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ABSTRACT OF THE DISSERTATION 

Application of Finite-State Wake Models to 

Rotors Re-entering Their Own Wake 

by 

Michael Morrow 

Doctor of Philosophy in Mechanical Engineering 

Washington University in St. Louis, 2024 

Professor David A. Peters, Chair 

This paper details the development of a finite-state, dynamic wake model for the purpose of 

modeling a helicopter rotor reentering its own wake. This model stems directly from both the 

Peters-Morillo wake model to determine the velocity field on and above the helicopter rotor 

and the Peters-Fei model to compute the velocity field below the rotor. The specific case of 

nonzero net thrust was evaluated under assumptions of axial flow and potential flow theory. 

Results consist of computations of the inflow velocity for this case, along with comparison to 

closed-form, potential flow solutions for validation. The finite-state model is shown to 

converge with the closed-form solutions up to 10 states prior to increasing divergence with an 

increasing number of states. 
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Chapter 1: Introduction 

1.1 Research Motivation 

Today, helicopter flight simulation programs are extremely important in the development 

of both current and future pilots, due to the variety of benefits simulation offer over direct 

machine usage (ease of access and cost, pilot and equipment safety, etc.). Simulation codes often 

include finite-state dynamic wake models that allow modeling of many aerodynamic interactions 

in real time. However, this type of modeling currently cannot accurately simulate the case in 

which a helicopter reenters its own wake (for example, when a helicopter is in hover or climb, 

then descends into its own wake). This is due to present finite-state wake modes only being able 

to handle the induced flow from the shed wake behind the helicopter. When the flow rate V is 

reversed to allow the wake to come back through the rotor, the finite-state equations become 

unstable because the induced flow from the wake is now growing rather than decaying. 

Previous work with inflow models that preceded this paper began with the Pitt-Peters 

model [3], which developed an unsteady dynamic theory for helicopter rotor systems based on 

Mangler’s actuator-disc theory. This model describes a perturbed induced inflow and pressure 

distribution in terms of ellipsoidal coordinates and the Legendre functions of the first and second 

kind. 

However, Peters and Pitt were only able to obtain a preliminary wake description of 

uniform flow due to the fact that they only had first harmonics and no more than two radial shape 

functions. Improved accuracy of the model was realized through development of a higher 

harmonic theory by Peters and He [4]. Specifically, the Peters-He model extended the pressure 

distribution to include higher harmonic terms and an arbitrary number of radial functions for 
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each harmonic. The model assumes a superposition of pressure and excludes inflow models with 

no induced velocity on the disc, with concurrent results validated by wind tunnel data. 

Later research into improvement into dynamic wake modeling saw Peters and Cao [5] 

look to find flow off the rotor disc in addition to and on the disc. They determined that a second 

set of wake states must exist for flow away from the disc, but they were unable to determine 

these states. Fortunately, Peters and Morillo [6] discovered that this second set could be solved 

rigorously without the need for the assumption of superposition of pressures from the Pitt-Peters 

model. This development was augmented by Hsieh [7] who added the singular potentials not 

found in [6]. Overall, Peters, Morillo, and Hsieh were able to solve for the velocity potential on 

the rotor disc and the velocity field anywhere above the disc. This gave all three components of 

velocity due to pressure across the disk or mass sources on the disk. 

Peters and Fei [8] then completed the solution for the velocity field around the rotor disc 

by determining the induced flow below the rotor disc (including within the rotor wake), by use of 

the adjoint theorem, in which the adjoint states must be solved by time-marching in backward 

time in order to find the flow below the disk. These models do allow the flow freestream to vary 

during the simulation, but it is not allowed to reverse. When the freestream was changed to 

attempt reversal, it only sheds new vorticity into the new trailing wake and does not allow for 

reentry into the existing wake. 

The primary purpose of this work is to use 3D dynamic wake modeling to first simulate 

the inflow case of a helicopter in climb/hover, then apply the same model to the helicopter 

descending and reentering back into its wake. This work is a direct addition to that of the Peters-

Fei model (which is an addition onto the Peters-Morillo model). Closed-form equations of inflow 

pressure and velocity will be found for the simple case of nonzero net thrust, and these will then 
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be used to compare with dynamic modeling. The purpose is to then develop modifications to 

dynamic inflow to allow rotor reentry into the wake and then compare with the closed-form 

results. 

1.2 Research Approach 

The initial part of the work was to solve closed-form solutions to inflow pressure and 

velocity about the centerline of the helicopter rotor, beginning with the Potential Flow equations. 

From these equations, the pressure throughout the flow field surrounding the rotor is solved as a 

summation of the product of normalized Legendre functions of the 1st and 2nd kinds –– and a 

general sinusoidal solution. This distribution corresponds to the simplest pressure of the Peters-

He dynamic wake model. The pressure is then evaluated for the case of positive net thrust, 

thereby resulting in a specific closed-form solution. This is followed by finding the solution for 

inflow velocity for the same case. Unlike the resultant inflow pressure, the inflow velocity is 

dependent on time and the freestream velocity. To allow for the wake to reverse back into the 

rotor at a given time, a negative freestream velocity is applied to the inflow velocity solution. 

The second part of the work involves coding the finite-state dynamic wake model for this 

simplest case of positive net thrust. Unlike the previously mentioned method, finite-state wake  

modeling does not result in an exact solution. Rather, it gives an approximate solution for inflow 

pressures and velocities based on a Galerkin approach. In theory, as more and more states are 

included in the Galerkin expansion, the solution will converge to the exact solution. 
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Chapter 2: Potential Flow Solutions in Closed-Form 

2.1 Fluid Dynamics Equations 

Within this work, a rotor disc is surrounded by a Newtonian fluid which is governed by 

the laws of conservation of mass, conservation of momentum, and conservation of energy. 

Additionally, the no-slip boundary condition at the solid-fluid interface of the rotor and fluid is in 

effect [2]. The conservation of mass is given as 

 𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗�𝑡) = 0  

 

 

  (2.1) 

where ρ is the fluid density and �⃗�𝑡 is the total velocity vector of the fluid. It is assumed that the 

helicopter is flying at standard atmospheric conditions, thereby resulting in the flow to be 

inviscid and incompressible. Equation (2.1) then reduces to 

∇⃗⃗⃗ ∙ �⃗�𝑡 = 0 
 

(2.2) 

The conservation of momentum, described by the Navier-Stokes equations, for a viscous fluid is 

𝜌 (
𝜕�⃗�𝑡
𝜕𝑡

+ �⃗�𝑡 ∙ ∇⃗⃗⃗�⃗�𝑡) = −∇⃗⃗⃗𝑝 + ∇⃗⃗⃗(𝜆 ̅∇⃗⃗⃗ ∙ �⃗�𝑡) + �̅�[∇⃗⃗⃗(∇⃗⃗⃗ ∙ �⃗�𝑡) + (∇⃗⃗⃗ ∙ ∇⃗⃗⃗)�⃗�𝑡] + 𝜌𝑓 

 

 

(2.3) 

where p is the pressure, 𝜆 ̅ is the second viscosity coefficient, �̅� is the dynamic viscosity 

coefficient, and 𝑓 represents external forces. Since the flow is assumed to be incompressible and 

inviscid, and assuming there are no significant body forces on the disc, equation (2.3) reduces to  

𝜌 (
𝜕�⃗�𝑡
𝜕𝑡

+ �⃗�𝑡 ∙ ∇⃗⃗⃗�⃗�𝑡) = −∇⃗⃗⃗𝑝 

 

 

(2.4) 

Lastly, the conservation of energy can be expressed as 

𝜌 (
𝜕𝑒

𝜕𝑡
+ �⃗�𝑡 ∙ ∇⃗⃗⃗𝑒) = −∇⃗⃗⃗𝑝 ∙ �⃗�𝑡 + ∇⃗⃗⃗(𝑘∇⃗⃗⃗𝑇) + �̅� 

 

(2.5) 
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where e is the internal energy per unit mass, k is the thermal conductivity of the fluid, T is the 

fluid temperature, and �̅� is the viscous dissipation function. Given that ρ and �̅� are constant, the 

conservation of mass and momentum equations become uncoupled from the conservation of 

energy equation. Assuming adiabatic flow, the energy equation can be neglected. For this work, 

the velocity is considered to be a linearized equation: 

�⃗�𝑡 = 𝑉∞𝜁 + 𝛿�⃗� 

 

(2.6) 

where 𝜁 is a unit vector along the streamline of the flow, 𝑉∞ is the steady freestream velocity, 

and the perturbation velocity, 𝛿�⃗�, is defined as  

𝛿�⃗� = 𝛿�⃗�𝑥𝑖 + 𝛿�⃗�𝑦𝑗 + 𝛿�⃗�𝑧 �⃗⃗� 

 

(2.7) 

From Figure 2.1, the skew angle, χ, of the streamline is measured with respect to the positive z-

axis such that  

𝜁 = − sin(𝜒)𝑖 + cos(𝜒)�⃗⃗� 

 

(2.8) 

 

 

Figure 2.1. Streamline Coordinate System 
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The vectors 𝑖, 𝑗, and �⃗⃗� are in the x, y, and z directions, respectively. By substituting equation 

(2.6) into equations (2.2) and (2.4), while assuming 𝑉∞ is constant: 

∇⃗⃗⃗ ∙ 𝛿�⃗� = 0 

 

(2.9) 

𝜌
𝜕𝛿�⃗⃗⃗�

𝜕𝑡
+ 𝜌𝑉∞

𝜕𝛿�⃗⃗⃗�

𝜕𝜁
= −∇⃗⃗⃗𝑝 

 

(2.10) 

 

Nondimensionalization of all variables for length and velocity are done using the length scale of 

the rotor radius, R, the velocity scale, ΩR, and the mass scale associated with density, ρ. 

Additionally, the component of time is also nondimensionalized as 𝑡̅ = Ωt. The Laplacian 

operator ∇⃗⃗⃗ is redefined to represent the gradient with respect to the nondimensional coordinates. 

This nondimensionalization then leads to equations (2.9) and (2.10) to be  

∇⃗⃗⃗ ∙ �⃗� = 0 (2.11) 

 
𝜕�⃗�

𝜕𝑡̅
+ 𝑉

𝜕�⃗�

𝜕𝜁̅
= −∇⃗⃗⃗𝑃 

 

(2.12) 

where �⃗� = 𝛿�⃗�/ΩR, 𝑉 = 𝑉∞ /ΩR, 𝜁̅ = 𝜁/𝑅, and 𝑃 = 𝑝/𝜌Ω2𝑅2. 

2.2 Determination of Coordinate System 

 To begin the derivations of the inflow pressure and velocity distributions, an ellipsoidal 

coordinate system is chosen to allow the rotor disc to have a discontinuity in pressure across it. 

The pressure field in this coordinate system can then be used to find the surrounding velocity 

field. The rotor disk is therefore located at the discontinuity at η = 0. The discontinuity in the 

coordinate ν across the rotor allows a pressure discontinuity to model the rotor disc. It follows 

that the rotor centerline becomes the case of ν = 1 above the rotor and ν = -1 below the rotor. 
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Figure 2.2. Ellipsoidal Coordinate System 

𝑥 = −√1 − 𝜈2√1 + 𝜂2 cos𝛹 

 

𝑦 = √1 − 𝜈2√1 + 𝜂2 sin𝛹 

 

𝑧 = −𝜈𝜂 

 

 

 

(2.13) 

2.3 Pressure and Velocity Potentials 

As this work focuses on the case of axial flow, the skew angle χ is therefore zero, and the 

streamline is along the z-axis. Consequently, equation (2.12) becomes  

𝜕�⃗�

𝜕𝑡̅
+ 𝑉

𝜕�⃗�

𝜕𝑧
= −∇⃗⃗⃗𝑃 

 

(2.14) 

Assign v to be the gradient of a velocity potential θ. Then, then equations (2.11) and (2.14) 

become  

�⃗� = ∇⃗⃗⃗𝜃 (2.15) 

 

∇⃗⃗⃗. �⃗� = ∇⃗⃗⃗. ∇⃗⃗⃗𝜃 = 0 

 

(2.16) 

𝜕(∇⃗⃗⃗𝜃)

𝜕�̅�
+ 𝑉

𝜕(∇⃗⃗⃗𝜃)

𝑑𝑧
= −∇⃗⃗⃗𝑃  

 

(2.17) 
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By defining 𝛷 as equal to P and applying the divergence operation (equation (2.19a)) on the 

updated momentum equation, 𝛷 satisfies Laplace’s equation, as seen in equation (2.19b) below. 

Additionally, 𝛷 may also be defined as the pressure potential of the system. 

𝛷 = 𝑃 

 

(2.18) 

𝜕(∇⃗⃗⃗. ∇⃗⃗⃗𝜃)

𝜕𝑡
+ 𝑉

𝜕(∇⃗⃗⃗. ∇⃗⃗⃗𝜃)

𝑑𝑧
= −∇⃗⃗⃗. ∇⃗⃗⃗𝛷 

 

(2.19a)   

∇⃗⃗⃗. ∇⃗⃗⃗𝛷 = ∇⃗⃗⃗2𝛷 = 0 (2.19b) 

  

Laplace’s equation in ellipsoidal coordinates then takes the following form: 

𝜕

𝜕𝜈
[(1 − 𝜈2)

𝜕𝛷

𝜕𝜈
] +

𝜕

𝜕𝜂
[(1 + 𝜂2)

𝜕𝛷

𝜕𝜂
] +

𝜕

𝜕Ψ
[

(𝜈2 + 𝜂2)

(1 − 𝜈2)(1 + 𝜂2)

𝜕𝛷

𝜕𝛹
] = 0 

 

(2.20) 

To solve equation (2.20), separation of variables is used to rewrite the equation as three separate 

equations, with each one corresponding to one of the three ellipsoidal coordinates ν, η, and Ψ:  

𝜕2𝛷3
𝜕𝛹2

+𝑚2𝛷3 = 0 
(2.21a) 

 

𝜕

𝜕𝜈
[(1 − 𝜈2)

𝜕𝛷1
𝜕𝜈

] + [−
𝑚2

1 − 𝜈2
+ 𝑛(𝑛 + 1)]𝛷1 = 0 

 

 

(2.21b) 

𝜕

𝜕𝜂
[(1 + 𝜂2)

𝜕𝛷2
𝜕𝜈

] + [
𝑚2

1 + 𝜂2
− 𝑛(𝑛 + 1)]𝛷2 = 0 

 

 

(2.21c) 

where m and n are constants of separation. The resultant pressure potential, 𝛷, is then the product 

of the solutions to equations (2.21a-c): 

𝛷 = 𝛷(𝜈, 𝜂, 𝛹) = 𝛷1(𝜈)𝛷2(𝜂)𝛷3(𝛹) (2.22) 

 

The resulting pressure distribution is shown below: 
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𝛷 = 𝑃(𝜈, 𝜂, 𝛹) = −
1

2
∑ ∑ �̅�𝑛

𝑚(𝜈) 

∞

𝑛=𝑚+1

∞

𝑚=0

�̅�𝑛
𝑚(𝑖𝜂)[𝜏𝑛

𝑚𝑐𝑐𝑜𝑠(𝑚𝛹) + 𝜏𝑛
𝑚𝑠𝑠𝑖𝑛(𝑚𝛹)] 

 

 

(2.23) 

where �̅�𝑛
𝑚(𝜈) and �̅�𝑛

𝑚(𝑖𝜂) are the normalized Legendre functions of the first and second kind, 

and m takes value from 0, 1, 2, …,∞, and n is from m+1, m+2, …, ∞. The sine and cosine terms 

of the pressure potential in equation (2.23) can be composed as  

𝛷𝑛
𝑚𝑐(𝜈, 𝜂, 𝛹) = �̅�𝑛

𝑚(𝜈) �̅�𝑛
𝑚(𝑖𝜂)𝑐𝑜𝑠(𝑚𝛹) 

 

(2.24) 

𝛷𝑛
𝑚𝑠(𝜈, 𝜂, 𝛹) = �̅�𝑛

𝑚(𝜈)�̅�𝑛
𝑚(𝑖𝜂)𝑠𝑖𝑛(𝑚𝛹) 

 

(2.25) 

For the net thrust case, m = 0 and n  = 1 only; thus, the net thrust pressure distribution is 

𝑃 = −
1

2
�̅�1
0(𝜈)�̅�1

0(𝑖𝜂)[𝜏1
0𝑐𝑜𝑠(0)] 

 

𝑃 = −
√3𝜈

2
[1 − 𝜂 ∗ 𝑡𝑎𝑛−1 (

1

𝜂
)] 𝜏1

0 

 

 

 

 

 

(2.26) 

where 𝜏1
0 is a step function of the pressure. To ensure a unity maximum pressure magnitude at 

the rotor disc (η = 0), let 𝜏1
0 equal 

𝜏1
0 =

2

√3
 

Finally, by substituting z for η (along the centerline where ν equals either -1 for z > 0 or 1 for z < 

0), the pressure P is now 

𝑃 = −𝜈 [1 − 𝑧 ∗ 𝑡𝑎𝑛−1 (
1

𝑧
)] 

 

(2.27) 

or  

𝑃 = {
−1 + 𝑧 ∗ 𝑡𝑎𝑛−1 (

1

𝑧
) , 𝑧 < 0

1 − 𝑧 ∗ 𝑡𝑎𝑛−1 (
1

𝑧
) , 𝑧 > 0

 

 

 

(2.28) 
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2.4 Evolving Wake Velocity Distribution 

After determining the pressure distribution, the velocity distribution v can now be found 

by solving for both the particular solution, �⃗�𝑝, and homogeneous solution, �⃗�ℎ, of equation (2.14): 

𝑉
𝜕�⃗�𝑝

𝑑𝑧
= −

𝜕𝑃

𝜕𝑧
 

 

(2.29) 

  

𝜕�⃗�ℎ
𝑑𝑡̅

+ 𝑉
𝜕�⃗�ℎ
𝑑𝑧

= 0 
 

(2.30) 

 

The resulting solutions for �⃗�𝑝 and �⃗�ℎ are as follows: 

�⃗�𝑝(𝑧) = {
 
1

𝑉
[1 − 𝑧 ∗ 𝑡𝑎𝑛−1 (

1

𝑧
)] , 𝑧 < 0

 
1

𝑉
[1 + 𝑧 ∗ 𝑡𝑎𝑛−1 (

1

𝑧
)] , 𝑧 > 0

 

 

 

 

(2.31) 

�⃗�ℎ(𝑧, 𝑡̅) = {
−
1

𝑉
[1 − (𝑧 − 𝑉𝑡̅) ∗ 𝑡𝑎𝑛−1 (

1

𝑧 − 𝑉𝑡̅
)] , 𝑧 − 𝑉𝑡̅ < 0

−
1

𝑉
[1 + (𝑧 − 𝑉𝑡̅) ∗ 𝑡𝑎𝑛−1 (

1

𝑧 − 𝑉𝑡̅
)] , 𝑧 − 𝑉𝑡̅ > 0

 

 

 

 

(2.32) 

The velocity distribution of the flow is therefore the summation of the particular and 

homogeneous solutions: 

�⃗�(𝑧, 𝑡̅) =

{
 
 

 
 

1

𝑉
[(𝑧 − 𝑉𝑡̅) tan−1 (

1

𝑧 − 𝑉𝑡̅
) − 𝑧 tan−1 (

1

𝑧
)] , 𝑧 < 0,   𝑡̅ > 0

1

𝑉
[(𝑧 − 𝑉𝑡̅) tan−1 (

1

𝑧 − 𝑉𝑡̅
) + 𝑧 tan−1 (

1

𝑧
)] , 0 < 𝑧 < 𝑉𝑡̅,   𝑡̅ > 0

1

𝑉
[𝑧 tan−1 (

1

𝑧
) − (𝑧 − 𝑉𝑡̅) tan−1 (

1

𝑧 − 𝑉𝑡̅
)] , 𝑧 > 𝑉𝑡̅,   𝑡̅ > 0

 

 

 

 

(2.33) 

Plotting the above equation for the inflow velocity versus the distance perpendicular to the rotor 

disc along the centerline, z, over time will show the velocity present at the rotor disc to approach 

V and the maximum velocity downstream to approach 2V. The same plot is also a good 
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representation of the wake caused by the rotor, which grows further downstream as time 

progresses. 

2.5 Wake Reversal via Closed-Form Solutions 

 A modification to equation (2.33) can be made to allow the wake at a given time tstop to 

translate downstream and later reverse its direction to move back into the rotor disc as opposed 

to continue to grow. This simulates the act of the helicopter transitioning from climb to descent 

and the new wake, thus intermixing with the previous wake generated through climbing. The 

first change is to apply a sinusoidal transition of the freestream velocity V from +1 to -1 over a 

time π/k, thereby also making V time-dependent:  

𝑉(𝑡)̅ =

{
 
 

 
 

1,                               𝑡�̅�𝑡𝑜𝑝 < 𝑡̅ < 𝑡0̅

cos[𝑘(𝑡̅ − 𝑡0)],                      𝑡0̅ < 𝑡̅ < 𝑡�̅� +
𝜋

𝑘
                 

−1,                                      𝑡̅ > 𝑡�̅� +
𝜋

𝑘

 

 

 

 

(2.34) 

Given the freestream velocity is now a function of time, the distance the wake propagates can be 

found by taking the integral of V(𝑡̅) with respect to time (this distance was initially V*𝑡̅ in Eq. 24 

for the case of constant V(𝑡̅): 

𝑠(𝑡̅) = ∫ 𝑉(𝑡̅)
�̅�

�̅�𝑠𝑡𝑜𝑝
 d𝑡̅ 

 

𝑠(𝑡)̅ =

{
 
 

 
 

𝑡̅ − 𝑡�̅�𝑡𝑜𝑝,                  𝑡�̅�𝑡𝑜𝑝 < 𝑡̅ < 𝑡0̅
1

𝑘
sin[𝑘(𝑡̅ − 𝑡0̅)] + (𝑡̅ − 𝑡�̅�𝑡𝑜𝑝) , 𝑡0̅ < 𝑡̅ < 𝑡�̅� +

𝜋

𝑘
          

2𝑡0 − 𝑡�̅�𝑡𝑜𝑝 +
𝜋

𝑘
− 𝑡̅,           𝑡̅ > 𝑡�̅� +

𝜋

𝑘

 

 

 

 

(2.35) 

Replacing the V*𝑡̅ terms with s(𝑡̅) in equation (2.33) results in 
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�⃗�(𝑧, 𝑡̅) =

{
  
 

  
 (𝑧 − 𝑠(𝑡)̅) tan−1 (

1

𝑧 − 𝑠(𝑡̅)
) − 𝑧 tan−1 (

1

𝑧
) , 𝑧 < 0,   𝑡̅ > 𝑡�̅�𝑡𝑜𝑝

(𝑧 − 𝑠(𝑡)̅) tan−1 (
1

𝑧 − 𝑠(𝑡̅)
) + 𝑧 tan−1 (

1

𝑧
) , 0 < 𝑧 < 𝑠(𝑡̅),   𝑡̅ > 𝑡�̅�𝑡𝑜𝑝

𝑧 tan−1 (
1

𝑧
) − (𝑧 − 𝑠(𝑡̅)) tan−1 (

1

𝑧 − 𝑠(𝑡)̅
) , 𝑧 > 𝑠(𝑡)̅,   𝑡̅ > 𝑡�̅�𝑡𝑜𝑝

 

 

 

 

 

(2.36) 

To simplify equation (2.36), let n(z, 𝑡̅) denote the difference between z and s(𝑡̅): 

𝑛 = 𝑛(𝑧, 𝑡)̅ = 𝑧 − 𝑠(𝑡)̅ 

𝑛(𝑧, 𝑡̅) =

{
 
 

 
 

𝑧 − (𝑡̅ − 𝑡�̅�𝑡𝑜𝑝),                       𝑡�̅�𝑡𝑜𝑝 < 𝑡̅ < 𝑡0̅

𝑧 − {
1

𝑘
sin[𝑘(𝑡̅ − 𝑡0̅)] + (𝑡0̅ − 𝑡�̅�𝑡𝑜𝑝)},         𝑡0̅ < 𝑡̅ < 𝑡0̅ +

𝜋

𝑘
                         

𝑧 − (2𝑡0̅ − 𝑡�̅�𝑡𝑜𝑝 +
𝜋

𝑘
− 𝑡̅) ,          𝑡̅ > 𝑡0̅ +

𝜋

𝑘

 

 

 

 

(2.37) 

Then, the velocity distribution of the wake after time 𝑡̅stop becomes 

�⃗�(𝑧, 𝑡̅) =

{
 
 
 

 
 
 (𝑛 − 𝑡�̅�𝑡𝑜𝑝) tan

−1 (
1

𝑛 − 𝑡�̅�𝑡𝑜𝑝
) − 𝑛 tan−1 (

1

𝑛
) , 𝑛 < 0,   𝑡̅ > 𝑡�̅�𝑡𝑜𝑝

(𝑛 − 𝑡�̅�𝑡𝑜𝑝) tan
−1 (

1

𝑛 − 𝑡�̅�𝑡𝑜𝑝
) + 𝑛 tan−1 (

1

𝑛
) , 0 < 𝑛 < 𝑡�̅�𝑡𝑜𝑝,   𝑡̅ > 𝑡�̅�𝑡𝑜𝑝

𝑛 tan−1 (
1

𝑛
) − (𝑛 − 𝑡�̅�𝑡𝑜𝑝) tan

−1 (
1

𝑛 − �̅�𝑠𝑡𝑜𝑝
) , 𝑛 > 𝑡�̅�𝑡𝑜𝑝,   𝑡̅ > 𝑡�̅�𝑡𝑜𝑝

 

       (2.38) 

Notice that equations (2.33) and (2.38) bear a striking resemblance to one another; the 

transformation of z to n is completely equivalent with the applied transformation of 𝑡̅ to 𝑡̅stop as 

the reference time. This is because the homogeneous solution of the velocity –– as defined by 

Eq. (2.14) –– is any function of (z -V𝑡̅).  Thus, z and V𝑡̅ always appear in parallel for the 

homogeneous solution for the velocity distribution. 

Therefore, for any time prior to 𝑡̅stop, the wake velocity will follow the growth distribution 

described in equation (2.33), then follow the translation distribution described in equation (2.38) 

after time 𝑡̅stop. Note that this translation of the wake can be altered to either be strictly 
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downstream, reverse direction and begin to travel upstream back towards the rotor, or anything 

in between by changing the nature of V(𝑡̅). 

2.6 Results from the Closed-Form Solutions 

The following figure shows the pressure distribution across the rotor disc. It can be seen 

that the far-field upstream (z < 0) pressure approaches zero, coinciding with the atmospheric 

pressure of the ambient air. The pressure upstream of the disc then becomes increasingly 

negative, reaching a maximum in magnitude at the disc (z = 0). A pressure discontinuity then 

occurs at the rotor disc as the pressure jumps from negative to positive, with the magnitude 

remaining constant. Increasingly downstream of the rotor (z > 0), the pressure then decreases to 

zero.  

 

Figure 2.3. Closed-Form Pressure Distribution 

This result is consistent with the process in how helicopters use their main rotors to create lift by 

pulling in air above the rotor and pushing the same air beneath the rotor, thereby lifting itself 

upwards in accordance with Newton’s third law of motion. 
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Given the velocity distribution is not only a function of length z but also time t, plotting 

the velocity along the centerline of the rotor disc will change over time, either with the growth of 

the wake downstream as in equation (2.23) or the translation of a wake of constant size 

correspondent to equation (2.38). The following figures follow a specific process of the velocity 

in which the rotor disc “turns on” at 𝑡̅ = 0 and “shuts off” at 𝑡̅ = 5 (time step = 0.1). The red line 

labelled “Time” is indicative of both the current time 𝑡̅ as well as the end of the wake generated 

by the rotor disc. After this, the rotor disc will “descend” causing the previously impacted air to 

interact with the disc. Note that the frequency k present within equation (2.38) via the 

distribution n equals π/5. 
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Figure 2.4 a-d. Velocity Distribution: Growth, Translation, and Reversal 

An interesting observation is seen when looking at the ratio between the maximum 

induced velocity occurring downstream and the velocity at the rotor at a given time. As can be 

seen in Figure 2.4, the velocity of the air at the rotor begins to increase as the rotor is in 

operation. Over time, this rotor velocity continues to increase until approximately reaching a 

maximum value of 1. During this process, the velocity downstream also increases to a value 

exceeding that at the rotor. Specifically, the maximum velocity at any point downstream is equal 

to roughly twice the velocity concurrent with the rotor, a result consistent with momentum 

theory. In addition, if the rotor stays operational for an extended period of time, following the 

distribution outlined in equation (2.33), then the velocity at the majority of the locations 

downstream will approach twice the velocity at the rotor disc, as seen in Figure 2.5. 
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Figure 2.5. Continuously Growing Wake (Helicopter In Climb) 
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Chapter 3: State-Space Approach 

3.1 Method of Weighted Residuals: Galerkin Method 

 To convert the partial differential equations (2.11) and (2.12) into matrix form for finite-

state numerical analysis, Morillo elected to use the method of weighted residuals [6] which 

allows one to find an approximate solution, ua, to a differential equation: 

𝐿(𝑢) = 0 (3.1) 

  

on the domain 𝐷(�⃗�), subject to initial conditions 𝐼(𝑢) = 0 and boundary conditions 𝑆(𝑢) = 0 on 

𝜕𝐷, the boundary of D. The approximate solution can be structured such that the differential 

equation is wholly satisfied (boundary method), the boundary conditions are wholly satisfied 

(interior method), or neither the differential equation nor the boundary conditions are wholly 

satisfied (mixed method). 

 Using the method of weighted residuals, the approximate solution, ua, is written as a set 

of known analytic functions called trial functions, 𝜙(�⃗�): 

𝑢𝑎(�⃗�, 𝑡) =∑𝑎𝑗(𝑡)𝜙𝑗(�⃗�)

𝑁

𝑗=1

 

 

 

(3.2) 

where the coefficients aj must be determined. By substituting equation (3.2) into equation (3.1), a 

differential equation for aj is obtained. In addition, since equation (3.2) is an approximate 

solution, a nonzero residual, R, arises: 

𝑅(𝑎1, 𝑎2, … , 𝑎𝑛, �⃗�) =  𝐿(𝑢𝑎) =∑𝑎𝑗𝐿(𝜙𝑗) ≠ 0

𝑁

𝑗=1

 

 

 

(3.3) 

The equations for the coefficients aj are obtained by multiplying the residuals, R, by 

weights or test functions, 𝜆𝑘(�⃗�), which are then integrated over domain D and set equal to zero: 
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∬ 𝑅𝜆𝑘(�⃗�)𝑑𝐷 = 0𝐷
; k = 1,2,…,N  

(3.4) 

 

Equation (3.4) is what gives the name to this methodology. 

 The Galerkin method is thus a specific case to the method of weighted residuals where 

the test functions are chosen to be the same set of functions as the trial functions: 

𝜆𝑘(�⃗�) = 𝜙𝑘(�⃗�);   k = 1,2,…,N (3.5) 

 

The following conditions are necessary to apply the Galerkin method and correctly choose the 

weight functions: 

(1) 𝜙 and 𝜆𝑘 must be linearly independent sets of functions. 

(2) 𝜙 and 𝜆𝑘 should be the first N members of a complete set of functions. 

(3) 𝜙 should satisfy the boundary conditions (as well as initial conditions if applicable). 

A “complete” set of functions suggests the functions satisfy Laplace’s equation in the upper half 

plane of the flow field, are zero at infinity, and are finite on the rotor disc plane. 

3.2 Pressure Potentials and Velocity Potentials 

 In order to transform equations (2.11) and (2.12) by the Galerkin method, the pressure 

potentials, 𝛷, and the velocity potentials, 𝛹, must be expanded in terms of complete sets of that 

satisfy Laplace’s equation. Both 𝛷 and 𝛹 must also satisfy the boundary conditions for pressure 

and velocity, respectively. 

The boundary conditions for pressure calls for a discontinuity across the rotor disc and 

zero pressure far away from the disc, the first of which is satisfied by the solution to Laplace’s 

equation in ellipsoidal coordinates given that ν is discontinuous across z = η = 0. Equations 

(2.24) and (2.25) detail the solution to Laplace’s equation: 
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𝛷𝑛
𝑚𝑐(𝜈, 𝜂, 𝛹) = �̅�𝑛

𝑚(𝜈) �̅�𝑛
𝑚(𝑖𝜂)𝑐𝑜𝑠(𝑚𝛹) 

 

(2.24) 

𝛷𝑛
𝑚𝑠(𝜈, 𝜂, 𝛹) = �̅�𝑛

𝑚(𝜈) �̅�𝑛
𝑚(𝑖𝜂)𝑠𝑖𝑛(𝑚𝛹) (2.25) 

 

where m = 0, 1, 2, …,∞, and n = m, m+1, m+2, …, ∞. Additionally, the pressure potentials, 𝛷𝑛
𝑚, 

are zero in the far-field, given lim
𝜂→∞

�̅�𝑛
𝑚 (𝑖𝜂) = 0, satisfying the second boundary condition, and 

finite at z = 0. Therefore, the pressure expansion, P, can be defined as the summation of terms 

that include both the cosine and sine pressure coefficients, 𝜏𝑛
𝑚𝑐 and 𝜏𝑛

𝑚𝑠, respectively: 

𝑃 = −∑ ∑(𝜏𝑛
𝑚𝑐𝛷𝑛

𝑚𝑐 + 𝜏𝑛
𝑚𝑠𝛷𝑛

𝑚𝑠)

∞

𝑛=𝑚

∞

𝑚=0

 

 

 

(3.6) 

 Previous work outlining finite-state modeling details two sets of velocity potentials, 

derived potentials, and prime potentials [2]. The boundary conditions for the velocity state that 

the velocity field far upstream relative to the rotor must equal zero. To satisfy this condition, 

prime velocity potentials are defined as [2] 

𝛹𝑛
𝑚𝑐 = ∫ 𝛷𝑛

𝑚
𝜁

−∞

cos(𝑚�̅�)𝑑𝜁 
 

(3.7) 

𝛹𝑛
𝑚𝑠 = ∫ 𝛷𝑛

𝑚
𝜁

−∞

𝑠𝑖𝑛(𝑚�̅�)𝑑𝜁 
 

(3.8) 

 

where m = 0, 1, 2, …,∞, and n = m+1, m+2, …, ∞. This stems from the fact that the pressure 

potentials, 𝛷𝑛
𝑚, are zero far upstream, strongly ensuring the same result for 𝛹𝑛

𝑚. The flow 

velocities can then be represented as an expansion summation of the gradient of the prime 

potentials from equations (3.6) and (3.7): 

�⃗� = ∑ ∑(�̂�𝑛
𝑚 ∇⃗⃗⃗𝛹𝑛

𝑚𝑐 + �̂�𝑛
𝑚 ∇⃗⃗⃗𝛹𝑛

𝑚𝑠)

∞

𝑛=𝑚

∞

𝑚=0

 

 

 

(3.10) 

Note that �̂�𝑛
𝑚 and �̂�𝑛

𝑚 are the cosine and sine induced inflow expansion coefficients, respectively. 
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3.3 Derived Velocity Potentials 

In order to modify the prime velocity potentials for axial flow, derived potentials, �̂�𝑛
𝑚, 

are chosen in a way that their gradient can be written in closed form. Unlike the derived 

potentials, the prime potentials must be integrated along a streamline to determine the velocity, 

whereas the derived potentials avoid this numerical integration. That being said, the derived 

potentials are simply the prime potentials in the case of axial flow. These derived potentials are 

defined such that their derivative with respect to z is 

𝑑�̂�𝑛
𝑚𝑐

𝑑𝑧
= �̅�𝑛

𝑚(𝜈) �̅�𝑛
𝑚(𝑖𝜂)cos(𝑚�̅�) 

 

 

(3.11) 

𝑑�̂�𝑛
𝑚𝑠

𝑑𝑧
= �̅�𝑛

𝑚(𝜈) �̅�𝑛
𝑚(𝑖𝜂)𝑠𝑖𝑛(𝑚�̅�) 

 

 

(3.12) 

Peters and Morillo [6] found these derived potentials in the following form: 

�̂�𝑛
𝑚 = 𝜎𝑛

𝑚𝛷𝑛+1
𝑚 + 𝜁𝑛

𝑚𝛷𝑛−1
𝑚  

 

 

(3.13) 

where 

𝜎𝑛
𝑚 =

1

𝐾𝑛
𝑚√(2𝑛 + 1)(2𝑛 + 3)[(𝑛 + 1)2 −𝑚2]

 

 

 

(3.14) 

𝜁𝑛
𝑚 =

1

𝐾𝑛
𝑚√(4𝑛2 − 1)(𝑛2 −𝑚2)

          𝑛 ≠ 𝑚 

 

 

(3.15) 

and 

𝐾𝑛
𝑚 = (

𝜋

2
)
(−1)𝑛+𝑚

𝐻𝑛
𝑚 

 

(3.16) 

 

𝐻𝑛
𝑚 =

(𝑛 +𝑚 + 1)‼ (𝑛 − 𝑚 − 1)‼

(𝑛 + 𝑚)‼ (𝑛 − 𝑚)‼
 

 

 

 

(3.17) 

The above definition of the derived potentials is only valid above the rotor disc (z < 0). Morillo 

was able to find the potentials for cases where 𝑚 ≠ 𝑛, while Peters and Hsieh were later able to 

find the potentials for the special cases of 𝑚 = 𝑛 = 0 and 𝑚 = 𝑛 ≠ 0. For the case of 𝑚 = 𝑛 =
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0, a formula in terms of the Legendre functions where the subscript is greater than the 

superscript was developed [7]. 

For m = n = 0: 

�̂�𝑛
𝑚𝑐 = [𝜎𝑛

𝑚�̅�𝑚+1
𝑚 (𝜈)�̅�𝑚+1

𝑚 (𝑖𝜂) + �̅�𝑚−1
𝑚 (𝜈)�̅�𝑚−1

𝑚 (𝑖𝜂)]cos(𝑚�̅�) 
 

(3.18) 

�̂�𝑛
𝑚𝑠 = [𝜎𝑛

𝑚�̅�𝑚+1
𝑚 (𝜈)�̅�𝑚+1

𝑚 (𝑖𝜂) + �̅�𝑚−1
𝑚 (𝜈)�̅�𝑚−1

𝑚 (𝑖𝜂)]sin(𝑚�̅�) 
 

(3.19) 

Note that the “alternative” Legendre terms contain an m-1 subscript. The determination for these 

necessary first and second Legendre functions are 

�̅�𝑚−1
𝑚 (𝜈) =

2

𝜋

√(2𝑚)‼

√(2𝑚 + 1)‼

(1 − 𝜈2)𝑚/2

(1 + 𝜈)𝑚
∑

(𝑚− 1)! 2𝑚−1−𝑛(−1)𝑛

𝑛! (𝑚 − 1 − 𝑛)! (𝑛 + 𝑚)

𝑚−1

𝑛=0

(1 − 𝜈)𝑛 

       (3.20) 

�̅�𝑚−1
𝑚 (𝑖𝜂) =

1

(1 + 𝜂2)𝑚/2
 

 

 

(3.21) 

For the special case of 𝑚 = 𝑛 = 0, Peters and Hsieh found the derived potential to equal [7] 

�̂�0
0 =

2

𝜋
𝜈 [1 − 𝜂 tan−1 (

1

𝜂
)] −

2

𝜋
𝑙𝑛|1 + 𝜈| −

1

𝜋
𝑙𝑛|1 + 𝜂2| +

2

𝜋
𝑙𝑛|𝑍𝑚𝑎𝑥|      𝜈 > 0 

       (3.22) 

where Zmax is a large number representing the radius to which the integral with respect to ζ is 

taken. The value of Zmax is not entered in the equations; it is only a conceptual idea. 

As the velocity potentials satisfy the Laplace equation, the continuity equation is satisfied 

as well. Therefore, the momentum equation is the only governing equation of the velocity 

expansion coefficients. The momentum equation must then be represented in finite state form in 

order to obtain a consequent finite-state wake model. 

 



23 
 

3.4 Equations in Terms of the Derived Potentials 

To transform the momentum equation into a set of ordinary differential equations, the 

Galerkin method is applied (Appendix A). A change of variable is then needed to find the 

velocity via the derived potentials. The relationship to transform between the two potentials must 

obey the following: 

{�̂�𝑛
𝑚}𝑇[𝛹𝑛

𝑚𝑐] = {𝛼𝑛
𝑚}𝑇[�̂�𝑛

𝑚] = {𝛼𝑛
𝑚}𝑇{𝜎𝑛

𝑚𝛷𝑛+1
𝑚 + 𝜁𝑛

𝑚𝛷𝑛−1
𝑚 } 

 

(3.23) 

where 𝛼𝑛
𝑚 is denoted as the inflow state variables. In order to find the transform between the two 

bases, the prime and derived potential functions are dotted with the gradient of each potential 

function and integrated over the region above the rotor disc [6]. The resulting relation between 

the potential types is 

{�̂�𝑛
𝑚} = [�̃�𝑐]−1[𝑀𝑐]{𝛼𝑛

𝑚} 
 

(3.24) 

where  

[�̃�𝑐] = [∬
𝜕𝛷𝑗

𝑟𝑐

𝜕𝑧
(∫ 𝛷𝑛

𝑚𝑐
∞

0

𝑑𝜁)

𝑠

𝑑𝑠] = [∬𝛷𝑗
𝑟𝑐 𝜕

𝜕𝑧
(∫ 𝛷𝑛

𝑚𝑐
∞

0

𝑑𝜁)

𝑠

𝑑𝑠] 

 

 

(3.25) 

and 

[𝑀𝑐] = [�̃�𝑐]𝜒=0 = [∬
𝛿𝛷𝑗

𝑟𝑐

𝛿𝑧
𝛹𝑛
𝑚𝑐

𝑠

𝑑𝑠] 

 

 

(3.26) 

A similar relationship exists between {�̂�𝑛
𝑚} and {𝑏𝑛

𝑚} that incorporates the [𝐿𝑠] and [𝑀𝑠] terms 

that relate the sine coefficients. With the appropriate change of variables realized, the momentum 

equation in terms of the derived potentials is found to be 

[𝑀𝑐]{�̇�𝑛
𝑚} + 𝑽[𝐷𝑐][�̃�𝑐]−1[𝑀𝑐]{𝛼𝑛

𝑚} = [𝐷𝑐]{𝜏𝑛
𝑚𝑐} 

 

(3.27) 
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The above equation represents all the velocity components above and on the rotor plane in closed 

form. Equation (3.27) can be further reduced for the case of axial flow (χ = 0) where [𝑀𝑐] and 

[�̃�𝑐] are equivalent. This simplified equation of motion is 

[𝑀𝑐]{�̇�𝑛
𝑚} + 𝑽[𝐷𝑐]{𝛼𝑛

𝑚} = [𝐷𝑐]{𝜏𝑛
𝑚𝑐} 

 

(3.28) 

3.5 Velocity Below the Rotor Disc by the Adjoint Theorem 

 The aforementioned Galerkin integrals are limited to solutions to the velocity above and 

on the rotor disc due to the complex boundary conditions below the rotor plane [6]. Specifically, 

vortex shedding caused by the blades creates vortex sheets below the rotor, thereby invalidating 

the Potential Flow assumption (no longer irrotational) for the entire downstream flow field (this 

assumption still holds between the vortex sheets, however). That being said, the flow below the 

rotor disc still satisfies the conservation of mass and momentum equations, thus allowing for this 

flow to be obtained in terms of the flow field on and above the disc. This was the case for 

Zhongyang Fei’s work with the adjoint theorem and adjoint states (or co-states) [8]. The adjoint 

theorem was a result from a closed-form solution for the frequency response below a perturbed 

disc, which then transformed into the time domain [2]. A complex conjugate within the 

frequency domain translated into an adjoint in the time domain. Time delays also appeared in the 

transformation to the time domain. The resultant solution for the velocity at a location ζ0 below 

the rotor disc is 

�⃗�(𝑟0, �̅�0, 𝜁0, 𝑡̅) = �⃗�(𝑟0, �̅�0, 0, 𝑡̅ − 𝜁0) + �⃗�
∗(𝑟0, �̅�0, 0, 𝑡̅ − 𝜁0) − �⃗�

∗(𝑟0, �̅�0, −𝜁0, 𝑡̅) 

       (3.29) 

where �⃗�∗ is the adjoint velocity, �̅�0 is the adjoint azimuth angle, 𝑟0 is the radial location of the 

intersection point of the streamline with the rotor plane, and 𝑡̅ − 𝜁0 is a time delayed term. Note 
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that the velocity solution in Eq. (3.29) does not include a jump in velocity across the rotor disc 

resulting from mass sources [2]. 

Looking at Eq. (3.29) and Figure 3.1, �⃗�(𝑟0, �̅�0, 𝜁0, 𝑡̅) is the velocity below the rotor disc 

at point a along the streamline; �⃗�(𝑟0, �̅�0, 0, 𝑡̅ − 𝜁0) is the velocity where the free streamline 

intersects the rotor plane at point b; �⃗�∗(𝑟0, �̅�0, 0, 𝑡̅ − 𝜁0) is the adjoint velocity at point c which is 

centrosymmetric to point b; �⃗�∗(𝑟0, �̅�0, −𝜁0, 𝑡̅) is the adjoint velocity at point d above the rotor 

disc which is centrosymmetric to point a. 

 

Figure 3.1. Rotor Disc with Velocity Components Used in Eq. (3.29) 

The adjoint to the momentum equation is 

−[𝑀𝑐] {𝛿̅̇𝑛
𝑚} + 𝑽[𝐷𝑐][�̃�𝑐]−1[𝑀𝑐]{𝛿�̅�

𝑚} = [𝐷𝑐] [
⋱

(−1)𝑛+1

⋱

] {𝜏𝑛
𝑚𝑐} 

       (3.30) 

where 𝛿𝑛
𝑚 is denoted as the inflow co-state variables. This equation must be solved backwards in 

time for the co-state variables, as the solution is unstable in forward time marching [2].  
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3.6 Velocity Solution for Single Lifting Rotor System in Axial Flow 

For a single lifting rotor system, the velocity on and above the rotor disc is found using 

state variables, 𝛼𝑛
𝑚, which is determined from 

[𝑀]{�̇�𝑛
𝑚} + 𝑽[𝐷][�̃�]−1[𝑀]{𝛼𝑛

𝑚} = [𝐷]{𝜏𝑛
𝑚} 

 

(3.31) 

The velocity below the rotor disc is found using the adjoint theorem and determining the co-state 

variables, 𝛿𝑛
𝑚: 

−[𝑀]{�̇�𝑛
𝑚} + 𝑽[𝐷][�̃�]−1[𝑀]{𝛿𝑛

𝑚} = [𝐷] [
⋱

(−1)𝑛+1

⋱

] {𝜏𝑛
𝑚} 

 

 

(3.32) 

In these equations, [M] is the apparent mass matrix, [D] is the damping matrix, [L] is the 

influence coefficient matrix, and 𝜏𝑛
𝑚 is the pressure coefficient. The processes for determining 

the mass, damping, and influence coefficient matrices are discussed in Appendix A. In axial 

flow, which is the case throughout this work, the relationship holds such that [𝐿] = [𝑀]. 

Simplifying and rearranging Eqs. (3.31) and (3.32) results in 

{�̇�𝑛
𝑚} + 𝑽[𝐷][𝑀]−1{𝛼𝑛

𝑚} = [𝑀]−1[𝐷]{𝜏𝑛
𝑚} 

 

(3.33) 

−{�̇�𝑛
𝑚} + 𝑽[𝐷][𝑀]−1{𝛿𝑛

𝑚} = [𝑀]−1[𝐷] [
⋱

(−1)𝑛+1

⋱

] {𝜏𝑛
𝑚} 

 

 

(3.34) 

The velocity above and on the rotor disc �⃗�𝐴 is 

�⃗�𝐴(𝑥, 𝑦, 𝑧, 𝑡̅) = 𝛼𝑛
0(𝑡)̅𝛷𝑛

0(𝑥, 𝑦, 𝑧) 
 

(3.35) 

where 𝛷𝑛
0, denoted as the shape function, is the product of the Legendre functions of the 1st and 

2nd kind for the case of net thrust (m = 0): 

𝛷𝑛
0(𝑥, 𝑦, 𝑧) = �̅�𝑛

0(𝜈) �̅�𝑛
0(𝑖𝜂) 

 

(3.36) 
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Both �̅�𝑛
0 and �̅�𝑛

0 are dependent on the position perpendicular to the rotor, z, given the relationship 

between x, y, z, and ν, η seen in Eq. 2.13: 

𝑥 = −√1 − 𝜈2√1 + 𝜂2 cos𝛹 

 

𝑦 = √1 − 𝜈2√1 + 𝜂2 sin𝛹 

 

𝑧 = −𝜈𝜂 

 

 

 

(2.13) 

The velocity below the rotor disc �⃗�𝐵 along the centerline is 

�⃗�𝐵(𝑧, 𝑡̅) =  �⃗�𝐴(0, 𝑡̅ − 𝑧) + �⃗�
∗(0, 𝑡̅ − 𝑧) − �⃗�∗(−𝑧, 𝑡̅) 

 

(3.37) 

and the corresponding adjoint velocity �⃗�∗ is 

�⃗�∗(𝑧, 𝑡̅) = 𝛿𝑛
0(𝑡)̅𝛷𝑛

0(𝑧) 
 

(3.38) 

Consequently, a multi-state system, the velocity above and on the rotor disc �⃗�𝐴 along the 

centerline would then be 

�⃗�𝐴(𝑧, 𝑡̅) = ∑𝛼𝑛
0(𝑡)̅

𝑵

𝒏=𝟎

𝛷𝑛
0(𝑧) = ∑𝛼𝑛

0(𝑡̅)

𝑵

𝒏=𝟎

�̅�𝑛
0(𝜈) �̅�𝑛

0(𝑖𝜂) 

 

 

(3.39) 

where N is the number of states within the system. Additionally, the velocity below the rotor disc 

�⃗�𝐵 along the centerline, would be [2,8] 

�⃗�𝐵(𝑧, 𝑡̅) = ∑𝛼𝑛
0(𝑡̅ − 𝑧)

𝑁

𝑛=0

𝛷𝑛
0(0) +∑𝛿𝑛

0(𝑡̅ − 𝑧)

𝑁

𝑛=0

𝛷𝑛
0(0) −∑𝛿𝑛

0(𝑡)̅

𝑁

𝑛=0

𝛷𝑛
0(−𝑧) 

 

 

(3.40) 

The combination of Eqs. (3.39) and (3.40) detail the inflow velocity everywhere in the flow field 

for an evolving wake, synonymous with Eq. (2.33) for the closed-form solutions.  

 To determine the inflow velocity for wake reversal, a modification is applied to Eqs. 

(3.39) and (3.40) similar to that applied to Eq. (2.33) to get the wake reversal velocity 
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distribution seen by Eq. (2.36). Specifically, the freestream velocity, instead of being a constant 

value of 1, now becomes a function of time 𝑡̅ as shown in Eq. (2.34). The variable z is substituted 

for 𝑧 − 𝑠(𝑡)̅ in Eqs. (3.39) and (3.40), where 𝑠(𝑡)̅ is defined by Eq. (2.35). Additionally, 𝑡̅ is 

substituted by 𝑡�̅�𝑡𝑜𝑝 in the same fashion. These changes thus detail the inflow velocity 

everywhere in the flow field for a reversing wake: 

�⃗�𝐴(𝑧, 𝑡̅) = �⃗�𝐴(𝑧 − 𝑠(𝑡̅), 𝑡�̅�𝑡𝑜𝑝) = ∑𝛼𝑛
0(𝑡�̅�𝑡𝑜𝑝)

𝑵

𝒏=𝟎

𝛷𝑛
0(𝑧 − 𝑠(𝑡̅)) 

 

 

(3.41) 

�⃗�𝐵(𝑧, 𝑡)̅ = �⃗�𝐵(𝑧 − 𝑠(𝑡̅), 𝑡�̅�𝑡𝑜𝑝) = 

∑𝛼𝑛
0[𝑡�̅�𝑡𝑜𝑝 − (𝑧 − 𝑠(𝑡̅))]

𝑁

𝑛=0

𝛷𝑛
0(0) +∑𝛿𝑛

0[𝑡�̅�𝑡𝑜𝑝 − (𝑧 − 𝑠(𝑡̅))]

𝑁

𝑛=0

𝛷𝑛
0(0) 

−∑𝛿𝑛
0(𝑡�̅�𝑡𝑜𝑝)

𝑁

𝑛=0

𝛷𝑛
0[−(𝑧 − 𝑠(𝑡̅))] 

 

 

 

 

(3.42) 

Computationally, the state and co-state variables, α and δ respectively, must be saved at 𝑡̅ =

𝑡�̅�𝑡𝑜𝑝, as the wake generated prior to reversal is defined by the inflow coefficients at this given 

time. 

3.7 Comparison of State-Space & Closed-Form Solutions 

The following figures illustrate the velocity along the centerline of the rotor disc obtained 

using both the closed-form solution to the Potential Flow equations and the finite-state modeling. 

Specifically, the figures show the velocity at nondimensional time 𝑡̅ = 10, for multiple states of 

size N. Once again, for the states, 𝛼𝑛
𝑚, and co-states, 𝛿𝑛

𝑚, m is set equal to 0 to correspond with 

the closed-form case in Chapter 2, where m = 0 and n = 1 for net thrust (𝜏𝑛
𝑚 = 𝜏1

0 =
2

√3
). 

However, n = m, m+1, m+2, … for the inclusion of more states for higher accuracy. 
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Figure 3.2 a-d. State-Space & Closed-Form Velocity Solutions for Helicopter In Climb 

The resulting velocities determined by the closed-form and state-space methods agree quite well 

with each other, with any discrepancies between the two continuously diminishing with an 

increasing number of states. However, far downstream (as well as upstream) of the rotor, 
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numerical divergence occurs. This can be seen in Figure 3.2d where the state-space velocity 

begins to increasingly grow unstable for N = 12, beginning roughly at z = 20. 

 To determine the source of divergence for the finite-state solution, a detailed look at the 

numerical behavior of states and co-states was conducted. Additionally, the condition number, κ, 

was determined for matrices [M] and [D] to measure the ill-conditioned nature of the matrices as 

the number of states increases. The following figures highlight the states, 𝛼𝑛
0, to solve for the 

velocity above and on the disc, and the co-states, 𝛿𝑛
0, to solve for the velocity below the disc for 

Figures 3.3 a-d: 
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Figure 3.3 a-d. State and Co-State Variables for State-Space Velocities 

The majority of the state variables have a stark increase at the initial time 𝑡̅ = 0 (they are 

all zero prior to 𝑡̅ = 0), followed by a progressive decrease to a steady-state solution to zero. The 

even-numbered states have a positive response shortly after 𝑡̅ = 0 before falling below zero and 

later approaching zero over time. Meanwhile the odd-numbered states have an opposite response 

to that of their even-numbered counterparts; they have a negative response shortly after 𝑡̅ = 0 

before rising above zero and later approaching zero over time. The exception to this pattern is 

𝛼1
0, which only rises to a nonzero steady-state solution over time.  

The co-state variables also follow a similar structure over time as the state variables when 

looking backwards in time starting at the final time (𝑡̅ = 25), which is a result of the co-states 

being solved using backwards time-marching. However, yet another similar increase in the co-

state response occurs again at 𝑡̅ = 0, with the sign of the co-states becoming flipped with respect 
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to time 𝑡̅ = 25. Once again, the exception to this pattern is 𝛿1
0, which rises to a nonzero steady-

state solution over backwards time before rapidly approaching zero for 𝑡̅ < 0.  

Looking at the state variables, 𝛼𝑛
0, as the number of states N increases, the magnitude of 

𝛼𝑛
0 increases as well. This phenomenon also occurs for the co-state variables, 𝛿𝑛

0. The increase in 

magnitude for the states and co-states with larger N suggest an ill-conditioned form of the state-

space matrices. More direct evidence of [M] and [D] having an ill-conditioned nature is shown 

by viewing the condition number κ versus an increasing number of states. This can be seen in 

Figure 3.4 below: 

 

Figure 3.4. Condition Number vs. Number of States 

The above plot shows condition number on a logarithmic (base 10) scale for matrices [M] and 

[D] as N increases by 2 (addition of both one even and one odd state) from 2 to 14. It can be seen 

that κ follows a very linear pattern with increasing N. As such, a linear fit for the condition 

numbers for both matrices was determined; these fits resulted in a slope of approximately 0.52 
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for the mass matrix and 0.5586 for the damping matrix (see Appendix B). Thus, the slopes imply 

that as the number of states increases by only 2, then the condition number increases by roughly 

11 times for matrix [M] and 13 times for matrix [D], demonstrating that as the number of states 

increases, the corresponding chance of numerical divergence increases sharply. This divergence 

thereby occurs far from the rotor disc as round-off errors are most prevalent in this area [6]. 

However, the smaller round-off errors closer to the disc become noticeable as the states N 

increase due to the increasingly ill-conditioned matrix behavior. 

3.8 Off-Axis Velocity Solutions 

 The resultant velocity solutions for a helicopter in climb in the previous section only 

details distributions along the centerline of the rotor disc. However, these distributions can be 

expanded off-axis to provide similar solutions over the entire disc. Additionally, considering the 

case of axial flow, the velocity at a given dimensionless radius, r, from the centerline is the same 

regardless of the azimuth angle, �̅�. The following figures show results of the off-axis velocities 

for both the closed-form and steady-state methods for r = 0.2, 0.5, and 0.8: 
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Figure 3.5 a-c. Off-Axis Velocity Response at Different Radii 

From Figure 3.5, it can be seen that the velocity response for the state-space method and the 

closed-form method agree well with each other, similar to the results found along the centerline 

of the rotor disc. However, the degree to which the velocities of the two methods agree weakens 

when moving farther from the centerline. For r = 0.2, the state-space results match very closely 

with the closed-form results. However, slight deviation occurs at r = 0.5, and even more so at r = 

0.8. The deviation between the two methods also occurs on and downstream of the rotor, with 

upstream results matching rather well regardless of the value of r. 

3.9 Finite-State Velocity Solutions for Rotor Re-entry into Wake 

Figure 3.6 below compares the finite-state and closed-form solutions for 10 states (N = 

10) as the previously formed wake begins to translate downstream, then reverse direction and 

move back into the rotor disc (similar to the process shown in Figure 2.4). As the velocity of the 

wake only translates position with time, with no applied pressure to drive any additional velocity 

changes, the two solutions maintain the same convergence as demonstrated in Figure 3.2. 
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Figure 3.6 a-e. Finite-State Velocity Distribution: Growth, Translation, and Reversal 
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Chapter 4: Conclusions 

4.1 Conclusions 

 Within this paper, a finite-state model simulating a single-rotor helicopter (assumed to be 

a rotor disc) reentering its own wake for the axial flow case was developed. The resultant 

velocity response of this model matches well with the closed-form velocity response for the same 

case. The finite-state model further agrees with the closed-form model as the number of states, N, 

increases. However, after N = 10, a numerical divergence occurs in the state-space velocity 

response resulting from round-off errors from the Legendre functions at large η, as well as the 

ill-conditioned nature of the matrices used to determine the states, 𝛼𝑛
0, and the co-states, 𝛿𝑛

0. This 

numerical divergence initially begins far from the rotor disc (both upstream and downstream), 

but quickly approaches the disc with increasing N. Additionally, the finite-state model can be 

extended away from the centerline (axis) of the rotor disc, allowing for a determination of the 

velocity throughout the disc. These responses agree best at the rotor centerline (r = 0) and 

progressively agree less when approaching the edge of the rotor disc (r = 1). 
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Appendix A: Galerkin Method 

The Galerkin method is used to convert the momentum equation into a set of differential 

equations; the velocity potentials are expanded in terms of prime potentials, 𝛹𝑛
𝑚 for this 

conversion. The test functions, 𝜆𝑗
𝑟, for the Galerkin are chosen to be the same Laplace solutions 

that are used as expansions for the pressure potentials:  

𝜆𝑗
𝑟 = 𝜙𝑗

𝑟 = �̅�𝑗
𝑟(𝜈) �̅�𝑗

𝑟(𝑖𝜂) 

𝑟 = 0, 1, 2, … ,∞ 
 

 

(A1.1) 

𝜆𝑗
𝑟𝑐 = 𝜙𝑗

𝑟𝑐 = 𝜙𝑗
𝑟 cos(𝑟�̅�) (A1.2) 

 

𝜆𝑗
𝑟𝑠 = 𝜙𝑗

𝑟𝑠 = 𝜙𝑗
𝑟 sin(𝑟�̅�) 

 

(A1.3) 

Since the velocity potentials, 𝛹, are only defined for the upper hemisphere (upstream from the 

rotor disc), integrations will only be done in the upper hemisphere, with all boundary conditions 

matched. Furthermore, the velocity solution is thus only valid above the disc. 

 After substitution of the expansions of pressure potentials, velocity potentials, and the 

expression of the velocity into the momentum equation, the gradient of the test functions are 

multiplied into the momentum equation, and a volume integration is performed over both sides. 

Use of the divergence theorem then allows the volume integrals to be expressed by surface 

integrals, and from the definition of the normal derivative of a function at a point on its length or 

surface, the surface integration in the plane of the rotor transforms to integration on the rotor 

disc, which has closed-form representations. This leads to a set of ordinary differential equations, 

with the cosine and sine functions being separated into two uncoupled sets. For the cosine parts, 

the Galerkin method gives:  

[
[�̃�𝑐]𝑜,𝑜 [�̃�𝑐]𝑜,𝑒
[�̃�𝑐]𝑒,𝑜 [�̃�𝑐]𝑒,𝑒

] {
{�̂�𝑛
𝑚}̇ 𝑜

{�̂�𝑛
𝑚}̇ 𝑒

} + [
[𝐷]𝑜,𝑜

𝑐 [𝐷]𝑜,𝑒
𝑐

[𝐷]𝑒,𝑜
𝑐 [𝐷]𝑒,𝑒

𝑐 ] {
{�̂�𝑛
𝑚}𝑜

{�̂�𝑛
𝑚}𝑒

} = [
[𝐷]𝑜,𝑜

𝑐 [𝐷]𝑜,𝑒
𝑐

[𝐷]𝑒,𝑜
𝑐 [𝐷]𝑒,𝑒

𝑐 ] {
{𝜏𝑛
𝑚𝑐}𝑜

{𝜏𝑛
𝑚𝑐}𝑒

} 



[44] 
 

       (A1.4) 

where  

[�̃�𝑐] = [∬
𝜕𝛷𝑗

𝑟𝑐

𝜕𝑧
(∫ 𝛷𝑛

𝑚𝑐
∞

0

𝑑𝜁)

𝑠

𝑑𝑠] = [∬𝛷𝑗
𝑟𝑐 𝜕

𝜕𝑧
(∫ 𝛷𝑛

𝑚𝑐
∞

0

𝑑𝜁)

𝑠

𝑑𝑠] 

 

 

(A1.5) 

and  

[𝐷𝑐] = [∬
𝜕𝛷𝑗

𝑟𝑐

𝜕𝑧
𝛷𝑛
𝑚𝑐

𝑠

𝑑𝑠] = [∬𝛷𝑗
𝑟𝑐 𝜕𝛷𝑛

𝑚𝑐

𝜕𝑧
𝑠

𝑑𝑠] 

 

 

(A1.6) 

 

for m = 0, 1, 2, … and n = m+1, m+3, m+5, … when m+n = odd, or n = m, m+2, m+4, … when 

m+n = even. ). Note that the subscript “o” stands for the terms where m+n = odd and “e” stands 

for the terms where m+n = even. The sine components are similar to equation (A1.4).  

The [𝐷] matrix for both the sine and cosine case is given by 

𝐷𝑗𝑛
𝑟𝑚 =

1

𝐾𝑛
𝑚 𝛿𝑗𝑛𝛿𝑟𝑚 

j+r = odd; n+m = odd 

j+r = even; n+m = even 

 

 

 

(A1.7) 

𝐷𝑗𝑛
𝑟𝑚 =

2𝛿𝑛𝑚

𝜋√𝐻𝑛
𝑚𝐻𝑗

𝑚

√(2𝑗 + 1)(2𝑛 + 1)

(𝑗 + 𝑛 + 1)(𝑗 − 𝑛)
(−1)

𝑗+3𝑛−1
2  

j+r = odd; n+m = even 

j+r = even; n+m = odd 

 

 

 

 

(A1.8) 

The [�̃�] matrix is given by 

[�̃�𝑗𝑛
0𝑚]

𝑐
= 𝑋𝑚𝛤𝑗𝑛

0𝑚 

 

(A1.9) 
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[�̃�𝑗𝑛
𝑟𝑚]

𝑐
= [𝑋|𝑚−𝑟| + (−1)𝑙𝑋|𝑚−𝑟|]𝛤𝑗𝑛

𝑟𝑚 

 

(A1.10) 

 

[�̃�𝑗𝑛
𝑟𝑚]

𝑠
= [𝑋|𝑚−𝑟| − (−1)𝑙𝑋|𝑚−𝑟|]𝛤𝑗𝑛

𝑟𝑚 

 

 

(A1.11) 

 

𝑋 = tan(𝜒/2),  𝑙 = min (𝑟,𝑚) 
 

(A1.12) 

 

𝛤𝑗𝑛
𝑟𝑚 =

𝑠𝑖𝑔𝑛(𝑟 − 𝑚)

√𝐾𝑛
𝑚𝐾𝑗

𝑟√(2𝑛 + 1)(2𝑗 + 1)

𝛿𝑗,𝑛±1 

  r+m = odd;   j+r = odd;   n+m = odd  

r+m = odd; j+r = odd; n+m = even 

 

 

 

(A1.13) 

 

𝛤𝑗𝑛
𝑟𝑚 =

(−1)
𝑛+𝑗−2𝑟

2 (2)√(2𝑛 + 1)(2𝑗 + 1)

√𝐻𝑛
𝑚𝐻𝑗

𝑟(𝑛 + 𝑗)(𝑛 + 𝑗 + 2)[(𝑛 − 𝑗)2 − 1]
 

r+m = even; j+r = odd; n+m = odd 

 

 

 

(A1.14) 

 

𝛤𝑗𝑛
𝑟𝑚 =

(−1)
𝑛+𝑗−2𝑟+2

2 (8)√(2𝑛 + 1)(2𝑗 + 1)

𝜋2√𝐻𝑛
𝑚𝐻𝑗

𝑟(𝑛 + 𝑗)(𝑛 + 𝑗 + 2)[(𝑛 − 𝑗)2 − 1]
 

r+m = even; j+r = even; n+m = even 

 

 

 

(A1.15) 

 

𝛤𝑗𝑛
𝑟𝑚 =

(−1)
3𝑛+𝑗−2𝑚−2𝑟

2 (4)𝑠𝑖𝑔𝑛(𝑟 − 𝑚)√(2𝑛 + 1)(2𝑗 + 1)

𝜋√𝐻𝑛
𝑚𝐻𝑗

𝑟(𝑛 + 𝑗)(𝑛 + 𝑗 + 2)[(𝑛 − 𝑗)2 − 1]
 

r+m = odd; j+r = odd; n+m = even 

r+m = odd; j+r = even; n+m = odd 

 

 

(A1.16) 
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𝛤𝑗𝑛
𝑟𝑚 =

1

√𝐻𝑛
𝑚𝐻𝑗

𝑟√(2𝑛 + 1)(2𝑗 + 1)

𝛿𝑗,𝑛±1 

r+m = even; j+r = odd; n+m = even 

r+m = even; j+r = even; n+m = odd 

 

 

 

 

(A1.17) 
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Appendix B: Condition Number – Calculation and Linear 

Fit 

The condition number (κ) of a matrix is defined as the ratio between the maximum and minimum 

eigenvalues (λ) of the matrix and is used as a measure the sensitivity that a function has to input 

errors. To determine κ for the [M] and [D] matrices, the “eig” MATLAB command was used to 

obtain the eigenvalues of the matrices at a specific number of states, then the ratio of the largest 

eigenvalue to the smallest eigenvalue was found. The table below details the aforementioned 

eigenvalues, in addition to the corresponding condition number. 

Table B.1. Eigenvalues and Condition Numbers for Mass and Damping Matrices 

 Number of States (N) 

2 4 6 8 10 12 14 

Mass 

Matrix 

[M] 

λmax 1.2157 1.8250 1.9756 2.0424 2.0898 2.1318 2.1707 

λmin 0.0343 0.0250 0.0024 1.8677 

E-04 

1.3677 

E-05 

9.6422 

E-07 

6.6436 

E-08 

κ 35.4718 72.9369 832.0081 1.0935 

E04 

1.5280 

E05 

2.2105 

E06 

3.2674 

E07 

Damping 

Matrix 

[D] 

λmax 1.8263 5.1567 8.8162 12.5964 16.4361 20.3107 24.2083 

λmin 0.3811 0.1004 0.0152 0.0016 1.5264 

E-04 

1.2999 

E-05 

1.0491 

E-06 

κ 4.7919 51.3757 579.3158 7.6470 

E03 

1.0768 

E05 

1.5625 

E06 

2.3075 

E07 

 

The resulting condition number for [M] and [D] at a given number of states can be seen in Figure 

3.4. Linear fits to this data were applied in order to estimate the change in the condition number 

with increasing N. These fits can be seen in the following figure: 
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Figure B.1. Condition Number vs. N with Linear Fits (Excel) 

Figure B.1 shows the linear fit with the corresponding condition number data for the mass and 

damping matrices on a log-base-10 scale. From these fits, it can be seen that the slopes of the 

log10(κ) over N are 0.52 and 0.5586 for [M] and [D] respectively. Therefore, for every minimal 

increase in N, which would be an increase in 2 states to maintain matrix symmetry, then the 

increase in the condition number for [M] and [D] would be 

𝑀𝑎𝑠𝑠 𝑀𝑎𝑡𝑟𝑖𝑥:     log10 (
𝜅2
𝜅1
) = 0.52 ∗ 2 

 

(B1.1) 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑀𝑎𝑡𝑟𝑖𝑥:     log10 (
𝜅2
𝜅1
) = 0.5586 ∗ 2 (B1.2) 

 

where κ1 is the condition number at a given number of states N and κ2 is the condition number at 

a given number of states N+2. From Eq. (B1.1) and (B1.2), the ratios between κ1 and κ2 are 

𝑀𝑎𝑠𝑠 𝑀𝑎𝑡𝑟𝑖𝑥:     
𝜅2

𝜅1
= 10(0.52∗2) = 10.9648  (B1.3) 

  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑀𝑎𝑡𝑟𝑖𝑥:     
𝜅2

𝜅1
= 10(0.5586∗2) = 13.0978  (B1.4) 
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Thus, for every increase in the number of states from N to N+2, the condition number for the 

mass matrix increases by a magnitude of 10.9648, the condition number for the damping matrix 

increases by a magnitude of 13.0978. Therefore, the condition number for both matrices increase 

very quickly with an increase in the number of states, detailing the ill-conditioned nature of [M] 

and [D] for high values of N. 
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