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Data streaming algorithms are a class of problems that deal with moving data through a

system while being processed. When implementing these types of algorithms a developer

will spend time tuning an implementation for deployment, but if they are using heteroge-

neous architectures or when nodes of computation are physically separate from one another

performance may be lost to unforeseen data movement complications. In this work we aim

to alleviate some of these pain points through a combination of programming advice and

mathematical models.

One of the pain points often unseen and underappreciated by developers is a type of data

streaming task known as data integration, which are tasks that transform one data element

form into another form, usually targeting some other step in the overall processing pipeline.

When studying how to improve these types of tasks, we implement them across a variety

of execution platforms. Of particular interest to us, we give advice on how to implement

such tasks on FPGA architectures. Beyond individual data streaming tasks we then utilize

mathematical modeling to understand how individual nodes of computation effect the full

data flow of a streaming algorithm. Here we apply existing queuing theory models to reason

about average performance of the algorithm and also make estimations on the cost of using

the system. To speak on absolute bounds of the system we turn to network calculus which

allows us to make estimates of latency on data throughput in the system and predictions

viii



of queue bounds on a node for given arrival and service processes. This represents the first

known application of network calculus techniques to streaming data applications.
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Chapter 1

Introduction

In the world of computer science we often concern ourselves with the idea of algorithms

to solve problems: brute force, dynamic programming, machine learning, approximation

algorithms, artificial intelligence, and numerous other options. Researchers and developers

alike spend a majority of their time creating, analyzing, and testing, all in hopes that their

solution might be the prolific application in their field. Time and resources are spent finding

an optimal strategy that accounts for both hardware and software implementations. Going

further, while a single algorithm may be optimal, they are often one part of a much larger

system where information produced by algorithms are utilized by other algorithms, analyzed

for metadata, or even stored for later retrieval. The developers in question now have to

spend the time implementing and optimizing a single algorithm for deployment but consider

a larger system that has interactions with other modules. These types of systems are often

considered as streaming algorithms, or streaming data applications, where data is processed

in chunks sequentially and sent downstream for some other purpose and are distinctively

different from algorithms that are standalone running on singleton data sets. Streaming

algorithms often exist as a service, acting on requests or when a larger data set needs to be

broken into chunks for individual work.

When streaming algorithms are implemented by developers they often experience additional

problems that can effect performance in ways that a singleton algorithm may not consider.

Often the input data exists in a separate location than the target platform where the algo-

rithm is slated for execution, either coming from sensors in the real world or remote data

stores. Taking it further, once the data arrives at a target machine it may need to be modified

or transformed in some way before feeding it directly to the target. This can often take the

form of changing an input format from one representation into another, or a re-arrangement

of data in a table. Once the programmer gets around to tackling these problems, they may

1



find that with all the extra overhead their impressive mountain of an algorithm now looks

like a molehill unable to reach projected performance.

For programmers one imperative is to find efficient and effective methods of both transform-

ing the data into a correct format and delivering it to the eventual target computation node.

Researchers from EPFL published an example showing that while an algorithm change might

show improvement, the small amount of improvement is dwarfed by the actual time spent in

the pre-processing step, which increased more than the algorithm time improved [70]. The

specific example is a pair of algorithms for Breadth First Search (BFS) on a graph. Previous

work [11] had shown that a push-pull approach results in a 3× improved execution time

relative to the traditional push algorithm. However, due to the need for a different data

layout in the push-pull algorithm, the pre-processing time increased by 2×, and since pre-

processing dominates the execution time, this results in a 1.5× increase in overall execution

time. This is illustrated in Figure 1.1 (from [70]).

Figure 1.1: Example of the trade-off between pre-processing and algorithm execution time
for BFS on the Twitter graph [70].

These pre-processing tasks, often called data integration tasks, are often unreported in overall

algorithm running time, but are of course necessary and vital for the computation to take

place. Often when one wishes to speed up a task, such as a data pre-processing step, hardware

accelerators and parallel programming become reasonable targets of investigation, and when

this requires data movement from a disparate source to a computation destination the best

approach often becomes even more unclear. Therefore, it becomes imperative to understand

not only how to efficiently and effectively perform the required computations but also how

we move data throughout the system.

2



Currently in computer architecture there is a focus on how data is moved throughout a

system as well as computational accelerators that specialize in a class of computations.

Most of this driving force comes from the slowdown in Moore’s law and an end to Dennard

scaling, as the physical limits of what may be possible with current transistor technology

are hit. Through these innovations, domain specific languages and hardware have taken off

in the last decade, giving huge performance gains if the problem maps well to these tools.

Technologies like systolic architectures such as tensor cores and vector engines such as GPUs

map well to specific classes of problems and can be helpful for many algorithms, however a

data integration task is not always straightforward in its implementation as each task can

be wildly different. Flexible architectures, such as Field Programmable Gate Array (FPGA)

accelerators can potentially offer solutions that are tailor made to the task at hand.

FPGAs are a type of accelerator architecture that by their very nature are customized to

the computation. Utilizing hardware description languages, higher level languages like C

with a high level synthesis compiler, or both one can write a program that performs a data

integration task and then actualize the hardware for a task creating a highly specialized

compute platform. FPGAs can also play a role in alleviating some of the pain points of

data streaming applications when data has to traverse a network, via direct network access

available on some specific platforms. It is reasonable to assume that this will help mitigate

bottlenecks in streaming applications associated with the movement of data across a network,

however problems still arise with reasoning how these discrete processing algorithm kernels

interact at a larger scale.

When considering a data streaming application at a higher level the interactions of data

movement and performance using heterogeneous hardware become apparent. While devices

can utilize specialized hardware for data movement, the relocation of data to discrete memory

zones can impact performance to the point where if not handled properly the benefit can

become dwarfed by the data movement. Understanding how to mitigate the effects of data

movement can be an involved process when considering a fully working deployment where

the effects of one node can interact with the performance on a node further downstream by

changing data size or processing time. It is our hypothesis that tools that can be used offline

and utilize measurements taken in isolation can help inform a developer how design decisions

will effect the streaming data algorithm prior to implementation of the full application online.
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Models that can be utilized offline can be of great benefit to any developer, helping them

test and refactor designs that expend effort in actual implementation. It is through both a

combination of programming guidance and mathematical modeling that one can reason about

performance in a way the minimizes the effort of developers when it comes to implementing

streaming data applications.

1.1 Contributions

In this work we focus on streaming data applications in multiple execution environments,

what their characteristics are, how to model their performance, and how to effectively im-

plement them in heterogeneous environments. Utilizing the platform-independent utility

OpenCL we are able to target both CPU, GPU, and FPGA platforms and compare per-

formance across the platforms. Of these platforms, we are particularly interested in FPGA

platforms for their performance and give general programming advice for implementors. For

our streaming data applications we target data integration tasks which involve the trans-

forming of data from either one format to another or massaging data such as rearrange or

removing columns in a CSV file. These data integration tasks are usually under-appreciated

in many applications and a piece of a larger system similar to stages in other streaming

data applications and while one stage may be performant it is important to understand the

system in aggregate.

In our efforts to improve data streaming applications we turn to queuing theory to help model

the system as a series of servers sending data from one stage to another. This achieves two

goals: Giving a general idea on upper-bound performance and allows us to model not only the

algorithm stages but also unseen effects related to data movement in the system. The latter

of these two is of particular importance when it comes to utilizing heterogeneous hardware in

streaming applications due to the movement of memory between zones. This model utilizes

the basic M/M/1 queuing model and can be derived from measurements taken in isolation

requiring little overhead on the developers part when testing instead of implementing a fully

functioning system. This model also has the added benefit of analyzing value when it comes

to implementing parts of algorithms on hardware with a cost. In effect, it is an economic

model as well as a performance model.
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When looking into how closely the queueing model matches a predicted result with a real-

world result we see that the roof-line performance does not tell the whole story. To further

our understanding of these systems and in an attempt to build a more accurate model

we turned to network calculus to help fill the gaps. Network calculus, although originally

developed for the analysis of networking equipment, has properties that lend themselves

well to performance modeling for heterogeneous streaming application. Utilizing min-plus

algebra, network calculus seeks to make guarantees on service provided by individual nodes

in a system. This has the property of both retaining each node’s isolation but also allowing

the concatenation of nodes to potentially simplify any section in the pipeline. In this work

we present our adaption of network calculus to a heterogeneous streaming data application

and it’s evaluation when compared to both simulated and real-world results.

The specific contributions of the dissertation include the following:

• Analysis of data integration applications across platforms. Utilizing OpenCL on data

integration tasks, a sub-class of streaming data applications, for deployment on multiple

types of hardware (CPU, GPU, and FPGA) [22, 37].

• General programming advice for streaming data applications on FPGA hardware. We

make recommendations for implementing such applications on FPGA hardware utiliz-

ing OpenCL High-Level Synthesis [37, 38].

• Development and analysis of queueing theory models for streaming computations. In an

attempt to reason about the performance of data streaming applications on heteroge-

neous compute engines we develop a model based on queuing theory and test modeled

results with real world data [36].

• Development and analysis of network calculus models for streaming computations. We

also develop a model based on network calculus to help us reason more about maximum

delay through the system and queue sizes between different stages of the data streaming

algorithm [35].

Both the queueing models and network calculus models are tested against simulated and

real world results in order to test their validity and get a sense of how closely models match

the real world. The goals with these models are to require little of developers in terms of

data collection and knowledge about the system intricacies.
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1.2 Outline

The outline of the dissertation is as follows. Chapter 2 provides background and related work.

Chapter 3 describes the streaming data tasks that we investigate and their implementation

on a variety of hardware platforms. Chapter 4 presents the queueing theory performance

models and their evaluation, and Chapter 5 introduces the network calculus performance

models and their evaluation. Chapter 6 gives conclusions and future work.
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Chapter 2

Background and Related Work

Streaming data applications have been a target of study for a considerable time, well over

twenty years [90]. Examples of development platforms for the streaming paradigm include

Auto-Pipe [25], Brook [17], Raftlib [15], StreamIt [92], and Streams-C [41]. In addition, each

of these development platforms supports (or has been extended to support) computational

accelerators, either FPGAs or GPUs.

Figure 2.1 illustrates an example streaming application with two compute nodes (labeled

Stage A and Stage B). Data outbound from Stage A is delivered, as input, to Stage B by

the run-time system. Common examples are applications in which the input data are not in

the appropriate form or format for the computation of interest, so a pre-processing or data

integration step is inserted ahead of the computation so as to enable the computation to pro-

ceed. In these examples, Stage A is the data integration and Stage B is the computation

of interest. In the models presented here we make the assumption that the asymptotic com-

plexity stays linear for all stages of the streaming application. We also make the assumption

that the resources are dedicated to the current task and are not being shared with other

users in the cloud or other applications. (Work that relaxes this assumption with simple

sharing models for FPGAs and traditional processor cores is described by Beard [12, 13].)

This paradigm readily supports the two nodes being executed on distinct execution plat-

forms, whether they be processor cores, FPGAs, GPUs, or some other accelerator, and the

data delivery might be via shared memory, PCIe bus, or the network.

stage A stage B
input

data
results

Figure 2.1: Example streaming application.
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When modeling the flow of data down the pipeline, it is prudent to explicitly recognize that

this data movement might be the primary contributing factor to the overall performance,

and as such should be included in the model. This is readily accomplished by inserting an

additional node in the pipeline that represents the communication task (see Figure 2.2).

By modeling each node as a queueing station (with ingest rate λ and service rate µ), the

resulting queueing network is shown in Figure 2.3 [12]. Prior works by Choi et al. [29] and Gu

and Wu [43] make use of similar models, however, these works are more concerned with the

online scheduling of tasks whereas our focus is on a more static analysis that a programmer

may use to reason about how an application could be distributed in a platform agnostic way.

stage A
communication

link

input

data
resultsstage B

Figure 2.2: Example streaming application flow model.

Stage A comm. link Stage Bread input

�1 �2 �3

λ1 λ2 λ3 λout

Figure 2.3: Example streaming application queueing network model.

While this model is useful, it only deals in averages and can’t speak to things like performance

bounds and data latency through a system. To reason about these metrics we turn to network

calculus, a theory of systems designed to reason about network bounds [33, 33]. Developed

to reason about ATM networks, network calculus borrows concepts from circuit theory and

utilizes min-plus algebra to estimate data as it moves through a system. This model retains

the same benefits of queuing theory where nodes are separable and can be considered in

isolation but also has the benefit of node concatenation, where nodes can be consolidated

into a single node for simplicity. Network calculus models can give us absolute bounds on

service provided by nodes as well as end-to-end delay on data through the system. The

specifics of how the network calculus model are used is expanded upon in Chapter 5.
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2.1 Related Work

For the experimental efforts, this work draws from the Data Integration Benchmark Suite

(DIBS) [21, 22]. A number of the applications are either members of the benchmark suite, or

build on the benchmark suite (e.g., an individual benchmark application that streams data

to a downstream data processing application). A number of groups have utilized accelerators

for various data integration problems. Fang et al. [39] utilize FPGAs as part of an enterprise

ETL operation. Aggarwal [2] explores the use of GPUs for a similar set of tasks. Cabrera

and Chamberlain [19, 20] report on the performance of several of the DIBS applications

accelerated using FPGAs. Pourhabibi et al. [79] describe Optimus Prime, an ASIC design

specifically aimed at data transformations of this type, that is targeted for use as a set of

microservices in a distributed environment. Thomas et al. [93] present Fleet, a framework

that builds streaming FPGA designs from individual kernels, including data transformation.

Fleet aims to automatically parallelise the computation (via replication of the kernels),

including the management of data flows to and from external memory units. In addition to

data transformation, Fleet is applicable to machine learning applications as well.

Another application we will use is the Basic Local Alignment Search Tool (BLAST) [5, 6].

BLAST is among the most widely used software in bioinformatics. It scans a DNA or protein

sequence, the query, against a database of other sequences to determine which members of

the database are most similar to the query under a biologically motivated score equivalent to

a weighted string edit distance. In this work, we focus on BLASTN, the variant of BLAST

that compares a DNA query to a database of other DNA sequences, such as a genome, a

metagenome, or a reference such as GenBank NR.

A representative subset of previous implementations of all or portions of BLAST on acceler-

ators include CAAD BLAST [69], Mercury BLAST [49, 55, 57], RC-BLAST [71], and Tree-

BLAST [47] on FPGAs and cuBLASTP [103], GPU-BLAST [98], and Mercury BLAST [67,

77] on GPUs. We utilize the GPU-accelerated Mercury BLAST of Plano and Buhler [77] in

our experimental work.

We will apply some of our modeling efforts to an ML application.

Machine learning has long benefited from acceleration. The TensorFlow framework [1] reg-

ularly utilizes GPUs, and now is supported by specialized hardware [52]. Zhang et al. [102]
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describe a general approach to deploying machine learning applications using convolutional

neural networks on FPGAs. Geng et al. [40] use a cluster of FPGAs for ML training, and Li

et al. [64] investigate how to partition inference on an FPGA cluster. Sharma et al. [86] start

from a domain-specific expression of the ML problem and compile to an FPGA deployment.

Liu et al. [66] combine the use of GPUs and FPGAs on a machine learning problem, ulti-

mately concluding that for their problem, GPUs were best suited for the training and FPGAs

were best for inference. Shahid and Mushtaq [85] review multiple generations of TPUs on

ML problems, comparing them to GPUs and FPGAs, and Reuther et al. [80] survey a wide

range of machine learning accelerators.

Our final set of applications include compression and encryption, both of which have a long

history of hardware acceleration.

Early work in hardware acceleration of compression algorithms was performed by Huang

et al. [48], Rigler et al. [81], and Salama et al. [82]. An LZ4 compression (the one we

explore) was reported by Bart́ık et al. [9]. Early work in FPGA-based acceleration of the

AES algorithm includes the efforts of Chodowiec and Gaj [28], Good and Benaissa [42], and

Zambreno et al. [101]. Work in this area is sufficiently mature that these functions are now

available in libraries provided by the FPGA manufacturers.

The notion of using a high-level language to describe an algorithm to be deployed in hardware

has a long history. Streams-C [41] has its origins in streaming computations. ROCCC [97]

was an early system that focused on analysis of loops. AutoPilot [104] is the system that

eventually evolved into Xilinx’s commercial offering. LegUp [23] has a focus on identifying

and accelerating a portion of an application that is amenable to FPGA deployment. Cong

et al. [31] provided a comprehensive review and vision approximately one decade ago.

There has been significant work recently in the area of optimizing the performance of ar-

bitrary applications implemented on FPGAs using HLS. Examples include the empirically

driven approach of Sanaullah et al. [83], constraining the application set to a specific domain

(e.g., CNNs) by Sohrabizadeh et al. [89], the use of multi-level intermediate compiler repre-

sentations by Ye et al. [100], and the exploitation of an affine type system for compile-time

analysis [72]. Our work can be considered to be within the scope of this body of work.

A recent review describes applications that exploit more than one accelerator [24] which

will be important for the types of tasks we would like to perform utilizing multiple compute
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resources on nodes. To this end, we need ways to evaluate such systems and how data flows

between them. Queueing theory has long since been used for the design and evaluation for

computer systems [3, 53]. The origins of our model, built on queuing theory to measure

performance, is described in Chapter 4. It relies on prior work by Dor et al. [34], Padman-

abhan et al. [73], Beard and Chamberlain [12], Timcheck and Buhler [94], and Plano and

Buhler [78].

Other applications of queueing theory for modeling streaming systems include a queueing

network model for a family of cyclic SPMD applications executing on MIMD platforms by

Cremonesi and Gennaro [32]. They validate their model on the high-performance applica-

tions of a PDE solver and a quantum chemical reaction dynamics code. Another example is

a long-lived transaction (LLT) processing system for database management systems (DBMS)

modeled by Liang and Tripathi [65]. Here, the performance of the overall transaction pro-

cessing system being modeled includes the effects of data locking, resource contention, and

failure recovery.

Tolosana-Calasanz et al. [95] combine queueing theory models and feedback control mech-

anisms to provision cloud resources to process data streaming from high data rate sensors.

Dor et al. [34] developed an early queueing theory model of BLAST. Finally, PalunčIć et

al. [74] survey the development of queueing models for cognitive radio applications.

The above queueing network models make the simplifying assumption that individual queue-

ing station analyses are separable [10]. However, if individual queues fill, in a streaming

computation that invokes backpressure on the upstream nodes, which is neglected in a sepa-

rable analysis. Modeling this form of backpressure has been addressed for M/M/1 queueing

systems by Perros and Altiok [76] and extended to Coxian distributions by Krishnamurthy

and Chamberlain [56]. However, generalizing to arbitrary arrival and service distributions is

a challenge. As a result, we turn to network calculus as an approach to understanding the

performance of the system under these conditions.

The application of network calculus is widespread in classical networking systems [7, 8, 60,

84]. These applications, however, are mostly concerned with extensions to other networking

models, such as network firewalls [99] and job scheduling [63]. Network calculus also has

two sub-branches; one that deals with systems that behave in a stochastic manner, called

stochastic network calculus [51], and the other dealing with hard real-time deadlines, known

as real-time network calculus [91]. In this particular work we use the standard, deterministic,
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network calculus and this is, as far as we know, the first application of these models to

streaming computations that specifically target heterogeneous architectures.
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Chapter 3

Streaming Data Tasks for

Heterogeneous Compute

As discussed prior, streaming algorithms are often split up into multiple sections where data

is processed and passed onto the next node for completion. Pre-processing algorithms are

a wide range of streaming algorithms that are present not only in streaming environments

but they are also a component in algorithms that are singleton in nature. These data

integration tasks, as mentioned in the introduction, are often not thought about and can

become bottlenecks in a full data streaming application when looking at the end to end

performance. Unfortunately, it can be hard to reason about improvements for these types

of application due to the differences of data structures and implementations. In prior work,

effort was expended to categorize and analyse these applications into a set of data integration

applications [22] and in this work we specifically want to look at their implementation on

heterogeneous platforms, like FPGAs. FPGAs have the wonderful property of being flexible

and can be tailor made to suit an an application, but it can often be a bit daunting to

program for them as their programming tools can be difficult to utilize. In this work we

want to discover what properties and best practices should influence a programmer when

implementing data integration applications on an FPGA.

3.1 Data Integration Tasks

The set of all data integration tasks have the defining feature of transforming one data

record into another data record, but their individual implementations can be quite varied

and difficult to reason about. Prior work of defining the space of data integration tasks can

be found in the Data Integration Benchmark Suite (DIBS) [21, 22]. Here we spent time to

define categories of data integration along with analysing their single threaded performance
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and implementation. As shown in Figure 3.1 the applications cross a wide range of target

fields and potential data types. At their core most data integration applications take an

individual record and transform it into an equivalent record, each record being independent

of each other. This type of processing gives rise to a streaming algorithm implementation

as each record is processed once, and kept in-order as to preserve the integrity of the data

set. These applications were programmed initially in a simple singled threaded manner, but

if we want to improve and migrate them to faster, more specialized pieces of hardware it

becomes imperative to think about creative ways to move to a parallel implementation.

Figure 3.1: Data Integration Benchmark Suite application classification [22].

3.2 Parallel Implementation

When thinking about accelerating applications in the data integration benchmark suite two

things come to mind: what kind of programming model one wants to use and what kind of

hardware will be the eventual target. In DIBS most of the statistical analysis showed that

a large portion of the programs had low branch entropy and low temporal locality meaning

that, as expected, in a majority of the apps the data is transformed with minimal amount

of divergence in the processing path and is then stored to the final memory buffer.

When looking at the instruction mix of the x86 implementation, shown in Figure 3.2, we

also see that the percentages of instruction mixes can vary from one data integration app to
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Figure 3.2: Instruction Mix of DIBS Applications on x86 [22].

another, meaning that one application suited for one hardware target might not be the best

fit elsewhere. With these considerations in mind one can either follow a traditional approach

of parallelizing via CPU multi-treading or rather pursuing an FPGA implementation due to

it’s ability to actualize custom architecture that fits an individual data integration application

efficiently.

Ideally we want to have an implementation that is easy to move between different platforms,

to empirically test and see what platforms are a fit for data integration. The original imple-

mentation of DIBS has single threaded implementations of each app coded in the C language

compiled for the x86 platform which we use as a starting point for our measurements. While

there are many different ways of programming for a multi-threaded implementation ideally

we would like to keep as much of the core data integration as similar as possible. When

one programs for an FPGA device often the common way is to utilize hardware description

languages (HDL) such as VHDL and Verilog to directly program, utilizing modules and IP

blocks to actualize hardware. While this is a reasonable approach, most HDLs require a pro-

grammer to worry about computation at a cycle by cycle granularity and it can be a burden

to layout a system in this way. Both major manufactures of FPGAs (Xilinx and Intel) offer

High Level Synthesis (HLS) programming tools that allows a programmer to write code in

a higher level language and utilize the tools to parse and create a representation in Verilog

which is then used to generate hardware. HLS tools require programming in the C/C++

languages with some restrictions and along with these, C derivatives such as OpenCL can be

directly used by the tools and allow a developer to use a model that is inherently parallel.
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We took four of these data integration apps and implemented them in OpenCL, a language

designed for multi-platform execution targeting CPU, GPU, and FPGA systems. Part of the

advantage of taking an OpenCL approach is that we could start with a base computation

kernel that looks highly similar to the original C single threaded implementation. From there

we took a straightforward implementation, essentially a 1 to 1 copy from the original C code

with minor edits for each platform necessary for execution. While it was relatively simple

to get a straightforward implementation running well on the CPU it was a bit unclear what

would and would not work on FPGA implementation.

3.3 Multi-Target OpenCL

In the original OpenCL programming model one writes a “kernel” of computation to be

executed on some set of compute units that map to either multi-core CPUs or GPU cores. An

individual device has its own set of device memory and execution queue which is managed by

a host system, usually the main operating system. When programming a kernel one utilizes

OpenCL specific calls to grab a work item identification and articulate how said work is

to be done in isolation from other work items. Memory is both allocated and written to

the device specific memory via host-side library calls. At the time of enqueuing the kernel

execution a number specifying how many work items are to be computed before the kernel

is to be considered done and when complete the host is in charge of reading device memory

into host side buffers. This programming model for OpenCL is referred to as Multi-Work

Item (MWI) and is the typical target for multi-core style systems.

When OpenCL is used in the HLS space the designers of the tools added another program-

ming model called Single-Work Item (SWI) which, along with MWI, allows for styles of

execution on the FPGA. A SWI kernel is very similar to the MWI however the difference

is instead of using OpenCL API calls to get an ID for work, the amount of work is built

into the kernel similar to how one would program a for loop. With this style of execution a

kernel is instead queued onto the FPGA with a work size of one, allowing either the amount

of work to be hard coded into the kernel or adjustable through kernel arguments. The HLS

tools use this type of programming model to implement pipeline parallelism, implementing

the hardware needed to perform each instruction and, when the pipeline is full, complete one

execution of the main kernel loop within one clock cycle. An illustration of both the MWI
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(a) Multi-work item (MWI) model. (b) Single-work item (SWI) model.

Figure 3.3: Illustration of the MWI and SWI OpenCL programming models.

and SWI models is given in Figure 3.3. It may seem on the surface that this would make an

even easier porting effort from our single threaded data integration task as one would just

have to import the main loop from the code and make the proper API calls for host side

execution, however, HLS tools offer a large range of flexibility in optimizations one may add

and these are what we want to take into consideration when looking at programmer best

practices.

Our experience has not been consistent with the guidance of the FPGA manufacturers with

respect to MWI and SWI implementations. We have experience with a number of appli-

cations for which the MWI implementation performs better than the SWI implementation.

Figure 3.4 shows the speedup of the MWI implementation relative to the SWI implementa-

tion for four applications (data from [18, 20, 45]). These four applications can be split into

two categories: compute intensive applications in the form of a standard matrix-matrix mul-

tiplication and streaming computations drawn from DIBS. To factor out issues with I/O, the

input and output data reside in main memory. For the matrix-matrix multiply applications,

the MWI implementation outperforms the SWI implementation by more than two orders of

magnitude, and the performance of MWI over SWI is more than one order of magnitude

for the two applications chosen from DIBS. The measured data throughput for each of the

applications is shown in Table 3.1.
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Figure 3.4: Speedup of MWI over SWI implementations. Applications are 2k×2k and 4k×4k
matrix-matrix multiply plus data integration applications ebcdic txt and fix float from
DIBS.

Table 3.1: Measured throughputs for MWI and SWI implementations.

Application SWI MWI

(MiB/s) (GiB/s)

2k MMM 8 4.2

4k MMM 8 3.1

ebcdic txt 260 5.5

fix float 400 6.5

3.4 Application Targets and Deployment

To explore implementation details we chose the following benchmark programs from DIBS:

fa->2bit, gotrackcsv->csv, fix->float, and idx->tiff. These have the characteristics

of being from different fields and a distinct mix of instruction sets and gave a good overview

of how these applications would perform on various architectures. Our initial inquiry into

these applications was the impact of a sequential dependency in the data transform and

how such a dependency would affect performance and how much effort would be required

to improve performance. The applications fa->2bit and fix->float have databases that

are sequential but their data boundaries are knowable at run-time making an easy transition

to a parallel implementation. The application gotrackcsv->csv, has its records separated

by a new line character at un-even boundaries requiring an upfront analysis of the database
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before the actual data-integration task can begin. The idx->tiff application is similar in

that a small amount of metadata processing is required upfront for information on how the

images in the database are represented and their size allowing for highly parallel execution

after this task. In all instances we consider the total execution time of the data integration

task being time spent in the data integration and any metadata processing. In porting these

applications over to multi-threaded CPU and FPGA we used an OpenCL implementation

with a MWI kernel for the CPU and SWI kernel, at the manufacture’s recommendation, for

the FPGA.

In this particular experiment we utilized a Xeon E-2256 for CPU deployment and an FPGA

from the Hardware Accelerator Research Program (HARP) provided through Intel. The

HARP system is a combination of an Arria 10 FPGA and a Xeon Intel CPU connected with

a cache coherent bus within the same socket. This specific implementation of a heterogeneous

compute FPGA is unique in that the host machine and the compute unit have a unified view

of memory meaning that when memory is allocated for the compute device it can accesses it

without waiting on a host transfer. It is up to the programmer to setup coherency between the

host and device which is handled through shared virtual memory map and unmap commands in

the host code. The general program execution first sets up the host for OpenCL execution

creating a device handle and command queue for kernel execution, the data integration

tasks are then loaded in as kernels. For the CPU target the kernel source code is read in

and compiled in real time for execution but for the FPGA target an HLS compiled binary

(bitfile) is used for configuration. When a metadata processing step is required its kernel is

queued before the the data integration task and the total queue execution time is included

as part of the final throughput numbers. Once the data integration task is completed the

results are validated and any stats are reported. For all of our data integration application

measurements we do not consider the time it takes for data to be read off the disk, but

instead only consider data that is active or already in memory, partially due to the fact that

such advancements in data retrievement are not the focus of this research and a large number

of techniques both in hardware and software exist to try and alleviate this concern [26, 27].

In Figure 3.5 we display the performance numbers for the data integration apps on both

target platforms using OpenCL kernel execution. The kernels listed here were ported with

minimal effort to both the multi-threaded CPU and FPGA which can be representative

of what one might expect base performance to look like on these given systems. First

we see the greatest performance with the FPGA in the fa->2bit application, over the
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Figure 3.5: Bandwidth comparison numbers for selected DIBS benchmarks running on mul-
ticore CPU and HARP FPGA machines.

baseline implementation in the original DIBS this results in a 653× speed up in throughput

along with an 2.7× speedup over the multi-threaded version. (Note that the original DIBS

single-threaded implementations did not include compiler optimizations, which are enabled

in these multi-threaded OpenCL implementations.) Similarly, we see a performance boon

with fix->float FPGA implementation over the original and multi-threaded versions with

a 26× speedup over the single threaded and a 3.7× speedup over multi-threaded. In the

idx->tiff application the FPGA is not the top performer compared to the multi-threaded

implementation, here we have the metadata processing kernel along with the main processing

kernel which points to the notion that cooperative processing might be worth considering

here as the transient startup of using an accelerator for one metadata step might not be worth

the processing time. Finally looking at the worst performer on the FPGA, gotrackcsv->csv

we have a marginal increase of throughput over the base single-threaded implementation of

roughly 10 MB/s. There are a multitude of reasons for why this app has poor performance.

Mostly, the performance can be attributed to the control flow present in this particular app

and the amount of times it accesses global memory. The app’s processing path reads in

characters one at a time looking for boundaries noted by the comma character and once a

certain amount is seen a branching path is enabled to remove data from the structure. This
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causes a very irregular execution pattern for this app and because each line has a variable

amount of characters in each line it becomes difficult to determine ahead of time where these

boundaries are. Furthermore, a metadata step is required up front to determine where line

breaks exist in the database adding more processing time not suited for FPGA computation.

3.5 Improving Kernel Implementations

Building upon naive approaches we wanted to look at HLS features that one could add to a

kernel in order to improve performance across all apps. For this approach we attempted to

compare both FPGA and CPU performance on one app with a plethora of varying setups,

including an OpenMP CPU Implementation, and were performed on the HARP system. In

FPGA HLS tools as mentioned prior there are two coding styles for OpenCL kernels: MWI

and SWI; with these there are also extra additional options and flags that can be added to

the kernel that can affect performance. As it can take hours to compile kernels in multiple

configurations we settled on 4 different configurations to observe: A naive SWI kernel with

no pipeline flags enabled, SWI kernel with a flag to pipeline as aggressively as possible (our

kernel from above), A MWI kernel with the largest work-group size as possible (64 for our

tools), and what we call an “over-optimized” kernel which is a a MWI kernel with the largest

work-group size as possible, 2 total compute units, and a SIMD work item count of 16. The

OverOpt kernel is meant to represent a scenario where a potentially confused programmer

might try to do everything under the sun to try and improve a FPGA kernel without giving

too much consideration to the hardware that they are targeting. While we expected to see

somewhat poor performance we were curious which choice in kernel style would compare to

multi-threaded CPU execution.

Figure 3.6 shows the execution time of the fix->float application on a log scale with

respect to database size also in a log scale. Here on this graph a lower bar indicates better

performance. From the outset for a considerably small database of 512Kb we observe the the

OverOpt Kernel actually performs quite well and is only beaten out by the OpenMP CPU

implementation, however, as the data set size increases this observation will not hold. We

observe a breaking point between the multi-threaded CPU and the FPGA MWI and SWI

implementations, but along with this we see the OverOpt kernel begins to run away and only

outperform a naive implementation and a single threaded implementation. Interestingly, this
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Figure 3.6: Data size vs. execution time on HARP for versions of the fix->float kernel.

trend continues as we increase the database size and in fact the performance gap between

the kernels with less attributes for the HLS engine and the kernel made in an attempt to

improve performance only gets larger. Furthermore, a closer inspection between the MWI

model and the SWI model shows that, for this one application, a MWI model actually has a

slightly better performance than the SWI contrary to what is suggested by the manufacturer.

While this is only one application this test is run on it does paint an interesting picture of

what general programming advice we would like to give.

3.6 Programming Advice

Currently through our research we have found a few guidelines that we believe can be ap-

plicable across multiple data integration applications implemented on FPGAs. With our

examples on the HARP system, three main points come to mind: data transforms with data

dependencies, divergent data transforms, data transforms with metadata processing. Data

transforms that have both data dependencies and divergent execution paths cause the same

issue on FPGA implementation: an inability to pipeline efficiently for unrolled loops. When

the HLS tools analyze kernel loops it does so in an attempt to reduce the amount of cycles

required for each instruction. When divergence is introduced, such as an if else statement,
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the compiler will generate an execution path that will take the time to execute the largest

path. Data dependencies, similarly, will cause the tools to create loops that have long cycles

between each loop iteration, causing execution time to increase significantly. Metadata pro-

cessing is a different problem in that this is a bit of execution that needs to be done upfront

and separate from the main kernel loop. Processing situations where an entire dataset may

need to be parsed for metadata can lead to divergent processing if the kernel is looking and

marking the location of certain characters. Other metadata situations may only require a

small amount of data to process. In our second experiment we can deduce that the transient

startup costs of FPGA execution may not outweigh the benefits of specialized execution as

a single threaded CPU implementation can beat out a FPGA kernel. While the data inte-

gration task measured in the second experiment did not deal with a meta processing task

the small database size could be indicative of smaller processing tasks.

Looking further beyond the database size implications in the second task we note the runaway

performance as mentioned above. A large portion of the improvements chosen here were

meant to be indicative of a programmer trying to squeeze performance out of a HLS kernel.

Often when implemented at first blush a programmer will often see terrible performance

when it comes to FPGAs. As such a developer might see a large portion of the FPGA be

unused and as such try to do reasonable things such as increasing the number of compute

units or increasing the number of SIMD work items and the issue arises when the generated

hardware does not match what is required to perform the computation efficiently. In this

case the extra compute units create more contention for the shared memory bus which is not

ideal for our data integration applications as our applications are mostly made of memory

movement instructions demonstrated by the instruction count mix shown in Figure 3.2. This

is of course exacerbated with the addition of more SIMD work items increasing the memory

requests in parallel. Such advice could be applied to data integration tasks on FPGAs that

take this form of regular isolated tasks.

The Xilinx Vitis toolchain has attempted to improve SWI implementations with a program-

ming strategy available for both OpenCL and C HLS kernels known as dataflow optimization.

In the documentation, dataflow optimization is described as a way to implement “task-level

pipelining,” which allows for code blocks contained in functions to be scheduled in a way to

achieve pipeline parallelism, similar to the approach that loop unrolling does within a loop.

As shown in Figure 3.7, the idea is to create a collection of tasks or functions that would

normally run in sequence and allow the compiler, with the help of #pragma directives, to
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create hardware that allows for execution of downstream tasks to start before their preced-

ing task has completed. This is achieved through the use of first-in-first-out (FIFO) buffers

to pass data elements from one code block to the next. These code blocks could be some

type of read from global memory, general compute functionality, then a write back to global

memory, which allows the hardware to take advantage of blocked reads and writes. Ideally,

this type of coding style, as the name suggests, can work well for data streaming applications

such as the previously mentioned data integration applications.

Figure 3.7: Illustration of dataflow execution with 3 tasks. The top diagram illustrates a
sequential execution timeline, while the bottom diagram illustrates a pipelined execution
timeline.

Using this technique, we have seen success deploying a data integration application as a

dataflow kernel, with performance better than the MWI and even the initial SWI imple-

mentation. However, it is important to note that in other data integration applications we

see that this style of kernel does not perform quite as well as expected. In an experiment

implementing a handwriting database from an ASCII picture representation to a bit array

representation (the optidigits application from DIBS) we find that the best performance is

with the original SWI programming model with a throughput of 221 MiB/s. Believing that

the dataflow approach would result in better performance, we made a pair of attempts using

it. With our first attempt at the dataflow model we observed a slight reduction in through-

put to 218 MiB/s. While a reduction of roughly 3% in throughput is arguably negligible, it

still gives pause to what implementation strategies developers should choose.
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3.7 Conclusion

Streaming data tasks, while being sometimes difficult to implement, can see performance

improvements from heterogeneous architecture. The difficulty stems from a need to fully

understand the algorithm before deployment but this could be said of almost any performance

engineer for any type of algorithm. When it comes to data integration often time emphasis

is put on data movement which can often be a pain point for these types of applications.

Here we explored implementing data integration tasks on multiple types of hardware utilizing

OpenCL and focusing in on FPGAs as an execution platform. While FPGAs show promise in

this field it is not without its own caveats and here we have pointed out some of the difficulties

one may have when implementing data integration tasks. We have explored two types of

programming styles: MWI which takes a thread-based work item approach and SWI which is

a deeply pipe-lined approach utilizing for loops. When implementing effective programming

strategies it is critical to not only have an understanding of how the algorithm handles

memory access, where that memory access is originating from, and how memory hierarchies

interact with eachother. With these interactions in mind a developer may spend some time

implementing one piece of a data streaming algorithm without focusing on the higher level

interactions of other nodes in the process. Stepping back and looking at the larger picture

can be somewhat difficult, however, we address these concerns with mathematical models

that help a developer reason about performance beyond individual node implementation.
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Chapter 4

Queueing Models for Streaming Data

Computation

4.1 Introduction

While we have spent some time describing the characteristics of data streaming applications

in the form of data integration, however, it is important to remember that they do not exist

on their own. When including data integration as a step in an overall streaming application

the system inherently becomes more complex, and the use of an effective performance model

can be used as a concrete way to reason about both the application and its deployment. On

top of that there may be scenarios where different instances of computational accelerators

may be used to run different portions of the overall algorithm. These accelerators may exist

on the same platform or on entirely separate nodes. There can be a large number of potential

deployment options and configuration settings that can impact performance, and it can be

difficult to pinpoint where time and resources need to be spent and what to budget.

We propose an empirically guided mathematical model to help guide performance choices

in the streaming algorithms that seeks to find a throughput roofline for a given application

and takes into account data compression/expansion with data integration applications. It

also includes cost information (if available), so that the deployment choices can be based on

cost-benefit analyses, not just throughput performance.
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4.2 Applications

The two applications used to illustrate the models in this chapter are BLAST and an ML

handwriting recognition application. We describe each in turn.

4.2.1 BLAST

The stages of our BLASTN implementation mirror the stages of the NCBI BLASTN com-

putation pipeline, shown in Figure 4.1, and is built using the Mercator framework on a

GPU [30]. The DNA database to be searched, represented in FASTA format, is first con-

verted to two bits per DNA base. This is a pre-processing step, fa 2bit, from DIBS that

is implemented on an FPGA [37]. In the next computational stage, seed match, each byte-

aligned 8-mer (8-base word) of the database is checked to see whether it appears in a hash

table (stored in GPU DRAM) constructed from all 8-mers of the query sequence. If the

8-mer at database position p does appear in the table, a third stage, seed enumeration,

accesses the table to enumerate all positions q at which it appears, generating one or more 8-

mer matches (p, q). These matches are passed to the fourth stage, small extension, which

attempts to extend each match to the left and right by up to 3 bases. If a match (p, q) can

be extended to a total length of at least 11, it is passed on to the final stage, ungapped

extension, which extends the match to the left and right, this time allowing scoring of both

matches and mismatches. Our implementation limits ungapped extension to at most a fixed-

size window (currently 128 bases) centered on the initial seed match. Only seed matches

whose highest-scoring ungapped extension score above a specified threshold are returned for

further processing. Our implementation does not presently perform gapped extension [6],

but for BLASTN, that stage takes negligible time compared to the rest of the pipeline [55]

and would be implemented on the host processor.

fa_2bit
seed

match

seed

enumeration

small

extension

ungapped

extension

FASTA

db

alignments

Figure 4.1: BLAST application.

Most stages of BLASTN act as filters over either database positions (seed matching) or

matches (small and ungapped extension). Their task is to eliminate inputs that should not
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proceed to the next stage. Seed matching in particular is a highly effective filter, eliminating

the vast majority of input 8-mers, for query lengths much less than 216 bases. Seed enu-

meration, in contrast, may produce multiple matches per input position if the same 8-mer

occurs at several places in the query. Except for highly repetitive query sequences, this stage

produces on average 1-2 matches per input position.

All stages of BLASTN produce a variable number of outputs per input, and most produce

zero outputs for the majority of their inputs. On a SIMD processor such as a GPU, executing

all stages of BLASTN independently in each thread will result in many threads discarding

their inputs and becoming idle early in the computation, resulting in many wasted cycles.

The Mercator system therefore inserts queues between each stage to collect and redistribute

work among threads before executing the next stage. These queues have limited size, so each

stage may need to be executed multiple times; scheduling execution of stages is performed

so as to maximize GPU thread occupancy and minimize overhead [77].

4.2.2 ML

The Optidigits library is a representation of handwriting data available through the UC

Irvine Machine Learning Repository [4]. This well known data set has a large number of

hand written digits ranging from 0 to 9 represented in a 32×32 binary matrix. This data

resides in a text file containing all the digits in an ASCII char matrix with a corresponding

label that identifies what the handwriting raster is supposed to represent. In the original

DIBS this database is transformed into a set of tiff images as a potential input to a machine

learning application.

In this work we make a change to this application to help lessen the impact of data commu-

nications on the overall application throughput. Instead of transforming the ASCII matrices

to a tiff format image we make the choice to compact the binary values into integers (one

bit per pixel), resulting in an output size of 128 bytes instead of 1.2 kiB per image. This

transformation results in no loss of data fidelity, a 10 fold reduction in network usage, and

only requires a small pre-processing step of adding a .png header and footer before being

fed to the downstream ML computation.
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Handwritten digit recognition is a classic example of a machine-learning application. The

model we utilize is trained on the well-known MNIST handwritten digits dataset, that con-

sists of 60,000 handwritten, grayscale digits in a 32× 32 pixel format.

optidigits_1bit
digit

recognition

image

db
digits

Figure 4.2: ML application – handwriting recognition.

The model is designed with a VGG-like architecture [87] and has two main aspects: a feature

extraction front-end and the classifier backend. The feature extraction front-end begins with

a single convolutional layer, utilizing a small-sized (3, 3) filter and 32 filters followed by a max-

pooling layer. To improve classification accuracy, we then add two additional convolutional

layers, each with the same filter size as previously used, but we increase the number of filters

in each layer to 64. These layers are again followed by a max-pooling layer. Subsequently,

the filter maps are flattened to provide features to the classifier.

Since we are dealing with a multi-class classification task, we require an output layer with ten

nodes to predict the probability distribution of an image belonging to each of the classes. This

requires the use of a softmax activation function. Between the front-end feature extractor

and the classifier, we add a dense layer with 100 nodes to help with feature interpretation.

All layers use a Rectified Linear Activation Function (ReLU) and the ’He’ weight initializa-

tion scheme, both widely used best practices for this type of problem specifically.

For training, the stochastic gradient descent optimizer is configured with a learning rate of

0.01 and a momentum of 0.9. The categorical cross-entropy loss function will be optimized,

suitable for multi-class classification. Each of the images in the Optidigits library is then fed

into the model, which subsequently gives us a multi-class probability distribution for each

of the digit classes.
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4.3 Queueing Theory Model

We develop and extend a model that seeks to predict end-to-end performance of a given data

streaming application targeting applications that can be characterized as separable, multi-

stage computations. The model is agnostic to the architecture used for the compute engines,

supporting processor cores as well as accelerators. The model aims to help a programmer

decide where to spend resources to improve the overall running time of a streaming applica-

tion. In this section we will both describe the model and illustrate its use as a guiding hand

for a streaming data application utilizing a combination of FPGAs, GPUs, and solutions for

networking data between computational resources. Furthermore it will help us determine

effective strategies when it comes to multi-node data streaming applications.

Figure 2.1 illustrates an example streaming application with two compute nodes (labeled

Stage A and Stage B). Data outbound from Stage A is delivered, as input, to Stage B

by the run-time system. For the following description of the model, Stage A is the data

integration and Stage B is the computation of interest. In the model we make the assumption

that the asymptotic complexity stays linear for all stages of the streaming application. We

also make the assumption that the resources are dedicated to the current task and not shared

as it could be in a cloud system scenario. This paradigm readily supports the two nodes

being executed on distinct execution platforms, whether they be processor cores, FPGAs,

GPUs, or some other accelerator, and the data delivery might be via shared memory, PCIe

bus, or the network. When modeling the flow of data down the pipeline, it is prudent to

explicitly recognize that this data movement might be the primary contributing factor to the

overall performance, and as such should be included in the model by adding more nodes to

represent their contribution to the overall data rate. To explain and illustrate the usage of

this model we will utilize a pair of applications. First, we combine the data integration task

fa 2bit running on an FPGA machine feeding data to a BLAST implementation running

on a GPU system via a network link. Second we pair the modified data integration task

optidigits 1bit running on an FPGA feeding data to an ML handwriting recognition

implementation executing on a GPU in the same system.
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4.3.1 Model Technical details

Our model is derived from previous work by Dor et al. [34], Padmanahban et al. [73], Beard

and Chamberlain [12], Timcheck and Buhler [94], and Plano and Buhler [78] to develop

an analytic queueing model of a data streaming application, beginning with the BLAST

application. Starting from the conceptual diagram of Figure 4.1, additional blocks are added

that represent potential performance bottlenecks in the flow of data through the complete

application. In our instantiation, the accelerators (both FPGA and GPU) are connected

to their host systems via a PCIe bus. In addition, there is a network connection from the

system hosting the FPGA to the system hosting the GPU. Adding these blocks into our

system we have the full version of the model as shown in Figure 4.3.

In Figure 4.3, the top row represents the system hosting the FPGA, responsible for the

fa 2bit data transformation. The second row represents the network connection between

the two host systems, and the third row represents the system hosting the GPU, responsible

for remainder of the comparison pipeline. Note the presence on each host system of the

PCIe block both before and after the computation mapped to the respective accelerator.

This represents the data transfer both to the accelerator and from the accelerator back to

host memory.

We can directly transform this representation into a queueing network by replacing each

block (or node) of Figure 4.3 with a queueing station, resulting in the queueing network

of Figure 4.4. Each queueing station is comprised of a FIFO queue and its associated

server. The service capacity is modeled by a mean service rate µi, expressed in bytes/s, that

represents the maximum rate at which the server can ingest (process or communicate) data.

Each of the nodes in Figure 4.3 and the corresponding queueing station of Figure 4.4 con-

sumes data from its incoming edge(s) at mean rate λi. The nodes implementing commu-

nications links will deliver data out at the same rate (λi+1 = λi). Computational nodes,

however, will have a data volume gain or loss denoted by γi, reflecting the notion that either

the format of the data has been transformed or (in many cases) the computation is a filter

and many input data elements do not generate output. Therefore,

λi+1 = γiλi, i ≥ 1. (4.1)
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Figure 4.3: Flow graph for BLAST application.
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Figure 4.4: Queueing network for BLAST application.

With γi = 1 for all nodes representing communications, the mean data rate into each node

is shown below. If we define the cumulative gain up to node i as

Γi =
i−1∏
k=1

γk, i > 1, (4.2)

then the mean data rate into each node can be expressed as

λi = Γiλ1, i > 1. (4.3)

The above description assumes a one-to-one transformation of blocks in Figure 4.3 to queue-

ing stations in Figure 4.4. However, it is difficult to separately measure (and therefore reason

about) the distinct blocks in the comparison pipeline executing on the GPU. We will instead

merge these blocks in the queueing network model into a single server (and associated queue),
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resulting in the queueing network of Figure 4.5. It is this model that we will exploit for the

results that are presented below.

PCIe
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Figure 4.5: Modified queueing network for BLAST application.

In a similar way, our handwriting recognition application is transformed from the initial

diagram shown in Figure 4.2 to the flow graph of Figure 4.6, which makes explicit reference

to the PCIe bus to and from the FPGA and the PCIe bus to and from the GPU. Figure 4.6

is then transformed in a straightforward way into the queueing network model of Figure 4.7.

PCIe PCIe

PCIe PCIe

memcopy

read

db
optidigits_1bit

digit

recognition

Figure 4.6: Flow graph for ML application.

To simplify the analysis, we will make the assumption that all of the queueing networks

are separable, meaning that we can analyze each queueing station independently and then

combine their results. This condition holds as long as the physical queues are large enough

so that they do not regularly fill (i.e., their probability of filling is low) and/or the network

is in the class BCMP [10], both of which are often (but not always) true in these cases.
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Figure 4.7: Queueing network for ML application.

Our initial interest is in the performance that is achievable in this model. Fortunately, that

is straightforward to determine in queueing network models of this type. The service rate at

each queueing station establishes the flow capacity at the input to that station (i.e., λi < µi).

Note, as this model allows for empty queues it is required that the data rate be strictly less

than the service rate at each node. With knowledge of the service rates, µi, (which can be

measured empirically in isolation) and the data volume gains, γi, (also emprirically deter-

mined) one expresses the ingest rate at the source, λ1, as the solution to a flow maximization

problem over the graph with individual flow constraints given by the relevant service rates.

For arbitrary directed acyclic graph topologies, an efficient solution to this flow maximization

problem is given by [12].

We denote the overall throughput by the ingest rate at the first node,

Tput = λ1. (4.4)

Finally, in addition to the performance achieved, we are also interested in the cost effective-

ness of the deployment. This can be any number of metrics a user may desire as long as

it is explicitly known. For our example the monetary value for the time spent on a cloud

machine from amazon AWS is used but a measurement of energy consumption If cr is the

cost per unit time for resource r, the total cost is just the sum of utilized resources.

C =
∑
r∈R

cr (4.5)
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where R is the set of resources (i.e., AWS instances) utilized.

The cost-performance is simply the ratio of the cost to the throughput, C/Tput. With C hav-

ing units of cost/unit time and Tput having units of bytes/unit time, the cost-performance

will have units cost/byte.

4.4 Model in Practice

For our implementations of BLAST and ML we target heterogeneous hardware for both the

data transformation and final data application.

To test the effectiveness of this model we take empirical measurements of a heterogeneous,

multi-node implementation of BLAST running in the Amazon AWS cloud and ML running on

dedicated hardware. Table 4.1 gives parameters of the hardware used in these two scenarios.

Table 4.1: AWS EC2 Instances used for BLAST and ORNL and WU machines used for ML.
Machine CPU Memory Accelerator Cost

AWS F1.2xlarge 8× Intel Xeon E5-2686 v4 @ 2.3 GHz 122 GiB Virtex UltraScale+ VU9P with 64 GiB $1.65/hr
AWS g4dn.xlarge 4× Intex Xeon Platinum 8259CL @ 2.5 GHz 16 GiB Nvidia Tesla T4 with 16 GiB $0.526/hr

ORNL 24× Intel Xeon Skylake @ 2.1 GHz 94 GiB
UltraScale+ XCU250 with 64 GiB
Nvidia Tesla P100 with 12 GiB

N/A

4.4.1 BLAST Implementation Specifics

The stages of our BLAST implementation mirror the stages of the NCBI BLASTN com-

putation pipeline and is built using the Mercator framework on a GPU [30]. The DNA

database to be searched, represented in FASTA format, is first converted to two bits per

DNA base utilizing an FPGA for the data integration task. The task is run on a f1.xlarge

instance which utilizes a Xilinx Virtex UltraScale+ VU9P card. The card is programmed

using the Vitis HLS tools utilizing OpenCL HLS using the dataflow programming model.

The interface to the global memory uses separate buses for inputs and outputs working on

uint16 and char16 vector data types respectively. The database is split into chunks where

each chunk is processed in-order and sent to a GPU machine running the BLAST algorithm.

The GPU machine running the BLAST application is an AWS g4dn.xlarge machine which

utilizes a Nvidia Tesla T4. As the host program receives data chunks over the network they
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are packaged and queued up as input data for the BLAST execution on the GPU. Each GPU

execution is launched asynchronously with the CPU host program so it is free to perform

other tasks while the GPU completes its execution.

4.4.2 ML Implementation Specifics

The initial stage of our ML application, optidigits 1bit, is implemented on a Xilinx

UltrasScale+ XCU250 FPGA board installed in a Xeon Skylake host that also has an Nvidia

Tesla P100 GPU. The digit recognition stage of the ML application is executed on the

Nvidia GPU. This system was made available to us by Oak Ridge National Laboratory.

4.4.3 Network Connection

In streaming applications similar to the ones presented here we would ideally like to have

a large memory storage easily accessible by all compute nodes as data becomes available.

However, this is easier said than done. Unfortunately the network facilitating data transfer

between multiple machines is typically far slower than the internal memory buses for a

machine. As this is often a critical task we give consideration to three different utilities to

facilitate data movement across the network. In Table 4.4, µB
4 refers to three different types

of network utilities and their throughput as measured on the AWS EC2 machines listed

in Table 4.1 and the internal virtual private cloud (VPC) network in the US West region.

Secure Shell Copy (scp) is a ubiquitous way to move files via the terminal in Linux systems.

The measured throughput is the result of a file copy from one system to another, however,

along with being slowest this comes with two major drawbacks. One, this writes a file to disk

requiring it to be loaded into the program space for use, needing extra time and resources.

Two, the overhead of the secure shell protocol is substantial.

Apache Kafka [54] is a protocol designed for streaming applications using a subscription

model. The protocol is designed for both small, short latency messages and longer bulk style

messaging. In our tests we observed that although Kafka performs marginally better than

scp the overhead of the Kafka system results in poor throughput.
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In an attempt to solve poor performance from off-the-shelf solutions we implemented our own

multi-threaded TCP socket solution using the Boost ASIO libraries. This solution creates a

server queue to hold data as it is ready to be sent to the following client node. When the

server has data to send, it immediately sends it to the client. The client thread then places

said data on a queue for the eventual host program to consume when compute resources are

available. This solution far outperforms our other two explored solutions, resulting in more

than 2× the speed of scp and more than 1.5× the speed of Kafka.

4.4.4 Empirical Measurements

Here we show our measured values that are used as input parameters for our proposed model

in Tables 4.2, 4.3, and 4.4. For the most part, the data volume gain figures are from first

principles (e.g., packing 4 ASCII characters into a single byte is a reduction in data volume

by a factor of four). The sole exception is the gain in the BLAST comparison pipeline, γB6 ,

which will depend upon the combination of query and database. In our experimental cases

(as is true for typical usage of the BLAST application [55]), the output data volume is quite

small, so the impact on performance is negligible. The reported value is the mean over our

experimental runs.

Table 4.2: Data Volume Gain at each Queueing Server (BLAST).

Queueing station Symbol Expression Value Symbol Expression Value

PCIe to FPGA γ1 λ2/λ1 1
fa 2bit γB2 λ3/λ2 0.25 Γ2 γ1 1

PCIe from FPGA γ3 λ4/λ3 1 ΓB
3 γ1γ

B
2 0.25

Network γ4 λ5/λ4 1 ΓB
4 γ1γ

B
2 γ3 0.25

PCIe to GPU γ5 λ6/λ5 1 ΓB
5

∏4
i=1 γi 0.25

comparison pipeline γB6 λ7/λ6 4.9× 10−6 ΓB
6

∏5
i=1 γi 0.25

PCIe from GPU γ7 λout/λ7 1 ΓB
7

∏6
i=1 γi 1.2× 10−6

Contrasting this, the service rates shown in Table 4.4 are primarily empirically measured,

in isolation, without the rest of the application pipeline executing. In this way, we can

determine the capacity of that particular pipeline stage. A few rates have been reported in

the literature, these are each noted in the table.
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Table 4.3: Data Volume Gain at each Queueing Server (ML).

Queueing station Symbol Expression Value Symbol Expression Value
PCIe to FPGA γ1 λ2/λ1 1
optidigits bit γM2 λ3/λ2 0.125 Γ2 γ1 1
PCIe from FPGA γ3 λ4/λ3 1 ΓM

3 γ1γ
M
2 0.125

Memcopy γ4 λ5/λ4 1 ΓM
4 γ1γ

M
2 γ3 0.125

PCIe to GPU γ5 λ6/λ5 1 ΓM
5

∏4
i=1 γi 0.125

digit recognition γM6 λ7/λ6 0.03125 ΓM
6

∏5
i=1 γi 0.125

PCIe from GPU γ7 λout/λ7 1 ΓM
7

∏6
i=1 γi 3.9× 10−3

4.5 Performance Results

4.5.1 BLAST

Table 4.5 shows the normalized service rates for the BLAST implementation of Figure 4.5

(using the Boost ASIO libraries for networking) and the maximum achievable throughput

based on Equation (4.7). When just looking at performance, we can ignore Equation (4.5)

and focus on Equation (4.4). To ensure that the throughput is achievable at each queueing

station i, it is sufficient to have λi < µi. However, we find it more convenient to re-normalize

all the individual flow rates λi to the ingest rate at stage 1, λ1. To enable this, we define a

normalized service rate, µ̂i = µi/Γi, which represents the service rate achievable at station i

in units of the ingest rate at the beginning of the pipeline. For all downstream stations the

flow constraint can be then expressed as

λ1 < µ̂i, i > 1. (4.6)

With this normalization, the maximum ingest rate is simply the minimum normalized service

rate,

λ1 < min
i
µ̂i (4.7)

and the pipeline stage that determines that value is the bottleneck stage. (Note, for µ̂7,

the data reduction is sufficient such that the normalized service time will not be a limiting

factor.) For this application, the GPU-deployed comparison pipeline is the rate-limiting

stage.
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Table 4.4: Capacity (Service Rate) of each Queueing Server.

Queueing station Symbol Value
PCIe to FPGA µ1 1.1 GB/s
fa 2bit (FPGA) µB

2 1.2 GB/s
fa 2bit (HARPv2) µB

2 15.3 GB/s
fa 2bit (CPU) µB

2 23.4 MB/s (Note 1)
optidigits 1bit (FPGA) µM

2 250 MB/s
optidigits 1bit (CPU) µB

2 133 MB/s (Note 1)
PCIe from FPGA µ3 940 MB/s
Network (scp) µB

4 127 MB/s
Network (Kafka) µB

4 178 MB/s
Network (Boost ASIO) µB

4 277 MB/s
Memcopy µM

4 1.3 GB/s
PCIe to GPU µ5 6.3 GB/s

comparison pipeline (T4) µB
6 137 MB/s

digit recognition (CPU) µM
6 70 kB/s

digit recognition (GPU) µM
6 90 kB/s

PCIe from GPU µ7 6.6 GB/s
gapped extension µ8 48.9 KB/s (Note 2)

Notes: (1) from [22], (2) from [55].

Table 4.5: BLAST Figure 4.5 Modeled Performance.

µ̂B
2 µ̂3 µ̂B

4 µ̂5 µ̂B
6 µ̂7 λ1

GB/s GB/s GB/s GB/s GB/s GB/s GB/s
1.2 3.8 1.1 25 0.5 > 100 0.5

For the complete application, the empirical data rate that is achieved is 355 MB/s, a bit below

the predicted 500 MB/s. This is not surprising for a pair of reasons. First, Equation (4.7)

gives an upper bound on throughput, not a nominal predicted value. Second, there are any

number of additional overheads in the execution of the complete pipeline that will have the

effect of decreasing the achievable throughput. However, despite the room for improvement

in an individual implementation the model can help us where and how to parallelize once

the ceiling of the original implementation has been reached.

4.5.2 ML

Similar to the approach we used for BLAST, we can normalize each of the service rates in

Figure 4.7 to the ingest rate. These normalized values are shown in Table 4.6. Again, the
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GPU is the limiting factor, in this case by quite a bit (the next lowest rate constraint is

over two orders-of-magnitude larger). The empirical measurements of the full application

are indistinguishable from the isolated GPU measurements, which is not terribly surprising

given the performance capabilities of each stage of the computation. Here, replicating the

digit recognition stage on multiple instances is clearly going to benefit performance.

Table 4.6: ML Figure 4.7 Modeled Performance.

µ̂M
2 µ̂3 µ̂M

4 µ̂5 µ̂M
6 µ̂7 λ1

MB/s GB/s GB/s GB/s MB/s GB/s MB/s
250 7.5 10 50 0.72 > 100 0.72

4.6 Utilizing the Model for Implementation Decisions

4.6.1 Alternative Topology

Regardless of how the actualized program performed versus the model, we can still use

it to reason about how performance should be improved. For our example application of

BLAST, our normalized data rates point to the GPU implementation being the bottle neck

for this system. Utilizing flow analysis we can predict where the bottleneck will be and also

how to scale nodes by duplication as they are separable. In Figure 4.8 we display a possible

topology that can be utilized for our particular setup. From our measurements we determine

that the actual machine running BLAST is the bottleneck and not the network as would

typically expected. By multiplying the number of GPU instances by 3 and assume that they

run independent of each other a possible service rate of the BLAST application could be

411 MB/s which would then create a bottleneck at the network layer. Ideally, a programmer

should be able to see that focusing on an implementation that can take advantage of running

on multiple systems will net the most performance versus trying to improve pieces that might

be out of their control. Beyond this, finding ways to eliminate nodes might also become a

viable option. A machine that, for instance, has both accelerators residing in the same

system can eliminate the network queue entirely from the equation. However, in instances

where large compute resources exist separate from the data source one could potentially

utilize other means of eliminating service queues from their dataflow application.
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Figure 4.8: Queueing network for multiple BLAST comparison pipelines.

4.6.2 Cost Modeling

Using the fact that our BLAST application is executing on AWS, we have good cost data

for our execution platform. (This is often not the case.) With this information, we can

derive the cost of running a streaming computation in this way. In Table 4.1 the costs

of using an on demand EC2 instance for both the g4dn machine and the F1 instance are

listed. Utilizing Equation (4.5) we can now determine what would be a cost per byte on

our streaming computation system for BLAST. Given that our BLAST application runs at

355 MB/s and our cost is $2.176/hr, our total cost per MB is $1.70× 10−6, or $1.70 per TB

of data running through the BLAST application.

Although the cost of using an F1 instance may look rather high compared to the g4dn

instance we can utilize our model to investigate if deploying the F1 instance is worthwhile.

Replacing the FPGA instance with a free tier CPU instance we can then eliminate the extra

PCIe queuing stations and we can further estimate the throughput of the free tier instance

via µB
2 . The modeled performance for the BLAST application with a free instance running

fa 2bit is shown in Table 4.7.
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Table 4.7: BLAST modeled performance utilizing a free tier CPU node.

µ̂B
2 µ̂B

4 µ̂5 µ̂M
6 µ̂7 λ1

GB/s GB/s GB/s GB/s MB/s GB/s
0.0234 1.1 25 0.5 > 100 0.0234

Now the cost of running the BLAST application becomes just the cost of the g4dn instance:

$0.526/hr and the Tput = 0.0234 GB/s. The cost-performance value of this setup now

becomes $6.244× 10−6 per MB, over three times the cost of the previous setup that includes

the F1 machine.

4.7 Conclusion

The model presented here is designed to help developers reason about streaming data ap-

plications in a hardware agnostic way and better estimate how resources can be allocated

in streaming applications. By taking isolated measurements of individual components in a

system a higher-level overview of the system can be constructed. Through our measurements

we see that we are able to successfully predict roofline performance for a given application.

While this is exciting to see for our results, there are some things this model can not pre-

dict. As it stands utilizing our queuing theory model to predict things like latency and

queue occupancy is not feasible with just isolated measurements of mean service times. This

is because queueing theory requires a fuller picture of the distributions of the arrival pro-

cesses and service processes before it is capable of analyzing latency and queue occupancy.

While collecting histograms of service times might be feasible, the overhead of doing so is

substantially higher than measuring moments.

Furthermore, the gap of the roofline model from actual measured performance does not

tell the full story on interactions that happen within the system. For example, our GPU

implementation of the BLAST comparison pipeline queues up a fairly large chunk of data

prior to delivering it to the GPU, and this activity is not well represented in our queueing

model.

As we would like to improve prediction without creating a larger burden on the developer by

creating new things to test and account for, in the next chapter we turn to network calculus
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to cover these concerns. Rather than require the measurement (or approximation) of the

distribution of service times, network calculus can instead use bounds on service times, which

are not substantially more difficult to acquire than averages. In addition, there are network

calculus models that explicitly incorporate intentional buffering prior to initiating a service.
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Chapter 5

Network Calculus for Streaming

Algorithms

5.1 Introduction

Data movement, as discussed prior, is one of the most critical aspects of streaming algorithm

tasks. When trying to discern how a streaming algorithm performs on a high level, how

the data moves through the system is paramount to a working model. In the previous

chapter we focused on a queuing theory model for roofline prediction, however without

further investigation (primarily into the distributions of the arrival and service processes)

this model can’t make claims about data latency or bounds on performance. Ideally a

model for guidance should not burden the developer with additional data gathering (e.g., to

empirically measure distributions) when trying to discern how to spend resources, as the data

gathering and analysis of it just becomes another burden. Utilizing similar measurements in

the queuing theory model we turn to network calculus to try and address these concerns.

5.2 Introduction to Network Calculus

Network calculus is a modeling approach, similar to queuing theory, that is designed to

analyze systems that utilize networks of queues and has primarily used to analyze bounds

and model performance in networking systems. It relies on the min-plus and max-plus

algebras which define a different set of operators compared to normal algebra. In min-plus

algebra, addition is replaced by the infimum operator and multiplication is replaced with

addition. Similarly in max-plus algebra, addition is replaced by the supremum and, once
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again, multiplication is replaced with addition. These two algebras are used in conjunction

with the convolution operator to reason about data as it traverses a system.

In network calculus data is modeled as a cumulative function with respect to time to represent

the flow in and out of systems. Systems are modeled in a similar fashion with curves

representing guarantees on flow into and out of the system known as arrival and service

curves respectively. While these flows correspond to the arrival and service processes of

queueing theory, they are characterized in queueing theory by mean rates (and distributions

of rates).

The discussion below follows the exposition provided by Boudec and Thiran [61].

Consider a data flow, in units of bits, r(t), arriving at a system and let α(t) be a wide-sense

increasing function with α(0) = 0. The flow is constrained by α(t) and is an arrival curve if

and only if for any 0 ≤ s ≤ t:

r(t)− r(s) ≤ α(t− s).

Following a similar logic the system offers a service guarantee for an output flow r∗(t). Allow

β(t) to be a wide-sense increasing function and β(0) = 0. β(t) is a service curve given to the

flow r(t) with an output curve r∗(t), defined by:

r∗(t) ≥ inf
s≤t

{r(s) + β(t− s)}.

Alternatively, this can be written as the min-plus convolution:

r∗(t) ≥ r(t)⊗ β(t).

Furthermore, we can define an upper-bound on a service provided defined as:

r∗(t) ≤ r(t)⊗ ψ(t),

where ψ(t) is the maximum (i.e., best case) service curve.

When utilizing a network calculus model it is up to the designer to use appropriate equations

to represent arrival and service curves. For arrival curves it is typically standard to model
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the data flow using an affine curve known as the leaky bucket arrival curve:

α(t) =

Rα(t) + b if t > 0

0 otherwise.

Here, Rα represents the rate of arrival and b is a burst, that is, how much data can be sent

instantaneously. When considering the service curves, these are usually represented as rate

latency functions with an associated rate, Rβ, and delay, T , associated with them:

β(t) =

Rβ(t− T ) if t > T

0 otherwise.

By utilizing these models we can begin to reason about bounds on a specific node such as the

backlog generated by the flow entering the node, the delay data will experience at a given

node, and what is the upper-bound output flow of the node, α∗(t). Figure 5.1 displays a data

over time plot of a leaky-bucket arrival curve and two rate latency functions representing both

a maximum and normal service curve adapted from [61]. Also in this figure horizontal and

vertical lines are included that are meant to represent maximum virtual delay and backlog,

respectively. Finally from these two lines we can derive an output flow bound, α∗(t), which,

along with the delay and backlog, will be further expanded upon below.

When considering these models it is important to point out that both network calculus and

queuing theory as mathematical models are designed to reason about queuing systems and

there has been work to explain how one represents network calculus ideas in a queuing theory

space [50, 75].

5.3 Network Calculus Modeling

As mentioned prior we want to use network calculus to reason about bounds on a given

streaming application that utilizes heterogeneous architectures, however some additional

assumptions and modifications to the standard model must be made in order to utilize it

properly. Firstly network calculus in its original inception deals with continuous data flows

that are bit-by-bit, however in the modern era a majority of network equipment work on
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Figure 5.1: Plot of a Leaky Bucket Arrival Curve, α, and a Rate-Latency Service Curve, β,
showing the relation of the Backlog, x(t), Virtual Delay, d(t), and Output Flow, α∗, bounds.
Adapted from [61].

a per-packet scheme and are similar to jobs flowing through a streaming application. This

packetization does indeed have an effect on some of the properties that network calculus

models [61] and needs to be accounted for in our final model as well. These adjustments

come in the form modifying the arrival and service curves with a variable that describes

the the size of the maximum packet lmax. Consider a flow r(t) and a packetizer, PL, the

packetized version of the arrival curve, service curve, and maximum service curve are [96]:

PL(r(t)) ≤ α(t) + lmax1t>0

β′(t) = [β(t)− lmax]
+

ψ′(t) = ψ(t).

With these adjustments we can now talk about three important bounds previously mentioned

and shown in Figure 5.1, virtual delay and backlog. The virtual delay, d(t), is a measure

of the maximum amount of time it takes for a system to output the same amount of data

sent to the system. For a leaky bucket arrival curve α and a rate latency service curve β the

virtual delay is given by:

d(t) ≤ Tβ +
bα
Rβ

.
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The backlog bound, x(t), is a bound on the maximum amount of data that resides in the

server before output is sent, and is calculated as the maximum deviation between α and β,

In this example it is calculated as:

x(t) ≤ bα +RαTβ.

Finally we can make an estimation on the output bound on a system, α∗(t). This is known

as the output flow bound. This is found by calculating both a min-plus convolution and a

min-plus de-convolution utilizing the arrival curve of the node and both the maximum and

normal service curves:

α∗ = (α⊗ ψ)⊘ β.

While these bounds are beneficial to have, it is important to know that these bounds assume

that Rα ≤ Rβ. If Rα > Rβ it is noted in [61] that the bounds are infinite, which is

the same result predicted by queuing theory if the arrival rate is greater than the service

rate, resulting in an infinite bound on the queue. Taking this into account, there are three

particular scenarios that we are interested in: (1) when Rα < Rβ or standard operation;

(2) when Rα = Rβ; and finally (3) when Rα > Rβ. While the bounds are indeed infinite for

backlog and virtual delay over the long run, we hypothesize that we can use values given

by the model to understand estimates on required queue size for individual nodes as a job

traverses a system implementing a streaming data application.

One important aspect of targeting heterogeneous architectures is the need to gather enough

data to make dispatching a job worthwhile. The inherent overheads associated with initiating

a computation on an attached accelerator, for example, can motivate the aggregation of

a minimum data volume at the input to the accelerator prior to dispatching the job to

the accelerator. We call this metric the job ratio. To reflect this in the service curve

representations, we have made a modification to how initial delay is calculated at these

nodes. For a node n that collects data of size bn prior to initiation and bn is larger than the

burst rate of the previous node (bn > b∗n−1) then the latency at node n is:

T tot
n = T tot

n−1 +
bn

Rαn−1

+ Tn.
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Intuitively, total latency is the summation of initial delay of the previous nodes, T tot
n−1, the

time to collect a job from the previous node, bn/Rαn−1 , and finally the initial delay of the

current node, Tn.

5.4 Modeling and Simulation of BLAST

Network calculus can model the structure of a network similar to streaming data applications

with directed graphs. Nodes in previous network calculus models typically represent some

type network element like a router or switch, each with their own set of arrival curves and

service curves for each element. If we restrict the network calculus model into a directed

acyclic graph, the resulting chain can represent computation and/or communication similar

to our prior queuing theory model. We therefore hypothesize that network calculus is well

suited for capturing this type of data movement and can be a viable tool for understanding

the performance implications of data channels in streaming environments.

Given a set of N nodes representing stages of a heterogeneous streaming application, we

can define network calculus maximum and normal service curves to represent the guarantees

on service at each node. Along with the actual compute nodes we can also define two

service curves to represent guarantees on data movement nodes. Any sequence of nodes in

a contiguous chain can be concatenated together to find the overall service curve for that

subset of nodes. When concatenating nodes in a chain the service curves are defined by

the minimum service curves for the selected nodes. Through this method we can create

models for intermediate systems by finding service curves for a subset of contiguous nodes or

create a node that represents the entire system. To test this model we borrow the BLAST

application used in the previous chapter. Figure 5.2 repeats Figure 4.5, simply rearranging

the position of the queueing stations to all be in a single line. Figure 5.3 illustrates the

setup of this application with nodes representing stages of the streaming data application,

augmented with ratios to represent the job ratio at said node. For example, the ratio 1:16

associated with stage D indicates that the network link collects 16 data chunks from its

upstream neighbor prior to actually delivering data across the network itself.

To improve the visibility into the performance of the system, we take these nodes and model

their execution time in a discrete-event simulator facilitated by the SimPy library [88] in

Python3. Each node is a server class with an associated queue represented by a SimPy
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Figure 5.2: BLAST queueing model (from Figure 4.5).

B C D E F GΛ A Out

1:1 1:1 1:11:1 1:16 64:1 1:1

Throughput
Node Function Average Minimum Maximum
Λ Data Source N/A N/A N/A
A PCIe link 1.2 GiB/s 1.1 GiB/s 1.2 GiB/s
B FPGA Computation 1.2 GiB/s 1.2 GiB/s 1.2 GiB/s
C PCIe link 940 MiB/s 906 MiB/s 958 MiB/s
D Network Link 277 MiB/s 263 MiB/s 315 MiB/s
E PCIe link 6.3 GiB/s 6.3 GiB/s 6.2 GiB/s
F GPU Computation 137 MiB/s 175 MiB/s 89 MiB/s
G PCIe link 6.6 GiB/s 6.6 GiB/s 6.7 GiB/s

Figure 5.3: Data flow diagram with accompanying node table with names and throughput
for BLAST. Nodes represent computations or communications, and the job ratio is shown
below each node. Node D decomposes large data blocks from the FPGA for delivery over the
network, and Node E composes even larger data blocks for delivery to the GPU. Average,
Maximum, and Minimum throughput for each node are also listed, except for Data Source
as we assume the source to have infinite throughput (a job will be queued immediately when
arriving).

Container which holds the current amount of data in queue for the node. Each server is

given a maximum and minimum execution time (derived from empirical measurements of

the server in isolation), a data packet size to consume, and data packet size to emit when

the execution time has completed. At each time step a server will check if there is enough

data in its store to start execution, if so it will then consume that data from its queue and

sleep for its given execution time otherwise it will check at the next time step. The time

chosen for execution is chosen from a uniform random distribution using the minimum and

maximum times as bounds. Again, we normalize the data volumes at each stage referred to

the input, as some stages have a natural lossless data compression. In the results section we

report all of the following: network calculus predictions on bounds, the results of the original
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M/M/1 queuing theory model and empirical measured performance (already presented in

Chapter 4), and our simulated system performance.

The predictions from our network calculus model and discrete-event simulation are depicted

in Figure 5.4. The service curve, represented by β(t), corresponds to the lower bound

of predicted performance for the entire system. The arrival curve, represented by α(t),

corresponds to an upper bound on performance. The output flow bound, represented by

α∗(t), is a loose upper bound. The simulated data output is shown by the stairstep curve

that stays between the two bounds.

Figure 5.4: Network calculus model results.

Throughput predictions from the various models and experiments are presented in Table 5.1.

As is apparent, the network calculus throughput predictions align well with both the discrete-

event simulation results and the empirical results reported in Chapter 4.

While these throughput results are clearly of interest, they haven’t yet demonstrated the

power of network calculus, since they are merely confirming the conclusions from previous

models. Additional information we can glean from the network calculus model include the

following:
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Table 5.1: Streaming data application throughput.

Source Value
Network calculus upper bound 704 MiB/s
Network calculus lower bound 350 MiB/s
Discrete-event simulation model 353 MiB/s
Queueing theory prediction 500 MiB/s
Measured throughput 355 MiB/s

1. The maximum virtual delay, d, through the system is modeled to be 46.9 ms.

2. The maximum data occupancy resident in the entire system, x, (or backlog bound) is

modeled as 20.6 MiB.

Points (1) and (2) above are corroborated by the discrete-event simulation model.

Further capabilities of the network calculus models include the ability to analyze any desired

subset of the streaming application separate from the rest of the application. For example,

the contributions of the data occupancy bounds that are due to each node in Figure 5.3 can

be determined analytically, which can assist a developer in allocating buffers.

5.5 Bump in the Wire Streaming Algorithms

Utilizing network calculus we can model other data streaming applications that utilize other

heterogeneous technology (and validate the model predictions using our simulation tool).

One that is of particular interest to us is the utilization of what is known as “bump in

the wire” communication [16]. Figure 5.5 shows the traditional interconnect for an FPGA

accelerator, and Figure 5.6 shows the bump in the wire configuration.

Figure 5.5: Traditional FPGA accelerator [59].
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Figure 5.6: Bump in the wire FPGA accelerator [59].

This style of deployment particularly relies on a network connection to pass data to a new

node without having to be moved out of the heterogeneous memory pool back to CPU host

memory. There are many heterogeneous architectures that implement bump in the wire tech

that are primarily deployed in FPGAs, utilizing custom compute alongside network com-

munication. In this scenario instead of a specific streaming algorithm we want to look at

adding functionality to a network connection, tasks usually not associated with a specialized

algorithm but still desireable in many implementations. Tasks like security and/or com-

pression are often afterthoughts when considering an application development, frequently

to be considered essential when it comes to deployment. These algorithms, depending on

their implementation, can be considered a type of streaming data application by compress-

ing/encrypting data blocks in chunks and then decompressing/decrypting at the destination.

Two FPGAs can be used in conjunction as a source and destination though a network to

offload the entirety of this computation from the endpoint CPUs freeing them up for other

processes.

Figures 5.7 and 5.8 show the source end flow graphs of the scenario described above, with

Figure 5.7 indicating the data flow if the FPGA were installed in the system in the traditional

way and Figure 5.8 indicating the data flow in a bump in the wire configuration. Note that

the benefit of the bump in the wire configuration is that data no longer need to flow across

the PCIe bus to move from the FPGA to the network.

PCIe
compress/

encrypt
PCIe networkproducer ...

Figure 5.7: Example flow graph for FPGA accelerated compression/encryption using a tra-
ditional FPGA interconnection.

The FPGA manufacturer Xilinx maintains a set of of multi-purpose libraries with HLS

implementations of various algorithms in the form of function primitives or fully implemented
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PCIe network ...producer
compress/

encrypt

Figure 5.8: Example flow graph for FPGA accelerated compression/encryption using a bump
in the wire configuration.

kernels. They are designed to get any developer up and running with implementations of

algorithms ranging from image analysis, data analytics, and graph problems to name a few.

Within the Vitis libraries are implementations of various data compression and cryptography

libraries that we wish to investigate for a bump in the wire implementation. Within the two

categories one can find a plethora of various compression and cryptography methods. Here,

we have decided to target the LZ4 compression and AES cryptography algorithms which

are ubiquitous in their respective spaces. The AES algorithm already exists as a streaming

algorithm; no matter the size of the data target, it is broken into 128 bit blocks and each one

is encrypted/decrypted in order. In the case of LZ4 textual compression/decompression, a

target file or stream of data may need to be chunked and then run through the kernel in order

for it to be considered streaming. In the Vitis libraries implementation, a streaming version

of the LZ4 algorithm is implemented utilizing stream channels so data can be passed from

one kernel to the next in a FIFO. It is important to note, of course, that the effectiveness of

compression is dependent on the amount of repeated patterns in the target data and chunked

data may reduce similarity for the overall dataset which in turn will reduce the effectiveness

of compression.

In this application the amount of compression that the data will experience will effect how

much data a downstream node will see until it is decompressed. To account for this in

a network calculus model we will want to again normalize data in terms of the input but

we want to make note of the possible compression ratio achieved by LZ4. Service curves

after compression will then take two forms: one that considers the worst case scenario, a

compression ratio of 1.0, and the other being the largest observed compression ratio. As

these compression ratios effect how much data is truly going though the individual nodes,

the lower bound service curve corresponds to a compression ratio of 1.0 and the maximum

service curve will correspond to the maximum compression ratio. In addition, because the

data is normalized to the input data volume, the throughput reported by the maximum

service curve would be the baseline measured maximum service curve multiplied by the
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compression ratio which is then removed from downstream maximum service curves after

decompression.

The target platform for this application is the Open Cloud Testbed (OCT) [44, 62] which

deploys machines equipped with network capable Xilinx Alveo U280 FPGA cards, which can

be targeted by Vitis implementations. Similar to the queuing theory model, we will test each

stage in isolation and measure performance in isolation. Compression is implemented via a

streaming LZ4 kernel and encryption is provided by a 256-bit CBC AES kernel, both available

in the Vitis libraries. Finally the third kernel, the network communication kernel, is a demo

implementation of a TCP stack and CMAC kernels that facilitate network communication

between two FPGA cards [46, 68]. While Figure 5.8 illustrates the notion of the bump in

the wire configuration, Figure 5.9 shows the flow graph of the application we actually model.

The measured throughput for each stage are shown in Table 5.2.

encrypt networkcompress decrypt decompress

Figure 5.9: Actual flow graph for FPGA accelerated compression/encryption using the bump
in the wire configuration.

Table 5.2: Listing of functions and their associated throughputs. The compression rates
listed here are normalized with respect to their observed compression ratios: 2.2× Average,
1.0× Minimum, and 5.3× Maximum.

Throughput
Function Average Minimum Maximum
Compress 2662 MiB/s 1181 MiB/s 6386 MiB/s
Encrypt 68 MiB/s 56 MiB/s 75 MiB/s
Network 10 GiB/s 10 GiB/s 10 GiB/s
Decrypt 90 MiB/s 77 MiB/s 113 MiB/s
Decompress 1495 MiB/s 1426 MiB/s 1543 MiB/s
PCIe link 11 GiB/s 11 GiB/s 11 GiB/s

The resulting simulation and network calculus model can be seen in Figure 5.10. Like in

the previous model we combine all stages of the pipeline to create a single node for our net-

work calculus model to determine latency and backlog bounds. Here we have removed the

maximum service curve ψ(t) as it skews the overall graph and is indicative of the maximum

observed throughput and also the maximum observed compression. Again we see the simula-

tion curve is below the potential maximum output bound for this system. The quantitative

predictions are shown in Table 5.3.
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Figure 5.10: Network calculus model for our bump in the wire application.

Table 5.3: Streaming data application throughput.

Source Value
Network calculus upper bound 313 MiB/s
Network calculus lower bound 59 MiB/s
Discrete-event simulation model 61 MiB/s
Queueing theory prediction 151 MiB/s

1. The maximum virtual delay, d, through the system is modeled to be 38 µs.

2. The maximum data occupancy resident in the entire system, x, (or backlog bound) is

modeled as 3 KiB.

Points (1) and (2) above are corroborated by the discrete-event simulation model.

One important thing to note about the simulation is that it is not modeling the breaking of

individual chunks of the encrypted AES output and sending them through the network node

in individual packets. For ease of simulation we instead assume that data will be gathered at

maximum in 1 KiB normalized chunks and then sent over the network. Another simulation

shortfall is the lack of a structure to simulate overlapping stream channels which would be

utilized in an FPGA deployment to transport data to downstream kernels. Furthermore we

would like to corroborate these simulated results with an actual deployment. In the future

we would like to show the power of network calculus as a tool to help make decisions about

deployment when considering applications that have an arrival rate greater than what can
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be provided by the service of the system and when arrival rates need to be changed to

accommodate queues that are at risk of overflowing.
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Chapter 6

Conclusions and Future Work

Although it can be difficult to reason about the performance of streaming data applications,

through general guidance and mathematical modeling reasonable estimates can be made

about how an application will behave. The work presented here is intended to help a de-

veloper in their quest as they attempt to hit performance goals in systems where disparate

compute resources are incorporated into the available design options.

6.1 Conclusions

Streaming applications on heterogeneous architectures can be somewhat convoluted to im-

plement because of memory that travels across host and device boundaries, on top of that

programming for such devices can be difficult at first blush. In Chapter 3 we explored imple-

menting data integration tasks, an often underappreciated task, on heterogeneous hardware,

specifically targeting FPGAs utilizing OpenCL utilizing two major programming styles avail-

able to the platform. When implementing these tasks we found that it was it was important

to understand how memory access is handled in an algorithm and how the device handles

memory hierarchies.

At a higher level a streaming data application rarely exist in isolation, and understanding

how the entire application performs is just as important. Chapter 4 and Chapter 5 utilize

queuing theory and network calculus, respectively, to help reason about performance for

streaming data applications, each with their own advantages. With queuing theory one can

reason about roofline performance for the entire flow and identify nodes that restrict the

flow, with the implication that these nodes might require more attention and resources. The

model also allows us to analyze the cost effectiveness of a given stage. Network calculus

allows us to reason about the performance bounds of a given system as well as important
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stats like the amount of data in the system and end-to-end delay of a streaming computation.

These two models have the advantage of being hardware agnostic and allow for evaluation

of components in isolation allowing a developer to concentrate on individual nodes before

worrying about implementing them in a full flow.

6.2 Future Work

We would of course like to improve the quality of programming advice given for streaming

data applications for FPGA deployments. When looking at how to effectively compute data

integration tasks we found that metadata processing can play an important role in some

applications and ideally should also be a target of concern for data integration applications.

With meta data processing we’ve come across two different types, small up front operations

to determine database attributes and larger operations that depend on full database scans

to find important characters like record boundaries that are not spaced in a regular manner.

It is our thought that finding ways to reason about metadata processing can be important

for more than just data integration tasks, but could potentially be impactful for task that

can utilize information for more efficient processing.

When it comes to modeling, further use of our network calculus model is of interest to us. In

our current model we are strictly bound by the property Rα ≤ Rβ which for our purposes we

set the arrival curve of the system to be the rate of Rβ, of course when Rα > Rβ the backlog

bound and therefore the queues will grow without bound. While this is fine in a modeled

environment, it is unpractical in the real world. In network calculus there already exists a

concept of a a variable bit rate (VBR) which defines an arrival curve constrained by two

leaky buckets. Such a concept may be useful when the data rate arriving at a system needs

to backoff on the rate of data being sent to a particular system to allow for a downstream

server to catch up on its own backlog bound. How exactly a system makes such a decision

would be another extension of the application of network calculus into streaming algorithms.

Pushing the space in which network network calculus can be useful beyond streaming data

applications, FPGA and similar ASIC circuits could potentially use similar models for rea-

soning about queue size when passing data from one compute kernel to the next. It is

unknown if this model has improvements over current HLS queue sizing techniques.
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Another area of potential improvement is an investigation of lightweight methods for ex-

tracting the performance properties of individual nodes in isolation. There has been work

focused on learning these properties in the midst of a full application, both on traditional

processors [14] and FPGA-based systems [58], however, the techniques for executing nodes

in isolation still require substantial manual effort. This could be improved.
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