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This dissertation develops a multifaceted security framework tailored for 5G-enabled real-time 

Internet of medical things (IoMT) systems to significantly enhance the security infrastructure 

within healthcare environments. The framework pivots around three core technological advance-

ments: the development of the light feature engineering based on the mean decrease in accuracy 

(LEMDA), the construction of a 5G testbed that serves as a distributed intrusion detection system 

(IDS), and the implementation of a hybrid deep reinforcement learning (HDRL) method. 

LEMDA represents a breakthrough in data processing for IoMT systems. By intelligently reducing 

data complexity, LEMDA enhances the speed and accuracy of threat detection mechanisms, which 

is crucial for handling the immense volumes of data generated in healthcare settings. This method 

speeds up the detection process and ensures that essential data nuances are not lost, thereby main-

taining high precision in threat identification. 

Establishing the 5G testbed introduces a novel approach to distributed IDS. This testbed leverages 

the latest in 5G and multi-access edge computing (MEC) technologies to distribute the processing 
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load, thereby enhancing the overall resilience and efficiency of the network. This strategic distri-

bution also helps overcome traditional challenges associated with centralized systems, such as 

scalability issues and vulnerability to single points of failure. Furthermore, this initiative has led 

to creating a new dataset specifically designed to support the development of IDS methodologies 

congruent with the architectures of 5G and MEC. This dataset is a valuable resource for researchers 

across both academic and industrial spheres, facilitating the advancement of tailored intrusion de-

tection strategies. 

Lastly, the HDRL method integrates deep learning and reinforcement learning techniques tailored 

to harness network and host data for improved threat detection. This innovative approach dynam-

ically adapts to evolving threat landscapes, reducing the need for constant human supervision and 

frequent retraining. The HDRL method showcases a significant enhancement in threat detection 

efficacy, setting new benchmarks in the field. 

In addition to these primary contributions, the dissertation delves into creating comprehensive da-

tasets through the EHMS testbed and reviews current IoMT security measures and attack tech-

niques. These endeavors provide a holistic view of the security landscape and inform the develop-

ment of the proposed security framework.



 1 

Chapter 1: Introduction 

The Internet of things (IoT) has been transformative across various sectors, especially healthcare, 

through the Internet of medical things (IoMT). Integrating these advanced technologies within 

healthcare frameworks presents significant opportunities and complex challenges. By the end of 

2024, there are estimated to be over 207 billion IoT devices globally, indicating a continued rapid 

growth trajectory [1]. In healthcare, IoMT devices are projected to significantly expand their pres-

ence within the IoT sector, with the market expected to reach a value of USD 169.99 billion by 

2030 [2]. This growth is driven by the devices' potential to enhance efficiencies in managing 

chronic diseases and expanding telehealth services. The rapidly growing sector underscores its 

vast economic impact and highlights potential vulnerabilities, particularly in cybersecurity. 

The widespread adoption of IoT solutions has profoundly impacted daily life, revolutionizing the 

healthcare industry with the development of IoMT. These compact, versatile devices are crucial 

for healthcare applications, offering significant cost reductions and improvements in care delivery. 

However, securing these devices remains a considerable challenge as they process and store criti-

cal health data that, if compromised, could threaten patient safety and privacy. Since 2020, 

healthcare statistics breach costs have increased by 53.3%. The extraordinarily regulated 

healthcare enterprise has visible a considerable upward thrust in information breach charges since 

2020. For the 13th year in a row, the healthcare enterprise said the maximum high priced records 

breaches, at an average fee of USD 10.93 million [3]. 

IoT's expansion into healthcare has enabled the development of sophisticated, low-cost, low-power 

monitoring systems that enhance patient care through continuous health monitoring and real-time 
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data processing. These systems support a range of applications from early diagnosis to emergency 

management, significantly reducing the need for constant physical healthcare provider presence. 

Machine learning (ML) plays a crucial role in this context by enhancing the security of these sys-

tems, enabling the detection of both known and previously unseen cybersecurity threats, thus en-

suring the protection of sensitive health data, crucial for maintaining patient confidentiality and 

system integrity. 

With IoT expected to reach over 25 billion devices by 2030 [4], the role of advanced technologies 

like 5G becomes increasingly essential. These technologies are pivotal in managing the vast data 

produced by IoT devices, particularly in healthcare settings, where data sensitivity and the need 

for rapid processing are paramount. The advent of 5G technology offers transformative potential 

for healthcare applications, significantly enhancing IoMT and mobile healthcare capabilities. In-

tegrating multi-access edge computing (MEC) within 5G infrastructures optimizes processing ex-

tensive data loads closer to their source, which is crucial for applications requiring low latency, 

such as remote surgeries. However, the distributed nature of these new technologies introduces 

additional security challenges, necessitating the development of dynamic and intelligent intrusion 

detection systems (IDS) capable of adapting to evolving threats with minimal human intervention. 

This dissertation highlights the various cyber threats that can compromise the integrated IoT and 

IoMT systems, particularly within a 5G framework. These include: 

• Network Communication (Man-in-the-middle (MitM) attacks): Data between user 

equipment (UE) and MEC servers in the 5G network is vulnerable to interception and al-

teration, compromising data integrity and confidentiality. 



 3 

• Server Availability (Distributed denial of service (DDoS) attacks): MEC servers can be 

overwhelmed by excessive traffic originating from within the network, disrupting services 

and affecting the normal functioning of network services. 

• Endpoint Security (Ransomware attacks): UE operating in the 5G network is susceptible 

to ransomware attacks that encrypt data, demand a ransom for decryption, and threaten 

data availability and financial stability. 

• Application and System Integrity (Buffer overflow attacks): Applications and operating 

systems on UE are at risk from buffer overflow vulnerabilities, which allow arbitrary code 

execution, undermining system and data security. 

The profound integration of IoT, particularly through IoMT in healthcare, underscores a pivotal 

transformation in how medical services are delivered and monitored. However, this transformation 

is accompanied by an escalating complexity in cybersecurity threats that exploit the vulnerabilities 

inherent in these rapidly evolving technologies. As detailed in the preceding chapters, while the 

advancements in IoT and related technologies such as 5G and MEC bring considerable benefits, 

they also introduce significant risks that must be meticulously managed. This transition highlights 

the challenges and sets the stage for discussing this dissertation's innovative contributions. The 

subsequent sections will delve into specific challenges these technological integrations present, 

particularly focusing on data complexity, system vulnerabilities, and the dynamic nature of cyber 

threats. Following this, we will explore the strategic contributions made by this research in ad-

dressing these challenges, detailing the development of robust security frameworks and advanced 

detection systems designed to fortify the integrity and reliability of IoMT systems. 
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1.1 Challenges 

The primary challenges addressed in this dissertation reflect the complex nature of modern cyber-

security in healthcare environments, where technology integration continuously evolves, and the 

potential for cyber threats escalates. Healthcare systems increasingly depend on IoMT technolo-

gies, which enhance patient care and expose sensitive data and critical operations to cyber risks. 

These systems must handle massive amounts of confidential data, making them attractive cyber-

attack targets. Furthermore, the need for real-time data processing in medical settings amplifies 

the challenges, as any delay or disruption in data handling can have dire consequences. Addressing 

these issues requires a robust cybersecurity framework that defends against a broad spectrum of 

cyber threats and ensures compliance with stringent regulatory requirements for data protection 

and patient privacy. This dissertation aims to tackle these challenges by introducing innovative 

security solutions tailored to healthcare cybersecurity's dynamic and complex landscape. 

1.1.1 Data Complexity and Volume 

The IoMT devices used in modern healthcare environments produce a staggering volume of data, 

encompassing everything from patient vital signs to operational telemetry of medical devices. This 

vast data challenges traditional systems' storage capacities and strains the processing capabilities 

necessary for timely and effective security analysis. The complexity is further compounded by the 

diverse nature of the data, which ranges from structured numerical data to unstructured video feeds 

and images, each requiring different handling and security protocols. Effective management of this 

data is crucial, as any compromise in data integrity or a delay in its processing could directly 

impact patient care and safety.  
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1.1.2 Centralized IDS Vulnerabilities 

Relying on centralized systems for managing and securing IoMT data poses significant risks, such 

as becoming single points of failure during cyberattacks like DDoS or MitM attacks, often facili-

tated by insiders with authorized access. These systems' susceptibility to attacks leads to potential 

disruptions in healthcare services, causing critical delays in patient care and data breaches. Addi-

tionally, as the number of connected devices increases, centralized systems face scalability issues 

that affect performance and complicate timely updates crucial for security. These challenges un-

derscore the need for more robust, adaptive security frameworks and the development of decen-

tralized or distributed mechanisms to enhance the resilience and reliability of healthcare cyberse-

curity infrastructures. 

1.1.3 Dynamic and Evolving Threat Landscape 

Cyber threats in the healthcare sector are exceptionally dynamic, with new vulnerabilities and at-

tack vectors emerging continually. Traditional IDS often struggle to keep pace with the rapid de-

velopment of sophisticated cyberattack methods, such as polymorphic malware or advanced social 

engineering tactics targeting the healthcare sector. Moreover, the stakes are incredibly high in 

healthcare, where a successful attack can result in more than just financial losses or data 

breaches—it can directly endanger lives. This necessitates a security system that responds to 

known threats and can predict and mitigate new threats as they emerge, ensuring continuous pro-

tection of critical healthcare infrastructure. 
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1.2 Contributions 

The research undertaken in this dissertation follows a structured sequence of investigations and 

implementations that build upon each other to advance the field of IoMT security for healthcare 

systems. The progression of the contributions is as follows: 

1) State-of-the-Art IoMT Security Survey and Framework Development: 

We began our research by conducting a comprehensive survey of the current state-of-the-art secu-

rity approaches in IoMT for healthcare systems. This survey helped us identify gaps and opportu-

nities for enhancement, creating a secure framework tailored to address these specific needs. 

2) EHMS Testbed Construction: 

Recognizing the scarcity of healthcare datasets available to academic and industrial researchers 

and the need to demonstrate the benefits of integrating network and biometric data, we constructed 

the enhanced healthcare monitoring system (EHMS) testbed. This testbed not only facilitates the 

collection of rich datasets but also allows us to compare the effectiveness of using combined data 

types against each individually, highlighting the advantages of a multi-modal approach. 

3) Implementation of LEMDA for Feature Reduction: 

Building on the insights from the EHMS testbed, we implemented the light feature engineering 

based on the mean decrease in accuracy (LEMDA). This method significantly reduces the number 

of features required to train the IDS model, speeding up attack detection and enhancing overall 

IDS performance. LEMDA utilizes the diverse dataset generated from the EHMS testbed, proving 

its efficacy in real-world scenarios. 

4) Development of a 5G-Based Testbed: 
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Developing a 5G-based testbed is key to addressing the challenges posed by new network tech-

nologies and specific threats like MitM and ransomware attacks outlined in the threat model. This 

testbed offers a controlled environment for simulating these attacks, enabling the study and en-

hancement of defense mechanisms against insider threats. It supports the creation of dynamic, 

intelligent IDS that adapt to evolving threats with minimal human oversight. This section provides 

a rationale for the proposed cybersecurity strategies by incorporating the threat model. It highlights 

the practical application of these findings to develop advanced, tailored solutions that enhance 

IoMT security in healthcare settings. 

5) Design of a Hybrid Deep Reinforcement Learning Method: 

Finally, we designed a hybrid deep reinforcement learning (HDRL) method that integrates both 

network and host data features to improve the threat detection efficacy of the IDS. This innovative 

approach reduces the need for human supervision or frequent retraining, as it dynamically adapts 

to new threats and evolving attack patterns using a hybrid dataset collected from our advanced 5G 

testbed. 

Together, these contributions form a coherent and structured approach to tackling the security 

challenges in IoMT for healthcare systems, demonstrating significant advancements in IDS' effi-

ciency, reliability, and robustness. 

1.3 Dissertation Structure 

The rest of the dissertation has the following structure: 
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Chapter 2 – Development of Secure IoMT Framework [5]: Details the survey findings on ex-

isting security measures and attacks and discusses the development of a new security framework 

based on these insights. 

[5] A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. Al-Ali, and R. Jain, "Recent advances in the internet-of-
medical-things (IoMT) systems security," IEEE Internet of Things Journal, vol. 8, no. 11, pp. 8707-8718, 
2020. 

Chapter 3 – EHMS Testbed Implementation[6]: Describes the creation of the EHMS testbed, 

its operational setup, and its role in generating a valuable dataset for intrusion detection research. 

[6] A. A. Hady*, A. Ghubaish*, T. Salman, D. Unal, and R. Jain, "Intrusion detection system for healthcare 
systems using medical and network data: A comparison study," IEEE Access, vol. 8, pp. 106576-106584, 
2020. (*Equal Contribution). 

Chapter 4 – Feature Reduction with LEMDA [7]: Explores the design and implementation of 

LEMDA, showcasing its effectiveness in enhancing IDS performance through feature reduction. 

[7] A. Ghubaish, Z. Yang, A. Erbad, and R. Jain, "LEMDA: A Novel Feature Engineering Method for Intrusion 
Detection in IoT Systems," IEEE Internet of Things Journal, 2023. 

Chapter 5 – Advancements with 5G Testbed and HDRL Method [8]: This chapter discusses 

significant advancements in 5G technology and the HDRL method, detailing their response to the 

threats identified in the threat model. It highlights how these technologies improve IDS efficiency 

and network resilience by adapting to evolving cybersecurity challenges, particularly insider at-

tacks and 5G vulnerabilities. 

[8] A. Ghubaish, Z. Yang, and R. Jain, "HDRL-IDS: A Hybrid Deep Reinforcement Learning Intrusion 
Detection System for Enhancing the Security of Medical Applications in 5G Networks," in 2024 IEEE 
International Conference on Smart Applications, Communications and Networking (SmartNets), 
Harrisonburg/Washington DC, VA, USA, 2024. 

Chapter 6 – Conclusion and Future Work: Summarizes the research contributions, discusses 

the practical implications, and suggests directions for future research in IoMT security.  
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Chapter 2:  Recent State-of-the-Art Security 

Approaches 

Building upon the transformative impact of IoT in healthcare, this chapter focuses on analyzing 

the security challenges specific to IoMT systems. In this chapter, we present state-of-the-art tech-

niques to secure IoMT systems' data during collection, transmission, and storage [5]. We compre-

hensively overview IoMT systems' potential physical and network attacks. Our findings reveal that 

most security techniques do not consider various types of attacks. Hence, we propose a security 

framework that combines several security techniques. The framework covers IoMT security re-

quirements and can mitigate most known attacks. 

[5] A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. Al-Ali, and R. Jain, "Recent advances in the internet-of-
medical-things (IoMT) systems security," IEEE Internet of Things Journal, vol. 8, no. 11, pp. 8707-8718, 
2020. 

2.1  Introduction and Motivation 

The healthcare industry's increasing reliance on IoMT systems introduces complex security chal-

lenges. The healthcare data involved in IoMT systems requires protection at various stages, in-

cluding data collection, transmission, and storage. Breaches have a significant impact, as nearly 

half of IoMT devices are vulnerable to exploits [9]. These systems differ from others as they di-

rectly affect patient safety and privacy [10]. Furthermore, healthcare data's high value makes it a 

lucrative target on the black market. 

To ensure the success of IoMT systems, robust security measures are essential. These systems 

must ensure data confidentiality, integrity, availability, non-repudiation, and authentication 

(CIANA) [11]. While traditional security approaches offer some protection, power consumption 
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and other constraints on IoMT devices may limit their effectiveness [11]. Researchers have there-

fore focused on developing techniques specifically designed for IoMT and IoT environments. 

These techniques broadly fall into symmetric cryptography, asymmetric cryptography, and keyless 

non-cryptographic approaches. 

Existing literature extensively reviews the limitations, security issues, and potential solutions 

within IoMT systems. Yaacoub et al., for example, classify these techniques as cryptographic and 

non-cryptographic, further categorizing countermeasures into authorization, availability, IDS, and 

awareness [12]. Vyas and Pal address open issues such as flexibility, single point of failure, and 

emergency handling [13]. Additionally, Bhushan and Agrawal explore securing patient data in the 

cloud within IoMT systems [14]. 

Advanced technologies like ML, artificial intelligence (AI), and blockchain offer promising po-

tential to enhance IoMT security [15, 16]. These techniques can improve system performance, 

provide tolerance against specific attacks like denial-of-service (DoS), and address issues like sin-

gle points of failure. ML, in particular, can significantly reduce physical layer authentication errors 

compared to traditional methods [17, 18]. 

The rest of the chapter is organized as follows: A brief background of the IoMT system types and 

architecture is provided in Section 2.2. In Section 2.3, we present IoMT threats at different stages, 

along with security requirements and different types of security techniques. State-of-the-art secu-

rity techniques, including symmetric, asymmetric, and keyless, are discussed in Sections 2.4, 2.5, 

and 2.6, respectively. The IoMT attack surface is described in Section 2.7, while our proposed 

security framework is presented in Section 2.8. Finally, we summarize the chapter in Section 2.9. 
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2.2 Background 

This section provides a background on IoMT systems as well as their architecture. This helps to 

understand the later sections, where we present IoMT systems' security requirements, attacks, and 

countermeasures. 

2.2.1 IoMT Types 

IoMT systems provide the necessary or improved assistance for many medical conditions. The 

necessary devices are implantable for particular medical conditions, e.g., pacemakers for heart 

conditions. On the other hand, the assisting devices are mostly wearables for improved healthcare 

experience, e.g., smartwatches. These differences put the IoMT systems into two categories: im-

plantable medical devices (IMDs) and Internet of wearable devices (IoWDs). 

1) Implantable Medical Devices (IMDs) 

Any device implanted to replace, support, or enhance a biological structure is an IMD. For 

example, a pacemaker is an IMD that helps control abnormal heart rhythms, i.e., by promoting 

the heart to beat at a normal rate if it is beating too fast or too slow [19]. Figure 2.1 shows 

several popular IMDs and their placement locations in the human body. Wireless IMDs have 

been proposed to solve problems associated with wired IMDs, e.g., infection and cable break-

age [20]. IMDs are mostly very small and have very long battery life. Hence, low power con-

sumption, small storage space, and small batteries that last long are essential for these devices 

to stay inside a human body for a long time. For instance, pacemaker implants last 5 to 15 

years [21]. 
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Figure 2.1 Examples of IMDs and their locations in the human body. 

2) Internet of Wearable Devices (IoWDs) 

Individuals wear these devices to monitor their biometrics, e.g., heart rate, which may help im-

prove their overall health. Examples include smart watches, fall detection bands, electrocardio-

gram (ECG), and blood pressure monitors [22]. Smartwatches are currently one of the most well-

known forms of IoWDs for monitoring biometrics such as heart rate and movement. The monitor-

ing can be used to detect slow and fast heartbeats when the individual is not active. The new 

watches also support fall detection and ECG readings to detect atrial fibrillation (irregular heart-

beat) medical conditions. They are currently widely used for non-critical patient monitoring [23]. 

However, these devices have sensor accuracy and battery life limitations; thus, they are not likely 

to replace IMDs in critical conditions [24]. 

2.2.2 IoMT Systems Architecture 

Most current IoMT systems are typically divided into four layers, as shown in Figure 2.2 [25]. 

These layers include all data stages, starting from the individual's biometric collection stage and 

ending in data storage and subsequent visualization by a physician for analysis. Moreover, the 

patient can also visualize their overall health status from the cloud. The current advances in IMDs, 
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IoWDs, and IMDs mostly share the same architecture, given that IMDs can communicate with the 

gateways, as exemplified by Medtronic peacemaker [26]. 

1) Sensor Layer 

This layer consists of small implanted or worn sensors that collect the patient's biometrics. The 

data are transmitted to the second layer over wireless protocols such as Wi-Fi, Bluetooth, or the 

MedRadio frequency spectrum reserved for IMDs [27]. 

 

 

 

 

 

Figure 2.2 IoMT system architecture. 

2) Gateway Layer 

Due to the processing and storage limitations of IoMT sensors, the data are transferred without 

processing to the second layer, i.e., the gateway layer. The devices in this layer can be the patient's 

smartphone or a dedicated access point (AP), which are generally more potent than sensors. They 

can perform preprocessing operations like validation, short-term data storage, and simple AI-based 

analysis. In addition, they send the sensor data to the cloud over the Internet. 

3) Cloud Layer 
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The cloud layer gets the data from the gateway for storage, analysis, and secure access. The anal-

ysis may include data processing to find changes in the patient's health and presenting them to the 

physicians or patients for further action. The key generation server (KGS) generates IDs and keys 

for various system nodes. The access to the sensors can be remotely managed and controlled from 

this layer. 

4) Visualization/Action Layer 

In this layer, the data are presented to the physicians and the patients to track their health. This 

layer also includes the actions recommended by the physician based on the patient's health condi-

tions. Examples of actions include prescribing or adjusting the dosage for various medicines. 

2.3 IoMT Security Model 

In this section, we discuss the threats to the IoMT systems' data at three different stages. Also, we 

present the IoMT systems' security requirements and generally categorize countermeasure tech-

niques. In subsequent sections, each countermeasure category will be further detailed with its as-

sociated techniques and use in IoMT systems. 

2.3.1 IoMT Threats at Different Stages 

IoMT systems must protect the patients' data at all stages, including collection, transmission, and 

storage. As shown in Figure 2.2, these stages combine the four architecture layers. 

1) Data Collection 
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Collecting the patient's data in the sensor layer is the first stage of an IoMT system. Attacks at this 

stage can be software (i.e., data tampering) or hardware (i.e., sensor hardware manipulation) at-

tacks. These attacks can threaten patients' lives if the sensor hardware or software is affected. Thus, 

protecting the data against these attacks is vital to keep the system running. 

2) Data in Transit 

This stage includes communications between the devices in all four layers, e.g., between the IoMT 

sensors in the sensor layer and the AP in the gateway layers. Attacks here can manipulate or block 

the sensor data being transmitted. Thus, securing against these attacks would prevent the data from 

being affected while being transferred among the four layers. 

3) Data in Storage 

After the patient's data are collected and transmitted from the sensor and gateway layers, they are 

stored in the cloud. Attacks in this layer vary from stealing account credentials to DoS or distrib-

uted DoS (DDoS) attacks. Protecting the data in this layer and the visualization layer from unau-

thorized access is essential. This is critical since, in this layer, most of the data are resting; hence, 

they are at more risk than any other stage. 

2.3.2 IoMT Security Requirements 

Due to the patient data's sensitivity and safety, a set of requirements is needed to ensure IoMT 

systems' security at all layers. The set has been derived from CIANA considerations and consists 

of the following 11 security requirements [28, 29]: 

4) Confidentiality/Privacy 
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The ability to keep the data private while being gathered, transmitted, or stored. In addition, they 

must only be accessible to authorized users. The most common techniques to fulfill this require-

ment are data encryption and access control lists, which will be discussed further in the next sec-

tion. 

1) Integrity 

This is related to protecting the data from unauthorized tampering during the collection, transmis-

sion, and storage stages. 

2) Availability 

The ability to correctly keep the IoMT systems continuously running. This can be done by keeping 

the system up to date, monitoring any changes in its performance, providing redundant data storage 

or transmission routes in case of DoS attacks, and fixing any problem as soon as possible. 

3) Non-Repudiation 

The ability to make each authorized user responsible for their actions. In other words, this require-

ment guarantees that any interaction in the system cannot be denied. This can be achieved using 

digital signature techniques, as discussed later in the chapter. 

4) Authentication 

The capability to validate the identity of a user accessing the system. Mutual authentication is the 

most secure form where the server and the client authenticate each other before any secure data/key 

exchange. 

5) Authorization 
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The ability to allow authenticated users only to execute commands to which they are authorized. 

Similar to confidentiality, authorization can be achieved using proper data encryption and access 

control techniques. 

6) Anonymity 

The capability to keep the patients'/physicians' identities hidden from unauthorized users when 

interacting with the system. Using smart cards can fulfill the anonymity requirement. 

7) Forward/Backward Secrecy 

Forward secrecy provides the ability to keep future transmitted data/keys safe even if old data/keys 

are compromised. Backward secrecy ensures the opposite, where old data/keys are safe even if an 

attack has successfully affected current data/keys. Forward/Backward secrecy can be achieved by 

time-based authentication parameters, e.g., time-based keys that can be generated and used only 

when the clock time at both nodes match. 

8) Secure Key Exchange 

The ability to securely share the keys between the nodes in the system. Diffie-Hellman key ex-

change is an example of a secure key exchange. 

9) Key-Escrow Resilience 

The system administrator cannot impersonate any authorized user in the system. This protects 

against internal threats. Using asymmetric keys with a cryptographic hash function (CHF) can 

fulfill this requirement. 

10) Session Key Agreement 
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The nodes in the system must use session keys after the authentication process. Like key-escrow 

resilience, symmetric/asymmetric keys with CHF can fulfill this requirement. 

2.3.3 IoMT Systems Security Techniques 

There are several different techniques to secure IoMT systems. These techniques can be divided 

into three main categories: symmetric, asymmetric, and keyless, as shown in Figure 2.3. Symmet-

ric and asymmetric techniques rely on cryptographic algorithms, while keyless techniques are non-

cryptographic. The cryptographic techniques explained in the following three sections include one-

factor and two-factor authentication methods. One-factor authentication uses only one authentica-

tion technique to protect the system. In contrast, two-factor authentication adds a second authenti-

cation technique (factor), such as biometrics, to protect the system if one of the two factors is 

compromised. 

 
Figure 2.3 Security techniques. 

2.4 Symmetric-Key Algorithms 

As shown in Figure 2.4, symmetric cryptography includes any cryptographic algorithm based on 

a secret/shared key between two or more nodes wanting to communicate. The key is to be gener-

ated and distributed before using asymmetric cryptography or a prior communication stage. 
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Figure 2.4 Symmetric cryptography. 

In this section, we discuss integrating symmetric cryptographic algorithms in IoMT systems. These 

algorithms can be used for IoMT systems to allow hierarchical access to the patient's data and 

initiate secure connections without prior setup. Further, they can also be used in two-factor au-

thentication, where they act as a first factor while other techniques, such as facial recognition and 

pattern-based, act as a second factor. 

2.4.1 Hierarchical Access 

This technique allows hierarchical access control to patients' data stored in the cloud layer. One 

approach utilizes a hierarchical role-based model and provides authorization based on the user's 

role [29]. For example, all authenticated nurses can administer medicines, but prescribing a new 

medication requires a person authenticated as a doctor. The model supports a relatively low com-

plex hierarchical security scheme that encrypts the patients' data and only decrypts that part of the 

data to which the user is authorized. Belkhouja et al. [29] used the Chinese remainder theorem 

(CRT) to support this hierarchal access where the user with a higher privilege can access any 

patient's data. In contrast, the user with a lower privilege can access part of the data related to their 

roles [30]. 
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2.4.2 Wireless Signal Characteristics 

This technique utilizes wireless signal characteristics to secure IoMT systems by generating keys 

without prior connections. Radio signal strength (RSS) is one of these characteristics, and it 

measures the received signal power, which varies based on the medium it passes through [31]. 

IMDs can be excellent candidates for this technique since the RSS value variation inside the human 

body differs from outside the body [32]. The proposed technique uses the randomness in RSS 

values to generate a shared key. This key can secure communication between a headless cardiac 

pacemaker and a subcutaneous (under-the-skin) implant without prior knowledge of the keys. In 

this technique, two bits can be extracted from a single cardiac cycle (a beat) with a 128-bit key in 

60 seconds if we consider the average human heart rate of 64 beats per minute (bpm). 

2.4.3 CHF with XOR 

CHF is a one-way mathematical function that converts arbitrary data sizes to fixed ones [33]. Ex-

clusive-OR (XOR) can be used to check if one of its operands differs. In a medical setting, initial 

parameters (i.e., a sensor ID and a shared key) can be XORed together and then hashed. Then, 

these hashed parameters are shared from the key generation server to the sensor and gateway 

nodes. These nodes can generate their keys with the help of these parameters [34]. Combining the 

CHF, a symmetric key, and the XOR operator can secure the IoMT systems' communications using 

new authenticated key agreement protocols, as illustrated by Alzahrani et al. [35] and Xu et al. 

[35, 36]. Using the hash function, this technique also supports unique identification parameters for 

the system's nodes. However, the system administrator must manually add initial parameters to all 

the nodes in the system's initialization step. 
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2.4.4 Gait-Based Technique 

This technique uses the human walking pattern to generate unique symmetric keys. A system pro-

posed by Sun and Lo can generate a symmetric key using a set of IoMT sensors attached to the 

individual's body in just a matter of 10 gait-cycles. They claim their system can generate three 

times the number of bits per gait cycle than those generated by similar state-of-the-art techniques 

[37]. The gait cycle is one movement cycle between two repetitive events while walking. This 

system employs an artificial neural network (ANN) model to generate a 13 b/gait-cycle, generating 

a 128-bit key in just ten gait cycles. This key can be used later to secure the communications 

between the IoMT sensors and the AP or mobile in the gateway layer. It outperforms finger-based 

systems by generating binary keys at different times, which provides randomness to the keys with-

out direct user interaction with the system. 

2.4.5 Facial Recognition 

This technology is one way that IoMT systems can rely on authenticating users by scanning their 

faces. Using shared keys as a first factor, facial recognition can be used as a second factor in 

continuous role-based authentication [38]. This helps secure the connection between the sensor 

and the medical controller in the gateway layer based on each authorized user's privilege. Since 

this technique continuously scans the user's face while using the system, it can secure the system 

in a medical setting. For example, this technique can prevent medical staff with lower privileges 

from accessing patients' data without a higher privilege, such as a medical staff member who has 

authenticated themselves but has not logged out of the system. 
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2.4.6 Pattern-Based Technique 

This technique is similar to the facial recognition system but uses a pattern-based technique as a 

second factor [39]. This technique uses a tab pattern the patient generates to control the sensor. 

After successfully passing the first factor with the medical controller in the gateway layer, the 

controller sends a random tab pattern as a second factor to the user before executing a sensitive 

command. The technique can also keep the sensor communication turned off until a specific pat-

tern is performed, preserving the sensor's battery power in case of IMDs. 

2.5 Asymmetric-Key Algorithms 

Asymmetric cryptography includes cryptographic algorithms that use two keys, a public and a 

private, with one of them for encryption/validation and the other used for decryption/signature. 

Asymmetric cryptography is also known as public-key cryptography. The public key is known to 

everyone, while the private key is only known to its owner. An example of how encryption and 

decryption can be used is shown in Figure 2.5. Some of the known algorithms in this category 

include Rivest–Shamir–Adleman (RSA) and elliptic-curve cryptography (ECC) [40, 41]. ECC is 

the most common encryption technique for securing IoMT systems due to its lightweight charac-

teristics. An ECC key of 160 bits is as good as a 1024-bit RSA key and is 15 times faster [42]. 
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Figure 2.5 Asymmetric cryptography. 

This section discusses the integration of asymmetric cryptographic algorithms in IoMT systems. 

This includes asymmetric keys with CHF, homographic encryption (HE), or digital signatures. 

Also, similar to symmetric keys, asymmetric keys can be used for two-factor authentication. They 

act as a first factor for authentication with other techniques, such as smart cards as a second factor. 

Smart cards are extensively used in hospitals nowadays. 

2.5.1 CHF with ECC 

CHF function and ECC keys can be used as a secure certificateless channel between patients and 

their medical doctors [28]. The idea of combining the ECC and the CHF is to allow a secure way 

for sharing keys between the key generation server in the cloud layer and the nodes in the IoMT 

sensor and gateway layers, respectively. The ECC public key of the KGS and initial parameters, 

such as a node ID, are hashed together using CHF; then, they are sent to the nodes in the IoMT 

sensor and gateway layers. The nodes can generate their asymmetric keys with the help of the 

received hashed values. As a result, this system solves the problem of sharing the secret keys as in 

the symmetric cryptographic techniques. 
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It can also overcome the overhead in cloud certificate management for data storage and sharing 

[43]. The IoMT data sizes are substantial, and they are increasing. We are in the zettabyte era. The 

zettabyte is one billion terabytes, whereas a terabyte is a typical hard disk size nowadays [44]. By 

dividing the patient's data into subsets and converting them using ECC keys and CHF, they can be 

securely shared among the system's entities. The average energy consumption in this technique is 

around 30% less than similar techniques. 

2.5.2 Homomorphic Encryption (HE) 

HE is an encryption technique that preserves data confidentiality and allows limited mathematical 

operations on encrypted data [45]. This technique protects the patient's data privacy and stores 

them as ciphertext in the cloud layer for mathematical operations, such as data integrity. However, 

this technique differs from other techniques since it allows only the patient to see their data, not 

the medical staff, except during emergencies. In other words, this is useful for some IoMT sensors, 

such as a smartwatch, which allows the data to be encrypted at all times and only seen by the 

patient except in emergencies where the patient's data can be sent to the medical staff to make 

correct diagnostics. 

There are three different schemes for HE: partial HE (PHE), somewhat HE (SHE), and fully HE 

(FHE). PHE supports one mathematical operation an unlimited number of times, while SHE sup-

ports only a limited number of operations. FHE supports an unlimited number of operations; there-

fore, it can be suitable for fast data aggregation without compromising data confidentiality [42]. 

Hence, it is ideal for healthcare monitoring systems in hospitals. Jariwala and Jinwala claim that 

their AdaptableSDA HE framework consumes only 10% more power with the privacy requirement 

than without it [42]. 
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Optimal HE (OHE) is a modification of FHE. It differs from FHE in that it is based on the step-

size firefly optimization (SFFO) algorithm, in which the key with the maximum breaking time is 

selected [46]. This technique reduces the computation time and increases the breaking time by 2% 

to 8% compared to other HE and non-HE techniques. 

2.5.3 Digital Signatures 

Digital signature techniques can be used even in a small IoMT system. Generally, they can verify 

the data/command authenticity using the sender's (Alice) private and public keys for signature and 

verification, respectively [47]. In IoMT systems, digital signatures can be integrated into the sen-

sor's firmware with an add-on software shim, intercepting and validating the sensor's wireless 

communications [48]. These techniques require storing a list of authorized users' (i.e., medical 

staff's) public keys in the sensor's firmware to validate them. 

2.5.4 Smart Cards 

This technique differs from the first three since it relies on physical keys [49]. These keys are 

utilized as a second factor, with the ECC keys as the first factor for authentication. In IoMT set-

tings, the medical staff must enter a key and use their smart cards to access the system. This tech-

nique helps the system be resistant to cyber-breaks if one of the factors is stolen or lost. This has 

made them quite common nowadays. 

2.6 Keyless Algorithms 

This section discusses keyless techniques that provide security without pre-shared keys. The tech-

niques in this category can be based on biometrics, token-based security, or proxy-based tech-

niques. Cutting-edge technologies such as blockchain technology and AI also fall in this category 

since they can be used for security without pre-shared keys. 
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2.6.1 Biometrics 

Since they are easy to use, the biometric sensors used to identify users' physical characteristics are 

the most common technique to provide security for IoMT systems. In a medical setting, medical 

staff or patients can access the medical records only using their biometrics. Biometric factors in-

clude fingerprint and ECG-based sensors that are handy in emergencies. The fingerprint sensors 

are based on reading the fingerprint image, while the ECG-based sensors record the heartbeat ac-

tivities to encrypt the data. Fingerprint sensors reduce the messages' size during transmission and 

the computational overhead compared to the ECG-based techniques [50]. 

The performance of the fingerprint sensors is based on the extraction algorithm used. Popular al-

gorithms used in these sensors are Delaunay Triangulation-based feature representation, Pair-polar 

coordinate-based feature representation, and Minutia Cylinder-Code-based feature representation 

[51]. According to Zheng et al., Delaunay performs better and is less complicated than the other 

techniques. The advantages of using fingerprint biometrics include their long history and credibil-

ity than face recognition-based systems. 

2.6.2 Token-Based Security 

User authentication can be done using software or hardware tokens. For instance, the x-auth-token 

field in the hypertext transfer protocol (HTTP) header can be used as a software token embedded 

in the user web browsers [52]. Cloud data analytics companies use these tokens, e.g., IoT Ubidots 

[53], to secure the connection between the cloud layer and the nodes in the IoMT sensor and gate-

way layers. Likewise, RFID can be used as a hardware token for secure logistic management of 

sensors in a hospital information system (HIS) [54]. 
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2.6.3 Proxy-Based and Light-Based Systems 

Proxy-based systems are made of a middleware device that controls the communication between 

the sensors and any device communicating with them, such as medical controllers. Besides, they 

can provide full-duplex secure communications between these devices, where they can simultane-

ously communicate. These middleware devices can be a set of microprocessors inside a jacket or 

a belt to be worn by the patient [55, 56]. 

Light-based communication technologies, such as light-fidelity (Li-Fi), can be used to secure the 

monitoring capabilities for HIS, as presented by Mosaif and Rakrak [57]. Since Li-Fi does not use 

wireless communications, it has no interference with the hospital network, substantial free opera-

tion frequency, and short coverage range for enhanced security. 

2.6.4 Blockchain Technology and AI 

These are new techniques for use in IoMT systems due to their success in providing security in 

other fields, such as finance [58-60]. Blockchain technology is typically used in IoMT systems as 

a security management sharing technique for data sharing between patients and other parties, such 

as doctors and insurance companies. On the other hand, AI systems can detect anomaly behaviors 

(leading to attacks) in network flows and patients' data. However, there are some challenges to 

IoMT systems adopting these techniques. For example, blockchain technology may suffer from 

latency, storage issues, and communications overhead, given the data sizes and communication 

requirements in IoMT systems. High latency is typical for public blockchain technology due to its 

decentralized nature. Therefore, private blockchains may be considered for real-time systems. AI 

systems require a large amount of data; hence, they may not be ideal for detecting rare attacks. 
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Blockchain technology and AI are being adopted in IoMT systems, mainly in the cloud layer [6, 

61]. 

2.7 IoMT Systems Risks and List of Attacks  

In this section, we explore the attack surface of IoMT systems. We discuss possible attacks target-

ing such systems, including physical and network attacks. Table 2.1 summarizes the security re-

quirements for IoMT systems, possible attacks, and countermeasures [16]. As shown in the table, 

the countermeasures for 11 of the 14 attacks are based on keyless methods, and more than half are 

based on two-factor authentication methods. The popularity of these methods is due to their sim-

plicity during system implementation and management. 

Table 2.1 List of attacks and countermeasures. 

No. Attack Effects Countermeasure Reference 

1 
o Physical security 

token loss 
- Authentication 

- Authorization 

- Anonymity 

- Forward secrecy 

- Asymmetric (two-factor) [49] 

2 o Impersonation 
- Asymmetric 

- Keyless 
[28, 35, 50, 51] 

3 o Tampering - Data confidentiality 

- Data Integrity 

- Symmetric (two-factor) 

- Keyless 
[35, 38, 43, 50] 

4 o Side channel 

- Keyless 

[39, 58] 

5 o RF jamming 
- Availability [59] 

6 o DoS/DDoS 

7 o Sniffing - Data confidentiality 

- Symmetric /asymmetric 
(two-factor) 

- Keyless 

[58, 62] 

8 o MITM 
- Data confidentiality 

- Authorization 
[28, 29] 

9 o Relay 
- Authorization 

[29, 59] 

10 o Replay [36, 38, 49, 58] 
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11 
o Clock synchroni-

zation - Secure key exchange 
- Asymmetric (two-factor) [49] 

12 o Parallel session 
- Authentication 

- Authorization 
13 o Brute force 

- Keyless 
[37] 

14 o Stepping stone - 

2.7.1 Physical Attacks 

These attacks target the physical components (e.g., sensors, physical keys) of the IoMT systems 

to extract patient data or security keys. They require some component of the IoMT systems to be 

physically accessible to the attacker. These attacks can be summarized as follows: 

1) Physical Security Token Loss 

This includes any attack where the attacker steals an authorized user's physical security token, such 

as a smart card, to access the system. The violated security requirements here are authentication, 

authorization, anonymity, and forward secrecy. Kumari et al. showed that integrating asymmetric 

keys, such as ECC, with smart cards can mitigate such attacks since stealing the smart card is 

insufficient to hijack the system [49]. 

2) Impersonation/Presentation 

In this attack, the attacker impersonates an authorized user's identity, e.g., by replicating the fin-

gerprint or face print. This can target any node in the IoMT system. The attack violates authenti-

cation, authorization, anonymity, and forward secrecy security requirements. It can be avoided 

using symmetric/asymmetric techniques, such as CHF, or keyless techniques, such as biometrics 

[28, 35, 50, 51]. 

3) Tampering 
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Any modification to the IoMT systems' data at the collection, transit, or storage stage is considered 

a tampering attack. This may include attaching external devices to alter the data and attack sensors 

during emergencies. It violates data confidentiality and integrity and can be mitigated by combin-

ing symmetric keys with facial recognition or using keyless methods [35, 38, 43, 50]. 

4) Side Channel 

These attacks occur during the communications among devices in the IoMT system. They are 

based on leaked information about the cryptographic operation in the communications. These at-

tacks violate data confidentiality and privacy requirements and can be alleviated using keyless 

cryptography. Maji et al. suggest using the datagram transport layer security (DTLS) protocol to 

avoid them. Blockchain technology and AI can act as other detection and mitigation strategies, as 

shown by Saif et al. [39, 58]. 

5) Radio Frequency Jamming/Desynchronization 

Radio Frequency Jamming attacks target the system's availability, which is dangerous for critical 

systems such as IoMT. Also, they can cause battery depletion, knowing that IoMT sensors are 

battery-power-constrained. Blockchain technology and AI can reduce the effects of such intrusions 

by finding alternative routes or terminating the channel connection with the attacker [59]. 

2.7.2 Network Attacks 

Other attacks may target communication between different layers of the IoMT system, such as 

Bluetooth or Internet links, as presented in Figure 2.2. These attacks usually aim to steal or fabri-

cate patients' data or block the connections between the IoMT systems' layers. 

6) DoS/ DDoS 
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These attacks load the system's communication links with undesirable connections, making regular 

connections unavailable. They may also cause network fragmentation. Thus, a fragmentation at-

tack is a particular type of DDoS [63]. These attacks usually target the cloud layer in the IoMT 

systems to prevent the system from being available to the users (i.e., patients and medical staff); 

hence, it violates the availability requirement. Blockchain technology and AI can reduce the effects 

of such intrusions by finding alternative routes or terminating the channel connection with the 

attacker [59], similar to those mentioned in the RF jamming attacks. 

7) Sniffing 

 A sniffing attack passively intercepts the data transmitted between two nodes, resulting in patient 

data confidentiality violation. In a medical setting, an attacker can see the data transmitted between 

the layers in the IoMT system architecture, which violates the data confidentiality security require-

ment. Any encryption algorithm, i.e., symmetric, asymmetric, or keyless, can mitigate these at-

tacks [58, 62]. 

8) Man-in-the-Middle 

MitM attack is a type of eavesdropping attack. After a successful sniffing attack, the attacker can 

alter the intercepted data before sending them to the original destination. For example, the attacker 

can change the patient's biometric data transmitted from any two layers in the IoMT system (i.e., 

from the sensor layer to the gateway layer). This can be done using unmanned aerial vehicles 

(UAV), resulting in a drone-in-the-middle (DitM) attack, as discussed by Sethuraman et al. [62]. 

To make this attack more powerful, the UAV can be connected to a cloud to perform more inten-

sive computation quickly. This attack violates authorization in addition to data confidentiality re-

quirements and can be mitigated using encryption or two-factor authentication techniques [28, 29]. 
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9) Relay 

After a successful sniffing attack, the attacker can relay the intercepted data to a third node without 

altering them, for instance, sending the patient's data after intercepting them (i.e., from the sensor 

layer) to the attacker's computer before sending them to the intended layer (i.e., gateway layer). 

This attack breaches the authorization requirement and can be mitigated using asymmetric keys, 

such as hierarchal access, supporting secure session keys [29, 59]. 

10) Replay 

After a successful sniffing attack, the attacker can resend the intercepted data later to the original 

destination without altering them. By repeating this process, this attack may also result in a 

DoS/DDoS attack. This attack violates the authorization requirement, similar to the replay attack. 

It can be mitigated using a timestamp, part of some symmetric, asymmetric, and keyless techniques 

[36, 38, 49, 58]. 

11) Clock Synchronization 

This type of attack targets the clock synchronization protocol, which is necessary for real-time 

systems, such as IoMT systems. The attack violates the secure key exchange requirements. The 

attacker successfully initiating this attack can make relay, replay, and MitM attacks not easily 

detectable. This attack can be mitigated using two-factor techniques like ECC with smart cards 

[49]. 

12) Parallel Session 

These attacks break one-way authentication protocols that use asymmetric keys. The effects of 

such attacks are authentication and authorization violations, which can be avoided using two-factor 

techniques, such as ECC with smart cards [49]. 
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13) Brute Force 

The attacker in this type of attack tries many credentials until it is successful. One way is the 

dictionary attack, which relies on known passwords or words in dictionaries. These attacks can 

also be performed in the off-line phase after capturing the encrypted data decrypted with powerful 

machines. A dictionary attack is one of the significant problems for IoT devices since their short, 

simple, or factory-set default passwords can be guessed using a simple python script, making them 

easier to find online [64]; therefore, IoMT systems can be affected. These attacks have violated 

authentication and authorization security requirements as the parallel session attacks but can be 

alleviated using keyless methods, such as biometrics [37]. 

14) Stepping Stone 

Instead of relying on one computer/host to attack the IoMT system, a chain of hosts can be used 

to attack the system. Sethuraman et al. perform this attack using a series of UAVs to extend the 

communication link between the UAVs and the attacker's computer. Hence, The attacker can 

launch an attack in restricted areas (i.e., in a hospital) that are not directly accessible by the attacker 

[62]. This attack violates authentication and authorization security requirements but can be avoided 

using keyless methods like AI. 

2.8 Proposed Security Framework for IoMT 

As the previous section shows, no single technique can provide a secure environment for IoMT 

systems. Hence, we propose a framework that protects IoMT systems from the 14 attacks men-

tioned in the previous section. The framework also fulfills all the security requirements required 

by IoMT systems. Three parts of the framework are based on the IoMT security model stages 

mentioned in Section 3.1, as shown in Figure 2.6. 
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2.8.1 Securing Data Collection 

The first step in securing IoMT systems is to secure how other systems interact, protecting the 

patient's data collection stage. Two-way factor authentication techniques are good options to pro-

vide such security and resistance to some attacks mentioned. If one of the two factors is compro-

mised, the other can still provide essential overall security. ECC keys are commonly used tech-

niques for first-factor authentication due to their lightweight keys and reliable protection [28, 43, 

49]. 

Adopting the hierarchical access technique with ECC is a perfect way to secure data sharing with 

other medical staff based on their role, which has been used for other fields like smart homes [65]. 

This technique requires KGS, located in the cloud layer, as shown in Figure 2.7. Biometric sensors 

are considered the most common way nowadays as a second factor due to their convenience for 

everyday use and emergencies [50]. These sensors authenticate the patient to access the sensor 

layer nodes, as shown in Figure 2.7. As explained in Section 6.3, proxy-based techniques can be 

used to provide security to existing unsecured sensors at the sensor layer [55, 56]. 

ECC and Biometrics can protect the system in case of a software attack during the data collection 

stage. However, in the case of a hardware attack, the system needs another technique to alert the 

patient and the medical staff to reduce or eliminate the effects of such an attack. The AP or a 

similar device in the gateway layer should alert the user and the physician if they cannot connect 

to the IoMT sensor for a specific period (i.e., one hour). 

Edge computing (EC) has recently gained attention in IoMT systems since it reduces latency and 

provides powerful resources for these systems' sensors [66, 67]. EC, which is usually located in 

the gateway layer, as shown in Figure 2.7, can act as the gateway to the IoMT sensors or as a main 
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gateway for a set of secondary gateways. It can also be used here to utilize an AI model, which 

will be detailed in Subsection 2.8.3. This model can be used to track the changes in sensor readings 

as an initial analysis to fulfill the patient's data confidentiality and integrity security requirements. 

If either requirement is violated, the EC can warn the patient early about this violation. The system 

can immediately alert the physician if the patient does not respond. 

These techniques can provide the system with confidentiality, integrity, authentication, authoriza-

tion, anonymity, forward/backward secrecy, key-escrow resilience, and session-key agreement. 

The system can be resilient to attacks by guaranteeing these requirements, including physical-

security token, impersonation, tampering, side channel, sniffing, MITM, relay, replay, clock syn-

chronization, parallel session, and brute force. 

However, the techniques in this subsection assume pre-shared keys or initial parameters, which 

may lead to the following challenges: 

• An initial manual setup is required to prepare the KGS for the hierarchical access technique. 

• Unusable if the second factor is lost or inaccessible, especially during emergencies. 
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Figure 2.6 Proposed framework security features. 

2.8.2 Securing Data in Transit 

To enhance the IoMT systems' security when connected to other devices over the network, we 

advise utilizing some security protocols, such as constrained application protocol (CoAP) [68]. 

CoAP is an application protocol designed explicitly for resource-constrained IoT applications, 

such as IoMT systems, for communications between the sensor and gateway layers, as shown in 

Figure 2.7. The rest of the layers can be linked using secure HTTP (HTTPs) or transport layer 

security (TLS) version 1.3 [69]. Thus, it is convenient for use in IoMT systems. To reduce the 

certificate management overhead in the cloud layer, certificateless cryptography, ID-based cryp-

tography (IBC) branch, can be used, as shown in Figure 2.7 [70, 71]. The key generation process 

in certificateless cryptography uses the KGS public key with some initial parameters to help the 

IoMT systems' nodes generate their keys. Then, certificate-less authenticated encryption (CLAE), 
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which does not require central key management, is used for authentication [72]. CoAP protocol 

and IBC help protect the system against impersonation, tampering, sniffing, MITM, relay, replay, 

and clock-synchronization attacks. The protection from these attacks provides the system with 

confidentiality, integrity, non-repudiation, authentication, and secure key exchange. However, the 

system requires an initial manual setup similar to that described in Subsection 8.1. 

 

Figure 2.7 Proposed IoMT secure system architecture. 

2.8.3 Securing Data in Storage 

Some of the attacks in IoMT systems target the availability and integrity of the system, such as 

DoS/DDoS, RF jamming, and stepping-stone attacks. These attacks can be detected using AI tech-

niques. AI techniques can be used to build detection models with mitigation techniques imposed 

on these models. For example, deep neural networks (DNN) can be used to build intrusion detec-

tion models. Once this model detects suspicious activity, the compromised connection is termi-

nated to mitigate the attack. Adopting these intrusion detection models in the cloud layer, as shown 

in Figure 2.7, can warn the system administrator when such attacks occur, which can verify early 

warnings (if they exist) from the EC nodes in the gateway layer. Collecting enough and meaningful 

data is very critical for AI techniques. This is a challenging step in reducing the error rate with 

these techniques. The cloud can detect any compromise by keeping logs of the presence of the 
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connected gateways or ECs. It can also find alternative routes to IoMT sensors by providing a 

backup gateway in case of attacks, breaks, or loss of the original gateway. 

2.9 Summary 

Due to the demand for using IoMT sensors to reduce healthcare spending and provide better care 

for patients, securing these devices has become extremely important. However, IoMT sensors tend 

to have constrained resources, and some already implanted require external devices to secure them. 

This chapter discussed an overview of the security requirements, state-of-the-art security tech-

niques, and new types of attacks. Since no technique could satisfy these systems' security require-

ments and mitigate most attacks, we proposed a framework that combines these techniques to meet 

all security requirements. This framework covered all data and device security stages, from data 

collection to storage and sharing.  
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Chapter 3:  IDS for Healthcare Systems 

Introducing IoT systems to healthcare applications has made it possible to remotely monitor pa-

tients' information and provide proper diagnostics whenever needed. However, providing high-

security features that guarantee the correctness and confidentiality of patients' data is a significant 

challenge. Any alteration to the data could affect the patients' treatment, leading to human casual-

ties in emergency conditions. Due to the high dimensionality and prominent dynamicity of the data 

involved in such systems, machine learning promises to provide an effective solution for intrusion 

detection. However, most healthcare IDS use network flow metrics or patients' biometric data to 

build their datasets. This chapter aims to show that combining network and biometric metrics as 

features perform better than using only one of the two features. We have built a real-time EHMS 

testbed that monitors the patients' biometrics and collects network flow metrics [73]. The moni-

tored data is sent to a remote server for further diagnostic and treatment decisions. Man-in-the-

middle cyber-attacks have been used, and a dataset of more than 16 thousand records of normal 

and attack healthcare data has been created. The system then applies different machine learning 

methods for training and testing the dataset against these attacks. Results prove that the perfor-

mance has improved by 7% to 25% in some cases, showing the robustness of the proposed system 

in providing proper intrusion detection. 

[6] A. A. Hady, A. Ghubaish, T. Salman, D. Unal, and R. Jain, "Intrusion Detection System for Healthcare 
Systems Using Medical and Network Data: A Comparison Study," IEEE Access, vol. 8, pp. 106576-106584, 
2020. 

3.1 Introduction and Motivation 

The potential of IoT-enabled healthcare systems for early diagnosis, real-time monitoring, and 

improved patient outcomes is undeniable. Continuous monitoring of vital signs through wearable 
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sensors is essential to achieve these benefits, enabling remote healthcare communication between 

providers and patients. However, the security of these systems is paramount, as breaches can lead 

to severe privacy violations, incorrect diagnoses, or delayed treatment with potentially fatal con-

sequences [74]. 

Traditional security models often struggle with cyberattacks' evolving, complex nature, especially 

in the healthcare context. MitM attacks, where packet alteration occurs in-transit, are just one ex-

ample [75]. ML offers a promising solution. While not a panacea, ML excels in analyzing complex 

data for pattern detection and classification, making it well-suited for identifying potential security 

threats [76]. 

To investigate this approach, we have built an EHMS testbed that utilizes ML for managing secu-

rity issues. This testbed includes a gateway for data gathering, an IDS computer for monitoring 

network traffic and detecting abnormal behaviors, an attacker component to imitate real-world 

threats, and a server to store and provide access to healthcare data. ML models detect data altera-

tion and spoofing threats by analyzing patients' biometric data and network traffic characteristics. 

The system reports a threat alert to system managers if traffic metric or biometric data is detected 

as abnormal. For attack detection, we have chosen four ML methods: random forest (RF), k-nearest 

neighbor (KNN), support vector machine (SVM), and ANN [77-80]. Our research builds upon the 

understanding that ML methods require representative and reliable training data [81]. 

The rest of the chapter is organized as follows. The related work is presented in Section 3.2. Sec-

tion 3.3 discusses the proposed framework architecture. Section 3.4 describes the results gathered 

from the experiments on the system. Finally, Section 3.5 summarizes the chapter and provides 

future work. 
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3.2 Related Work 

In recent years, numerous approaches have been proposed for building health monitoring systems, 

and the following are some examples. Fotouhi et al. propose a general framework for a healthcare 

monitoring system [74]. The system consists of three components: a coordinator, access points, 

and a gateway. The coordinator is a node that lies on the human body to gather information from 

the sensors. The access points (APs) are static nodes attached to the walls in the room that use the 

same communication protocol as the one used by the sensors (i.e., ZigBee, 6LoWPAN, or BLE). 

These APs forward the data to a gateway, which forwards the data to the cloud through the Internet. 

In this system, some general approaches have been proposed for securing data without concrete 

description and testing. Also, the authors have not proposed a solution for discovering successful 

attack scenarios.  

ML has been used in healthcare for many purposes, such as managing and controlling false alerts 

while reporting severe health threats, as Clifton et al. explain, where a wearable health monitoring 

system has been described [82]. In their approach, the generated data is collaborated with the clin-

ical observations of a specific patient to provide early alerts of any expected emergencies. The 

experimental work has been tested at Oxford University Hospital. This approach has not tackled 

security problems in such a system. 

In [83], a cloud-based healthcare system has been proposed by Rani et al., where data is accessed 

only by authorized users. The system uses the SVM method to predict patients' conditions and 

expected diseases. This system uses an ML approach for data mining and not to attack discoveries 

in data like our system. 
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Chakraborty et al. [84] propose a healthcare system design framework using blockchain technol-

ogy. Blockchain technology is known to assure security, but the authors have not investigated the 

framework or tested it to present any benchmark results. 

Alabdulatif et al. implement a system that provides a privacy-preserving cloud-based real-time 

change detection and abnormality prediction framework for multiple patient vital signs [85]. The 

system comprises three main blocks. The first is the Smart Community Resident, where data is 

collected and aggregated to be sent to Cloud Storage, stored in an encrypted format. The last and 

main block is the Smart Prediction model, which works mathematical models on the data without 

decryption to detect abnormal changes and thus expect attacks. This approach focuses on conven-

tional methods for securing data but does not consider new methods, such as ML, for predicting 

security violations. 

A hardware approach is proposed by Tao et al. in [86], where KATAN Hardware approaches for 

the security of IoT-based healthcare monitoring systems have been introduced. A secret cipher 

algorithm is implemented and optimized on the Field Programmable Gate Array hardware plat-

form for data collection with security. This approach has the complications of hardware ap-

proaches and problems in [13]. 

Zhang et al. propose a security framework that detects anomaly traffic using the RF method on the 

KDD 1999 dataset [87]. The accuracy of the RF method as an anomaly detector is 95%, with a 1% 

false-positive rate. Note that the knowledge discovery and data mining (KDD) dataset is a generic 

dataset used in competitions since 1999 [88]. It is not specific to healthcare and is very old. Alt-

hough one of the methods in our system uses the same ML method, we have implemented a testbed 
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to collect a dataset that closely resembles real healthcare monitoring system applications. Further-

more, our proposed system uses network flow metrics and biometrics as anomaly detection fea-

tures. 

The authors of [89, 90] use the KNN method as a basis for their cybersecurity methods. In [89], 

Rao et al. use indexed partial distance search KNN (IKPDS) to test different types of attacks, 

resulting in an accuracy of 99.6%. Shapoorifard and Shamsinejad [90] focus on reducing the false 

alarm rate and show an accuracy of 85.2%. These two approaches use an enhanced version of the 

KDD dataset but still suffer from the same problems and differences we mentioned earlier with 

the original KDD dataset. 

3.3 EHMS Testbed 

As shown in Figure 3.1, our testbed has been built using a health monitoring sensor board that 

collects data from several healthcare sensors placed on the patient's body. The board is attached to 

a Windows-based computer using a USB port. C++-based software has been developed to capture 

the sensed data. The computer is the gateway to transfer data to a server through Wi-Fi using 

transmission control protocol (TCP). All the machines are connected to a switch using Ethernet 

cables except the gateway computer. The switch is connected to the Internet through a router, and 

the gateway is connected via Wi-Fi. Securing transferred data in the testbed mainly relies on using 

ML to help the healthcare monitoring system detect any tampering in the transmitted data between 

the nodes in the network in real-time. If detected, the system reports a threat alert to the system 

managers. In addition to these flow packets, the sensed data from the sensors attached to the pa-
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tient's body are collected to help train the model. We have assumed that the data is being transmit-

ted in plain text since the other methods, like TLS certificates, require more processing power, 

which is generally not feasible with low-cost sensors. 

 

Figure 3.1 EHMS testbed. 

Our EHMS testbed system works as shown in Figure 3.2, and data flows across the system from 

sensors attached to the patient's body through the sensor board to the gateway to the switch and, 

finally, to the display screen of the server. On the journey of the data from the switch to the server, 

an attacker may intrude to spoof or alter data before it arrives at the server. Meanwhile, network 

and patient data metrics are captured on the IDS computer. Data is processed at the IDS for training 

and testing the machine learning methods as well as real-time detection of any abnormalities. 

Our system uses Argus to collect all network traffic flows and patient data between the gateway 

and the server. Argus is open-source software that monitors the real-time network flow traffic [91]. 
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Figure 3.2 EHMS flowchart. 

3.3.1 Model Architecture 

The system consists of six building blocks: a multi-sensor board, a gateway, a server, an IDS, an 

attacker, and a network. The functionality of each block is summarized below: 
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1) PM4100 six pe multi-sensor board:  

A product of Medical Expo that is used for sensing the patient's biometric data using a set of 

sensors attached to the patient's body [92]. The board has four sensors, as shown in Figure 3.3: 

 

Figure 3.3 PM4100 six pe multi-sensor board. 

a. The electrocardiogram (ECG or EKG) sensor consists of three-electrode pads attached 

to the patient's body to measure the patient's heart electricity. 

b. The blood oxygen saturation (SpO2) sensor measures the oxygen level in the patient's 

blood and the heart rate. A value of 95-100 percent is considered normal. While a level 

below 90 percent results in hypoxemia, levels below 80 percent may compromise brain 

and heart functions and may lead to respiratory or cardiac arrest. 

c. The temperature sensor is used to measure the patient's body temperature. 

d. The blood pressure sensor is a step-wise gassing method that measures the patient's sys-

tolic and diastolic arterial pressure. 

2) The Gateway: 

A Windows-based laptop to which the multi-sensor board is connected via a USB port. The 

data received from the board is presented on the graphical user interface (GUI) to monitor the 
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patient's biometric data. The gateway sends this real-time data to the server for processing. All 

this process is done via a C++ program. This gateway is connected to the switch with an Ether-

net cable. The GUI, as shown in Figure 3.4, shows the following: 

a. HR: Heart rate in beats per minute (BPM) 

b. RR: Respiration rate in BPM 

c. ST: Electrically neutral area between ventricular depolarization (QRS complex) and re-

polarization (T wave) in millivolts (mv). 

d. SYS: Systolic blood pressure. 

e. DIA: Diastolic blood pressure. 

f. SPO2: Blood oxygen. 

g. PR: Pulse rate in BPM. 

h. TEMP: Temperature in celsius degrees. 

 

Figure 3.4 Gateway’s GUI. 

3) Server: 
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An Ubuntu-based laptop to which the data is transmitted from the gateway for further sav-

ing and analysis to make suitable medical decisions. The data is collected using a C++ 

program. 

4) Network:  

A regular Ethernet switch connects the server, IDS, and attacker computer in one network. 

A router has been connected to this switch to dynamically assign IP addresses for all com-

puters. The gateway is attached to this router via Wi-Fi. 

5) IDS: 

The switch makes a copy of (i.e., mirrors) all packets going to the server and sends it to the 

IDS computer. This computer runs Argus network flow monitoring software, collecting 

network flow metrics and the patient's biometric data. This computer also makes an online 

decision for any new traffic packet using the four methods. 

6) Attacker: 

A Kali-Linux-based computer is used to initiate attacks on the system and mimic a danger-

ous scenario in healthcare monitoring systems. These attacks include spoofing and altering 

a patient's biometric data during its transmission over the network. A Python script with a 

Scapy library has initiated these attacks [93]. This library features sniffing of live connec-

tions, spoofing packets, and packet alteration on the fly. It supports active and passive pro-

tocol dissection and includes network and host insecurity analysis features. 
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3.3.2 Types of Attacks 

The system uses a MitM attack where the attacker pretends to be a router and gets the packets first. 

It spoofs/alters the packets and redirects them to the server, as shown in Figure 3.5 and discussed 

below: 

7) Spoofing attacks:  

In this attack, the attacker gets a copy of each packet in the network. This attack violates the 

confidentiality and privacy legally required in healthcare systems. 

8) Data alteration:  

In this attack, the attacker alters some parts of the data and redirects it to the attacker's computer 

from the gateway computer. The alterations may be random or according to a rule. It then 

redirects the packet back to the server. This attack may cause severe harm to the patients as 

they may get the wrong treatment based on the false diagnostics resulting from the modifica-

tions made by the attacker. 

 

Figure 3.5 MitM attack. 
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3.3.3 Dataset Collection 

The data features used for training and testing are presented in Table 3.1. Sixteen thousand data 

samples were collected and labeled as 0 for normal (non-attack) traffic, and 1 for the attack traffic. 

The source media access control (MAC) address is used to label the data, where the samples with 

the attacker computer MAC addresses are labeled as one while the rest are labeled as zero. In 

addition, unrelated samples to the gateway, attacker, and server MAC addresses are removed. 

Table 3.1 Machine learning features. 
 

Metric Description Type 

SrcBytes Source bytes Flow metric 

DstBytes Destination bytes Flow metric 

SrcLoad Source load Flow metric 

DstLoad Destination load Flow metric 

SrcGap Source missing bytes Flow metric 

DstGap Destination missing bytes Flow metric 

SIntPkt Source inter-packet Flow metric 

DIntPkt Destination inter-packet Flow metric 

SIntPktAct Source active inter-packet Flow metric 

DIntPktAct Destination active inter-packet Flow metric 

SrcJitter Source jitter Flow metric 

DstJitter Destination jitter Flow metric 

sMaxPktSz Source Maximum Transmitted Packet size Flow metric 

dMaxPktSz Destination Maximum Transmitted Packet size Flow metric 

sMinPktSz Source Minimum Transmitted Packet size Flow metric 

dMinPktSz Destination Minimum Transmitted Packet size Flow metric 

Dur Duration Flow metric 

Trans Aggregated packets count Flow metric 

TotPkts Total packets count Flow metric 

TotBytes Total packets bytes Flow metric 

Loss Retransmitted or dropped packets Flow metric 
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pLoss Percentage of retransmitted or dropped packets Flow metric 

pSrcLoss Percentage of source retransmitted or dropped packets Flow metric 

pDstLoss Percentage of destination retransmitted or dropped packets Flow metric 

Rate Number of packets per second Flow metric 

Load Load Flow metric 

Temp Temperature Biometric 

SpO2 Peripheral oxygen saturation Biometric 

Pulse_Rate Pulse rate Biometric 

SYS Systolic blood pressure Biometric 

DIA Diastolic blood pressure Biometric 

Heart_Rate Heart rate Biometric 

Resp_Rate Respiration rate Biometric 

ST ECG ST segment Biometric 

3.3.4 ML Models 

We used four ML methods for training and testing the system against attacks. RF, KNN, SVM, 

and ANN are used to build the attack detection models. The following will highlight these methods 

to give the reader a brief overview of their concepts, but extensive details can be found in [77-80]: 

1) RF: 

This model is based on a set of decision trees from a random subset of the dataset. It then 

collects all the votes from these decision trees to determine the suitable class for the test ob-

jects. In this method, the maximum number of features for the best split in the trees can be 

assigned. We set the maximum number of features at 18 for the network-only and combined 

set of features since it achieves the highest performance for both. Since only eight biometric 

features are involved in the bio-related features, we set the maximum number of features to 

three features. 

2) KNN: 
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This non-parametric model classifies the test object by a plurality vote of its neighbors, with 

the object assigned to the class most common among its k-nearest neighbors. The hyperpa-

rameters used for all types of features (Net-only, Bio-only, combined) are as follows: 

• The number of neighbors equals two, the best out of a range of 1 to 100. 

• The power parameter equals four, the best out of a range from 1 to 100. 

3) SVM: 

The SVM method used in this chapter is linear SVM, which is a parametric method. It classi-

fies the test object by separating the objects using a hyperplane. 

4) ANN: 

This multi-layer network is fully connected, a brain-like system used to find patterns in data 

with input, hidden, and output layers. We have set the layers as follows: 40, 40, 20, 10, 10, 

10, 10, 1, where 40 is the dimension of the input layer, 1 is the dimension of the output layer, 

and the rest are for hidden layers. The initial settings of this setup have been taken from [94]. 

Our dataset comprises 14k normal samples and 2k attack samples, making up 16k samples. We 

used 80% of these for training and the rest for testing.  

3.4 Results 

This section presents our analysis and results using the abovementioned dataset and ML methods. 

First, we discuss the dataset preprocessing stage, including the cleaning and resampling tech-

niques. Then, we evaluate the ML methods using the Accuracy and Area-under the receiver oper-

ating characteristic (ROC) curve (AUC) metrics. 



 53 

3.4.1 Data Preprocessing 

In any ML application, preprocessing the data is essential since the ML method results are as good 

as the data used. Hence, the traffic flow metrics and biometrics are first preprocessed using the 

following steps: 

1) Splitting data into train and test datasets:  

To correctly measure the performance of the ML models, we split the dataset into training and 

testing datasets with a distribution of 80% and 20%, respectively. 

2) K-Fold: 

The K-fold method with ten folds was applied only on the training dataset to show the variety 

of the performance among the folds [95]. 

3) Resampling:  

The collected dataset was unbalanced; normal samples constituted about 88% of the data. This 

issue can result in bad models that cannot classify attacks [96]. Therefore, we used an over-

sampling technique, the synthetic minority over-sampling technique (SMOTE), to balance the 

dataset at the training stage [97]. 

3.4.2 Models’ Evaluation 

We used four ML methods to check the validity of using ML to differentiate between normal and 

attack biometric data. We compared them based on their performances using accuracy and AUC 

metrics. Accuracy is the ratio of the number of samples correctly predicted to the total number. At 

the same time, AUC summarizes the area under the ROC curve into a float number ranging from 

0 to 1. ROC is an excellent evaluation metric for sensitivity and specificity trade-offs [98]. K-fold 
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cross-validation with 10-fold is used to validate the training dataset results statistically. For this, 

the dataset is divided into ten subsets; in each fold, nine subsets are used for training and one for 

testing [95]. 

 

Figure 3.6 10-Fold accuracy scores comparison. 

Figure 3.6 shows the accuracy results for all four models with only biometrics, network, and com-

bined features. As can be seen, all models perform better with combined features compared to only 

biometrics features. Compared to only network features, RF, KNN, and ANN show significantly 

better results, while SVM performance is similar. These results indicate that combining features 

provides better results than using only one of the two types of features. However, some confidence 

intervals of the accuracy results over the ten K-fold runs overlap. This overlap indicates that accu-

racy is invariant in these overlapping cases or that the performance is not statistically different. 

Given the previous invariant results and the fact that accuracy is not a good measure for security 

applications [99], we also used the AUC metric to show the validity of the accuracy results. As 

shown in Figure 3.7, the AUC scores confirm the advantage of using combined features with no 

overlap. 
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Figure 3.7 10-Fold AUC scores comparison. 

Finding the optimal model is essential in healthcare systems, but the time spent training and pre-

dicting the samples is as essential. As a result, the average training time and prediction time using 

the K-fold method for all four ML methods are shown in Figures 3.8(a) and 3.8(b), respectively. 
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b.10-Fold testing time comparison 

Figure 3.8 Time comparison for all the models. 

As shown in Figure 3.8, the training times for RF, KNN, and SVM are less than 1.5 minutes across 

different types of features, compared to ANN, which is around five minutes. Also, the training 

time increases as the number of features increases in the first three methods. However, the training 

time is during offline mode. On the other hand, prediction time is crucial since it is during the 

online mode, and every second is essential for these systems. All the models have taken 300 mil-

liseconds in the worst-case scenario. However, this time is still high in such systems, considering 

the system's real-time requirements. ANN shows the lowest prediction time and the highest AUC 

compared to the other three models. Thus, this model is the best for these systems. 
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Figure 3.9 Test accuracy scores comparison. 

As shown in Figures 3.9 and 3.10, applying the same models to the test dataset shows that all the 

models perform similarly or better using the combined features. These results are similar to the K-

fold results, where AUC distinguishes their performance from accuracy. The improvement in AUC 

scores reaches up to 25% (in the SVM model.) In addition, ANN shows the highest performance 

compared to other methods, with an AUC score of 92.98%. We do not show their figures because 

all models' training and prediction times are similar to the average timing in the K-fold experiment. 

These results conclude that using network flow metrics with patients' biometrics enhanced the ML 

methods for securing health monitoring systems. Also, these results have shown that not all ML 

methods are suitable for health monitoring systems, especially regarding prediction time. ANN 

requires the lowest time for prediction compared to the other methods. 
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Figure 3.10 Test AUC scores comparison. 

3.5 Summary 

Due to the high demand for remote healthcare monitoring systems nowadays, a secure system that 

guarantees the integrity and confidentiality of the data is required. Several small sensors are at-

tached to a patient's body to record the biometric data and track the patient's health. To achieve the 

full advantages of these sensors, their ability to communicate with remote servers is essential. 

However, their physical constraints, such as low processing power and limited battery power, may 

prevent them from providing the required security and privacy for the patient's data. One of the 

solutions to such constraints is using IDSs to ensure the security requirements of such systems. 

Nevertheless, most available healthcare IDSs use network flow metrics or patients' biometric data 

to build their datasets. In this chapter, we presented the design of an EHMS testbed, where several 

small sensors were attached to a patient's body. We created a realistic healthcare dataset of more 

than 16 thousand normal and MitM attack packet records. To build an efficient IDS, we proposed 

combining the network flow metrics and the patient's biometrics as features to enhance the system 
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performance. We used four different ML methods: RF, KNN, SVM, and ANN. Then, we com-

pared their performance using three different types of features to train them. Results showed that 

the AUC could be enhanced by up to 25% by combining the flow metrics and biometrics data. 

Furthermore, these features had minimal effect on the testing prediction time for the best-perform-

ing model. 

However, the results show that the system performance is not optimal, which requires further in-

vestigation. We plan to enhance the methods' performance for future work by choosing optimal 

hyperparameters, reducing feature space, and launching more sophisticated attacks.  
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Chapter 4:  Feature Engineering Method 

IDS for IoT systems can use AI-based models to ensure secure communications. IoT systems tend 

to have many connected devices producing massive amounts of data with high dimensionality, 

which requires complex models. Complex models have notorious problems such as overfitting, 

low interpretability, and high computational complexity. Adding model complexity penalty (i.e., 

regularization) can ease overfitting, but it barely helps interpretability and computational 

efficiency. Feature engineering can solve these issues; hence, it has become critical for IDS in 

large-scale IoT systems to reduce the size and dimensionality of data, resulting in less complex 

models with excellent performance, smaller data storage, and fast detection. This chapter proposes 

a new feature engineering method called LEMDA (light feature engineering based on the mean 

decrease in accuracy) [7]. LEMDA applies exponential decay and an optional sensitivity factor to 

select and create the most informative features. The proposed method has been evaluated and com-

pared to other feature engineering methods using three IoT datasets and four AI/ML models. The 

results show that LEMDA improves the F1 score performance of all the IDS models by an average 

of 34% and reduces the average training and detection times in most cases. 

[7] A. Ghubaish, Z. Yang, A. Erbad, and R. Jain, "LEMDA: A Novel Feature Engineering Method for Intrusion 
Detection in IoT Systems," IEEE Internet of Things Journal, 2023. 

4.1 Introduction and Motivation 

The 5G era accelerates large-scale IoT deployment, leading to a surge in high-dimensional data 

and the associated challenge of "feature explosion" [100]. The sensitive nature of IoT data, espe-

cially in domains like IoMT, makes robust security crucial. Traditional IDS approaches often 
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struggle to efficiently process and analyze this complex data, leading to potential overfitting, in-

terpretability issues, and performance bottlenecks [101, 102]. Feature engineering offers a prom-

ising solution by reducing dataset dimensionality, simplifying models, and improving IDS effi-

ciency [103]. 

Feature engineering is one popular method of such techniques. Feature engineering methods help 

select the best features for these models, expediting the processes of finding the optimal hyperpa-

rameters for the IDS models. We use “feature engineering” and “feature reduction” interchangea-

bly in the rest of this chapter to describe the methods that reduce the datasets’ dimensionality. 

Most informative features can be selected using feature engineering or dimension reduction tech-

niques, such as feature selection and feature extraction. Feature selection techniques help simplify 

complex models by reducing the dimensionality of the dataset (number of features), which avoids 

over-fitting and results in less training time and storage space. Only the most essential features are 

retained after feature selection. On the other hand, feature extraction techniques, such as principal 

component analysis (PCA), create new features that preserve the data’s variance based on existing 

features. 

Feature selection techniques are divided into four categories: filter, wrapper, embedded, and hybrid 

[104]. Filter methods are fast but may fail to select the most informative features, leading to low 

accuracy in ML models. Wrapper methods, like recursive feature elimination (RFE) and forward 

feature selection (FFS), are effective in selecting informative features but are slow and susceptible 

to overfitting. Embedded methods, such as the mean decrease in impurity (MDI) and the mean 

decrease in accuracy (MDA), provide a tradeoff between accuracy and speed, thus providing bal-

anced results between filter and wrapper methods. Finally, hybrid methods are a mix of two or 
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more of these methods (e.g.,[105, 106]) and feature extraction such as PCA (e.g., [107]). However, 

these methods are usually designed for specific datasets or models. More about hybrid methods 

can be found in [108]. 

To address these limitations, we propose LEMDA, a novel feature engineering method that utilizes 

the mean decrease in accuracy (MDA) to select informative features, and a weighted exponential 

decay formula (WEDF) to create a new, informative feature. This approach aims to achieve a 

superior balance between accuracy, speed, and generalizability for IDS in IoT systems. 

Our method consists of two parts: 1) creating a list of the most informative features using the MDA 

method and 2) creating a new feature from the first feature (the most informative one) in that list. 

The new feature is created using the weighted exponential decay formula (WEDF) technique. In 

addition, in cases where the most informative feature is categorical, we utilize the sensitivity factor 

(SF) to complement the WEDF method for creating a new feature. This case happens, for example, 

when most attacks are passive, e.g., sniffing. WEDF and SF optimize the relationship between the 

values in the most informative feature and the samples’ classes, as shown in the Evaluation section 

of this chapter. 

LEMDA is a general feature engineering method using AI-based models for the supervised ML-

based IDS in IoT systems. We demonstrate the effectiveness of our method by using three different 

datasets and comparing three different ML models using three different metrics. The evaluation 

results show the outstanding performance of LEMDA in IDS, with high accuracy and low detec-

tion time. 

The remainder of this chapter is organized as follows. A brief background of the commonly used 

feature engineering methods and the related work is provided in Sections 4.2 and 4.3, respectively. 
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In Section 4.4, we present our proposed method. The experimental methodology and results are 

shown in Sections 4.5 and 4.6. Finally, we summarize this chapter in Section 4.7. 

4.2 Background 

This section presents a background of the most commonly used feature engineering methods. 

4.2.1 Categories of Feature Selection Techniques 

The difference between the four common feature selection techniques – filter, wrapper, embedded, 

and hybrid – is briefly explained in this subsection. More detailed information can be found in 

[108] and [109]. 

1) Filter: 

In this technique, features are sorted based on their relevance. Then, a threshold is applied to 

select the features that have strong relevance. This results in a fast selection but may lead to 

low accuracy if the dataset distribution is not uniform and the features are highly correlated. 

The correlation coefficient method is an example of this technique. It measures the linear rela-

tionship between the features and selects the features with a correlation below a specific thresh-

old. 

2) Wrapper: 

In this method, the features are selected by measuring the performance improvement for an 

ML model using a subset of the features. The subset with the highest improvement in the ML 

model is selected. This technique effectively selects informative features but is very slow since 
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it is computationally expensive, and the complexity increases as the number of features in-

creases. For example, the RFE method uses all the initial features, recursively removes them, 

and then sorts them by their incremental improvement. 

3) Embedded: 

Embedded techniques combine the advantages of filter and wrapper techniques by embedding 

feature selection within the ML model. However, this makes it less generic than filter and 

wrapper techniques. MDI and MDA methods are examples of this technique, which will be 

explained in detail in the following subsection. 

4) Hybrid: 

In this technique, two or more filter and wrapper methods (e.g., [105]) are combined to select 

a subset of the features to take advantage of each method and avoid their disadvantages. It is 

similar to the embedded technique but is more generic. 

4.2.2 Existing Feature Engineering Methods 

We chose the embedded technique for comparison with our method among the four feature selec-

tion techniques, considering their balance between accuracy and selection time. Specifically, we 

delve into two embedded feature selection methods, MDI and MDA. Additionally, we introduce 

the PCA feature extraction technique as part of our comparison, as it is commonly used in similar 

studies. 

By introducing the three techniques, this subsection aims to clarify the differences between our 

method and existing methods, which will be highlighted and compared in the results section. 

5) MDI method: 
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MDI, also called Gini importance, is based on RF and is used to calculate the importance of each 

feature based on the weighted sum of the actual decrease in impurity for each feature across all 

trees [110]. The larger the MDI score, the more important the feature. Since IDS uses a binary 

classification model, labeling with normal and attack, the decrease in impurity (I) can be calculated 

using Eq. 4.1: 

𝐼 = 𝐺!" − 𝑃#$ − 𝐺#$ − 𝑃%$ − 𝐺%$ (4.1) 

Here, GPE is the parent Gini (G) impurity index, as shown in Eq. 4.2. GLS and GRS are G indices 

for the left and right splits from the parent node in the tree, and PLS and PRS are the proportions for 

each split from their parent node (i.e., PLS + PRS = 1). 

𝐺 = 	'𝑝&(1 − 𝑝&)
'!

&()

 (4.2) 

Here, nc is the number of classes, which in our case is 2, and pi is the ratio for the ith class. G equals 

0.5 if the number of samples for each class is the same and 0 if only one class is found in the 

dataset. However, this method is known to be biased toward high cardinality features [111]. 

6) MDA method: 

MDA is also called permutation importance (Perm) and is similar to MDI as both are based on RF 

[111]. This method requires a validation set to calculate the importance score for each feature (f). 

This score is the weighted difference between the model’s prediction error rate for the validation 

set before and after the permutation of each feature f across all the trees, as shown in Eq. 4.3: 
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𝑀𝐷𝐴	score* =
1
𝑛+
	'(𝑠𝑎,* − 𝑠𝑏,*)
'!

&()

 (4.3) 

Here n t is the number of trees, 𝑠𝑎,* and 𝑠𝑏,* are the scores after and before permutating feature f 

in the jth tree, respectively. Similar to MDI, the larger the score, the more important the feature. In 

general, MDA can result in ignoring more irrelevant features than the MDI method. 

7) PCA method: 

PCA differs from the previous two methods since it creates new features different from the original 

ones. These new features are called principal components (PCs) that are uncorrelated and repre-

sented by a set of eigenvectors [108]. These eigenvectors and their corresponding eigenvalues are 

calculated using a covariance matrix. The PCs are sorted in descending order based on their ex-

plained variance, where the first PC has the highest explained variance among all features. The 

explained variance for each PC (𝑣𝑎𝑟_𝑃𝐶&) is the ratio of that PC’s eigenvalue (𝜆&) to the sum of all 

eigenvalues, as shown in Eq. 4.4. 

𝑣𝑎𝑟_𝑃𝐶& =
𝜆&

∑ 𝜆&
'"!
&()

	 (4.4) 

The easiest and most effective way to set the required number of PCs (𝑛-.) with good performance 

is by setting a threshold to calculate the necessary number of PCs to get 95%-99% explained var-

iance [112]. PCA improves model performance and is versatile to most ML models, but it is labo-

rious to tune the threshold. 
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4.3 Related Work 

The classification of IDS can be divided into five categories: network IDS (NIDS), host IDS 

(HIDS), protocol-based IDS (PIDS), application protocol-based IDS (APIDS), and hybrid IDS 

[113]. NIDS [114, 115] are designed to monitor the network traffic of all network communications 

and are usually centralized in one point of the system, such as the cloud. On the other hand, HIDS 

[116] only monitors the traffic of only one device. PIDS[117, 118] and APIDS are set up to monitor 

specific protocol connections, e.g., hypertext transfer protocol secure (HTTPS), and application-

specific protocols, e.g., structured query language (SQL), respectively. As mentioned above, hy-

brid IDS integrates multiple IDSs to leverage each IDS type’s strengths. 

Most of the IDS in the IoMT systems are NIDS since the extensive infrastructure of IoMT systems 

requires IDS that can monitor the whole network. While various types of IDS exist, our method 

generically applies to all of them. To prevent any confusion, it is essential to clarify that the main 

focus of this chapter is on feature engineering techniques for IDS in IoT systems. The intention is 

not to introduce a new IDS for IoT but to propose a generic feature engineering approach that can 

be applied effectively in IoT environments. 

Different prior works have shown the importance of feature engineering in improving the IDS’s 

performance [119] in the context of IIoT security, such as supervisory control and data acquisition 

(SCADA) systems [120] and cloud security [121]. According to Hakim et al. [119], feature engi-

neering has improved some of the tested models’ accuracies from 51% to 97%. Also, the required 

training time in all models has been almost reduced by half. Thus, developing a feature reduction 

or feature extraction approach to enhance ML models’ performance is commonly recommended 

[122]. 
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Improving IDS’s performance can be achieved by using one or more feature reduction methods 

(i.e., the hybrid technique introduced in Subsection 4.2.1), as discussed in [106, 123-125]. Ravin-

dranath et al. [123] propose a feature reduction method that utilizes the whale Pearson hybrid 

wrapper. This method is based on the binary Whale optimization algorithm, a swarm intelligence 

algorithm. It reduces the data features from 42 features in the HackerEarth network attack predic-

tion dataset [126] to only 8, with an 8% accuracy improvement compared to the original dataset 

using the k-nearest neighbors algorithm. Padmashree and Krishnamoorthi [124] propose a decision 

tree-based Pearson correlation recursive feature elimination (DT-PCRFE) model to select a subset 

of the features to detect various attacks via an optimized DNN model using the BOT-IoT dataset. 

This model reduces the number of features in the BOT-IoT dataset to only nine with 99.20% ac-

curacy. 

Kamarudin et al. [106] combine filter and wrapper methods as a single hybrid feature reduction 

method. This method reduced the number of features from 41 and 33 to 12 and 5 for the KDD 

CUP’99 and DARPA 1999 datasets, respectively. Also, it enhanced the IDS performance by 9%. 

Another feature reduction method for IDS developed by Pawar et al. [125] selects a subset of 

features based on a voting scheme from a list of feature selection methods. This scheme reduced 

the number of features from 41 to 14 for the NSL-KDD dataset and 47 to 18 for the UNSW-NB15 

dataset. Nevertheless, none of these feature engineering methods are designed to work on IoT 

systems. 

Another way to design a hybrid feature reduction method is by combining a feature reduction 

method with some specific ANN algorithm. Jingyi et al. [127] implement a method based on su-



 69 

pervised locality-preserving projections and use a backpropagation neural network called an ex-

treme learning machine. Madanan et al. [128], Abdul Lateef et al. [129], Fatani et al. [130], and 

Dahou et al. [131] also design similar methods using intelligent water drops, crow swarm optimi-

zation algorithms, Aquila optimizer (AQU), and reptile search algorithm (RSA), respectively. 

While these methods use the KDD CUP’99 dataset, the work of Fatani et al. included three other 

datasets, including NSL-KDD, BOT-IoT, and CIC2017. Using the KDD CUP’99 dataset, the Fa-

tani et al. method performed the best with an accuracy score of 99.92% compared to 99.56%, 

92.34%, 98.58%, and 98.34% for Madanan et al., Dahou et al., Jingyi et al., and Abdul Lateef et 

al., respectively. However, these methods must work with ANN models, which require significant 

computing power and only work on powerful devices. 

Hybrid feature reduction methods are also used to improve the detection rate for medical diagnos-

tics, such as [105, 107]. Shaban et al. [105], similar to [106], employ filter and wrapper methods 

to improve the performance of a KNN model, which is used as a new COVID-19 detection strat-

egy. On the other hand, Li et al. [107] illustrate that using multiple feature reduction methods, 

including PCA in a support vector machine model, can enhance the detection rate for sleep apnea. 

Nimbalkar et al. [132] propose a hybrid feature selection method based on the information gain 

and gain ratio methods to detect DoS and DDoS attacks in IoT systems using the BOT-IoT and 

KDD Cup 1999 datasets. 

In general, our method stands out from other approaches as it significantly improves the perfor-

mance of IDS in IoT systems. Also, it takes advantage of both feature selection and extraction 

methods and reduces their drawbacks. LEMDA is based on embedded methods and achieves a 

better tradeoff between performance and speed. It supports various attacks without needing a 
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specific ML or complex ANN model. Additionally, it often leads to faster IDS models compared 

to alternative methods. 

4.4 Our Proposed Method 

Designing a new feature reduction method is essential to enhance the prediction for IDS, especially 

for IoT systems, since they require fast detection. This method makes high accuracy and fast exe-

cution indispensable for IDS models. 

Our method, LEMDA, is based on MDA and consists of two techniques to satisfy the high accu-

racy and fast speed requirements of IoT-oriented IDS. The primary technique is WEDF, which 

runs after MDA, where the list of the most informative features is selected. The second one, SF, is 

an add-on technique to handle the datasets with a categorical feature as the most important feature 

for the cases when there are a majority of passive attacks like sniffing. In this section, we explain 

these two techniques in detail. For the rest of the chapter, we will use fm to represent the most 

informative feature in the list, selected by the MDA method, and fnm to represent a new feature 

created by the WEDF method. 

4.4.1 Weighted Exponential Decay Formula (WEDF) 

WEDF creates a new feature fnm based on a predefined dictionary (WEDF). This dictionary is 

constructed from fm by transforming its samples’ values into weights using the exponential decay 

formula (Eq. 4.5). 

𝑓(𝑥) = 𝑎𝑏/ (4.5) 

Here, f(x) is the output value (after the decay) in the exponential decay formula, a is the initial 

value (before the decay), b is the decay factor (a static fraction, 0 < b < 1, that needs to be set 
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before running the WEDF method, e.g., b = 0.5), and x is the period (during which a has been 

decayed). Since a is a static parameter, it can be removed in the WEDF method (i.e., considering 

a = 1). 

𝑊𝐸𝐷𝐹0 = 𝑓(𝑝)𝑤0 = 𝑏-𝑤0              where     𝑤0 =
1#
'#

 (4.6) 

Eq. 4.6 calculates 𝑊𝐸𝐷𝐹0, the WEDF score for each u that constitutes WEDF. u is a specific 

unique value from all data instances of the fm feature. Each u corresponds to a unique data value. 

In the context of the WUSTL-EHMS dataset, for instance, u can be “TCP,” which is a value of the 

fm feature. A more detailed example is provided in the next paragraph. We add a new weight pa-

rameter. 𝑤0 for each unique value u in fm. 𝑧0 represents the number of attack samples in the training 

dataset for each u in fm, and 𝑛0 is the total number of samples for each u in fm. Hence, 𝑧0 divided 

by 𝑛0 will result in 𝑤0 for each u. All the weights are sorted in descending order based on 𝑛0. Let 

us denote each u's index as p (i.e., p ranges from 1 to the number of unique values in fm). 

For instance, let us assume that 100 out of 1000 samples in the training dataset have u = TCP as 

their unique value, 10 of which are attack samples; then, 𝑧23! = 10, 𝑛23! = 100, and 𝑤23! = 10/100 

= 0.1, which will be stored in the w dictionary. Then, assuming TCP is the first unique value in the 

w (i.e., p = 1) and setting b = 0.5, we can calculate 𝑊𝐸𝐷𝐹23! by 𝑏-𝑤23! = 0.51 × 0.1 = 0.05. 

Hence, all the samples with u = TCP will have 𝑊𝐸𝐷𝐹23! = 0.05. Other unique values in fm with 

zero attack samples will have a WEDF score of zero in fnm. 

Finally, the WEDF scores for the u values in the fm feature using the training dataset are stored in 

a dictionary (WEDF). This dictionary creates the fnm feature in the training and testing datasets. 

Then, the fm feature is deleted from both datasets. Algorithm 1 shows the step-by-step implemen-

tation of generating the dictionary. 
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Upon generating the dictionary (assigning a weight to each u based on the proportion of attack 

samples associated with each value, i.e., 𝑤0 to attack samples and 0 to normal samples), the feature 

distribution for the fnm feature will become roughly a bimodal distribution. Consider an example 

of a fm with a standard normal distribution N(0, 1). After applying WEDF, the normal samples will 

tend to cluster around the distribution's left side (0.1% region), and the attack samples will cluster 

around the right side, resulting in a gap in the distribution between the normal and attack samples. 

This gap helps the ML model easily separate the normal and attack samples. It increases the im-

portance of the fnm feature compared to the original fm feature, resulting in better IDS performance. 
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4.4.2 Sensitivity Factor (SF) 

SF has been added as an add-on besides using the WEDF technique in case the fm feature is a 

categorial feature like the Flags feature in networking, and most attacks are passive attacks like 

sniffing. This add-on requires the training and testing datasets, individually, to be arranged in a 

sequential order, typically based on the timestamps associated with the samples. 

SF is also based on the exponential decay formula without multiplying weights w. As shown in 

Eq. 4.7, we use d, an index of the current sample (s) based on the last seen suspicious sample, as 

the input to the exponential decay formula (Eq. 4.5). Similar to the WEDF method, a new feature 

fsnm is created in the training and testing datasets using the fm feature. Using the Flags feature in 

networking as an example, any item in Flags that differs from the common values of Flags, such 

as duplicate MACs (M), is considered a suspicious sample. This add-on is used in one of the three 

datasets, and its results are promising, as shown in the results section. 

𝑆𝐹4 = 𝑏5 (4.7) 

In the case of suspicious samples, the SF score reaches its peak (i.e., a higher SF score indicates a 

greater likelihood of being an attack sample). Then, the score exponentially decreases for each 

sample after the suspicious sample(s) until the score reaches zero, as shown in Algorithm 2. This 

decrease is because cyber-attacks usually exhibit intensive behaviors over a continuous period, 

and the network traffic returns to a normal state after a certain duration. 
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4.5 Experimental Methodology 

In this section, we will demonstrate the evaluation results of the proposed method using three 

datasets and three models. The datasets are WUSTL-EHMS [6], MQTT-IoT [133], and BOT-IoT 

[94]. Two are collected from general IoT systems (MQTT-IOT and BOT-IoT), and one from an 

IoMT system (WUSTL-EHMS), which is presented in Chapter 3. Our ML models include decision 

trees (DT), RF, and two ANN models. We use the F1 score, the Safety score [134], and the accuracy 

metrics to compare the performance of feature engineering methods applied to these models. 

Using these datasets and models, we compare our methods to two widely recognized feature re-

duction techniques, PCA and MDA, and the scenario where no feature reduction (Base) is applied. 

4.5.1 Datasets 

The three IoT datasets used in our experiments have different sizes starting from 16k to 10M sam-

ples and similar numbers of features, as shown in Table 4.1: 



 75 

Table 4.1 Datasets statistics. 

Dataset Number of Samples Number of Features 

WUSTL-EHMS 16,317 44 

MQTT-IoT 2,000,000 31 

BOT-IoT 10,000,000 35 

8) WUSTL-EHMS: 

This dataset was collected from a real-time EHMS testbed, presented in Chapter 3 at Washington 

University in St. Louis, representing a real IDS for the IoMT systems [6]. The types of attacks in 

this dataset are based on MitM attacks, such as sniffing and injection attacks. Hence, this dataset 

has passive (sniffing only) and active (injection) attacks. This dataset is explained in [6] and [135]. 

9) MQTT-IoT: 

This dataset uses message queuing telemetry transport (MQTT) protocol for IoT systems [133]. 

The types of attacks in this dataset are as follows: user datagram protocol (UDP) scan, aggressive 

scan, MQTT brute-force Sparta, and secure shell protocol (SSH) brute-force. The number of sam-

ples in this dataset is 20M, but we have randomly selected 2M samples containing all attacks in 

the original dataset. More about this dataset is available in [133, 136]. 

10) BOT-IoT: 

This well-known dataset was created using IDS for IoT systems in the Cyber Range Lab of UNSW 

Canberra. It has different types of attacks, including theft, reconnaissance, DoS, and DDoS attacks. 

We selected 10M out of 73M samples to test our method. More about this dataset is available in 

[94, 137]. 

The number of selected features for each feature reduction method using these datasets is presented 

in Table 4.2. The Base method represents the method where we use all the features (without feature 
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engineering). It is worth noting that we have removed the identifier features, such as IP addresses 

and port numbers, from all the methods, including the Base method. 

Table 4.2 Number of features per reduction method. 

Dataset Base PCA* MDA LEMDA 

WUSTL-EHMS 35 14 5 5+1** 

MQTT-IoT 25 9 5 5 

BOT-IoT 23 10 5 5 

* Explained variance = 95% 
** Additional feature using the SF method 

4.5.2 Models 

We have used DT, RF, and two ANN models. The scikit-learn package has been utilized for DT 

and RF models with default hyperparameters [138, 139]. A simple multi-layer perceptron (MLP) 

model with two layers is used as a simple ANN model. To show the effect of complex ANN 

models, we added a convolutional neural network (CNN) model with five layers and Max pooling 

layers. The Keras package has been utilized for the two ANN models [140]. More about the hy-

perparameters are shown in Table 4.3. 

Our objective is not to develop optimal machine learning models with optimized hyperparameters 

but to demonstrate our method’s robustness and maintain consistency in experimental compari-

sons with other methods; we use these simple models with identical parameters across all three 

datasets. 

Table 4.3 ANN models hyperparameters. 

Parameter MLP Typical Value(s) CNN Typical Value(s) 

Number of Layers 2 5 
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Number of neurons per layer 20, 1 32, 128, 512, 1024, 1 

Number of epochs 20 2 

Kernel Size None 2 

Pooling None Max Pooling (size=2) 

Batch Size 1000 

Loss Function Binary cross-entropy 

Optimizer Adam 

Activation Function tanh, sigmoid 

The k-fold cross-validation method with ten folds has been utilized on all three models to analyze 

the models’ performance. In each fold, the dataset is divided into ten subsets; nine of them are 

used for training and one for testing. 

4.5.3 Metrics 

We evaluate the models’ performances using the accuracy, F1, and Safety scores. All the metrics 

are calculated based on the following four categories: true negative (TN), true positive (TP), false 

positive (FP), and false negative (FN). Label attack is defined as positive, and label normal is 

defined as negative. TN and TP are the cases when an IDS model correctly predicts a normal 

sample as normal and an attack sample as an attack, respectively. FP is when the model mistakenly 

predicts a normal sample as an attack, while FN is when an attack sample is predicted as normal. 

1) Accuracy: 

This metric represents the correct and total prediction ratio, as illustrated in Eq. 4.8. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝑇𝑃 (4.8) 

2) F1 score: 
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This metric is popular for security applications such as IDS. It is the harmonic mean between recall 

and precision, as illustrated in Eq. 4.9. 

𝐹)score = 2 ×
Precision × Recall
Precision + Recall =

𝑇𝑃

𝑇𝑃 + 12 (𝐹𝑃 + 𝐹𝑁)
 (4.9) 

3) Safety score: 

The safety score is designed by Salman et al. [134] specifically for security applications to 

fulfill the shortcomings of other metrics in these types of applications. This metric adds weights 

(Eq. 4.10) to the four primary model outcome categories (TP, TN, FP, and FN). 

Safety	score =
𝑤26𝑇𝑁 + 𝑤2!𝑇𝑃

𝑤7!𝐹𝑃 + 𝑤76𝐹𝑁 + 𝑤26𝑇𝑁 + 𝑤2!𝑇𝑃
 (4.10) 

For generality, we assign the following weights assuming that both FN and FP have the same 

importance, as explained in [6] and [134]: 

𝑤26 =
1
19 ,𝑤2! =

2
19 ,𝑤7! =

8
19 ,𝑤76 =

8
19 

Table 4.4 List of selected features. 

 

No. 

Dataset 

WUSTL-EHMS MQTT-IoT BOT-IoT 

1 Flgs protocol state 

2 DIntPkt mqtt_messagetype sbytes 

3 DstJitter ttl bytes 

4 Rate mqtt_messagelength proto 

5 DstLoad ip_len srate 
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4.6 Experimental Results 

The evaluation results are categorized into five subsections. The first three subsections present the 

results for each dataset individually, considering all the methods. The fourth subsection compares 

the training and detection times across all datasets and models, employing all the methods. Lastly, 

the fifth subsection provides a comprehensive comparison with previous works. 

For the metrics and time comparisons, we use the average of the k-fold cross-validation with ten 

folds. We set the b decay factor for WEDF and SF to be 0.5 as a balanced tradeoff between FN 

and FP values. Further investigation involved conducting multiple trials within the range of 0.1 to 

0.9. Through these trials, we found that the FP value increased, the FN value decreased as b in-

creased, and vice versa. Since we have set both values to be equally important, as explained in the 

previous section, the b value is set to be 0.5 for WEDF and SF. For other applications, the b value 

should be set based on the importance of the FN value over the FP value or vice versa. The selected 

features using the MDA method and our method for all three datasets are shown in Table 4.4. Note 

that our method creates an fnm feature for each dataset using their fm features, shown in the first row 

of Table 4.4. 

4.6.1 WUSTL-EHMS 

The WUSTL-EHMS dataset, as shown in Table 4.4, has the Flgs feature as the most informative 

feature fm, and most attacks are passive attacks (sniffing). As a result, among the three datasets, it 

is the only one suitable for using the SF add-on with the WEDF method. Across the three models 

in Table 4.5, our method shows average values for accuracy, F1 score, and Safety score of approx-

imately 95%, 78%, and 73%, respectively. These outcomes show that our method has an average 
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improvement of about 28%, 52%, and 61% in accuracy, F1 score, and Safety score, respectively, 

compared to the other methods. 

DT, RF, and ANN models show similar performances across the Base, PCA, and MDA methods, 

while our method outperforms all. As seen in Table 4.5, our method performs almost twice better 

with the security-oriented metric Safety score than the other methods in the three models. With the 

accuracy and the F1 score, our method still significantly shows improved results compared to other 

methods. 

Table 4.5 Methods results for the three datasets. 

WUSTL-EHMS Dataset 
Model Method TP FN FP TN Accuracy F1 Safety Training Time Detection Time 

DT 

Base 

PCA* 

MDA 

LEMDA 

127 

109 

125 

173 

78  

95 

80 

32 

358 

244 

288 

43 

1069 

1184 

1139 

1384 

73.284% 

79.228% 

77.451% 

95.404% 

36.812% 

39.138% 

40.453% 

82.185% 

27.499% 

34.079% 

32.056% 

74.249% 

0.247 

0.336 

0.082 

0.069 

0.000219 

0.000173 

0.000194 

0.000132 

RF 

Base 

PCA* 

MDA 

LEMDA 

115 

105 

122 

183 

90 

100 

83 

22 

125 

139 

189 

37 

1302 

1288 

1238 

1390 

86.826% 

85.355% 

83.333% 

96.385% 

51.685% 

46.771% 

47.287% 

86.118% 

47.109% 

43.930% 

40.514% 

78.815% 

0.451 

0.661 

0.386 

0.287 

0.020998 

0.020724 

0.021060 

0.020516 

MLP 

Base 

PCA* 

MDA 

LEMDA 

104 

105 

150 

116 

101 

100 

55 

89 

179 

221 

730 

15 

1248 

1206 

697 

1412 

82.843% 

80.331% 

51.900% 

93.627% 

42.623% 

39.548% 

27.650% 

69.048% 

39.394% 

35.542% 

13.701% 

66.397% 

1.716 

 1.238 

1.229 

1.213 

0.067576 

0.071022 

0.063846 

0.064459 

CNN 

Base 

PCA* 

MDA 

LEMDA 

134 

159 

180 

126 

71 

46 

25 

79 

546 

1018 

1142 

7 

881 

409 

285 

1420 

62.194% 

34.804% 

28.493% 

94.730% 

30.282% 

23.010% 

23.576% 

74.556% 

18.882% 

7.869% 

6.462% 

70.847% 

2.369 

1.498 

1.067 

1.068 

0.142412 

0.128004 

0.106574 

0.120796 

MQTT-IoT Dataset 
Model Method TP FN FP TN Accuracy F1 Safety Training Time Detection Time 
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DT 

Base 

PCA* 

MDA 

LEMDA 

19596 

113441 

20361 

160890 

160651 

66806 

159886 

19357 

2383 

6508 

2463 

9984 

17370 

13245 

17290 

9769 

18.483% 

63.343% 

18.826% 

85.330% 

19.380% 

75.578% 

20.053% 

91.644% 

4.156% 

29.049% 

4.276% 

58.549% 

4.251 

3.221 

1.038 

1.077 

0.008660 

0.006749 

0.004655 

0.004508 

RF 

Base 

PCA* 

MDA 

LEMDA 

55720 

57690 

20234 

178417 

124527 

122558 

160013 

1830 

2061 

2093 

2433 

12052 

17692 

17659 

17320 

7701 

36.706% 

37.675% 

18.777% 

93.059% 

46.818% 

48.069% 

19.943% 

96.255% 

11.309% 

11.771% 

4.257% 

76.649% 

58.882 

60.652 

31.612 

24.630 

0.124873 

0.119515 

0.109121 

0.107833 

MLP 

Base 

PCA* 

MDA 

LEMDA 

64395 

112778 

16252 

178972 

115852 

67469 

163995 

1276 

1088 

4794 

629 

12061 

18665 

14959 

19124 

7691 

41.530% 

63.869% 

17.688% 

93.332% 

52.411% 

75.736% 

16.489% 

96.408% 

13.616% 

29.381% 

3.772% 

77.411% 

40.425 

38.434 

37.485 

37.505 

1.752910 

1.727500 

1.737760 

1.708496 

CNN 

Base 

PCA* 

MDA 

LEMDA 

115844 

94843 

72885 

179002 

64404 

85404 

107362 

1246 

4715 

8631 

4843 

12071 

15037 

11122 

14910 

7681 

65.441% 

52.983% 

43.898% 

93.341% 

77.022% 

66.857% 

56.505% 

96.414% 

30.853% 

21.069% 

15.183% 

77.439% 

181.872 

108.087 

72.776 

72.949 

6.220485 

5.084061 

4.669276 

4.673046 

BOT-IoT Dataset 
Model Method TP FN FP TN Accuracy F1 Safety Training Time Detection Time 

DT 

Base 

PCA* 

MDA 

LEMDA 

917734 

965000 

950423 

999854 

82136 

34870 

49447 

16 

5 

42 

5 

7 

125 

88 

125 

123 

91.786% 

96.509% 

95.055% 

99.998% 

95.716% 

98.223% 

97.464% 

99.999% 

73.638% 

87.359% 

82.774% 

99.991% 

175.926 

392.076 

38.299 

36.079 

0.050922 

0.059293 

0.038469 

0.036017 

RF 

Base 

PCA* 

MDA 

LEMDA 

981079 

984417 

962375 

999857 

18791 

15453 

37495 

13 

3 

42 

2 

11 

127 

88 

128 

119 

98.121% 

98.451% 

96.250% 

99.998% 

99.051% 

99.219% 

98.089% 

99.999% 

92.883% 

94.077% 

86.517% 

99.990% 

445.560 

982.130 

311.985 

152.270 

0.713076 

0.829192 

0.635074 

0.611572 

MLP 

Base 

PCA* 

MDA 

LEMDA 

938838 

936317 

499925 

998828 

61032 

63553 

499945 

1042 

7 

28 

22 

47 

123 

102 

108 

83 

93.896% 

93.642% 

50.003% 

99.891% 

96.852% 

96.716% 

66.665% 

99.946% 

79.362% 

78.641% 

20.000% 

99.566% 

 

223.130 

202.012 

206.871 

207.164 

8.510574 

8.656834 

8.560095 

8.422081 

CNN 
Base 

PCA* 

964703 

930038 

35167 

69832 

26 

27 

104 

103 

96.481% 

93.014% 

98.209% 

96.380% 

87.267% 

76.897% 

964.367 

619.433 

41.930902 

25.352587 
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MDA 

LEMDA 

487379 

977230 

512491 

22640 

10 

27 

120 

103 

48.750% 

97.733% 

65.541% 

98.854% 

19.210% 

91.510% 

410.698 

403.539 

23.708180 

23.344931 

* Explained variance = 95% 

4.6.2 MQTT-IoT 

Similar to the WUSTL-EHMS dataset results, across the three models, our method showcases 

average accuracy, F1 score, and Safety score of approximately 91%, 95%, and 73% across the 

three models. MQTT-IoT results showed that our method has outperformed other methods by at 

least 50% using the F1 score, as illustrated in Table 4.5. Furthermore, even when the MDA method 

uses the same 4 out of 5 features as our method, the difference in performance between them 

reached almost 70% on average. The average improvements of our method using the accuracy and 

Safety scores are 56% and 79%, respectively. 

4.6.3 BOT-IoT 

This dataset has more attacks, such as DoS and DDoS attacks, making it more general for IoT 

systems than the others. Our method demonstrates an average performance of approximately 99% 

for accuracy, 99% for the F1 score, and 98% for the Safety score across the three models. Even 

here, our method shows clear performance improvement in the DT and RF models compared to 

the other methods in terms of accuracy, F1 score, and Safety score, as shown in Table 4.5. 

Given these results and the varying attacks in each dataset, our method demonstrates superior per-

formance, rendering it more suitable as an IDS for IoT systems using AI-based models than other 

methods. 

In particular, by comparing the results of the MLP and CNN models across all three datasets, the 

CNN exhibits superior performance over the MLP in the two large datasets, MQTT-IoT and BOT-
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IoT. These results suggest that a more complex ANN model benefits large datasets without feature 

engineering. Additionally, LEMDA exhibits enhancement (from MLP to CNN) in two datasets, 

WUSTL-EHMS and MQTT-IoT. However, this increase in complexity leads to very high training 

and detection times. 

These findings confirm that feature engineering methods are essential to reduce the computational 

complexity with simpler models. While more complex models may not necessarily enhance per-

formance, they still contribute to this reduction of computing time. 

4.6.4 Training and Detection Time Comparison 

Improving model performance is not the only requirement for IDS in IoT systems since the mod-

els’ training and detection time are also critical. As presented in Table 4.5, our method achieves 

the lowest or very close to the lowest training time compared to other methods, with an average of 

0.66s, 34.04s, and 199.76s in WUSTL-EHMS, MQTT-IoT, and BOT-IoT datasets, respectively. 

The detection times are also shown in Table 4.5. Similar to the average training time, our model 

detection times are the lowest in almost all the cases, with an average of 0.05s, 1.62s, and 8.10s in 

WUSTL-EHMS, MQTT-IoT, and BOT-IoT datasets, respectively. These results let us conclude 

that our method enhances the IDS performance and takes less time to train and detect attacks using 

different models in most cases. Hence, it makes the IDS models very accurate and fast to train ML 

models and detect attacks. 

4.6.5 Related Work Comparison 

In addition to comparing our work with PCA and MDA, we further assess its performance against 

four related works [124] and [130-132] using the BOT-IoT dataset, as presented in Table 4.6. As 

mentioned in Section 4.3, [130-132] used only one ML classifier model to report their results, 
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while the [124] method uses DNN classifier. In contrast, we have tested our method with multiple 

ML models, including DT and RF, in addition to the two ANN models, including MLP and CNN, 

to show the versatility of our method. 

All the attacks were included in [124] and [130, 131] results, while only DoS/DDoS attacks were 

included in [132]. The methods proposed by [124] and [130, 131] require an ANN model as part 

of their implementation. The methods in [130, 131] were built to transform the feature space before 

selecting the best set of features. On the other hand, our method will only transform the most 

informative feature after the MDA method completes the selection process. Compared to these 

methods, our work shows comparable or better results than these works with up to 85% feature 

reduction rate using ML and ANN models. 

Table 4.6 Related work comparison using BOT-IoT dataset. 

 LEMDA [124] [130] [131] [132] 
Category Supervised Supervised Supervised Supervised Supervised 

Type of attacks All All All All DoS/DDoS 

Model DT/RF/ANN DNN KNN KNN JRip 

Require ANN No Yes Yes Yes No 

Reduction Approach 
Selection+ 
Extraction Only selection 

Selection+ 
Extraction 

Selection+ 
Extraction Only selection 

Reduction Method MDA+WEDF DT-PCRFE AQU+CNN RSA+CNN IG+GR 

No. of Samples 10M 13.9M 3.6M 3.6M 0.7M 

Feature Reduction 
Rate 85.7% 74.3% —– —– 54.3% 

No. of Features 5 9 —– —– 16 

Accuracy 99.998% [DT/RF] 99.200% 99.994% 99.993% 99.999% 

F1 99.999% [DT/RF] 98.910% 99.992% 99.992% —– 
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4.7 Summary 

IDS models for IoT systems require faster training and detecting time along with high perfor-

mance. Therefore, these require specialized feature reduction methods. This chapter presented a 

new feature reduction method called LEMDA. Our proposed method uses two new WEDF and SF 

techniques to generate a representative feature based on the most informative feature from the 

MDA method. We used three different datasets with different sizes, three different ML models, 

and three different metrics. We compare our method with other methods, including MDA, PCA, 

and a base method without feature reduction methods as the ground truth of our experimental 

results. Our results show that LEMDA performs better than the other methods in all three datasets 

and ML models by an average of 34%, 57%, and 56% using the F1, the Safety scores, and the 

accuracy scores, respectively. Furthermore, the proposed method achieved the lowest required 

training and detection times in most cases, making it run faster than other methods. 

For future work, we plan to investigate the improvement of our method using best-optimized mod-

els and then compare the results with the plain models. We will examine the potential of our 

method for semi-supervised and unsupervised ML-based IDS. Moreover, applying our method to 

applications (other than IoT systems) can help determine its limits.  
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Chapter 5:  Hybrid IDS using 5G Network 

The evolution of next-generation wireless networks, particularly the integration of MEC in 5G, is 

set to revolutionize the infrastructure of secure systems. This evolution is exemplified in the IoMT 

field, where benefits such as remote surgeries and diagnostics become increasingly common, es-

pecially in pandemic scenarios. However, incorporating MEC services into the 5G framework sig-

nificantly enlarges the network's vulnerability to traditional security breaches and introduces new, 

sophisticated types of attacks. These emerging threats, often undetectable by conventional meth-

ods, necessitate the development of an adaptive IDS capable of identifying such complex security 

challenges with minimal human intervention. To tackle these issues, this chapter introduces a novel 

HDRL IDS [8] rooted in an actor-critic methodology designed to detect more complex security 

threats adaptively and autonomously with limited human oversight. Our HDRL IDS combines 

network and host features analysis, effectively leveraging the advantages of both NIDS and HIDS. 

Empirical results indicate that our HDRL IDS outperforms traditional NIDS and HIDS in threat 

detection efficacy. Furthermore, we present a novel dataset derived from an emulated 5G testbed 

with integrated MEC services to facilitate advanced research and development in the field, specif-

ically for applications designed to address intricate attacks and scenarios demanding high reliabil-

ity. 

[8] A. Ghubaish, Z. Yang, and R. Jain, "HDRL-IDS: A Hybrid Deep Reinforcement Learning Intrusion 
Detection System for Enhancing the Security of Medical Applications in 5G Networks," in 2024 IEEE 
International Conference on Smart Applications, Communications and Networking (SmartNets), 
Harrisonburg/Washington DC, VA, USA, 2024. 

5.1 Introduction and Motivation 

The integration of next-generation wireless networks, particularly 5G and MEC, promises to rev-

olutionize healthcare applications within the IoMT. However, the distributed nature of edge clouds 
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introduces new security vulnerabilities and makes traditional IDS less effective [141]. Against 

increasingly sophisticated attacks, there is a pressing need for IDS that can intelligently adapt and 

detect new threats with minimal human intervention [142]. 

Deep reinforcement learning (DRL) has emerged as a promising candidate for such dynamic IDS, 

offering solutions with little need for human oversight to detect new attacks (zero-day attacks) 

without retraining the IDS model. DRL combines the strengths of reinforcement learning (RL) and 

deep learning (DL), allowing the RL agent to learn effectively from a low-dimensional feature 

space [142, 143]. To address the increasing prevalence of zero-day attacks, the primary focus of 

DRL for IDS has been on NIDS. However, these methods often rely on centralized architectures, 

which are not readily applicable to the MEC services in 5G. 

Most studies prioritize NIDS over HIDS because of the suitability of NIDS for implementing RL 

algorithms like Q-learning and deep Q-learning (DQL). These methods effectively analyze and 

learn from network traffic patterns but can be biased and inefficient for large states or action spaces 

[144]. Additionally, many studies rely on datasets that do not adequately reflect the characteristics 

of 5G networks, with the NSL-KDD dataset being a common example [145]. 

To address these gaps, we integrate the advantages of both NIDS and HIDS within an actor-critic 

DRL framework. We utilize the deep deterministic policy gradient (DDPG), known for its model-

free and online capabilities. Moreover, we have developed an emulated 5G testbed with MEC 

services designed explicitly for healthcare systems. The testbed produced a dataset that more 

closely aligns with the most recent developments in 5G network technology. Built using Simu5G 

[146], our testbed replicates a 5G network environment with multiple MEC servers and UEs based 

on the OMNet++ framework [147]. 
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The rest of the chapter is organized as follows. Section 5.2 provides a background on the DRL 

model and 5G infrastructure. Sections 5.3 and 5.4 discuss related work and our proposed HDRL 

testbed. Section 5.5 presents our testbed results. The summary and future work are detailed in 

Section 5.6. 

5.2 Background 

This section introduces the typical DRL algorithms and the 5G infrastructure to provide readers 

with fundamental insights into our approaches. 

5.2.1 DRL 

RL is a subset of ML techniques in which an agent learns decision-making by engaging with its 

environment, akin to how humans acquire knowledge through trial and error. RL comprises five 

key components: agent, environment, state, action, and reward. The agent is the decision-maker, 

while the environment is what the agent interacts with. The state represents the current situation 

in the environment. The action is the agent's decision based on the state, determining whether the 

agent receives a reward for a correct action or a penalty for an incorrect one. 

DRL extends RL by integrating DNN to handle complex, high-dimensional environments. This 

advantage has led to an increased interest in DRL in recent years. The main categories of RL are 

as follows (as shown in Figure 5.1 [148]): 
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Figure 5.1 Classifications of RL categories. 

1) Value-based methods:  

These methods aim to estimate the value of actions in the current state to find the optimal 

action that maximizes rewards. Examples include Q-learning and DQL. However, they are 

prone to high bias [149]. 

2) Policy-based methods: 

Instead of estimating action values, these methods directly learn a policy that maps states to 

actions. Examples are reinforce and proximal policy optimization (PPO). However, they can 

suffer from high variance and large gradient noise [149]. 

3) Actor-critic methods: 

Combining the strengths of value-based and policy-based methods, they consist of an actor 

who makes decisions and a critic who evaluates these decisions to help the actor adjust its 
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policy for better performance. Examples include DDPG and asynchronous advantage actor-

critic (A3C). In this chapter, we employ DDPG, an actor-critic method, for our HDRL model. 

 
Figure 5.2 5G End-to-End system infrastructure. 

5.2.2 5G Infrastructure 

Figure 5.2 illustrates the system-level components of the 5G infrastructure, including End Users, 

the Radio Access Network (RAN), the Edge Cloud, and the Core Cloud. We focus on the URLLC 

applications, for which the Edge Cloud is a crucial enabler. UEs include two types of users: direct 

users and indirect users. Direct users are directly connected to the 5G network, while indirect users 

are inside a private network to benefit from 5G services while not being directly connected to the 

5G network. All UEs significantly benefit from MECs in 5G networks by experiencing lower la-

tency and faster data processing. MECs allow data processing closer to the data source at the net-

work's edge. 
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While 5G has overcome many limitations of 4G networks, it has an increased attack surface. The 

5G infrastructure is susceptible to various attack vectors, such as DDoS attacks targeting the edge 

cloud's network infrastructure. Other potential threats include ransomware, buffer overflow at-

tacks, and MitM attacks, which can involve data manipulation during transmission. 

5.3 Related Work 

IDS are pivotal in network security and are classified primarily into two types: signature-based 

IDS (SIDS) and anomaly-based IDS (AIDS) [150]. SIDSs are highly effective in recognizing 

known attacks leveraging predefined patterns. However, they fall short in identifying novel, un-

seen threats. AIDSs, conversely, offer a solution to this limitation by focusing on deviations from 

normative behavior, making them apt for detecting zero-day attacks. Zero-day attacks, such as the 

infamous Stuxnet worm [151] that targeted industrial control systems, are cyber threats that exploit 

previously unknown software or hardware vulnerabilities before developers can issue a fix or 

patch. Consequently, AIDS has seen increasing focus in recent literature, particularly those em-

ploying DRL. 

Among the notable works, Benaddi et al. [142] proposed a DRL-IDS specifically for the IoT and 

wireless sensor networks (WSN), utilizing a DQL model. Their system demonstrated remarkable 

detection rates and low false negatives when benchmarked against standard RL and KNN using 

the NSL-KDD dataset. 

Similarly, Hsu and Matsuoka [143] designed a DRL-based IDS aligned with Benaddi et al.'s ap-

proach. Still, they extended their comparison to include machine learning models like RF and 

SVM, using both NSL-KDD and UNSW-NB15 datasets. Their results indicated superior accuracy 

of the DRL-based IDS in detecting intrusions across these datasets. 
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Expanding on these foundations, Alavizadeh et al. [152] developed a DQL-based IDS, focusing 

on efficiency with a training duration of just 250 episodes. The model achieved a notable accuracy 

rate, highlighting the effectiveness of DRL in IDS. 

Ren et al. [153] introduced an innovative approach with their ID-RDRL, a NIDS that combines 

DQL with recursive feature elimination (RFE) to reduce redundant features significantly. This 

strategy not only streamlined the feature set but also enhanced the NIDS’s performance, as evi-

denced by their accuracy and F1 scores of 96.20% and 94.90%, respectively, on the CSE-CIC-

IDS2018 dataset. 

In the context of 5G networks, Moudoud and Cherkaoui [145] constructed a DRL-based IDS to 

enhance the security of IoT systems. Utilizing a DQL model and training on the NSL-KDD dataset, 

their system showed promising results, achieving a high F1 score of 94% with limited training 

episodes. 

Our research diverges from these existing studies by introducing a unique dataset tailored for 5G 

networks with MEC services, employing hybrid data sources from both network and host, and 

leveraging an actor-critic DRL method. This approach combines the advantages of both NIDS and 

HIDS, making it a novel contribution to the field of anomaly-based, DRL-based IDS. To the best 

of our knowledge, this is the first instance of an IDS that integrates these specific features for 

enhanced intrusion detection in 5G networks. Additionally, it marks the first dataset generated by 

an emulated 5G testbed with MEC services. 

5.4 HDLR Testbed 

HDRL consists of IDS distributed components in the edge clouds (i.e., MEC) of the 5G network 

to provide IDS for both direct and indirect users. In other words, an HDRL component is integrated 
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into every edge cloud, allowing for the dynamic updating of IDS models that combine the benefits 

of using host data and network-based IDS in each edge cloud. Furthermore, using an IDS in the 

edge clouds eliminates the single point of failure issues in centralized IDSs, minimizes the effects 

of an attack on the whole system, and increases the system’s resilience. 

The IDS can be enhanced and adapted to different types of attacks (including zero-day attacks) 

with the help of DRL algorithms with two innovations. DRL enhances and adapts IDS for new 

attacks by learning and updating policies from environmental interactions. Hence, it enables con-

tinuous adaptation to emerging threats without the extensive retraining required by other ML and 

DNN methods. First, to avoid the drawbacks of value-based and policy-based algorithms [149], 

we use one of the actor-critic algorithms, DDPG. Second, to take advantage of both types of IDS, 

we create a hybrid DRL model in the MECs. We combine the advantages of host data and network-

based IDS. 

We have developed a testbed to emulate user and attacker interactions to the 5G MEC and core. 

First, the edge clouds monitor and collect the network metadata for the links between the edge 

clouds and the edge nodes. Next, the UEs send the host metadata (i.e., CPU usage and running 

processes) to the edge clouds as part of the transmitted data used by the hybrid DRL model. Finally, 

our algorithm executes the IDS procedures, processing the network and host metadata in combi-

nation as a hybrid approach. 
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Figure 5.3 Our testbed. 

5.4.1 Testbed Architecture 

The testbed comprises six main components, as depicted in Figure 5.3, based on the structure in 

Figure 5.2: a 5G core, a local network, two MECs, three UEs, an insider attacker, and a router. 

1) 5G Core:  

At the core of the testbed, the Ubuntu 20.04 computer emulates the behaviors of the 5G infra-

structure using Simu5G. The emulation setup is based on the "extUeAppMecApp" instance 

from Simu5G v1.2.2, initially facilitating the emulation of one MEC and one UE. We have 

extended the system to include multiple MECs and external hosts, providing a more complex 

and representative emulation of a 5G network. The core host is the command center for all 

communications within the testbed's 5G infrastructure. 

2) Local Network:  
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This component replicates a typical local network linked to the broader 5G network. It includes 

edge clouds with a local core, a local switch, and a stateless IP/ICMP translation (SIIT) system 

implemented using the Jool package [154]. The SIIT component, particularly crucial, ad-

dresses the network address translation (NAT) issues, enabling local devices to use IPv6 for 

individual identification within OMNET-emulated 5G networks, which predominantly utilize 

IPv4. Given the current limitations of OMNet++ version 6.0 in terms of IPv6 support, this 

solution is a workaround, which is necessary for complete compatibility with Simu5G. 

3) MECs: 

Running on Ubuntu 20.04 OS, the PCs hosting the MEC services are integral to the testbed. 

Here, the HDRL IDS model is stationed, monitoring network data via Argus [91] and gathering 

host data using the psutil library [155]. The collected data is crucial for functioning the hybrid 

IDS model within the testbed. 

4) UEs: 

UE1 and UE2, based on Ubuntu 20.04 OS, are directly connected to the 5G network. In con-

trast, UE3, operating on Raspberry Pi OS, is situated within the local network, representing a 

diverse range of end-user scenarios. 

5) Insider Attacker: 

This Ubuntu 20.04 computer is configured to generate various attacks, including MitM, DDoS, 

ransomware, and buffer overflow attacks, as elaborated in Section 5.3.2. This component is 

essential for testing the resilience and effectiveness of the IDS against a range of security 

threats. 
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6) Router: 

The router's role is to manage the entire testbed from a central control PC. Its function is critical 

in ensuring unbiased data collection for the new dataset. Randomizing the timing and duration 

of attacks helps create a diverse and unpredictable set of scenarios for robust IDS testing. 

Each component creates a dynamic and realistic 5G network environment, enabling thorough test-

ing and evaluation of the proposed HDRL IDS model in various scenarios and attack conditions. 

5.4.2 Types of Attacks 

In this dataset, four types of attacks are implemented, offering a broad spectrum of applications in 

various domains. All attacks are developed using Python, except for the buffer overflow attack, 

executed using a Bash script. The descriptions of these attacks are as follows: 

1) MitM: 

This attack involves data alteration, where host data sent from a UE to a MEC server is altered. 

It primarily targets UE1 and UE3. The Scapy [156] and NetfilterQueue [157] libraries intercept 

and modify the packets before redirecting them to the MEC server. 

2) DDoS: 

Executed by multiple compromised PCs, this attack floods MEC1 and MEC2 with overwhelm-

ing requests, disrupting services for regular users like UE1, UE2, and UE3. The attacker's PC 

simulates a DDoS attack from multiple devices by generating numerous sessions with unique 

IPs. The Scapy library is again used to create and dispatch these packets. 

3) Ransomware:  
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In this scenario, files on UE1's PC are encrypted by an attacker, who then demands payment 

for decryption. The attack encrypts a folder using the cryptography library [158] and follows 

and implements a Python-based ransomware attack outlined in [159]. 

4) Buffer overflow: 

This attack manipulates a program's execution flow to execute arbitrary code, potentially dam-

aging the UE's OS. The method for this attack is based on instructions from [160]. 

5.4.3 5G Edge Threat Model 

 

Figure 5.4 5G edge threat model 

1) Surface and Vector: 

• Network Communication (MitM Attacks): Data between UE and MEC servers in the 

5G network is vulnerable to interception and alteration. 

• Server Availability (DDoS Attacks): MEC servers can be overwhelmed by excessive 

traffic originating from within the network, disrupting services. 
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• Endpoint Security (Ransomware Attacks): UE operating in the 5G network is suscep-

tible to ransomware attacks that encrypt data, demanding a ransom for decryption. 

• Application and System Integrity (Buffer Overflow Attacks): Applications and oper-

ating systems on UE are at risk from buffer overflow vulnerabilities, which allow arbitrary 

code execution. 

2) Threat Agents: 

• Insider Attacker: 

a) Has authorized access and potentially extensive knowledge of the 5G network and 

associated systems. 

b) Capable of intercepting and altering data in transit between UEs and MEC servers 

(MitM). 

c) Can initiate DDoS attacks by manipulating network traffic to overload MEC servers. 

d) May deploy ransomware on vulnerable UEs within the network. 

e) Could exploit system vulnerabilities to execute buffer overflow attacks on applica-

tions and operating systems of UEs. 

2) Potential Impacts: 

• Data Integrity and Confidentiality: Compromised in MitM attacks, leading to potential 

information leakage or corruption. 
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• Service Availability: Disrupted during DDoS attacks, affecting the normal functioning of 

network services and impacting user access. 

• Data Availability and Financial Loss: Threatened by ransomware attacks, which can lead 

to significant operational and financial consequences. 

• System and Data Security: Undermined by buffer overflow attacks, which can result in 

unauthorized access or damage to the system. 

3) Security Measures: 

• Encryption and Secure Communication Protocols: To safeguard against MitM attacks 

by ensuring that data in transit is secure and cannot be easily intercepted or altered. 

• Traffic Monitoring and Management: To detect and mitigate DDoS attacks by identify-

ing abnormal traffic patterns and implementing rate limiting or blocking of malicious 

sources. 

• Endpoint Protection and Backup Strategies: To prevent ransomware infections through 

antivirus defenses and regular backups that can restore encrypted data without paying a 

ransom. 

• Software Development Best Practices: To avoid buffer overflow vulnerabilities by using 

secure coding techniques and regular security testing of applications. 

These security measures have been discussed in detail in Chapter 2 of the dissertation, 

providing a comprehensive strategy for mitigating the identified risks. 
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5.4.4 5G Dataset 

The datasets collected from MEC1 and MEC2 using our 5G testbed have been combined for ease 

of result analysis and feature comparison. The dataset comprises 77 features, categorized as fol-

lows: 35 network features as defined by Hady et al. [6], 40 host features (detailed in Table 5.1), 

and two label features (one for multi-label classification and the other for binary classification). 

Overall, the dataset includes 145k samples, consisting of 132k normal samples and 13k attack 

samples [161]. 

Table 5.1 Dataset host features. 

Metric Description 
IMEI International Mobile Equipment Identity 

RTime Packet sending time 

Packet_num Packet number 

scputimes_user Normal processes' CPU time 

scputimes_nice Prioritized processes' CPU time 

scputimes_system Kernel processes' CPU time 

scputimes_idle Idle CPU time 

scputimes_iowait CPU time waiting for I/O 

scputimes_irq Hardware interrupts CPU time 

scputimes_softirq Software interrupts CPU time 

scputimes_steal Virtualized CPU time 

scputimes_guest Normal virtual CPU time 

scputimes_guest_nice Prioritized virtual CPU time 

scpustats_ctx_switches Number of context switches 

scpustats_interrupts Number of interrupts 

scpustats_soft_interrupts Number of software interrupts 

scpustats_syscalls Number of system calls 

svmem_total Total physical memory size 

svmem_available Available memory size 

svmem_percent Percentage of used memory 

svmem_used Broadly consumed memory 

svmem_free Free memory size 
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svmem_active Currently in-use memory 

svmem_inactive Currently unused memory 

svmem_buffers System metadata cache 

svmem_cached Other things cache 

svmem_shared Shared memory 

svmem_slab In-kernel data structures cache 

ram_usage_warning RAM usage warnings 

sswap_total Total swap memory in bytes 

sswap_used Used swap memory in bytes 

sswap_free Free swap memory in bytes 

sswap_percent Swap memory percentage usage 

sswap_sin Number of bytes swapped in from disk 

sswap_sout Number of bytes swapped out from disk 

sdiskusage_total Total disk size 

sdiskusage_used Used disk size 

sdiskusage_free Free disk size 

sdiskusage_percent Percent disk used 

Boot_Time_with_date Boot time and date 

DTime Packet delivery delta time 

5.4.5 DRL Model 

The DRL model implements the DDPG algorithm designed for continuous action spaces. This 

model was developed using the Keras library from the Tensorflow package [162]. It comprises 

two main components: the actor and the critic. The actor is tasked with selecting actions, while the 

critic evaluates these actions by estimating their value functions. Details of the actor and critic 

models, including their hyperparameters, are presented in Table 5.2. The architecture includes 

three hidden layers: the first consists of 32 gated recurrent unit (GRU) neurons, while the other 

two layers each have 48 fully connected neurons, following the setup outlined in [163]. An epsilon-

greedy strategy is employed to adjust the action policies. Additionally, the learning rate dynami-

cally changes based on the rewards received during the model's training phase. 
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Table 5.2 DRL model hyperparameter. 

Parameter Typical Value(s) 

Number of layers 4 

Number of neurons per layer 32, 48, 48, 1 

Number of episodes 10 

Actor's initial learning rate 0.0001 

Critic's initial learning rate 0.001 

Discount factor 0.99 

epsilon 0.1 

Anomaly rate range (-0.1, 0.0) 

Optimizer Adam 

Activation function relu, tanh 

5.5 Experimental Results 

In this section, we discuss the analysis and evaluation of the dataset using the newly developed 

HDRL model. First, we explain the preprocessing steps applied to the dataset. Subsequently, we 

present the initial results obtained from the HDRL model, utilizing the collected dataset. These 

results include a comprehensive comparison between the usage of hybrid features, network-only 

features, and host-only features. 

5.5.1 Dataset Preprocessing 

Preprocessing the dataset is crucial for any ML method, including DRL models, to ensure accurate 

results. The preprocessing steps consist of dataset splitting, data encoding, normalization, and 

resampling, as follows: 

1) Dataset splitting: 

The dataset is divided into three parts for training and evaluating the DRL model: 75% for 

training (10% of this portion is allocated for validation) and 25% for testing. 
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2) Data encoding and normalization:  

Categorical features are encoded, and the dataset is scaled using the label encoder and Standard 

Scaler from the scikit-learn package [164], respectively. 

3) Divide the features based on their types:  

We have prepared three separate datasets to compare hybrid, network-only, and host-only fea-

tures. The first two consist of a single feature type, while the third contains both types. We 

then run the same model on these datasets and present their results in Section 5.5.2. 

5.5.2 Results 

We compared the hybrid HDRL model to those using only network or host features. This compar-

ison utilized two different metrics: the F1 score and accuracy. The F1 score, a harmonic mean of 

precision and recall, is widely used in IDS results. Accuracy is defined as the ratio of correct pre-

dictions to total predictions. As these are initial results, the anomaly rate range (-0.1, 0.0) was 

determined by taking the average action values from the training samples and adjusting it by 

± 0.05 based on the average action values in each training episode. 

Figure 4 shows the accuracy scores for all three types of features. As shown in the figure, the 

HDRL model achieved 58.17%. In contrast, the features from the net-only dataset achieved 

91.76%, compared to a mere 24.99% for the host-only features. Despite the net-only model's high 

accuracy score, these results underscore that accuracy alone may not be the most reliable measure 

of IDS effectiveness. This is because the net-only IDS failed to identify nearly all attack samples, 

rendering it as effective as a model with a 0% detection rate, which still achieves a 91.42% accu-

racy score. However, combining both yields significantly better results than using either type in-

dividually. 
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Figure 5.5 Accuracy and F1 scores comparison. 

Similarly, Figure 5.4 presents the F1 scores for all three types of features. Given that the F1 score 

is more suitable for security applications, a clear improvement in IDS performance is observed 

when combining network and host features. The HDRL method's score was more than two times 

higher than the other two feature types. Nonetheless, based on predefined parameters from other 

research, these initial results may not fully showcase the HDRL model's potential. Future work 

would explore the impact of training episode numbers and the use of feature-reduction methods to 

decrease training time. 

5.6 Summary 

With advancements in cybersecurity and next-generation infrastructures like 5G, there is a grow-

ing need for dynamic IDS that can adapt quickly to evolving attack patterns with minimal human 

intervention. This chapter introduces a novel dataset for IoMT systems, created using an emulated 

5G network that includes direct and indirect end users and MEC services. This dataset, a first of 

its kind, addresses the gap in 5G IDS datasets, facilitating the detection of zero-day attacks. We 

collected 145k samples, comprising normal samples and four types of attacks: MitM, DDoS, ran-

somware, and buffer overflow. A hybrid DRL model for IDS, combining the strengths of Network 

IDS and Host IDS, was developed to evaluate this dataset. The analysis demonstrates the benefits 
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of combining features compared to using only network or host features. Our results show that the 

HDRL model outperforms the F1 score and accuracy metrics by 25.42% and 58.17%, respectively. 

Future work will focus on increasing the training episodes for the HDRL model to optimize IDS 

performance further. 
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Chapter 6:  Conclusion and Future Work 

As this dissertation concludes, it is crucial to reflect on the progress made in enhancing the security 

of IoMT systems. Integrating IoMT technologies into healthcare has ushered in transformative 

improvements in patient monitoring and data management but has also introduced significant cy-

bersecurity challenges. These challenges are pivotal as they threaten healthcare services' integrity 

and operational continuity. Addressing these challenges was the core focus of this dissertation, 

aiming to fortify the security frameworks that protect sensitive medical data and ensure the relia-

bility of healthcare operations. 

The research began with a thorough review of existing IoMT security measures, which are essen-

tial for identifying the current vulnerabilities and setting the stage for subsequent developments. 

This foundational work was critical in shaping the research direction, highlighting the need for 

innovative solutions that could adapt to the evolving landscape of cyber threats. 

The introduction of the EHMS testbed marked a key phase in the research, serving as a practical 

platform for testing security measures and as a source of valuable data on IoMT security dynamics. 

This testbed was instrumental in understanding how various security strategies performed under 

real-world conditions. 

Central to addressing the cybersecurity challenges was exploring how advanced technologies, like 

machine learning and 5G networks, could be leveraged to improve the security of IoMT systems. 

The research investigated how these technologies could be integrated into existing healthcare in-

frastructures to enhance threat detection and response capabilities, thus safeguarding against 

known and emerging cyber threats. 
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As the dissertation shifts focus from the detailed contributions to the broader challenges and future 

directions, it is evident that the journey to secure IoMT systems is ongoing. The subsequent sec-

tions will explore the outcomes achieved and outline future research avenues to ensure continuous 

improvement in IoMT security as healthcare technology evolves. This reflection sets the stage for 

a deeper discussion on "What Have We Achieved in This Dissertation?" and the "Future Work" 

necessary to build on the foundational efforts laid out in this research. 

6.1 What Have We Achieved in This Dissertation? 

Integrating IoT technologies in healthcare, particularly through the IoMT, has presented unparal-

leled opportunities for enhancing patient care and reducing healthcare expenditures. However, the 

proliferation of these technologies also brings forth significant cybersecurity challenges that must 

be addressed to safeguard sensitive medical data and ensure the reliability of medical services. 

This dissertation has developed a robust framework that leverages advanced security techniques 

to protect IoMT devices from emerging threats, ensuring the integrity, confidentiality, and availa-

bility of healthcare data across various stages, from data collection to storage and sharing. 

In Chapter 2, the dissertation proposed a security framework that integrates various state-of-the-

art techniques to comprehensively fulfill the security requirements of IoMT systems. This holistic 

approach is crucial for ensuring that all aspects of data and device security are covered, addressing 

the vulnerabilities inherent in the current systems that single methods cannot mitigate. 

Chapter 3 demonstrated the importance of IDS in remote healthcare monitoring systems, particu-

larly in ensuring data integrity and confidentiality. By designing the EHMS testbed, this research 

provided a realistic dataset and highlighted the effectiveness of combining network flow metrics 

with biometric data to enhance IDS performance. Despite the successes, there remains room for 
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optimization, particularly in fine-tuning the machine learning models to improve their efficacy 

further. 

Chapter 4 introduced a novel feature reduction method, LEMDA, which significantly enhances 

the performance of IDS models by focusing on the most informative features. This approach not 

only improves the accuracy of the models but also reduces the training and detection times, making 

the systems more efficient. Future work will explore the application of LEMDA in other domains 

beyond IoT, potentially broadening its applicability and effectiveness. 

Chapter 5 explored the dynamic capabilities of IDS within the context of advanced 5G infrastruc-

tures, presenting a novel dataset specifically designed for IoMT systems in a 5G environment. 

Developing an HDRL model demonstrated superior performance in detecting threats, particularly 

zero-day attacks, which are notoriously difficult to identify with traditional methods. 

In conclusion, the research conducted throughout this dissertation has systematically addressed 

several key facets of IoMT security within 5G environments, ultimately enhancing the robustness 

and responsiveness of IDS. By integrating a novel dataset tailored for IoMT systems and leverag-

ing the capabilities of advanced 5G infrastructure, we have established a comprehensive approach 

that mitigates risks and enhances operational efficacy. The development of the HDRL model rep-

resents a significant breakthrough in the field, showcasing the ability to effectively detect complex 

threats like zero-day attacks, which pose immense risks due to their unpredictability and novelty. 

This achievement marks a substantial advancement in IoMT security, setting a new standard for 

future developments in the field and underscoring the critical importance of adaptive, intelligent 

cybersecurity measures in modern healthcare environments. 
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6.2 Future Work 

Looking ahead, the dissertation sets the stage for several promising research areas. Firstly, there is 

an ongoing need to enhance the machine learning models used in IDS, particularly through hy-

perparameter optimization and advanced attack simulations. This effort will help refine the models 

to handle more sophisticated threats and reduce false positives, which is critical for maintaining 

trust in automated healthcare systems. 

Secondly, applying the LEMDA method will be extended beyond IoMT to see if its benefits hold 

in other contexts, such as industrial IoT or consumer IoT environments. This exploration will help 

in understanding the method’s versatility and limitations. 

Finally, for the 5G-enabled IDS models, future research will focus on extending the training epi-

sodes and incorporating more diverse attack scenarios to improve the models’ robustness and 

adaptability continuously. Additionally, as 5G technology evolves, so will the requirements for 

IDS in these environments, necessitating ongoing updates and innovations in the developed mod-

els. 

By addressing these areas, future research based on this dissertation’s findings will continue to 

advance the field of cybersecurity in IoMT, ensuring that healthcare systems are efficient and cost-

effective but also secure and reliable in the face of an ever-evolving cyber threat landscape.  
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