Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-6

2003-01-22

The Design and Performance of Special Purpose Middleware: A
Sensor Networks Case Study

Venkita Subramonian, Guoliang Xing, Christopher Gill, and Ron Cytron

General purpose middleware has been shown to be effective in meeting diverse functional
requirements for a wide range of distributed systems. Advanced middleware projects have also
supported a single quality-of-service dimension such as real-time, fault tolerance, or small
memory footprint. However, there is limited experience supporting multiple quality-of-service
dimensions in mid-dleware to meet the needs of special purpose applications. Even though
general purpose middleware can cover an entire spectrum of applications by supporting the
union of all features required by each application, this approach breaks down for distributed
real-time and embedded systems. In particular, features from one dimension such... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Subramonian, Venkita; Xing, Guoliang; Gill, Christopher; and Cytron, Ron, "The Design and Performance of
Special Purpose Middleware: A Sensor Networks Case Study" Report Number: WUCSE-2003-6 (2003). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/1105

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1105?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1105

The Design and Performance of Special Purpose Middleware: A Sensor Networks
Case Study

Venkita Subramonian, Guoliang Xing, Christopher Gill, and Ron Cytron

Complete Abstract:

General purpose middleware has been shown to be effective in meeting diverse functional requirements
for a wide range of distributed systems. Advanced middleware projects have also supported a single
quality-of-service dimension such as real-time, fault tolerance, or small memory footprint. However, there
is limited experience supporting multiple quality-of-service dimensions in mid-dleware to meet the needs
of special purpose applications. Even though general purpose middleware can cover an entire spectrum
of applications by supporting the union of all features required by each application, this approach breaks
down for distributed real-time and embedded systems. In particular, features from one dimension such as
real-time may interfere with requirements for another dimension such as fault tolerance. Furthermore, the
breadth of features supported may interfere with small memory footprint requirements. In this paper, we
document the results of our experiences developing special purpose middleware for an emerging class of
systems: networked embedded sensors. We make two contributions to the state of the art in customized
middleware for distributed real-time and embedded applications. First, we demonstrate that reduced foot-
print can be achieved while maintaining or even improving real-time properties. Second, we give evidence
that empirical measurement using a representative application is crucial to guide selection of feature
subsets from gen-eral purpose middleware.

https://openscholarship.wustl.edu/cse_research/1105?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1105?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-6

The Design and Performance of Special Purpose Middleware: A Sensor
Networks Case Study

Authors: Subramonian, Venkita;Xing, Guoliang;Gill, Christopher D.;Cytron, Ron

January 22, 2003

Abstract: General purpose middleware has been shown to be effective in meeting diverse functional
requirements for a wide range of distributed systems. Advanced middleware

projects have also supported a single quality-of-service dimension such as real-time, fault tolerance, or small
memory footprint. However, there is limited experience

supporting multiple quality-of-service dimensions in middleware to meet the needs of special purpose
applications. Even though general purpose middleware can cover an

entire spectrum of applications by supporting the union of all features required by each application, this approach
breaks down for distributed real-time and embedded

systems. In particular, features from one dimension such as real-time may interfere with requirements for another
dimension such as fault tolerance. Furthermore,

the breadth of features supported may interfere with small memory footprint requirements. In this paper, we
document the results of our experiences

developing special purpose middleware for an emerging class of systems: networked embedded sensors. We
make two contributions to the state of the art in customized

middleware for distributed real-time and embedded applications. First, we demonstrate that reduced footprint can
he arhieved while maintaininn ar even imnravinn

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

The Design and Performance of Special Purpose Middleware:
A Sensor Networks Case Study

Venkita Subramonian, Guoliang Xing, Christopher Gill, and Ron Cytron
{venkita,xing,cdgill,cytroh@cse.wustl.edu
Department of Computer Science and Engineering
Washington University, St.Louis,MO

Abstract 1 Introduction

General purpose middleware is increasingly taking the
General purpose middleware has been shown to be gffe that operating systems held three decades ago. Mid-
fective in meeting diverse functional requirements forfeware based on standards such as CORBA [1], EJB [2],
wide range of distributed systems. Advanced middlewai@M [3] and Java RMI [4] now caters to the require-
projects have also supported a single quality-of-serviggents of a broad range of distributed applications such as
dimension such as real-time, fault tolerance, or smajlanking transactions [5, 6], on-line stock trading [7], and
memory footprint. However, there is limited experienggrionics mission computing [8]. Different kinds of gen-
supporting multiple quality-of-service dimensions in migral purpose middleware have thus become key enabling
dleware to meet the needs of special purpose applicatiogghnologies for a variety of distributed applications.
Even though general purpose middleware can cover anT0 m(_aet the needs of diverse applications, general pur-
entire spectrum of applications by supporting the unidiP=¢ middleware has tenc!ed 'to suppdnr@aqthof fea-
of all features required by each application, this a lures. In large-scale apphcayoriayersfof mlddleware
proach breaks down for distributed real-time and embgé{‘:"ve been gdded to p_rowde different kinds of services [8]'
ded systems. In particular, features from one dimensi QWEVer, su‘r_]ply_addmg feat_ures breaks down for certgun
such as real-time may interfere with requirements for a inds of applications. In particular, features are rarely in-

other dimension such as fault tolerance. Furthermor'aOcuous in applications with requirements for real-time

the breadth of features supported may interfere with sm ﬁr{ormafnce or slm atI_I m?r?cklrxll f?otptrrgnt. Insttgs dt (—:very
memory footprint requirements. eature of an application is likely to either contribute to or

detract from the application in those dimensions. There-
In this paper, we document the results of our exptere, careful selection of features is crucial.

riences developing special purpose middleware for anAs middleware is applied to a wider range of distributed
emerging class of systems: networked embedded senserd:-time and embedded applications, a fundamental ten-
We make two contributions to the state of the art in cusion between breadth of applicability and customization
tomized middleware for distributed real-time and embetd the needs of each application becomes increasingly im-
ded applications. First, we demonstrate that reduced fogertant. To resolve this tension, special purpose middle-
print can be achieved while maintaining or even improware must address the following two design forces.

ing real-time properties. Second, we give evidence thai The middleware should be general enough that com-

empirical measurement using a representative application mon abstractions can be re-used across different ap-
is crucial to guide selection of feature subsets from gen- piications in the same domain.

eral purpose middleware. 2. We should then be able to make fine-grained modifi-
Keywords: Real-Time Middleware, Distributed Em- cations to tailor the middleware to the requirements
bedded Systems, Sensor-Actuator Networks. of each specific application.

To balance these design forces, two approaches to de-
veloping special purpose middleware must be considered:
e Top-down: sub-dividing existing general purpose

*This work was funded in part by the DARPA NEST and PCES middleware frameworkglg’ TAO [9]' or
programs. This paper is submitted to RTAS 2003 inRiESEARCH
PAPER category for purposes of evaluation by the program committee ® BOttom-up: composing special purpose middleware

only, and is under review by Boeing prior to final publication ifaccepted. ~ from lower level infrastructures.g, ACE [10].

Both approaches seek to balance reuse of features witkigure 1 illustrates the ideal relationships between fea-
customization to application-specific requirements. Theares, footprint and performance. It is reasonable to ex-
top-down approach is preferred when the number apelct that there will be a reduction in footprint with fewer

kinds of features required are close to those offered features. Similarly, with fewer features along the time-
a general purpose middleware implementation. In thisitical path, it seems that achieving at least compara-
case strategies can be selected for, possibly after beitg performance would be trivial. However, as we de-
added to, the general purpose middleware to fit the seribe in Section 3.4, omitting a key feature may in fact
qguirements of the application. This has been in genenamperperformance. Thus, reducing features for lower
the approach used to create and refine features for réabtprint while maintaining or improving performance in

time performance in TAO. comparison to proven real-time general purpose middle-

On the other hand if the number or kinds of middlewatéare frameworks like TAO poses a significant challenge.
features required differs significantly from those in avail- I this paper, we describe the challenges encountered in
able general purpose middleware, as is the case with 8@¥eloping the special purpose nORB middleware frame-
embedded sensor-network application, then a bottomlﬁiﬁrk: the solutions applied to address those challenges,
approach is preferable. This is based largely on the &wid empirical comparisons of achieved performance and
servation that in our experience lower-level infrastructuf@otprint to TAO, and several lessons learned in that pro-
abstractions are less inter-dependent and thus more ed§s- Section 2 describes the application domain and
decoupled than higher-level ones. It is therefore easieftfoSPecific requirements for which we developed nORB.
achieve highly customized solutions by composing migection 3 explains how our solution achieves real-time
dleware from primitive infrastructure elements [11, 14erformance comparable to TAO through careful appli-
than trying to extract the appropriate subset directly frofgtion of design patterns, while reducing footprint by in-

a general purpose middleware implementation. corporatingonly those features needed by the application.

.In Section 4, we describe the results of experiments we
Clearly, these approaches are complementary. Given ; .
; . .) . conducted to examine how well nORB performs in com-
a single application with divergent requirements and an

available lower-level infrastructure framework, it magarlson to TAO. Our middieware approach draws on pre-

ious work, which we describe in Section 5. Finally, we

be better to apply the bottom-up approach as we h%vf?erconcluding remarks in Section 6.

done using ACE to developing a small-footprint real-time
ORB middleware framework called nORB [13]. How-

ever, refactoring an existing general purpose middlew%a Special Purpose Applications
framework top-down, especially incrementally over time;

allows a greater range of robust common features tq Ig&’/stems of distributed networked sensors offer an exam-
grate downward into the lower-level infrastructure wn&a

: . . le of a special purpose application domain that exhibits
out incurring excessive delay or cost for any one devel

. . e tension between design forces described in Section 1.
ment effort. For example, the migration of tA€ ECDR g

I f TAO into ACE i i ects all iensor networks are being used in a variety of different
classes from into IN €ariier projects alowed, ,jications ranging from temperature monitoring to bat-
reuse of those performance-tested classes on the ti

e : .) feld strategy planning [14]. Systems in this domain
critical remote-invocation path in nORB. are characterized by the following properties: 1) highly

connected networks of 2) numerous memory-constrained
endsystems, with 3) stringent timeliness requirements,
and 4) support for adaptive reconfiguration of compu-
tation and communication elements and their associated
timeliness requirements. Sensor networks thus challenge
classical approaches to distributed computing and repre-
Features Features sent an active research area with many open questions.
To identify and develop common software services

Footprint
Performance

Figure 1: Features, Footprint, and Performance Goals

2

for this class of systems, DARPAs Networked Embe@igorithms like thedistributed breakouf21] algorithm

ded Systems Technology (NEST) program [15] has sy®BA) and its variations [18] have been shown to be very
ported development of different Open Experimental Plagffective for solving the distributed constraint satisfaction
forms(OEPSs), each providing its own challenge problemsoblem in sensor networks [18].

for a particular kind of sensor network. Our work was In particular, the ping scheduling problem can be for-
conducted in the context of a NEST OEP developed hylated in terms of a well-known distributed CSdts-
Boeing. The Boeing NEST OEP seeks to achieve fingbuted graph coloring[18]. In distributed graph col-
grain active control of acoustic and vibration mode damgring, the goal is to find a valid color assignment for all
ing for satellite launch vehicles and aircraft. Such agertices of a graph, each an autonomous node in a dis-
tive damping is made possible by a large number of Miibuted network, and the constraint being that two adja-
cro Electro-Mechanical Sensor (MEMS) vibration sensagent verticesi(e., two vertices connected by an link) can-
actuator nodes spread over the surface of the structheg be assigned the same color. In the context of the ping
whose vibrations are to be damped. In the Boeing NES&heduling problem, the network of sensors corresponds
OEP, in contrast to the wireless Berkeley motes [1Gb a graph, a sensor-actuator node corresponds to a ver-

nodes are inter-connected by a wired network. tex in the graph, and connections between sensor-actuator
nodes are represented by edges in the graph. The time
2.1 Ping Node Scheduling slot scheduled for a ping node corresponds to a vertex

color assignment in the distributed graph coloring prob-
To identify the current vibration mode of the structure,lam. The example application used in our experiments
System Identificatiocomponent in the Boeing OEP sendgescribed in Section 4 applies a DBA [21] to solve the
ping data to sensor nodes located on the structure afistributed graph coloringroblem, and is thus represen-
identifies the mode based on the response data from ti#gve of sensor network CSP applications more generally.
nodes. Since sensors and actuators run on limited enangyuse the terndBA-colorfor the algorithm used by our
resources, the number of responding nodes, callad test application, as described in Section 4.
nodes should be as small as possible and still cover the
overall area to be monitored [17]. Moreover, the signaling
actions of two overlapping ping nodes should be synchi?:3 Middleware Challenges
nized so that no interfering signals will be generated. The
problem of finding a schedule for ping node responses ckh facilitate exchanges of local information between
be solved by constraint satisfaction techniques [18]. @des as part of the distributed algorithm, a middleware
this paper, we use the problem of scheduling the pingifigmework that abstracts common services like commu-
activities of sensor network nodes to compare the perfgication is needed. The key challenges we faced in the
mance of our special purpose middleware in to that of tHesign and implementation of this middleware are to:

general purpose TAO Object Request Broker (ORB) [1% o .
euse existing infrastructure: We want to avoid de-

veloping new middleware from scratch. Rather, we want
to reuse pre-built infrastructure to the extent possible.

A Constraint Satisfaction Problem (CSP) [20] aims to) o)
find consistent assignments of values to a set of variabfg&Vide real-time assurances: Middleware itself must
whose inter-dependencies represent the constraints §e@redictable to allow application-level predictability.

problem. For scalability reasons, distributed algorithms

are more effective than centralized ones in large sen5§pVide @ robust DOC middleware: We chose the
networks, and it is thus desirable to apply a distribut&PC communication paradigm over the diffusion [22]

approach to constraint satisfaction problems such as pagadigm for sensor networks, since the DOC approach

scheduling. In a distributed CSP, variables and constraiffi€"s & more maintainable programming model and al-

are distributed among multiple nodes [21]. Distributd@"s direct communication between remote nodes, which
is required by the Boeing OEP.

2.2 Distributed Constraint Satisfaction

Reduce middleware footprint: The targetenvironment TAO [19, 9] and e*ORB [23, 24] appeared to be the

for this middleware is the sensor-actuator nodes, whiofost suitable candidate solutions based on our middle-

have constraints on the amount of RAM/ROM on boardware requirements. TAO is is a widely used standards-
compliant ORB built using the ADAPTIVE Communi-
cation Environment (ACE) framework [25, 10]. In addi-

3 Specia| Purpose Middleware De-tion to predictable and optimized [26, 27] ORB core [28],
protocol [29, 30], and dispatching [31, 32] infrastructure,

velopment - Our ApproaCh TAO offers a variety of higher level services [33, 34].

e*ORB is a customized real-time and embedded ORB that

In this section we describe our approach to developiggers a reduced set of features, and a corresponding re-
special purpose middleware, to meet the challenges g&ztion in footprint.

scribed in Section 2.3. While we focus specifically on our

work on nORB, the same methodology can be appliedoplem: We get more and/or less than we needUn-

to produce middleware tailored to other special purpoggtunately, faithful implementation of the CORBA stan-
applications. This section is organized as follows: Segard increases the number of features supported by TAO
tion 3.1 presents a brief survey of existing frameworkgd other similar CORBA implementations and hence re-
and their |imitati0ns, and describes how we Ieveraged &Xrts in increased footprint for the app”cation_ In the
isting frameworks to arrive at our solution. In Section 3.3ase of sensor network applications, this becomes pro-
we describe the message formats that we use in nORBitively expensive. Furthermore, the other frameworks
for peer-to-peer communication. Section 3.4 describ§own in Table 1 do not, in isolation, provide complete
our work on critical path optimization based on previoug|utions to all of the challenges described in Section 2.3.
work done in TAO. Secthn 3.5 summarizes how we refaC'AIthough ACE reduces the complexity of the program-
tored the TAO IDL compiler to build an IDL compiler forying model for writing distributed OO applications and
NORB. Section 3.6 briefly describes the design choices Wigydleware infrastructure, it does rditectly address the
made with respect to the lifecycle management of applicgyalienges of real-time assurances, time-bounded adapta-
tion specific servant objects. The concurrency strategigsh reduced footprint, or interoperation with standards-
that we used are described in Section 3.7. Finally, in S@gised middleware. Kokyu [35] is a low-level middleware
tion 3.8 we show the footprint savings that were achievegh mework built on ACE, for flexible multi-paradigm
scheduling [36] and configurable dispatching of real-time
operations. Thus Kokyu supplements the capabilities of
a DOC middleware but cannot replace it. The UCI-Core
Modern software development relies heavily on re-ug&proach supports different DOC middleware paradigms.
Given a problem and a space of possible solutions, Weffers significant re-use of infrastructure, patterns, and
try first to see whether the problem can be solved direct§ehniques by generalizing features common to multiple
from an existing solution to a similar problem. If so, thd?OC middleware paradigms and providing them within
solution can be applied to the problem at hand. TakiAgminimal metaprogramming framework, thus also ad-
this ViEW, we Compared our prob|em space to a set of &(ESSing the Challenge of redUCing middleware fOOtprint.

3.1 Middleware Solution Space

isting solutions, as shown in Table 1. However, it is unsuited to meet the challenges described
in Section 2.3 because it does not directly support real-

Challenge Eramework time assurances or time-bounded adaptation of middle-

Infrastructure re-use ACE, TAO ware QoS properties. Moreover it does not address porta-
Real-time assurances Kokyu, TAO bility across heterogeneous platforms. Finally, e*ORB
Robust DOC middleware TAO, e*ORB provides a closed-source ORB implementation, which
Reduced middleware footprit UIC-Core, e*ORB does not meet our requirement for re-use of infrastructure

in the face of diverse requirements of special-purpose ap-
Table 1: Mapping Requirements to Possible Solutionglications

4

Our Solution: Use a bottom-up composition ap- As in TAO, ACE components serve as primitive build-
proach to getonly the features that we need.We ini- ing blocks for nORB. Communication between nORB
tially considered a top-down approach as describedendsystems is achieved via the CORBA [1] model: the
Section 1, to avoid creating and maintaining an opeclient side marshalls the parameters of a remote call into
source code base separate from TAO. However, this aprequest object and sends it to a remote server, which
proach proved infeasible due to several factors. Firien demarshalls the request and calls the appropriate ser-
the degree of implementation-level inter-dependence lvant object; the reply is then marshalled into a reply object
tween features in TAO made it arduous to separate theand sent back to the client, where it is demarshalled and
Second, the scarcity of mature tools to assist in identifseturned to the caller. Although we did not retain strict
ing and decoupling needed and unneeded features mamhapliance to the CORBA specification, wherever possi-
it unlikely we would meet the software release scheduie we have re-used concepts, interfaces, mechanisms and
needed for the Boeing OEP. Third, absent better tooldatrmats from TAO and its implementation of the CORBA
was also infeasible to validate that during refactoring vetandard. In the following sections, we describe the de-
had correctly retained functional and real-time propertisgn decisions made in developing nORB and the ratio-
for the large body of TAO applications deployed outsideale behind those decisions.

our DOC middleware research consortium.

Therefore, we ultimately took a bottom-up composi-
tional approach [13], starting at the ACE level and re-
using as much as possible from it. By building on ACE3.2 Data Types and Representation
we reduced duplication between the TAO and nORB code

bases, while achieving a tractable development approage. ysed the Boeing NEST OEP application domain to
Figure 2 |IIustrate§ our approa(_:h. The sglectlon of f‘?&uide our choice of data types that NORB supports. In
tures for our special purpose middleware implementatig)y pgA-color test application, for example, sequences of
was strictly driven by the unique requirements of the agimple structures are exchanged between sensor-actuator
plication. As we show in Section 3.8, this removal of Updes. NORB supports basic CORBA data types, struc-
needed features in turn results in footprint reduction. ,res and sequences. There is no support for CORBA
Anyor TypeCodeThe support available for different data

CORBA types determines the amount of marshalling and unmar-
Message formats, sha}lllng code that negds to be generated, which is ex-
Data representation, plained further in Section 3.5. We found that the mar-
Communication model shalling/unmarshalling code fémy or TypeCoddor the

ACE Kokyu DBA-color application using TAO takes about 16KB.
Network Programming Dispatching model, Since the DBA-color application does not make use of
primitives, g;g’rg’::e@S these data types and it is reasonable to expect this also
Portabity holds for other similar sensor network applications, we

omit support forAnyandTypeCodén nORB.

nORB We use the CORBA standard Common Data Represen-
tation (CDR) as the data format on the wire in nORB.
The ACE framework provides excellent support for effi-
cient CDR marshalling and unmarshalling for a variety of
data types. The ACE CDR classes were originally devel-
IDL compiaton srategis, whats e essence | oped for TAO, and are extensively re-used in nORB. This
ORB core mechanisms in turn illustrates the benefits of pushing implementation
mechanisms down from higher-level middleware such as

Figure 2: Re-use from Existing Frameworks TAO into lower level frameworks such as ACE.

TAO UBI-Core

3.3 Special Purpose Messaging Protocols path through the ORB while making a remote call. On

Wi d to defi tocols that bl , t_the client side, the critical path consists of the follow-
€ need to define protocals that enavle communiCatigy 4 qtigns: marshalling the remote call parameters into

between end-system components, while meeting the fg

Previ K 1371 h h h o Similarly on the server side, the critical path consists of
revious wor [37] nas shown that opt|m|zat|qns “afle following: receiving the request from the client, de-
be achleyed by the prlnC|pIe. p.atterns of 1) relaxing sy arshalling the parameter values from the request mes-
tem requirements and 2) avoiding unnecessary genera nge making the operation upcall, marshalling the call
Protocols in TAO likeGIOP-Lite [37] are designed ac- ' : ' ;

. R . . i -~ 7~ return values into a reply message, and sending the reply
cording to this principle. Similarly, we identify a limited

bset of the t ‘ ted by th CORrB%ssagethroughTCP socket back to the client.
subset ol Ihe types of messages supported by the Next, we took timing measurements at key checkpoints

sp_ecifica_tions, S0 _that we incur only the necessary fogfbng the critical path in both nORB and TAO. The check
print, while providing all features required by the appli- ints were 1) when the client makes a remote call, 2)

cation. The Request, Reply, Locate Request, and LOC\% fen the connection to the server is established, 3) when
Reply message types are supported by nORB.

the server receives the request, and 4) when the server
nORB Request message format

| Request | Two Way [Op dispatches the request to the remote object.
lag ame

ObjectKey
Length

|ObjectKey | Priority |Parameters |

nORB Reply message format Problem: Unnecessary system calls in the critical
path result in reduced performance. We found that on
the server side, reading data from different client connec-

Request Id | Status | Results

nORB Locate Request message format

| Locate Request Id | corbaloc style Key | tions was unnecessarily ir_lterleaved in NORB and hen_ce
the latency between the first and the last read operation

NRD Lot il leaciie 111l for one request was very high. Normally only one read
tocateReplyld | 'ORsting operation is necessary to receive a request from the client.
nORB IOR format el rofieg The ORB dispatches an upcall to a servant only after the
| Repostoryia | ovjectrey [TE [priory | @ @ whole request is read, and hence the delay incurred by

multiple read operations hurts the overall performance of
Figure 3: nORB IOR and Message Formats the server. In comparison, TAO does not exhibit this over-
Figure 3 shows the formats of different messages and¢fd and receives each request in a single read operation.
the Interoperable Object Reference (IOR) used to invokeAfter further investigation, we traced the problem to the
remote methods in NORB. The format of the Request aingfficient manner in which requests were being sent on
Reply messages closely resembles that of the GIOP R client side of NORB. When nORB handled a request
guest and Reply messages respectively, the major diffisem the client side application, two write operations were
ence being the elimination of the service context field breing used to send a GIOP request to the server. The data
the request and reply headers. The nORB client buildgtten by the second write operation could be buffered in
a Request message and sends it to the nORB server Tz layer while the first data chunk of the request has al-
sends a Reply back to the client. Based on the value of thady been delivered to the server. Thus the GIOP request
Two Way Flagn the Request message, the client waits weas segmented and its receipt at the server spanned mul-

get the Reply message from the server. tiple read operations. This effect worsened when other
requests came to the server before the arrival of the later
3.4 Critical Path Optimization chunk of a segmented GIOP request.

We also found that reading a request on the server
To achieve remote method invocation performance thveds done using tweecv system calls on the connection
is comparable with TAO, we first identified the criticabtream - first for reading the request header and the second

one for reading the request body, whereas the read opefl-fledged object adapter. Servant objects are registered
ation could be done using a singkxv call for relatively when the application begins to run and live as long as the
small payloads. This was done despite the request baldyation of the application. This eliminates the need for

already being present in the TCP buffer. complicated life-cycle management. Even though the re-
Solution: Reduce the number of system calls in the sulting object adapter does not conform to the Portable
critical path. We achieved a single write operation on th@biect Adapter specification, a significant amount of foot-

client side by applying the well-knowgather-write[38] print reduct|0|j is gchleved because of the rgduced opject
technique. On the server side, we optimized reading addapter functionality. We have also consolidated object

quest so that if possible the request header and body"&gistration with other setup functions, by moving it from
read using a singlescvcall. While this solution is obvi- the object adapter interface to the ORB interface.

ous in hindsight, the problems were not detected during
the initial development of NORB or even during its firsé 7
deployment in the Boeing OEP, all conducted by experi-

enced deVelOpers of advanced middleware a.nd d|Str|bum messaging and Concurrency architecture is based on
applications. Rather, this problem first came to light dUsrevious work [39, 40, 41] done in TAO. When a client
ing careful timing measurements performed to compa{fykes a remote two-way function call, the caller thread
nORB and TAQ in our DBA-color application. Given theyeeds to block until it receives a reply back from the
myriad features within even a reduced middleware framgsyver. The two-way function call is made on the client
work, it is therefore essential to perform significant pegtup, which then marshalls the parameters into a Request
formance testing along the critical path of special purpoggd sends it to the server. The two-way function call se-
middleware and of related general purpose middlewafRintics requires the caller thread to block until the reply
for comparisonduring the development process itself comes back from the server. There are different strate-
gies [39, 40, 41] to wait on the client side for the reply, of
3.5 Code Generation which we have chosen twait on connectiostrategy for
_— implementation in NORB. On the server side, to process
A subset qf the CORBA Interface Definition I‘an'an incoming request and send the reply back to the client,
g_uage(IDL) is supported by n_ORB. The nORB ID_L COMye chose thdirect Upcall Strategyfor nORB. With this
piler generates the marshaliing and unmarshalling CO&?ategy, the servant upcall is made in the context of the

and hides the communication and connection manages
o . twork 1/0O thread, to improve real-time predictability.
ment from the application. The design of the nORB IDL P P 4

compiler [13]is not only based on the TAO IDL compiler,

and reuses some of its parts directly. The TAO IDL con3.8 Resulting Footprint Reductions

piler is modular, consisting of a front-end (FE) library, a

pluggable back-end (BE) library and a top-level exechigure 4 shows the footprint reductions achieved by our
tive. We were able to re-use the FE library as is. For tkemposition approach. All measurements were taken us-
BE library, however, more significant changes were aing thesizecommand. Node and NodeRegistry, described
propriate [13]. We used a tie-based approach to geneiatéetail in Section 4, are software components used by
the skeleton classes and techniques to minimize virttiz¢ DBA-color application. The application specific code
functions and virtual inheritance in servant classes [18).Node and NodeRegistry take about 164KB and 146KB
The skeletons thus became class templates that taker@spectively. From our footprint measurements, we found
implementation classes as parameters. that ACE introduces an overhead of about 212KB, and
unoptimized versions of TAO and nORB introduce an ad-
ditional overhead of 1424KB and 1911KB respectively al-
though compile optimization of TAO and nORB reduces
In NnORB, the number of objects hosted on a node is éke added overhead of the ORB layer to 1362KB and
pected to be very small, which reduces the need forla3KB respectively.

Message Flow Architecture

3.6 Life Cycle Management of services

2,000 + E Node

B NodeReai types ofparameter messaged) Value messages, con-
1,800 1 gistry . . .
' taining the current color assignment of the sending node,
1?22 and 2) Improvement messages, containing the maximal
8 1200] reduction in conflicts that could be achieved by a color
E Louo | change at the sending Node.
£ 00 | Initially, every Node picks a random color from a color
8 ol set of size equal to the diameter of the graph. The di-
400 | ameter of our 100-node mesh is 18. Each Node sends its
200 D ﬂ ﬂ current color to its neighbors. If two vertices connected
o] by an edge have the same color, then the constraint rep-
ACE 120 | nors Of)‘t’lnn:f’z"eed ijt’lrr:f’z"eed rese_nt.ed k_)y t_h_e edge is considered_ to be_ violated. After
TAO | nORB receiving individual colors from all its neighbors, each
B Node 376 1800 567 1738 509 node computes the extent of such violations locally and
B NodeRegistry | 324 1778 549 1725 492 tries to minimize such violations by searching for a differ-

entcandidatecolor assignment. It then sendsiarprove-
Figure 4: Footprint Comparision for DBA-color ment which is a measure of the reduction in violations, to
)) its neighbors. After receiving improvements from all its
4 Experimental Evaluation neighbors, a Node will only change its color to dandi-
datecolor if its own locally computed improvementis the
In this section we describe a set of experiments conductaeximum among all its neighbor Nodes. This process,
to ensure our special purpose middleware, developed tised acycle is repeated until all violations are elim-
ing the approach discussed in Section 3, performs wiglhted,i.e., a valid color assignment is found for every
compared to the highly optimized general purpose TAQode. At this point, the algorithm is said to hawven-
middleware for the representative DBA-color applicationergedand all Nodes terminate and output their final col-
ors. Figure 5 illustrates the message interactions between
; ot a node and one of its neighbors in one cycle of the DBA-
4.1 Experimental Application and Platform color. The original DBA algorithm is explained in detalil
All experiments were conducted on a 4-machine clusteriof [21].
Pentium 4 2.53GHz CPUs, each with 512MB RAM run- Node B
ning KURT Linux 2.4.18. A NodeRegistry process opens Node A (neighbor of Node A)
a graph definition file and reads the topology of a graph ___ | Color,, Color ,
for which we need to find a valid color assignment. In our
experiments we used a 10x10 mesh of 100 Nodes, a rep-
resentative sensor network topology for the Boeing OEP-~" “¥®9 |improvemeny,, Improvement,, | |1 CSP Cycle
Each Node represents a distributed vertex of the graph.
. . Y Color, Color, Y
The sequence of events is as follows: —_— A2 5.2 R

1. NodeRegistry loads the graph from a file.
. Nodes register with NodeRegistry. Figure 5: One DBA-color Timing Cycle

A

2

3. NodeRegistry returns neighbor data to each Node. To meet the stringent performance requirements of

4. Nodes run DBA-color until a termination condition€@l-time applications, we explored various optimization

technigues for TAO and nORB. In particular, the follow-

A group of 25 Node processes was executed on eaufp versions of NORB and TAO are used in our experi-
of the 4 machines and the NodeRegistry was executadnts: 1) unoptimized (default), 2) with static compiler
on one of the machines. A Node communicates with igtimizations, and 3) with runtime optimizations. For the
neighbors by sendingarameter messageshere are two runtime optimized versions, TAO is optimized for DBA-

color implementation via single-thread and one way funa-50msec limit that includes 95% of all samples in each
tion call settings, whereas nORB is optimized using tltase. Measurements over 50msec are considered in the
critical path techniques discussed in Section 3.4. next metric. We see that each optimization is effective in

nORB and ACE plots

ACE ——

4.2 Performance Metrics 1o At B

0.6 unoptimi zed NORB =+=+=:=" B

The following metrics were used to evaluate the perfor- |
mance of NORB in comparison to TAO and ACE. '

Elapsed cycle times: The elapsed time for one cycle of§ “*
the DBA-color algorithm is the fundamental measuremerit o.s |
in our experiments. As mentioned in Section 4.1, a node
has to wait foparameter messagé®m all its neighbors

in each cycle of the DBA-color algorithm before it pro-
ceeds to the next cycle. Thus, a small delay in one cycle
of a node will be amplified and propagated to its neigh- ©°3
bors in the following cycles. This metric’s sensitivity to_. Node Véi L tine for one GSP cycle(usec) i)
delay was a major factor leading to identifying the perfor19ure 6: Performance of ACE and nORB Configurations
mance variations discussed in Section 4.3. o ‘ ‘ ‘ ‘ ‘ "Cunt | 7% opt i mized TAO ——

conpil e optimized TAQ =====-=
unopti mi zed TAO ====+

0.2

0.1

Real-time predictability: For many soft real-time ap- | i
plications, the system can afford to run even with mod- |
erate numbers of failures to meet deadlines. In firm and

hard real-time systems, we need to assure time boungs.t
for higher percentages of all cases will be met. We mea-
sure time bounds on different percentiles of all sample$, *’|
for strict schedulability analysis in hard real-time systems , , |
and for reliable predictability assurances in firm and soft

real-time systems. oty ,..-j
T

Convergence timeS: Convergence Of the DBA'CO'Ol’ al' ° 0 5000 10000 15000 20000 ;;;;70 30000 35000 40000 45‘000 50000
gorithm for a given network topology is quantified by i Node Vit time for one CSP cycle(usec))

the number of cycles needed before a global solution is F9ure 7: Performance of TAO Configurations
reached. However as noted above, variation in timing ifiproving performance. Furthermore, the effects of the
individual algorithm steps can have a significant impagptimizations are more obvious for TAO, since the default
on the overall performance. Therefore, we measure tenfiguration of TAO is aimed for multi-threaded general
total time for the algorithm to converge over multiple repurpose applications. In addition, we see that one cycle of
peated runs, to assess the relative overall impact of usib@A-color takes similar time on average12 msec, us-

ACE, nORB or TAO in the DBA-color algorithm. ing the runtime optimized versions of nORB or TAO with
average performance marginally better for TAO.
4.3 Performance Results Real-time predictability: Figures 8 and 9 show the

time bounds required to assure that a given percentage
otf)all samples will fall within that bound and thus meet

a deadline at that bound. These results show that that time
Elapsed cycle times: Figures 6 and 7 show the distribubounds with nORB are marginally tighter than those for
tion of measured cycle times ove500,000 cycles of the TAO in the soft real-time cases from 99% to 90%, and
DBA-color algorithm using ACE, nORB and TAO, up tdche nORB time bounds asignificantlytighter than those

We use each of the metrics described in Section 4.2
analyze our results, as follows.

for TAO in the firm/hard real-time cases at 99.9% and °?

higher. We are investigating the cause of a small num-o.1st
ber of anomolous outliers for ACE, reflected in Figure 9. o.16}
We suspect they are an artifact of the application or the ex-, ., |
periment since they are associated with Node termination., ,, |

70

B TAO

OnORB

B compile optimized TAO
B compile optimized NnORB

Frequenc

60

50
O runtime optimized NORB

ot ACE
=rhinti me optinized TAO
untine optinized nORB ==r=r=n B

B runtime optimized TAO 0.04 |

B ACE

msec

"

R

0 ad 1 1 e 1
100000 150000 200000 250000 300000 350000 400000
Convergence time - 22 cycles (usec)

Figure 10: DBA-color Covergence on 10x10 mesh

Ty

previous cycle time and time bound figures, ACE outper-
forms both nORB and TAO, performing much better in

percentage of samples bounded
Figure 8: Lower Probability Time Bounds

both the average and worst cases. TAO slightly outper-
forms nORB in the average case, while NORB performs
99% 98% 95% 90% 80% better in increasingly worse cases.

B TAO
OnORB

W compile optimized TAO
B compile optimized nORB
M runtime optimized TAO
O runtime optimized NnORB
B ACE

msec

99.999% 99.99% 99.9%

percentage of samples bounded

Figure 9: High Probability Time Bounds

5 Related Work

In this section we describe special purpose middleware
projects that address similar challenges to those described
in Section 2.3.

MicroQoSCORBA: MicroQoSCORBA [42] is a mid-
dleware research project at Washington State University,
focusing on middleware footprint reduction [43] through
customization [44] of middleware features for deeply em-
bedded systems. MicroQoSCORBA takes a CASE-tool
approach using customized IDL compilation to generate
client stubs and server skeletons supporting only the data
and exception types used, choose specific transports and
protocols, configure low-level marshaling properties. Mi-
croQoSCORBA involves the system developer in select-
ing valid and beneficial configurations of system features.

For example, at 98% assurance, the system mustTiés approach thus trades increased complexity of config-
able to accommodate a delay of 21.3msec with nOR®BNg and validating the system, for greater power to tailor
compared to 23.1msec with TAO. At 95% assurance, tthe details of the system.

system must be able to accommodate a delay of 15'9m6‘5‘?quitous CORBA: Ubiquitous CORBA projects
with nORB compared to 17.3msec with TAO. :

Convergence times: Finally, Figure 10 shows the totalof the Universally Interoperable Core (UIC) [47] focus on
convergence times for the DBA-color algorithm, running metaprogramming approach to DOC middleware. Ubig-
on ACE, TAO, and nORB. As may be expected from thgtous CORBA is similar to the ACE, Kokyu, and TAO

such as LegORB [45] and the CORBA specialization [46]

10

approaches in that it assumes a general set of primitivess
and a framework within which those primitives are ar{4
ranged. The key difference is that the UIC contaireta-
level abstractions that different middleware paradigmgs]
e.g, CORBA, must specialize [46], while ACE, Kokyu,
and TAO are concretease-leveframeworks.

e*ORB: e*ORB [24] is a commercial CORBA ORB
which was developed for embedded systems, especiam]/
in the Telecom domain [23]. Although the e*ORB

web pages claim that e*ORB is the smallest and faste J
CORBA ORB, they do not show the kinds of detailed per-
formance and footprint comparisons with other ORiBs,

the context of a specific applicatipas is presented here. [

(6]

6 Conclusions 0
In this paper we have shown that reduced footprint can
be achieved while maintaining or even improving real-
time properties, in comparison to general-purpose reglt]
time middleware. We have also illustrated the importance
of careful empirical measurement within the context of a
representative application, during the development of spe-
cial purpose middleware. We argue that there are signif-
icant advantages to building special-purpose middlew&¥d
using a bottom-up composition of lower-level infrastruc-
ture. At the same time, we note that our ability to build
robust middleware using ACE depended in part on preylig]
ous top-down development in TAO that then pushed key
primitives,e.g, the ACE CDR classes, down into ACE.

7 Acknowledgements [14]
We gratefully acknowledge the support and guidance[%]
the Boeing NEST OEP Principal Investigator Dr. Kirby
Keller and Middleware Principal Investigator Dr. Dou
Stuart. We also wish to thank Dr. Weixong Zhang at
Washington University in St. Louis for providing the ini-
tial algorithm implementation used in DBA-color.

[17]
References

[1] Object Management Groupghe Common Object Request Broker['lg]
Architecture and Specificatip8.0 ed., June 2002.

[2] Sun Microsystems, “Enterprise JavaBeans Specification.”
java.sun.com/products/ejb/docs.html, Aug. 2001.

11

D. Rogerson]nside COM Redmond, WA: Microsoft Press, 1997.

Sun Microsystems, IncJava Remote Method Invocation Specifi-
cation (RMI) Oct. 1998.

L. R. David, “Online banking and electronic bill presentment pay-
ment are cost effective.”

K. Kang, S. Son, and J. Stankovic, “Star: Secure real-time trans-
action processing with timeliness guarantees,” 2002.

X. D’efago, K. Mazouni, and A. Schiper, “Highly available trading
system: Experiments with corba,” 1998.

D. Corman, “WSOA-Weapon Systems Open Architecture

Demonstration-Using Emerging Open System Architecture Stan-
dards to Enable Innovative Techniques for Time Critical Target
(TCT) Prosecution,” irProceedings of the 20tHEEE/AIAA Digi-

tal Avionics Systems Conference (DAST9t. 2001.

] Center for Distributed Object Computing, “The ACE ORB

(TAO).” www.cs.wustl.edutschmidt/TAO.html,
University.

Washington

“The
(ACE)”
Univer-

Center for Distributed Object Computing,
ADAPTIVE Communication Environment
www.cs.wustl.edutschmidt/ACE.html, Washington
sity.

F. Hunleth, R. Cytron, and C. Gill, “Building Customiz-
able Middleware using Aspect Oriented Programming,” in
The OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented SystemgTampa Bay, FL),
ACM, Oct. 2001. http://www.cs.ubc.ca/"kdvolder/
Workshops/OOPSLA2001/ASoC.html

F. Hunleth and R. K. Cytron, “Footprint and feature management
using aspect-oriented programming techniquesProteedings of

the joint conference on Languages, compilers and tools for embed-
ded system$pp. 38-45, ACM Press, 2002.

C. Gill, V. Subramonian, J. Parsons, H.-M. Huang, S. Torri,
D. Niehaus, and D. Stuart, “ORB Middleware Evolution for Net-
worked Embedded Systems,” Rroceedings of the 8th Interna-
tional Workshop on Object Oriented Real-time Dependable Sys-
tems (WORDS’03)Guadalajara, Mexico), Jan. 2003.

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
Physical World with Pervasive Network$EEE Pervsive Comput-
ing, vol. 1, Mar. 2002.

DARPA 1XO, “Networked Embedded Software Technology
(NEST).” http://www.darpa.mil/ixo/

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter, “System architecture directions for networked sensors,” in
Proceedings of the ninth international conference on Architec-
tural support for programming languages and operating systems
pp. 93-104, ACM Press, 2000.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless microsen-
sor networks,” itHICSS 2000.

W. Zhang, G. Wang, and L. Wittenburg, “Distributed stochastic
search for constraint satisfaction and optimization: Parallelism,
phase transitions and performance,Piroceedings oAAAI Work-
shop on Probabilistic Approaches in Sear@002. to appear.

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

D. C. S. et. al, “TAO: A Pattern-Oriented Object Request Brd33]
ker for Distributed Real-time and Embedded SystentsE Dis-
tributed Systems Onlingol. 3, Feb. 2002.

S. Minton, M. D. Jonston, A. B. Philips, and P. Laird, “Minimizing
conflicts: a heuristic repair method for constraint satisfaction and
scheduling problemsArtificial Intelligence vol. 58, pp. 161-205, [34]
1992.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “Distributed
constraint satisfaction for formalizing distributed problem solv-
ing,” in International Conference on Distributed Computing Sys-
tems pp. 614-621, 1992. 35

C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed dif-
fusion: a scalable and robust communication paradigm for sen-
sor networks,” inMobile Computing and Networkingp. 5667,
2000.

S. Aslam-Mir, “Experiences with real-time embedded CORBA iF36]
Telecom,” inOMG's First Workshop on Real-time and Embedded
Distributed Object ComputingFalls Church, VA.), Object Man-
agement Group, July 2000.

J. Garon, “Meeting Performance and QoS Requirements W[tw]
Embedded CORBA,” irOMG’s First Workshop On Embedded
Object-based SysteméSanta Clara, CA.), Object Management
Group, Jan. 2001. [38

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” irProceedings of the
6th USENIX C++ Technical Conferenge(Cambridge, Mas- (39]
sachusetts), USENIX Association, Apr. 1994.

I. Pyarali, C. O’'Ryan, D. C. Schmidt, N. Wang, V. Kachroo
and A. Gokhale, “Applying Optimization Patterns to the De[40]
sign of Real-time ORBs,” ifProceedings of thét" Conference

on Object-Oriented Technologies and Systef8an Diego, CA),
USENIX, May 1999. [41]

N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Optimiza-
tions for CORBA,” C++ Report vol. 11, pp. 47-52, Novem-
ber/December 1999.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhal%l,zl
“Alleviating Priority Inversion and Non-determinism in Real-time
CORBA ORB Core Architectures,” ifProceedings of thett” [43]
IEEE Real-Time Technology and Applications Sympos{ran-

ver, CO), IEEE, June 1998.

A. Gokhale and D. C. Schmidt, “Principles for Optimizing
CORBA Internet Inter-ORB Protocol Performance,”Hawaiian
International Conference on System Sciendas. 1998. [44]

A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Pro-
tocol Engine for Minimal Footprint Multimedia Systemsgurnal

on Selected Areas in Communications special issue on Service En-
abling Platforms for Networked Multimedia Systert. 17, Sept.
1999. [45]

A. Gokhale and D. C. Schmidt, “Evaluating the Performance of
Demultiplexing Strategies for Real-time CORBA,"roceedings 16
of GLOBECOM '97 (Phoenix, AZ), IEEE, Nov. 1997. [46]

I. Pyarali, C. O’'Ryan, and D. C. Schmidt, “A Pattern Language for
Efficient, Predictable, Scalable, and Flexible Dispatching Mecﬂm
anisms for Distributed Object Computing Middleware,” Bmo-
ceedings of the International Symposium on Object-Oriented Real-
time Distributed Computing (ISORCYNewport Beach, CA),
IEEE/IFIP, Mar. 2000.

12

T. H. Harrison, C. O'Ryan, D. L. Levine, and D. C. Schmidt, “The
Design and Performance of a Real-time CORBA Event Service,”
submitted to the Journal on Selected Areas in Communications
special issue on Service Enabling Platforms for Networked Multi-
media System4998.

C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Serviégal-
Time Systems, The International Journal of Time-Critical Comput-
ing Systems, special issue on Real-Time Middleyware 20, Mar.
2001.

] C.D. Gill, R. Cytron, and D. C. Schmidt, “Middleware Schedul-

ing Optimization Techniques for Distributed Real-Time and Em-
bedded Systems,” iRroceedings of th&*" Workshop on Object-
oriented Real-time Dependable Syste($an Diego, CA), IEEE,
Jan. 2002.

C. Gill, D. C. Schmidt, and R. Cytron, “Multi-Paradigm Schedul-
ing for Distributed Real-Time Embedded ComputindEEE Pro-
ceedings Special Issue on Modeling and Design of Embedded Soft-
ware, Jan. 2003.

I. Pyarali, C. O’'Ryan, D. C. Schmidt, N. Wang, V. Kachroo,
and A. Gokhale, “Using Principle Patterns to Optimize Real-time
ORBs,"|EEE Concurrency Magazineol. 8, no. 1, 2000.

] W. R. StevensUNIX Network Programming, Volume 1: Network-

ing APIs: Sockets and XTI, 2nd Editiorenglewood Cliffs, NJ:
Prentice Hall, 1998.

D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware JEEE Communications Magazine
vol. 37, Apr. 1999.

D. C. Schmidt, D. L. Levine, and C. Cleeland, “Architectures
and Patterns for Developing High-performance, Real-time ORB
Endsystems,” ildvances in Computeréicademic Press, 1999.

D. C. Schmidt and C. Cleeland, “Applying a Pattern Language
to Develop Extensible ORB Middleware,” iDesign Patterns in
CommunicationgL. Rising, ed.), Cambridge University Press,
2000.

David McKinnon, et al, “MicroQoSCORBA. http://
microgoscorba.eecs.wsu.edu/

A. D. McKinnon and D. Bakken and J. Shovic, “Micro-
QO0SCORBA: A Reflective, QoS-Enabled, Configurable Mi-
croCORBA With CASE Support,” ifProceedings of the Second
Workshop on Real-time and Embedded Distributed Object Com-
puting OMG, June 2001.

A. D. McKinnon and O. Haugan and T. Damania and D.
Bakken and J. Shovic, “MicroQoSCORBA: A QoS-Enabled, Re-
flective, and Configurable Middleware Framework for Embed-
ded Systems .http://microgoscorba.eecs.wsu.edu/
MicroQoSCORBA-November2001.pdf

M. Roman, M. D. Mickunas, F. Kon, and R. H. Campbell,
“LegORB and Ubiquitous CORBA," inReflective Middleware
Workshop ACM/IFIP, Apr. 2000.

Manuel Roman and Roy H. Campbell and Fabio Kon, “Reflective
Middleware: From Your Desk to Your HandlEEE Distributed
Systems Onlinevol. 2, July 2001.

Manuel Roman, “Ubicore: Universally Interopera-
ble Core.” www.ubi-core.com/Documentation/
Universally_Interoperable_Core/universal%
ly_interoperable_core.html

	The Design and Performance of Special Purpose Middleware: A Sensor Networks Case Study
	Recommended Citation
	The Design and Performance of Special Purpose Middleware: A Sensor Networks Case Study

	tmp.1471023011.pdf.ufbwL

	Abstract: Abstract: General purpose middleware has been shown to be effective in meeting diverse functional requirements for a wide range of distributed systems. Advanced middleware

projects have also supported a single quality-of-service dimension such as real-time, fault tolerance, or small memory footprint. However, there is limited experience

supporting multiple quality-of-service dimensions in middleware to meet the needs of special purpose applications. Even though general purpose middleware can cover an

entire spectrum of applications by supporting the union of all features required by each application, this approach breaks down for distributed real-time and embedded

systems. In particular, features from one dimension such as real-time may interfere with requirements for another dimension such as fault tolerance. Furthermore,

the breadth of features supported may interfere with small memory footprint requirements. In this paper, we document the results of our experiences

developing special purpose middleware for an emerging class of systems: networked embedded sensors. We make two contributions to the state of the art in customized

middleware for distributed real-time and embedded applications. First, we demonstrate that reduced footprint can be achieved while maintaining or even improving

real-time properties. Second, we give evidence that empiricalmeasurement using a representative application is crucial to guide selection of feature subsets from general

purpose middleware
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: January 22, 2003
	Author: Authors: Subramonian, Venkita;Xing, Guoliang;Gill, Christopher D.;Cytron, Ron
	Title: The Design and Performance of Special Purpose Middleware: A Sensor Networks Case Study
	ReportNumber: 2003-6
	DepartmentName: Department of Computer Science & Engineering

