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Extrinsic Auto-calibration of a Camera and Laser Range Finder

Robert Pless Qilong Zhang
Department of Computer Science & Engineering

Washington University in St. Louis

Abstract

This paper describes theoretical and experimental results
for the auto-calibration of sensor platform consisting of a
camera and a laser range finder. Real-world use of au-
tonomous sensor platforms often requires the re-calibration
of sensors without an explicit calibration object. The con-
straints are based upon data captured simultaneously from
the camera and the laser range finder while the sensor plat-
form undergoes an arbitrary motion. The rigid motions of
both sensors are related, so these data constrain the rela-
tive position and orientation of the camera and laser range
finder. We introduce the mathematical constraints for auto-
calibration techniques based upon both discrete and differ-
ential motions, and present simulated experimental results,
and results from a implementation on a B21rTM Mobile
Robot from iRobot Corporation. This framework could also
encompass extrinsic calibration with GPS, inertial, infrared,
and ultrasonic sensors.

1 Introduction

Fusing data captured by multiple sensors is important
for many robotic tasks. For sensors such as video cameras,
laser range finders, ultrasound sensor and GPS, the position
and orientation of the sensor affects the geometric interpre-
tation of its measurements. In order to effectively use the
data from all these sensors, it is important to know the rel-
ative position of each from each other, or of each from a
fiducial coordinate system.

The calibration of each of these geometric sensors can
be decomposed into internal calibration parameters and ex-
ternal parameters. The external calibration parameters are
the position and orientation of the sensor relative to some
fiducial coordinate system. The internal parameters, such
as the calibration matrix of a camera, affect how the sen-
sor samples the scene. We concentrate only on finding
the external calibration parameters because for many sen-
sors there already exists self-calibration techniques, for
cameras [2, 5, 8, 18], for optical and magnetic 6 DOF-
sensors [7], and for other sensors such as an electronic com-

Figure 1. A B21rTM Mobile Robot from iRobot Corpo-
ration can be configured to have a video camera (at the top)
and a planar laser range finder which measures distances to
points lying on a plane about 18 inches off the floor. The
goal of this paper is to study auto-calibration methods that
find the rotationΦ and the translation∆ which transform
points in the laser coordinate system to points in the nor-
malized camera coordinate system — by considering data
captured simultaneously from both sensors when the robot
is in motion.

pass [9]. It is both possible and often beneficial to simulta-
neously estimate both the intrinsic and extrinsic parameters
of a sensor, but in this work we assume that the intrinsic
parameters of each sensor are known.

The contribution of this paper is the description of a the-
ory and implementation of a method to find the relative po-
sition and orientation of a camera and a laser range finder.
To our knowledge this is the first paper to discuss this auto-
calibration problem. A companion paper presents calibra-
tion algorithms for the explicit calibration of a camera and
laser range finder, this is used as a baseline against which
the auto-calibration errors are calculated. A calibrated sys-
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tem of this sort can be used to simulate a focal plane array
which captures an image of a scene and overlays depth in-
formation for parts of the scene imaged by the laser (see
Figure 5). This type of focal plane array has enormous ad-
vantages for many navigation problems including motion
and structure estimation.

This work was inspired by two previous works. De-
termining the extrinsic geometric transformations between
two cameras mounted on a rigidly moving object was dis-
cussed (but not implemented) in [1], and a theory and im-
plementation for solving for the intrinsic and extrinsic pa-
rameters were calculated in [19]. In both cases, it was not
necessary that the cameras share a common or overlapping
field of view, both methods consider the constraints gen-
erated because the cameras motions were forced to have a
motions consistent with their fixed, relative position.

It is important also to differentiate this work from two
other problems that at first may appear similar. There have
been several proposed methods for auto-calibration of a
stereo camera pair with points that are matched between
both cameras in the pair, and between images from different
positions of the camera pair [3, 10, 20]. This is a fundamen-
tally different kind of constraint, and requires that the cam-
eras have overlapping fields of view. There has also been a
great deal of work on calibration for laser scanners. Finding
the geometric relationship between the laser scanner and the
camera is vital to creating metric depth estimates from the
camera images, and auto-calibration methods exist for this
problem as well [12]. Laser scanners are the parts of ac-
tive vision systems which projects a point or a stripe which
is then viewed by the camera, as opposed to a laser range
finder which reports distances to objects that lie in particu-
lar directions.

The next section introduces notation used to represent
the position of sensors relative to one another. Section 3
derives the coherent motion constraints that relate a rigid
motion in one coordinate system to the same rigid motion
in another coordinate system for both differential and dis-
crete motions. Section 4 gives methods for solving for the
extrinsic calibration, first showing a method for the implau-
sible case of two sensors which each can accurately deter-
mine their motion (in their own coordinate system), and
then showing more realistic methods to calibrate a camera
relative to the coordinate system of a laser range finder. We
conclude by giving experimental results showing the suc-
cess and failure modes of the techniques presented.

2 Background

This paper is aimed at solving constraints to relate the
position of multiple sensors relative to each other. An
equivalent problem — and easier to define — is to relate the
position of each sensor relative to some fiducial coordinate

system. The fiducial coordinate system defines an origin,
(the point (0,0,0)), and the X,Y, Z axes. For the remain-
der of this paper, it is assumed that the sensors are always
fixed relative to the fiducial coordinate system (which may
be undergoing a rigid transformation).

Each sensor also has a local coordinate system. How
this local coordinate system is defined is specific to the type
of sensor. A common example is a pinhole camera which
defines a coordinate system fixed on the pinhole, with the
Z-axis pointing along the optical axis, and X and Y axes
dependent upon the intrinsic calibration of the camera.

The goal of this paper can then be stated as finding the
transformation from each sensor coordinate system to the
fiducial coordinate system. This coordinate system trans-
formation is also a rigid transformation. That is, a pointPi

in the coordinate system of sensori is located at a pointPf

in the fiducial coordinate system:

Pf = ΦiPi + ∆i (1)

whereΦi is a 3x3 orthonormal matrix representing the
rotation and∆i is an offset vector corresponding to the
translation. In what follows, the variablesΦ and∆ always
correspond to transformations between coordinate systems
of different sensors, while variablesR, T correspond to the
rigid motions of the system or of individual sensors. Our
goal in this paper is to develop ways to solve for these trans-
formation parametersΦi and∆i which define the position
of sensors with respect to the fiducial coordinate system.

If two sensors are known relative to fiducial system,
we can map between them directly. And a pointPi in
the coordinate system of sensori is located at a point
Φ−1

j (ΦiPi + ∆i −∆j) in coordinate system of sensorj.

3 Coherent Motion Constraints

Autonomous systems are being built with multiple sen-
sors. If the sensor are rigidly attached to the system, the
motion of these sensor is exactly constrained with respect
to the motion of the fiducial coordinates of the system. In-
tuitively, the relationships between the local motion at each
sensor constrains their relative position. In this section we
write the relationships between the motion of a fiducial sys-
tem and the motion experienced in the local coordinate sys-
tem of a sensor. We do this for both differential and discrete
system motions.

3.1 Differential Motion

Suppose the fiducial system is undergoing an instanta-
neous translation~tf and an instantaneous rotation~ωf . In
the local coordinate system of sensor i, this creates an in-
stantaneous translation~ti:

~ti = Φ−1
i (−~tf −∆i × ~ωf )
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and an instantaneous rotation~ωi in the local coordinate sys-
tem:

~ωi = Φ−1
i ~ωf

This gives constraints onΦi,∆i as a relationship between
the local differential motion to fiducial differential motion.

3.2 Discrete Motion

Suppose the fiducial system is undergoes a discrete trans-
lation Tf and an instantaneous rotationRf . This motion
transforms a pointPf in the fiducial coordinate system as
follows:

P ′
f = RfPf + Tf (2)

Relative to the coordinate system of sensori, the motion of
a pointPi can be written (by substituting into Equation 1):

ΦiP
′
i + ∆i = Rf (ΦiPi + ∆i) + Tf , (3)

which can be transformed to give the positionP ′
i as a func-

tion of the fiducial motion and the position and orientation
of sensori:

ΦiP
′
i + ∆i = Rf (ΦiPi + ∆i) + Tf

ΦiP
′
i = Rf (ΦiPi + ∆i) + Tf −∆i

P ′
i = Φ−1

i (Rf (ΦiPi + ∆i) + Tf −∆i)
P ′

i = Φ−1
i RfΦiPi + Φ−1

i Rf∆i + Φ−1
i (Tf −∆i) (4)

Relative to the local coordinate system, each point is trans-
formed as a rigid motion:

P ′
i = RiPi + Ti. (5)

Setting the right hand sides of Equations 4,5 to be equal, we
can write:

Ri = Φ−1
i RfΦi

Ti = Φ−1
i Rf∆i + Φ−1

i (Tf −∆i). (6)

This gives a constraint onΦ,∆ as relationship between the
discrete motion in the local coordinate system and the dis-
crete motion in the fiducial coordinate system.

4 Estimation of Extrinsic Calibration

The previous section gives constraints relating the mo-
tion of each sensor to that of the fiducial system. Now we
consider solving forΦ, and∆ using these constraints. As
a warm up, we first consider sensors that are capable of es-
timating all parameters of motion in their local coordinate
system. Then the coherent motion constraint allows the so-
lution for the relative orientation and position of each sen-
sor. We describe this process for two sensors for the discrete

motion case, the differential case is slightly easier. For con-
venience, we choose as the fiducial coordinate system the
coordinate system attached to one of the two sensors. Then
the orientation and position of another sensor relative to the
fiducial coordinate system are denoted byΦ and∆ respec-
tively.

Suppose that this system undergoes several different mo-
tions. In each motion, both of the sensors can independently
measure their rotation and translation exactly. Then for the
jth motion, the rotation and translation of the fiducial sys-
tem areRj

f andT j
f respectively, while those of the other one

areRj andT j respectively. Then we can write out coherent
motion constraints for thejth motion from Equation 6:

Rj = Φ−1Rj
fΦ

T j = Φ−1Rj
f∆ + Φ−1(T j

f −∆) (7)

A 3D rotation can be specified by an axis of rotation with
a unit length vector~r, and an angle of rotationθ. Usually
these two value are jointly specified as a rotation vector~ω =
~rθ. So in this paper, we also use~ω to denote the rotation
represented by the rotation matrixR. The conversion from
vector~ω to matrixR is given byRodrigues formula:

R = I + [~r]x sin(θ) + [~r]2x(1− cos(θ))

In terms of rotation vectors, the rotation constraint of Equa-
tion (7) can be written as~ωj

f = Φ~ωj , which can derive a

constraint on the rotation axis as~rΦ · (~ωj
f − ~ωj) = 0, where

~rΦ denotes the unit vector representing the axis of rotation
represented byΦ. Each motion j gives one constraint of this
form, so we can solve for~rΦ by minimizing,∑

j

(~rΦ · (~ωj
f − ~ωj))2 (8)

Once the axis of rotation is known, the angle of rotationθΦ

is can be estimated by minimizing:∑
j

‖ ~ωf
j − Φ~ωj‖2, (9)

whereΦ = I + [~rΦ]x sin(θΦ) + [~rΦ]2x(1− cos(θΦ)), which
is now a function only of the unknown rotation angleθΦ.

After the orientation of the sensorΦ is determined, we
can continue to solve its relative position∆. It can be also
estimated by solving a least-square problem, which mini-
mizes the discrepancy from the coherent motion constraint.∑

j

(ΦT j −Rj
f∆ − T j

f + ∆)2 (10)

This presentation, while unrealistic in its assumptions, sets
up the following sections. Each section seeks to estimate
Φ, and∆, by minimizing a function that depends on the
coherent motion constraint.
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4.1 Using the Epi-Polar constraint

It is unreasonable to assume that each sensor accurately
measures its own ego-motion (if this were the case, there
would be less of a reason to use multiple sensors). For ex-
ample, motion estimation from image data is known to have
ambiguities confusing the estimation of rotation and trans-
lation. A more reasonable assumption is that a sensor can
compute an error measure relating its measurements to a lo-
cal motion estimate. An example is the epi-polar constraint,
a relationship between camera motion and correspondence
between image points.

The outline of the approach is the following. Initially,
assume that the fiducial motion is known exactly. Then for
a choice ofΦ, and∆, calculate the motion experienced in
the camera coordinate system. This motion (like all rigid
motions of a camera) defines an epi-polar constraint. We
find corresponding points between two images taken by the
camera, and calculate how well this epi-polar constraint fits
the set of correspondences. This becomes an error for that
choice ofΦ and∆.

More formally, let image I be the image before camera
motionj, and I′ be the image after camera motionj. Sup-
pose there are givenm corresponding points between I and
I’ noted bymk, m′

k (k = 1, ..,m), they satisfy the epi-polar
constraint:

m′j
kF jmj

k = 0 (k = 1, ..,m) (11)

whereF j is fundamental matrix for motion j, relating im-
ages I and I’.

Suppose camera motionj is described by camera rota-
tion Rj and translationT j , then the essential matrixEj re-
lating image I and I’ is given by:

Ej = [T j ]xRj

The fundamental matrixF j can be decomposed asF j =
K−TEjK−1, where K is the intrinsic matrix for the cam-
era. After some simple substitutions, we have the following
constraint:

F j = K−T[T j ]xRjK−1 (12)

We can write an expression for the fundamental matrix in
terms of the motion in the fiducial coordinate system, by
substituting Equation 6 into Equation 12:

F j = K−T[Rj
f∆ −∆ + T j

f ]xR
j
fΦK−1 (13)

This defines the fundamental matrix as a function ofΦ and
∆, and we can write an error function forΦ and∆ directly
in terms of the corresponding points. ThenΦ and∆ can
be estimated by solving a least-square problem, which min-
imizes the residual from the epi-polar constraints (for all
pointsj in all framesk.) (Equation 11),∑

j

∑
k

(m′j
kF jmj

k)2 (14)

whereF j is expressed in terms ofΦ,∆, Rj
f , T j

f in Equa-
tion 13 1. This algebraic error, however, does not have di-
rect interpretation in the measurement space, (i.e., it is not
a distance in the image plane). So we rewrite the residual
function in Equation 14 using the discrepancy in the epi-
polar geometry,∑

j

∑
k

(d2(m′j
k, F jmj

k) + d2(mj
k, F jTm′j

k)) (15)

Whered2(·, ·)is the squared distance between a point and a
line. Since Euclidean distance in the metric space are used,
the new criterion is more reasonable.

In our experiments we have used MATLAB’s nonlinear
optimization tools, either using Gauss-Newton method [4]
with line-search for finding an unconstrained minimum of
a sum of squares of nonlinear functions, or specifying the
Levenberg-Marquardt method [13, 14, 15]. They demand
the initial estimate of the orientation and position of the
camera to be provided. If we have prior knowledge of cam-
eras and the fiducial system, we can directly use it as the
initial estimation.

4.1.1 Implementation

We implement the previous algorithm on a B21rTM Mo-
bile Robot from iRobot Corporation. A Sony DFW-VL500
camera is mounted on top of the robot, and the laser ranger
finder calculates distances to points on a plane parallel to
the floor. The center of the laser range finder is set as the
fiducial coordinate system.

Estimating the Fiducial Motion from Laser Points.
Initially, we implement an algorithm (a simplified version
of [16]) to compute an estimate of the fiducial motion
from the laser range finder data alone. In order to esti-
mateRf andTf , we define an error measure by comput-
ing generalized Hausdorff Distance between the two sets
of laser points generated before and after the fiducial mo-
tion. Given two sets of pointsP = {p1, p2, . . . , p180} and
P ′ = {p′1, p′2, . . . , p′180}, where P is the laser reading be-
fore fiducial motion, andP ′ is the laser reading after fidu-
cial motion. The generalized Hausdorff measure is defined
as

Hk(P, P ′) = max(hk(P, P ′), hk(P ′, P ))

where
hk(P, P ′) = kth

p∈P
min
p′∈P ′

‖p − p′‖

wherekth denotes thek-th ranked value. In this paper, we
are interested in using this generalized Hausdorff distance

1Note that althoughF j changes based upon both the fiducial motion
and the camera position, the estimate ofΦ, ∆ is constant over all images,
so many system motions can simultaneously constrain the solution.
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to measure howP ′ matches withP after a rigid transfor-
mation. In terms of fiducial motionRf andTf , the error
approximation can be defined as:

K∑
k=1

(Hk(RfP + Tf , P ′) + Hk(R−1
f (P ′ − Tf ), P )) (16)

where K is the parameter determining how many laser
points are taken into account (We use a value of K = 160,
which allows up to 20 range points to be outliers). The
estimated fiducial motion parametersRf andTf are those
which by minimizing above error function.

4.1.2 An Iterative Algorithm

As we can see, it is not possible to measure the fiducial mo-
tion parametersRf andTf precisely, which can introduce
much noise during the estimation ofΦ and∆. A robust ap-
proach is to iteratively refine the fiducial motion parameters
by considering Equation 16 during the estimation ofΦ and
∆. Assume the camera’s orientationΦ and position∆ are
available, we can instead optimize our estimate of the fidu-
cial motion, and write the residual function forRf andTf in
terms of the corresponding points between camera captured
imagesI andI ′:

ρ(Rf , Tf ) =
∑

k

(d2(m′
k, Fmk) + d2(mk, FTm′

k))

We also denote the error from Equation 16 by a function
of Rf , Tf asσ(Rf , Tf ). Then we can estimate the fiducial
motion parametersRf andTf by solving a nonlinear mini-
mization problem as:

minimize
Rf ,Tf

(ρ(Rf , Tf ) + ασ(Rf , Tf )) (17)

whereα is the relative confidence of the different error mea-
sures.

Now we present an iterative scheme for computing rela-
tive position and orientation of the camera.

1. for each motion, fiducial motion parametersRf and
Tf are estimated by minimizing Equation 17. From
the camera images, extract corresponding points. This
was implemented with a stereo correspondence algo-
rithm based on Singular Value Decomposition [17] and
optimized using RANSAC [6].

2. Estimate camera orientationΦ and position∆ by min-
imizing the residual function from the epi-polar con-
straints in Equation 16.

3. Based on current estimated camera orientation and po-
sition, re-estimate fiducial motion parametersRf and
Tf for each motion by minimizing Equation 17, with
the current estimates ofRf andTf as initial guess.

4. Repeat Step 2, 3 until convergence (usually two or
three iterations).

This iterative algorithm is used in the experiments shown in
Section 5.

4.2 Differential Motion Contraints

In this section we consider auto-calibration of a system
undergoing differential motion. We assume that the field of
view of laser ranger finder and camera overlap. The intu-
itive approach is the following. The laser range finder gives
the 3D coordinates of a number of points in the environ-
ment. GivenΦ and∆ and the correct fiducial motion, these
3D points determined by the laser range finder can be cor-
rectly projected onto the image,and the optic flow can be
predicted at these points. Calculating the spatio-temporal
image derivatives at these points, we can use the optic flow
constraint equation as an error function, then solve for the
Φ and∆ that minimize this error function.

In fact, it is theoretically not necessary to know the cor-
rect fiducial motion. Since the planar laser range finder only
finds points that lie on a plane, the motion of all the points
viewed by the laser range finder is constrained to be a pla-
nar projective transformation. Measuring deviation from
this constraint gives an error measure that does not require
knowledge of the fiducial motion.

To be more formal, here are basic notations describing
the ego-motion of the camera and the corresponding optic
flow of points viewed by the planar laser range finder. Let
(X, Y, Z) denote the coordinates of a scene point respect to
the camera, and let(x, y) denote the corresponding coordi-
nates in the normalized image plane (i.e., the focal length is
1 so the image plane is the planeZ = 1). The perspective
projection of a scene pointP = (X, Y, Z)T to an image
pointp = (x, y)T is described by:

p =
[
x

y

]
=

[ X
Z
Y
Z

]
(18)

The ego-motion of camera2 is determined by a rotation
~ω = (ωX , ωY , ωZ)T and a translationT = (TX , TY , TZ)T.
Due to the camera motion, the scene pointP = (X, Y, Z)T

has a velocityṖ = (Ẋ, Ẏ , Ż)T with respect to camera co-
ordinates system, described by:[ Ẋ

Ẏ

Ż

]
= −~ω ×

[
X
Y
Z

]
− T (19)

The instantaneous motion of the camera creates a 2D op-
tic flow (u, v) of an image point(x, y) in the image plane,

2Note, we are about changed the definition ofω from the derivations in
the discrete section.ω is now the angular velocity vector, and not a vector
of Rodrigues parameters that represents a discrete rotation matrix.
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which can be expressed by:[
u

v

]
=

[−(TX

Z + ωY ) + xTZ

Z + yωZ − x2ωY + xyωX

−(TY

Z − ωX) + y TZ

Z − xωZ + y2ωX − xyωY

]
(20)

Assume that the laser plane is describe by1 = AZ +BX +
CY with respect to the camera coordinates. By perspective
projection, this yields:1Z = A + Bx + Cy where: (x, y)
are normalized image coordinates. Therefore, Equation 20
can be rewritten as (derivation taken from [11]):[

u

v

]
=

[
a + bx + cy + gx2 + hxy

d + ex + fy + gxy + hy2

]
(21)

where:

a = −ATX − ωX b = ATZ −BTX

c = ωX − CTX d = −ATY + ωX

e = −ωZ −BTY f = ATZ − CTY

g = −ωY + BTZ h = ωX + CTZ

Equation 21 describes the 2D motion of the laser plane in
the image plane, expressed as a linear function in eight pa-
rameters(a, b, c, d, e, f, g). All scene points viewed by the
laser should have an optic flow that conforms to this system.
If the spatio-temporal derivatives of the image intensity are
computed, and the scene in view is Lambertian, then as an
error measure, we can use the optic-flow constraint equa-
tion:

uIx + vIy + It = 0 (22)

where: (u, v) is the displacement of the laser point on the
image place,Ix, Iy, It are the derivatives of the image inten-
sity with respect to the direction of X, Y and T respectively.

An estimate ofΦ and ∆ define the locations where a
scene point is projected onto the image. If, additionally,
the fiducial motion of the system is known, the values of
a, b, . . . , h can be computed explicitly to give an exact es-
timate ofu, v for each laser point projected on the image.
The deviation from the optical flow constraint is summed
over all of these points to give a direct error measure for
Φ,∆.

Err(Φ,∆) =
∑

(uIx + vIy + It)2 (23)

Surprisingly, it is possible to define an error measure even
if the fiducial motion is not known. For any fiducial mo-
tion, the optic flow at all points on the laser plan must fit
the model given by Equation 21. Symbolically substituting
that optic flow into the optic flow constraint equation (Equa-
tion 22), we get one equation for each projected laser point,
which is linear in the unknownsa, b, . . . , h:

Ix(x, y)(a + bx + cy + gx2 + hxy)
+ Iy(x, y)(d + x + fy + gxy + hy2)
+ It = 0 (24)

Figure 2. Running the auto-calibration for discrete mo-
tions with simulated data. The green diamonds are repro-
jections of the actual laser points, the red circles are repro-
jections for the estimatedΦ and∆.

The residual of the solution to this linear system defines
an error function forΦ and∆. In essence this defines ex-
actly the same constraint as [11], but instead of solving for
egomotion from a single video sequence, we use the error
function to find aΦ and∆ which are consistent with image
derivative measurements on the plane.

In our implementation all of the above error function are
minimized using MATLAB’s nonlinear optimization tools.
We find thatwhenthe system converges at all, it does so
after fewer than 40 Levenberg-Marquardt iterations. The
experimental section delineates the convergence properties
of the system and accuracy of that solution for several dif-
ferent scenes.

5 Experiments

The section presents results from experiments with the
auto-calibration algorithm defined in Section 4.1.2 for dis-
crete system motions, and the algorithm which minimizes
Equation 23 for differential system motions.

Discrete Motion Simulations The initial test of the
auto-calibration for discrete system motion uses simulated
data created in a graphics environment. Simulated laser data
and two images of the scene were generated for a known
fiducial motion. Corresponding points in these two im-
ages were calculated, and the iterative algorithm from Sec-
tion 4.1.2 was run. For this simulated data, the iterative al-
gorithm calculates aΦ and∆ which gives an epi-polar error
with an average error for each point from its corresponding
epi-polar line of 0.68 pixels. Because this data is simulated,
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Figure 3. Results of running the auto-calibration for dis-
crete motions. The red circles circles are the re-projected
images of the points measured by the laser range finder us-
ing theΦ and∆. Green squares show reprojection using
correct (hand calculated)Φ and∆. (Top) After one itera-
tion of algorithm described in Section 4.1.2. (Bottom) After
three iterations of alternating refinement of fiducial motion
and camera position.

we can also compare the computedΦ and∆ to the real so-
lution, and find an error in the position of 1 centimeter3,
and a rotational error of (slightly less than)1◦. Results are
depicted in Figure 2.

Discrete Motion Actual Experiments The second ex-
periment uses real data from the robot and camera system
shown in Figure 1. The results of the iterative estimation
algorithm are illustrated in Figure 3. After one iteration
(minimizing the epi-polar error for the initial estimate of
fiducial motion), the mean distance from each laser point to
its epi-polar line was 1.5 pixels. After 3 iterations (alternat-
ing between updatingΦ,∆ andRf , Tf ), the mean epi-polar
distance error drops to 0.66 pixels, and the orientation esti-
mate of the camera is improved but retains a slight error

3The translation estimate is limited to the plane of the floor because
fiducial motions were limited to that plane. That is, we get an error of 1
cm. in estimating the X and Z component of the position, and no estimate
at all of the Y component of the position. The figures (for the discrete
algorithms) are drawn with the correct Y component “hard-coded”.

Figure 4. A similar experiment two Figure 3, but with a
more complicated scene. Shown here is the result after 3
iterative refinement stages

around its horizontal axis. The same experiment was run
on data from a more complicated scene (with great depth
variation). Figure 3 shows results for this case after 3 itera-
tions, which converged with a mean epi-polar distance error
of 0.84 pixels.

Differential Motion Actual Experiments. Final auto-
calibration results from the algorithm in Section 4.2 are
shown in Figure 5. This algorithm is highly sensitive to
the initial condition and often does not converge to be near
the correct solution. Empirically we have observed that for
different situations, there is a limit to the tolerated error in
the initial estimate of theΦ. This critical error limit de-
pends on the complexity of the scene (more depth variation
in the scene gives stronger constraints) and the availability
of texture (as required for most image derivative methods).

Situation Critical rotation error
Complex Scene, Good Texture10◦

Complex Scene, Little Texture 7◦

Simple Scene, Good Texture 5◦

Simple Scene, Little Texture NA

Conclusions: Auto-calibration is an important tool for
many real-world applications. The consistent rigid motion
constraint is a general tool that can lead to auto-calibration
algorithms for many different kinds of sensors. The re-
sults here are an encouraging first look at the possibilities
for a system with a camera and a laser range finder. This
work could be usefully extended to test these algorithms on
a broader set environments, especially if there is a way to
give a useful parameterization (or other formalization) of
“typical outdoor environments”. The consistent rigid mo-
tion constraint can also be used as a framework for the
auto-calibration of different varieties of sensors including
an electronic compass, gyroscope, and inertial sensors.
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Figure 5. Two results of running the auto-calibration
for differential motions. The red dots are the re-projected
points for the estimatedΦ, ∆. The blue triangles are re-
projected according the (incorrect)Φ, ∆ used as a starting
condition for the optimization algorithm of Section 4.2.
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