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ABSTRACT OF THE DISSERTATION
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Deep generative models (DGMs) have tremendous potential for several biomedical imag-

ing applications such as data augmentation, image reconstruction, and image denoising.

However, the deployment of DGMs in real-world biomedical imaging workflows without

domain-relevant evaluations can jeopardize patient health and well-being.

The evaluation of DGMs in biomedical imaging is challenging due to several factors: re-

quirement of domain expertise for visual inspection, lack of a mathematically defined ground

truth, and the unclear relevance of popular evaluation measures adopted from the computer

vision literature. Given these challenges, one way to evaluate DGMs is via purposefully

designed synthetic data. In this thesis, two frameworks for the evaluation of DGMs are pro-

posed based on the idea of assessing reproducible “spatial context”. Context is defined as

domain-specific external knowledge that manifests as conditional co-occurrences of specific

pixel arrangements in an image.

In the first of two frameworks, stochastic context models were purposefully designed to en-

code and assess the reproducibility of explicitly prescribed spatial context. Context was en-

coded in these models as contextual attributes such as per-image feature prevalence, feature-

specific intensity distribution, and prescribed texture. In the second evaluation framework, a

xiii



more complex dataset: a stochastic model of the human female breast was adapted to evalu-

ate DGMs for reproducible spatial context that arises implicitly due to structural variations

in anatomy. All designed datasets are made publicly available to aid the benchmarking of

novel and emerging DGMs.

The designed evaluation frameworks were employed to assess diffusion models, which are

state-of-the-art DGMs and have been claimed to substantially outperform the other major

DGM family: generative adversarial networks, in terms of visual image quality and popular

evaluation measures. It was found that diffusion models hold promise for data augmentation

tasks but errors may occur in the generation of multiple contextual attributes, and that

popular evaluation measures do not capture these contextual errors.

From all studies, it was found that no modern DGM perfectly reproduced the expected

spatial context. This highlights the need for further development of domain-specific DGMs

as well as domain-relevant evaluation methods to ensure the safe and beneficial translation

of DGM-based methods to real-world workflows in biomedical imaging.
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Chapter 1

Introduction

“Science in the service of humanity is technology, but lack of wisdom may make the service

harmful.” - Isaac Asimov

A deep generative models (DGM) of images is a kind of a deep neural network (DNN)

that can learn to synthesize images. DGMs have have been increasingly popular in medical

imaging research for applications [1–4] such as dataset augmentation [5, 6], image denoising

and superresolution [7], e.g., low-dose computed tomography (CT) to high-dose CT [8, 9],

transforming images from one imaging modality into another [10–12], e.g., virtual histol-

ogy staining [13], image reconstruction [14, 15], and image segmentation [16]. However, the

capacity of DGMs to create images also enables the creation of unexpected artifacts, or “hal-

lucinations”, in the generated images. These hallucinations in DGM-generated biomedical

images could substantially impact downstream decision support and potentially result in the

loss of human lives. Therefore, it is imperative to evaluate DGMs before they are deployed

in biomedical workflows. The evaluation of DGMs is challenging for many reasons and a

major reason is that the generated images cannot be compared against a known “ground

truth” in many scenarios. One approach to circumvent this challenge is via purposefully

designed synthetic datasets relevant to biomedical imaging scenarios, thus creating a known

ground truth. The present thesis focuses on developing synthetic-data-driven methods for

the problem of DGM evaluation in biomedical imaging.
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1.1 Scope of the Problem

A brief overview of the various applications of DGMs in biomedical imaging research is

provided in the next subsection. This is followed by a discussion of hallucinations in DGM-

generated images and the consequent potential risks, which highlight the need for evaluating

DGMs with relevance to biomedical imaging.

1.1.1 Applications of DGMs in Biomedical Imaging Research

DGMs have found a wide range of applications in biomedical imaging research; some appli-

cations are listed below.

• Image synthesis for data augmentation: Often, biomedical image datasets are not

sufficiently large to train learning-based methods (e.g., DNNs) for tasks such as clas-

sification and segmentation. Furthermore, certain pathologies might have very low

prevalence in a dataset, and hence, may not be sufficiently represented for effective

DNN training. DGM-generated ensembles can supplement the original biomedical

dataset and thus, enable the training of DNNs (or even other automated methods)

for downstream tasks. However, for such a strategy to be successful, it is essential

that the diagnostic value of the training and DGM-generated ensembles be equivalent.

DGMs have been employed for image synthesis applications such as the generation of

brain magnetic resonance (MR) images [17, 18], chest radiographs [19, 20], and mam-

mography images [21]. Sample DGM-generated images of brain MRI obtained from

two DGMs trained on a popular brain MRI dataset [22] are shown in Figure 1.1. Note

the high visual quality of the generated images and the lack of obvious artifacts to a

non-domain-expert.

• Image denoising: Reduction of patient dose or image acquisition constraints may result

in images with low signal-to-noise ratio (SNR). DGMs are being explored to transform

these low quality images into high quality, denoised images. Examples include low-

dose CT denoising [23] (see Figure 1.2 (a)), positron emission tomography (PET)

denoising [24], and super-resolution of fundus retinal images [25].
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Figure 1.1: Sample DGM-generated images of brain MRIs. Two DGMs trained on the
fastMRI dataset [22] were employed to generate these images. No errors are obvious to a
non-domain expert, and the images demonstrate high visual quality.

• Domain transfer: A DGM can learn to generate images from an imaging modality

given images from another imaging modality; this is termed as domain transfer or more

generally, image-to-image translation. Domain transfer could be useful when matched

patient data is unavailable for an imaging modality, or when datasets from two imaging

modalities are imbalanced and cannot be employed for downstream analysis or DNN

training. Examples of domain transfer tasks include the generation of MR images from

CT [26] (see Figure 1.2 (b)), and virtual staining of histopathology images [13].

• Image reconstruction: DGMs have been particularly popular for MR reconstruction

[15, 27], but have also been employed for other applications such as limited-angle CT

[28].

• Other applications: DGMs are being explored for many other applications including

anomaly detection [29,30], image segmentation e.g., segmentation of blood vessels from

images of the eye fundus [31] (see Figure 1.2 (c)), and image inpainting [32, 33], i.e.,

filling in missing regions in a given image. A wide overview of the various biomedical

imaging applications of DGMs has been presented in some recent works [1–4].

1.1.2 Hallucinations in Biomedical Images

Typically, the use of any image involves the identification of certain task-relevant image

features. An “image feature” maybe defined as a group or pixels or a derived measure
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Figure 1.2: Examples of tasks performed by DGMs: (a) denoising of low-dose CT, (b)
domain transfer or cross-modality generation (MR to CT), and (c) segmentation of blood
vessels from images of the eye fundus. Reprinted from Yi et al. Copyright (2019) [1], with
permission from Elsevier. Subfigures (a) [23] and (b) [26] reproduced with permission from
Springer Nature, Copyright (2018, 2017), subfigure (c) [31] copyright (2017), IEEE.

identified in a certain manner. DGMs generate image features in a probabilistic manner to

create new images. Although this probabilistic generation yields diversity and novelty, it can

also lead to unexpected and unrealistic artifacts, i.e., hallucinations.

Muller et al. [34] have demonstrated instances of hallucinations in several biomedical imaging

modalities as shown in Figure 1.3. For example, generated retinal images of the eye fundus

demonstrated a gross anatomical error: two optical disks were present in the same image

instead of the expected single disk present in all humans (Figure 1.3: row 1). A second

kind of hallucination was observed as DGM-imposed texture in histology images, this un-

natural texture can be identified even by a non-domain-expert (Figure 1.3: row 2). Last, in

DGM-generated chest radiographs, major errors in the appearance and placement of support

devices were observed, possibly because of the infrequent occurrence of these devices in the

training images (Figure 1.3: row 3). If images with hallucinations are not identified and all

generated images are employed for a downstream task, it is possible that a decision support

system based on the generated ensemble might be inaccurate. The consequences of these

inaccuracies might cascade via wrong diagnoses in the patient population, and potentially

even cost patient lives.

Cohen et al. [35] also demonstrate that DGMs can cause massive hallucinations as a result

of the composition of the target distribution and their training strategy. Specifically, when

a DGM is trained via a distribution matching loss function, i.e., assessing whether the

distributions of the training data and generated data are similar, the generated images are

biased towards the target distribution. They demonstrate that in a domain transfer task,

wherein MRI FLAIR images are transformed to T1 contrast images, a tumor may be added
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Figure 1.3: Examples of hallucinations (highlighted with green arrows) in DGM-generated
images from various imaging modalities. Row 1: Incorrect number of optical disks (> 1)
in images of the eye fundus. Row 2: Unrealistic texture imposed by the DGM in histology
images. Row 3: Badly formed and nonsensically placed support devices in DGM-generated
chest radiographs. Reprinted after cropping from Müller-Franzes et al. (2023) [34] under the
Creative Commons Attribution 4.0 International License http://creativecommons.org/

licenses/by/4.0/.

or removed in the generated T1 images, even if that was not the case in the original FLAIR

images (refer Figure 1.4). This insertion or removal is a direct result of the tumor-present

fraction in the training dataset of T1 images. Thus, the authors warn that naive image

translation methods can lead to misdiagnosis, and the use of these methods might be highly

dangerous for patients.

Besides demonstrations of hallucinations in biomedical images, several works on natural im-

ages have also reported artifacts that would be relevant to biomedical imaging. One kind
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Figure 1.4: Examples of hallucinations: unexpected tumor insertion or removal in DGM-
generated images. In a domain transfer task (MRI FLAIR to T1 contrast), a DGM removed
an existing tumor (left), or inserted a tumor in the DGM-generated T1 images after trans-
forming the original FLAIR images. Both effects were a result of the composition of the
training data, and the loss function employed in DGM training. Reproduced from Cohen et
al. Copyright (2018) [35], with permission from Springer Nature.

of artifacts, reported by several works relates to the frequency content in the generated im-

ages. Image features occur at various length-scales, small features are represented in the

high-frequency region while large features are represented in the low-frequency region in

the frequency domain. Several works have reported that DGMs (i) do not always maintain

the expected information at all frequencies [36–38], (ii) may not accurately generate high-

frequency information [38] and information at low magnitude frequencies [37], and (iii) may

be steered to maintain fidelity at prescribed frequencies [37]. Within biomedical imaging,

this frequency bias can translate to only features of some length-scales being correct, while

features at other length-scales being more likely to be wrong. For example, if high-frequency

information is not well-learnt, small structures such as tumors and lesions might demon-

strate more hallucinations as compared to large anatomical structures. Frequency bias in

generation can also impact the reproducibility of texture, and any texture-based decision

support system, including DNNs. Thus, a frequency bias in the generated images could also

lead to mis-trained classifiers and pose risks to patient well-being.

As seen from these demonstrations, various kinds of hallucinations can occur in DGM-

generated biomedical images. These hallucinations can be severe enough to cause misdi-

agnosis [35], yet, very few works have explored the diagnostic impacts of hallucinations in

biomedical imaging [21, 39, 40]. The tremendous pace of development of DGM-based meth-

ods in biomedical imaging [2,3,41], together with their capacity for hallucinations that could
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jeopardize patient health, have led to an urgent need for the evaluation of DGMs in biomed-

ical imaging.

1.2 Challenges to DGM Evaluation in Biomedical Imag-

ing

Evaluation of DGMs relevant to biomedical imaging faces some unique challenges as com-

pared to natural images or other domains.

• Biomedical imaging is a high-stakes domain. Error tolerance in biomedical imaging is

minimal, and mistakes in DGM-generated image ensembles could be harmful.

• Even visual evaluation of biomedical images requires expert knowledge [42,43]. When

novel DGMs are prototyped or existing DGMs are adapted for use with medical im-

ages, often non-clinicians train at least tens of networks on medical images based on

visual feedback or tracking metrics designed for natural images. Non-clinicians will

not recognize errors in anatomy and physiology, and these errors could propagate and

amplify the risks in downstream decision-making. Thus, there is a need for datasets

and evaluation methods that can aid the design/ adaptation of DGMs for biomedical

images by non-clinicians at an early stage of method development.

• Assessing the trustworthiness of DGM-generated images in medical imaging is aggra-

vated by the lack of a mathematically defined ground truth—e.g., there are no known

statistics that reliably indicate when a generated heart is shaped realistically.

• Although several methods of evaluation are proposed for natural scenes [44, 45], and

are commonly employed for evaluating medical image ensembles, their applicability

is not established. (Refer chapter 2 for a detailed discussion of current evaluation

methods.) In addition, an appropriate “universal” feature space for medical images is

not established, unlike for natural images (e.g., the ImageNet feature space [46]).

• Ensemble measures are insufficient, and per-image evaluation of the generated images is

necessary. Often, for a medical dataset, each image contains a similar set of anatomical

structures with known prevalences and relative positions. These attributes have to be

correct in each image, and not just on average over the entire image ensemble.
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Thus, to realize the potential benefits of DGMs in biomedical imaging, it is essential to de-

velop robust, domain-, and task-specific evaluation frameworks at multiple stages of techni-

cal development and clinical deployment. Most importantly, the development of benchmarks

has to at least match the pace of, and ideally, be prioritized over method development to

translate DGMs to labs and clinics.

1.3 Synthetic Data as a Feasible Approach to DGM

Evaluation

Given the constraints described above, one feasible solution for evaluating DGMs in biomed-

ical imaging is to design a known “ground truth”, i.e., design synthetic datasets. Synthetic

data could at least partially alleviate some of the challenges described in the previous section

and has been employed in some works [47, 48] (detailed discussion in chapter 2). However,

the potential of synthetic-data-based methods has not been fully explored for the evalua-

tion of DGMs in biomedical imaging. The present thesis focuses on the development of

synthetic-data-based methods for DGM evaluation in biomedical imaging; some advantages

of this approach are discussed below.

A major advantage of employing synthetic data for DGM evaluation is the creation and

availability of a ground truth. Once the “right answer” is known via the ground truth,

comparisons can be made with the DGM-generated images to determine the fidelity of the

generated data. Because we have complete control over the design of the synthetic data,

various domain-relevant features can be encoded and assessed. Domain-relevant features

could include general attributes such as per-image feature prevalence, or specific anatomical

attributes such as tumors of prescribed shape and size. That is, the complexity and the

realism of the data can be determined by the user, and several domain-relevant benchmarks

can be established. In addition to the complexity of images, the composition of the training

dataset could also be systematically varied to assess its impact on decision support. For

example, the prevalence of a class (equivalent to a pathology) in the synthetic dataset could

be varied to assess the minimum number of images required to generate realistic images from

that class.
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Synthetic-data-based evaluation enables the design of objective and automated evaluation

of DGMs. Objective evaluation of biomedical images eliminates the subjectivity in human

judgements, and provides a more reliable way of mitigating risks in DGM deployment. Au-

tomated evaluation proves beneficial when several tens of thousands of images have to be

assessed from at least tens of DGM trainings involved in DGM adaptation; clinicians could

not possibly look through tens of thousands of images only to assess one DGM.

Synthetic data can provide model-agnostic benchmarks. Therefore, the comparison of sub-

stantially different DGMs is feasible. In addition, new and emerging DGMs can be compared

against the current state-of-the-art DGMs.

Of course, the evaluation of technology requires benchmarks at several stages from design to

deployment. Benchmarks are different for the different stakeholders at each stage. Synthetic-

data-based approaches provide the flexibility to design assessments at all stages. Early stage

evaluation datasets could be designed to have high interpretability by non-clinicians whereas

datasets closer to deployment could have higher realism and be designed with inputs from

clinical experts.

1.4 Some Desired Properties of Generated Image En-

sembles

Besides the design of the training data, another important aspect of a DGM evaluation

framework based on synthetic data is to determine what constitutes a “good” generated

ensemble. Some desirable qualities of a generated image ensemble are presented below.

• Diagnostic value: Ideally, the generated image ensemble and the training ensemble

would have equivalent diagnostic value. That is, if the generated image ensemble were

employed instead of the original training dataset, the downstream visual diagnosis,

or clinical decision-making should not be negatively impacted. “Diagnostic value” is

difficult (or potentially impossible) to capture in a single number, and hence, many

different aspects of the generated images need to be tested in order to ascertain that

diagnostic value is not lost.

9



• Presence of certain features: Features characteristic to the object or condition

being studied and the imaging modality should be present. These features may be

quantitative (including texture), positional, or morphological. Furthermore, these fea-

tures must be simultaneously accurate at multiple length-scales. E.g., small structures

such as lesions and tumors, large anatomical structures, as well as typical intensity

ranges of these structures, should all be correct for a generated image to be correct.

• Absence of certain features: Unexpected features should be absent. That is, well-

formed features but uncharacteristic of a condition, as well as artifacts imposed by a

model, both should be absent.

• Domain fidelity: All features should respect the rules of a domain; generally, these

may be known to domain experts. These rules may manifest as conditional co-occurrences

amongst features and determine the “composition” of an image. Domain fidelity also

includes respecting the physical attributes of an imaging system. E.g., a generated

chest radiograph may contain a well-formed pacemaker, but if the pacemaker appears

far away from the heart, domain fidelity is violated.

• Ensemble level accuracy of features: Ensemble distributions of features from the

generated ensemble should match those from the training ensemble. Several popular

measures of assessing DGMs for natural image generation test only this aspect, e.g.,

Fréchet Inception Distance [45], Inception Score [49]. E.g., over a large ensemble of

chest radiographs, the approximate size of the heart or the texture of the heart should

be the same.

• Instance-level, or per-image accuracy: Biomedical images have per-image con-

straints on features that may not be captured in ensemble-level measures. Testing

per-image accuracy enables the identification of anomalous generation, which should

be excluded from the ensemble before it is employed for any downstream use. E.g., in

a large ensemble of chest radiographs, each generated image should have exactly the

same number of rib-pairs, similar to the training data.

• Absence of memorization: DGMs are not expected to overfit the training data,

and their intended use often demands stochastic variation in the generated ensemble.

Measures testing image quality or fidelity may not capture memorization and hence,

explicit testing of memorization may be necessary. E.g., if every single DGM-generated

image in a large generated ensemble was an exact copy of one training example, most
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measures of image quality would report that the generated image ensemble is highly

similar in quality to the training data.

• Diversity, within class, and per-class: Assessment of the sufficiency of stochastic

variation within a class, and across classes or modes in the data is required, especially

because some DGMs are known to preferentially generate only a subset of the modes in

the data when employed for unconditional synthesis [50]. E.g., if the training dataset

represents images four different pathologies, but only two of those pathologies are

always generated in a DGM-generated ensemble, the generated ensemble is much less

diverse than the original ensemble even though each generated image may be perfect.

Assessing memorization and diversity, both require an appropriate feature space, and

hence, existing measures designed for natural images may not directly translate to

biomedical images.

Assessing all these attributes may not be possible via a single number or a figure-of-merit.

However, various tests can be designed that employ synthetic data to assess some of these

aspects. This is extensively discussed in the next chapter.

1.5 Overview of the Thesis

A technical introduction to DGMs and an overview of the existing methods of evaluating

DGMs are provided in chapter 2. Background for the concepts of “similarity” and “spatial

context”, which form the basis of the evaluation frameworks proposed in this thesis, is

provided in chapter 2 as well.

The first of two evaluation frameworks proposed in this thesis—designed to test the capacity

of DGMs to hallucinate prescribed spatial context—is discussed in chapter 3. This network-

agnostic, data-driven framework is based on designing stochastic models of context, without

explicitly modeling anatomy. It enables ruling out DGMs that do not have the capacity for

certain downstream tasks.

The second evaluation framework is based on a stochastic model of anatomy and is de-

signed to test the capacity of DGMs to hallucinate spatial context that emerges from the

stochastic interactions of distinct anatomical structures. This is discussed in chapter 4. This
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chapter also includes a study of several kinds of artifacts identified from a variety of DGMs

benchmarked on the same dataset.

In chapter 5, the two frameworks described earlier are employed to test diffusion generative

models, a kind of DGM that has recently gained great popularity due to high visual quality

of generated images. A specific diffusion generative model: denoising diffusion probabilistic

model (DDPM) [51, 52] is assessed for hallucinations in spatial context. The results are

reported in this chapter and inferences are drawn about the potential use cases of these

DGMs.

In the final chapter (chapter 6) of this thesis, the major findings are summarized and their

implications are discussed within the context of biomedical imaging. Some broad directions

for further exploration are also highlighted given the current state of the field.
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Chapter 2

Background for the Evaluation of

DGMs in Biomedical Imaging

“How it is we have so much information, but know so little?” - Noam Chomsky

2.1 Overview

This chapter provides the technical background for generative models of images, followed

by an overview of the existing evaluation strategies for assessing DGMs. Both aspects: the

design of new DGMs, and the design of evaluation measures, are closely related. Knowl-

edge of DGM approaches exposes potential limitations and informs the design of evaluation

approaches, whereas well-designed evaluation measures aid the protoyping of novel DGMs

and determine their applicability. Following the review of DGMs and DGM evaluation mea-

sures, the concepts of similarity and context are discussed; these concepts form the basis for

designing the evaluation frameworks proposed in this thesis.

2.2 A Technical Overview of Generative Models of Im-

ages

2.2.1 Early Generative Models of Images

Although the term “generative models” has become popular only recently, various methods of

image synthesis have been developed over the last few decades, much before the development
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of deep generative models. Early approaches of image synthesis involved generating random

binary patterns with specified statistics [53], with goals ranging from understanding the

relation between perception and statistics [53] (see Figure 2.1), to characterizing random

phenomenon [54]. Later approaches to image synthesis aimed to generate more complex

textures in grayscale or color. These texture synthesis approaches spanned a variety of sub-

tasks such as inpainting [55], image extrapolation [56], and whole-image synthesis [56, 57,

57–59] from a single image, or an ensemble comprising several images.

Figure 2.1: An image generated from a stochastic generative model, not based on deep
learning, to study the relation of visual perception with image statistics by Julesz [53] ©1962
IEEE. This image has two kinds of textures. Note the difference in texture in the lower right
quadrant of the image, obtained by taking the complement of the prescribed texture in the
remaining image.

A large body of literature exists in this field and describes various parametric or non-

parametric methods of image representation; some of these methods include probabilistic

representation of images via Markov Random Fields [56,57], image transforms [58,59], and,

much later, convolutional neural networks (CNNs) [60].

Of particular note was a non-parametric method that established a correspondence between

information theoretical concepts originally developed for language to the composition of

natural images [56]. This method defined pixel values as conditional distributions obtained
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from their respective neighborhoods. In the present thesis, it is in this sense that biomedical

images are understood and the concept of “context” in images is referred to. For example, if

a part of a chest radiograph is missing, the missing region can be inpainted as a region of the

heart if the neighborhood consists of pixels belonging to the heart, or as a background regions

if the neighborhood consists of background pixels. A similar understanding of images from a

visual cognition perspective was provided by Oliva and Torralba [61] for object recognition.

Although conventional methods are now being replaced by deep generative models for image

synthesis applications when feasible, knowledge about image composition, textures, i.e.,

local intensity-derived statistics, and information content in images that was discovered via

early methods of image synthesis remains invaluable for designing tools to evaluate DGM-

generated images.

2.2.2 Deep Generative Models of Images

Deep generative modeling of images has enabled the generation of highly complex images with

excellent visual quality. Different approaches of image representation and learning have been

employed by modern DGMs for image generation while balancing trade-offs in image quality,

diversity, and compute requirements [50,62]. In general, the goal of generative modeling is to

learn to produce samples x̃ ∼ pθ(x̃), from the distribution of the training dataset x ∼ p(x),

where θ represents the parameters learned by a DGM during training. Here, x represents

an image and the dimensionality of x is equivalent to the size of the flattened image. E.g.,

an image of size 8×8 can be represented as 64-dimensional vector x ∈ R64. The modeling

of the density of the training data may be implicit, i.e, learning to draw the “correct”

random variates from a high-dimensional distribution, or explicit, i.e., accurately modeling

the high-dimensional distribution itself. Amongst modern DGMs families, the target data

distribution is modeled (i) implicitly by generative adversarial networks (GAN) [63], (ii)

explicitly in some normalizing flow-based models [64], and (iii) approximated by variational

auto-encoders (VAEs) [65] and diffusion generative models [66]. Many of these approaches

are latent-based approaches, i.e., the training data is represented in a compressed or lower

dimensional space than that of the training data, termed as “latent space”. A trained

latent-based DGM can generate images given random samples from this latent space. A

brief description of the major DGM approaches follows.
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Generative Adversarial Networks

Generative adversarial networks (GANs) [63] have been highly popular due to the high visual

quality of images and fast sampling. GANs can be understood as two adversarial networks

trained together as a min-max game. One network: the generator (G) aims to create an

image from a lower dimensional latent vector z ∼ pz(z), i.e., G : Rm → Rn, where m < n, and

m,n, respectively represent the dimensionality of the latent space, and that of the original

image. The second network: the discriminator (D) aims to distinguish images produced by

G from the original training images, i.e., D : Rn → [0, 1], by estimating the probability that

an image belongs to the training data distribution. Both networks initially demonstrate poor

performance. Over several iterations, the performance of both networks improves and the

trained generator G can generate samples indistinguishable from the training dataset by the

discriminator D.

The loss function for a generic GAN can be written as:

min
G

max
D
L = Ex∼p(x)lnD(x) + Ez∼pz(z)ln (1−D(G(z))), (2.1)

where Ex∼p(x) is the expectation over the training data, and Ez∼pz(z) is the expectation

over the distribution of the latent vectors. Several issues with training stability such as

vanishing gradients and mode collapse have been observed with GANs [62,67]. Here, “mode”

is understood in a statistical sense, i.e., as a measure of central tendency in a dataset. This

has motivated modified versions of the loss function above (Equation 2.1). Some examples are

Wasserstein GAN (WGAN), and least squares GAN (LSGAN) [68,69]. Other modifications,

e.g., spectral normalization [70], gradient penalty [71], dataset-specific projections [72], self-

attention mechanisms [73] have also improved training stability and image quality.

A major advancement in GAN design came from conditioning the generated input on class

identity, which avoided the collapse of data modes that corresponded to specific classes in the

high-dimensional data distribution [74]. In this formulation, the generator learns to generate

data given a class label (typically appended to the latent vector), and the discriminator learns

to distinguish between the real and generated images from the same class.

Conditioning with image inputs [75] opened even more avenues for employing these networks.

Typically in image-conditioned models based on GANs, the discriminator distinguishes real

and generated images as before, whereas a generator learns to transform a given image
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via a DNN. The requirement of labeled data or paired data in two domains, precludes the

widespread replacement of unconditional GANs by conditional GANs for image synthesis.

In other words, if conditioning is to be employed to ensure that a class is well-replicated in

the generated image ensemble, it is first essential to label that class in the training data.

Similarly, if images from one domain are to be transformed to another domain, matched

data must be acquired or annotated in those domains. The labeling process may involve

substantial human effort or a highly robust automated method.

Variational Autoencoders

Unlike GANs, which implicitly model the training data distribution, variational autoencoders

(VAEs) [65] approximate the density of the training data in a continuous latent space,

typically represented via parameterized Gaussian distributions. VAEs are one of the earliest

deep generative models, and have the advantages of good mode coverage and fast sampling.

However, the generated images are typically blurred, leading to a lower image quality than

that of other modern DGMs like GANs and diffusion generative models [50].

From a probabilistic perspective, the variational inference approach can be understood as

follows. A generative model aims to learn and sample the data distribution pθ(x), where θ

represents the learned parameters of a model. A latent-based model aims to obtain a lossless

latent representation of the true data pθ(z|x), where z represents a vector in the latent space.

Because pθ(z|x) = pθ(x|z)pθ(z)
pθ(x)

, we require knowledge about the denominator: pθ(x). However,

pθ(x) =
∫
z
pθ(x|z)pθ(z)dz, where pθ(z) is the prior. This integral is often not tractable for

high-dimensional data, and hence, an approximation qϕ(z|x) is employed instead of the true

posterior pθ(z|x). Ideally, the approximation qϕ(z|x) should be as similar as possible to

the true posterior: pθ(z|x) and hence, we seek to minimize the difference between the two

distributions by employing the Kullbeck-Leibler (KL) divergence for this purpose. Then, the

minimization problem is formulated as:

L = min KL(qϕ(z|x)||pθ(z|x)). (2.2)

This problem, in turn, can be reformulated via the evidence lower bound (ELBO) to obtain

an equivalent maximization problem:
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L = maxEz∼qϕ(z|x)log pθ(x|z)−KL(qϕ(z|x)||p(z)), (2.3)

where Ez∼qϕ(z|x) represents the expectation over the latents. In Equation 2.3, the first term

is the reconstruction loss that promotes lossless representation of the training data via the

latent representation. The second term aims to match the learned variational distribution

of latents to the prescribed prior over the latent distribution.

Thus, VAEs consist of two DNNs trained together via variational inference. The goal of the

first DNN, i.e., the probabilistic encoder qϕ(z|x), is to obtain a meaningful and continuous

latent representation of the original data, where ϕ represents learned parameters. The second

DNN (or probabilistic decoder): pθ(x|z), aims to generate an image from a latent sample,

where θ represents learned parameters. After training is complete, the decoder can be

employed to generate new images from random latent samples.

Some improvements in conventional VAEs include tighter bounds on the objective [76],

improving model expressivity via more complex priors [77] and hierarchical VAEs [78], and

discretization of the latent space, e.g., VQ-VAE [79] to avoid collapse.

Although VAEs are not highly popular as standalone DGMs, they have been employed in

conjunction with state-of-the-art DGMs to speed up the training of these state-of-the-art

DGMs via dimensionality reduction. An example of this approach is employed in studies in

chapter 5, and termed as a “latent diffusion model”.

Energy-based Models

Energy-based models (EBMs), although one of the early DGMs, have greatly evolved and

given rise to some state-of-the-art DGMs such as score-based [80], diffusion [51, 52, 81],

and stochastic-differential-equation-based [82] generative models. All three formulations are

closely related and can be derived from one another under certain conditions. The common

theme of energy-based models is that a density function p(x) is represented as:

p(x) =
e−E(x)∫

x̃∈X
e−E(x̃)

, (2.4)
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where E(x) : Rn → R is an energy function. This energy function is minimum when the

generated distribution and the target distribution are exactly matched.

In one energy-based approach: diffusion models, a probabilistic trajectory is learned from a

multivariate standard Gaussian distribution to the distribution of the data. To learn this

mapping, first, noise is incrementally added to the original data x0 over a certain number of

time steps T , according to a predetermined schedule. The image at the end of this process

xT is expected to be approximately Gaussian. The forward diffusion process is a chain of

discrete Markov processes inspired by thermodynamics [51, 52]:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), (2.5)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (2.6)

where βt is the coefficient of the noise variance at step t.

The reverse process is a successive denoising process to approximate pθ(xt−1|xt), via a loss

function similar to the one in Equation 2.2.2, essentially a modified version of ELBO. Over

several such forward and reverse passes, the model learns to denoise data at various noise

levels, and in effect, learns a Markov chain of probabilistic transitions from noise to a sam-

ple from the training distribution. A more detailed background of the diffusion model in

particular is provided in chapter 5.

Another popular approach in energy-based modeling is score-based generative models. Score-

based models are similar in principle to diffusion generative models, but aim to estimate the

gradient of the data distribution, i.e., a “score”, instead of estimating the distribution. Esti-

mation of the score (i) can be learnt via a successive denoising process (and other methods),

(ii) is sufficient to generate samples from the distribution via a kind of Markov Chain Monte

Carlo (MCMC) sampling method employing Langevin dynamics, and (iii) does not require

knowledge of the normalizing denominator in an energy function (Equation 2.4).

The “score” function is defined as: s(x) = ∇xln p(x). A score-based model seeks to match

the score of the model: sθ(x), with the score of the data: sd(x), by minimizing the Fisher

divergence between the two:
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L =
1

2
Epd(x)||sθ(x)− sd(x)||22, (2.7)

where Epd(x) is the expectation over the training distribution.

As the distribution of the data is rarely uniform, the derivative of the distribution may not

be estimable in low-density regions. One way to circumvent this issue is to add noise to the

data and denoise the corrupted data to approximate the score of the training data [80].

Then, the loss function in Equation 2.7 can be rewritten as:

L =
1

2
Epd(x)Ex̃∼N (x,σ2I)∥sθ(x̃) +

x̃− x

σ2
∥22, (2.8)

where Epd(x) is the expectation over the training distribution, Ex̃∼N (xσ2I) is the expectation

over the corrupted data, N indicates a multivariate Gaussian distribution, σ represents the

standard deviation of Gaussian noise at a certain noise level, and I is the identity matrix. In

the argument of the expectations, the first term represents the score estimated by a model,

and the second term represents the score of the data corrupted at the noise level σ. This

process is undertaken at multiple levels of Gaussian noise and a network learns to denoise the

data at each noise level successively, i.e., until the noise level is minimum and we converge

to an estimate of the true data distribution.

Although the modern energy-based DGMs described above yield high image quality and

excellent mode coverage, sampling is computationally expensive. Hence, some approaches

aim to blend score-based or diffusion models with other DGM approaches such as VAEs [83]

or GANs [50,84], often at the cost of image quality.

Normalizing Flows

Normalizing flows can enable the exact computation of the data likelihood. Furthermore,

their invertibility can aid in obtaining a semantically meaningful latent space representation.

Normalizing flows can be understood as a chain of invertible functions. When a random

variable x ∼ p(x) is transformed via the action of a smooth, invertible function f : Rd → Rd,
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the output y = f(x) can be obtained via successive application of the change of variables

rule:

p(y) = p(x)

∣∣∣∣det
∂f−1

∂y

∣∣∣∣ = p(x)

∣∣∣∣det
∂f

∂x

∣∣∣∣−1

. (2.9)

That is, a chain of K such invertible transformations fk acting on a random variable x0 ∼ p0

yields:

xK = fK ◦ · · · ◦ f2 ◦ f1(x0), (2.10)

and the corresponding density pK(xK):

ln pK(xK) = ln p0(x0)− ΣK
k=1ln

∣∣∣∣det
∂fk
∂xk−1

∣∣∣∣ . (2.11)

Major innovations have aimed to improve (i) the expressivity of the invertible functions,

e.g., via coupling [85, 86], autoregressive layers [87], low-rank representations [88], and (ii)

stochastic estimation of the Jacobian determinant e.g., FFJORD [89], residual flows [90,91].

Normalizing flows provide fast sampling and good mode coverage [50], but their generated

image quality is generally inferior to GANs and modern energy-based generative models.

Hence, normalizing flow-based methods are relatively less common than GANs or modern

energy-based approaches in medical imaging applications [92].

From the overview of DGM approaches, we see that substantial innovation and progress

has occurred in the design of DGMs. However, DGMs still yield imperfect images, either as

visually low-quality images, or as hallucinations in visually high-quality images. This further

underlines the need for evaluating DGMs from the perspective of improving DGM design as

well as assessing task-specific applicability.
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2.3 Current Evaluation Methods for Deep Generative

Models of Images

Many different kinds of measures have been proposed for evaluating DGMs, but only a few

certain measures are typically reported in most DGM-based methods. Furthermore, each

measure focuses on some aspect of a DGM and no single measure is a stand-alone indicator of

DGM performance. A brief description of the major evaluation approaches are provided be-

low; other measures exist but are not as common [44,93]. Almost all measures were originally

developed for evaluating natural images, a few of these measures have been employed for

biomedical images. Note that in literature, these measures are often referred to as “metrics”

even though they may not be metrics in a mathematical sense (see subsection 2.4.1).

2.3.1 Ensemble-based Measures

Ensemble-based measures are based on the computation of a distance metric between two

distributions obtained by projecting two image ensembles in a certain feature space [94].

That is, each image in an ensemble forms one data point in a chosen feature space and an

image ensemble corresponds to a point cloud. The distance between the two point clouds

corresponding to two image ensembles (e.g., training ensemble and generated ensemble) is

reported as a measure of image quality. By far, this is the most popular approach of re-

porting the image quality of generated images, even though it does not assess the quality of

individual images. Within ensemble-based measures, the most popular method is the Fréchet

Inception Distance (FID), [45] which computes the Fréchet distance between two distribu-

tions corresponding to the training and generated datasets, after each of the two datasets are

projected into a feature space (typically from a pre-trained natural image classifier such as

Inception v3 [95]), and fit with a multidimensional Gaussian distribution. Several versions

of the FID score have been proposed to: standardize the method [96], make its computation

more efficient [97], employ more distinct spatial features [98], or remove/ reduce bias in the

estimation [99]. Essentially, the FID captures the first two moments of the feature distri-

bution extracted by a pretrained classifier, and its relation to human perception may vary

depending on the use case [100]. Although the FID is also commonly employed to evalu-

ate generated medical images, the relevance of the natural image feature space to medical

images has not yet been established, to the best of our knowledge. There are at least two
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major problems with FID as a measure of evaluation. First, multiple ensembles could have

the same FID score but demonstrate different kinds of errors, obvious to human observers,

e.g., one image ensemble could have small smudges in all images, another ensemble could

have minor discontinuities at edges and no smudges, however, both ensembles could have the

exact same FID score. Second, the change of FID score cannot be related to specific errors

in images, e.g., if one image ensemble has an FID score of 2, and another ensemble has an

FID score of 4, no obvious inference can be made about the kinds of errors in the second

ensemble as compared to the first.

Another popular measure is the Inception Score (IS) [49], which reflects the diversity as well

as the quality of a generated dataset. This score is computed only on the generated data

and excludes any comparison to real images. Specifically, to obtain this score, an Inception

model, i.e., a classifier pretrained on the ImageNet dataset [46], is employed to predict class

label probabilities on each generated image. A “good” IS is one that minimizes the entropy

of conditional probabilities and maximizes that of marginal probabilities. The IS also suffers

from the issue of unclear relevance of its feature space for medical images, similar to the

FID.

Kernel-based ensemble methods such as the maximum mean discrepancy (MMD) [101], which

is particularly popular for graph neural networks [102], and kernel inception distance (KID)

[103] have also been proposed for natural images, but are not as commonly reported for

medical images as the FID and IS.

Within medical imaging, another ensemble-based approach involves observer studies [104];

these studies may employ human observers [42,105,106], e.g., in two-alternative forced choice

tests, or numerical observers [106, 107], e.g., Hotelling observer, and the Bayesian ideal

observer, for assessing the acceptability of generated image ensembles with respect to the

training image ensemble. Human-observer-based studies typically require domain experts to

visually assess the generated images, which may not always be practical at the early stages of

technology development. Numerical observers, based on Bayesian statistical decision theory,

do not suffer from this limitation and may provide valuable information about the efficacy of

DGMs for a specific task. However, they may not provide human-interpretable information

about the kinds of errors made by DGMs within each image.
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2.3.2 Spectral Methods

Recall that a frequency-domain representation of images, i.e., a Fourier transform of the

images, enables assessing image features according to their size or length-scale. Small features

such as tumors are represented in the high-frequency region, whereas large features such as

the heart are represented in the low-frequency region. Errors in specific frequency ranges

can thus be related to errors in image features at certain length-scales or sizes.

Methods in the frequency domain have been developed not only to investigate model bias

[37, 108], but also have been extensively employed for deepfake detection [109–112]. Fre-

quency bias in generation as well as network artifacts manifesting as unexpected information

at certain frequencies can both be captured via spectral evaluation. Multiple works [37, 38]

have shown that learning high frequency information is not an easy task for the GAN family

of DGMs, and that high-frequency artifacts are common in GAN-generated images. One of

these works [38] has also demonstrated that learning can be steered to maintain fidelity in

a specified range of frequencies. Thus, it is possible that frequency bias and high-frequency

artifacts may impact the diagnostic value of biomedical images. However, a task-specific

analysis of the impact of frequency bias on medical imaging tasks remains to be performed.

Furthermore, these findings suggest that a complete evaluation of DGM capacity for biomed-

ical image synthesis must include measures that account for multi-scale correctness of spatial

features, going beyond low-order spatial statistics.

2.3.3 General Measures of Image Quality

Some established methods of comparing the image quality of two or more images are also

employed for DGM evaluation in some cases, as applicable. These include peak signal-to-

noise ratio, contrast-to-noise ratio, and structural similarity index measure [113]. Although

these measures are commonly employed in practice, even with medical images, they repre-

sent technical efficacy and may not represent the diagnostic value of the images [114–116].

Furthermore, computation of some of these measures require knowledge of the ground truth,

which likely is not available. General measures of image quality are typically employed for

image-conditioned DGMs, when data in two domains is available, e.g., segmentation task,

domain transfer task. These measures may not be directly applicable for unconditional image

synthesis.
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2.3.4 Measures Based on the Data Manifold

To improve the interpretability and potentially the steerability of DGMs, data manifold

methods have also emerged as tools for evaluating DGMs. Two popular measures aim to

identify a data manifold that that is also perceptually relevant: perceptual path length

(PPL) [117], and learned perceptual image path similarity (LPIPS) [118]. PPL has been

shown to be superior to FID in terms of understanding image composition and perceptually

relevant differences in image quality [119]. LPIPS has been employed in data poisoning tools

to protect copyright [120] by inducing imperceptible perturbations in the original images,

making them useless as potential training data for generative models.

Another approach involves the disentanglement of image attributes in the latent space of

a DGM [121–125]. An example is the intrinsic multi-scale distance (IMD) [122], which is

a multi-scale measure that takes into account the intrinsic structure of the data as well

as all the moments of its distribution. Similar measures that explore the topology of the

latent manifold only do so at a global scale [123, 124]. In the medical imaging domain,

disentanglement of the latent space has served several purposes [125], ranging from disen-

tangling anatomical factors to predicting treatment response. Evaluation measures based on

data manifolds have the advantage of being DGM-agnostic and to some extent, explainable,

but may also vary in their results based on changes in the composition of a dataset. One

limitation of data manifold methods is that the estimation of the manifold itself might be

dependent on the choice of hyperparameters, the number of samples in a dataset, and the

diversity in the training data itself. That is, evaluation results might change if a dataset was

halved in size, or some classes were not well-represented in the data.

2.3.5 Evaluations via Synthetic Data

Synthetic data is a powerful tool to explore the capacity of DGMs; however, as compared

to other evaluation methods, this approach has received less attention. In this approach,

typically, a dataset is designed to test specific capacities of a DGM, after training the DGM

on this dataset. The performance of the DGM is determined based on the composition of

the DGM-generated ensemble. One work [126] employed several explicitly parameterized

distributions to train DGMs and studied the impacts of dimensionality, size and complexity

of the training dataset, and robustness to hyperparameters. Similarly, another work [127]

25



employed categorical data, binning a high-dimensional probability space with varying lev-

els of coarseness, and then casting the problem of DGM evaluation as a statistical identity

testing problem. Other notable works have created synthetic datasets to explore overfitting

in multiple modern GANs [128], and mode collapse [129]. Synthetic data has also been em-

ployed to assess the compositional ability of diffusion generative models [130]. In the domain

of large language models, recently a work [131] has adapted a synthetic dataset designed to

test visual conceptual abstraction abilities to assess large language models. However, cre-

ation of realistic and high-dimensional synthetic datasets is highly challenging, and most

works on natural images have employed simple, and/or low dimensional synthetic datasets.

In the medical imaging literature, although synthetic data or virtual phantoms have long

been used to characterize imaging systems and assess technology performance [132–136], their

application for the evaluation of DGMs has been relatively rare. One work [137] employed

synthetic data to demonstrate that medical image statistics may not be correctly reproduced

even though low FID scores were achieved in the training ensemble. The present thesis aims

to realize some of the unexplored potential of synthetic data for the evaluation of DGMs in

a data-driven manner.

2.3.6 Fidelity and Diversity Measures

Precision and recall [138] were first proposed as evaluation measures for DGMs to assess the

fidelity and the diversity of the generated data. In these measures, two regions corresponding

to the training dataset and the generated dataset are established in a feature space, and the

overlap in these regions are compared. Precision measures how similar the generated data is

with respect to the training data, while recall measures how much of the training distribution

was captured in the generated data. Thus, for a DGM-generated dataset, precision can

represent its fidelity/ quality and recall can capture missing modes in the data distribution.

Some drawbacks of precision and recall measures were identified such as lack of robustness

to outliers [47,139], and the inability to detect identical distributions [139,140]. To alleviate

these issues, some subsequent works introduced measures based on precision and recall such

as precision-recall curves instead of a single number [140], definition of precision-recall that

was robust to outliers, along with a new measure for generalization [47], and novel measures

e.g., density and coverage, which are based on refined definitions of data neighborhood and

overlap computation [139]. Adapting precision and recall measures for medical imaging data
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requires a relevant feature space to be defined. Some works in medical imaging literature

[34,40] report precision and recall, (in addition to FID) to demonstrate quality and diversity

of the generated image ensembles.

Although fidelity and diversity measures provide important information about the compo-

sition and diversity of a DGM-generated image ensemble, fidelity measures still suffer from

the same issue as ensemble-based measures because each image is still a data point in a

potentially high-dimensional feature-space.

2.3.7 Model-specific Measures

Model-specific measures have been developed to explicitly explore the generative capacity of

specific architectures. However, inverting a DGM (which may not be inherently invertible by

design) is not a trivial task. Implicit generative models such as GANs have been inverted to

study the limits of their generation capacity and for image editing [141,142]. Conceptually,

when an image is propagated through an inverted GAN, a latent encoding is obtained;

propagating this latent encoding through the regular GAN generates another image, which

ideally should match the first image. Missing features in the reconstructed image can indicate

features that may not be represented or learnt by a GAN. Recently, other state-of-the-art

DGMs (energy-based models) have also been inverted, but mostly to enable image editing

and controlled image generation [143,144] and not for the evaluation of DGM capacity.

Although model-specific methods can identify biases in generation, these methods do not

find widespread use due to their architecture-specific nature.

2.3.8 Task-based Measures

Ultimately, in a biomedical imaging workflow, a DGM is expected to be deployed for a specific

task involving a certain imaging system. Hence, task-based measures can be valuable tests

in the final stages of DGM evaluation prior to deployment; these measures may be designed

in consultation with clinicians.

Typically, task-based approaches measure the performance of an observer (human or model)

for a downstream task on a DGM-generated image ensemble and on the training data. If
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the task-performance is equivalent on both image ensembles, the DGM-generated ensemble

is considered on par with the training data. However, the performance on one task likely

will not translate to performance on another task. Therefore, a DGM-generated ensemble

must be evaluated for each task separately before deployment.

Often, a classification or segmentation task has been employed for task-based evaluation in

the computer vision literature [145, 146]. However, even in task-based analyses, the chosen

evaluation measures representative of task performance must be appropriate, e.g., the Dice

similarity co-efficient may not be accurate for measuring segmentation accuracy of very small

structures, or for object detection tasks involving multiple objects [147,148]. In the medical

imaging domain, relatively few works have undertaken a task-based evaluation for DGMs,

although task-based evaluations employing signal detection theory are well-established in this

domain [104]. A few examples of task-based DGM evaluation in medical imaging include the

evaluation of the diagnostic value of DGM-generated mammography images [21], evaluation

of global consistency in whole-body MRI synthesis [149], detection and estimation tasks for

unconditional synthesis in multiple imaging modalities [107] and also for the evaluation of

GANs [150,151].

Task-based measures can be extremely useful for determining the ultimate acceptability of

a DGM-generated ensemble, however, by principle, they may not be helpful for drawing

inferences about DGM generalizability to other tasks, or per-image errors. The methods

developed in this thesis are complementary to task-based measures. The proposed methods

are aimed to assess the applicability of DGMs in a domain-agnostic and interpretable manner,

and thus, are intended for use in the early stages of DGM adaptation.

Thus, a variety of DGM evaluation approaches exist, and each approach has its pros and

cons. At the crux of each approach, the goal is to assess whether a DGM can generate a

dataset similar to the training data in some sense; the definitions of similarity vary with each

approach.

The following section elaborates on the concept of similarity. First, the fallacy of similarity

as a distance metric is discussed. Then, an alternative approach to similarity based on set-

theoretical concepts is introduced for biomedical images. This approach is then extended

from the perspective of biomedical decision-making, which in turn lays the foundation for

understanding the role of context in biomedical images. A general context-based evaluation

framework that forms the basis of this thesis is presented at the end of this chapter.
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2.4 Defining Similarity

The need for defining similarity arises from evaluation scenarios such as: are two im-

ages/image ensembles similar in quality, or is a given image (ensemble) similar to another

“gold standard” image (ensemble) for some purpose. The design of evaluation measures or

“metrics” is based on the notion of similarity. Typically, a similarity metric is a distance

function between two representations and summarizes differences in two images (or distribu-

tions) into a single number e.g., ensemble-based measures described in the previous section.

However, perceptual “similarity” is rarely, if ever, a metric [152].

2.4.1 Fallacy of a Similarity Metric

Mathematically, a metric satisfies the properties of positive-definiteness, symmetry, and the

triangle inequality. Consider the process of visual diagnosis of medical images by radiologists

with respect to each of the three properties of a metric.

1. Positive-definiteness: In case of ambiguity in the manifestation of a disease, different

radiologists or even the same radiologist at different times may vary in their diagnosis

of the same patient (typically termed as inter-reader and intra-reader variability). That

is, the same stimulus may elicit different outcomes, and thus the similarity distance

between an image with itself may not always be the same [153].

2. Symmetry: Second, perceptual similarity is not necessarily symmetric, and can be

directional. For example, the presentation of a disease is compared to its prototype

or “textbook” appearance, or to a common non-medical object [152, 154, 155], e.g.,

pneumonia looks like ground glass on a chest radiograph, and not vice versa.

3. Triangle inequality: Perceptual similarity may not be transitive [152]. A PET image

of a brain tumor may appear similar to a brain MRI of the same patient. The latter

may appear similar to a brain MRI of another patient, but that does not imply that

the PET image of the original patient is similar to the MRI of the second patient.

Thus, perceptual similarity may not necessarily be a metric in clinical scenarios involving

visual diagnosis.
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For images in general, it has already been established that there is no linear correspondence

between pixel-representations of images and changes in Euclidean distances, especially under

certain image transformations [156]. The same holds from a mathematical perspective of

perceptual similarity. In addition, distance measures in complex feature spaces are rarely

calibrated for perceptual similarity [118].

2.4.2 A Set-Theoretical Perspective on Similarity

Although perceptual similarity may not be a metric, a set theoretical approach holds promise

for quantifying similarity, as demonstrated in a landmark work by Tversky [152]. Some

relevant concepts are elaborated below for medical imaging scenarios.

• Feature matching: Innumerable features could be computed from an image. But, any

task involving similarity of two images can be represented via three sets of features:

those unique to the first image, those unique to the second image, and those common

to both images.

• Monotonicity: When comparing two images, their similarity decreases with the addi-

tion of distinctive features, but increases with the addition of common features. Thus,

a monotonic scale can be established based on the number of common and distinctive

features. Furthermore, depending on the task, distinctiveness or similarity of features

might be weighted differently, creating a task-specific scale for representing similarity.

Here, distinctive features could represent disease-specific manifestations while common

features could represent non-specific manifestation of disease, or normal conditions.

• Assymmetry: Not all tasks involving similarity are symmetric. For example, a symmet-

ric task can be one where a diagnosis has to be chosen from either disease A or disease

B, both of which seem equally probable. On the other hand, testing if DGM-generated

images are similar to the true medical images is a non-symmetric task, where the true

data is more salient and demonstrates exemplar features.

• Diagnosticity: The importance of a feature is dependent on a task, and the set of fea-

tures that it occurs within. For example, a certain radiological sign might be the dis-

tinguishing feature between disease A and disease B, and hence be the most important

of all present signs/symptoms. However, the same sign might carry less importance,
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if the decision has to be made between disease A and disease C, wherein this sign is

often present in both diseases and thus, other symptoms might have greater diagnostic

importance.

• Appropriate scale of features: Features can be identified at different scales. However,

they may be diagnostically relevant only at a certain scale, and this scale must be

respected for a feature set to be meaningful. For example, a radiological sign might

occupy tens of pixels in standard sized chest radiograph. If all features are described

at a scale of hundreds of pixels, or at a scale of single pixels, the radiological sign might

lose its diagnostic value in a set of features.

2.4.3 Similarity, Identity, and Decision-making

The set-theoretical approach to similarity described above can be extended to medical di-

agnosis tasks via symbolic logic [157, 158]. Consider a situation when a patient presents

with a set of symptoms Sp = {s1, s2, ..., sp}, or a symptom complex. The clinician compares

these symptoms against several diseases D = {DA, DB, ...} via the corresponding disease-

specific sets of symptoms, indicative of disease identity, e.g., DA = {a1, a2, ..., ad}, DB =

{b1, b2, ..., bd}, where the subscripts A,B, ... indicate a disease name. Based on this compar-

ison, some diseases are ruled out, i.e, Dabsent = {Di|Sp ∩Di = ϕ}, for i ∈ {A,B, ...}, where

Dabsent indicates the set of diseases that are ruled out. The remaining set of diseases may

then be explored in a probabilistic manner, such that each disease-specific symptom is also

associated with a probability of occurrence. Thus, the identity of a disease and its similarity

with other diseases may be represented via a set-theoretical approach as opposed to distance

metrics. Last, based on a variety of factors including, but not limited to, medical knowledge,

the most likely diagnosis and a recommended course of action is determined. Note that

prognosis also takes into account the concepts of utility and value theory, but that is not the

focus of this thesis.

2.5 Introduction to the Concept of Context

In the setup described above, a disease complex is a set of symptoms that typically co-occur

at certain probabilities in the manifestation of that disease. Similarly, in biomedical images,
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certain conditional co-occurrences of features, or pixel arrangements, are representative of

specific, biomedical conditions. This is termed as “spatial context”. Domain experts typically

acquire tacit awareness of context through training and experience. Thus, context is domain

knowledge which may not be obviously rule-based or learned from only one given image.

The relation of spatial context with object recognition has been demonstrated in some works

from the computer vision literature [159, 160]. For example, an object such as a sheep in a

natural image can be identified via the presence or absence of contextual attributes such as

wool, horn, leg, head. Besides object recognition, contextual information in natural images

has also been employed for tasks such as inpainting [161–163] and feature learning [164]. The

cognitive role of context in visual identification of objects is also well established [61,165,166].

Antonio and Torralba [61] have demonstrated that instantaneous decisions about object

identity can be made by humans based on the context of an object within an image, even

when the object is not clearly visible–which is exactly the sort of thing we want DGMs to do.

Thus, it is possible that context impacts visual diagnosis. In the medical imaging domain, one

work [154] has recently focused on identifying classification-relevant context for explainable

diagnoses on mammographic images. Yet, this idea has been relatively unexplored in the

evaluation of DGMs for diagnostic imaging. In this thesis, assessment of recoverable spatial

context is the central idea employed for designing evaluation frameworks for DGMs.

2.6 A General Framework for the Evaluation of DGMs

Based on Reproducible Context

When deploying DGMs in any mission-critical application, it is vital to have objective mea-

sures of image quality [104] which are beyond subjectively “looking good” to untrained

human observers. Assessing the degree to which expected spatial context is reproduced in

individual images generated by modern DGMs provides one way of objectively assessing im-

age quality. Furthermore, context-based evaluation frameworks are designed such that they

may also reveal the presence (or absence) some general capacities of DGMs, rendering those

DGMs inapplicable for certain downstream tasks.

The general method for both evaluation methods proposed in this thesis is as follows. First,

a training dataset is purposefully created and a modern DGM is trained on this dataset.
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Next, a large ensemble of images is generated from the trained DGM. Context is extracted as

features from both the training and generated ensembles and, finally, the extracted features

are compared to test how well the expected context was reproduced. An overview is provided

in Figure 2.2.

Figure 2.2: A general framework of the evaluation methods proposed in this thesis.

Two specific versions of this general framework are designed and demonstrated in the follow-

ing two chapters. In the first framework, context is explicitly prescribed and encoded in the

training dataset. Various contextual constraints that are relevant to biomedical images are

encoded in several purposefully designed stochastic context models described in Chapter 3.

It is ensured that this context should be recoverable from images generated by a successful

DGM. In the final step, it is this prescribed context, along with implicitly arising context,

that is tested for reproducibility.

In the second framework described in Chapter 4, a stochastic model of anatomy is adapted

to create the training dataset. In this case, context is not explicitly prescribed but arises

implicitly from the stochastic interactions of the different anatomical structures. Hence, in

the final stage, features representing implicit context are extracted and compared.

Note that both evaluation frameworks are model agnostic.
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Chapter 3

Employing Stochastic Context Models

for the Evaluation of DGMs in

Biomedical Imaging

“Only with respect to a projection rule, things are similar.” - Ludwig Wittgenstein

3.1 Overview

The first evaluation framework based on the concept of assessing hallucinations in spatial

context is presented in this chapter. The innovation lies in the creation of a synthetic training

dataset that enables the purposeful encoding and recovery of domain-relevant context. Three

stochastic models were designed to encode various constraints relevant to biomedical imaging

and create training datasets. Although the designed models do not describe anatomy, their

simplicity and interpretability enable the assessment of general DGM capacities even before

they are deployed for biomedical imaging tasks. The evaluation procedure was demonstrated

on two modern DGMs for the task of unconditional image synthesis and the error-rates were

quantified. Several contextual errors were identified in all generated image ensembles and

the implications of these errors are discussed in biomedical imaging scenarios. Last, a future

direction of this work: stochastic models of context for assessing image-conditioned DGMs

for image-to-image translation tasks, was briefly explored.
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3.2 Introduction

Biomedical imaging applications generally require significant domain expertise. Hence, de-

signing objective measures can be especially challenging because it usually is not clear which

computable features, if any, express the knowledge of the domain expert. Therefore, a

reasonable starting point toward comprehensive objective assessment of image quality, is to

measure the general capacity of a DGM to reproduce sophisticated contextual features which

are known prior to training.

In this chapter, the purposeful design of stochastic context models (SCMs) that encode

domain-relevant, external knowledge, or “spatial context”, and the use of the per-image rate

of spatial context reproduction as an objective assessment of the capacity of any generative

model of images is proposed. Here, spatial context may be implicit, i.e., arising from chance

co-occurrence of image features, or explicit, e.g., an ineluctable pixel-placement rule defined

by a human user. The design of the SCMs itself is a demonstration of spatial context being

built into training images algorithmically. Each SCM can be employed to yield a large

ensemble of training images for DGMs, wherein every image in this ensemble exhibits the

prescribed or explicit spatial context as well as the consequentially arising implicit context.

Thus, a single generated image will be considered useful if the prescribed context is exactly

present. The role of the proposed SCMs is similar to that of stochastic object models

(SOMs)—which are commonly employed in the development of imaging systems—in that

each serve as a ground truth; however, there is a key difference. Here, the SCMs are generic

models of a variety of task-relevant spatial contexts which can appear across a gamut of

SOMs and, therefore, should not be thought of as an attempt to model any one particular

object or system.

To be clearer still, it is not proposed to accurately model any particular object or image

for any particular application. Instead, it is proposed to model some kinds of relative pixel

arrangements that are generally important across many applications at once [133]. Consider

a wrist radiograph of a human. There is a known number, location, and size of wrist bones

relative to each other. Here, we are not proposing to model the wrist, but, instead, propose

to model the frequency and relative location of sophisticated image features. For example,

in all wrist radiography, there are typically eight unique wrist bones that have roughly fixed

positions relative to each other. We do not model the bones themselves but instead test

the DGM for the capacity to generate a correct number of locally sophisticated features
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(e.g., wrist bones) in a correct spatial arrangement (e.g., fixed pairing). Thus, our tests go

beyond any one anatomical model in that we are assaying a generic capacity to generate

features under known contextual constraints. In this way, we can rule out DGMs which

may not have the capacity to maintain context and, thus, in the current example, would

be ill-suited for a downstream use involving the per-image bone count. Furthermore, with

the same dataset, we can also rule out DGMs for other tasks in domains besides medical

imaging, where per-image prevalence may be of importance. In other words, because the

proposed method does not involve explicit modeling of a specific object or system, it can

translate to tasks across several domains. The recoverable spatial context that is proposed

to be encoded within each training datum reflects both external and high-order knowledge

of correct spatial arrangements. It is external in the practical sense that what should be true

about every image may not be learnable from any one image; it is high-order in the sense that

correct appearance of features in any one image is not readily expressible in, or detected via,

grayscale histograms or variance-covariance matrices. Therefore, it is also explicitly noted

that throughout this thesis “order” should not be confused with the degree of moments of

any particular probability distribution.

3.2.1 Overview of the Proposed Methodology

In this chapter, it is demonstrated that both implicit and explicit spatial context can be built

into training images algorithmically, such that it can be verified readily after generation, and

without specifying formulas for describing any particular image feature. This means that we

have a ground truth for testing generated images for various contexts. Then distinct SCMs

were employed in several experiments to assess the extent that DGMs learned high-order

information along with whatever low-order information was also learned during training.

The goal of this work is to provide a data-driven method, independent of generative model

architecture, that enables the assessment of DGMs for their capacity to reproduce domain-

relevant, high-order spatial context.
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3.3 Methods

3.3.1 Description of the SCMs

Three families of SCMs are described in the following subsections. All realizations from all

SCMs are 8-bit grayscale, 256x256-pixel images; sample realizations are shown in Figure 3.1.

The three ensembles (in order of presentation) comprise 32768 (per-class), 65536 (per-

class) and 131072 images respectively. Ensembles from the designed SCMs have been made

available on Harvard Dataverse: https://doi.org/10.7910/DVN/HHF4AF (version 2). The

post-hoc analyses codes are available on github: https://github.com/comp-imaging-sci/

scms-dgm-evaluation.

Figure 3.1: Sample realizations from the three purposefully designed SCMs. Top two rows:
One realization each from the eight classes in the flags SCM. Bottom row, left to right:
Realizations from the shaded Voronoi SCM representing classes 16 and 64, and the alphabet
SCM are shown.
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Flags SCM (F-SCM)

The eight-class flags SCM was designed for testing the joint reproducibility of pre-specified,

first-, second-, and high-order image features at once. This model is intended to study class-

specific features, feature-specific intensity distributions and texture, and class-distribution

in the image ensemble.

Each image I in any class c, can be delineated into a regular grid of 16×16 pixel tiles with

each tile corresponding to either foreground fk or background bk, where k is the tile index,

indicating tile location within the grid. Furthermore, Ic = {80 × fk, 176 × bk} ∀c; this

eliminates the zero-order variance in the number of pixels of interest.

Any realization in a class can be represented as:

Ic =
∑
k

(akcfk + (1− akc)bk), (3.1)

where A ∈ {0, 1}K×C is a binary matrix indicating background (0) or foreground (1) for

all K tile indices in C classes. Thus, A indicates the prescribed, class-specific foreground

patterns, and an image class is one of eight distinct foreground arrangements.

Grayscale variates within fk and bk were chosen from distinct Beta distributions:

fk ∼ 152X + 96, where X ∼ Beta(α = 4, β = 2), (3.2)

bk ∼ 192X + 8, where X ∼ Beta(α = 2, β = 4). (3.3)

These grayscale variates were rounded to ensure discrete values before placement. The result

was an image with foreground brighter than the background, but not perfectly segmentable

via a single threshold. The corresponding distributions are shown in Figure 3.2.

Moreover, the placement of the variates for fk and bk was completely random, that is, without

any prescribed correlations in pixel locations, within each corresponding tile fk or bk.

Last, a set of certain 24 tile-location indices k was never part of the foreground, in any class:

n = {k : akc = 0} ∀c. (3.4)
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Figure 3.2: Foreground and background intensity distributions in the Flags SCM. Note that
the means of the background and foreground distributions are clearly different although there
is some overlap between the two.

The regions that were never foreground in any class are shown in white in Figure 3.3.

Figure 3.3: Regions forbidden as foreground in all classes of the Flags SCM are shown in
white.

This is analogous to structural constraints in location for a feature. Together, these classes

enable a variety of experiments for exploring how much of each informational order the DGM

learns. For example, the extent that learning the correct foreground structures and random

arrangements (second-order) also means learning the correct grayscale intensity distributions

(first-order) while never misplacing a foreground square in a forbidden location (high-order)
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can be tested. Furthermore, the prevalence of classes in the generated ensemble can also be

measured; class prevalence is one example of external, domain-specific knowledge.

The tiled nature of the images eased post-hoc classification. Each tile in I was identified as

bk or fk by comparing its intensity mean against a threshold of 140 chosen to be halfway

between the two modes of the combined grayscale distribution of bk and fk. The class (c)

was then determined by computing the mean absolute error against each column in A.

Voronoi SCM (V-SCM)

The Voronoi [167] SCM, a four-class SCM, enabled testing of second- and high-order infor-

mation from randomized sets of image features. This SCM is intended to study per-image

feature prevalences, class-specific features, and quantitative fidelity conditioned on morphol-

ogy.

Each image I can be represented as a union of the set V of Voronoi regions vi and their edges

e. Here, i = {1, 2, ..., c}, where c ∈ {16, 32, 48, 64} represents the cardinality of V within

each I and defines the image class. Within each I, region centers were placed in a spatially

random manner, unlike the fixed foreground locations in the flags SCM; this provided an

additional source of object variance. Edges e were set to an intensity level of 0; this enabled

robust segmentation of e and vi from a given I. All pixels in a vi were allocated a single

grayscale value g drawn from a set of 64 predetermined, equidistant values between 8 and

255. Most importantly, the grayscale value increased monotonically with area, which is a

high-order feature:

ρ(area(vi), g) = 1, (3.5)

where ρ is Spearman rank-order correlation coefficient.

In case of the unshaded Voronoi experiment (see subsection 3.4.2), all regions vi were set

to a grayscale value of 255. The Voronoi SCM is representative of images with multiple,

positionally independent regions of interest within an image, each having a distinct inten-

sity, e.g., histology images. The Voronoi SCM also allowed for testing the ensemble class

prevalence, but with feature sets at multiple spatial scales, simultaneously. For the analysis

of generated images, post-processing involved identification of the edges e, by thresholding
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each I against an intensity level of 64 for the unshaded Voronoi, or via Sauvola thresholding

for the shaded Voronoi, followed by “skeletonization”, i.e., retaining a single pixel medial

representation of all connected pixels. The skeleton was then employed for detecting vi,

which in turn determined c and enabled the extraction of region-wise values of g. It is noted

that although this method of region detection is not perfect, it is still sufficiently robust for

the experiments proposed. Calibration of this method on the training data predicted the

mean detected number of regions exactly, with errors no greater than ± 0, 1, 1, and 2 regions

for the four classes sequentially for an overwhelming majority (> 99%) of the realizations.

Alphabet SCM (A-SCM)

This SCM is intended to study per-image feature prevalences, and conditional co-occurrences

of per-image features.

Each realization I from this SCM can be delineated into a grid, yielding 32× 32 pixel tiles t

such that each t represents a letter in the alphabet A = {H,K,L, V,W,X, Y, Z}. The per-

realization prevalence of all letters within the image I was fixed according to the prescribed

set B = {24 × H, 2 ×K, 16 × L, 1 × V, 1 ×W, 8 × X, 8 × Y, 4 × Z}. Thus, each realization

can be represented as:

I = {tr,c :
⋃
r,c

f(tr,c) = B}, (3.6)

where f(t) : t32×32 → A represents a template matching operation, and r, c are respectively

the row and column indices of t within the grid. In other words, each image I comprises

letter-tiles tr,c that together represent the complete set of specific letters at prescribed preva-

lences, i.e., B. Although the locations of specific letters within I could vary—thus, providing

random variation across realizations—they were always constrained by the following rules of

conditional prevalence obeyed within each realization:

p(f(tr,c+1) = Y |f(tr,c) = X) = 1, (3.7)

p(f(tr,c) = Z|f(tr+1,c) ∈ {V,W,K}) = 1. (3.8)

That is, the letter Y was always preceded horizontally by the letter X (Equation 3.7), and

the letters V, W, K were always preceded vertically by the letter Z (Equation 3.8). Thus,
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four ordered letter-pairs occured in each realization: X-Y (horizontal adjacency), and Z-

K, Z-V, and Z-W (vertical adjacency). Furthermore, the per-realization prevalences of the

letter-pairs were fixed as 8, 2, 1 and 1 respectively. Together, these rules rules of prevalence

and placements constitute the explicitly prescribed context encoded in this SCM.

For post-hoc processing, error for each t was computed as the pixel-wise difference from the

known letter templates and a reasonable acceptance threshold (75% of the maximum error)

was chosen once by visual inspection. Although the post-hoc classifier assigns an identity to

all letters, only automatically recognizable letters were retained. This abates the effect of

minor feature shape variance in further analysis.

3.3.2 Network Trainings

The proposed experiments involved several DGM trainings as well as the generation of large

ensembles. Given the reasonable training and inference times involved in training GANs,

GANs were chosen only to demonstrate the use of the proposed method. Recall, a GAN

is a DGM that involves adversarial training between a generator network that creates new

images, and a discriminator network that tries to distinguish the generated images from the

training data.

It is anticipated that other researchers will employ the datasets made available with this

work towards benchmarking other emerging DGMs as well as for studying the effects of

various training strategies.

Two popular GAN architectures: ProGAN (PG) [119] and StyleGAN2: config-e (SG) [117]

were employed for this work. The prescribed default training schedule was found to be

sufficient for training in terms of visual quality, Fréchet Inception Distance (FID) 10k scores

[45] and loss curve convergence. Recall that FID is currently the most popular measure of

assessing DGM image quality. The trainings were performed such that the discriminator was

shown 12 million images and 25 million images for PG and SG respectively; these were also

the prescribed default training durations. For SG, the regularization parameter R1 was set

to 100 and the truncation parameter ψ was set to 0.5; both are default values for the chosen

configuration. The trainings were performed on Nvidia GeForce GTX 1080Ti, 1080, Tesla

V100 and A100 GPUs, and typically took between 2 and 14 days per training on a single
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GPU. A total of 10240 realizations, for each dataset, were generated from each network for

further analysis. It is explicitly noted that the goal of this work was not to achieve the best

possible performance of any network, but simply to demonstrate the utility of the designed

SCMs for assessing common DGMs that are trained in a typical way.

3.4 Results

Sample generated images from both networks and all three SCMs are shown in Figure 3.4

while examples of artifacts are shown in Figure 3.5. The FID scores [45] for all models from

both networks were between 2 and 10, indicating excellent image quality. (Lower FID scores

are better and 0 indicates perfect image quality, state-of-the-art DGMs typically achieve

single digit FID scores on natural image datasets.) Ensemble intensity distributions were

also well replicated in all generated (DGM-generated) ensembles.

3.4.1 Results from the Flags SCM

Post-hoc processing of the DGM-generated ensembles demonstrated that perfect match with

the foreground templates was achieved for about 98% realizations, while occasional malfor-

mations via blending of foreground templates was observed in the remaining cases. However,

the forbiddance rule in Equation 3.4 was always respected. Realizations that did not per-

fectly match the original class templates were excluded from further analysis and several

of those retained were visually spot-checked to ensure that they were well-formed. Here,

the exclusion was automated and not manual. Specifically, each binarized realization was

compared against all binarized class templates and the absolute error was computed. Only

perfect realizations, that is, realizations with zero error with respect to exactly one class

template, were retained. By excluding ill-formed realizations from subsequent analysis, we

avoided conflating the effects of foreground malformations with other per-image, statistical

errors.
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Figure 3.4: Subjectively visually good DGM-generated examples from networks trained on
the three SCMs. Columns 1 and 2 show PG images while Columns 3 and 4 show SG images.
Although the images demonstrate good visual similarity, contextual errors can be present in
any image in any ensemble.

Figure 3.5: Class-mixing and artifacts in DGM-generated images. DGM-generated images
occasionally exhibit artifacts such as blending of class-specific foregrounds in the flags SCM
(left), weak boundaries and shading variance within distinct Voronoi regions (middle), and
badly formed letters in the alphabet SCM (right).
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Equation 3.2 and Equation 3.3, representing intensity distribution requirements, were tested

against a generous tolerance of 99.5th percentile of the chi-square statistic computed sepa-

rately for f and b. None of the realizations generated from either network satisfied Equa-

tion 3.2, i.e., the prescribed foreground distribution, while about 1% and 91% images violated

Equation 3.3, i.e., the prescribed background distribution for PG and SG respectively, sug-

gesting that the foreground and background were learned differently. This further indicates

that first-order statistics computed from the foreground and background intensity distri-

butions, could fail to match those of the training data. Such a failure not only implies

that the distinct feature-specific foreground and background intensity distributions are not

learned, but also that the application of a statistical observer or post-processing task such as

thresholding or segmentation, could be adversely affected. Next, the prescribed randomness

in pixel placement, was tested via the tile-wise computation of Moran’s I (MI) of spatial

autocorrelation [168] for each fk and bk in every I. A tile was considered acceptable if the

MI was within 0 ± σM/256, where σM is the standard deviation of the distribution of the

MI computed on the training data, and a realization was considered acceptable if at most 3

tiles were rejected. On average, 3% and 11% of the realizations violated the distribution of

MI for the foreground and background for PG, while the proportion was about 4% for both

subsets for SG. These results imply that a majority of the realizations in ensembles generated

from either network reproduce randomness in pixel arrangement. However, a non-negligible

proportion, up to 1 in 9, of the realizations did not exhibit the prescribed randomness, and

thus, inference based on the presumption of randomness could be incorrect. It was observed

that the mean class prevalence matched the expected mean of 1/8, corresponding to uniform

class prevalence in the training ensemble. Although the standard deviation was likely neg-

ligible for PG (σ=1%), it was non-negligible for SG (σ=9%), indicating that some classes

were preferentially generated in the latter case. Thus, the relevant prevalence in a training

data might not be reproduced in a DGM-generated ensemble—this might have significant

implications when employed for data augmentation or statistical power calculations. Thus,

for this one SCM, both second-order features and the per-image prevalence of second-order

features were reasonably well reproduced; however, the first-order information per-image

was essentially always wrong, even though the ensemble mean intensity distribution appears

correct.
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3.4.2 Results from the Voronoi SCM

Although high visual similarity was observed in the DGM-generated Voronoi images, vari-

ous artifacts were also observed such as: the presence of (i) low-amplitude, high-frequency

artifacts in regions of constant intensity [169], (ii) curved or “floating” region edges and (iii)

multiple intensity values instead of only one in a single Voronoi region (see Figure 3.5).

Figure 3.6: Results from the Voronoi SCM for class prevalence studies. Note that both
sub-figures represent kernel density estimates of the corresponding distributions and hence
the modes in the data appear Gaussian. Left: The expected equal class prevalence in the
ensemble was not reproduced in the DGM-generated images from both networks, but more
significantly for SG. The effect of error from the post-hoc classifier is also observed. Right:
Four separate models, each trained on a single class, generated images outside the class
for both networks. While the SG-generated ensemble demonstrated class extrapolation, the
PG-generated ensemble showed slightly shifted class means.

Low-amplitude, high-frequency artifacts, possibly characteristic of the convolutional network

architecture, could affect decision-making. This is because the presence of high-frequency ar-

tifacts impacts local statistics to some extent, that is, the original second-order information—

and thus, possibly, texture statistics—may not be consistent with the original dataset. The

other, more visually apparent artifacts, might confound a variety of classifiers or analyses

which are calibrated on the training data. The high-order rule in Equation 3.5 relating in-

tensity and area of a shaded Voronoi region also was tested; it was observed that the rule

was not reproduced exactly. The expected Spearman rank correlation (ρ=1.0) was lower

in the DGM-generated images. A decrease of over 20% (ρ < 0.8) was observed in 3%

and 2% realizations from PG and SG, respectively. If the grayscale intensity g represents

46



Figure 3.7: Results from the Voronoi SCM for assessment of implicit context. Statistics
representing implicit context were projected onto the two highest principal components for
true and PG-generated (left) and SG-generated (right) ensembles. Interpolation between the
four training classes was more prevalent in the PG-generated ensemble while lower overlap
in feature clouds was observed in the SG-generated ensemble, indicating dissimilar ranges of
these statistics in the latter.

a physical property, violation of Equation 3.5 implies that these realizations have at least

partially lost their quantitative meaning. This result might have serious implications for

quantitative imaging modalities such as CT and PET, and is discussed later in this chapter

subsection 3.4.4. Next, studies of class prevalence were performed with the Voronoi SCM by

training five different models for each network architecture on the training data representing:

(i) all four classes equally, and (ii-v) each of the four classes individually. As seen in Fig-

ure 3.6, class prevalence in case (i) was not maintained in the ensemble generated from either

network (Figure 3.6 left) whereas class extrapolation was observed in cases (ii-v) (Figure 3.6

right).

Last, implicit context in Voronoi diagrams was assessed for case (i), i.e., DGMs trained

on a four-class dataset with uniform prevalence. Several mathematical properties arise im-

plicitly in Voronoi diagrams. Voronoi is a unique solution to a space partitioning problem

and its properties are well-established. This implies that in order for an image to be a

Voronoi diagram, certain statistics must co-occur in a specific manner. In other words, the

implicit context must be correct. Two studies were undertaken to assess the reproducibility

of implicit context. In the first study, several statistics were extracted and their conditional
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Figure 3.8: Results from the unshaded Voronoi SCM for assessment of implicit context. The
strengths of correlations of the per-image statistics representing implicit context (left) were
lowered in both DGM-generated ensembles (center and right), especially in SG, indicating
that the correct implicit context was not reproduced.

co-occurrences were studied. In the second study, known mathematical properties of Voronoi

diagrams were tested.

In the first study of conditional co-occurrences of Voronoi statistics, the Skan Python library

[170] was employed to compute the following statistics derived from Voronoi regions and

edges: number of junctions (NJXN), junction density (JXND), mean edge length (EDGM),

standard deviation over edge lengths (EDGS), number of regions (NREG), mean area of

a region (AREM), and standard deviation over region area (ARES). These statistics were

chosen because they can be employed to study certain established properties of Voronoi

diagrams. Interpolation between class-specific features was observed (see Figure 3.7) via

principal component analysis (PCA) of the features listed above. This indicates extrapolation

in the feature space corresponding to implicit statistics learned by the DGMs. Even when

the classes (or NREG) were incorrect due to extrapolation, the implicit context was generally

retained in this case.

Reproduction of implicit context was then tested in the absence of shading. Partial loss

of implicit context was observed via decreased correlations between the studied statistics

(see Figure 3.8) and lower overlap in the feature clouds in PCA (not shown) as compared

to Figure 3.7. In Figure 3.8, the training data (left) demonstrates nearly perfect cross-

correlation or anti-correlation between all pairs of studied statistics, indicating that if the

value of one statistic is changed, the values of all other statistics would be required to change

accordingly to maintain the properties of a true Voronoi diagram. However, the strength of
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correlations is not maintained in case of both DGMs, but particularly StyleGAN2 (right).

This indicates that there are certainly images in the SG2-generated ensemble that cannot

be considered Voronoi diagrams.

Further confirmation of implicit contextual errors in the DGM-generated ensemble was ob-

tained via testing two well established statistical properties of Voronoi diagrams in the

second study of implicit context. Specifically, Property V11-1 and V12 presented in Bootes

et al. [167] (here onward referred to as P1 and P2) were tested. These properties respectively

are:

ne ≤ 3n− 6, (3.9)

and

nv ≥
1

2
(n− nc) + 1, (3.10)

where ne, nv, nc, and n, indicate the number of edges, the number of vertices, the number

of bounded Voronoi regions, and the number of all Voronoi regions respectively within a

given image. Both conditions were satisfied in 99% of the training data. For the unshaded

Voronoi, the rates of violation for both conditions in PG-generated and SG-generated en-

sembles respectively were: 12% and 100% for P1, and 10% and 100% for P2. For the shaded

Voronoi, these rates were under 6% for both DGM-generated ensembles. Note that it is pos-

sible that a different model or training strategy may have fewer implicit contextual errors.

Here, it is only demonstrated that implicit contextual errors made by a model trained in

a typical manner and achieving low FID scores, can be detected via the proposed method.

These results suggest that the reproduction of implicit context even for datasets such as the

unshaded Voronoi is a non-trivial task for a DGM and may have significant implications in

domain-specific space partitioning problems.

3.4.3 Results from the Alphabet SCM

Although most letters were well-formed in the DGM-generated ensembles, errors occasionally

were observed as seen in Figure 3.5. Error rates of letter formation via post-hoc processing

were: 1 in 6250 letters for PG and 1 in 73 letters for SG respectively, indicating that almost all

letters in a realization were recognizable. Although relatively few letters were unrecognizable,

49



only images where all letters were recognizable, 99% and 59% of the ensemble for PG and

SG respectively, were considered for further analysis. A sample of 10000 such well-formed

realizations was explicitly tested for high-order rules of feature prevalence.

Figure 3.9: Results from the alphabet SCM. The expected paired-letter prevalences: X-Y,
Z-K, Z-V, Z-W = 8, 2, 1, 1 were not respected by either network. Correct prevalence is
marked in red. A wide range of values was seen for both networks indicating that perfect
prevalence is achieved only by chance.

The observed frequency of letters was compared to the prescribed set B via the χ2 goodness-

of-fit test. Only 119 PG and 72 SG realizations were found to be outside the 95% critical value

of the chi-squared test. However, this means only that the letters appear to have been drawn

from the prescribed distribution, not that a realization is correct. In fact, on testing per-

image letter prevalences (Equation 3.6), it was observed that only 18 PG realizations and 6

SG realizations exactly matched B; recall, this frequency is identical in every training image.

Thus, only by rare chance was any realization correct in high-order. Incidentally, it was

observed that these were not memorized realizations. In a certain domain, if natural variation

exists in the prevalence of a feature, most realizations would be acceptable. However, if the

feature prevalence is the context required for a downstream task, then essentially none of

the realizations from these DGM-generated ensembles are acceptable. Next, the prescribed

ordered pair-prevalences (Eqs. 8 and 9) were tested. The fixed ordered pairs X-Y, Z-K, Z-V

and Z-W were expected to occur at frequencies of precisely 8, 2, 1 and 1 respectively, but

were observed to occur at a wide range of frequencies (see Figure 3.9) for both networks.

The single letters V, W and K which never occur without the partner in the training data,

occurred without the other member of the pair up to 100% of time. Similarly, the letter Y

occurred separately about 37% of time for PG. This rate of separate occurrence of letters

in letter-pairs is approximately doubled or tripled for SG. Hence, pairs of image features
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that may be expected to have known, relative locations and prevalence might not appear

in a DGM-generated ensemble. Thus, “visually good” DGM-generated images might have

diminished domain-specific value due to an unrealistic representation.

3.4.4 Interpretation of Results within Biomedical Imaging

In biomedical images, features can have quantitative, structural, and positional significance

within each realization; this can be partially described by statistics spanning multiple orders

of information. However, the joint reproduction of statistics across multiple orders might

be a challenging task for the chosen DGMs as observed in the results from the flags SCM

and, hence, the ultimate utility of a generated realization might be determined by the order

of information required for a specific diagnostic task. For example, a DGM employed for

simulating positron emission tomography images of a certain tumor type may produce a

majority of tumors of correct shape but significantly different in the expected intensity

distribution and texture. Drawing diagnostic inferences from such a generated ensemble,

even when employed for data augmentation, might translate to false clinical predictions.

The Voronoi SCM was designed such that image features, corresponding to the Voronoi re-

gions, were ergodic. An analogous clinical example is a histology image, depicting multiple

cell types, each with characteristic textural features and staining intensity but able to ap-

pear anywhere in the field of view. When the rank-correlation between area and grayscale

intensity was not reproduced correctly, the quantitative information—here, representative

of physical tissue properties—could be unreliable and the derived textural features suspect.

Furthermore, for both multi-class SCMs, flags and Voronoi, the incorrectly reproduced class

prevalence in the generated ensembles suggests that if these particular instances of DGMs

were used to replicate a clinical dataset for virtual clinical trials, or to generate a training

ensemble for a downstream task, the prevalence of the input pathologies would not be main-

tained. Most significantly, this bias could be characteristic of the network-architecture and

thus, would have to be quantified for each architecture separately. It is hypothesized that

the DGM loss function as well as the dimensionality of the latent space may contribute to

the learning of some image statistics but not others. However, it is emphasized that the

relation between a network architecture and per-image statistics is an open research ques-

tion. The method proposed in this chapter can potentially expose the lack of capacity of a

network architecture for learning certain orders of image statistics. The proposed datasets

51



can aid in improving network design by serving as test datasets while prototyping novel and

task-specific architectures.

The alphabet SCM was designed with known per-realization prevalence of single and paired

features in order to isolate reproducibility of high-order features (the letters) from that

effects of variable position, structure and shading. Recall the earlier example of a wrist

radiograph. Just as the Capitate and Hamate bones always articulate with each other, the

letters X-Y also are always expected to occur only as horizontal, ordered pairs. Because

anatomical plausibility can be represented (at least partially) as the joint, per-realization

prevalence of naturally occurring features, it is paramount that this prevalence is maintained

within each realization and not just on average, over the ensemble. If a generative model

is designed to maximize similarity over the ensemble alone, per-realization errors might be

widespread as was observed in the DGM-generated images of the alphabet SCM where less

than 0.2% of the ensemble had perfect feature and feature-pair prevalence. Such visually

realistic DGM-generated images with incorrect per-realization feature prevalence might have

reduced diagnostic value. This could translate into a bias in, or even a complete failure to

learn, the information required for particular decision tasks.

3.5 A Brief Exploration of Stochastic Context Models

for the Evaluation of Image-Conditioned DGMs

One solution to improve contextual correctness in DGM-generated images is to condition

the generation on relevant domain knowledge via an image. The rationale is that, ideally,

if sufficient domain-relevant context [171] is made available via the input image employed

for conditioning, an image-conditioned DGM (IC-DGM) [144, 172] could potentially learn

to generate contextually correct images. In this section, the idea of assessing contextual

reproducibility via SCMs is extended to image-conditioned DGMs (IC-DGMs) for domain

transfer tasks with the goal of quantifying domain-relevant contextual errors that persist

despite image conditioning. A second motivation for this short study is that similar to the

evaluation of unconditional DGMs, the evaluation of IC-DGMs remains an open challenge

[173,174], despite their popularity in biomedical imaging research [1]. An SCM-based method

of evaluation could provide insights into the capacities of IC-DGMs.
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3.5.1 Methods

Two SCMs were adapted to assess image-conditioned DGMs (IC-DGMs), namely, the Voronoi

SCM (V-SCM) and the Alphabet SCM (A-SCM).

Recall that the V-SCM was designed to encode per-image context via pre-specified rules of

shading, thus lending grayscale values contextual quantitative significance. This is analogous

to histology images, where a one-to-one correspondence may exist between cell types, their

sizes, and stains. For assessing IC-DGMs, the shaded Voronoi SCM was paired with an

unshaded version of the same SCM, which was employed for conditioning. Thus, the implicit

contextual information was already provided to a DGM via conditioning.

The adapted A-SCM, here onwards referred to as A-SCM2, is designed to represent context

explicitly as per-image feature prevalences represented under various inter-domain mappings

(e.g., bijective, surjective), without complex shading variations. A more complex version

of this SCM would be analogous to transforming images across imaging modalities. For

example, when the task is to generate PET images given CT, there are several kinds of

mappings present for different organs in the two imaging modalities. Some organs might be

visible reliably in both imaging modalities, and hence might potentially appear correct in

shape and size in the generated PET images. Other organs may be present only in CT but

not in PET; here, a CT to PET transform might be potentially accurate as before, but a PET

to CT reverse transformation might be infeasible. Furthermore, as PET represents functional

activity (unlike CT), the intensity variations related to organ function, but independent of

anatomy, might be inaccurate. The A-SCM2 is aimed to represent logically similar unique

and non-unique mappings between structures in two imaging domains to test the contextual

correctness in the generated images.

All images generated from the SCMs described below were size 256×256 pixels, 8-bit grayscale

images.

Description of the Voronoi SCM for Domain Transfer Tasks (V-SCM2)

The four-class V-SCM2 for domain transfer consists of matched image-pairs of unshaded and

shaded Voronoi diagrams [167]. The shaded Voronoi is the same as described in section 3.3.1.

For the unshaded Voronoi, the grayscale values were set to 255 for the background, and 0
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for the Voronoi region boundaries. The task for a IC-DGM then, was to generate a correctly

shaded image given the unshaded Voronoi image.

Description of the Alphabet SCM for Domain Transfer Tasks (A-SCM2)

A realization described by the A-SCM2 consisted of 32×32 pixel tiles t arranged in a regular

8×8 grid. Each t represents a letter from a pre-specified set: A = {H,K,L, V,W,X, Y, Z,□},
where the last element represents a blank tile, which enables the representation of the absence

of any information as a feature, similar to blank spaces observed in many biomedical images.

Furthermore, exact per-image letter and letter-pair prevalences were specified to constitute

a domain D. Generally, any realization from a domain D can be described as:

I = {tr,c :
⋃
r,c

m(tr,c) = D}, (3.11)

where m(t) : t32×32 → A describes template matching, which was also employed for post-hoc

analysis, and r, c are respectively the row and column indices of t within the grid. Two

such domains: D1 and D2, were specified in each experiment described below such that a

forward mapping exists from D1 to D2. In all three experiments described below, the domain

transfer task for a IC-DGM was to recover the inverse mapping and generate an image: Iout

in D1, given another image: Iin in D2; the differences in experiments lie in the contextual

rules of per-image letter prevalences, placements, and inter-domain mappings (bijective or

surjective). Samples from the A-SCM are shown in Figure 3.10.

Experiment 1 (E1): D1 ←→ D2

The goal of E1 was to test the capacity of IC-DGMs to generate a contextually correct image

in D1 when (i) inter-domain letter-pair mappings are bijective, (ii) single letter mappings

from D1 to D2 are surjective, and (iii) sufficient context was included in Iin from D2 for

unique recovery. Realizations in D1 were generated to have the following fixed per-image

prevalences: D1 = {8×{XY }, 2×{ZK}, 1×{ZV }, 1×{ZW}, 16×L, 24×□}. The adjacency

rules for the ordered letter-pairs in D1 were:

m(tr,c) = X ⇔ m(tr,c+1) = Y, (3.12)
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Figure 3.10: Samples from experiments employing the A-SCM2. Experiments E1 and E2
map D1 to D2 bijectively, while E3 involves a surjective mapping. In all experiments, the
forward mapping: D1 to D2 is prescribed in the training data, and the task for the IC-DGM
is to recover the inverse mapping and generate an image in D1, given an image from D2. Note
that the colored boxes highlight an instance of the letter-pair transforms in each experiment
to aid the reader but are not actually present in the data.

m(tr,c) ∈ {V,W,K} ⇔ m(tr−1,c) = Z. (3.13)

Next, for all images in D1 generated as described above, matched images in D2 were created

via the following transformations:

XY 7→ XV,

ZV 7→ □V,

ZW 7→ □H,

ZK 7→ □K.

(3.14)

Thus, although the letter-pair mappings are unique between the two domains, the individual

letters might not be uniquely transformed. For example, Y and V in D1 both map to V

in D2. Yet, the unique recovery of Iout in D1, given Iin in D2 is expected when the spatial

context of a letter is considered, which in this case is whether the left neighbor of the letter

V in D2 is the letter X.
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In summary, the DGM is asked to transform individual letters from one domain to another,

based on a unique mapping between the two domains. To learn the unique mapping, the

DGM has to learn not just mappings between individual letters across the two domains,

but also account for their neighborhoods, or contexts, which determine the transformation.

Because a unique mapping exists between the two domains, this experiment serves as a first

test for any DGM that is considered for domain transfer. If the DGM cannot perform this

simple domain transfer task, it may not have the capacity for more complex tasks with

non-unique solutions. In real-world tasks, bijective mapping is rarely present between two

imaging modalities.

Experiment 2 (E2): D1 ←→ D2

The goal of E2 was to assess whether the expected, unique image recovery in E1 can still be

achieved by a IC-DGM when the relevant spatial context manifests at larger length-scales as

spatially distant letter-pairs. To generate realizations in D1, Equation 3.12, Equation 3.13,

and Equation 3.14 in E1 were replicated but the specified vertical pairings in Equation 3.13

were modified as:

m(tr,c) = K =⇒ m(tr−2,c) = Z,

m(tr,c) = V =⇒ m(tr−3,c) = Z,

m(tr,c) = W =⇒ m(tr−4,c) = Z.

(3.15)

Thus, the pairs ZK, ZV and ZW were separated by 1, 2 and 3 letter-tiles respectively.

Matched images in D2 were obtained via transformations described in E1.

In summary, the second experiment also assesses a DGM for domain transfer under a simple,

bijective (i.e., unique) mapping between domains. The individual letter transformation can

be learned from the neighborhood of individual letters as in E1, but the neighborhoods in

E2 can be upto four times larger than in E1. This enables the testing of network capacity

for capturing very large features or conditionally co-occurring features that are distant from

each other. If the network truly learns all conditional co-occurrences within each image, it

should demonstrate perfect performance on this task. Note that the unique transformation

can be recovered via logical rules, and does not require a DGM. The knowledge of logical

rules, and hence, the “right answer” enables the testing of a DGM.
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Both experiments, E1 and E2, are logically similar to a domain transfer task where the

first domain contains sufficient information to accurately generate an image in the second

domain, and thus, a DGM should achieve perfect performance in both these experiments.

Experiment 3 (E3): D1 ↠ D2

As compared to E1 and E2, E3 explores domain transfer within a slightly more realistic

inter-domain mapping: a surjective contextual mapping, represented via letter-pairs (in

addition to single letter mappings being surjective like E1 and E2). Thus, the IC-DGM

has a purposely unfair domain transfer task in terms of learning to place a certain letter-

pair. However, because the per-image prevalences of letter and letter-pairs in D1 were fixed,

ideally, they should be correctly reproduced in the generated ensemble even if the locations

of the expected letter-pairs were incorrect. Specifically, the only rule in E3 that differed

from E1 was the transformation: ZW 7→ □□, which resulted in a non-unique mapping

between the two domains. This study is logically similar to the unfair domain transfer task

of generating CT images given PET images, i.e, when the latter domain does not contain

sufficient information to accurately generate an image in the former domain.

Although this experiment studies more realistic mappings than E1 and E2, the domain trans-

fer task in E3 does not have a unique solution. This task is unfair in terms of transformation

of entire images, but, (i) some features should be reliably transformed, and (ii) features

expected in the output domain should be correct in terms of their prevalences. Thus, this

experiment is an important test which exposes the kinds of mistakes that may be expected

from DGMs employed for domain transfer in realistic scenarios.

Network Trainings

Two popular IC-DGMs: Pix2pix [175] and CycleGAN [176] were employed with V-SCM2 and

A-SCM2 ensembles sized 65536 and 131072 respectively, split into training (75%), validation

(12.5%) and test (12.5%) sets. All default training choices were retained, unless specified

in the experiments. Data pre-processing and augmentation during training was disabled.

Both networks were trained for 10 epochs in all experiments except A-SCM2: E3, in which

the networks were trained for 15 epochs. A model was chosen for inference based on the
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highest visual similarity of the generated images. All trainings were performed on Nvidia

A100 GPUs and took between 3 to 12 hours on a single GPU.

3.5.2 Results from the Adapted Voronoi SCM: V-SCM2

Samples generated from the two IC-DGMs are shown in Figure 3.12. Visually, the shading

rules appear to be well captured. However, some undesirable effects such as shading gra-

dients within a single Voronoi region, or low contrast in some image areas due to weaker

area-grayscale correlation, were observed. Checkerboard artifacts, known to occur with the

original CycleGAN architecture, were also observed; their effects on the shading task were

included in the quantitative results.

Figure 3.11: Sample images from the two DGM-generated ensembles of V-SCM2 are shown.
Artifacts such as checkerboard, shading gradients, and low contrast are highlighted.

First, we tested the joint replication of the two pre-specified contextual shading rules: perfect

correlation of grayscale with area in each image (ρ = 1) and no variation in grayscale value

within a Voronoi region, i.e., grayscale standard deviation σ ≈ 0. For both IC-DGMs, a

wide range of values was observed for both rules, irrespective of the weight (λ) of the L1 loss

in Pix2pix or the identity loss in CycleGAN. However, in Pix2pix, increasing λ did appear

to decrease the range of absolute error in ρ from almost 20% to 5% (see Figure 3.12, row 1)

unlike CycleGAN, where this range was about 15% for all λ. In the training data, this range

is exactly 0 and ρ = 1 in all images.
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Figure 3.12: Results from the V-SCM2. Row 1: Neither network exactly replicated the
grayscale correlation with area (ρ = 1) and the constant grayscale intensity in each region
(σ = 0) for varying loss function weights. Row 2: Class-wise analysis indicates that the
errors are more widespread for class 16 as compared to the higher classes. Note the log-scale
for X axis to highlight class differences. The true value from training data is marked in red.
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These results demonstrate that the quantitative value of the DGM-generated images may

be partially lost and the extent of this loss can be explicitly quantified before a IC-DGM is

considered for domain-specific deployment. Next, we assessed the class-wise performance for

the intermediate (also default) values of λ in the previous experiment. For both networks,

class 16 demonstrated remarkably greater variations in both shading properties than the

other classes (see Figure 3.12, row 2). Particularly, class 16 demonstrates mean σ values that

are 4 times (Pix2pix) and 15 times (CycleGAN) worse as compared to class 64. Thus, via

class-based analysis, a correspondence between various length-scales and contextual shading

accuracy can be established for a IC-DGM. In this way, the V-SCM2 can further enable

an objective choice of an architecture in a human interpretable manner before IC-DGM-

deployment, especially if the domain-relevant length-scale is known.

3.5.3 Results from the Adapted Alphabet SCM: A-SCM2

Figure 3.13: Results from the A-SCM2. Although the DGM-generated images show high
visual similarity, contextual errors are present in E2 and E3. Some examples of perfect
letter-pair recovery are highlighted in blue while errors are highlighted in red.
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Examples from the training and DGM-generated ensembles are shown in Figure 3.13. Al-

though the letters appeared well-formed in all cases, some contextual errors were still ob-

served. Results from all experiments are reported in Table 3.1. Perfect recovery of all

letter-pairs by both networks was observed in E1, where D1 ←→ D2, and letter-pairs were

adjacent, i.e., present within the receptive field of the default PatchGAN discriminator.

However, in E2, when these letter-pairs were spatially distant, only Pix2pix demonstrated

perfect recovery of all letter-pairs, including a letter-pair (ZW) that was separated by 128

pixels; CycleGAN failed to recover this most distant letter-pair in all DGM-generated real-

izations. These results imply that the presence of an inter-domain bijective mapping alone

is insufficient for accurate domain-transfer, the capacity of the IC-DGM to capture the rel-

evant context present in the input image is also essential [177]. In E3, errors were expected

to occur in the placement of the surjective mapped letter-pair (ZW). By chance, only about

2% of the Pix2pix-generated realizations, and none of the CycleGAN-generated realizations

demonstrated perfect recovery in both: placement and prevalence. Besides the placement

errors of this letter-pair (ZW), errors were also observed in its per-image prevalence (see

Table 3.1). Furthermore, contextual errors were also observed in the prevalence of some

bijectively mapped letter-pairs, constituting up to 25% (Pix2pix) and 70% (CycleGAN) of

the DGM-generated ensemble. The issue of recovering bijectively mapped letter-pairs was

alleviated entirely (Pix2pix) or partially (CycleGAN) by replacing the PatchGAN discrimi-

nator with an ImageGAN, which can access the entire image in its receptive field as opposed

to image patches in PatchGAN. However, the ImageGAN discriminator did not improve the

per-image prevalences of the surjective mapping. Thus, for a IC-DGM, the A-SCM2 enables

not only the quantification of error-rates of per-image feature prevalences for various inter-

domain mappings and spatial extents of context, but may also enable the quantification of

features that are correct by chance, before it is consideration for practical deployment.

3.5.4 Interpretation of Results

In this brief study, it is not claimed that the results are generally applicable to the chosen IC-

DGMs in all cases, but that they apply to an instance of a reasonably trained model chosen

to demonstrate the method of evaluation. Furthermore, the experiments were designed to

demonstrate the capabilities of the SCMs towards the evaluation of IC-DGMs; statistically

rigorous and systematic studies employing these SCMs will be undertaken in future.
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Table 3.1: Results from the A-SCM2. Accuracy (%) of the per-image letter-pair prevalence
within the the DGM-generated ensemble in each experiment employing the default IC-DGM
architecture is reported; E1: all pairs, E2: most distant letter-pair, E3: (i) best reproduced,
(ii) worst reproduced bijectively mapped letter-pair, and (iii) the surjectively mapped letter-
pair. Results with an ImageGAN discriminator (IG) are also reported for the last case
(E3-iii). Bijective and surjective mappings are indicated by “bij” and “sur” respectively.

Expt. Pair Context Pix2pix CycleGAN
mapping (pixels2) (% acc.) (% acc.)

E1 bij 32×32 100 100
E2 bij 128×32 100 0
E3 bij 32×32 (best) 100 100

bij 32×32 (worst) 74 30
sur 32×32 41 69

E3(IG) sur 32×32 44 31

Specifically, the V-SCM2 enables the quantification of contextual errors in shading and also

relates them to specific length-scales, thus providing a first test before employing IC-DGMs

on domain-specific tasks that involve quantitatively significant shading, e.g., generating his-

tology images with cell-specific shadings [178]. The A-SCM2 provides a method to assess

the reproducibility of per-image contextual features and their prevalences in DGM-generated

ensembles under a variety of inter-domain mapping conditions and context sizes. Such an

evaluation of network capacity may prove beneficial to rule out DGMs for domain-transfer

tasks that require significant domain expertise for visual evaluation. In general, results from

both DGMs suggest that image-conditioning alone may not necessarily alleviate contextual

inaccuracies in the generated image ensembles.

For a domain-transfer task, a domain-specific interpretation of results from the SCM-based

method of evaluation may be obtained if the following are identified: (i) the length-scale of

relevant spatial context in the domain of deployment, (ii) inter-domain mapping type (e.g.,

surjective), and (iii) tolerance of error-rates in the generated ensemble. In this way, the

SCM-based method may aid the objective choice of a network for a given domain-specific

task.

62



3.6 Discussion

Much improvement has occurred in the realism of DGM-generated natural images and their

evaluation [179,180]. However, the deployment of DGMs in domains where domain expertise

is inextricably tied to image perception, such as in medical imaging, still remains a challenge

[181]. To partially circumvent this challenge, the proposed SCMs provide a method for

encoding high-order information relevant to a domain while also allowing the recovery of

this information from a DGM-generated ensemble. In other words, the proposed SCMs

provide a kind of domain-relevant “ground truth” for assessing DGMs. In the present work,

high-order information was represented via explicit modeling of contexts such as feature

prevalences and relative feature arrangements, but the use of SCMs is not limited to these

scenarios. The proposed method is general in the sense that any other representation of

spatial context that may be relevant to a certain domain could be employed similarly for

evaluation as long its recovery from the generated ensemble is sufficiently robust. New SCMs,

other than the three SCMs proposed in this work for unconditional image synthesis, can be

designed by other researchers to encode any spatial context of interest or relevance in their

domain. In addition, results from the three SCMs can be interpreted for applications in

several domains. The SCM-based method of DGM evaluation can also be further developed

for a specific domain as demonstrated in [137] for medical imaging.

Some works have studied the reproducibility of long-distance spatial context by generative

models [122,182]. However, these methods do not purposefully design synthetic datasets for

evaluation like those proposed in this work. One work [183] has assessed the generalizability

of GANs for a few contextual attributes such as color and per-image prevalence in RGB

images. Our proposed SCMs encode a wide range of contextual constraints at multiple

orders of information. As the proposed method of evaluation is data-centric and independent

of the generative model type, it can be readily employed on any generative model. Thus,

the proposed method may enable the benchmarking of new architectures against existing

architectures or aid the design and development process of generative models for domain-

specific applications.

Of course, each instance of a particular DGM is unique, and thus the results may vary

between instances, however, any instances trained from the same architecture share some

common learning capacity. The use of designed SCMs is envisioned as a kind of “necessary

but not sufficient” triage of DGM capacity. Our supposition is that if a particular DGM
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demonstrably fails at recovering the fundamental image properties one prescribes—such as

grayscale intensity distribution, spatial randomness, and pre-specified feature prevalences—

then that architecture could fail to accurately reproduce any sort of domain-relevant image

that comprises those fundamental properties. This is why SCMs such as the ones proposed

can be relevant to estimating the probability that a DGM has made errors in domain-specific

images. In future, we intend to extend the method of evaluating DGMs via SCMs to tasks

other than unconditional synthesis, such as conditional synthesis and de-noising. Some

promising results from an exploratory study were reported in section 3.5.

3.7 Conclusion for Chapter 3

The main conclusion is that SCMs can be designed to enable the quantification of certain im-

pactful, per-realization errors, i.e., hallucinations, made by some popular DGM architectures

at a high rate even when summary and ensemble measures of training appear reasonable.

The main reason that these errors are difficult to evaluate in scenarios requiring a substan-

tial domain expertise is that there usually is not a mathematically specified ground truth or

expert labeling for each generated realization.

In this chapter, it is demonstrated how stochastic context models can be purposefully de-

signed to include known high-order contextual information, analogous to domain-relevant

external information, that also can be quantified post-generation and thus serve as a ground

truth. This design can be done algorithmically, without actually specifying a formula for

any particular high-order statistic. Several such SCMs were proposed and employed in the

evaluation of two popular DGM architectures.

Across various training and model scenarios, it was found that the tested models failed to

simultaneously reproduce all prescribed contextual features, at once, despite being well repli-

cated in the ensemble, and despite obvious visual similarity between training and generated

data. Specifically, numerous per-realization errors occur in: grayscale intensity distribution,

spatial arrangement of those intensities, and, perhaps most impactful, in the frequency of

pre-specified rates of feature occurrence. Here, it is not claimed that one architecture is

better than the another, but that observable differences between the chosen instances of the

all architectures can be exposed by the use of the proposed method.
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The corollary is that the designed SCMs can serve as a kind of triage before even more sophis-

ticated task-based measures of generated image quality are employed, or as benchmarking

datasets for advancing generative model design.

The following chapter expands the idea of assessing spatial context to more complex and

realistic stochastic models that describe anatomical constraints.
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Chapter 4

Employing a Stochastic Object Model

for the Evaluation of DGMs in

Biomedical Imaging

“When we try to pick out anything by itself, we find it hitched to everything else in the

Universe.” - John Muir

4.1 Overview

Stochastic models of context, as described in the previous chapter, enable the ruling out of

DGMs that lack the capacity to learn certain prescribed contextual attributes. SCMs do not

encode anatomical constraints but represent logically analogous scenarios to anatomy. The

reasonable next step in DGM evaluation is to test DGMs on more realistic medical images.

As opposed to SCMs, contextual features in medical images cannot be explicitly described

even by an expert. However, some anatomical structures can be described statistically,

and context arises implicitly from the interactions of these stochastic anatomical structures.

Furthermore, changes in certain anatomical features are strongly associated with changes in

certain other anatomical features, and one set of features cannot be modified without causing

a certain effect in another set of features. These associations or correlations are captured

via implicit contextual features.

In this chapter, a stochastic object model (SOM) of the human female breast: Virtual Imag-

ing Clinical Trial for Regulatory Evaluation (VICTRE) [133] is employed along with an

evaluation framework based on image statistics related to object recognition. The dataset

and the framework together were employed to conduct a public Grand Challenge: the Deep

66



Generative Modeling for Learning Medical Image Statistics Challenge, organized by our

lab and hosted by the American Association of Physicists in Medicine (AAPM). In this

Challenge, participants submitted trained DGMs for evaluation. Participants had access

to the designed dataset and were evaluated according to the implicit contextual framework

described later in this chapter. In general, it was observed that the overall ranking of the sub-

missions according to our evaluation method (i) did not match the FID-based ranking, and

(ii) differed with respect to individual feature families. Another important finding was that

different DGMs demonstrated similar kinds of artifacts. Results from this chapter highlight

the importance of domain-specific evaluation to further DGM design as well as deployment.

The results also suggest that a DGM that is the best choice for one task may not necessarily

be the best choice for another task.

The design and organization of the Challenge was a collaborative effort. My primary respon-

sibilities lay in the design of the Challenge, and involved: (i) dataset design (subsection 4.4.2),

(ii) design of the evaluation framework (subsection 4.4.3), and (iii) additional analyses of the

submissions as described in subsection 4.5.3, subsection 4.5.4, and subsection 4.5.5. The

organizational/ logistical aspects of the Challenge are not a contribution of this thesis, but

are reported for completeness.

4.2 Introduction

In the medical imaging domain, SOMs enable the evaluation of imaging systems through

virtual clinical trials, facilitating the assessment and optimization of medical imaging systems

[48, 184]. Although virtual trials may not entirely replace physical clinical trials, they offer

an important alternative that might complement or reduce the burden of physical clinical

trials for the assessment of novel medical imaging technologies [135]. For conducting a

virtual imaging trial, models are required for inputs to the imaging system, and for the

imaging system itself, in addition to an image analysis/interpretation process. SOMs can

satisfy the first requirement. Several SOMs have been proposed; these include models of a

human female breast [185] as well as the entire human body [186]. Unlike stochastic models of

context, which explicitly encode the context to be tested, SOMs at least partially describe the

statistics of a specific object to be imaged [104]. As a result, SOMs could potentially appear

more realistic with respect to the object being imaged. The level of modeling complexity and

67



realism in SOM design may be determined by the purpose of the SOM. The design of SOMs

is primarily aimed at image acquisition experiments, and typically is not informed by post-

hoc analyses methods. When assessing DGMs, post-hoc recovery of domain-relevant features

from the generated images is essential for evaluation, which may not be guaranteed in SOMs.

Hence, SCMs (as described in the previous chapter) were designed with the rationale that

a recoverable ground truth could be encoded in a stochastic model to enable the assessment

of DGM-generated images.

When complex SOMs are employed as training data for DGMs, there are three main chal-

lenges. First, a mathematical describable ground truth is not available. Second, statistics

that completely represent an anatomy are not known, e.g., breast tissue cannot be exactly

described via a set of known statistics. In such scenarios, assessing implicit contextual fea-

tures as opposed to explicit contextual features provides a solution. Third, because typical

SOMs do not take into consideration post-hoc processing as part of their design, the reli-

able post-hoc identification of different types of structures is a challenge for images in the

generated ensemble, similar to real-world medical image ensembles. Minor adaptations to

the SOM design might at least partially alleviate this issue and aid in designing robust and

meaningful evaluation frameworks.

Implicit spatial context arises from stochastic interactions of individual structures; an exam-

ple of implicit contextual assessment was demonstrated for the Voronoi-SCM in the previous

chapter (see subsection 3.4.2). In case of the Voronoi SCM, although only a few parameters

were described in the design of the SCM, other features that implicitly co-occur can be tested

canonically. If the range of a certain feature is changed, a corresponding change in the values

of co-occurring features might occur to maintain the identity of the realization. Thus, the

features may not necessarily be independent of each other. This becomes more obvious in

complex objects, and is the basis of designing evaluations for DGMs trained on stochastic

models of objects, i.e, SOMs.

A purposefully designed dataset based on an SOM together with an evaluation framework

based on the concept of implicit context are proposed in this chapter. This constitutes

the second of the two evaluation frameworks proposed in this thesis. This framework was

deployed towards a public Grand Challenge, which called for the submission of the “best-

trained” DGMs, which were then ranked and individually analyzed for the presence of arti-

facts. Thus, the Grand Challenge enabled an evaluation of different DGM approaches based
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on modern, state-of-the-art DGMs. A brief overview of the Grand Challenge is presented in

the next section.

4.3 DGM-Image Statistics Challenge Overview

While several studies [34, 92, 149, 187, 188] have provided valuable insights into the perfor-

mance of DGMs, the need for more widespread application-relevant assessments of DGMs

in the field of medical imaging has been well-established.

To address this need and promote meaningful assessments and refinements of DGMs for

medical imaging applications, we proposed a public Challenge: the Deep Generative Model-

ing for Learning Medical Image Statistics Challenge, or the DGM-Image Statistics Challenge

for short. Each year the American Association of Physicists in Medicine (AAPM) issues a

call for Grand Challenges in order “to assess or improve the use of medical imaging in both

diagnostic and therapeutic applications”. Our proposed Challenge was accepted and hosted

by the AAPM under this call. The DGM-Image Statistics Challenge invited participants to

develop or refine generative models that can accurately reproduce image statistics that are

important and relevant to medical imaging applications, including the evaluation of imag-

ing systems as well as for use in the training and testing of AI/ML algorithms. Through

the DGM-Image Statistics Challenge, the following were made available: a dataset, a stan-

dardized evaluation procedure, and a benchmark for evaluating future generative models for

medical image synthesis. A description of the DGM-Image Statistics Challenge framework

and a reporting and discussion of the results are provided in this Chapter.

The DGM-Image Statistics challenge was unique in its focus on the development and eval-

uation of DGMs for creating ensembles of SOMs that could serve as inputs to a simulated

medical imaging system, and could be evaluated via implicit contextual assessments. This

Challenge probed the degree to which suitable SOMs might be synthesized via generative

methods. In this direction, the DGM-Image Statistics Challenge aimed to facilitate the de-

velopment of domain-appropriate DGMs, as well as promote the domain-relevant evaluation

of DGMs. The specific goal of this Challenge was to identify the best DGM trained on the

provided dataset that could accurately reproduce certain image statistics, as identified from

the training dataset. In addition, the DGM still had to produce perceptually realistic images
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and avoid overfitting/memorization of the training data. A summary measure was derived

from these statistics to rank submissions and identify a winner and a runner-up.

4.4 Methods

4.4.1 Methods: Challenge Logistics

The challenge was conducted in two phases. In the first phase, the participants were expected

to submit 10,000 images generated from their trained DGM, and a written summary of their

approach. In the second phase, a packaged (dockerized) implementation of the DGM was

expected. The rules of the challenge allowed only the use of the provided training dataset and

a pre-trained network (trained by us and made available as a starting point for participants)

for model development. A computational constraint on the generation process was also

specified: the developed DGM was to be capable of generating 10,000 images in under 12

hours on a Nvidia V100 GPU with 16 GB RAM.

In the first phase, the FID score and a memorization measure based on image cross-correlation

were employed to rule out submissions with obviously poor visual quality, or those consisting

of memorized image ensembles. In the second phase, the DGM implementation provided by

the participants were employed to generate 10,000 images. The generated image ensembles

were evaluated as described later in subsection 4.4.3 to yield a summary measure that was

employed for ranking the submissions. In addition, the code and images from submissions

in the second phase were manually validated in the second phase. A subset of the features

employed for evaluation were employed to provide a public measure that was available to

the participants for the duration of the challenge so that they could fine-tune their models

based on feedback from this public measure.

Note that the logistical organization of the Challenge was performed by collaborators on

this project and is not a contribution of this thesis. This thesis focuses on the design of the

dataset, the evaluation framework employed for the Challenge, and the additional analyses

of all submissions.
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4.4.2 Methods: Data Design

Although anatomical realism was important in the design of training data for the challenge,

some practical aspects such as the typical computational requirements of training DGMs on

large images, as well as robustness of post-hoc evaluation were also considered. A previously

published stochastic object model of the human female breast: VICTRE [48], was adapted

for this grand challenge. From each 3D volume generated at a voxel resolution of 0.1 mm3

via the VICTRE tool, fifteen equidistant 2D slices were extracted from the central third

of the volume. Note that some of these slices could appear similar and were not regarded

as independent training samples. Eight different tissues or structures were described by

VICTRE within this sub-volume. Only 4 of those tissue types: skin, fat, glandular tissue,

and ligaments were retained in the adapted version for the challenge. This choice of tissues

was based on (i) the presence of all 4 tissue types in each 2D slice, (ii) generally distinct tissue

properties for the chosen imaging modality: x-rays at 30 keV, and (iii) the structural variety

provided by the tissue types. Thus, this choice of tissues contributed to the robustness and

utility of the evaluation method.

Structures belonging to the four omitted tissue types (artery, vein, duct, and terminal duct

lobular units) were replaced by glandular tissue, which was the most similar tissue in terms

of attenuation coefficients. Each slice was then downsampled to size 512×512. Even with

this downsampling, the thin ligament structures in the original slices were retained. The

data dimensions were chosen based on compute requirements of training modern DGMs on

large images [52,72,117], and the time window of the challenge. The downsampling process

involved the following: (i) the breast region in an image was identified with a bounding box,

(ii) the four chosen tissue types within the bounding box were separated into four distinct

binary arrays such that each pixel location was foreground only for one tissue, (iii) for each of

these arrays, the coordinates of the foreground pixels were transformed to match a 512×512

array with a centered breast region, (iv) the ligament array was skeletonized [189], (v) all tis-

sue arrays were thresholded, and (vi) the resulting four binary arrays—with exclusive tissue

identity at each pixel location—were combined to yield a single image. Next, tissue specific-

intensity distributions were pre-defined such that the relative tissue attenuation properties

were largely maintained in the grayscale intensity range of 0 to 255. An exception was made

for ligaments and skin tissues, which had very similar attenuation properties. The grayscale

distributions for these two tissues were slightly adjusted to enhance their separability and

aid post-hoc analyses. The final four tissue-specific intensity distributions were specified as
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distinct Beta distributions:

tfat ∼ 60X + 52, where X ∼ Beta(α = 2, β = 4),

tglandular ∼ 96X + 128, where X ∼ Beta(α = 4, β = 2),

tskin ∼ 16X + 228, where X ∼ Beta(α = 3, β = 3),

tligaments ∼ 16X + 232, where X ∼ Beta(α = 3, β = 3).

(4.1)

The corresponding distributions for the four tissue types are shown in Figure 4.1.

Figure 4.1: Tissue-specific intensity distributions in the adapted VICTRE breast phantom.
Note that the fatty and glandular tissue distributions are distinct; this aids their segmentabil-
ity. Although the intensity distributions of ligaments and skin have overlap, the expected
locations of these two tissues are in the breast region are clearly different.

Next, variates from these intensity distributions were assigned to appropriate tissue locations

as follows. Four arrays of size 512×512 were generated from each distribution for a single 2D

slice. A texture was imposed on each array via a Gaussian filter with smoothing parameter

σ = 0.8, similar to the process described in [190]. This resulted in slightly correlated pixels,

thus, generating a prescribed texture, which could be then tested as part of the evaluation

framework. Note that the extent of Gaussian smoothing was chosen subjectively, and not

to a known correlation in tissue attenuation. After Gaussian smoothing, the histograms of

the resulting arrays were transformed to ensure that the prescribed intensity distributions
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were maintained. Each of the four arrays was then masked according to the known tissue

locations and combined to yield the final 2D image. Last, the dataset was cleaned by

eliminating images where the breast boundary was not entirely contained within the image.

The training ensemble consisted of 108,000, 8-bit images of size 512× 512, saved via lossless

compression, and was made available to the participants after registration for the challenge.

This training ensemble comprised four breast types, as determined by the Breast Imaging

Reporting and Data System (BI-RADS) classification system [191]. Note that the ratio

of fatty to glandular tissue determines the breast type. In accordance with population

prevalence [191], the four breast types, namely, fatty, scattered, heterogeneous and dense,

were represented in the ratio of 1:4:4:1 within the training dataset. However, this information

was not explicitly provided to the participants during the challenge. The challenge dataset

is now publicly available along with the breast type label for each image [192].

Figure 4.2: Sample images from the training dataset corresponding to four classes: dense
(upper left), heterogeneous (upper right), scattered (lower left), and fatty (lower right). Class
information was not provided explicitly to the participants.

4.4.3 Methods: Evaluation Strategy

From each DGM submission, an ensemble of 10,000 images was generated for evaluation.

As described in subsection 4.4.1, the first stage of evaluation identified entries eligible for

ranking via FID scores and a memorization measure. The memorization measure was the

cross-correlation of binary masks representing the fatty-glandular tissue boundary, computed

for all images in a DGM-generated ensemble against all images in the training ensemble. The

boundaries between the two tissues were obtained via a series of simple filtering operations
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followed by thresholding. An image in a generated ensemble was marked as memorized if the

memorization measure exceeded a value of 0.9 on a [0, 1] scale. This threshold was determined

as one standard deviation greater than the maximum value observed after calibrating this

measure on a subset of 3000 randomly chosen images from the training ensemble against the

remainder of the ensemble (about 108,000 images).

For the second stage of evaluation, all images in the training and DGM-generated ensembles

were first segmented to obtain individual tissue regions. The segmentation process involved

global thresholding that employed knowledge of the prescribed tissue-specific intensity dis-

tributions. Thus, a single image yielded the following tissue labels after segmentation: fatty

tissue (F), glandular tissue (G), ligaments (L), skin (S). Features were then extracted from

individual tissues (F,G,L,S) or the full breast slice (B), as indicated in the parentheses that

follow the feature descriptor as follows: (i) texture features (B) [193, 194], (ii) morphologi-

cal features (F, G, B) [189], (iii) skeleton statistics (L) [170], (iv) fractal features – fractal

dimension and lacunarity (F, G, L) [195], (v) moments – raw, central, normalized, Hu, and

their weighted versions (F, G, B) [189], and (vi) ratio of fatty to glandular tissue (B) [191].

For the computation of texture features, all data were binned to 64 gray levels, which were

determined to be reasonable via the Freedman-Diaconis rule [196] for the training dataset.

The feature sets above were chosen because they have been extensively employed for im-

age classification and object recognition via conventional methods [170,197–200]; we do not

claim that these features are sufficient to describe diagnostic aspects of biomedical images.

Features that yielded multiple values for a single image, e.g., area of each disconnected fatty

tissue region in an image, were summarized as: total count, mean, standard deviation, min-

imum value, maximum value and quartiles for each realization. In all, 3442 features were

extracted from each slice over all feature families. Principal component analysis was per-

formed on all features corresponding to the training data and each DGM-generated ensemble

was projected into this principal component (PC) space after feature extraction. To obtain a

baseline distribution corresponding to the training data, two data points represented as 10D

vectors in the top-10 PC space were chosen at random and the cosine distance between them

was computed; this process was repeated 10,000 times. For the DGM-generated ensemble,

a similar computation was performed for one data point from the training ensemble and an-

other from the DGM-generated ensemble, both represented as 10D vectors in the PC space

of the training data. The two resulting distributions of cosine distances were then compared

via the Kolmogorov-Smirnoff (KS) [201] test statistic. The procedure was repeated 1000
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times on bootstrapped datasets to estimate the uncertainty in the KS statistic, and the re-

sulting mean value of the KS statistic was employed to determine the final rankings in the

challenge.

The evaluation pipeline described above was also employed for computing the public measure,

and differed only in the choice of features. Only nine features derived from the intensity

histogram and tissue areas were employed in the public measure computation.

For additional class-based analyses, not part of the ranking framework, a four-class classifier

with a VGG-16 [202] backbone was trained on 5000 images per-class, for 400 epochs. Recall

that the four breast classes correspond to dense, heterogeneous, scattered, and fatty breast

types, and occur in the ratio 1:4:4:1 in the population. A validation set of 1500 images per-

class was employed, and the model with the least validation loss was selected for inference.

The training and validation datasets were distinct from the public dataset for the challenge.

Calibration of the classifier on 3000 images per-class from the challenge dataset showed

error-rates of 0%, 0.07%, 0.37%, 0.87% for the four classes. This classifier was employed

on all images from the final submissions to predict a single class label for each image. The

class prevalence in the generated image ensemble was then compared against the expected

prevalence of the four breast classes from the training data, which was prescribed according

to the population class prevalence.

4.4.4 Methods: Participants’ Methods

The DGM approaches of submissions in the second phase are summarized in this section.

To maintain participant anonymity, each group was assigned a random code consisting of

letter and a number. Here onwards, the participants are referred to via this random code.

All participants employed/ adapted state-of-the-art DGM approaches based on GANs or

diffusion models. Submissions based on GANs were: K7, A8, V4, S4, J5, and H1, whereas

submissions based on diffusion models were: D9, C2, and M3, out of which the first two

were based on conditional latent diffusion models [203,204], and the last approach employed

denoising diffusion GANs [205].
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Extensive hyperparameter search with GANs, and without architectural modifications were

undertaken by some groups such as S4, J5 and V4. Results from these submissions demon-

strated that hyperparameter tuning alone can provide substantial improvements in perfor-

mance. However, these groups were not ranked in the top four submissions, indicating that

this strategy alone may not be enough to achieve the best possible performance. The same

groups along with one additional group (H1 ) also employed adaptive discriminator augmen-

tation (ADA) strategies first proposed by Karras, et al. [206]. tThese included geometric

transformations, intensity transformations, image flipping and rotation. These strategies

led to some unexpected effects—artifacts arising from this strategy are described in the

additional analyses in the Results section of this chapter.

Post-hoc processing methods were also employed by some groups. These included: (i) tra-

ditional image processing techniques, such as thresholding and filtering, employed by the

groups D9 and H1, and (ii) deep learning-based image superresolution methods, employed

by the groups K7, A8, and C2. Thus, some fine-grained artifacts in the generated image

ensembles could be eliminated before evaluation.

Interestingly, the top three submissions employed domain knowledge, i.e., information about

the breast type, for conditional generation of images. The top-ranked submission conditioned

on breast region area, as well as the fatty-to-glandular tissue ratio. The runners-up employed

existing breast density classifiers trained on real-world data [207] and k -nearest neighbor

(KNN) clustering to obtain labels for conditional generation.

4.5 Results

4.5.1 Participation Summary

The challenge received 58 submissions from 12 unique usernames. Out of the 12 unique

submissions, six were from teams in the United States, two from India, and one each from

Belgium, Brazil, Canada, and China. Split by sector, seven submissions came from academia

or non-governmental organizations, two from the industry, and three from independent con-

tributors or contributors with unknown affiliations.
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4.5.2 Results: Overall Results
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Figure 4.3: Images generated by the top three approaches alongside the images from the
training data.

Images demonstrating high visual quality from the top-three approaches are shown in Fig-

ure 4.3. However, all three submissions also demonstrated artifacts as discussed in subsec-

tion 4.5.5.

The FID scores for the 12 unique submissions are reported in Figure 4.4 (left). Barplots of the

memorization measure computed for 3,000 DGm-generated images from each submission are

shown in Figure 4.4 (right). Submissions that produced images with memorization measure

value > 0.9 were determined as being memorized. Images were manually checked to confirm
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Figure 4.4: FID and memorization measure scores for the submissions alongside the FID
and memorization measure scores of a baseline StyleGAN2 model trained in-house.

memorization. Note that only one submission was flagged for memorization. The FID score

was also employed with a threshold of 30 to rule out images with obviously poor image quality.

Three submissions were ruled out based on the FID and examples from these submissions

are shown in Figure 4.5.

Figure 4.5: An image each from three submissions that were ruled out in the first stage of
evaluation. The images in the left and center positions correspond to the submissions that
did not pass the FID threshold, whereas the rightmost image corresponds to the submission
that did not pass both the FID and the memorization thresholds.

After the first phase of evaluation based on the FID and the memorization measure, nine

submissions qualified for the second stage. These were evaluated as described in subsec-

tion 4.4.3. Scatter plots of the first two principal components of all extracted features from
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DGM-generated images are shown in Figure 4.6. Note that the distinctiveness of the training

and generated ensembles increases with rank. Furthermore, the four clusters in the training

data correspond to the four breast classes.

Group D9 Group K7

Train Synthetic

Group C2 Group V4 Group H1

Figure 4.6: First two principal components of the features extracted from images from
submissions ranked 1, 2, 4, 5 and 8.

Figure 4.7 (left) shows a bar plot of the final ranking measure for the nine submissions, and

Figure 4.7 (right) shows the relationship of their FID-based rank to their rank based on the

final ranking measure. It can be seen that for the submissions that were identified to be

below a baseline FID-based threshold, the rankings based on the FID and the final ranking

measure show poor correlation.

Figure 4.7: (Left) A barplot showing the ranking measure values for the 9 submissions
that passed the FID-based threshold. Error bars indicate uncertainty. (Right) Rank of the
submissions with respect to FID plotted against the rank of the submissions with respect to
the ranking measure. Note that this plot only shows the submissions that have passed the
FID-based threshold.
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Results from the supplementary analyses of the final nine submissions are reported in the

following three sub-sections. A representative subset of features from the original evaluation

framework were employed for the additional analyses. Note that these analyses were not

employed to determine the overall ranking and are presented only to provide additional

insights into the different DGMs considered.

4.5.3 Results: Performance on Individual Feature Families

Table 4.1: Submission rankings based on individual feature families.
(F/G: fatty to glandular tissue ratio, Moment: normalized image moments)

User Overall Texture F/G Moment Morphology Fractal Skeleton
D9 1 8 3 1 1 3 1
K7 2 1 8 4 5 1 3
A8 3 2 4 3 6 2 2
C2 4 4 1 2 8 8 4
V4 5 7 2 7 7 9 9
M3 6 9 9 6 3 7 6
J5 7 3 6 5 2 4 7
H1 8 5 5 8 4 5 8
S4 9 6 7 9 9 6 5

As described previously, to determine the overall ranking for the Challenge, all features were

weighted equally. Rankings for individual feature-families are reported in Table 4.1. The

overall top 3 submissions also ranked between 1 and 3 for several individual feature-families.

The best submission performed remarkably well on most feature-families, except on the

texture features. On the other hand, some lower ranked submissions were ranked high for a

single feature-family (e.g., J5 on morphological features, C2 on F/G ratio). Thus, the choice

of the “best submission” may vary based on the image statistics that are deemed important

to a specified diagnostic task.
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4.5.4 Results: Class-based Analyses

Class-based analyses were performed on the final submissions to gain insights into the com-

position of the generated image ensembles. The results are reported in Table 4.2. Recall

that class information was not made public in the challenge.

Table 4.2: Class-based analyses of submissions. Expected class prevalence (%) from the
training data is 10, 40, 40, 10 for the four breast types: fatty, scattered, heterogeneous, and
dense, respectively. Class density and coverage is expected to be approximately 1 for all
classes.

User Rank Class prevalence (%) Class density Class coverage
D9 1 10, 41, 39, 10 1.0, 1.0, 1.0, 1.0 0.9, 1.0, 1.0, 1.0
K7 2 10, 40, 40, 10 1.0, 1.0, 1.0, 1.0 0.0, 0.8, 0.9, 0.8
A8 3 10, 40, 40, 10 0.0, 1.0, 1.0, 1.0 0.0, 0.8, 0.9, 0.7
C2 4 3, 30, 55, 12 0.0, 0.7, 0.6, 0.2 0.0, 0.2, 0.4, 0.1
V4 5 9, 39, 35, 17 0.0, 0.3, 0.5, 0.2 0.0, 0.3, 0.3, 0.2
M3 6 12, 46, 38, 4 0.0, 0.2, 0.3, 0.3 0.0, 0.1, 0.2, 0.1
J5 7 11, 40, 40, 9 0.0, 0.7, 0.8, 0.7 0.0, 0.2, 0.7, 0.6
H1 8 11, 43, 35, 11 0.0, 0.4, 0.5, 0.2 0.0, 0.3, 0.4, 0.3
S4 9 14, 42, 40, 4 0.0, 0.7, 0.5, 0.5 0.0, 0.6, 0.6, 0.4

For all generated images, class was determined via the four-class classifier described in sub-

section 4.4.3 Most submissions demonstrate class prevalence similar to the training data:

10%, 40%, 40%, 10% for fatty, scattered, heterogeneous, and dense breast types respectively.

Only two submissions (S4, M3 ) demonstrated instances of mode collapse with class preva-

lence below 4% for one class. However, class-wise density, and coverage [139] computed in

the top-2 PC-space of features from all families, were rarely equal or perfect (approximately

1) across classes and submissions. Note that density and coverage are measures indicative

of fidelity and intra-class diversity respectively [139]. Often, at least one class had nearly

zero coverage, despite demonstrating ensemble prevalence similar to the training data. That

is, although many realizations belonging to a class were generated, together, they did not

capture the expected diversity within that class. Thus, although a generated ensemble may

seem to replicate the class prevalence in the training data as determined by a forced-choice

classifier, the fidelity of several class-specific features may still be suspect.
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4.5.5 Results: Analysis of Artifacts

Visual inspection of all generated image ensembles revealed artifacts arising from ligament

skeletons, morphology, and texture. Most importantly, some artifacts were not unique to a

single submission, but were observed across multiple submissions, suggesting a correspon-

dence to DGM approaches. All submissions demonstrated artifacts in ligament formation.

Figure 4.8: A thresholded sample image (left) from the top-ranked submission (D9 ) demon-
strated clear breaks in ligament connections (yellow boxes). These artifacts were also re-
flected in two statistics: number of disconnected skeletons per-image, and the median area
of bounded regions within an image. The boxplots correspond to 10,000 images each, from
the training dataset, and the top-ranked submission.

Three kinds of artifacts were observed in the ligament skeletons: (i) sharp breaks in liga-

ments, (ii) gradual breaks in ligaments, blending into the background, and (iii) “ligament

sticking”, i.e., constant ligament structure across multiple images. The three artifacts are

referred to as “break”, “blend”, and “stick” respectively in Table 4.3. The top-ranked sub-

mission demonstrated the first artifact, which was also captured in two statistics from the

evaluation framework: (a) the number of disconnected skeletons per-image, and (b) the me-

dian region area over all regions in an image (see Figure 4.8). Thus, even the best submission

was not perfect. The same artifact was also observed in another submission (rank 6), which

also employed a conditional diffusion modeling approach like the top-ranked submission.

The second artifact (see Figure 4.9) was observed across all other submissions, indicating

that the generation of ligaments was not a trivial task for typical DGMs. Ligament sticking

artifacts (see Figure 4.10) were observed in two of the final nine submissions. Note that this

artifact was a genuine effect of the DGM, and not a user-defined feature; ligament sticking

was also observed in some of our own experiments with DGMs.
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Figure 4.9: Two kinds of artifacts are demonstrated in a sample image from a submission:
(i) broken boundary (left), and (ii) large, smooth breaks in the ligament skeleton (right).

Figure 4.10: Some submissions demonstrated ligament sticking, that is, nearly constant
ligament structure across images. Summation of 10 thresholded images of ligaments from
the training data (left) demonstrates the expected randomness in ligament structure across
realizations. This variation was clearly absent in similarly processed images (right) from a
submission demonstrating this artifact.

Morphological artifacts of three types were observed across submissions: (i) broken bound-

aries, (ii) images flipped on the vertical axis, and (iii) malformations in the “burst”-like

features in heterogeneous breast type. The three artifacts are referred to as “boundary”,

“flip”, and “bursts” respectively in Table 4.3. Breaks in the boundary (see Figure 4.9), of

varying degrees, were observed in three out of nine final submissions. To quantify the ensem-

ble error rates of breaks in the boundary, the convexity [208], i.e., the ratio of the perimeter

of the convex hull of the object to the perimeter of the object was computed, and a threshold

of 0.9 was chosen after visual calibration. Within the three submissions that demonstrated

breaks in the boundary, the ensemble error rate was observed to be 0.5 to 3% based on the

convexity threshold (<0.9). All images from the training dataset were above this threshold.

Four other submissions demonstrated instances of images (< 0.1% of the ensemble) where
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the breast region was large enough that it was cut off by the image boundary; these sub-

missions are not flagged for the “boundary” artifact in Table 4.3. The second morphological

artifact: flipped images, comprised nearly half of the image ensemble for two submissions;

this was likely an effect of enabling rotational augmentation during DGM training. The

third morphological artifact (“bursts”) was specific to the heterogeneous breast type. The

characteristic burst-like patterns in the heterogeneous breast type were incorrectly formed

in images from five submissions. Examples from submissions ranked 2, and 3, are shown in

Figure 4.11; this artifact was captured in the lacunarity statistic computed on 3000 images

classified as heterogeneus breast type, from each submission.

Artifacts in texture were observed in the foreground as well as the background regions.

These artifacts are referred to as “fore”, and “back” respectively in Table 4.3. Obvious

foreground artifacts were clearly visible in all except the top three submissions. Two such

examples are shown in Figure 4.12. Similarly, background artifacts (see Figure 4.13), i.e.,

non-zero background pixels, were found in all except two submissions; however, these were

not visually obvious. The mean fraction of per-image, non-zero background ranged from

11% to 62% over the ensemble for the bottom three submissions for this artifact. However,

the ensemble mean of the per-image mean grayscale value over the non-zero background

pixels was below 6 for all submissions, and the ensemble standard deviation was at most

18. Recall that the original training data was 8-bit, i.e., demonstrated pixel values from 0

to 255. Thus, the background artifacts were well below the least values in the foreground,

and hence, could be eliminated via thresholding. The two submissions that did not have any

background artifacts reported employing post-processing techniques on generated images.

A summary of all artifacts across the final nine submissions is given in Table 4.3. A check

mark indicates that at least one instance of the artifact was observed in the ensemble. Note

that this list of artifacts is not comprehensive, but is indicative of some common artifacts

across submissions. Other less visually obvious artifacts may have been captured in the

evaluation framework but not described in this section.

Last, we assessed the diversity of an ensemble. From our knowledge of the VICTRE phan-

tom, we intuitively expect ergodicity, which, here, means that pixel locations should not be

strongly tied to tissue identity. Therefore, we computed the semivariance [209] of the mean

image, which was obtained by taking the per-pixel mean over the ensemble (Figure 4.14).

In all but two submissions that were ranked 1 (see Figure 4.14) and 6 (not shown), certain
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Figure 4.11: The characteristic “burst” pattern, typically observed in the heterogeneous
breast type, was malformed in several final submissions. Top: An example from the train-
ing data (left) shows sharp, splinter-like features, while examples from the second-, and
third-ranked submissions (center and right respectively) demonstrate rounded, splatter-like
patterns. Bottom: The differences are captured via the lacunarity statistic.

pixels were preferentially allocated certain breast tissue types. Examples of submissions

where the expected per-pixel means were not matched are also shown in the corresponding

mean images computed over 10,000 images from the respective ensembles (Figure 4.14). This

indicates lower diversity than the training ensemble. Note that the two submissions with

ensemble diversity comparable to the training dataset were both conditional latent diffusion

models. Because the breast region in the mean images is approximately the same size and
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Figure 4.12: Sample images from two different submissions demonstrating texture artifacts
in the foreground region. Gridding, or checkerboard artifacts (left), and “eddies” (right)
were observed.

Figure 4.13: Sample DGM-generated image demonstrating artifacts in the background,
which should ideally be constant at zero. Contrast is adjusted for display.
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Table 4.3: Overview of artifact types visible in final submissions.

User Rank
Skeleton Morphology Texture

break blend stick boundary flip bursts fore back
D9 1 ✓
K7 2 ✓ ✓ ✓
A8 3 ✓ ✓ ✓
C2 4 ✓ ✓ ✓ ✓ ✓ ✓
V4 5 ✓ ✓ ✓ ✓ ✓
M3 6 ✓ ✓ ✓
J5 7 ✓ ✓ ✓
H1 8 ✓ ✓ ✓ ✓ ✓
S4 9 ✓ ✓ ✓ ✓ ✓ ✓

Figure 4.14: Ensemble mean images over 10000 randomly selected slices from the training
data (highlighted in red), and five submissions ranked 1, 2 (row 1, center, and right), 4, 5,
and 8 (row 2, left to right), demonstrate positional preference in tissue locations. Ideally,
the mean image should appear similar to the mean image of the training data, i.e., nearly
constant in the central region and smoothly decaying along the average boundary of the
breast region. Distinct structure within the breast region is clearly visible in all except the
first-ranked submission, and is indicative of pixel-specific bias in tissue generation.
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Figure 4.15: Semivariance of the mean images in Figure 4.14. The “sill” of the semivariance,
i.e., the value at which the curve flattens, determines ensemble diversity. Low values of the
sill indicate high ensemble diversity, and vice versa. Legend indicates overall rank of the
submission.

centered, the visible differences can be summarized via their semivariances [209]. The semi-

variance is a spatial statistic that plots the differences in the intensity values of a random

pixel-pair (Y-axis), binned by the distance between the two pixels (X-axis), over a large

sample of randomly chosen pixel-pairs. Pixel-pairs that are closer together are represented

closer to the origin on the X-axis and pixel-pairs with large separation are farther away

from the origin on the X-axis. Thus, when mean images are nearly constant over a large

region of the image, the semivariance would appear as a flat line with its slope close to zero.

In other words, the long term constancy of the semivariance is indicative of high ensemble

diversity. As seen in Figure 4.15, the top-ranked submission is almost as diverse as the

training dataset. Furthermore, when the mean image is not constant and exhibits clusters

of pixels of certain characteristic size, this effect is also captured in the semivariance at the

corresponding distance. The “sill” of the semivariance, the value at which the curve flattens,

is indicative of the level of ensemble diversity in this analysis. If the curve flattens at a low

value of distance, it implies high ensemble diversity, and vice versa. The submissions ranked

2, 4, 5, and 8, clearly demonstrated lower ensemble diversity than the training dataset, and

also differed among themselves in terms of the length-scales of pixel correlations.
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4.6 Discussion and Conclusion for Chapter 4

Results from the Challenge highlight the fact that a single number cannot represent all

the different ways in which DGMs can make errors. Multiple kinds of evaluations/figures-

of-merit are required to assess different aspects of image quality of DGM-generated image

ensembles.

In the designed evaluation framework, various feature families were employed towards this

goal. These feature families are well-established in the image processing literature and were

extensively employed before deep learning methods became popular for image analysis and

classification. Most importantly, the employed features are interpretable, i.e., the formula of

a feature can be tied to visually apparent features in the generated images. This also enables

the detection of artifacts in an objective manner.

The design of objective evaluation frameworks for biomedical images such as the VICTRE

SOM is challenged because clinical knowledge, e.g., anatomy, physiology, tasks, may not be

directly and uniquely mapped to numerical observers. Given this challenge, one approach to

objective evaluation is via image statistics. Different sets of statistics might be relevant to

different tasks. Hence, a broad range of feature families was chosen for evaluation. However,

it is important to note that: 1) different DGMs may demonstrate superior performance for

different feature families, as observed in Table 4.1 and 2) the set of features employed in the

proposed framework may not generalize to a dataset that does not look like the VICTRE

phantom. For example, skeleton statistics were chosen as a feature family because ligaments

are present in images, but the same statistics may prove to be a confounding factor if no

ligament-like structure was present in the images.

Another important aspect to note is that the data employed in this Challenge was not

corrupted in any way by the action of an imaging system. Any non-ideal imaging system

might worsen image quality, or at least impact the range of the studied statistics. Given

the current framework for the Challenge, all artifacts observed in the generated images were

unequivocally caused by the DGM. The proposed framework allowed us to study the effects

of DGMs alone, without being conflated with the effects of an imaging system. In future, if a

DGM achieves excellent image quality on this “clean” dataset, it then becomes a candidate

to be tested under conditions describing a more realistic imaging system.
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The choice of the VICTRE phantom to create the dataset for this Challenge had several

advantages. First, this phantom has been employed for virtual imaging trials, and hence,

its diagnostic relevance is well established. Second, a high variety of structures is present

in this phantom; this enables the assessment of various DGM capacities. For example, the

phantom contains: (i) irregular shapes and edges resulting from the packing of the fatty and

glandular tissues, (ii) regular shapes such as the ellipsoidal breast region boundary, and (iii)

thin, long structures that constitute the ligaments. A DGM is expected to learn to create

all different kinds of structures and place them correctly. Third, the various features in the

VICTRE phantom occur at multiple scales. That is, some structures such as ligaments may

have a width of a few pixels, whereas the breast region itself spans several hundred pixels.

Thus, all the three aspects of the VICTRE phantom provide enable a wide range of tests

based on domain knowledge.

In the design of the VICTRE phantom, the grayscale intensity values are generally consis-

tent with the relative attenuation coefficients of all tissues. Furthermore, unlike real data,

each tissue was prescribed an intensity distribution which ensured tissue segmentability and

provided an additional feature for assessing DGMs.

There are some limitations of the proposed evaluation framework. Because image statistics

are computed on segmented tissues from each generated image, accurate segmentation of

tissues is important. If, for example, the intensity distributions of all tissues were shifted

as compared to the prescribed distribution, all tissues may not be perfectly segmented, and

hence, the image statistics would include the effects of the incorrect tissue segmentation. If

the proposed evaluation framework were to be employed to study a DGM, the network could

be afforded some intensity transformation consistent with visually distinguishable tissues be-

fore image statistics are extracted. Another limitation of this framework occurs in class-wise

analysis. A DNN classifier trained on the original dataset is employed to predict class from

generated images. Even if a DGM generates images with extremely poor image quality, the

classifier allocates a class to these images. One way to alleviate this issue is to remove out-

liers before class prediction. Alternatively, other measures that assess class distributions in

an ensemble could be employed together with the classifier to provide a more comprehensive

evaluation of class fidelity and diversity. Last, the range of some image statistics can be tied

to class identity. Hence, a class-conditioned analysis of various feature families might provide

more insight into DGM capacities. A major finding from this Challenge was that different

DGMs produce the same kind of image artifacts as summarized in Table 4.3. Some artifacts
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are explainable or consistent with findings from other works, e.g., the image flipping artifact

is a result of data augmentation methods during training, and the checkerboard artifact has

been reported by several works as a potential result of certain upsampling operations in a

DGM. Other artifacts such as the “bursts” could be characteristic of DGM architectures.

Identifying artifacts characteristic to DGMs can enable the design of novel architectural so-

lutions as well as post-hoc processing methods to eliminate imperfect images from generated

ensembles.

In conclusion, an evaluation framework based on (i) a complex SOM describing anatomy,

and (ii) the implicitly arising contextual features, was developed in this chapter for assessing

DGMs for contextual hallucinations.

Thus, as described in chapter 3 and chapter 4, two model-agnostic evaluation frameworks

for the assessment of reproducible spatial context were designed. In the next chapter, both

frameworks are deployed to gain insights into a state-of-the-art DGM approach that has

been reported to produce images of excellent visual quality.
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Chapter 5

Assessment of a Diffusion Generative

Model for Reproducible Context

“It is easy to destroy, but it is hard to create.” - Pearl S. Buck

5.1 Overview

Diffusion models have recently emerged as a popular family of deep generative models

(DGMs), particularly due to the excellent visual quality of generated images and a strong

theoretical foundation. The top-ranked model in the Grand Challenge described in the previ-

ous chapter was also a kind of a diffusion model. Furthermore, diffusion models in the Grand

Challenge demonstrated clearly higher ensemble diversity than the other submissions. This

suggests that the diffusion model paradigm may possess a greater capacity to reproduce

domain-relevant information as compared to other state-of-the-art approaches, however, this

notion remains unexplored.

The fundamental idea behind diffusion models is that if a diffusion process can map the

training data to standard Gaussian noise (over several discrete transitions), and the reverse

mapping can be learned, then, new samples similar to the training data can be generated

from Gaussian noise. This idea is inherently different from the previously popular approach:

generative adversarial networks (GANs), which employed adversarial training to implicitly

learn the distribution of the data by judging the quality of generated random variates, but

do not seek to estimate the distribution itself. In the literature, it has been claimed that one

class of diffusion models—denoising diffusion probabilistic models (DDPMs)—demonstrate

superior image synthesis performance as compared to GANs. To date, these claims have
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been evaluated using either ensemble-based methods designed for natural images, or conven-

tional measures of image quality such as structural similarity. Because the perceptual image

quality of images generated by DDPMs is extremely high, it is possible that domain-specific

hallucinations often go unnoticed.

In this chapter, the evaluation frameworks proposed in the previous two chapters, i.e., tests

of explicit spatial context (SCM-based evaluation) and implicit spatial context (SOM-based

evaluation), are employed to investigate the ability of the DDPMs to reliably reproduce spa-

tial context. Note that the DDPM employed in this work has more learnable parameters

as well as computational budget than the top-ranked model in the previous chapter, and

hence, is expected to provide a higher benchmark. The studies undertaken in this chapter

reveal new and important insights regarding the capacity of DDPMs to learn spatial context.

Notably, the results demonstrate that DDPMs hold significant capacity for generating con-

textually correct images that are ‘interpolated’ between training samples, which may benefit

data-augmentation tasks in ways that GANs cannot. It was also observed that no generated

ensemble from any diffusion model perfectly reproduced the expected spatial context.

5.2 Introduction

Significant advancements in DGMs have been achieved in the last few years [62, 80, 82, 117,

210]. Recently, a novel paradigm based on diffusion generative modeling [211] has been

actively developed and explored in medical image research [4, 212–214]. The rapid and

widespread adaptation of diffusion models for medical imaging applications has occurred

due to the extremely high visual quality of images as reported in the computer vision litera-

ture [52,66], as well as the strong theoretical foundation of diffusion models [66], as compared

to the previously popular DGMs: generative adversarial networks (GANs). This popularity

of diffusion models is despite their higher sampling time than GANs [50]. The high visual

quality and ensemble diversity attributed to diffusion models was also evident in our results

from the Grand Challenge reported in chapter 4. Given the high visual quality of the images

generated from diffusion models, domain-relevant errors may not always be captured via vi-

sual evaluations by non-domain-experts. Thus, the evaluation of domain-relevant contextual

errors becomes even more important when domain-agnostic benchmarks of visual quality are

satisfied.
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Several works have claimed that diffusion models demonstrate superior performance in med-

ical image synthesis as compared to GANs [213–217]. Muller et al. [34] explored the perfor-

mance of diffusion models with respect to GANs for three different medical imaging modal-

ities: eye fundus images, histology images, and chest radiographs. For the three modalities,

they found that diffusion models generally demonstrated superior image quality and greater

ensemble diversity. These claims are based on the FID score [45], precision and recall mea-

sures [49], and a classification task. They also report instances of contextual errors in

GAN-generated images all three imaging modalities (refer Figure 1.3) e.g, incorrect num-

ber of optical disks in the eye fundus, checkerboard texture in the histology images, and

incorrectly placed medical devices in chest radiographs. Occasional contextual errors in one

imaging modality: chest radiographs, were also reported for the studied diffusion model.

Other works based on diffusion models also employ versions of the FID score, precision and

recall metrics, or SSIM to demonstrate the superiority of diffusion models over GANs in

applications such as generation of histopathology images [218], and brain MRI [213]. The

limitations of these measures have been discussed in a previous chapter (chapter 2). Recall

that the relevance of some of these evaluation measures for medical image assessment has re-

ceived limited attention [219], and thus remains largely unknown. Although contextual errors

have previously been reported in GAN-generated ensembles [137,220,221], their occurrence

in diffusion-model-generated ensembles has not been studied systematically. Thus, although

innovations in DGMs, such as diffusion generative models, have been translated rapidly from

computer vision to medical imaging research, their capacity to reproduce domain-relevant

context is not yet established. In this chapter, the suitability of a diffusion model for medical

imaging applications is tested via its capacity to reproduce prescribed spatial context via

the two frameworks proposed in chapter 3 and chapter 4.

Three related formulations appear in the diffusion modeling literature: denoising diffusion

probabilistic models (DDPMs) [51, 52, 81], score-based generative models (SGMs) [80], and

stochastic differential equations (SDEs) [82]. The first formulation, DDPM [51, 52, 81], is

chosen as the focus of this chapter. DDPMs are designed to estimate the probability density

function of the target data distribution by learning to translate an initial noise distribution to

the target data distribution over multiple intermediate steps that are modeled as probabilistic

transitions. DDPMs also have high training stability and mode coverage. They are a popular

choice for medical imaging applications ranging from medical image synthesis [4,212–215] to

image reconstruction [210,222–224].
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In this chapter, a DDPM was first tested for its capacity to reproduce explicit context via

the previously established test bed of stochastic context models (SCMs) (refer chapter 3).

Recall that the SCMs represent attributes relevant to medical imaging, in a readily inter-

pretable manner and without anatomical constraints. Next, the DDPM was tested for its

capacity to reproduce implicit context via the adapted version of a previously published

stochastic object model (SOM) that describes anatomical constraints [48] (refer chapter 4).

Per-image, contextual errors in DDPM-generated ensembles were then quantified to provide

a measure of the potential suitability of DDPM to medical imaging tasks involving similar

contextual attributes. This evaluation approach was also employed to gain insights into

other adaptations of the DDPM formulation as well.

5.3 Background: Denoising Diffusion Probabilistic Mod-

els (DDPM)

In the DDPM framework [52], a small quantity of Gaussian noise is gradually injected into

an input image (sampled from a real data distribution) x0 ∼ q(X0) over t time steps to

eventually obtain the degraded image xt. Recall that the dimensionality of x0 and xt is

the same as that of the flattened image (refer subsection 2.2.2). Over a sufficiently large

number of time steps T , a sample xT from a Gaussian distribution can be produced. The

forward diffusion process is formulated as a Markov chain where xt and xt−1 are related by

the transition rule defined as:

xt =
√

1− βtxt−1 +
√
βtϵ, ϵ ∼ N (0, I) (5.1)

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
. (5.2)

Here, N (0, I) is a multivariate Gaussian distribution with zero mean and identity covariance

I, βt ∈ (0, 1) is a parameter controlling the addition of noise, and ϵ is a variable from a

standard, multivariate Gaussian, representing noise.

The reverse diffusion process that maps xT to x0 is also formulated as a Markov chain, where

each step represents an incremental denoising of the data. The reverse transition probability
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between xt−1 and xt can be represented by a Gaussian distribution for a large T and small

βt:

q(xt−1|xt) := N (xt−1;µ(xt, t),Σ(xt, t)). (5.3)

A neural network, which also takes the time-step as an input, is employed to approximate

the reverse mapping by predicting the mean (µ) and covariance (Σ) for all reverse diffusion

steps.

Note that the diffusion model described here is a latent-based model, wherein x1, ...,xT are

the latents. Following the rationale of training latent-based models as described in an earlier

section (2.2.2), the distribution of the data may be approximated by its lower bound, i.e.,

the evidence lower bound (ELBO), and employed to train a latent-based generative model

via variational inference.

Similarly, in case of DDPM, the variational lower bound (Lvb) was employed in the loss

function to minimize the negative log-likelihood:

Lvb = Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
≥ −Eq(x0) [ log pθ(x0)] , (5.4)

where pθ is the network parameterization for the approximated reverse diffusion process, θ

represents the network parameters, and Eq represents expectation over q. The collection of

data samples between time steps 0 and T is represented by x0:T , while the image samples

between time steps 1 and T conditioned on the sample at time step 0 are represented by

x1:T |x0. Here, the term in the center represents ELBO, which is greater than or equal to the

negative log likelihood of the distribution of the training data. Recall that the ELBO serves

as a bound for the likelihood of the data, which is often intractable in higher dimensions.

The bound can be reformulated as described in Dhariwal and Nichol [52]:

Lvb = log pθ(x0|x1)

−
T∑
t=1

KL(q(xt−1|xt,x0) || pθ(xt−1|xt)), (5.5)
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where KL denotes Kullback-Leibler divergence. Here, the first term represents the likelihood

at the first time step whereas the second term is equivalent to the bounds on the likelihood

of all remaining time-steps, rewritten in terms of KL divergences (refer section 2.2.2). Note

that KL(q(xT |x0) || p(xT )) is omitted because it does not depend on θ.

The second term can be reparameterized further, as described by Dhariwal and Nichol [52]

such that a DNN can be employed to predict the noise at each time-step. Once a network is

trained to predict noise at each time-step, it can then be employed to represent the reverse

diffusion process. In other words, the trained DNN can sample from the data distribution,

given a random sample from a multivariate Gaussian distribution. Note that the DDPM

approach is clearly different than GANs mainly in the following ways: (i) the dimensionality

of the latent space is the same as that of the image for DDPMs and typically lower than

the image for GANs, (ii) in the training process, the pixel co-ordinates are maintained

for DDPMs but not GANs, which involve a decoding process from a lower dimensional

latent vector, (iii) the data distribution is approximated in DDPMs but not in GANs. All

three aspects potentially contribute to improved learning of long-range correlations. In

addition, improved mode coverage and training stability has also been reported for DDPMs

as compared to GANs [50,52,66].

5.4 Methods

5.4.1 Methods: Evaluation Frameworks

The evaluation frameworks presented in chapter 3 and chapter 4 were employed for the

assessment of the DDPM. First, the three SCMs proposed in chapter 3 were employed for

the assessment of prescribed spatial context. Then, the adapted breast phantom described

in chapter 4, here onwards referred to as the VT-SOM, was employed for the assessment of

implicit spatial context. Together, the four stochastic models encode a variety of contextual

constraints. An overview of these constraints is provided in Table 5.1. All other aspects of

the training data and the evaluation procedures were as exactly as described in the previous

chapters.
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Table 5.1: Overview of all stochastic context and object models in terms of the per-image
contextual constraints explicitly prescribed in the model.

Constraints A-SCM V-SCM F-SCM VT-SOM
Prevalence ✓ ✓ ✓ ✓
Intensity × ✓ ✓ ✓
Texture × ✓ ✓ ✓
Position ✓ × ✓ ✓
Anatomy × × × ✓

Multi-class × ✓ ✓ ✓

Some sample images from all four stochastic models are shown in Figure 5.1 (SCMs) and

Figure 5.2 (VT-SOM) for reference.

5.4.2 Network Trainings

Two popular diffusion models: Denoising Diffusion Probabilistic Model (DDPM) [52] and

MedFusion—a kind of a latent diffusion model (LDM) [215] were employed in this work.

The LDM approach partially alleviates the high compute requirements and sampling time

of the DDPM by training a DDPM in the latent representation learned by a variational

autoencoder. In other words, this approach reduces the computational burden by decreasing

the dimensionality of the variables expected to be learned by a DDPM.

The DDPM was trained on all three SCMs and one SOM, whereas the LDM was trained on

one SCM: V-SCM, and the VT-SOM. The DDPM has greater model capacity than the LDM

and retains the original dimensionality of the data. Thus, the DDPM could potentially pro-

vide a kind of an upper bound in performance between the two diffusion models. Note that

different DGMs have different recommended training strategies and optimal training param-

eters. Because the recommended default hyperparameters have been optimized for visual

quality and FID scores, the defaults were used for all trainings unless specified otherwise.

For a fair comparison, each DGM was trained with a fixed compute budget for a certain

image size. This budget was 900 gpu-hours on a Nvidia GTX TitanX GPU for all SCMs

(image size 256×256), and 900 gpu-hours on a Nvidia Quadro RTX 8000 for the VT-SOM

(image size 512×512). This budget was chosen to match the compute requirements of the

DGMs trained in chapter 3.
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Figure 5.1: Sample realizations from all three SCMs are shown. Top row: Two realizations
each from the single-class A-SCM (left) and the four-class V-SCM (right). Realizations from
the V-SCM represent classes 16 and 64 respectively. Rows 2 and 3: A realization from each
of the eight classes in the F-SCM.

Two variants of the DDPM: class-conditioned DDPM, and foundational DDPM were also

trained/fine-tuned to assess if these variations improved the performance of DDPM. The

class-conditioned DDPM learns the distribution of the data in a class-specific manner, i.e.,

it also takes a class label as an input during training and sampling. Class-conditioning

provides control over the composition of the ensemble. The class-conditioned DDPM was

trained on the two multi-class SCMs: V-SCM and F-SCM. Foundational models are typically

models that are pre-trained on an extremely large dataset, and maybe employed on another

dataset after finetuning/ transfer learning. The publicly available foundational DDPM, pre-

trained on the ImageNet dataset [46] was fine-tuned for V-SCM, and the more complex

VT-SOM dataset. In case of the VT-SOM, the foundational DDPM available for image size

512×512 was modified to bypass class conditioning so that this model could be employed for

unconditional image generation. All other training parameters were retained as default for

both, class-conditioned and foundational DDPMs.

The second diffusion model, LDM, consisted of training a VAE on the original images,

followed by training a DDPM on the latent representation of the original images encoded
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Figure 5.2: Sample images from each of the four classes in the VT-SOM. Sample realizations
from (top row: L to R) dense, heterogeneous, (bottom row: L to R) scattered and fatty
breast types are shown.

by the trained VAE. The default dimensions of the latent representation were retained for

VT-SOM (8×128×128), and lowered to (3×64×64) for V-SCM, which consisted of simpler

and smaller images as compared to VT-SOM. In all cases, the last model was chosen for

analysis.

5.5 Results

It is noted that the performance of DGMs may vary with the choice of training hyper-

parameters, or even random initialization. The performance reported in this work is only

representative of typically trained models and may not indicate the best performance possible

for any DGM; identifying the “best possible” instance of a DGM is a massive computational

undertaking, and a fundamentally different problem than the goal of this work.
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5.5.1 Results from the Alphabet SCM

Sample realizations from the DDPM trained on A-SCM are shown in Figure 5.3; high visual

quality was observed in the generated samples, and was also represented in the near-perfect

FID score of 0.1.

Figure 5.3: Visually high quality generated samples from DDPM (left) and SG2 (right).

As before, only realizations within which all letters were visually recognizable were included

for further analysis and recognition was automated via a pattern match filter [220]. All

DDPM realizations exhibited only recognizable letters, unlike both GANs employed in chap-

ter 3. Single letter prevalence was assessed via a chi-squared goodness-of-fit test with the

critical value set to 95%. About 99% of all DGMs realizations were acceptable, and 98%

DDPM realizations exhibited perfect prevalence. This is in stark contrast to the GAN-

generated realizations which demonstrated perfect prevalence rarely, and only by chance, as

reported in chapter 3.

Results from the reproducibility of feature-pair prevalences strengthen this finding. All four

letter-pairs prescribed in the training dataset were almost perfectly replicated throughout

the DDPM-generated ensemble, unlike in the GAN-generated ensembles (refer Figure 3.9).

Some errors in DDPM realizations are shown in Figure 5.4. These examples demonstrate

that DDPM occasionally creates new pairings, or displays pairings too frequently, even when

realizations are otherwise excellent. Thus, by analogy, an ensemble of DDPM-generated

biomedical images could appear perfect via spot-checks, and pass traditional tests of distri-

bution similarity, but still include images that are anatomically nonsensical.
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Figure 5.4: Contextual errors were observed in some DDPM-generated realizations from
A-SCM. These manifested as incorrect pairings of letters (yellow) or incorrect per-image
prevalence of letter-pairs (blue). In the training data, the letter-pairs X-Y, and Z-V were
always in order, and the letter-pair Z-K occurred exactly twice in each image.

5.5.2 Results from the Voronoi SCM

Samples from DGM-generated ensembles are shown in Figure 5.5. High visual similarity was

observed for samples from all DGMs. The corresponding FID values were: 1.5 (DDPM),

14.1 (LDM).

Figure 5.5: Sample DGM-generated images from the V-SCM demonstrate high visual quality
for both DGMs.
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Similar to the tests described in chapter 3, the DGM-generated images corresponding to the

V-SCM were tested for (i) explicit contextual rules of shading and prevalence prescribed in

the training ensemble, as well as (ii) certain implicit contextual features that emerge as a

result of the stochastic processes defined in the SCM.

The prescribed perfect correlation between grayscale intensity and area, within each image

was observed to be lower in both DGM-generated ensembles. Approximately 4% and 1%

of the DDPM-, and LDM-generated ensembles respectively demonstrated a Spearman rank-

correlation ρ < 0.9, indicating that the quantitative value of these realizations is partially

lost. Next, per-image feature prevalence encoded as the number of Voronoi regions in an

image was tested. Recall that, here, the number of regions defines class (refer section 3.3.1

for class prediction). It was observed that no DGM reproduced the prescribed uniform

class prevalence exactly (see Figure 5.6), although both diffusion models demonstrated good

mode coverage, and LDM retained the distinct modes in the training data. As reported

in subsection 3.4.2, no GAN reproduced the expected class prevalence either, and one of

the GANs also suffered from mode collapse. This is in accordance to the literature, where

diffusion models have been reported to have good mode coverage, unlike GANs [50].

The DDPM was observed to interpolate between modes such that a substantial number of

generated realizations are not any of the classes seen in the training data (see Figure 5.6),

similar to GANs (shown in subsection 3.4.2). Furthermore, the DDPM unequivocally ex-

trapolated beyond the extreme classes in the dataset (see Figure 5.8 bottom row). These

observations could imply that interpolation and extrapolation are functionally equivalent.

Interpolation effects were further explored by assessing the implicit context typically arising

in Voronoi diagrams [167] as before (subsection 3.4.2). Recall that the following per-image

statistics were chosen to represent implicit context: number of Voronoi regions, number of

junctions, junction density, mean and standard deviation of Voronoi edge lengths, mean

and standard deviation of the area of a Voronoi region. Results from principal component

analysis performed on these statistics are shown in Figure 5.7.

It was observed that although both diffusion models respected class-specific implicit context,

DDPM-generated realizations interpolated between classes following the trend in implicit

context defined by the training data. This was confirmed by visual spot checks of sample

realizations from the new classes and their placement in the PCA plots. This result suggests
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Figure 5.6: Class-prevalence results from the V-SCM demonstrated via kernel density esti-
mates (KDE) of the data. All DGMs fail to replicate the prescribed uniform class prevalence.
The DDPM demonstrates interpolation between the four distinct classes in the training
dataset. In addition, DDPM also extrapolates beyond the extreme class (class 64) generat-
ing realizations corresponding to class 80, which was absent in the training dataset. Although
LDM retains the distinct modes in the data, the uniform class prevalence is not respected.

that the DDPM generated a substantial number of realizations from new classes (via inter-

polation), but, perhaps more importantly, that those realizations may be genuine Voronoi

diagrams. In section 5.6, this result is discussed further. This was in contrast to one of the

GANs tested earlier: StyleGAN2, which may be more prone to errors in implicit context for

a similar interpolation between classes, suggesting that at least a fraction of the interpolated

SG2 images may not be considered Voronoi diagrams. The LDM demonstrated negligible

interpolation between classes, and slight extrapolation of each class, suggesting that class

identity was strongly captured in the latent representation of the training dataset.

Although DDPM demonstrated contextually correct class interpolation, occasional errors in

statistics representing implicit context were visually observed in DDPM-generated images

(see Figure 5.8), indicating that all implicit contextual features were not always perfectly

reproduced. Thus, results from the V-SCM indicate that a large fraction of DDPM-generated

images, but not all images, may be contextually correct in terms of quantitative meaning

and class identity.
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Figure 5.7: Results from the V-SCM. Principal component analysis (PCA) of the statistics
representing implicit context demonstrates that interpolation between classes also resulted
in an interpolation of the emergent implicit context in case of the DDPM (left). The LDM
(right) generally respected the distinct classes and their respective implicit context. Note
that the PCA plots are represented via kernel density estimation for display.

Figure 5.8: DDPM-generated samples from V-SCM exhibit implicit contextual errors like
disjoint Voronoi edges (top row) and explicit errors like incorrect region count (bottom row).
Although realizations in the bottom row are visually acceptable, the number of regions per-
image indicating class is lower than (left), interpolated between (center), or extrapolated
beyond, the classes in the training data (right)
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5.5.3 Results from the Flags SCM

Sample realizations with high visual quality for the DDPM trained on the F-SCM are shown

in Figure 5.9. The corresponding FID value was 5.7.

Figure 5.9: Visually high quality generated samples from the DDPM trained on the F-SCM.

Figure 5.10: Contextually incorrect DDPM-generated samples from the F-SCM are shown.
Top row: Minor errors in the foreground patterns due to a single misplaced tile were observed.
Bottom row: Major errors in the class-specific foreground patterns were also observed. None
of the foreground patterns in this row were present in the training data.
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Table 5.2: Results from the F-SCM. Percentage of acceptable realizations in an ensemble
is reported for all DGMs and for four contextual constraints. DDPM slightly outperforms
SG2 in most cases. Results for prevalence and position are reported together because these
constraints jointly define the foreground structure representative of a class.

Constraints Measure of error
DDPM SG2

FG BG FG BG
Prevalence RMAE 99 99 98 98
+ Position
Intensity χ2 0 0 0 9
Texture Moran’s I 100 99 96 95

Quantitative results from the F-SCM that encodes joint contextual constraints in per-image

feature prevalence, position, grayscale intensity, and texture are given in Table 5.2. The

class-specific foreground patterns representing joint constraints in position and prevalence

were correctly reproduced by the DDPM for over 98% of the ensemble. This is also visually

evident in the DDPM-generated images (see Figure 5.9).

However, errors in foreground patterns such as those shown in Figure 5.10 were observed

in about 1% of the DDPM-generated ensemble. This is an important observation and the

learning behavior of DDPM is discussed in detail in section 5.6. Note that the errors al-

ways occurred as misplaced or absent foreground tiles. Additionally, tiles which are never

foreground in any class appeared as foreground in 0.1% of the DDPM-generated ensemble,

but never in the SG2-generated ensemble (subsection 3.4.1). This suggests that the DDPM

learned individual motifs that create foreground patterns instead of entire image-level pat-

terns. Texture arising from the randomness in pixel placement was correctly reproduced in

over 99% of DDPM-generated ensembles, measured as described in subsection 3.4.1. Last,

the prescribed per-image intensity distributions as measured via the χ2 goodness-of-fit test

(at 95% critical value) over each image were assessed. All images from the DDPM were

beyond the 99.5th percentile of the value of the χ2 statistic computed on the training data

separately for the foreground and background intensity distributions. These results might

indicate some difficulty in learning multiple joint contextual constraints at once. Further-

more, the results also highlight the potential of a SCM-based evaluation approach, wherein

contextual constraints are progressively added for the assessment of DGMs.
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5.5.4 Results from the VICTRE SOM

Recall that the top-ranked entry in the Grand Challenge described in chapter 4 was a con-

ditional LDM trained on the VICTRE SOM; sampling from this trained model was followed

by post-hoc processing of the generated images to improve their visual quality. In this sub-

section, results are reported from a DDPM, which has greater model capacity (and compute

requirements) than the LDM. Results from a LDM trained in-house are also provided as a

baseline. The in-house LDM differs from the top-ranked entry in three ways: (i) class infor-

mation was not explicitly provided to the model for training or inference, (ii) no post-hoc

processing was performed on the generated image ensemble—this may result in some loss

of image quality as compared to the model in chapter 4, and (iii) computational constraints

of the Challenge were not applicable and longer training times were possible. Thus, the

in-house trained LDM provides a fair comparison to the DDPM for the unconditional image

synthesis task.

Images generated from the two diffusion models trained on the VT-SOM are shown in Fig-

ure 5.11. Images from the DDPM and LDM demonstrated high visual similarity with the

training data (see Figure 5.11) as well as low (<10) FID scores; DDPM-generated images in

particular, had distinctly superior visual image quality. The corresponding FID scores for

the DGMs were: 1.3 (DDPM), 14.3 (LDM).

Results from the VT-SOM demonstrate that the DDPM clearly outperforms the LDM on

almost all feature sets (see Table 5.3) included in the study, namely, texture features, mor-

phology features, skeleton statistics, and the ratio of fatty to glandular tissue. (See subsec-

tion 4.4.3 for a description of the evaluation framework.)

This effect was particularly strong for morphology features (KS statistic values for DDPM,

LDM: 0.049, 0.160) and skeleton statistics (KS statistic values for DDPM, LDM: 0.006,

0.109). The reproducibility of F/G ratio (also representative of class) was very similar

for both models. Some DDPM-samples with extreme F/G ratio, not seen in the training,

were also observed; the breast region in these samples seemed to be formed almost entirely

of glandular tissue. Random samples of 200 images each from the training and DDPM-

generated ensembles were visually inspected by non-domain-experts for any immediately

obvious errors. Occasional artifacts in ligament structures were visually noticeable in the

DDPM-generated images (see Figure 5.12). While major breaks in ligaments were observed
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Figure 5.11: DGM-generated samples with high visual quality, corresponding to all four
classes in the VT-SOM are shown. Recall that, here, the fat-to-glandular (F/G) ratio defines
class.

in 1 in 6 images in the training ensemble, this rate doubled to 1 in 3 images in the DDPM-

generated ensemble. These results indicate that even though DDPM outperformed all DGMs,

it routinely synthesizes images with anatomical artifacts that can be spotted in the ligament
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Table 5.3: Results from the VT-SOM for various feature families. Most feature families were
better reproduced in the DDPM-generated ensemble as compared to the LDM-generated
ensembles, as indicated by the lower KS statistic for the former.

Feature set / DGM DDPM LDM
KS statistic ↓

Texture features 0.028 0.085
Morphology features 0.049 0.129

Skeleton statistics 0.006 0.102
F/G ratio 0.230 0.227

Overall 0.028 0.140

Table 5.4: Analysis of class prevalence, coverage and density demonstrate the superior per-
formance of the DDPM in representing all classes present in the training data. The class-wise
prevalence in the training data was: 10%, 40%, 40%, 10%. (∗ indicates that skeleton statistics
were excluded in this computation.)

DGM Class prevalence Class coverage Class density
(%) [139] [139]

DDPM 21,44,29,6 0.97, 0.96, 0.91, 0.91 0.99, 1.01, 0.98, 1.02
LDM 11,26,34,29 0.82, 0.59, 0.60, 0.49 0.98, 1.00, 0.92, 0.55

structures even by a non-domain-expert upon casual inspection. This should be taken into

account before using the realizations for decision support.

Next, class-wise analysis was performed after predicting class labels on generated ensembles

by employing a classifier with a VGG-16 [202] backbone as described in subsection 4.4.3. All

four classes from the training ensemble were well represented in both generated ensembles

(see Table 5.4). Class coverage and density [139] results demonstrate that the LDM-generated

images had moderate to high class density (indicative of class fidelity) and moderate coverage

(intra-class diversity) as compared to the training data. On the other hand, the DDPM-

generated images demonstrated high coverage for all classes, in addition to nearly perfect

class density, thus, clearly outperforming the LDM.
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Figure 5.12: Samples from DGMs trained on VT-SOM show varied artifacts. Both, the
DDPM and the LDM images exhibit strong visual quality but reveal structural errors like
broken ligaments (inset).

5.5.5 Results from Variations of the DDPM

Class-Conditioned DDPM

To assess if class-conditioning can alleviate class interpolation and extrapolation observed in

the DDPM, two class-conditioned DDPMs were trained on the V-SCM and the F-SCM. For

both cases, the generated images were visually very similar to the unconditional DDPM im-

ages. In the first case (V-SCM), class-conditioning seemed to ensure that the distinct classes

in the training data were retained well and interpolation between classes was absent. The

class-specific implicit contextual features were also well replicated as observed in Figure 5.13.

However, similar to the unconditional DDPM (see Figure 5.7), the exact distribution of the

training data was not matched, albeit in a class-specific manner. Thus, class-conditioning

may aid only in retaining distinct modes in the data as identified by labels, but not the exact

class range.

In the second case (F-SCM), the foreground patterns that are indicative of class were as-

sessed. As opposed to results from the unconditional DDPM, where forbidden foreground
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regions were not respected due to class interpolation in some cases, the conditional DDPM-

generated ensemble never violated this rule. This supports the finding in case of the V-SCM

that labeled classes are largely respected by a class-conditioned DDPM.

Figure 5.13: Results from the V-SCM for DDPM variants demonstrated via principal com-
ponent analysis (PCA). Class-conditional DDPM (left) respects the four distinct modes in
the data, but demonstrates unequal intra-class coverage and extrapolation. Foundational
DDPM (right) performs very similar to the unconditional DDPM (Figure 5.7) and provides
slightly better coverage for some classes. Note that the PCA plots are represented via kernel
density estimation of the data for display.

Foundational DDPM

Two foundational DDPMs pre-trained on the ImageNet dataset were employed on the V-

SCM and VT-SOM datasets to assess if they performed better than the generic DDPM.

As foundational DDPMs have a greater model capacity than the generic DDPM and are

pre-trained on a large dataset, it is possible that they may outperform generic DDPMs.

This study aims to investigate the generalizability of foundational DDPMs. Recall that

foundational DDPMs were afforded the same compute budget for fine-tuning as that afforded

to the generic DDPM trained from scratch on our datasets.

Visual quality of the V-SCM images generated from the foundational DDPM was on par

with those from the generic DDPM. For the foundational DDPM trained on V-SCM, it was

observed that 9% of the realizations from the foundational DDPM demonstrated a Spear-

man rank-correlation ρ < 0.9, which represents the correlation between grayscale intensity
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Figure 5.14: Class-prevalence results from the V-SCM for DDPM variants demonstrated via
kernel density estimates. Class-conditional DDPM (C-DDPM) demonstrates an excellent
match with the training data in terms of class modes and prevalence. However, foundational
DDPM (foundational DDPM) demonstrated similar effects: mode coverage, class interpola-
tion and extrapolation, as compared to the unconditional generic DDPM.

and area of Voronoi regions in an image, as compared to 4% from the unconditional DDPM

ensemble. This indicates that about twice as many images in the foundational DDPM ensem-

ble had lower quantitative fidelity than those in the generic DDPM ensemble. Furthermore,

the reproducibility of implicit context in the DGM-generated images from the V-SCM was

only slightly better for foundational DDPM as compared to the generic DDPM in terms

of class coverage as seen in Figure 5.13 (right). Similar to the generic DDPM, the founda-

tional DDPM demonstrated excellent mode coverage but did not respect the uniform class

prevalence in the training data. Thus, in case of the V-SCM, both foundational DDPM

and DDPM achieved similar results despite foundational DDPM having an advantage over

DDPM in terms of pre-training and model capacity.

For the VT-SOM, the visual quality of images generated from the foundational DDPM

was slightly inferior to those generated from the DDPM. An example each of a visually

high quality image, and an unrealistic image, from the foundational DDPM ensemble are

shown in Figure 5.15. This qualitative result was also reflected in the quantitative results

described in Table 5.5 for all feature families and class-based analyses. However, it is noted
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Figure 5.15: A visually good image (left), and an unrealistic image (right) in terms of
ligament structure and extreme F/G ratio, generated from the foundational DDPM fine-
tuned on the VT-SOM are shown. The visual image quality of these images is slightly lower
than those generated from the generic DDPM.

that training the foundational DDPM beyond the specified compute budget improved its

performance to approximately match the generic DDPM (results not shown). Thus, the

generalization capacity of the foundational DDPM might be constrained by the similarity

between the datasets employed for pre-training and fine-tuning, as expected. Hence, in some

cases, a generic DDPM might provide superior performance at lower computational cost.

We discuss this result further in section 5.6.

Table 5.5: Results from the VT-SOM for the foundational DDPM. In all cases, the generic
DDPM outperformed foundational DDPM, given a fixed compute budget. However, it was
observed that additional training of the foundational DDPM brought its performance at par
with the generic DDPM (results not shown). Here, the KS statistic should ideally be 0 and
the class coverage and density should be approximately 1.

Feature set / DGM DDPM foundational DDPM
KS statistic ↓

Texture features 0.028 0.134
Morphology features 0.049 0.085

Skeleton statistics 0.006 0.049
F/G ratio 0.230 0.460

Overall 0.028 0.069

Class prevalence(%) 21,44,29,6 41,37,20,2
Class coverage [139] 0.97, 0.96, 0.91, 0.91 0.81, 0.89, 0.64, 0.57
Class density [139] 0.99, 1.01, 0.98, 1.02 0.59, 0.98, 0.76, 1.01
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5.6 Discussion

Figure 5.16: Visually interesting but random examples from the training trajectories of the
DDPM and the foundational DDPM models employed on VT-SOM. The training step cor-
responding to each image is indicated below the image, and represents the number of images
seen in training. The DDPM seemed to shape clearly demarcated zero-valued background
and foreground textures, while the foundational DDPM seemed to unlearn placing textures
in patches or all over the image before learning the expected features.

Over the last few years, diffusion models have emerged as a more popular alternative to

GANs, especially in the absence of major computational constraints. As opposed to GANs,

which implicitly model the data distribution via latent-based modeling, DDPMs estimate

the data distribution by employing a theoretical foundation that is well-established in ther-

modynamics. Furthermore, latent representations in DDPMs typically respect the pixel

coordinate system and do not decrease the dimensionality of the data, thus, potentially con-

tributing to more reproducible long-range correlations per-image as compared to GANs. The

excellent visual quality of DDPM-generated images has also contributed to their popularity.

However, domain-specific errors might be present even in images that appear “perfect” to

non-domain experts. The frameworks proposed in the previous chapters provide valuable

tools to assess if diffusion models that produce high-quality images, also produce domain-

accurate images. Although contextual errors have been known to occur in the GAN family of

DGMs [137,215,220,221], to our knowledge, this is the first study to demonstrate and quan-

tify various contextual errors in a diffusion-based generative model. Results from our studies

demonstrate that impactful errors likely are present in every DGM-generated ensemble. The

impact of those errors is task-dependent and, therefore, should be studied case-by-case.
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Even the simple SCMs employed in this work reveal stark differences in image representation

within DGM paradigms. For example, differences in the characteristic image representation

of the DDPM and StyleGAN2 (SG2) were observed, particularly, via the nature of the

artifacts (see Figure 5.17) and training trajectories Figure 5.18. While artifacts in the DDPM

generally seemed to involve misplaced but correct motifs, the artifacts in SG2 demonstrated

a blending of various motifs within the same image. Similar differences were observed in

the training trajectories (Figure 5.18). The DDPM seemed to first learn local elements

required to construct image-level structure followed by combinations of these elements, while

SG2 seemed to learn image structure through blob-like elements. Each SCM in this work

represents a different context; together, the SCMs constitute a readily interpretable and

intuitive method for the objective assessment of DGMs. The SCMs successively encode

an increasing number of contextual constraints; this enables a step-wise evaluation of the

capacity of any DGM to reproduce individual and joint contextual constraints (see Table 5.1).

For example, the DDPM almost perfectly replicates the letter prevalences in the A-SCM,

and largely reproduces the contextual constraints of shading and prevalence in the V-SCM,

but fails to reproduce the intensity distributions in the F-SCM. This suggests that the joint

replication of multiple contextual constraints remains a challenge for the DDPM.

The relevance of the evaluation approach to medical imaging applications employed in this

work lies not in anatomical realism, but in the logically analogous representation of contex-

tual attributes relevant to biomedical imaging. For example, one work [221] reported con-

textual errors in GAN-generated images such as misplaced pacemakers in chest radiographs.

Analogously, misplaced tiles were observed in the DDPM-generated Flags-SCM images, thus

exposing the capacity of DDPMs to misplace features in forbidden areas. Other examples

of biomedical imaging scenarios that involve the studied contextual attributes include: (i)

pathology images, wherein the cell-specific size, intensity distribution and per-image preva-

lence may be characteristic of different pathologies and (ii) the relative positions of organs,

and the per-image prevalence of ribs in a chest radiograph. These examples are respectively

analogous to: (i) the Voronoi SCM, which encodes context via shading and prevalence at

multiple length scales, and (ii) the Alphabet SCM, which encodes context via per-image

prevalence and relative positions of letters.

One key finding is that implicit context for new classes was very well reproduced in the

DDPM-generated Voronoi SCM ensemble (see Figure 5.7). Because the mathematical prop-

erties of Voronoi diagrams are well established, a “ground truth” is available to test if new
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Figure 5.17: Examples of artifacts present in generated realizations from the DDPM and
SG2 are shown for the three SCMs. Errors in the DDPM-generated images demonstrate
misplaced but distinct motifs from the training data, whereas errors in SG2-generated images
demonstrate malformations or blending of distinct motifs. This effect is seen across all SCMs.

realizations are genuine Voronoi diagrams. Thus, the finding that new classes of Voronoi also

respect the expected implicit context suggests that DDPMs hold promise for data augmenta-

tion applications. With the availability of the domain-appropriate ground truth, i.e., Voronoi

diagrams, additional experiments can be designed. These may include: assessing data suffi-

ciency for learning context and experiments relating the composition of the image ensemble

to learning of certain classes. Another approach to study DGMs via a surrogate ground

truth is to leverage established stochastic models and adapt them to ensure recoverability

of context in the generated images. This approach was demonstrated via the adapted VIC-

TRE SOM as described in chapter 4. Adaptations to the VICTRE SOM such as prescribed

intensity distributions, addition of texture, and minor processing of ligaments ensured that

several contextual tests could be designed for assessing DGMs. This was possible because

the context obtained in the training data was also recoverable from generated ensembles

produced by reasonably well-trained DGMs.

A second result, also pertaining to interpolation across classes, was observed via the F-

SCM. Specifically, interpolated instances in the DDPM-generated ensemble were not merely

a linear combination of foregrounds in the training data. Furthermore, some instances also

violated the regions forbidden as foreground across all classes. However, the grid in the
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Figure 5.18: Visually interesting random examples from the training trajectories of DDPM
and SG2 models employed on V-SCM and F-SCM datasets are shown. The training step cor-
responding to each image is indicated below the image, and represents the number of images
seen in training. DDPM seemed to first learn local elements that constitute the expected
structure, while SG2 seemed to learn image structure by moulding blob-like elements.

F-SCM design, or size of a single tile, was correctly learned by the DDPM, and it seems that

this knowledge was employed in class interpolation. Thus, although the DDPM correctly

identified the relevant local scale in the formation of patterns, it did not perfectly capture the

image-level context in the F-SCM. On a more complex dataset: the VT-SOM, the DDPM

largely failed to capture all contextual constraints at once. Despite the high visual quality

of DDPM images, errors in ligament formation were identified even by a non-domain-expert
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in about 30% of the ensemble, similar to the instances reported in chapter 4. Furthermore,

unrealistic extrapolation beyond all classes in the training data was observed in the V-SCM

and F-SCM, potentially due to the likelihood-based approach of DDPM that also contributes

to excellent mode coverage [50]. Unlike the DDPM, the latent diffusion model employed on

the V-SCM and VT-SOM, seemed to retain distinct classes. Especially, in the case of V-SCM

(see Figure 5.6), all four classes were distinctly formed but classes with low number of regions

were preferentially generated. It is possible that the latent encoding of the LDM captures

class information, constraining not just class interpolation but potentially also intra-class

diversity as observed in the results from the VT-SOM. We also explored the possibility

that a class-conditioned DDPM may alleviate the issue of class interpolation. The class-

conditioned DDPM retained distinct classes but demonstrated the same effects (mismatched

class-specific distributions) for each class that an unconditional DDPM did over the entire

data distribution. This implies that class-conditioning may only avoid drastic interpolation

in classes as determined by the labels, but not necessarily within a class or even in attributes

unrelated to class labels.

Another important factor highlighted through our results is the relation between a model’s

intended use and the datasets employed for training, i.e., DGM generalizability. Our exper-

iments demonstrated that although foundational DDPMs provide a powerful alternative to

the generic DDPM, they may actually perform worse than the latter in some cases. In case

of the VT-SOM, although foundational DDPM and DDPM both had the same compute bud-

get, the foundational DDPM may have spent part of training unlearning ImageNet features

before learning VT-SOM features. This is consistent with the training trajectories observed

in Figure 5.16. Possibly, foundational DDPM first had to learn that breast slices occupy only

the central portion of an image and all textural features are contained within the egg-like

shape of the slice, unlike the ImageNet where texture features may be translation invari-

ant and the entire image is often non-zero. On the other hand, the generic DDPM seemed

to learn to create a distinct zero-valued background early in training, followed by learning

shape and texture at once. Thus, DGMs aimed at improving performance on natural image

synthesis may not provide the same potential benefits for medical imaging tasks, and hence,

domain and task relevant evaluation remains critical before deploying state-of-the-art DGMs

in medical imaging workflows.
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5.7 Conclusion for Chapter 5

In this chapter, an instance of the denoising diffusion probabilistic model (DDPM) was

evaluated to gain insights into its capacity to reproduce contextual attributes analogous

to anatomical constraints present in medical imaging scenarios. The DDPM-generated en-

sembles in this study demonstrated low contextual error-rates, but none of the ensembles

reproduced the expected context perfectly. This evaluation goes beyond earlier evaluations of

the DDPM that employed ensemble-based evaluation measures designed for natural images,

or conventional measures of image quality. It is anticipated that the employed evaluation

framework might yield insights into emerging DGMs and have a broader impact on decision-

making and DGM benchmarking.
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Chapter 6

Discussions and Conclusions

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

- Alan Turing

Biomedical imaging is one domain where mistakes can jeopardize patient lives. Hence, the

evaluation of novel technologies is critical before their deployment in biomedical imaging

workflows. This is especially true for learning-based methods. The limitations of learning-

based methods, e.g., DGMs, are not obvious, unlike methods whose behavior can be suffi-

ciently described by their mathematical formulation alone. It is possible, in case of DGMs,

that overfitting or high perceptual quality of the generated data could mask hallucinations

and lead to an overestimation of their general capacities. Hence, the evaluation of DGMs

should go beyond the evaluation of perceptual quality by non-domain-experts and encompass

domain knowledge as well.

The evaluation of DGMs cannot be relegated to only the stage immediately prior to deploy-

ment but should be a part of a feedback loop in the method design/ adaptation stage as

well. Thus, several benchmarks are necessary at different stages to ensure that a DGM: pos-

sesses the technical capacity for a task, retains the diagnostic value in each image, respects

the ensemble distribution, and will reliably generate an ensemble at least as effective as the

training data for a downstream task and without any negative impacts.

In this thesis, the focus of DGM evaluation is on designing tests of the technical capacity of a

DGM in a domain-relevant manner, with potential implications for its diagnostic applicabil-

ity. These tests may be deployed in the initial stages of method development. The proposed

evaluation frameworks are necessary but not sufficient tests for assessing DGMs in a manner

relevant to biomedical imaging. Evaluation at a later stage in the development/ deployment

workflow may involve expert reader studies, or diagnostic-task-specific evaluations designed

in consultation with domain experts.
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6.1 Summary and Discussions of the Major Findings

from this Thesis

An important finding from this work was that none of the DGM-generated ensembles were

perfect in the designed tests of spatial context. Some of these DGMs have been reported

to produce extremely realistic natural images and also received very low FID scores in our

studies with non-natural images. These findings highlight the fact that DGMs that perform

well on natural images, or on figures of merit designed for natural images, may not necessar-

ily be as successful in generating biomedical images, as observed in results from chapter 4.

Hence, establishing domain-relevant benchmarks for biomedical images is essential and nat-

ural image benchmarks may not suffice.

Another major finding is that purposefully designed data can prove to be an effective way of

probing DGM capacity relevant to biomedical imaging. The level of realism in the designed

data can be varied according to the purpose of the evaluation [133]. Even with low realism

in the modeled image features, the encoded spatial context provides a ground truth for

testing the applicability of DGMs in a variety of scenarios relevant to biomedical imaging.

In fact, low realism and high interpretability in image features, is a highly effective strategy

for assessing DGMs in a general manner, i.e., not restricted to a single realistic imaging

system/ anatomy; this is underlined by the results from the stochastic context models and

their implications for biomedical imaging scenarios.

The stochastic context models designed as part of the first evaluation framework proposed in

this thesis have a low level of realism and general applicability. The strength of these models

lies in their interpretability, which in turn enables the creation of a known ground truth.

Due to the interpretability of SCMs, it is easy for a non-clinical expert to identify potential

problems arising due to the lack of DGM capacity for a certain task, even before deploying

a DGM on complex, biomedical dataset. Furthermore, as visual evaluation of biomedical

images requires domain expertise, it is possible that some issues identified via SCMs might

have been impossible to identify for a non-expert looking at generated biomedical images.

The SCMs are not limited to the designs proposed in this thesis, and novel SCMs can also

be designed according to the requirements of new tasks as long as the task-relevant con-

textual attribute can be encoded in a recoverable manner. A more realistic and complex
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stochastic model of anatomy was adapted and employed as a part of the second evaluation

framework. If a DGM could perfectly reproduce the expected context in an object, it would

then be a candidate for more complex evaluations with higher level of realism and the in-

clusion of the effects of an imaging system. Like the studies with SCMs, the SOM-based

studies also demonstrated that the kinds of errors made by many different DGMs, or ar-

tifacts induced by these DGMs, were not unique to specific DGMs. Similar artifacts were

observed across multiple DGMs, implying that the current approaches to DGM design are

not perfect and routinely result in specific types of artifacts. Identification of these artifacts

can spur fundamental improvements in DGM approaches, and also aid the development of

post-hoc processing methods for improving image quality, specific to certain DGMs before

their deployment.

In the same study involving the stochastic model of anatomy, spatial context was represented

via conventional image statistics. These statistics have been developed and employed over

several decades; they are mathematically interpretable and can be visually related to the

observed images. Although DGMs seek to represent images via a latent space, which is

often not interpretable, the representation of images via conventional statistics enables a

data-driven assessment of the capacities of a DGM.

A major advantage of the evaluation frameworks proposed in this thesis is that they are

model-agnostic. Therefore, although the present thesis reports results from the currently

popular/ state-of-the-art DGMs, novel DGMs can be benchmarked against these DGMs

in future. The effects of minor architectural modifications to a DGM in a task-specific or

even task-agnostic manner could be tested via the proposed methods. Thus, the stochastic

models employed in this work could provide insights into the effectiveness of architectural

modifications to a DGM even during the protoyping phase of model development.

Well-studied scientific problems or models provide one way of testing DGM capacity and

ensuring that the generated ensemble is realistically diverse. One example was the Voronoi

SCM described in chapter 3. Voronoi provides a unique solution to a space-partitioning

problem and the mathematical properties of this model are well established. It was observed

in a study employing the Voronoi SCM that a DGM generated contextually correct novel

images in the majority of the ensemble (DDPM trained on the Voronoi SCM described in

chapter 5). This is an important finding which suggests that some DGMs may hold promise
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for data augmentation applications. This finding could be made primarily because a well-

studied, established stochastic model was employed. In other words, established stochastic

models with known properties can enable if DGMs can generate novel images, while retaining

their “identity” as determined by the expected properties. Several other stochastic models

exist, and can be employed similarly to the Voronoi dataset for DGM assessments. Broadly,

such assessments ensure that if a DGM is to be deployed for a scientific application, it does

not violate established natural laws while aiming for novelty/diversity.

6.2 Discussions and Future Work

The popularity of DGMs in biomedical imaging research has been rapidly increasing, even

as errors made by DGMs are occasionally reported. This is possibly because DGMs hold

tremendous potential for making biomedical imaging workflows more accurate and efficient.

Broadly speaking, DGMs could be employed to overcome issues of data insufficiency, poor

data quality, and missing data in practical biomedical imaging scenarios. This potential has

translated to the high volume of research into DGMs for tasks such as data augmentation,

image denoising or superresolution, and domain transfer [1,3,4]. Novel applications of DGMs

as well as novel DGM paradigms continue to emerge. For example, a recent novel application

of DGMs includes employing clinical records to generate biomedical images [225]. In parallel,

DGMs with unprecedented learning capacities are also being developed, e.g., DGMs that

generalize to multiple tasks [226], or learn from multi-modal data that includes text, images,

and 1D-signals [227]. Thus, the use of DGMs in biomedical imaging is only expected to rise

further in the coming years.

Major improvements in DGM design over the last five years have been marked via substan-

tial improvements in visual image quality, and the capacity to generate increasingly large

images at high visual quality. These improvements have often aimed to alleviate instances

of poor visual image quality reported in the state-of-the-art approaches at the time, typi-

cally for natural images. When novel DGMs are adapted for use with biomedical images,

a non-domain-expert may not always be able to identify if high visual quality images are

anatomically unrealistic. As a result, it is possible that artifacts/ hallucinations in DGM-

generated biomedical images occur more often than they are found. Several works have
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reported the presence of hallucinations in various biomedical imaging modalities and for dif-

ferent DGMs as described in chapter 1. However, even when hallucinations are reported in

biomedical images, the rate of hallucinations is rarely, if ever, reported.

A major contribution of this thesis is that certain kinds of potentially domain-relevant errors,

i.e., hallucinations, can be identified, and the error-rates quantified in DGM-generated im-

age ensembles. As the proposed methods are model agnostic, they can be employed towards

benchmarking several DGMs. Furthermore, the evaluation framework based on stochastic

context models, does not model specific anatomy or a specific task, but encodes general con-

textual attributes relevant in biomedical imaging scenarios. Thus, this test-bed generalizes to

many different imaging modalities and tasks, and can be employed to rule out DGMs before

they are considered for additional evaluations specific to an imaging modality/ task. The

other evaluation framework that is based on the VICTRE stochastic object model provides

a more complex dataset, while also enabling the quantification of DGM-specific artifacts.

Together, all datasets enable a systematic evaluation of DGMs for various kinds of errors

that may affect the reproducibility of domain-relevant spatial context and potentially impact

decision-making.

The present work largely focuses on the evaluation of unconditional DGMs for image syn-

thesis, and image-conditioned DGMs are only briefly explored in chapter 3. The current

approach of evaluating DGMs via spatial context can also be extended to image-conditioned

and text-conditioned DGMs. In case of image-conditioned DGMs, two aspects would be

tested: (i) replication of context conditioned on one domain (ii) replication of context present

exclusively in the output domain. In case of text-conditioned DGMs, a definition of context

for text, and mapping a correspondence between spatial and text-based context would have

to be established to identify the limitations of these DGMs.

Besides different kinds of DGMs, existing stochastic object models could also be adapted

for assessing contextual correctness. The adaptation could involve additional realism, a

diagnostic task, or a different imaging modality. Similarly, additional stochastic context

models could also be designed for a given clinical task. This would require knowledge of

several aspects including, but not limited to, the general contextual attribute involved in the

task, the extent of the image (i.e., size in pixels) that is diagnostically relevant, the expected

morphology and intensity distributions, recoverability of the relevant contextual attribute

from the generated images, and a test to determine the acceptability of the generated images.
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The level of realism and complexity of the SCMs can be greater than those proposed in this

thesis, as long as their interpretability is retained and the recoverability of encoded features

is ensured. Thus, the design of novel SCMs might involve a trade-off between interpretability

and clinical realism.

Last, even after a DGM is deployed (because errors in generated images were rare), identifi-

cation of the rare, unrealistic images is essential. One way to address this would be to adapt

anomaly detection methods that can be deployed together with the DGM to ensure another

barrier against errors cascading to downstream tasks.

6.3 Conclusion

Although DGMs are rapidly evolving for natural image applications, many novel or emerging

DGMs cannot yet be employed in biomedical imaging applications. Adaptation of DGMs for

biomedical imaging may require not only modifications in DGMs but also, more importantly,

domain-relevant benchmarks. In the absence of domain-relevant benchmarks, if DGMs are

deployed based on evaluations on natural image benchmarks alone, potentially, hallucinations

could remain undetected and negatively impact patient outcomes.

Generated images can be inaccurate in different ways; hence, only a single number cannot

be employed as a figure-of-merit to evaluate DGMs. A series of tests that assess different

aspects of the generated images is necessary to enable a comprehensive assessment of DGMs.

In this thesis, data-driven methods have been developed for assessing the capacity of DGMs

to reproduce external information, that is, spatial context relevant to biomedical imaging.

No modern DGM employed in the undertaken studies demonstrated perfect performance

on all tests. This suggests that DGM approaches have substantial scope for improvement

before being considered reliable for deployment in biomedical scenarios. At the same time,

improvements in DGMs will necessitate the development of improved evaluation methods.

The model-agnostic evaluation frameworks presented in this thesis are a step towards the

identification of the limitations of current DGM approaches and the development of com-

prehensive evaluation frameworks for DGMs in general, before the potential of DGMs in

biomedical imaging can be truly and safely realized.
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