and the normal

packet buffer.

42

3.4 Results and Analysis

The architecture described has been synthesized using Synplify Pro and the Xilinx

backend place and route tools to implement the design on a Xilinx Virtex XCV2000E-

6 FPGA. Table 3.1 summarizes the results for the encryption cores, and Table 3.2

summarizes the results for the two authentication cores. The Rate column represents

the throughput of control packets and acknowledgement packets through the SCPP.

From these results we can see that the 3DES core is much more efficient with

regards to resource usage. However, throughput of the AES core is several times

higher than 3DES. This is primarily due to two factors. The first is the fact that

AES decrypts 128-bit blocks at a time, whereas 3DES only decrypts 64-bit blocks.

Secondly, 3DES uses many more rounds than AES. With this in mind, it is clear that

it would be more beneficial to chose 3DES when space is a major concern. Otherwise,

if throughput is a major concern, AES would be more suitable.

Table 3.3 shows the overall system performance of the FPX platform which

implements a hardware based firewall with different algorithm combinations. AES-

128-HMAC-SHA1 gives the highest throughput.

Table 3.1: Synthesis Results: Encryption Cores
LUTs Block RAM Timing Rate

% # % MHz Mbps
3DES 1223 3% 0 0% 55.2 98
AES-128 2503 5.8% 44 27% 85.6 547.8
AES-192 2610 6.0% 44 27% 86.7 462.4
AES-256 2677 6.2% 44 27% 92 420.6

Table 3.2: Synthesis Results: HMAC Modes
LUTs Block RAM Timing Rate

mode # % # % MHz Mbps
MD5 5284 13% 0 0% 58.5 152
SHA-1 5796 15% 0 0% 56.5 118

43

Table 3.3: Placed and Routed Firewall Design
Slices Block RAM Timing Rate

3DES-HMAC
config. # % # % MHz Mbps
MD5 13239 68% 83 51% 49.2 1574
SHA1 13698 71% 83 51% 50.5 1616

AES-128-HMAC
MD5 13543 70% 123 76% 45.8 1466
SHA1 14331 74% 123 76% 60.3 1930

AES-192-HMAC
MD5 13775 71% 123 76% 48.8 1560
SHA1 14102 73% 123 76% 56.6 1811

AES-256-HMAC
MD5 13698 71% 123 76% 50.6 1620
SHA1 14221 74% 123 76% 54.9 1758

We also compared the hardware implementations’ performance with the soft-

ware benchmarks found in [11]. The benchmark results are based on the C++ code

running on an 850 MHz Celeron processor. From Figure 3.10, we find that the per-

formance of 3DES and AES is much better than the performance of the software

implementation. For hash functions, software implementation is much faster than its

hardware equivalent. It makes sense because hash algorithms were designed mainly

for software implementation while most of the symmetric encryption algorithms were

optimized for hardware implementation.

3.4.1 Software Implementation

While 3DES, EPBC mode and HMAC were original code, AES, MD5 and SHA1

implementations were obtained via the National Institute of Standards and Technology

(NIST)[29].

On each execution, the program randomly generates IVs to be used for en-

crypting the control packet. The original payload is read from a file, encrypted, and

44

�
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
	 � �

�
 � �� � ���
 ��� � � �
� � � � � � � � � � � � � � � �

!" #
$%
&" '
%
(
) *
+ ,
('
-.

� / � 0 1 / � �

� � 2 � 1 / � �
3 � 4 � � � / � 5

Figure 3.10: Hardware/Software Performance Comparison

appended to the IVs along with the integrity check to make up the encrypted payload

for the control packet. At the same time, the selected HMAC algorithm is run on the

IVs to create digests for comparison to feedback packets. A digest is created for a

feedback packet signifying a successful configuration as well as one signifying a failed

configuration (i.e. a dropped control packet).

3.4.2 Testing

Testing of SCPP was performed in a live network using the FPX platform (Fig-

ure 3.11) in a WUGS. A modified version of the NCHARGE [40] web interface was

used to read our encrypted payloads and create the necessary packet and cell headers.

The interface supplies a selection box for choosing both the encryption and the au-

thentication algorithm. It also provides fields for other packet information including

IP address, port number and non-encrypted payload data. Once the information for

our test packet is entered, the web interface calls a CGI script to interpret the infor-

mation, run it through the encryption software and send the packet to the hardware

via a Gigabit Link connector between the PC and WUGS. NCHARGE then attempts

45

Figure 3.11: FPX Test Platform

to read any acknowledgement packets from the line. Any acknowledgement packet

received is displayed and compared to the pre-computed digests. This comparison

determines if the control packet was accepted by the FPX or not. If not, the control

packet would need to be retransmitted until a successful configuration occurred.

AES-128, AES-192, AES-256, and 3DES with both HMAC-MD5 and HMAC-

SHA1 (for a total of eight different core modes) were all tested. Each core passed the

tests by successfully configuring the FPX platform and returning expected acknowl-

edgement packets. We also simulated different attacks to the FPX platform, such

as fake control packets, message modification and denial of service. All attacks were

detected by the FPX platform or the administrating host successfully.

46

Chapter 4

Secure Remote Control Protocol

4.1 Architecture

Some drawbacks exist in the SCPP structure. First, it is subject to a replay attack.

That means an attacker can capture a control packet and send it to the target again

at any time. The FPX cannot identify if it is a replay packet. Second, the communi-

cation protocol is stop-and-wait. It is too slow if we want to download a large bitfile

to the FPX platform. In order to overcome these drawbacks, an improved protocol

is presented. It can also be used in any environment in which we need to control a

hardware based reconfigurable network node through the public Internet.

The secure configuration architecture provides the infrastructure for secure

communications between the control console and Reconfigurable Hardware Nodes

(RHN) over the Internet. Communications are conducted through encrypted and

authenticated control packets. A functional module called the Secure Control Man-

ager (SCM) performs all security related tasks, ensuring that only authorized access

to the RHN is allowed. Figure 4.1 shows the security configuration architecture.

A unique aspect of this architecture is that SCM is implemented in pure hardware.

47

SCM

Internet

RHN

RHNSCM

Control Console

SCM

RHN

01

1 0

01

Figure 4.1: Secure Configuration Architecture

Avoiding software involvement in network processing is important because it prevents

the nodes from being hacked using traditional vulnerabilities found in operating sys-

tems. SCM implements some encryption and authentication algorithms to guarantee

data confidentiality and integrity. It is also responsible for establishment, mainte-

nance and termination of the secure connection.

4.2 Protocol

A security protocol is needed to secure the communications between the control con-

sole and RHNs. The goal of this protocol is to provide a secure communication chan-

nel, so that attackers will not be able to damage or steal information from the RHNs.

Even if the node is under attack or experiencing network failure, the protocol can let

the control console be aware of the attack and take actions. The protocol includes

a flow control and an error control scheme. It relies on positive acknowledgement

and retransmission when the control console does not receive an acknowledgement

48

within a given timeout period. The protocol need to be implemented not only on

the administration host in software, but also on the SCM in pure hardware which is

hard to accommodate a complicated protocol. Fortunately, in most cases, the control

console and the RHN act as master and slave. Control console is always take the

initiative to establishment and termination of connections. This feature enables us

to design a simple yet efficient protocol based on Go-back-N ARQ to support only

end-to-end communication, with which at the same time configuration packets are

issued only from one control console.

A sliding window mechanism is used to provide flow control. Similar to the

mechanism in HDLC, an acknowledgement (ACK) of new incoming packets automat-

ically moves the sliding window to grant permission to more packets. In our system,

the size of the sliding window is decided mainly by the buffer size in the SCM. Error

control is done by exerting encryption and authentication on each control packet.

Retransmission of a packet is necessitated when a packet never arrives at the recon-

figurable hardware node or an arriving packet is discarded by the RHN because of

errors. Here we implement a batch retransmission strategy, particularly because of

the requirement that the packets configure or reprogram the hardware nodes in an

in-order fashion. It works by maintaining one retransmission timer for the entire

sliding window. If no ACK is received before the timer expires, the control con-

sole must retransmit from the first packet and reset the timer; otherwise, the sliding

window is adjusted and the timer is reset. A sequence number indicating the order

of control packet is encrypted in the packet body. For each establishment of a new

connection, a random sequence number is generated in the RHN and sent back to

the control console. The sequence number is incremented during the maintenance of

the connection.

49

Handling connection termination can be complicated in some protocols. How-

ever since only end-to-end communication is supported and the SCM does not pre-

serve any information for the current connection except for the sequence number, the

termination of the current connection is only meaningful for the control console. In

this protocol, connection termination to the RHN is simply establishment of a new

connection. As to the control console, an initiative termination is stopping sending

new control packet after the ACK of the last control packet; and a passive termina-

tion is unsuccessful communication with a timeout period. In the second case, the

control console will be aware of either the network failure or potential attacks to the

system.

During the above discussion, we assume that before each connection the control

console and the RHN shares a secret key, which is used to protect all transferred data.

Security key management is extremely difficult for pure hardware implementation.

Therefore, in our current protocol, we assume the secret key is hardcoded in the

RHN and shared with each control console.

This protocol is strong enough to protect the configurable hardware nodes from

the common attacks, which we talked about in the section one. First, eavesdropping

and fake packet attacks are avoided by applying encryption and authentication to

the control packets. Second, replay attack is prevented by using encrypted sequence

number. By randomly generating sequence number SN from the control console side,

even if malicious users capture all the packets sending from the host, re-sending them

to the RHN will not be accepted due to the discontinuity of the sequence number.

The administration host has a time-out mechanism, therefore, when RHN is under

attack or network fails, the host can be aware of these problems and take action.

The communication between the administration host and the RHN is through

UDP packets. We call it control packet. For uniform processing, all control packets

50

UDP Header

Integrity Check
(128 bits)

(32, 64 or 96 bits)
Padding

Sequence Number

Reserved

Encrypted
Control Packet

Payload

CPC

IV (256 bits)

IP Header Plain D
ata

E
ncrypted D

ata

Figure 4.2: Secure Control Packet Format

have the same format. Control packets include session establishment packet, config-

uration packet, status inquiry packet, and acknowledgement packet. The destination

IP address and UDP port number are used to identify the individual configurable

module inside the RHN.

The first 4 32-bit words in the UDP payload is IVs required by EPBC mode.

The next word is 32-bit SN for flow control. The first byte of the following word

denote a unique Control Packet Code (CPC) for each type of the control packet.

The administration host and the RHN can distinguish and process the packet by its

CPC. All RHN control or configuration information follows. Control packet payload

is padded to be multiple of the block size. The last 128-bit data block in the control

packet is integrity check. This block uses a predefined value that is checked in the

hardware when the packet has been completely decrypted. The layout of the control

packet can be seen in Figure 4.2.

51

Communication is divided into two phases: the session establishment phase

and configuration phase. To establish a communication session, the host sends a

control packet with CPC equal to 0 during session establishment phase. Once the

RHN receives and accepts the connection requirement, an acknowledgement control

packet is sent back with CPC equal to 0. A randomly generated SN telling the

administration host to start sending packets from the appointed SN is also encrypted

in the acknowledgement packet body. If the administration host doesn’t receive the

ACK within a timeout period, it sends the initialization control packet again. If this

fails after a predefined number of times, the administration host will know that it

is experiencing network failure or attacks. If the administration host gets the ACK

successfully, the communication goes into the configuration phase.

The administration host sends configuration packet (CPC = 1) or status re-

quest packet (CPC = 2) with successive SN within the bound of the current sliding

window. The RHN receives a error-free packet, it sends back an ACK (CPC = 1) to

tell the host the next expected SN N’. The effect of this ACK actually acknowledges

all packets with SN prior to this one N’. If the SN of this error-free packet matches

the expected SN, RHN will forward this packet to the rest of the RHN modules.

If due to any error the RHN can not accept the current control packet, it silently

discard the packet and whatever the following control packets till an acceptable one

with the expected SN. If the host experiences a timeout without receiving any ACK,

it will resend all the packets in the current window. On condition that RHN ac-

cepts a status inquiry packet, it sends back an ACK with the inquired information

assembled in the packet body and CPC set to 2. This indicates it is not only an

acknowledgement, but also a reply to an inquiry.

52

4.3 Application in FPX system

Considering the reality of the FPX system, we decided to apply the encryption in the

NID-PT card and leave the data integrity and sequence number control logic to be

processed in the regular FPX card. AES is exerted only to the control cell payload.

Firstly, this arrangement conforms to the principle of layered protocol. Mapped into

the seven layer network model, encryption functions could be in physical layer while

data integrity and authentication check functions could be in link layer. Secondly,

current FPX system and related software are all well defined and work well. The

control cell’s format inherited the data integrity check by AAL0 CRC and sequence

number control by SN field. What’s more, the length of the cell payload is 48 bytes,

that are exactly 3 128-bit blocks for AES cipher. There is no important information

that needs to hide in cell header so we don’t need to encrypt it at all. All these

considerations simplified the modifications and new designs that need to be added to

the FPX system. The logic view of the NID-PT FPX card is shown in Figure 4.3

The NID FPGA on the NID-PT card has consumed more than 75% of the

resource. The encryption and decryption module have to be placed in the RAD

FPGA. Only control cells need to be routed to the RAD. Two modules shown in

Figure 4.4 are used in RAD to process bidirectional control cells.

The incoming cell is splitted into two parts: the header and the payload. The

cell header is stored in a FIFO and the cell payload is transformed to 3 128-bit data

blocks to be buffered in another FIFO. An AES core retrieves the data block from

the payload buffer to encrypt or decrypted it. After each 3 consecutive data blocks

are processed, one cell header is read out from the header buffer and a whole ATM

cell is reassembled and sent back to NID-PT. A back pressure signal is used to control

the flow rate.

53

Ingress
DeMUX

Egress

IngressMuxEgress

Cell Cell

Cell

CellIP IP Cell
VCI=50/51

VCI=50/51

VCI=34/51

VCI=34

VCI=51

Cell
Cell

Cell
CellCell

VCI=50/51 VCI=50/51 VCI=34/51

VCI=50

VCI=51

AES
Decrypt

AES
Encrypt

RAD

NID-PT

LC SW
Wrapper

Figure 4.3: NID-PT FPX overview

ICP

OCP

Cell Body

Cell Header

128

32

128

32

128

SO
C

_O
U

T

D
A

T
_O

U
T

[3
1:

0]

T
C

A
_O

U
T

T
C

A
_I

N

D
A

T
_I

N
[3

1:
0]

SO
C

_I
N

AES Core D

Q’

QD

Q’

QD

Q’

Q

Figure 4.4: RAD AES Module Block Diagram

54

By restricting the key size to 128 bits, AES core need at least 11 clock cycles

to process one 128-bit data block. The system will work under 62.5 MHz frequency,

so roughly we can get the control cell throughput up to 727 Mbps.

55

Chapter 5

Conclusion

5.1 Remarks

The FPX platform can be applied in many network processing systems such as fire-

walls, packet classifiers, content scanners and copyright protection units.

A GigE Card FPGA was designed to provide a line interface for the FPX

platform. The FPGA implements ARP and transforms packets between ATM and

Gigabit Ethernet. The card is fully tested and can support 1 Gbit/sec throughput.

The GigE card FPGA implements ARP, but it is not fully compliant with

the standard in that the ARP table does not support entry aging. That feature is

expensive to implement in hardware. We can implement it in software by periodically

polling the table entries. However, in the current FPX platform applications, this is

not a critical requirement.

For historical reason, the basic unit processed in FPX is an ATM cell. It is

not necessary in some of the FPX applications and it does introduce extra overhead.

The evolving system will get rid of this step by step.

56

We also made efforts to solve the security problem when configuring the FPX

platform through the public Internet. A suite of security algorithms were implemented

in hardware and they were applied in SCPP to provide baseline protection to the

control and configuration channel of the FPX platform.

Though the SCPP architecture provides strong protection to the FPX plat-

form configuration channel, it is cumbersome and not very efficiency. The main

achievement is we implemented a suite of hardware cores and verified them in real

applications. They are the base blocks to build the future hardware based network

security applications. Another problem is the SCCP can lack of defense against the

replay attacks, so we proposed a more robust and more general protocol which in-

tends to secure the control and configuration channel between central console and

the hardware based network nodes. A practical module was designed to support this

protocol in the FPX platform.

5.2 Future Work

As the network bandwidth continues growing explosively, the FPX platform may be

applied in different and higher bandwidth environments, such as SONET OC-192 and

10 Gigabit Ethernet. More types of Network Interface Card (NIC) will be required.

Still, logic are needed to provide the bridge between the line side and the system

side. For robust application and fault tolerance, the system should support Automat-

ical Protection Switch (APS). A backup FPX platform can provide protection when

network failure occurs without interrupting the whole system.

For secure control and configuration, if we consider the scalability issue, it

is actually a secure and reliable multicast problem. There already exist a lot of

protocols and algorithms that try to solve this problem but no one is widely accepted

57

and deployed. This is still an open area for future research. The multicast model is

source-specified, the problems include many aspects such as source authentication,

access control, key distribution and network topology. The main constraint in our

system is the limited hardware resource.

58

References

[1] Paulo Guedes Andre Zuquete. Efficient Error-Propagating Block Chaining. In
IMA International Conference, pages 323–334, San Antonio, TX, USA, Decem-
ber 1997.

[2] WUSTL Applied Research Lab. MSR - A Scalable, High Performance MultiSer-
vice Router Architecture. http://www.arl.wustl.edu/arl/projects/msr, 2002.

[3] WUSTL Applied Research Lab. The Field-programmable Port Extender.
http://www.arl.wustl.edu/arl/projects/fpx, 2002.

[4] Saleem N. Bhatti, Graham Knight, D. Gurle, and P. Rodier. Secure remote
management. In Integrated Network Management, pages 156–169, 1995.

[5] Florian Braun, John Lockwood, and Marcel Waldvogel. Reconfigurable
Router Modules Using Network Protocol Wrappers. In Proceedings of Field-
Programmable Logic and Applications, Belfast, Northern Ireland, August 2001.

[6] Florian Braun, John W. Lockwood, and Marcel Waldvogel. Layered Protocol
Wrappers for Internet Packet Processing in Reconfigurable Hardware. Technical
Report WU-CS-01-10, Washington University in Saint Louis, Department of
Computer Science, June 2001.

[7] Rajiv Chakravorty and Hans Ottevanger. Architecture and implementation of a
remote management framework for dynamically reconfigurable devices. In 10th
IEEE International Conference on Networks (IEEE ICON 2002), August 2002.

[8] Tom Chaney, J. Andrew Fingerhut, Margaret Flucke, and Jonathan S. Turner.
Design of a Gigabit ATM Switch. Technical Report WU-CS-96-07, Washington
University in Saint Louis, 1996.

[9] Pawel Chodowiec, Kris Gaj, Peter Bellows, and Brian Schott. Experimental
testing of the Gigabit IPSec-compliant implementations of Rijndael and Triple
DES using SLAAC-1V FPGA accelerator board. Lecture Notes in Computer
Science, 2200, 2001.

[10] Sumi Choi, Jonathan S. Turner, and Tilman Wolf. Configuring sessions in pro-
grammable networks. In INFOCOM, 2001.

59

[11] Wei Dai. Crypto++ 4.0 benchmarks. On-
line:http://www.eskimo.com/ weidai/benchmarks.html, 2000.

[12] Janaka Deepakumara, Howard M. Heys, and R. Venkatesan. FPGA Implemen-
tation of MD5 Hash Algorithm. In Canadian Conference on Electrical and Com-
puter Engineering (CCECE), May 2001.

[13] FIPSP-180-1. Secure Hash Standard, April 1995.

[14] Viktor Fischer. Realization of the round 2 aes candidates using altera fpga, April
2000.

[15] free ip.com. Free-DES: Advanced Encryption Standard . On-
line:http://www.free-ip.com/DES/, March 2000.

[16] Kris Gaj and Pawel Chodowiec. Fast implementation and fair comparison of the
final candidates for advanced encryption standard using field programmable gate
arrays. Lecture Notes in Computer Science, 2020, 2001.

[17] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman,
and B. Schott. Comparative analysis of the hardware implementations of hash
functions sha-1 and sha-512. In Proc. Information Security Conference, Sao
Paulo, Brazil, September 2002.

[18] SATURN Development Group. Pmc-980495 saturn compatible interface for
packet over sonet physical layer and link layer devices (level 3), 1998.

[19] IANA. Ethernet address assignment. http://www.iana.org/assignments/ethernet-
numbers, 2001.

[20] IEEE. IEEE Std 802.1q-1998: Virtual Bridged Local Area Network.

[21] Xilinx Inc. Product Data Sheets. http://www.support.xilinx.com/partinfo/databook.htm.

[22] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. Online http://www.faqs.org/rfcs/rfc2104.html, February
1997.

[23] John W Lockwood. Evolvable internet hardware platforms. In The Third
NASA/DoD Workshop on Evolvable Hardware (EH’2001), pages 271–279, July
2001.

[24] John W. Lockwood, Naji Naufel, Jon S. Turner, and David E. Taylor. Repro-
grammable Network Packet Processing on the Field Programmable Port Ex-
tender (FPX). In ACM International Symposium on Field Programmable Gate
Arrays (FPGA’2001), pages 87–93, Monterey, CA, USA, February 2001.

60

[25] John W. Lockwood, Jon S. Turner, and David E. Taylor. Field Programmable
Port Extender (FPX) for Distributed Routing and Queuing. In ACM Inter-
national Symposium on Field Programmable Gate Arrays (FPGA’2000), pages
137–144, Monterey, CA, USA, February 2000.

[26] John W. Lockwood, Christopher Zuver, Christopher Neely, James Moscola, and
Sarang Dharmapurikar. An Extensible System-On-Chip Internet Firewall. Sub-
mitted to Design Automation Conference (DAC) 2003, December 2002.

[27] Forn Soriano Mels. Hardware implementation of a secure bridge in ethernet
environments. In Globecom’93, 1993.

[28] James Moscola, John Lockwood, Ronald P. Loui, and Michael Pachos. Imple-
mentation of a content-scanning module for an internet firewall. In FCCM03,
2003.

[29] National Institure of Standards and Technology . Online:http://www.nist.gov,
July 2000.

[30] NIST. Fips pub 46-3: Data encryption standard (des).
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf, 1999.

[31] NIST. FIPS-197: Advanced Encryption Standard (AES) . On-
line:http://csrc.nist.gov/encryption/aes/, February 2001.

[32] NIST. Modes of operation for symmetric key block ciphers.
http://csrc.nist.gov/CryptoToolkit/modes, 2001.

[33] School of Computer Science and Electrical Engineering. Vhdl ip stack.
Online:http://www.itee.uq.edu.au/ peters/xsvboard/stack/stack.pdf,
2001.

[34] PCAUSA. Test tcp (ttcp) benchmarking tool for measuring tcp and udp perfor-
mance. http://www.pcausa.com/Utilities/pcattcp.htm, 2003.

[35] David C. Plummer. RFC 826: An Ethernet Address Resolution Protocol, Novem-
ber 1982.

[36] R. Rivest. The MD5 Message-Digest Algorithm, RFC 1321. MIT LCS and RSA
Data Security, Inc., April 1992.

[37] Gultchev S, Mitchell C, Moessner K, and Tafazolli R. Securing reconfigurable
terminals – mechanisms and protocols. In 13th International Symposium on
Personal, Indoor and Mobile Radio Communication (PIMRC’02), September
2002.

[38] P. Schaumont, H. Kuo, and I. Verbauwhede. Unlocking the Design Secrets of a
2.29 Gb/s Rijndael Processor. In DAC 2002, June 2002.

61

[39] Rich Seifert. Gigabit Ethernet:technology and applications for high-speed LANs.
Addison-Wesley, April 1998.

[40] Todd Sproull, John W. Lockwood, and David E. Taylor. Control and Configura-
tion Software for a Reconfigurable Networking Hardware Platform. In submitted
to Globecom 2001, San Antonio, TX, USA, November 2001.

[41] William Stallings. Cryptography and Network Security: Principles and Practices,
3rd edition. Prentice Hall, 2003.

[42] David E. Taylor, Jonathan S. Turner, John W. Lockwood, and Edson L. Horta.
Dynamic hardware plugins (DHP): Exploiting reconfigurable hardware for high-
performance programmable routers, computer networks. Computer Networks,
38, February 2002.

[43] www.hp.com. HP Procurve Series 2500 Switches Management and Configuration
Guide.

[44] www.pmc sierra.com. Product Details for PM3386 (S/UNI-2xGE) Dual Gigabit
Ethernet Controller.

[45] www.xilinx.com. Virtex-II Platform FPGAs Advance Product Specification.

	Secure Remote Control and Configuration of FPX Platform in Gigabit Ethernet Environment
	Recommended Citation
	Secure Remote Control and Configuration of FPX Platform in Gigabit Ethernet Environment

	tmp.1471023011.pdf.z53Rg

	Abstract: Abstract: Because of its °exibility and high performance, reconfigurable logic functions implemented on the Field-programable Port Extender (FPX) are well suited for implementing network processing such as packet classi¯cation, ¯ltering and intrusion detection functions.

This project focuses on two key aspects of the FPX system. One is providing a Gigabit Ethernet interface by designing logic for a FPGA which
is located on a line card. Address Resolution Protocol (ARP) packets are handled in hardware and Ethernet frames are processed and transformed into cells suitable for standard FPX application.

The other effort is to provide a secure channel to enable remote control and configuration of the FPX system through public internet. A suite of security hardware cores were implemented that include the Advanced Encryption Standard (AES), Triple Data Encryption Standard (3DES), Hashed Message Authentication Code (HMAC), Message Digest Version 5 (MD5) and Secure Hash Algorithm (SHA-1).

An architecture and an associated protocol have been developed which provide a secure communication channel between a control console and a hardware-based reconfigurable network node. This solution is unique in that it does not require a software process to run on the network stack, so that it has both higher performance and prevents the node from being hacked using traditional vulnerabilities found in common operating systems.

The mechanism can be applied to the design and implementation of remotely managed FPX systems. A hardware module called the Secure Control Packet Processor (SCPP) has been designed for a FPX based firewall. It utilizes AES or 3DES in Error Propagation Block Chaining (EPBC) mode to ensure data confidentiality and data integrity. There is also an authenticated engine that uses HMAC to generate the acknowledgments. The system can protect the FPX system against attacks that may be sent over the control and con¯guration channel.

Based on this infrastructure, an enhanced protocol is addressed that provides higher efficiency and can defend against replay attack. To support that, a control cell encryption module was designed and tested in the FPX system.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: August 11, 2003
	Author: Authors: Song, Haoyu
	Title: Secure Remote Control and Configuration of FPX Platform in Gigabit Ethernet Environment - Master's Project, August 2003
	ReportNumber: 2003-68
	DepartmentName: Department of Computer Science & Engineering

