Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-67

2003-10-02

A Lightweight Coordination Middleware for Mobile Computing

Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann

This paper presents Limone, a new coordination model that facilitates rapid application
development over ad hoc networks consisting of logically mobile agents and physically mobile
hosts. Limone assumes an agent-centric perspective on coordination by allowing each agent to
define its own acquaintance policy and by limiting all agent-initiated interactions to agents that
satisfy the policy. Agents that satisfy this acquaintance policy are stored in an acquaintance list,
which is automat-ically maintained by the system. This asymmetric style of coordination allows
each agent to focus only on relevant peers. Coordination activi-ties are restricted solely to tuple
spaces owned by agents... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Fok, Chien-Liang; Roman, Gruia-Catalin; and Hackmann, Gregory, "A Lightweight Coordination Middleware
for Mobile Computing” Report Number: WUCSE-2003-67 (2003). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/1113

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1113?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1113

A Lightweight Coordination Middleware for Mobile Computing

Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann

Complete Abstract:

This paper presents Limone, a new coordination model that facilitates rapid application development over
ad hoc networks consisting of logically mobile agents and physically mobile hosts. Limone assumes an
agent-centric perspective on coordination by allowing each agent to define its own acquaintance policy
and by limiting all agent-initiated interactions to agents that satisfy the policy. Agents that satisfy this
acquaintance policy are stored in an acquaintance list, which is automat-ically maintained by the system.
This asymmetric style of coordination allows each agent to focus only on relevant peers. Coordination
activi-ties are restricted solely to tuple spaces owned by agents in the acquaintance list. Limone tailors
Linda-like primitives for mobile environments by eliminating remote blocking and complex group
operations. It also provides timeouts for all distributed operations and reactions, which enable
asynchronous communication with agents in the acquaintance list. Finally, Limone minimizes the
granularity of atomic operations and the set of assumptions about the environment. In this paper we
introduce Limone, explain its key features, and explore its capabilities as a coordination model. A
universal remote control implementation using Limone provides a concrete illustration of the model and
the applications it can support.

https://openscholarship.wustl.edu/cse_research/1113?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1113?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-67

A Lightweight Coordination Middleware for Mobile Computing

Authors: Fok, Chien-Liang; Roman, Gruia-Catalin; Hackmann, Gregory

October 2, 2003

Abstract: This paper presents Limone, a new coordination model that
facilitates rapid application development over ad hoc networks
consisting of logically mobile agents and physically mobile hosts.
Limone assumes an agent-centric perspective on coordination by
allowing each agent to define its own acquaintance policy and by
limiting all agent-initiated interactions to agents that satisfy

the policy. Agents that satisfy this acquaintance policy are
stored in an acquaintance list, which is automatically maintained
by the system. This asymmetric style of coordination allows each
agent to focus only on relevant peers. Coordination activities are
restricted solely to tuple spaces owned by agents in the
acquaintance list. Limone tailors Linda-like primitives for

mobile environments by eliminating remote blocking and complex
group operations. It also provides timeouts for all distributed

operations and reactions, which enable asynchronous communication
with anente in the acrnnaintance lict Finally | imnne minimizec

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

A Lightweight Coordination Middleware for
Mobile Computing

Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann

Department of Computer Science and Engineering
Washington University in Saint Louis
Saint Louis, Missouri 63130-4899, USA
{liang, roman, gwh2}@cse.wustl.edu
http://www.cse.wustl.edu/mobilab

Abstract. This paper presents Limone, a new coordination model that
facilitates rapid application development over ad hoc networks consisting
of logically mobile agents and physically mobile hosts. Limone assumes
an agent-centric perspective on coordination by allowing each agent to
define its own acquaintance policy and by limiting all agent-initiated
interactions to agents that satisfy the policy. Agents that satisfy this ac-
quaintance policy are stored in an acquaintance list, which is automat-
ically maintained by the system. This asymmetric style of coordination
allows each agent to focus only on relevant peers. Coordination activi-
ties are restricted solely to tuple spaces owned by agents in the acquain-
tance list. Limone tailors Linda-like primitives for mobile environments
by eliminating remote blocking and complex group operations. It also
provides timeouts for all distributed operations and reactions, which en-
able asynchronous communication with agents in the acquaintance list.
Finally, Limone minimizes the granularity of atomic operations and the
set of assumptions about the environment. In this paper we introduce
Limone, explain its key features, and explore its capabilities as a coordi-
nation model. A universal remote control implementation using Limone
provides a concrete illustration of the model and the applications it can
support.

1 Introduction

Mobile devices with wireless capabilities have experienced rapid growth in recent
years due to advances in technology and social pressures from a highly dynamic
society. Many of these devices are capable of forming ad hoc networks. By elim-
inating the reliance on the wired infrastructure, ad hoc networks can be rapidly
deployed in disaster situations where the infrastructure has been destroyed, or
in military applications where the infrastructure belongs to the enemy. Ad hoc
networks are also convenient in day-to-day scenarios where the duration of the
activity is too brisk and localized to warrant the establishment of a permanent
infrastructure. Applications for ad hoc networks are expected to quickly grow
in importance because they address challenges set forth by several important
application domains.

The salient properties of ad hoc networks create many challenges for the
application developer. The inherent unreliability of wireless signals and the mo-
bility of nodes result in frequent unannounced disconnections and message loss.
In addition, mobile devices have limited battery and computing power, further
complicating application development. The limited functionality of mobile de-
vices and the peer-to-peer nature of the network lead to strong mutual depen-
dencies among devices, which have to cooperate to achieve a variety of common
goals. This results in an increased need for coordination support. For example,
in a planetary exploration setting, miniature rovers, each equipped with a sin-
gle sensor and connected by a wireless ad hoc network, may need to perform
experiments that demand data from any arbitrary combination of sensors.

Mechanisms that address the complexities of ad hoc networks include en-
hancements to the operating system, specialized languages, and middleware.
Among these, middleware is the most popular. Operating systems are tightly
integrated with low-level communication services (e.g., TCP sockets, access con-
trol, etc.) and expose too many details that complicate the programming tasks.
The development and use of new programming languages is costly and entails
great risks. Middleware, however, provides high-level abstractions while mini-
mizing risk by employing the existing software infrastructure. When designed
properly, middleware can divert attention from mundane concerns, like protocol
development, to more fruitful areas involving application-specific goals.

Designing a coordination middleware for ad hoc networks is difficult. It must
be lightweight in terms of the amount of power, memory, and bandwidth con-
sumed. Depending on the application, it may have to operate over a wide range
of devices with different capabilities: some devices, such as a laptop, may have
plenty of memory and processing ability, while others, such as a sensor network
Mote, may have extremely limited resources. A coordination middleware for ad
hoc networks must be flexible in order to adapt to a dynamic environment;
for example, in the universal remote control application, a remote held by the
user must interact with a set of devices within its vicinity, which changes as the
user moves. In a static sensor network, neighboring nodes may periodically enter
sleep mode, run out of power, or be destroyed. Furthermore, wireless signals are
prone to interference from the environment. This means the middleware must
be designed to handle unpredictable message loss.

Coordination middleware facilitates application development by providing
high-level constructs such as tuple spaces [1], blackboards [2], and channels [3],
in place of lower-level constructs such as sockets. Tuple spaces and blackboards
are both shared-memory architectures in which nodes may insert and remove
data. Tuple spaces differ from blackboards in that they use pattern-matching
for retrieving data; in a blackboard, the data is stored in a global database and
is generally accessed by type alone. Channels are similar to sockets in that data
is inserted at one end and is retrieved from the other. They differ in that the
end points of a channel may be dynamically rebound.

These high-level constructs facilitate coordination by providing a layer of de-
coupling between nodes. In order to create a socket, the identity of the destina-

tion must be known and remains fixed. This is rather inflexible and complicates
application development, particularly in ad hoc networks where connectivity is
dynamic. High-level constructs, however, do not require the sender and receiver
to be aware of each other. When using a tuple space or blackboard, the node
that inserts data need not know the node that later extracts it. Also, since the
shared space is public, multiple nodes may retrieve the same data. When using
a channel, the sender need not know which node is bound to the receiving end of
the channel. This level of decoupling simplifies application development because
changes in connectivity no longer need to be dealt with explicitly.

This paper introduces Limone,! a lightweight coordination model and mid-
dleware for mobile environments supporting logical mobility of agents and phys-
ical mobility of hosts. Limone agents are software processes that represent units
of modularity, execution, and mobility. In a significant departure from existing
coordination research, Limone emphasizes the individuality of each agent by
focusing on asymmetric interactions among agents. Each agent contains an ac-
quaintance list that defines a personalized view of remote agents within proxim-
ity. For each agent, Limone discovers remote agents and updates its acquaintance
list according to customizable policies.

As in most coordination models, traditional Linda-like primitives over tu-
ple spaces facilitate the coordination of agent activities. However, Limone al-
lows each agent to maintain strict control over its local data, provides advanced
pattern matching capabilities, permits agents to restrict the scope of their op-
erations, and offers a powerful repertoire of reactive programming constructs.
The autonomy of each agent is maintained by the exclusion of transactions and
remote blocking operations. Furthermore, Limone ensures that all distributed
operations contain built-in mechanisms to prevent deadlock due to packet loss
or disconnection. For these reasons, Limone is resilient to message loss and un-
expected disconnection. This allows Limone to function in realistic ad hoc envi-
ronments in which most other models cannot.

The paper starts with a review of existing coordination models in Section 2. It
then presents an overview of Limone in Section 3. Section 4 discusses the design
of Limone followed by an evaluation of its performance in Section 5. The paper
ends by presenting a sample universal remote control application in Section 6.
Conclusions appear in Section 7.

2 Related Work

The unique characteristics of wireless ad hoc networks, such as a dynamic topol-
ogy and limited node capabilities, increase the need for coordination support.
To address this need, numerous coordination models have been proposed. These
include JEDI [4], MARS [5], and LIME [6]. Of these, LIME is the only coordina-
tion middleware designed explicitly for ad hoc networks as it is the only model
that provides a discovery protocol, which is necessary for a node to determine

! Limone stands for “Lightly-coordinated Mobile Network”

who it can coordinate with. We consider the other two models because they
can be easily modified to function in an ad hoc network by adding a discovery
protocol. In this section, we present each model and analyze their effectiveness
for supporting the universal remote control application. This application con-
sists of a universal remote held by the user that forms an ad hoc network with
controllable devices within its environment. It must learn about the capabilities
of a device and present a graphical interface for the user to be able to control it.
Coordination support is required for the universal remote in order to discover
and control the devices.

JEDI. JEDI offers a publish-subscription paradigm where nodes interact by
exchanging events through a logically centralized event dispatcher. The event
dispatcher may be located on a single node, or distributed across multiple nodes
forming a hierarchy. An event is modelled as an ordered set of strings where
the first is the name of the event, and the rest are application-specified event
parameters. Nodes subscribe to events using regular expressions on the event
name. When a node publishes an event, the event dispatcher passes it to all nodes
subscribed to it. Since all communication is done through the event dispatcher,
the publisher is decoupled from the subscriber(s).

The universal remote control application can be implemented in JEDI as fol-
lows. Devices in the environment publish description events that describe how
they are controlled. The remote control discovers devices by subscribing to these
events. Similarly, the universal remote publishes control events with instructions
for a particular device. Each device subscribes to control events that are des-
tined for it. The main problem with using this coordination paradigm is the
lack of event persistency. When a device publishes a description event, the event
dispatcher passes it to all universal remotes that have subscribed to it. But in a
mobile environment, the universal remote may not be present at the time when
the event was published. Thus, the device must periodically re-publish its de-
scription event to ensure all remote controls receive it. This increases bandwidth
and battery power consumption.

MARS. MARS provides logically mobile agents that migrate from one node
to another. Each node maintains a local tuple space that is accessed by agents
residing on it. The tuple space is enhanced with reactive programming, which
allows an agent to respond to actions performed on the tuple space. An agent can
only coordinate with other agents that reside on the same node. Agent migration
is required for inter-node communication. MARS adapts to mobile environments
by allowing agents to “catch” connection events that indicate the presence of a
remote node to which they may migrate.

The universal remote control application can be implemented in MARS as
follows. Whenever a device’s agent detects the presence of a universal remote
control agent, it spawns a new agent that migrates to the universal remote, and
inserts a device description tuple. The universal remote control’s agent reacts to
the insertion of this tuple, and thus learns about the device. A similar mechanism
can be used whenever the universal remote control wishes to control the device.

This design is inefficient since it requires an agent migration for each operation,
which is often more costly than simple message passing.

Lime. LIME is a coordination model that utilizes logically mobile agents
running on physically mobile hosts. LIME offers a group membership paradigm
where neighboring hosts form a group that share one or more logically centralized
Linda-like tuple spaces that are enhanced with reactive programming. Agents
coordinate by exchanging tuples through the tuple space. The agent that inserts
a tuple is decoupled from the agent(s) that retrieve it. Reactive programming
allows the system to notify an agent when a particular tuple is in the tuple
space, which eliminates the need for polling. LIME provides strong atomicity
and functional guarantees by utilizing distributed transactions. For example,
when two groups merge, the merging of the two tuple spaces is done as a single
atomic transaction involving all hosts. While powerful, this atomicity comes at
a cost since it requires a symmetric relationship between nodes and assumes
connectivity throughout the transaction, which may be difficult to guarantee in
an ad hoc environment.

The universal remote control can be implemented in LIME as follows. The
remote discovers the presence of controllable devices by reacting to device de-
scription tuples that are inserted by the devices. To control the devices, the
remote inserts control tuples that the targeted device reacts to. The main prob-
lem with this implementation is the underlying symmetric engagement enforced
by group membership. Since LIME forms groups of hosts, all the devices must be
in the same group as the universal remote. Thus, each device must coordinate
with all other devices when performing a distributed transaction. This presents
a scalability problem.

The universal remote application is difficult to implement in existing coor-
dination models. Some impose too much overhead while others limit flexibility
by relying on strong assumptions about the network. In the next section, we in-
troduce a new coordination model called Limone that addresses the drawbacks
pointed out in this section.

3 Model Overview

Limone has been shaped by a set of highly pragmatic software engineering con-
cerns, particularly, the desire to facilitate rapid mobile application development
under realistic environmental assumptions. While other models are willing to
rely on strong assumptions such as precise knowledge about the status of com-
munication links, we readily acknowledge the unpredictable and dynamic nature
of wireless ad hoc networks. As such, we do not presume to know when com-
munication links go up or down or the range of the wireless signals. The model
starts with the premise that a single round trip message exchange is possible
and, under this minimalist assumption, it offers a precise and reasonable set of
functional guarantees.

The willingness to accommodate a high degree of uncertainty about the phys-
ical state of the system raised important research questions regarding the choice

Mobile Agents Mobile Agents
C D

)
<

NCORANCS)

m

migration

Mobile Host Y ‘

‘ Mobile Host X ‘ wireless link ‘

Fig. 1. An overview of Limone. Agents are represented as ovals. Each agent owns a
local tuple space (LTS) and an acquaintance list (AQL). In this example, agent C is
shown as migrating to host Y without a change in its acquaintance list, which consists
of B and D. The dotted rectangle surrounding the tuples spaces of agents B, C, and D
highlight the tuples spaces that are accessible from C.

of coordination style and associated constructs. A minimalist philosophy, com-
bined with the goal of achieving high levels of performance, led to the emergence
of a novel model whose elements appear to support fundamental coordination
concerns. Central to the model is the organization of all coordination activities
around an acquaintance list that reflects the current local view of the global
operating context, and whose composition is subject to customizable admission
policies. From the application’s perspective, all interactions with other compo-
nents take place by referring to individual members of the acquaintance list.
All operations are content-based, but can be active or reactive. This perspective
on coordination, unique to Limone, offers an expressive model that enjoys an
effective implementation likely to transfer to small devices.

Limone assumes a computational model consisting of mobile devices (hosts)
that form ad hoc networks; mobile agents that reside on hosts but can migrate
from one host to another; and data owned by agents that is shared through
Linda-like tuple spaces. The relationship between hosts, agents, and tuple spaces
is shown in Figure 1. The features of Limone can be broadly divided into four
general categories: context management, explicit data access, reactive program-
ming, and code mobility.

Central to the notion of context management is an agent’s ability to discover
neighbors and to selectively decide on their relevance. Limone provides a beacon-
based discovery protocol that informs each agent of the arrival and departure
of other agents. Limone notifies each agent of its relevant neighbors by storing
them in individualized acquaintance lists, where relevance is determined by a
customizable engagement policy. Since each agent has different neighbors and
engagement policies, the context of each agent may differ from that of its peers.

Many existing coordination models for mobility in ad hoc environments pre-
sume a symmetric and transitive coordination relation among agents that is not
scalable. In such systems, every node must coordinate with every other node in
the group. As the number of nodes increase, the likelihood that some nodes move
out of range also increases. This results in frequent group reconfigurations, which
consumes valuable resources. By allowing an agent to restrict coordination to
only agents it is interested in, Limone scales better to dense ad hoc networks and

to devices with limited memory resources. For example, if an agent is surrounded
by hundreds of other agents but is interested only in two of them, it can con-
centrate on these two and ignore the rest, thus minimizing wasted memory and
processor cycles. This asymmetry increases the level of decoupling among agents
and results in a more robust coordination model that requires fewer assumptions
about the underlying network [7].

Limone accomplishes explicit data access in a manner similar to that em-
ployed by most other coordination models. Each agent owns a single tuple space
that provides operations for inserting and retrieving tuples. Explicit data ac-
cess spans at most two agents. The agent initiating the data access (called the
reference agent) must have the remote agent in its acquaintance list. Our ini-
tial approach was to allow the reference agent to perform operations on remote
agent’s tuple space. But upon further review, we decided for security and simplic-
ity reasons that the reference agent can only request a remote agent to perform
the operation for it. By doing this, each agent maintains full control over its
local data and can implement policies for rejecting and accepting requests from
remote agents. This is accomplished using a remote operation manager.

The remote operation manager controls which requests are performed and is
customizable. By default, it allows all requests to be performed. This manager
greatly enhances the expressiveness of Limone since it can be customized to per-
form relatively complex tasks such as those dealing with security. For example,
suppose each agent creates a public/private key pair and publishes its public key
in a “read-only” tuple. The read-only nature of this tuple can be enforced by the
remote operation manager by preventing all requests that would remove it from
executing. Using this read-only tuple, a certain degree of secrecy and authenti-
cation can be achieved. Suppose a reference agent wishes to place a tuple onto a
remote agent’s tuple space. To do this, it can encrypt the data first by its private
key, then by the remote agent’s public key. The remote agent knows that the
tuple is secret if it is able to decrypt it using its private key. It also knows that
the tuple was sent by the reference agent if it can decrypt it using the reference
agent’s public key. This example illustrates how the remote operation manager
can be configured to perform just one complex task, e.g., authentication. The
possibilities are endless.

The fact that Limone uses one tuple space within each agent is not limiting.
Limone can mimic the behavior of multiple tuple spaces, & la LIME, by utilizing
special fields within each tuple. This can be done without hurting time complex-
ity since the tuple space may be implemented as a hash table keyed by a field
in the tuple. Limone can also mimic a single shared tuple space per host, 4 la
MARS, by configuring the engagement policy so as to only include agents on
the local host in the acquaintance list.

Reactive programming constructs enable an agent to automatically respond
to the appearance of particular tuples in the tuple spaces of agents in its ac-
quaintance list. Two state variables within each agent, the reaction registry and
reaction list, support this behavior. A reference agent registers a reaction by
placing it in its reaction registry. Once registered, Limone automatically prop-

agates the reaction to all agents in the acquaintance list that satisfy certain
properties specified by the reaction (e.g., the agent’s name or location). At the
receiving end, the operation manager determines whether to accept the reaction.
If accepted, the reaction is placed into the reaction list, which holds the reactions
that apply to the local tuple space.

When the tuple space contains a tuple satisfying the trigger for a reaction
in the reaction list, the agent that registered the reaction is sent a notification
consisting of a copy of the tuple and a value identifying which reaction was fired.
If this agent receives this notification, it executes the code associated with the
reaction atomically. This mechanism, originally introduced in Mobile UNITY [g],
is distinct from that employed in traditional publish/subscribe systems in that
it reacts to state properties rather than to data operations. For instance, when
a new agent is added to the acquaintance list, its tuples may trigger reactions
regardless of whether the new agent performed any operations.

Code mobility is supported in Limone by allowing agents to migrate from
one host to another. When an agent migrates, Limone automatically updates
its context and reactions. There are many benefits to allowing an agent to mi-
grate. For example, if a particular host has a large amount of data, an agent
that needs access to it over an extended period of time can relocate to the host
holding the data and thus have reliable and efficient access to it despite frequent
disconnection among hosts. Another example of agent mobility is software up-
date deployment. Suppose an agent is performing a certain task and a developer
creates a new agent that can perform the task more efficiently. The old agent can
be designed to shutdown when the new agent arrives. Thus, simply having the
new agent migrate to the same host as the old agent updates the application.
To date, such updates are common practice on the Internet. However, agent
migration promises to be even more beneficial in the mobile setting.

4 Design

Limone provides a runtime environment for agents via the Limone Server, a
software layer between the agent and the underlying operating system. By using
different ports, multiple Limone servers may operate on a single host. However,
for the sake of simplicity, we will talk as if each host were restricted to have a
single Limone server.

An application uses Limone by interacting with an agent. Each agent con-
tains a tuple space, acquaintance list, reaction registry, reaction list, and oper-
ation manager. The overall structure of Limone is shown in Figure 2. An agent
allows the application to customize its profile, engagement policy, and operation
manager. An agent’s profile is a set of objects that describe its properties. Its en-
gagement policy specifies which agents are relevant based on their profiles. The
operation manager specifies which remote operation requests are accepted. This
section describes how Limone fulfills its responsibilities and is organized around
the key elements of the run-time environment, i.e., agent discovery, management,
reactions, and agent mobility.

‘ Agent ‘ ‘ Agent ‘

3 !

Agent-specific information Agent-specific information

Reaction
Registry

Reaction
Registry

Reaction
List

Reaction

Tuple
List

Space

<[Tuple
Space

‘ Operation Manager ‘ ‘ Operation Manager ‘

! '

‘ Limone Server ‘

:

‘ Host ‘

Fig. 2. The overall structure of Limone.

Discovery Mechanism. Since network connectivity between hosts in ad hoc
networks is dynamic, Limone provides a discovery protocol based on beacons to
allow an agent to discover the arrival and departure of other agents.

The beaconing mechanism is the most costly construct in Limone because
it requires periodic broadcasts that consume a significant amount of network
bandwidth, processor resources, and battery power. Each beacon contains a pro-
file for each agent running on top of the particular Limone server. A profile is a
collection of triples each consisting of a property name, type, and value. The two
system-defined entries include the host on which the agent resides and a unique
agent identifier. Additional entries can be added by the application. When the
Limone server receives a beacon, it forwards it to each of its agents.

When an agent receives a beacon, it passes the profiles within it to its acquain-
tance handler . The acquaintance handler uses the agent’s engagement policy to
decide which profiles are of interest, and places them in the acquaintance list. If a
particular agent’s profile is already in the list, the acquaintance handler ensures
that it is up to date and that it still satisfies the engagement policy.

Once an agent’s profile is added to the acquaintance list, the acquaintance
handler continuously monitors the beacons for the profile. If it is not received for
an application-customizable period of time, the acquaintance handler removes
the profile from the acquaintance list.

The acquaintance list, shown in Figure 3, contains a set of agent profiles rep-
resenting the agents within range that have satisfied the engagement policy. The
addition of a profile into the acquaintance list signifies an engagement between
the reference agent and the agent represented by the profile. Once the reference
agent has engaged with another agent, it gradually propagates its relevant reac-
tive patterns (the non-callback function portion of the reaction) to the remote
agent. While the addition of the profile to the acquaintance list is done atomi-
cally, the propagation of reactive patterns is gradual, and thus does not require
a distributed transaction.

The removal of a remote agent’s profile from the acquaintance list signifies
disengagement between the reference agent and the remote agent. When this

10

ABSTRACT STATE: A set of profiles, {p1,p2, ...}

INTERFACE SPECIFICATION:

boolean contains(AgentlD alD) — Returns true if the list contains a profile that
has the specified AgentID.

Profile[] getApplicableAgents(ProfileSelector[] pss) — Returns all of the profiles
within the list that match any of the specified profile selectors.

Fig. 3. Acquaintance list.

occurs, the reference agent removes all the remote agent’s reactive patterns from
its reaction list. The removal of the profile from the acquaintance list and the
reactive patterns from the reaction list is performed atomically, which is possible
because it is done locally.

Tuple Space Management. All application data is stored in individually
owned tuple spaces. Each contains a set of tuples. Limone tuples contain data
fields distinguished by name and store user-defined objects and their types. The
ordered list of fields characterizing tuples in Linda is replaced in Limone by
unordered collections of named fields. This results in a more expressive pattern
matching mechanism that can handle situations in which a tuple’s arity is not
known in advance. For example, in the universal remote application, the following
may represent a tuple created by the remote destined for a device:

tuple{(“type”, String, “command”),
(“device ID”, String, “CD Player”),
(“instruction”, String, “play”)}

Agents use templates to access tuples in the tuple space. A template is a
collection of named constraints, each defining a name and a predicate over the
field type and value called the constraint function. A template matches a tuple
if each constraint within the template has a matching field in the tuple. A con-
straint matches a field if the field’s name, type, and value satisfies the constraint
function. For example, the following template matches the message tuple give
above:

template{(“type”, String, valEql(“command”))}
(“device ID", String, valEql(“CD Player”))}?

Notice that the tuple may contain more fields than the template has constraints.
As long as each constraint in the template is satisfied by a field in the tuple, the
tuple matches the template. This powerful style of pattern matching provides
a higher degree of decoupling since it does not require prior knowledge of the
ordering of fields within a tuple, or its arity, to create a template for it.

2 yalEql(p) is a constraint function that returns true if the value within the field is
equal to p.

11

INTERFACE SPECIFICATION:

void out(Tuple t) — Places a tuple, t, into the tuple space.

Tuple rd(Template template) — Blocks until a tuple matching the template is
found within the tuple space. Returns a copy when found.

Tuple rdp(Template template) — Returns a tuple from within the tuple space that
matches the template, or ¢ if none is found.

Tuple[] rdg(Template template) — Blocks until a tuple matching the template is
found within the tuple space. When found, a copy of all matching tuples are
returned.

Tuple[] rdgp(Template template) — Returns all tuples from within the tuple space
that match the template, or £ none is found.

Tuple in(Template template) — Blocks until a tuple matching the template is
found within the tuple space. When found, the tuple is removed and returned.

Tuple inp(Template template) — Removes and returns a tuple from within the
tuple space that matches the template, or € if none is found.

Tuple[] ing(Template template) — Blocks until a tuple matching the template is
found within the tuple space. When found, all matching tuples are removed
and returned.

Tuple[] ingp(Template template) — Removes and returns all tuples from within
the tuple space that match the template, or € if none is found.

Fig. 4. Operations on the local tuple space.

Local Tuple Space Operations. The operations an agent can perform on
its local tuple space are shown in Figure 4. The out operation places a tuple
into the tuple space. The operations in and rd block until a tuple matching the
template appears in the tuple space. When this occurs, in removes and returns
the tuple, while rd returns a copy without removing it. The operations inp and
rdp are the same as in and rd except they do not block. If no matching tuple
exists within the tuple space, ¢ is returned. The operations ing and rdg are
similar to in and rd except they find and return all matching tuples within the
tuple space. Similarly, ingp and rdgp are identical to ing and rdg except they
do not block. If they do not find a matching tuple, ¢ is returned. All of these
operations are performed atomically, which can be guaranteed without a costly
distributed transaction because they are performed locally on a single agent.

Remote Tuple Space Operations. To allow for inter-agent coordination,
an agent can request a remote agent to perform an operation on their tuple
space. To do this, Limone provides remote operations out, inp, rdp, ingp, and
rdgp, as shown in Figure 5. These methods differ from the local operations in
that they require an AgentLocation parameter that specifies which agent should
perform the operation. When one of these operations is executed, the agent
on which it is executed sends a request to the remote agent specified by the
AgentLocation, sets a timer, and remains blocked till a response is received or
the timer times out. When the remote agent receives the request, it passes it to
the operation manager, which may reject or approve it. If rejected, an exception
is returned to allow the initiating agent to distinguish between a rejection and

12

INTERFACE SPECIFICATION:

void out(AgentLocation loc, Tuple t) — Asks the agent located at loc to place a
tuple in its tuple space.

Tuple rdp(AgentLocation loc, Template template) — Returns a tuple matching
the template from within the tuple space of the agent located at loc, or ¢ if
none is found or the operation times out.

Tuple[] rdgp(AgentLocation loc, Template template) — Returns all tuples
matching the template from within the tuple space of the agent located at loc,
or ¢ if none is found or the operation times out.

Tuple inp(AgentLocation loc, Template template) — Removes and returns a
tuple matching the template from within the tuple space of the agent located
at loc, or ¢ if none is found or the operation times out.

Tuple[] ingp(AgentLocation loc, Template template) — Removes and returns all
tuples matching the template from within the tuple space of the agent located
at loc, or ¢ if none is found or the operation times out.

Fig. 5. Operations on a remote tuple space.

a communication failure. If accepted, the operation is performed atomically on
the remote agent, and the results are sent back to the initiating agent. The
timer is necessary to prevent deadlock due to message loss. If the request or
response is lost, the operation will time-out and return €. To resolve the case
when an operation times out while the response is still in transit, each request
is enumerated, and the remote agent includes this value in its response.

Reaction Mechanism. Limone reactions enable an agent to inform other
agents within its acquaintance list that it is interested in tuples that match a
particular template. A reaction contains an application-defined call-back func-
tion that is executed by the agent that created it when a tuple that matches the
reaction’s template appears in a tuple space it is registered on. Reactions fit par-
ticularly well with ad hoc networks because they provide an asynchronous form
of communication between agents by transferring the responsibility of searching
for a tuple from one agent to another.

A reaction consists of a reactive pattern and a call-back function. The reactive
pattern contains a template that indicates which tuples trigger it and a list of
profile selectors that determine which agents the reaction should be propagated
to. The call-back function executes when the reaction fires in response to the
presence of a tuple matching its template within the LTS it is registered on. The
firing of a reaction consists of sending back to the issuing agent a copy of the
tuple that triggered the reaction. Since message loss can occur at any time, the
message sent to the issuing agent may be lost, meaning there is no guarantee that
a reaction will fire even if a tuple matching the reactive pattern is found. If the
issuing agent receives the message tuple, it will execute the reaction’s call-back
function atomically. To prevent deadlock, the call-back function cannot perform
blocking operations.

The list of profile selectors within the reactive pattern determines where to
propagate the reactive pattern. Implementation-wise, a profile selector is a tem-

13

ABSTRACT STATE: — A set of reactions, {r,...}

INTERFACE SPECIFICATION:

ReactionlD addReaction(Reaction rxn)— Adds a reaction to the reaction registry
and returns the reaction’s ReactionID.

Reaction removeReaction(ReactionID rID) — Removes and returns the reaction
with the specified ReactionID from the reaction registry or ¢ if no reaction
matching the ReactionID exists in the reaction registry.

Reaction get(ReactionID rID) — Retrieves the reaction with the specified
ReactionID from the reaction registry or ¢ if no reaction matching the
ReactionlD exists in the reaction registry.

Reaction get(Profile profile) — Retrieves all reactions containing profiles that
match the given profile or ¢ if no reaction matches.

Fig. 6. Reaction Registry.

plate while a profile is a tuple. They are subject to the same pattern matching
mechanism but are functionally different because profiles are not placed in tuple
spaces. A reaction’s reactive pattern propagates to a remote agent if the remote
agent’s profile matches any of the reactive pattern’s profile selectors. Multiple
profile selectors are used to lend the developer greater flexibility in specifying
a reaction’s domain. For example, returning to our example application, a con-
trollable device would have the following profile:

profile{(“type”, String, “Device”)}

and a reaction created by the universal remote control would contain the follow-
ing profile selector to restrict its propagation to device agents:

profile selector{({“type”, String, valEql(“Device”))}

In this case the reactive pattern will propagate to any agent whose profile
contains a property called “type,” with a String value equal to “Device.”

Reactions may be of two types: ONCE or ONCE_PER_TUPLE. The type of
the reaction determines how long it remains active once registered on a tuple
space. A ONCE reaction fires once on each tuple space it is registered on and
automatically deregisters itself after firing. When a ONCE reaction fires and the
reference agent receives the resulting tuple(s), it deregisters the reaction from
all other agents, preventing the reaction from firing later. If a ONCE reaction
fires several times simultaneously on different tuple spaces, the reference agent
chooses one of the results non-deterministically and discards the rest. This does
not result in data loss because no tuples were removed. ONCE_PER_TUPLE
reactions remain registered after firing, thus firing once for each matching tu-
ple. These reactions are deregistered at the agent’s request or when network
connectivity to the agent is lost. To keep Limone as lightweight as possible, no
history is maintained regarding where reactions were registered. Thus, if network
connectivity breaks and later reforms, the formerly registered reactions will be
re-registered and will fire again.

14

ABSTRACT STATE: — A set of reactive patterns, {rp1,rp2,...}

INTERFACE SPECIFICATION:

boolean addReactivePattern(ReactivePattern rp) — Adds a reactive pattern to the
reaction list, returns true if it was successfully added.

void clear() — Clears the reaction list by removing all reactive patterns within it.

ReactivePattern[] getApplicablePatterns(Tuple tuple) — Retrieves all of the
reactive patterns within the list that should fire on the specified tuple.

void removeReactivePattern(ReactivePattern rp) — Removes the specified reactive
pattern from the list if it is in the list.

void removeReactivePatterns(AgentlD alD) — Removes all reactive patterns from
the list that were registered by the agent with the specified AgentID.

Fig. 7. Reaction List.

Two additional state components, the reaction registry and reaction list, are
required for the reaction mechanism. The reaction registry, shown in Figure 6,
holds all reactions created and registered by the reference agent. An agent uses
its reaction registry to determine which reactions should be propagated following
an engagement and to obtain a reaction’s call-back function when a reaction fires.

The reaction list, shown in Figure 7, contains the reactive patterns regis-
tered on the reference agent’s tuple space. The reactive patterns within this list
may come from any agent within communication range, including agents not
in the acquaintance list. Thus, to maintain the validity of the reaction list, the
acquaintance handler notifies its agent when any agent moves out of communi-
cation range, not just the agents within its acquaintance list. The reaction list
determines which reactions should fire when a tuple is placed into the local tuple
space or when a reactive pattern is added.

Agent Mobility. Coordination within Limone is based on the logical mo-
bility of agents and physical mobility of hosts. Agents are logically mobile since
they can migrate from one host to another. Agent mobility is accomplished us-
ing pCode [9]. pCode provides primitives to support light-weight mobility pre-
serving code and state. Of particular interest is the pCodeServer and mobile
agent. A mobile agent maintains a reference to a uCodeServer and provides a
go(String destination) method that moves the agent’s code and data state to
the destination. The thread state of the agent is not preserved because doing
so would require modification to the Java virtual machine, limiting Limone to
proprietary interpreters. Thus, after an agent migrates to a new host, it will start
fresh with its variables initialized to the values they were prior to migration.

Limone cooperates with pCode by running a pCodeServer alongside each
Limone Server and having the Limone agent extend pAgent. By extending
nAgent, the Limone agent inherits the go(String destination) method. How-
ever, Limone abstracts this into a migrate (HostID hlD) method that moves
the agent to the destination host by translating the HostID to the string ac-
cepted by pCode. Just prior to migration, the agent first deregisters all of its

15

Model Lines of Code|Time (ms)
Limone 250 50.3
LIME 170 73.6
Raw Sockets 695 44.6

Fig. 8. Application code size and round-trip message passing time using reactions as
a trigger, averaged over 100 rounds.

reactive patterns from remote agents, and removes its profile from the beacons.
Once on the new host, the agent resumes the broadcasting of its beacons. This
allows remote agents to re-engage with the agent at its new location.

5 Evaluation

A prototype implementation of Limone has been developed using Java. The
prototype strictly adheres to the model given in Section 3, where each construct
is a distinct object that implements the interface and behavior described in
Section 4.

To use Limone, a Limone Server must be created. The application can cus-
tomize a variety of Limone Server attributes including the communication port
and single-cast protocol. In our current implementation, the two protocols sup-
ported are TCP and UDP. By supporting either protocol, our implementation
functions on small devices that cannot support the overhead of TCP. However,
a Limone Server can only communicate with other Limone Servers that use the
same protocol. The Limone Server listens for incoming messages and beacons.
It is also for periodically broadcasting beacons, which contain the profile of all
agents residing on it.

Once a Limone Server has been created, the application can load its agents
onto the server. This can either be done by calling loadAgent(...) on the
Limone Server, or by using a special Launcher object that communicates to the
server through its single-cast port. The Launcher allows new agents to be loaded
onto the Limone Server at any time, possibly from a remote device.

As a testament to how lightweight Limone is, its jar file is 111.7KB. To
analyze the performance of Limone, we calculated the round trip time for a
tuple containing eight bytes of data to be pulled onto a remote agent and back
using reactions as triggers. The test was performed using two 750MHz laptops
running Java 1.4.1 in 802.11b ad hoc mode with a one second beaconing period.
The laptops were located in a “clean room” environment where the laptops are
stationary and sitting next to each other. To compare Limone’s performance, we
also performed the same operation using LIME and raw TCP sockets. Averaged
over 100 rounds, the results of our tests are shown in Figure 8. The results
show that Limone adds some overhead over raw sockets, but not as much as
LIME. Interestingly, while Limone decreases the amount of code the application

16

! hoDevices In Range

There are currently no devices
in range.

N\
e
3
%)
&

_— i
Al)
'
-
(<]
—

Fig.9. The Universal Remote (a) at start-up before finding any devices, (b) after
finding several available devices, and (c) displaying help for the selected device

developer must write, it still requires more code than LiME. This is due to
Limone’s more expressive pattern matching mechanism and engagement policy.

6 Sample Application

This section presents the universal remote control application we developed using
Limone. Limone is ideal since it automatically discovers all controllable devices
within range of the remote control, allows the devices’ state to be shared amongst
multiple remotes by allowing them to access the same tuples, and is lightweight
enough to run on embedded devices such as electrical appliances.

When the Universal Remote is started, it briefly displays the notice shown in
Figure 9(a) while it finds devices in range. As soon as it finds the first device in
range, it begins displaying the devices in a tabbed list, as shown in Figure 9(b).
Devices that go in or out of range are added to or removed from the list of
tabs, ensuring that users cannot control devices that are no longer available. In
addition to the controls for each device, a fixed row of controls is available along
the bottom of the window to scroll the display, show or hide the grid, edit button
placement, or show context-sensitive help (as shown in Figure 9(c)).

Each controllable device runs a Limone server and has an associated agent.
These agents insert information about the device into their local tuple space:
namely, the advertised list of controls (buttons, sliders, etc.); the “help text”
associated with each of these controls; and the current state of each control.

In order to further simplify the creation of device agents, we implemented
a GenericDeviceAgent class as well as a DeviceDefinition interface. The
GenericDeviceAgent is a Limone agent that accepts any DeviceDefinition
interface as a plug-in; this interface exposes information about the device (such
as its advertised controls) to the GenericDeviceAgent as well as exposing spe-
cific reactions (i.e., pressed buttons or moved sliders) to the device. This allows
the device agent to be implemented with little to no knowledge of Limone.

17

As an example, we simulated a remotely-controllable stereo by writing a de-
vice agent to control Winamp. This required implementing the eleven meth-
ods in DeviceDefinition interface in the WinampAgent class, which took
about 250 lines of code and about an hour to write. The agent is started
by starting a Limone server on the computer hosting Winamp, loading a
GenericDeviceAgent, and instructing it to interface with the WinampAgent
class.

The GenericDeviceAgent instantiates a WinampAgent instance and
immediately calls its getID(), getName(), getIcon(), getFunctions(),
getHelpText(), getAdvertisement(), and getState() methods in order to
gather basic information about the device. (Though these functions are numer-
ous, they are trivial to implement, since they only return fixed information like
the device’s name and a list of its functions.) Based on this information, the
GenericDeviceAgent inserts the appropriate tuples into its tuple space, which
the Universal Remote client can use to create its display.

When the Universal Remote client alters the state of a function (such as by
toggling a button), it creates an ActionTuple that describes the change and
inserts the tuple into the device’s local tuple space. The GenericDeviceAgent
reacts to this tuple and calls the reactToButton() or reactToSlider() method
on the WinampAgent to alert it to the action. The WinampAgent then handles
the change (such as by pausing the song if the pause button was toggled) and
passes any change to the device’s state (such as that the pause button is now
lit) to the changeState() method on the GenericDeviceAgent.

The GenericDeviceAgent places this information into a StateTuple and
inserts this tuple into its local tuple space. The Universal Remote client reacts
to this StateTuple and updates its display accordingly.

Notably, aside from the SWT graphics library, no third-party libraries were
needed in the implementation of the Universal Remote client, and no third-party
libraries were needed for the implementation of the agents aside from libraries
specific to each device (e.g., an X10 communication library for the X10 agent).
Further, since Limone uses a small subset of the Java API, both the client and
server could be run on a device with limited Java support, like a PocketPC. (The
Universal Remote client was in fact initially designed to run on a PocketPC, but
its performance in graphics-heavy applications like the remote turned out to be
inadequate for the task.)

7 Conclusions

Limone is a lightweight but highly expressive coordination model and mid-
dleware tailored to meet the needs of developers concerned with mobile
applications over ad hoc networks. Central to Limone is the management of
context-awareness in a highly dynamic setting. At first glance, an agent’s context
is a subset of the agents in direct contact as they appear in the acquaintance
list. At this level, the context is transparently managed and subject to policies
imposed by each agent in response to its own needs at a particular point in

18

time. Explicit manipulation of the context is provided by operations that access
data owned by agents in the acquaintance list. The agent retains full control
of the local tuple space since all remote operations are simply requests to
perform a particular operation for a remote agent and are subject to policies
specified by the operation manager. This high degree of security encourages
a collaborative type of interaction among agents. An innovative adaptation of
the reaction construct facilitates rapid response to environmental changes. As
supported by evidence to date, the result of this unique combination of context
management features is a coordination model and middleware that promise to
reduce development time for mobile applications.

Acknowledgements. This research was supported in part by the Na-
tional Science Foundation under grant No. CCR-9970939 and by the Office
of Naval Research under MURI Research Contract N00014-02-1-0715. Any
opinions, findings, and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views of the research
SpONSOrs.

References

1. Gelernter, D.: Generative communication in Linda. ACM Trans. on Prog. Languages
and Systems 7 (1985) 80-112

2. Englemore, R., Morgan, T.: Blackboard systems. Addison-Wesley Publishing Com-
pany (1988)

3. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Technical Report 89-86 (1989)

4. Cugola, G., Nitto, E.D., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering 27 (2001) 827-850

5. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4 (2000) 26-35

6. Murphy, A., Picco, G., Roman, G.C.: LIME: A middleware for physical and logical
mobility. In: Proc. of the 21°* Int’l. Conf. on Distributed Computing Systems. (2001)
524-533

7. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mo-
bile environments. In: Proc. of the 10" Int’l. Symp. on Foundations of Software
Engineering. (2002)

8. McCann, P.J., Roman, G.C.: Compositional programming abstractions for mobile
computing. IEEE Transactions on Software Engineering 24 (1998) 97-110

9. Picco, G.P.: code: A lightweight and flexible mobile code toolkit. In Rothermel, K.,
Hohl, F., eds.: Proceedings of the 2nd International Workshop on Mobile Agents.
Lecture Notes in Computer Science, Berlin, Germany, Springer-Verlag (1998) 160—
171

	A Lightweight Coordination Middleware for Mobile Computing
	Recommended Citation
	A Lightweight Coordination Middleware for Mobile Computing

	tmp.1471023011.pdf.pceaL

	Abstract: Abstract: This paper presents Limone, a new coordination model that

facilitates rapid application development over ad hoc networks

consisting of logically mobile agents and physically mobile hosts.

Limone assumes an agent-centric perspective on coordination by

allowing each agent to define its own acquaintance policy and by

limiting all agent-initiated interactions to agents that satisfy

the policy. Agents that satisfy this acquaintance policy are

stored in an acquaintance list, which is automatically maintained

by the system. This asymmetric style of coordination allows each

agent to focus only on relevant peers. Coordination activities are

restricted solely to tuple spaces owned by agents in the

acquaintance list. Limone tailors Linda-like primitives for

mobile environments by eliminating remote blocking and complex

group operations. It also provides timeouts for all distributed

operations and reactions, which enable asynchronous communication

with agents in the acquaintance list. Finally, Limone minimizes

the granularity of atomic operations and the set of assumptions

about the environment. In this paper we introduce Limone, explain

its key features, and explore its capabilities as a coordination

model. A universal remote control implementation using Limone

provides a concrete illustration of the model and the applications

it can support.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: October 2, 2003
	Author: Authors: Fok, Chien-Liang; Roman, Gruia-Catalin; Hackmann, Gregory
	Title: A Lightweight Coordination Middleware for Mobile Computing
	ReportNumber: 2003-67
	DepartmentName: Department of Computer Science & Engineering

