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Abstract

General purpose middleware has been shown to be ef-
fective in meeting diverse functional requirements for a
wide range of distributed systems. Advanced middleware
projects have also supported a single quality-of-service
dimension such as real-time, fault tolerance, or small
memory footprint. However, there is limited experience
supporting multiple quality-of-service dimensions in mid-
dleware to meet the needs of special purpose applications.

Even though general purpose middleware can cover an
entire spectrum of applications by supporting the union
of all features required by each application, this ap-
proach breaks down for distributed real-time and embed-
ded systems. In particular, features from one dimension
such as real-time may interfere with requirements for an-
other dimension such as fault tolerance. Furthermore,
the breadth of features supported may interfere with small
memory footprint requirements.

In this paper, we document the results of our expe-
riences developing special purpose middleware for an
emerging class of systems: networked embedded sensors.
We make two contributions to the state of the art in cus-
tomized middleware for distributed real-time and embed-
ded applications. First, we demonstrate that reduced foot-
print can be achieved while maintaining or even improv-
ing real-time properties. Second, we give evidence that
empirical measurement using a representative application
is crucial to guide selection of feature subsets from gen-
eral purpose middleware.

Keywords: Real-Time Middleware, Distributed Em-
bedded Systems, Sensor-Actuator Networks.
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1 Introduction

General purpose middleware is increasingly taking the
role that operating systems held three decades ago. Mid-
dleware based on standards such as CORBA [1], EJB [2],
COM [3] and Java RMI [4] now caters to the require-
ments of a broad range of distributed applications such as
banking transactions [5, 6], on-line stock trading [7], and
avionics mission computing [8]. Different kinds of gen-
eral purpose middleware have thus become key enabling
technologies for a variety of distributed applications.

To meet the needs of diverse applications, general pur-
pose middleware has tended to support abreadthof fea-
tures. In large-scale applications,layers of middleware
have been added to provide different kinds of services [8].
However, simply adding features breaks down for certain
kinds of applications. In particular, features are rarely in-
nocuous in applications with requirements for real-time
performance or small memory footprint. Instead, every
feature of an application is likely to either contribute to or
detract from the application in those dimensions. There-
fore, careful selection of features is crucial.

As middleware is applied to a wider range of distributed
real-time and embedded applications, a fundamental ten-
sion between breadth of applicability and customization
to the needs of each application becomes increasingly im-
portant. To resolve this tension, special purpose middle-
ware must address the following two design forces.

1. The middleware should be general enough that com-
mon abstractions can be re-used across different ap-
plications in the same domain.

2. We should then be able to make fine-grained modifi-
cations to tailor the middleware to the requirements
of each specific application.

To balance these design forces, two approaches to de-
veloping special purpose middleware must be considered:

� Top-down: sub-dividing existing general purpose
middleware frameworks,e.g., TAO [9], or

� Bottom-up: composing special purpose middleware
from lower level infrastructure,e.g., ACE [10].
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Both approaches seek to balance reuse of features with
customization to application-specific requirements. The
top-down approach is preferred when the number and
kinds of features required are close to those offered by
a general purpose middleware implementation. In this
case strategies can be selected for, possibly after being
added to, the general purpose middleware to fit the re-
quirements of the application. This has been in general
the approach used to create and refine features for real-
time performance in TAO.

On the other hand if the number or kinds of middleware
features required differs significantly from those in avail-
able general purpose middleware, as is the case with our
embedded sensor-network application, then a bottom-up
approach is preferable. This is based largely on the ob-
servation that in our experience lower-level infrastructure
abstractions are less inter-dependent and thus more easily
decoupled than higher-level ones. It is therefore easier to
achieve highly customized solutions by composing mid-
dleware from primitive infrastructure elements [11, 12]
than trying to extract the appropriate subset directly from
a general purpose middleware implementation.

Clearly, these approaches are complementary. Given
a single application with divergent requirements and an
available lower-level infrastructure framework, it may
be better to apply the bottom-up approach as we have
done using ACE to developing a small-footprint real-time
ORB middleware framework called nORB [13]. How-
ever, refactoring an existing general purpose middleware
framework top-down, especially incrementally over time,
allows a greater range of robust common features to mi-
grate downward into the lower-level infrastructure with-
out incurring excessive delay or cost for any one develop-
ment effort. For example, the migration of theACECDR
classes from TAO into ACE in earlier projects allowed
reuse of those performance-tested classes on the time-
critical remote-invocation path in nORB.
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Figure 1: Features, Footprint, and Performance Goals

Figure 1 illustrates the ideal relationships between fea-
tures, footprint and performance. It is reasonable to ex-
pect that there will be a reduction in footprint with fewer
features. Similarly, with fewer features along the time-
critical path, it seems that achieving at least compara-
ble performance would be trivial. However, as we de-
scribe in Section 3.4, omitting a key feature may in fact
hamperperformance. Thus, reducing features for lower
footprint while maintaining or improving performance in
comparison to proven real-time general purpose middle-
ware frameworks like TAO poses a significant challenge.

In this paper, we describe the challenges encountered in
developing the special purpose nORB middleware frame-
work, the solutions applied to address those challenges,
and empirical comparisons of achieved performance and
footprint to TAO, and several lessons learned in that pro-
cess. Section 2 describes the application domain and
its specific requirements for which we developed nORB.
Section 3 explains how our solution achieves real-time
performance comparable to TAO through careful appli-
cation of design patterns, while reducing footprint by in-
corporatingonly those features needed by the application.
In Section 4, we describe the results of experiments we
conducted to examine how well nORB performs in com-
parison to TAO. Our middleware approach draws on pre-
vious work, which we describe in Section 5. Finally, we
offer concluding remarks in Section 6.

2 Special Purpose Applications

Systems of distributed networked sensors offer an exam-
ple of a special purpose application domain that exhibits
the tension between design forces described in Section 1.
Sensor networks are being used in a variety of different
applications ranging from temperature monitoring to bat-
tlefield strategy planning [14]. Systems in this domain
are characterized by the following properties: 1) highly
connected networks of 2) numerous memory-constrained
endsystems, with 3) stringent timeliness requirements,
and 4) support for adaptive reconfiguration of compu-
tation and communication elements and their associated
timeliness requirements. Sensor networks thus challenge
classical approaches to distributed computing and repre-
sent an active research area with many open questions.

To identify and develop common software services
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for this class of systems, DARPA’s Networked Embed-
ded Systems Technology (NEST) program [15] has sup-
ported development of different Open Experimental Plat-
forms(OEPs), each providing its own challenge problems
for a particular kind of sensor network. Our work was
conducted in the context of a NEST OEP developed by
Boeing. The Boeing NEST OEP seeks to achieve fine
grain active control of acoustic and vibration mode damp-
ing for satellite launch vehicles and aircraft. Such ac-
tive damping is made possible by a large number of Mi-
cro Electro-Mechanical Sensor (MEMS) vibration sensor-
actuator nodes spread over the surface of the structure
whose vibrations are to be damped. In the Boeing NEST
OEP, in contrast to the wireless Berkeley motes [16],
nodes are inter-connected by a wired network.

2.1 Ping Node Scheduling

To identify the current vibration mode of the structure, a
System Identificationcomponent in the Boeing OEP sends
ping data to sensor nodes located on the structure and
identifies the mode based on the response data from the
nodes. Since sensors and actuators run on limited energy
resources, the number of responding nodes, calledping
nodes, should be as small as possible and still cover the
overall area to be monitored [17]. Moreover, the signaling
actions of two overlapping ping nodes should be synchro-
nized so that no interfering signals will be generated. The
problem of finding a schedule for ping node responses can
be solved by constraint satisfaction techniques [18]. In
this paper, we use the problem of scheduling the pinging
activities of sensor network nodes to compare the perfor-
mance of our special purpose middleware in to that of the
general purpose TAO Object Request Broker (ORB) [19].

2.2 Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) [20] aims to
find consistent assignments of values to a set of variables,
whose inter-dependencies represent the constraints of a
problem. For scalability reasons, distributed algorithms
are more effective than centralized ones in large sensor
networks, and it is thus desirable to apply a distributed
approach to constraint satisfaction problems such as ping
scheduling. In a distributed CSP, variables and constraints
are distributed among multiple nodes [21]. Distributed

algorithms like thedistributed breakout[21] algorithm
(DBA) and its variations [18] have been shown to be very
effective for solving the distributed constraint satisfaction
problem in sensor networks [18].

In particular, the ping scheduling problem can be for-
mulated in terms of a well-known distributed CSP:dis-
tributed graph coloring[18]. In distributed graph col-
oring, the goal is to find a valid color assignment for all
vertices of a graph, each an autonomous node in a dis-
tributed network, and the constraint being that two adja-
cent vertices (i.e., two vertices connected by an link) can-
not be assigned the same color. In the context of the ping
scheduling problem, the network of sensors corresponds
to a graph, a sensor-actuator node corresponds to a ver-
tex in the graph, and connections between sensor-actuator
nodes are represented by edges in the graph. The time
slot scheduled for a ping node corresponds to a vertex
color assignment in the distributed graph coloring prob-
lem. The example application used in our experiments
described in Section 4 applies a DBA [21] to solve the
distributed graph coloringproblem, and is thus represen-
tative of sensor network CSP applications more generally.
We use the termDBA-colorfor the algorithm used by our
test application, as described in Section 4.

2.3 Middleware Challenges

To facilitate exchanges of local information between
nodes as part of the distributed algorithm, a middleware
framework that abstracts common services like commu-
nication is needed. The key challenges we faced in the
design and implementation of this middleware are to:

Reuse existing infrastructure: We want to avoid de-
veloping new middleware from scratch. Rather, we want
to reuse pre-built infrastructure to the extent possible.

Provide real-time assurances: Middleware itself must
be predictable to allow application-level predictability.

Provide a robust DOC middleware: We chose the
DOC communication paradigm over the diffusion [22]
paradigm for sensor networks, since the DOC approach
offers a more maintainable programming model and al-
lows direct communication between remote nodes, which
is required by the Boeing OEP.
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Reduce middleware footprint: The target environment
for this middleware is the sensor-actuator nodes, which
have constraints on the amount of RAM/ROM on board.

3 Special Purpose Middleware De-
velopment - Our Approach

In this section we describe our approach to developing
special purpose middleware, to meet the challenges de-
scribed in Section 2.3. While we focus specifically on our
work on nORB, the same methodology can be applied
to produce middleware tailored to other special purpose
applications. This section is organized as follows: Sec-
tion 3.1 presents a brief survey of existing frameworks
and their limitations, and describes how we leveraged ex-
isting frameworks to arrive at our solution. In Section 3.3,
we describe the message formats that we use in nORB
for peer-to-peer communication. Section 3.4 describes
our work on critical path optimization based on previous
work done in TAO. Section 3.5 summarizes how we refac-
tored the TAO IDL compiler to build an IDL compiler for
nORB. Section 3.6 briefly describes the design choices we
made with respect to the lifecycle management of applica-
tion specific servant objects. The concurrency strategies
that we used are described in Section 3.7. Finally, in Sec-
tion 3.8 we show the footprint savings that were achieved.

3.1 Middleware Solution Space

Modern software development relies heavily on re-use.
Given a problem and a space of possible solutions, we
try first to see whether the problem can be solved directly
from an existing solution to a similar problem. If so, that
solution can be applied to the problem at hand. Taking
this view, we compared our problem space to a set of ex-
isting solutions, as shown in Table 1.

Challenge Framework
Infrastructure re-use ACE, TAO
Real-time assurances Kokyu, TAO
Robust DOC middleware TAO, e*ORB
Reduced middleware footprint UIC-Core, e*ORB

Table 1: Mapping Requirements to Possible Solutions

TAO [19, 9] and e*ORB [23, 24] appeared to be the
most suitable candidate solutions based on our middle-
ware requirements. TAO is is a widely used standards-
compliant ORB built using the ADAPTIVE Communi-
cation Environment (ACE) framework [25, 10]. In addi-
tion to predictable and optimized [26, 27] ORB core [28],
protocol [29, 30], and dispatching [31, 32] infrastructure,
TAO offers a variety of higher level services [33, 34].
e*ORB is a customized real-time and embedded ORB that
offers a reduced set of features, and a corresponding re-
duction in footprint.

Problem: We get more and/or less than we need.Un-
fortunately, faithful implementation of the CORBA stan-
dard increases the number of features supported by TAO
and other similar CORBA implementations and hence re-
sults in increased footprint for the application. In the
case of sensor network applications, this becomes pro-
hibitively expensive. Furthermore, the other frameworks
shown in Table 1 do not, in isolation, provide complete
solutions to all of the challenges described in Section 2.3.

Although ACE reduces the complexity of the program-
ming model for writing distributed OO applications and
middleware infrastructure, it does notdirectlyaddress the
challenges of real-time assurances, time-bounded adapta-
tion, reduced footprint, or interoperation with standards-
based middleware. Kokyu [35] is a low-level middleware
framework built on ACE, for flexible multi-paradigm
scheduling [36] and configurable dispatching of real-time
operations. Thus Kokyu supplements the capabilities of
a DOC middleware but cannot replace it. The UCI-Core
approach supports different DOC middleware paradigms.
It offers significant re-use of infrastructure, patterns, and
techniques by generalizing features common to multiple
DOC middleware paradigms and providing them within
a minimal metaprogramming framework, thus also ad-
dressing the challenge of reducing middleware footprint.
However, it is unsuited to meet the challenges described
in Section 2.3 because it does not directly support real-
time assurances or time-bounded adaptation of middle-
ware QoS properties. Moreover it does not address porta-
bility across heterogeneous platforms. Finally, e*ORB
provides a closed-source ORB implementation, which
does not meet our requirement for re-use of infrastructure
in the face of diverse requirements of special-purpose ap-
plications
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Our Solution: Use a bottom-up composition ap-
proach to get only the features that we need.We ini-
tially considered a top-down approach as described in
Section 1, to avoid creating and maintaining an open-
source code base separate from TAO. However, this ap-
proach proved infeasible due to several factors. First,
the degree of implementation-level inter-dependence be-
tween features in TAO made it arduous to separate them.
Second, the scarcity of mature tools to assist in identify-
ing and decoupling needed and unneeded features made
it unlikely we would meet the software release schedule
needed for the Boeing OEP. Third, absent better tools it
was also infeasible to validate that during refactoring we
had correctly retained functional and real-time properties
for the large body of TAO applications deployed outside
our DOC middleware research consortium.

Therefore, we ultimately took a bottom-up composi-
tional approach [13], starting at the ACE level and re-
using as much as possible from it. By building on ACE,
we reduced duplication between the TAO and nORB code
bases, while achieving a tractable development approach.
Figure 2 illustrates our approach. The selection of fea-
tures for our special purpose middleware implementation
was strictly driven by the unique requirements of the ap-
plication. As we show in Section 3.8, this removal of un-
needed features in turn results in footprint reduction.

nORB

ACE

 Network Programming
      primitives,
 Patterns,
 Portability

Kokyu

 Dispatching model,
 Real-time QoS

assurance
 

TAO

 IDL compilation strategies,
 ORB Concurrency patterns,
 ORB core mechanisms

UBI-Core

 What is the essence
of an ORB?

CORBA

 Message formats,
 Data representation,
 Communication model

Figure 2: Re-use from Existing Frameworks

As in TAO, ACE components serve as primitive build-
ing blocks for nORB. Communication between nORB
endsystems is achieved via the CORBA [1] model: the
client side marshalls the parameters of a remote call into
a request object and sends it to a remote server, which
then demarshalls the request and calls the appropriate ser-
vant object; the reply is then marshalled into a reply object
and sent back to the client, where it is demarshalled and
returned to the caller. Although we did not retain strict
compliance to the CORBA specification, wherever possi-
ble we have re-used concepts, interfaces, mechanisms and
formats from TAO and its implementation of the CORBA
standard. In the following sections, we describe the de-
sign decisions made in developing nORB and the ratio-
nale behind those decisions.

3.2 Data Types and Representation

We used the Boeing NEST OEP application domain to
guide our choice of data types that nORB supports. In
our DBA-color test application, for example, sequences of
simple structures are exchanged between sensor-actuator
nodes. nORB supports basic CORBA data types, struc-
tures and sequences. There is no support for CORBA
Anyor TypeCode. The support available for different data
types determines the amount of marshalling and unmar-
shalling code that needs to be generated, which is ex-
plained further in Section 3.5. We found that the mar-
shalling/unmarshalling code forAnyor TypeCodefor the
DBA-color application using TAO takes about 16KB.
Since the DBA-color application does not make use of
these data types and it is reasonable to expect this also
holds for other similar sensor network applications, we
omit support forAnyandTypeCodein nORB.

We use the CORBA standard Common Data Represen-
tation (CDR) as the data format on the wire in nORB.
The ACE framework provides excellent support for effi-
cient CDR marshalling and unmarshalling for a variety of
data types. The ACE CDR classes were originally devel-
oped for TAO, and are extensively re-used in nORB. This
in turn illustrates the benefits of pushing implementation
mechanisms down from higher-level middleware such as
TAO into lower level frameworks such as ACE.
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3.3 Special Purpose Messaging Protocols

We need to define protocols that enable communication
between end-system components, while meeting the foot-
print reduction challenge described in Section 2.3. Such
protocols define both the sequence and format of mes-
sages exchanged between end-systems.

Previous work [37] has shown that optimizations can
be achieved by the principle patterns of 1) relaxing sys-
tem requirements and 2) avoiding unnecessary generality.
Protocols in TAO likeGIOP-Lite [37] are designed ac-
cording to this principle. Similarly, we identify a limited
subset of the types of messages supported by the CORBA
specifications, so that we incur only the necessary foot-
print, while providing all features required by the appli-
cation. The Request, Reply, Locate Request, and Locate
Reply message types are supported by nORB.

Request
Id

Two Way
Flag

Op
Name

ObjectKey
Length

ObjectKey ParametersPriority

Request Id

nORB Request message format

nORB Reply message format

Status Results

nORB Locate Request message format

Locate Request Id corbaloc style Key

nORB Locate Reply message format

Locate Reply Id IOR string

nORB IOR format

Repository Id Object Key
Transport
Address

Priority

Profile-1 Profile-n

Figure 3: nORB IOR and Message Formats
Figure 3 shows the formats of different messages and of

the Interoperable Object Reference (IOR) used to invoke
remote methods in nORB. The format of the Request and
Reply messages closely resembles that of the GIOP Re-
quest and Reply messages respectively, the major differ-
ence being the elimination of the service context field in
the request and reply headers. The nORB client builds
a Request message and sends it to the nORB server that
sends a Reply back to the client. Based on the value of the
Two Way Flagin the Request message, the client waits to
get the Reply message from the server.

3.4 Critical Path Optimization

To achieve remote method invocation performance that
is comparable with TAO, we first identified the critical

path through the ORB while making a remote call. On
the client side, the critical path consists of the follow-
ing actions: marshalling the remote call parameters into
a request message, sending the request message through
a TCP socket, receiving the reply from the server, and
demarshalling the return values from the reply message.
Similarly on the server side, the critical path consists of
the following: receiving the request from the client, de-
marshalling the parameter values from the request mes-
sage, making the operation upcall, marshalling the call
return values into a reply message, and sending the reply
message through TCP socket back to the client.

Next, we took timing measurements at key checkpoints
along the critical path in both nORB and TAO. The check
points were 1) when the client makes a remote call, 2)
when the connection to the server is established, 3) when
the server receives the request, and 4) when the server
dispatches the request to the remote object.

Problem: Unnecessary system calls in the critical
path result in reduced performance. We found that on
the server side, reading data from different client connec-
tions was unnecessarily interleaved in nORB and hence
the latency between the first and the last read operation
for one request was very high. Normally only one read
operation is necessary to receive a request from the client.
The ORB dispatches an upcall to a servant only after the
whole request is read, and hence the delay incurred by
multiple read operations hurts the overall performance of
the server. In comparison, TAO does not exhibit this over-
head and receives each request in a single read operation.

After further investigation, we traced the problem to the
inefficient manner in which requests were being sent on
the client side of nORB. When nORB handled a request
from the client side application, two write operations were
being used to send a GIOP request to the server. The data
written by the second write operation could be buffered in
TCP layer while the first data chunk of the request has al-
ready been delivered to the server. Thus the GIOP request
was segmented and its receipt at the server spanned mul-
tiple read operations. This effect worsened when other
requests came to the server before the arrival of the later
chunk of a segmented GIOP request.

We also found that reading a request on the server
was done using tworecv system calls on the connection
stream - first for reading the request header and the second
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one for reading the request body, whereas the read oper-
ation could be done using a singlerecvcall for relatively
small payloads. This was done despite the request body
already being present in the TCP buffer.

Solution: Reduce the number of system calls in the
critical path. We achieved a single write operation on the
client side by applying the well-knowngather-write[38]
technique. On the server side, we optimized reading a re-
quest so that if possible the request header and body are
read using a singlerecvcall. While this solution is obvi-
ous in hindsight, the problems were not detected during
the initial development of nORB or even during its first
deployment in the Boeing OEP, all conducted by experi-
enced developers of advanced middleware and distributed
applications. Rather, this problem first came to light dur-
ing careful timing measurements performed to compare
nORB and TAO in our DBA-color application. Given the
myriad features within even a reduced middleware frame-
work, it is therefore essential to perform significant per-
formance testing along the critical path of special purpose
middleware and of related general purpose middleware
for comparison,during the development process itself.

3.5 Code Generation

A subset of the CORBA Interface Definition Lan-
guage(IDL) is supported by nORB. The nORB IDL com-
piler generates the marshalling and unmarshalling code
and hides the communication and connection manage-
ment from the application. The design of the nORB IDL
compiler [13] is not only based on the TAO IDL compiler,
and reuses some of its parts directly. The TAO IDL com-
piler is modular, consisting of a front-end (FE) library, a
pluggable back-end (BE) library and a top-level execu-
tive. We were able to re-use the FE library as is. For the
BE library, however, more significant changes were ap-
propriate [13]. We used a tie-based approach to generate
the skeleton classes and techniques to minimize virtual
functions and virtual inheritance in servant classes [13].
The skeletons thus became class templates that take the
implementation classes as parameters.

3.6 Life Cycle Management of services

In nORB, the number of objects hosted on a node is ex-
pected to be very small, which reduces the need for a

full-fledged object adapter. Servant objects are registered
when the application begins to run and live as long as the
duration of the application. This eliminates the need for
complicated life-cycle management. Even though the re-
sulting object adapter does not conform to the Portable
Object Adapter specification, a significant amount of foot-
print reduction is achieved because of the reduced object
adapter functionality. We have also consolidated object
registration with other setup functions, by moving it from
the object adapter interface to the ORB interface.

3.7 Message Flow Architecture

Our messaging and concurrency architecture is based on
previous work [39, 40, 41] done in TAO. When a client
makes a remote two-way function call, the caller thread
needs to block until it receives a reply back from the
server. The two-way function call is made on the client
stub, which then marshalls the parameters into a Request
and sends it to the server. The two-way function call se-
mantics requires the caller thread to block until the reply
comes back from the server. There are different strate-
gies [39, 40, 41] to wait on the client side for the reply, of
which we have chosen theWait on connectionstrategy for
implementation in nORB. On the server side, to process
an incoming request and send the reply back to the client,
we chose theDirect Upcall Strategyfor nORB. With this
strategy, the servant upcall is made in the context of the
network I/O thread, to improve real-time predictability.

3.8 Resulting Footprint Reductions

Figure 4 shows the footprint reductions achieved by our
composition approach. All measurements were taken us-
ing thesizecommand. Node and NodeRegistry, described
in detail in Section 4, are software components used by
the DBA-color application. The application specific code
in Node and NodeRegistry take about 164KB and 146KB
respectively. From our footprint measurements, we found
that ACE introduces an overhead of about 212KB, and
unoptimized versions of TAO and nORB introduce an ad-
ditional overhead of 1424KB and 1911KB respectively al-
though compile optimization of TAO and nORB reduces
the added overhead of the ORB layer to 1362KB and
133KB respectively.
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Figure 4: Footprint Comparision for DBA-color

4 Experimental Evaluation

In this section we describe a set of experiments conducted
to ensure our special purpose middleware, developed us-
ing the approach discussed in Section 3, performs well
compared to the highly optimized general purpose TAO
middleware for the representative DBA-color application.

4.1 Experimental Application and Platform

All experiments were conducted on a 4-machine cluster of
Pentium 4 2.53GHz CPUs, each with 512MB RAM run-
ning KURT Linux 2.4.18. A NodeRegistry process opens
a graph definition file and reads the topology of a graph
for which we need to find a valid color assignment. In our
experiments we used a 10x10 mesh of 100 Nodes, a rep-
resentative sensor network topology for the Boeing OEP.
Each Node represents a distributed vertex of the graph.
The sequence of events is as follows:

1. NodeRegistry loads the graph from a file.

2. Nodes register with NodeRegistry.

3. NodeRegistry returns neighbor data to each Node.

4. Nodes run DBA-color until a termination condition.

A group of 25 Node processes was executed on each
of the 4 machines and the NodeRegistry was executed
on one of the machines. A Node communicates with its
neighbors by sendingparameter messages. There are two

types ofparameter messages: 1) Value messages, con-
taining the current color assignment of the sending node,
and 2) Improvement messages, containing the maximal
reduction in conflicts that could be achieved by a color
change at the sending Node.

Initially, every Node picks a random color from a color
set of size equal to the diameter of the graph. The di-
ameter of our 100-node mesh is 18. Each Node sends its
current color to its neighbors. If two vertices connected
by an edge have the same color, then the constraint rep-
resented by the edge is considered to be violated. After
receiving individual colors from all its neighbors, each
node computes the extent of such violations locally and
tries to minimize such violations by searching for a differ-
entcandidatecolor assignment. It then sends animprove-
ment, which is a measure of the reduction in violations, to
its neighbors. After receiving improvements from all its
neighbors, a Node will only change its color to itscandi-
datecolor if its own locally computed improvement is the
maximum among all its neighbor Nodes. This process,
called acycle, is repeated until all violations are elim-
inated, i.e., a valid color assignment is found for every
Node. At this point, the algorithm is said to havecon-
vergedand all Nodes terminate and output their final col-
ors. Figure 5 illustrates the message interactions between
a node and one of its neighbors in one cycle of the DBA-
color. The original DBA algorithm is explained in detail
in [21].

1 CSP Cycle

Node A
Node B

(neighbor of Node A)

1 CSP Cycle

ColorA,1 ColorB,1

ImprovementA,1
ImprovementB,1

ColorA,2 ColorB,2

Figure 5: One DBA-color Timing Cycle

To meet the stringent performance requirements of
real-time applications, we explored various optimization
techniques for TAO and nORB. In particular, the follow-
ing versions of nORB and TAO are used in our experi-
ments: 1) unoptimized (default), 2) with static compiler
optimizations, and 3) with runtime optimizations. For the
runtime optimized versions, TAO is optimized for DBA-
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color implementation via single-thread and one way func-
tion call settings, whereas nORB is optimized using the
critical path techniques discussed in Section 3.4.

4.2 Performance Metrics

The following metrics were used to evaluate the perfor-
mance of nORB in comparison to TAO and ACE.

Elapsed cycle times: The elapsed time for one cycle of
the DBA-color algorithm is the fundamental measurement
in our experiments. As mentioned in Section 4.1, a node
has to wait forparameter messagesfrom all its neighbors
in each cycle of the DBA-color algorithm before it pro-
ceeds to the next cycle. Thus, a small delay in one cycle
of a node will be amplified and propagated to its neigh-
bors in the following cycles. This metric’s sensitivity to
delay was a major factor leading to identifying the perfor-
mance variations discussed in Section 4.3.

Real-time predictability: For many soft real-time ap-
plications, the system can afford to run even with mod-
erate numbers of failures to meet deadlines. In firm and
hard real-time systems, we need to assure time bounds
for higher percentages of all cases will be met. We mea-
sure time bounds on different percentiles of all samples,
for strict schedulability analysis in hard real-time systems
and for reliable predictability assurances in firm and soft
real-time systems.

Convergence times: Convergence of the DBA-color al-
gorithm for a given network topology is quantified by
the number of cycles needed before a global solution is
reached. However as noted above, variation in timing of
individual algorithm steps can have a significant impact
on the overall performance. Therefore, we measure the
total time for the algorithm to converge over multiple re-
peated runs, to assess the relative overall impact of using
ACE, nORB or TAO in the DBA-color algorithm.

4.3 Performance Results

We use each of the metrics described in Section 4.2 to
analyze our results, as follows.

Elapsed cycle times: Figures 6 and 7 show the distribu-
tion of measured cycle times over�500,000 cycles of the
DBA-color algorithm using ACE, nORB and TAO, up to

a 50msec limit that includes 95% of all samples in each
case. Measurements over 50msec are considered in the
next metric. We see that each optimization is effective in
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improving performance. Furthermore, the effects of the
optimizations are more obvious for TAO, since the default
configuration of TAO is aimed for multi-threaded general
purpose applications. In addition, we see that one cycle of
DBA-color takes similar time on average,�12 msec, us-
ing the runtime optimized versions of nORB or TAO with
average performance marginally better for TAO.

Real-time predictability: Figures 8 and 9 show the
time bounds required to assure that a given percentage
of all samples will fall within that bound and thus meet
a deadline at that bound. These results show that that time
bounds with nORB are marginally tighter than those for
TAO in the soft real-time cases from 99% to 90%, and
the nORB time bounds aresignificantlytighter than those
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for TAO in the firm/hard real-time cases at 99.9% and
higher. We are investigating the cause of a small num-
ber of anomolous outliers for ACE, reflected in Figure 9.
We suspect they are an artifact of the application or the ex-
periment since they are associated with Node termination.
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Figure 8: Lower Probability Time Bounds
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For example, at 98% assurance, the system must be
able to accommodate a delay of 21.3msec with nORB
compared to 23.1msec with TAO. At 95% assurance, the
system must be able to accommodate a delay of 15.9msec
with nORB compared to 17.3msec with TAO.

Convergence times: Finally, Figure 10 shows the total
convergence times for the DBA-color algorithm, running
on ACE, TAO, and nORB. As may be expected from the
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previous cycle time and time bound figures, ACE outper-
forms both nORB and TAO, performing much better in
both the average and worst cases. TAO slightly outper-
forms nORB in the average case, while nORB performs
better in increasingly worse cases.

5 Related Work

In this section we describe special purpose middleware
projects that address similar challenges to those described
in Section 2.3.

MicroQoSCORBA: MicroQoSCORBA [42] is a mid-
dleware research project at Washington State University,
focusing on middleware footprint reduction [43] through
customization [44] of middleware features for deeply em-
bedded systems. MicroQoSCORBA takes a CASE-tool
approach using customized IDL compilation to generate
client stubs and server skeletons supporting only the data
and exception types used, choose specific transports and
protocols, configure low-level marshaling properties. Mi-
croQoSCORBA involves the system developer in select-
ing valid and beneficial configurations of system features.
This approach thus trades increased complexity of config-
uring and validating the system, for greater power to tailor
the details of the system.

Ubiquitous CORBA: Ubiquitous CORBA projects
such as LegORB [45] and the CORBA specialization [46]
of the Universally Interoperable Core (UIC) [47] focus on
a metaprogramming approach to DOC middleware. Ubiq-
uitous CORBA is similar to the ACE, Kokyu, and TAO

10



approaches in that it assumes a general set of primitives
and a framework within which those primitives are ar-
ranged. The key difference is that the UIC containsmeta-
level abstractions that different middleware paradigms,
e.g., CORBA, must specialize [46], while ACE, Kokyu,
and TAO are concretebase-levelframeworks.

e*ORB: e*ORB [24] is a commercial CORBA ORB
which was developed for embedded systems, especially
in the Telecom domain [23]. Although the e*ORB
web pages claim that e*ORB is the smallest and fastest
CORBA ORB, they do not show the kinds of detailed per-
formance and footprint comparisons with other ORBs,in
the context of a specific application, as is presented here.

6 Conclusions

In this paper we have shown that reduced footprint can
be achieved while maintaining or even improving real-
time properties, in comparison to general-purpose real-
time middleware. We have also illustrated the importance
of careful empirical measurement within the context of a
representative application, during the development of spe-
cial purpose middleware. We argue that there are signif-
icant advantages to building special-purpose middleware
using a bottom-up composition of lower-level infrastruc-
ture. At the same time, we note that our ability to build
robust middleware using ACE depended in part on previ-
ous top-down development in TAO that then pushed key
primitives,e.g., the ACE CDR classes, down into ACE.
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